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Abstract 

Transport properties, such as permeability and electrical conductivity, are important in many 
geophysical and petroleum applications. The microstructure of a porous medium and physical 
characteristics of the solid and the fluids that occupy the pore space determine the macroscopic 
transport properties of the medium. The computation of macroscopic properties from the rock 
microtomography is becoming an increasingly studied topic. The transport properties are especially 
difficult to determine at the microscopic scale. The purpose of this paper is to test the applicabilities to 
numerically calculate the geometrical and transport properties (electrical conductivity, permeability, 
specific surface area and surface conductivity) of porous, permeable rocks, given the digital CT 
microtomography images. To better address the relationship between geometrical properties and 
transport properties, we use a number of artificial low, medium- to high-porosity Finney’s (1970) 
sphere packs. Numerically calculated transport properties are compared with analytical and empirical 
equations on the Finney pack. In particular, numerically computed permeability on the Finney pack 
agrees well with the permeability calculated from the computed formation factor using an empirical 
relationship on the same structure. This illustrates the consistence of resolving different transport 
properties on the same structure and the possibility of multiphysics coupling in the future. We also 
apply all the numerical simulations on the 3D X-ray microtomography of 23.6% porosity Berea 
Sandstone with 2.8 micron resolution. Numerical calculations of electrical conductivity, permeability 
and specific surface area on mm3 image will be compared to the laboratory measurements with those 
parameters on cm3 core samples. The upscaling issue will be discussed when we compare the 
numerical results with laboratory measurements at a different scale. We also analyze the image 
resolution impact on different properties to better understand the discrepancy between numerical 
computations and laboratory measurements. This paper provides a complete work on the numerical 
simulations on different physics at different scales. Numerical calculations are compared with analytic, 
empirical rock physics equations and laboratory measurements.      
 
1. Introduction 
Recently, computation of permeability (Alder et al., 1990; Pal et al., 2002; Ayako et al., 2006) and 



electric conductivity (Alder et al., 1992; Arns et al., 2002; Pal et al., 2002) on 3D X-ray 
microtomography have been increasingly studied. However, complex pore geometry makes modeling 
and simulation of transport properties in porous media a difficult problem.  
 In this paper, we adopt a finite difference (FD) scheme to numerically solve the Laplace equation 
for the electrical problem and Stokes equation for the hydraulic problem. For effective conductivity 
calculation for a random medium, the three most popular numerical methods currently are finite 
difference (FD), finite element (FEM), and random walk (Schwartz and Banavar, 1989). To 
numerically solve the Navier-Stokes equation or Stokes equation, good candidates include FD, FEM 
and Lattice Boltzmann (LB). We have the in-house ability to solve the hydraulic problem using all 
three different methods. Here, we choose FD to solve two different PDEs on the same structure. There 
are two reasons for using FD. First, we need to know the field distribution everywhere within the 
structure, which eliminates the random walk method. Second, we want to carry out multiphysics 
coupling on the same numerical frame, which eliminates the LB method. Also we may need to couple 
Maxwell equation and Navier-Stokes equation on the micro-structure for the electrokinetic coupling 
problem (Pride et al., 1991) in the future.   
 We analyze the electrical conductivity, permeability, and specific surface area computation with 
a synthetic porous medium composed of uniform radius spheres. Spherical packing is simple in 
geometry and also a good representation of real rock. The radius of spherical packing could be 
uniformly increased to simulate different geological processes, producing granular porous media with 
different porosities. Many analytical, empirical rock physics models can be deduced from spherical 
packing, which could be applied to benchmark the numerical computation of electrical conductivity, 
permeability, and specific surface area. Those empirical relationships could also help us to better 
understand the relationship between porosity and transport property, as well as the relationship 
between different transport properties.  
 Our numerical calculations will be continued on a 23.6% Berea Sandstone 3D microtomography. 
Computation of electrical conductivity on the microtomography of sandstones is well studied (Arns et 
al., 2002). Permeability calculation using a digital rock approach is also well studied (Ayako, 2004). 
But minimal work has been done to estimate two transport properties on the same structure 
simultaneously.In particular, the permeability-conductivity relationship, which involves pore volume 
to surface area ratio, could also be established in our numerical calculation. By calculating all different 
transport properties and geometrical properties on the same structure, a good consistency between 
different transport properties is illustrated.   
 In the end, the impact of image resolution on all different transport geometrical properties is also 
studied. The discrete representation of continuous objects can always cause discrepancy between 
numerical estimation and laboratory measurements. We downscale a Finney pack of 18.5% porosity 
from a 2003 cube with resolution of L, to a 253 cube with resolution of 8L. The fractional changes in 
different parameters are calculated. Electrical conductivity is the most impacted property and the 
explanation for this will be provided in the paper.  
 
 
   



2. Finite Difference Implementation for Electrical and Hydraulic Flow Simulation 
The effective dc conductivity of a random material can be solved by Ohm’s Law, 
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The conductivity value σ of a composite n-phase material is a function of location r. For a steady state 
conductivity problem, where the currents are steady in time, the charge conservation equation,  
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Between phases having different conductivities, the boundary conditions require that the current 
density normal to the interface and the potential are continuous. We can calculate the macroscopic 
conductivity of the random material by applying an electric potential gradient across the sample. The 
volume averaged current density can be used to compute the effective conductivity from Ohms’ law, 
as given in equation (1).   
 Permeability is a measure of the resistance to fluid flow under a pressure gradient of a given 
porous medium. The mechanism of fluid flow is given by the Navier-Stokes equation: 
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where ρ is density, u is velocity, P! is pressure gradient and η is the dynamic viscosity of the fluid. 
For the case of laminar (slow, incompressible) flow, the fluid flow can be conveniently described by 
the linear Stokes equations:            
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where u and Ρ are the local velocity vector and pressure fields at position
!

r . We can calculate the 

macroscopic permeability of the porous medium by applying a potential gradient across the sample. 
The permeability, κ, of the porous medium is calculated by volume averaging the local fluid velocity 
(in the direction of the flow) and applying the Darcy equation: 
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where u is the average fluid velocity in the direction of the flow for the porous media and L is the 
length of the sample porous medium across which there is an applied pressure gradient of ΔΡ.  
 To calculate the dc effective conductivity of the porous medium, we employ a finite difference 
(FD) scheme. The FD code solves the Laplace equation with given boundary conditions using a 
conjugate gradient solver (Garboczi, 1998). As for the material properties, finite difference electrical 
conductivity programs can handle arbitrary diagonal conductivity tensors. The intrinsic challenge of 
solving Laplace’s equation of high contrast conductivity value for neighboring grids is overcome by 
adopting a gradual relaxation method. For our specific problem, the solid matrix defined to be quartz 
and saturation fluid can have a conductivity contrast of 7-15 orders in magnitude. To solve the 



hydraulic problem, there are a few numerical approaches, including finite difference (FD), finite 
element (FEM) and lattice boltzmann (LB). The FD stokes solver is modified based on an industry 
standard finite difference (FD) code developed at NIST (National Institute of Standards and 
Technology, Gaithersburg, MD 20899-8621, U.S.A). We tested all three different methods on a 2D 
thin SEM image of San Gregorio Beach sand. The results of all three methods are in good consistence, 
but each has its own benefits and drawbacks. In this paper, we decide to adopt the finite difference 
(FD) scheme. The ultimate goal is to achieve multiphysics coupling on the micro-structure. Thus, we 
would like to use the same scheme to solve different physics and testify the consistency between them. 
We could obtain the velocity field u(r) and electric field E(r) at the same location within the 
micro-structure, which provides us the possibility of studying coupling problems, such as 
electrokinetic coupling, in the future.   
 
3. Numerical Calculation of Conductivity, Permeability on Spherical Packing with 
  Comparison to Empirical Rock Physics Model  
We first performed electrical conductivity and permeability calculation on a synthetic porous medium 
comprised of equal spheres. Finney (1970) constructed such a packing and measured the spatial 
coordinates of sphere centers. The applicability of constructing granular media from Finney pack to 
simulate certain geological processes (grain packing, compaction, and grain growth) has been well 
verified (Roberts and Schwartz, 1985).  
 We start from the original Finney pack, which has 36.2% porosity and spheres that are just 
touching each other. By uniformly increasing the radius of the spheres in the packing without altering 
the location of the sphere centers, we could generate a series of granular porous media with a wide 
spectrum of porosity from 4.02% to 36.2%. In total, fourteen different porosity packings are produced, 
with porosities of 4.02%, 6.24%, 7.85%, 9.91%, 12.54%, 15.79%, 19.80å%, 22.32%, 24.16%, 25.13%, 
26.12%, 28.02%, 31.52%, and  36.2%, respectively. When the size of the sampling cube in the 
Finney pack exceeds four-grain radii, the fluctuation in both porosity and permeability is negligible 
(Ayako et al., 2006). To reduce the computation cost, we took a sampling cube of 5-grain radii in the 
middle of the Finney pack for our calculation. 

Both electrical conductivity and permeability are calculated on our 14 granular packing using the 
finite difference method described above. For the electrical conductivity calculation, we assign the 
quartz conductivity of 10-14 S/m for the grain and saturated electrolyte conductivity σ0 of 1S/m for the 
pore space. Formation factor, which is defined as the ratio σ0 /σeff , are plotted for different porosities 
packing in Figure 1. 

All the permeabilities of the packing after grain growth are normalized by the permeability of the 
original packing, denoted as κ0. Figure 2 shows the permeability of this class of granular media as a 
function of porosity. The Kozeny-Carman relationship of porosity-permeability (Carman, 1961), 
including the percolation threshold (Mavko and Nur, 1997), is expressed as: 
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where κ is permeability, d is grain diameter,! is porosity,
p
! is percolation porosity, τ is tortuosity. To 

calculate tortuosity τ, we could use:   
                                          F!" =

2 ,                               (9)   

where F is formation factor. As for the percolation porosity
p
! , we know for Finney pack is about 3%. 

The Kozeny-Carman curve is plotted together with the numerically computed permeability data in 
Figure 2. Good agreement between the FD calculation and the Kozeny-Carman relationship is 
obtained for the entire range of porosities.   

We have calculated electrical conductivity and permeability on the same structure by solving two 
different physical PDEs. What we want to test next is the consistency between different transport 
properties on the same geometry. Since electrical conductivity is usually easier to measure in the 
laboratory or in situ than permeability, researchers have tried to relate permeability to electrical 
conductivity. Paterson, Walsh and Brace (1984) have deduced the following relationship: 
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where k0 is a geometrical factor, k0=2 for circular pores and m is the volume to surface area ratio for 
connected pores. From this empirical relationship, we could see that permeability is proportional to 
the inverse of the formation factor. We plot the permeabilities and formation factors for our 14 
granular packings in logarithm scale in Figure 3. A slope of -1 could fit the data points. Given the 3D 
digital representation of the spherical packing, we could compute the volume to surface area ratio on 
the digital image. Two different algorithms are used to search for the surface pixels of the binary 
image, and the results are averaged to obtain the surface area. By calculating the m on the digital 
images, we could calculate a permeability kimage with given F computed from the image. We crossplot 
the permeability knumercial computed by solving Stokes equation and kimage calculated from Equation 10 
in Figure 4. Two kinds of calculated permeabilities are in good agreement with each other.  

Until now, we have shown the applicability of the FD scheme to compute electrical conductivity 
and permeability from the 3D digital image of porous media. The numerically computed transport 
properties are in good agreement with the empirical relationship. Especially, the empirical 
conductivity-permeability relationship is well applied on numerically calculated conductivity and 
permeability.   

 

 

4. Numerical Calculation of Conductivity, Permeability, Specific Surface Area on 
  Berea Sandstone with Comparison to Laboratory Measurements 
We will apply the numerical calculations on the 3D microtomography of Berea Sandstone provided by 
Schlumberger, Doll-Research. The 23.6% porosity core sample is digitized into a 18403 binary voxel 
with 2.8 micron resolution. We select five 4003 sub-volumes at different locations in the total 18403 

volume in Figure 5. Sub-volume #3 is in the middle of the total volume. Sub-volumes #1, 2, 4, and 5 
are in the north-west, north-east, south-west and south-east direction of the central 
sub-volume,respectively, to capture the both vertical and horizontal heterogeneity. The hydraulic flux 



and electrical flux of one slice in sub-volume #3 are color mapped in logarithm scale in Figure 6. The 
electrical flux is much larger compared with hydraulic flux at the thin and narrow pores. The porosity, 
formation factor, permeability, and specific surface area of five sub-volumes computed from the 3D 
tomography are listed in Table 1. The heterogeneity of the geometry at different locations of the core 
sample is reflected on all four parameters. We also calculate the mean value and the variance for those 
five sets of data and compare with the laboratory measurements in Table 2. The numerical 
computations on the mm3 images compares well with the laboratory measurements at cm3 core 
samples by taking the mean value of many sub-volumes. We also plot the logarithm of permeability 
against the logarithm of formation factor for five sub-volumes in Figure 6. A similar linear trend in 
logarithm of permeability-formation factor relationship shown in Figure 3 is observed in Figure 7.  

 

5. Image Resolution Impact on Different Transport Properties 
When we numerically compute the transport properties from the digital microtomographic image, 
image resolution has a large impact on all the calculation values. The microstructure defined by a 
digital image is already discretized and thus introduces the error due to the discrete voxels to represent 
continuum objects. We took an 18.5% Finney pack and resolved it by a 2003 binary image. Then we 
downscaled the 2003 cube into a 1003 cube using majority rule. In essence, eight voxels in the 2003 
cube are smeared into one voxel in the 1003 cube. If the number of grains is larger than the number of 
pores in the eight voxels, then the one voxel in the 1003 cube is assigned to be grain and vice versa. If 
the number of grains is equal to the number of pores in the eight voxels, then the one voxel in the 1003 
cube is randomly assigned to be either grain or pore. The smeared images from the 2003 cube down to 
a 253 cube are plotted in Figure 8. Additionally, the resolution of the voxel is increased from the 
original resolution L to 8L. Porosity, permeability, formation factor, and specific surface area are 
calculated for all four different scales of the image. The fractional changes in all the parameters are 
plotted in Figure 9. The electrical conductivity is most affected by this process. This is expected, since 
using coarser grids to resolve the structure tends to describe the curved grain boundaries inaccurately 
and close narrow pores. Closure of the narrow pores will impact the electrical current more severely 
than hydraulic current. By conducting the image resolution impact analysis, we could know how large 
is the discretization error at different resolution levels. This is especially important when we want to 
use a coarser grid to resolve a physically large volume due to computation power limits.   
 
 
6. Conclusions  
In this paper, we numerically compute different transport properties on given digital microstructures. 
A uniform finite difference (FD) scheme is applied to solve theLaplace equation for the electrical 
problem and the Stokes equation for the Hydraulic problem. The ultimate goal is to achieve 
multi-physics coupling on the same computation frame. Both synthetic porous media—the Finney 
pack composed of uniform spheres and the 3D microtomography of Berea Sandstone—are used for 
computation. For the Finney pack, the exact pore structure is known and we can uniformly increase 
the radius of the spheres to generate granular packings of different porosities. Good agreement is 
achieved between numerically computed electrical conductivity and differential effective medium 



theory. The permeability-porosity relationship on the numerical data also agrees with the 
Kozeny-Carman relationship. In particular, the numerically computed electrical conductivity and 
permeability on the same structure follows the empirical permeability-conductivity relationship. This 
proves the consistency between different transport properties computed on the same structure. More 
important, we apply all the numerical computations on the 23.6% porosity Berea Sandstone 
represented by 2.8 micron resolution binary voxels. Five different sub-volumes at different locations 
within the core sample are taken to compute porosity, permeability, electrical conductivity, and 
specific surface area. Numerically computed parameters on the mm3 compare well with the laboratory 
measurements on the cm3 core sample. Finally, the image resolution impact on all different transport 
properties is studied using majority rule. Electrical conductivity is most affected by the image 
resolution than other parameters.  
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Figure 1: The ratio σeff /σ0 as a function of porosity φ for 14 granular packing with porosities ranging from 4.02% to 36.2%. Green 

dots are the numerical results by solving Laplace equation using FD scheme. Blue curve is the differential effective medium theory by 

Sen et al., in 1981. The 3D pore structures of the Finney pack are also illustrated in the figure. Porosity is 36.2% when the spheres are 

just in contact with each other.     

 
 
 
 



                   
Figure 2: The normalized permeability as a function of porosity φ for 14 granular packing with porosities ranging from 4.02% to 

36.2%. Green dots are the numerical results of solving the Stokes equation using an FD scheme. The red curve shows the 

Kozeny-Carman relationship.  

 

 

 

             
Figure 3: The logarithm of numerically calculated permeability plotted against the logarithm of numerically calculated formation 

factor for 14 granular packings.   

 

 

 

 



               
 

Figure 4: The cross-plot of numerically calculated permeability versus the permeability calculated from Paterson-Walsh-Brace 

relationship (Equation 10). Two kinds of calculated permeabilities are in good agreement with each other.  

 
 
 

                     
 

Figure 5: Selected five 4003 sub-volumes at different locations in the total 18403 core sample with 2.8 micron resolution. #3 

sub-volume is in the middle of the total volume. The pore cast of #3 sub-volume is shown on the left.   
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Figure 6: Electrical flux (bottom left) and hydraulic flux (bottom right) of one slice in sub-volume #3 (top) in logarithm scale.    

 
Figure 7: The logarithm of numerically calculated permeability plotted against the logarithm of numerically calculated formation 

factor for 5 sub-volumes in Berea Sandstone.   
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 Figure 8: 18.5% porosity Finney pack resolved by a 2003 cube and downscaled to a 503 cube using majority rule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                    
Figure 9: Fractional change in image computed porosity, electrical conductivity, permeability, and specific surface from a 2003 cube 
with voxel resolution of L to a 503 cube with voxel resolution of 8L. 

 
 
 
 
 
 
 
 
 
 

 #1 #2 #3 #4 #5 
Porosity 

% 
22.98 23.33 23.81 24.10 23.60 

Formation Factor 
(F) 

22.23 18.69 16.11 11.98 16.31 

Permeability 
(D) 

0.75 1.22 1.50 2.10 1.65 

Specific Surface 

Area (e5 m-1) 
1.82 1.70 1.62 1.44 1.60 

 

Table 1: Porosity, permeability, formation factor, and specific surface area of five selected sub-volumes (#1-#5) computed from the 

digital 3D microtomography.     

 
 
 
 



 
 

 Lab Numerical 
Porosity 

% 
23.56 23.64 ± 0.43 

Formation Factor 
(F) 

13.03 16.40 ± 3.76 

Permeability 
(D) 

0.90 1.23 ± 0.69 

Specific Surface Area  

(e5 m-1) 
2 1.63 ± 0.02 

 

Table 2: Mean value and variance of different parameters for five sub-volumes and comparison with laboratory measurements.    

 
 


