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Detecting Single, Trapped Ions

by
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requirements for the degree of Doctor of Philosophy

Abstract

We have designed and constructed an experiment to trap a single ion in a
Penning trap and measure its motion with an RF SQUID-based, superconducting
detector. Using this apparatus we have detected the axial motion of a single, trapped

N ion.

We describe the theory of ion motion in an imperfect Penning trap and use this
theory to explain our measurements on trapped ions. We describe and demonstrate
several schemes to detect the motions of trapped ions, including CW and pulsed
techniques with one and more drives. We also discuss techniques to cool and
manipulate trapped ions (including contaminant ions) and to measure important
perturbations from ideal behavior. In addition, we describe several novel measurements
of the cyclotron frequency, including a "classical avoided-crossing" and a two-
frequency resonance technique. We demonstrate these techniques on small (<10)
clouds of N ions.

The ultimate goal of the experiment is to measure cyclotron resonances to
compare the masses of individual ions at an accuracy of 10-11.

Thesis Supervisor: Dr. David E. Pritchard
Title: Professor of Physics
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CHAPTER I:

INTRODUCTION

This thesis describes work whose ultimate goal is precision mass comparison at

the 10-11 level. We hope to achieve this precision by measuring the ratio of cyclotron

frequencies of individual ions, stored in a Penning trap.

This level of precision should provide interesting results in diverse areas of

physics and chemistry:

The 3H+ - 3He+ mass difference is an important (and
currently controversial) parameter in experiments that
attempt to measure the electron neutrino rest mass

e The mass difference between 14N+ and 15N+ ions can
be combined with a direct measurement of y-ray
wavelengths to yield a new value of the Avogadro
constant.

* Binding energies (and even vibrational excitations) of
molecular ions might be measured by weighing the small
mass difference Am = Ebid4 / c2 of molecular ions in the
trap.

* The trap may be used to study multiply-charged ions as
easily as singly-charged ions.

e The traditional applications of mass spectroscopy
should benefit from both the accuracy and sensitivity
improvement this approach offers over conventional
techniques.

Descriptions of several of these experiments were given in a previous dissertation

[FLA87] and will not be discussed further here.



Past experiments [VAS81] have shown that ion-ion interactions give shifts in the

cyclotron frequency of roughly 10-10 per ion, an order of magnitude larger than our

desired precision. Commercial ICR spectrometers, limited by both the space charge of

larger ion clouds and geometrical effects because of imperfect trapping potentials, have

shifts and widths another two orders of magnitude worse. Thus, to reach the 10-11

level, we must work with a single ion in a precision trap.

Towards these ends, we have designed a superconducting detector capable of

measuring the motion of a single, trapped ion held at 4 K. We have demonstrated that

we can, indeed, see a single N ion and keep it trapped, isolated, for extended periods

of time. Although we have not yet made cyclotron measurements on an isolated ion,

we have made preliminary, "crude" cyclotron measurements on small clouds of ions at

the 10~7 level. These preliminary measurements and, in addition, extensive axial

measurements have yielded important calibration data and demonstrate the feasibility

of higher precision.

This thesis describes in detail the theory, the apparatus and the techniques we

have used to understand and interrogate the behavior of individual ions and small

clouds of ions in a Penning trap. The goal of the experiment is to measure cyclotron

frequencies; that is, the rate of precession of a charged particle about a magnetic field

line. However, to measure this frequency precisely we must keep the particle around

long enough to accumulate sufficient phase information. Therefore, we performed all

our measurements on the ions in a static-field, quadrupole, crossed E- and B-field trap,



known as a Penning trap. The trapping principle is easy to understand: a quadratic

electrostatic poteitial gives rise to a linear restoring force along the axial direction of

the trap; the strong magnetic field provides radial confinement. As we shall discuss at

length, this configuration allows us both to trap the ions and detect them at the minor

cost of a slightly modified cyclotron frequency.

Chapter II first describes the classical motion of ions held in an ideal Penning

trap, then generalizes the discussion to motion in a less than perfect trap. We expect

deviations due to the imperfect vacuum, imperfectly shaped trap electrodes, magnetic

field drifts and inhomogeneities, and other experimental realities, including special

relativity.

To achieve the necessary sensitivity to detect a single ion's motion, we

developed a Superconducting Quantum Interference-based detector (SQUID) sensitive

enough to measure the tiny current (<10-14 A at 160 KHz) a trapped ion produces as

it oscillates between the endcaps of the trap. Chapter III describes the theory of RF

SQUIDs in sufficient detail to explain the physical principles underlying our detector.

This theory helped us combine a commercial RF SQUID with home-made,

superconducting resonant circuits and optimize them to make a single-ion detector.

The completed detector is described in our Journal of Applied Physics article, included

in Chapter III. An appendix to that paper includes our more recent modifications.

The second part of Chapter III provides an introduction to the Fast Fourier



Transform (FFT) and its use in the experiment. Many of our detection techniques rely

on analyzing the -transient response of the ions to pulsed drives. We analyze these

responses in the frequency domain using the FFT. Because the (discrete) FFT can be

quite different from the (more familiar) continuous fourier transform, we have included

this section to help extend the intuition about "normal" fourier transforms into the

discrete-time, sampled-frequency domain where the FFT acts.

Chapter IV describes our apparatus, concentrating on modifications and

improvements since the earlier dissertation. The trapping apparatus (as opposed to the

magnet and other cryogenic systems) has gone through substantial changes since the

earlier work, and we summarize those improvements. We also briefly describe our

computer system, and how we used it to mimic several of the more effective

bandwidth-narrowing instruments (for example, a lock-in amplifier and a coherent

transient averager). We conclude Chapter IV with a description of a typical

experiment cycle, going from the disassembled probe to detected ions.

Chapters V and VI interleave theory and experiments, describing predicted and

measured results from driving and detecting trapped ions. Chapter V focuses on the

axial motion of the ions. We show that the ions can be described by a simple

equivalent circuit, and this circuit lets us determine the transient and CW response of

the ions and detector when driven by a single, oscillating drive. Predictions include

novel effects due to the trap capacitance and strong coupling between the ions and the

resonant detector. This one-drive technique has allowed us to determine quickly the
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axial resonant frequency of the ions and to make routine measurements of the number

of ions in the trap. We then discuss a more sophisticated (and more commonly used)

two-drive scheme, in which the ion mixes two independent drives together and

oscillates at their sum and difference frequencies. Measurements are more easily

interpreted using this two-drive technique because, in almost every case, the coupled

ion/detector/trap system behaves in many ways like. an isolated ion. Using this

technique, we have measured the anharmonicity of the trapping potential, locked the

ions to an external frequency source, and performed a Milliken-like counting

experiment to demonstrate that we have trapped a single, isolated ion. This final

counting experiment, very robust and convincing, was the core experimental goal of

this thesis.

Chapter VI continues with the theory and results for the radial motions in the

trap. Although these motions are usually orthogonal to the axial motion, we describe

how we can couple selectively the radial motions into the axial mode and thus detect

them with our SQUID. After introducing the physics of mode-coupling by an

inhomogeneous RF electric field, we apply the theory to several experiments: damping

the radial motion by coupling it to the (damped) axial detector; measuring the

cyclotron frequency by measuring shifts in the axial frequency when the

inhomogeneous field is resonant between the modes (a "classical" avoided crossing);

and measuring the cyclotron resonance directly by simultaneously driving the cyclotron

motion and coupling that motion into the axial mode. Because we have just begun



measuring the radial modes, the experimental results in this chapter are more sparse

than in Chapter V. However we do present cyclotron measurements using the two

techniques as well as strong evidence of radial cooling.

In Chapter VII, we present more results, focusing on measurements of systematic

effects which we must understand in order to perform ultra-high precision mass

spectroscopy. Thus we include measurements of minimum axial anharmonicities, a

characterization of the trap's anti-symmetric potentials (used for shifting the ions

within the trap), and techniques that eliminate contaminating ions from the trap.

Measured estimates for trap tilt, patches on the trap surfaces, and magnetic field drift

are presented, and a theoretical estimate for the magnetic field inhomogeneity is given

and a possible measurement suggested. We then outline changes to the existing

apparatus that we expect to make in the near-term to improve the signal-to-noise and

reproducibility of the experiments. We conclude (the chapter and the thesis) with a

somewhat speculative discussion estimating the fundamental (and not-so-fundamental)

limits of the experiment for measuring masses to very high precision.



CHAPTER II

ION MOTION IN PERFECT AND IMPERFECT PENNING TRAPS

In this chapter, I will begin to discuss the physics underlying precision mass

measurement in Penning traps, focusing in particular on the motion of the trapped ions.

After touching briefly on the history of "Penning configuration" ion traps, I will

describe the three, orthogonal ion motions in a perfect trap. For massive ions (as

opposed to electrons), these motions are described quite well without quantum physics.

I then will discuss the implications of the more recent calculations of the electrostatics

of imperfect Penning traps [GAB83,GAB84,BEA86]. These calculations, driven by

the increasingly precise measurements in traps, provide additional information about

systematic effects, information that must be used to achieve the increased accuracy that

such precision can provide.

Following the discussion of the trap imperfections, I will summarize other

perturbations, such as heating by collisions with background gas; the effects of other

trapped ions; patch effects; and the effects of magnetic field inhomogeneity, drift, and

tilt with the respect to the electrostatic axes. I also discuss relativistic corrections. This

chapter concludes with a high-precision prescription to eliminate some of these

perturbations that lets us get closer to the final goal: a measurement of the free-space

cyclotron frequency, inversely proportional to the ions' mass.

II.A The Ideal Penning Trap



In this section, I will summarize the most basic physics of trapped particles

confined in a static-field ("Penning") quadrupole trap. First, I will give a brief history

of this type of trap, highlighting its use for high-precision mass measurement. Then, I

will describe the three, independent motions of a charged particle in this trap: a

harmonic motion in the z-direction, a slightly perturbed cyclotron motion (about the

magnetic field lines), and a circular 9x (or "magnetron") drift. Finally, I will focus

a bit on the z-motion, and demonstrate that detecting this motion will cause it to damp.

I.A.1 History

F. M. Penning is usually credited [DEH67,BRG86] with the idea of trapping

charged particles with crossed electric and magnetic fields. In an early paper [PEN36],

he observed that at low vapor-pressure, gas in coaxial tubes could sustain glow

discharges at much lower voltages when the tube was placed in a strong magnetic

field. He attributed this decrease to the greatly increased path-length for the electrons

as they followed cycloidal trajectories along the magnetic field lines. (A.W. Hull at

G.E. had calculated these trajectories well before Penning's work. [HUL21]) This

effect became the basis of the Phillips Vacuum Gauge, later more commonly called

"Penning Gauges," which basically work by making a trapped-electron vacuum tube

whose voltage-current curve is determined by the background pressure.

After World War II, there were several references to particle traps using this

principle. For example, T. R. Pierce devotes an entire chapter in his book on electron
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beams [PIE49] to the theory of a crossed-field electron trap. In that same year (1949),

the first high-precision measurement of an ion mass in a trap using cyclotron resonance

was performed by Hipple, Sommer and Thomas at N. B. S. [HST49,STH51]. They

observed protons ejected from their trap when they set an external RF electric field

precisely to the protons' cyclotron frequency. Ultimately, they combined this

measurement (at the 10~5 level) with the proton gyromagnetic ratio to get a precise

value for the Faraday, the total charge of a mole of electrons. 1

In the 1960's, Hans Dehmelt, performing hyperfine spectroscopy experiments on

trapped ions in Washington began referring to his DC (or magnetron) traps as

"Penning" traps, and the name stuck. Though Penning traps were used extensively for

RF spectroscopy in the 60's, they were not resuscitated for fundamental constant work

until a single electron was trapped and its g-factor measured precisely, again by the

group at Washington [WED73]. Since that time, Penning traps have been used in

increasingly precise measurements; for example, the ratio of the electron and positron

g-factors [VSD87] and the ratio of the proton and electron masses [VAS81,VMF85].

However, much smaller signals and other technical problems have made it very

difficult to reproduce for ions the quantum leap in precision that trapping a single

electron made possible. Only very recently [VMF86] were single protons detected;

1. They called their device an "omegatron," a name which, luckily, did not catch on.



this thesis reports the first detection of single, heavy (N2 ions. As yet, no one has

reported mass measurements using a single ion.

II.A.2 Summary of Classical Motions

In this section, I will discuss the motions of ions stored in an ideal Penning trap.

By "ideal," I mean a trap formed with perfectly machined, infinite electrodes each of

which follows surfaces r2P 2(cosO) = constant. (See Fig II.A.2.1) The two electrodes

symmetrically above and below the z=O plane we -call "endcaps" and, for trapping,

these endcaps are held at equal potentials. The remaining hyperboloid (rotated about

the z-axis), we call the "ring." To trap positive ions, the ring must be held at a more

negative potential than the endcaps. Since r2P2(cosO) satisfies the source-free Poisson

equation in radial coordinates [JAC75], we can use the boundary conditions to write

down the solution for the electrostatic potential:

(') = Vt z2 - 1p2 + /o (II.A.2.1)
z 2 + Mhp2

where V, is the difference between the endcap and ring potentials, and (Do is an

unobservable constant. (The other parameters are defined in Fig I.A.2.1) We see from

(II.A.2.1) that the potential is quadratic in the axial direction. That is, the trap

provides a harmonic restoring force in the z direction.

To provide radial confinement, we need a constant magnetic field in the z

direction:

15



Z2 - 1p2  12

0

Figure II.A.2. 1. The ideal Penning trap, shown in cylindrical
coordinates. In our traps, zo = 0.600 cm and po = 0.696 cm.

z2 __ i P2= Z 2
2 0



11=B BF (H.A.2.2)

For these simple fields, we can write down the equation of motion:

F = -ef< + --VxA' (H.A.2.3)
C

and solve it. The solution consists of three, independent harmonic oscillators.

Because the solution has been given in several places, ([DEH67, BRG86,FLA87]), I'll

only give the results.

In the 2 direction, there are no terms due to the Lorentz force, (since A is in the

i direction) and we get:

z + o2z = 0 (II.A.2.4)

where

eo V = -- and (II.A.2.5)
md2

d 2 =%z! +%hp&

In our trap, d2 = 0.3cm2, and thus to bring ions ions into resonance with our detector

at coz = 106 s- 1 requires a trapping voltage Vr = 0.3 V per amu. For N2 ions, this

voltage is 8 V.

In the radial direction, we get a two-dimensional vector equation:

- me:Z x# - 1oz = 0 (H.A.2.6)
2

where



eB
CO = mc (H.A.2.7)

mc

the usual, free-space cyclotron frequency. (In our 8.5x10 4 gauss field, N' ions precess

at 3x10 7 s-1.) The radial motion can be decoupled further into two, independent

motions: a slightly perturbed cyclotron motion and an L xAB, or "magnetron" drift.

The cyclotron motion arises from the first two terms of (U.A.2.6), modified slightly by

the third term. The magnetron motion arises from the second two terms, modified

slightly by the first. (The second fact isn't obvious, but can be demonstrated quite

easily. Neglecting #, we have:

1-oc C zXv- -(Ozy= 0 (ll.A.2.8)
2

Taking the cross-product of both sides with I, using I x (fZ x) = -, yields:

lOz2
= -- z xr (l.A.2.9)

which is the equation for circular motion about the Z-axis with frequency

2
lz

Om -c . For a given trapping potential, co. is roughly independent of the mass.

For N j ions in our magnetic field, resonant with our detector, Com = 1.6x10 4 s-1.)

To decouple the two modes in equation H.A.2.6, I follow the discussion of

Brown and Gabrielse, who introduce two velocity-like vectors, 0±):

t) = -01.2 xy (U.A.2. 10)

where



± [Coc ± 4(mj-)2mz (II.A.2.11)

are the two radial eigenfrequencies.

Using these expressions, Equation II.A.2.6 reduces to

O0 Z x Vi) (I.A.2.12)

Thus, the V±) are independent, and their motions are quite simple: rotation about z

with angular frequencies o±. In our experiment, we always operate in the regime

mm:2oz. In that case, we can simplify (II.A.2. 11) by expanding the square root to get:

1_ = (1 + +---) (II.A.2.13)
2 coe 2 o0fc

0)+ = (e ~ (0-

Thus co_ corresponds to magnetron motion and w+ corresponds to cyclotron motion,

each perturbed slightly from the naive values given above in Equations II.A.2.7 and

II.A.2.9.

We see from the definition of Vi± that the radial position and velocity

correspond almost independently to magnetron and cyclotron motion, respectively.

That is, since co. < co+, we can use (II.A.2.10) to show that #= V+) and

-= - x 0-). To understand further the physical meaning of the V*) vectors, we

can solve for the radial velocity:

(0 V+ - C-(0V)
(II.A.2.14)

and consider what happens to # when either 0+) or V- vanishes. Using o+>zo_, for



0, we see that + = and thus + is simply the velocity of the cyclotron

motion. We therefore can define p, = to be the cyclotron radius. On the other

hand, for +)= 0, the magnetron vector, -- f, and thus ~ is much larger

than magnetron orbit velocity; that is, Pm - and not

Brown and Gabrielse [BRG86] give a nice expression for the energy in the two

radial modes:

H,= -m ] (II.A.2.15)
2 O+ - m_

From the previous discussion, and with the same assumptions, we see that the first

term is Heye = 1 mV+. Since V(+) is the cyclotron velocity, we see that the cyclotron

contribution to the energy is the kinetic energy of the orbiting particle. The second

1 lm_ ) Usin 12
term, on the other hand, is Hg 1 m--)-' Using pm=--- and coo+ = -OZ,

2 0+ CO+ 2

we find that H , = -4mo p. Thus the magnetron orbit contributes only potential

energy: its kinetic energy is very much smaller.

The sign of the radial potential energy causes some authors great concern, and

invites discussion about whether the Penning trap is a true "trap." While it is true that

the radial motion is unstable, and that collisions tend to cause ions to diffuse slowly



out, under typical experimental vacuum, we expect ions to stay "trapped" for periods

of roughly one month. (See the discussion of collisions later in this chapter)

Finally, we might ask whether the classical description is sufficient to describe

these harmonic oscillators at liquid Helium temperatures. We can answer that question

by calculating the average number of quanta associated with a harmonic oscillator

coupled to a thermal bath at temperature T:

N h- (I.A.2.16)
hv-

A single, trapped N' ion, for example, has a cyclotron frequency, in our magnetic

field of 85000 gauss, of 4.6 MHz. At this frequency, we find, at 4.2 K, N = 2x104 .

Thus we can conclude, quite safely, that the classical description will suffice. Since the

cyclotron motion has the highest frequency of the normal modes, it must have the

lowest N. Therefore we can conclude that the classical equations of motion suffice to

describe all the motions in the trap. (Even if they did not, the quantum mechanical

description does not hold any real surprises, anyway. [BRG86])

H.A.3 Damping Because of Detection

There is no inherent damping in the equations just discussed, (II.A.2.4) and

(II.A.2.6). We can safely neglect the radiation damping of the cyclotron motion: for

example, at 4.6 MHz, Nj ions have a free-space damping time of 160 000 years! (In

fact, even this time would substantially underestimate the damping because the trap

essentially forms a cavity with dimensions far smaller than the wavelength. Thus there



are no modes into which the cyclotron can decay. [GAD85]) However, when we

hook the ions to a detector, we immediately introduce damping. Wineland and

Dehmelt [WID75] used the work-energy theorem to calculate the axial damping when

a dissipative load is connected across the trap. Rather than repeat their argument, for

variety let me discuss the same relationship using Green's reciprocity theorem.

[JAC75]

The reciprocity theorem states that, for any given geometry, two solutions to

Maxwell's equations are related by:

fdV p ' + JdA a '=JdV p' +da' (.A.3.1)

where $, p and a are, respectively, the potential, charge density and surface charge

density for one solution and 0', p' and a' for the second.

We can apply this theorem to a particle within a parallel plate capacitor of

spacing 2zo. (See fig II.A.3.1) In this case, the un-primed system corresponds to the

particle within the capacitor, and the primed systems corresponds to the potentials on

the surfaces. Since the charge density, p(zz) is just a delta function of the particle's

position, Z, the first term of (II.A.3.1) yields e$'(Z). Because the upper plate of the

capacitor is an equipotential, the surface integral yields V jdA a V -Q. The right

side is zero: there are no charges in the primed system, and $ vanishes on the

surfaces. Thus, quite generally (since we haven't yet used the specific geometry of the

parallel plate capacitor system):



2 ' *p(z)=e6(z-2)

-Q I
unprimed

(z+zO)
0'(z)=V 2z,2=0

primed

Figure II.A.3. 1. Charge induced by an ion moving in a
parallel plate capacitor. (This geometry is for the reciprocity
theorem in the text.)

2z



Q = - (II.A.3.2)
V

and, in the case of a parallel-plate capacitor:

Q -- + 1(II.A.3.3)
2 zo

At this point, I drop the Z and just write z, since there can be no confusion. Since

i =Q0,we havei =- .

2zo

In fact, the Penning trap is not a parallel plate capacitor, but to first order we can

follow Gabrielse and correct this expression:

eB
i = -- (II.A.3.4)

2z 0

where B 1 is constant of order unity computed for various traps in [GAB84], predicted

(and approximately measured) in our trap to be 0.8.

Now let us add a detector to measure the axial motion. Assume, for the

moment, that we use some circuit elements (coils, capacitors, resistors) to detect the

motion. We will show that the real part of the impedance of this detector will cause

the ions to lose energy. (The imaginary part causes frequency shifts, as I will discuss

in Chapter V.)

As the ion oscillates in the trap, the current (II.A.3.4) it induces, in turn, causes

a voltage drop across the detector. The part of the voltage associated with the real

eB1
part of the detector's impedance is in phase with the current: V = ReZ -z . (see

2z0



Fig ll.A.3.2) This voltage creates an electric field in the trap which acts back on the

ions: F = -eB V--. (This BI is the same constant as in Equation H.A.3.4.) So
2zo

now the ion's equation of motion, (H.A.2.4) reads:

(II.A.3.5){1 eB 1
oz =N - ReZ i

fm 2zo

We can write this equation simply:

i + 7& i + Co z = 0. (ll.A.3.6)

where

1 eB 1 2

m 2zo J
For our detector, which is a resonant tuned circuit with an

factor Q, on resonance has a maximum ReZ = o. L Q =

ion, then, % = 0.3 s~1. The imaginary part of the detector's

like iyzi) do not do not cause damping. Instead, it shifts

voltage relative to the current, and hence relative to the

effective resonance frequency.

(U.A.3.7)

inductance L and quality

1.5x108 a. For one N+

impedance (that is, terms

the phase of the induced

ions, and thus shifts the

For more than one ion in a perfect trap, we shall see that the center-of-mass

motion is identical to a single ion's motion. However the damping increases linearly

with the number of ions. We can explain this increased damping quite simply: N ions

will induce N times the charge in the upper endcap and thus N times larger current in

the detector. (Since these ions are moving as one, the



V = i Re Z

Re Z

Figure II.A.3.2. Detector causes damping. The ion induces a
current which causes a voltage drop across the detector. This
voltage acts back on the ion, causing the ion to damp.



individual induced currents are all in phase and simply add.) The voltage drop

induced at the detector thus will be N times the voltage induced by a single ion. This

larger voltage then creates a larger electric field which affects each ion to an N times

greater extent. Therefore, the damping term (the right hand side of II.A.3.5) will by N

times larger per ion. This dependence of yz on ion number will be crucial for several

ion counting schemes.

The proportionality of yz and N also has a somewhat counter-intuitive side

effect: the total induced current due to an exactly resonant, harmonic drive will be

independent of the number of ions in the trap. Since the response of a harmonic

oscillator driven on its resonance depends on 7-1, the response of each ion will

decrease with the number of ions. However, since the total current induced is the sum

of these individual contributions, the total signal, on resonance, will be the same,

regardless of the number of ions in the trap.

I.B Real Axial Motion

In the last section, I described the motion of ions in an ideal Penning trap. In

this section, however, I will begin to detail the motion of ions in a real Penning trap,

in particular, discussing the axial motion of ions in an imperfect trap. I will first

describe driving and shifting the ions within the trap using axially anti-symmetric

potentials. Then, I will discuss the symmetric trap imperfections, focusing on effects

of a term z4 in the trap potential. Finally, the section ends with a discussion about



compensating the trap to minimize the effects of these anharmonicities.

First, let us try and write down a more complete potential than (II.A.2.1). At

this stage, though, we will continue to assume that the trap is axially symmetric.

(deviations from this assumption are discussed in section II.C.7.) We can use this

symmetry to write down the most general potential that satisfies Maxwell's equations

in spherical coordinates [JAC75]:

<(?)= A r' P,(cos) (II.B.1)
l=0

where the P; are Legendre polynomials. The terms with I even are even under

z -+ -z, while those terms with I odd are odd.

Three potentials are under the control of the experimenters: V, the potential on

the ring, and V±, the potentials on the upper and lower endcaps. A useful way to

combine these potentials with (II.B.1) is to separate the sum into even and odd terms.

These separate potentials must therefore arise independently from the even and odd

boundary conditions established by V,. and V±. (See Figure II.B.1) The even

boundary condition we will associate with trapping the ions. That boundary condition

gives rise to a potential:

(bs =k -rC Pk (COSO) (II.B.2)
2 k ,ve d

(where d is the trap size, given by Equation II.A.2.5). In this expression, the leading

term is identical to Equation II.A.2.1, and thus provides the harmonic trapping in the



z-direction.
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Figure II.B.1. Boundary condition for the symmetric potential,
(s, and the anti-symmetric potential, <DA.
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The odd boundary condition gives rise to the anti-symmetric potential:

ID=1 1B r (HB3
GA = - Bk - Pk(cosO) (II.B.3)

2 k o zo

B i
first term, D) = --- yields a constant electric field, like a parallel-plate

2zn

itor, and thus CLA can be used to shift, and therefore drive, the ions trapped by

cDS

We can express the amount of trapping and -shifting due to arbitrary endcap

potentials by dividing those potentials into symmetric and anti-symmetric parts:

Q = (V+-V _)A

where C is an unobservable constant.

of these higher order terms in (II.B.3)

+ -V, D, + C (II.B.4)
2

We will now examine more carefully the effects

and (II.B.2).

Anti-Symmetric Part

Anti-symmetric potentials can drive the ions. We used this fact implicitly in the

last section to determine the damping: the ions are, in effect, driven by the voltage

they induce in the detector, and that drive damps the ions. Using (II.B.3) above, we

can determine, to the next highest order, the effects of an anti-symmetric potential.

Writing out the first two terms of (II.B.3), we get:

The

capac



z3 2

. A =Bj 7  +B 3  2 + - (II.B.5)
2zo. 2z j

Therefore a voltage VA applied across the endcaps of the trap leads to an axial force

on the ions:

.. eVA 3 .2 1(lB6
mz = ---- B 1 - -5 B 3  + 3B 3 - (I.B.6)

2zo 2 z2 zJ

Thus we see two effects due to B3. First, the applied force tends to decrease as the

trapping radius increases. In addition, then, using the reciprocity theorem from the last

section, ions with a large magnetron orbit (thus a large, constant p) will induce less

current in the endcaps. This effect makes some sense in light of the physical

deviations from the parallel capacitor model of the last section. At large radii, not

only does the plate separation appear larger, but field lines also begin to head off to

the ring.

The second effect due to B 3 is that the applied force is non-linear in z, and, in

fact, increases at larger orbits. As I will now discuss, a constant voltage applied

across the trap therefore can change the axial resonance frequency when the

equilibrium position changes. In addition, we can throw ions out of the trap by

displacing the center of the ion cloud into the lower endcaps. As we shall see, the

voltage required to remove the ions depends on B 3

To analyze the effects of the B3 term, let us consider the motion, in general, of a

simple harmonic oscillator with an additional constant and quadratic force term:



i+ofz +a +bz 2 =0 (Hl.B.7)

The harmonic motion, for small amplitude oscillations, will be around some

equilibrium point, I, at which the constant term effectively vanishes. (This shift of the

equilibrium position is like the shift for a mass on a spring in a gravitational field.)

As we shall see, one effect of the quadratic term is to shift the effective spring

constant with Z.

To keep contact with the ion trap problem, the constants a and b in Equation

II.B.7 are:

eB1
a = VA (H.B.8)

2mzO

b= 3eB 3 VA
2mz32i0

Recall, too, that cof comes from the symmetric part of the potential. At this stage, we

only consider the dominant term of that potential.

We can find both the equilibrium position and the oscillation frequency, 00ff,

around that equilibrium from (II.B.7). We make the transformation z -+ (z -2), and

seek the 2 that eliminates the constant term a. The algebra is simple:

b2 2 + W2Z + a = 0 (II.B.9)

At that value of Z, the term in the transformed equation of motion that is linear in z

will be:

co-ff o + 2b (II.B.10)

When b =0 (a parallel plate capacitor, for example), the resonant frequency does not

33



shift. However, when b #0, we must solve the quadratic equation, (II.B.9). Discarding

the unphysical sofution, we get:

(m.4-4ab - of2
i = (II.B.11)2b

and

offf e 4ab

There are two limits which interest us. First, when a and b are both small

(corresponding to a small anti-symmetric potential), we find:

a Bjd2' -VAS=--- =V- (II.B.12)
of 2z2 Vt,

and

ab 3d V
mOeff = (Oz -mz 1- 4 B B3 p

Thus, the shifted position remains linear with applied voltage (as if B 3 = 0), and we

get a small quadratic shift in the resonant frequency proportional to B 1B3. Using this

shift, we can measure B 1B3 for a real trap. (See Chapter VII)

The other interesting limit of Equation II.B. 11 is the value for which ^ = iz0:

the value at which we force the ion cloud into the upper or lower endcap. Since both

a and b depend on VA, I return at this point to the trap variables, and restate the

question: By changing only the lower endcap voltage, V-, can we drive the ions out

the trap? For simplicity, let V+ = 0. Then, in Equation II.B.7, co. comes from the

symmetric part of the potential, (V_ /2 - V,), and a and b come from the anti-

symmetric part, -V_. Thus, using (II.B.4) and (II.A.2.5), we can solve (II.B.9) for



Vk! 1 = 2  V (II.B.13)
1 -(B1+3B3)

zo

where Vk'11 is the voltage required on the lower cap to "kill" the ions by bashing them

into the endcaps.

Besides being useful as a method to expell ions from the trap, Vk 11 provides a

method for measuring B 1 and B 3. First, we can measure the product, B 1B3 using

(II.B.12), by measuring the quadratic shift in the resonance frequency, written in terms

of trap parameters:

Aoz 3 d4  V-2
-- z - - - B3 -- (II.B.14)
og 4 Z4 V,2

Then, by measuring the voltage V!'i 1 at which the ions hit the lower endcap, we get an

estimate of the sum BI + 3B 3. In practice, however, we've found it difficult to make

a precise, consistent measurement of V' 11, and thus must be satisfied with limits on B1

and B 3. (See Chapter VII)

Anharmonicity

Let us return now to the effects of higher order terms in the trapping potential,

0s. In particular, I will discuss the non-linear response of strongly-driven ions; why

we'd rather keep their response linear; and, therefore, what we've done to help



eliminate the non-linear effects.

The first few terms of Equation II.B.2 are:

Os = C2z 2 - 1/2p 2 + C4 z4 - 3z 2p2 + 3/8p4 + (II.B.15)

The first term represents the "ideal" penning trap. In what follows, I will assume

C2 = 1, which is almost true, and can be made exactly true by a minor renormalization

of d. Using (I.B.15), we can write down the equation of motion in the z direction for

a trapping potential VTe,:

2 2
z + 2(1 -3C4 2C4  ) z = 0 (I.B.16)

where

of2 eVT (I.B. 17)
md 2

as before. The two additional terms in (II.B.16), like the additional terms in (I.B.6)

express, first, a radius-dependent shift in coz, and second, a non-linear term in the

potential.

For our purposes, the dominant effect of the the non-linear term is that it makes

the ions' resonant frequency amplitude dependent. Landau and Lifshitz [LAL76] give

a particularly elegant and compact treatment of the non-linear oscillator, and I'll sketch

their results here.

They expand the solution z (t) in a successive approximation series, starting from

z = a cos cor, treating the z3 term as a perturbation. In the resulting perturbations



series, terms that look like resonance driving terms arise. For example, since

cos3 owt = (cos 3R + 3 cosot) / 4, the cosot part can look, to the ions, like a resonant

driving term. Such terms are clearly unphysical, and o must be shifted slightly to

make these terms vanish. Using this technique, Landau and Lifshitz show that the

frequency shift, to second order in a (the ion's amplitude at o), will be given by:

Aco 3 a 2
)=-jC4 2  (I.B.18)

OD4 d2.

Marion [MAR70] uses the same technique in a somewhat expanded format and obtains

the identical result.

Small though this correction may seem, it can never-the-less have dramatic

effects when this frequency shift is comparable to the width of the resonance. Most

significantly, the resonance will become "hysteretic;" that is, the resulting amplitude

from an external drive will depend on the recent history of the ion.

Landau and Lifshitz's explanation of hysteresis uses an ingeniously simple

argument. If the dominant effect of the anharmonicity is to shift the resonance, then,

as an ion responds to an external drive, Vd, this frequency shift will begin to push the

ions nearer or further from resonance, and hence, change the response. Therefore, we

must solve self-consistently for the driven, steady-state response. In the narrow

resonance approximation, we get:

eB 1  Vd
Z = B - (I1I.B. 19)

4mzOcor (od -0(z)) + iYz / 2

where, from (II.B.18):



3 z 2
CO(z) = Oz (1--C47) (II.B.20)

The resulting cubic equation (in z) can have either one or three real roots, depending

on the relative sizes of Vd and 7,. Following usual analytic techniques [e.g., ABS70],

we find that, when the drive exceeds a critical value, Vdrt

3 C4 (of d 2 B2 t

1

then Equation II.B.19 above will have, at some detuning, three real roots. Note also

that Vjra is the drive that shifts, at maximum response, the resonant frequency,

(II.B.18), by y. (See Figure II.B.2a) Careful analysis [LAL76] shows that the

intermediate root always corresponds to an unstable response. Therefore, were we to

sweep the drive frequency from left to right (in Figure II.B.2b), the response would

build up until it reached the critical point A. At that point, the driven response

catastrophically drops to point B and thereafter follows the lorentzian tail. Sweeping

back the other way, the response rises until it reaches point C, where, to avoid the

unstable branch, jumps up to point D.

There are several interesting features of these non-linear, hysteretic resonances.

First, anharmonicity does not limit the absolute, attainable peak response; it merely

changes the required drive frequency and makes this peak accessible only when swept

in the proper direction. That is, at least for one direction of sweep (the one that

"pushes away" the ions from the drive), the absolute maximum response remains:
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eB1
Zpeg = Vdrive (II.B.22)

2mz oo)zYz

However, even though the peak response may not decline, there are still good

reasons to try to remain in the linear regime. For example, after sweeping across the

catastrophic decrease in signal, experimentally we have found that a great deal of

energy is left in the ions, though no longer in phase with the drive. Also, the phase of

the response at the peak makes it impossible to lock the ions to an external frequency

source. In addition, when the ions are excited by a sharp pulse, their non-linear

response becomes strongly dependent on the initial conditions, and thus high precision

schemes (like separated oscillatory fields) become difficult, if not impossible.

Therefore, even though the maximum possible ion signal does not necessarily

decrease because of non-linearity, we still would prefer to drive at an amplitude less

that Vr. However, this requirement becomes harder and harder to satisfy as we

decrease the number of ions. We can see that this effect is contained in Equation

II.B.21. Since the critical drive depends on 7 /2, and y depends linearly on the

number of ions, the critical drive must decrease dramatically with the number of

trapped ions. Assuming that we want to maximize their response, and yet retain

linearity, we must therefore drive the ions with a drive a bit smaller than Vdr. Since

the peak oscillator response varies like y-1, each ion, overall, will thus have a peak

response that goes like Y /2. However, when fewer ions are in the trap, the total

induced current decreases, too. Therefore, in summary, the total detector response



possible for a non-hysteretic resonance will increase like 3/2, and thus decrease

strongly when there are fewer trapped ions. Currently, to detect "reasonably" by linear

resonance a single N2 ion requires C4 <2x10-5. Thus a major hurdle in detecting

small numbers of ions in the trap is to overcome this anharmonicity problem.

Compensation

In order to improve the harmonicity of the trap, then, a set of compensations

electrodes, placed between the ring and endcap can be added [VWE76]. Although

they had been used for several years prior, the first numerical analysis of the fields

produced by these extra "guard" rings (a relaxation calculation by Gabrielse [GAB83] )

produced reasonable estimates for the effectiveness of such guard rings. In particular,

Gabrielse calculated the change in C4 produced by a given change in the potential on

the guard ring. He also showed that, for traps constructed at that time, these changes

in C4 always were accompanied by large shifts in C2; that is, minor guard ring

adjustments shifted the resonant frequency, too. Thus, tuning the trap could be quite

difficult [BRG86].

However, Gabrielse's work (and confirming work by Beaty [BEA86] ) pointed

to a trap construction that minimized these concurrent shifts of the resonant frequency.

In particular, they suggested that for po = 1.16zo, no shift in the resonant frequency

would take place. (Although the surfaces of a Penning trap must follow hyperboloids

with fixed values of z2 - p2/2, the asymptotes, and thus the ratio of zo to po remains
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arbitrary.) We followed that "optimal" prescription in our traps. The degree to which

the guard rings actually were decoupled from the resonant frequency, as well as their

effectiveness in canceling out anharmonicities will be discussed further in Chapter VII.

U.C Other Perturbations

In addition to the trap electrostatic perturbations just discussed, there are two

other classes of deviation from ideality. The first kind, the most troublesome for us

(and more generally, it appears [WIN87,GAB87,MO087]) come from contamination

both by background gas and, especially other species of trapped ions. The second

class contains a whole set of field perturbations: magnetic bottle shifts, magnetic field

drift, misalignment between the magnetic and electrostatic axes, stray electric fields

because of patch effects, and azimuthal asymmetry in the endcaps. The effects of

these field perturbations must be anticipated for high precision measurements.

In this section, then, I will address both classes of perturbation. Contamination

results in inescapable instability, broadening or shifts, and the only solution appears to

be to avoid it altogether. For most of the field perturbations, the effects can be

measured and several measurements can be used to extrapolate to zero perturbation.

For the final few, clever prescriptions have been developed [BRG82] that eliminate

these effects entirely from a final, computed value of the free-space cyclotron

frequency.

ILC.1 Collisions with Neutrals



Collisions between trapped ions and background neutral atoms have two

detrimental features, one annoying, one quite troublesome. First, random, disorienting

collisions with thermal background atoms tends to cause the magnetron orbit of the

trapped ions to increase, and, eventually, will force the ions out of the trap. Second,

since these collisions can interrupt the phase of driven motion, background gas can

broaden the resonance in precision cyclotron measurements, and, in fact, can be the

ultimate limit to the measurement. In this section, I will discuss radial diffusion first,

and then estimate the limit on cyclotron precision due to collisional broadening.

We can use a very naive model to illustrate radial diffusion due to collisions.

The purpose of the calculation is simply to give an order-of-magnitude estimate for the

time scale on which such diffusion might occur. As we shall see, the final result is

that the ions perform a radial random walk, with steps Ap = -- p ever increasing in

size.

Let us assume the only effect of a collision is to randomly re-orient the ion's

velocity. In addition, we assume that the z-motion is either damped (because is is

connected to a detector) or driven. In this case, we can ignore that motion entirely.

While this is not a particularly realistic model, we certainly can use it to obtain the

kind of estimate we want.

As discussed in Section II.A.2, the radial velocity of the ion is contained almost

entirely in the cyclotron velocity, coc pe, while the radial position is given, to the same



accuracy, by the magnetron orbit, P.. Using complex notation to write y = x + iy, we

can express the radial position before a collision as:

Pbefore = P.e " + pce i' (.C.1.1)

where e. and O9 are the phases of the motion. Since we have assumed that the

collision only reorients the velocity, not its magnitude, pc will be unchanged by the

collision:

Pafter = pm'e'9 + pee 0' (H.C.1.2)

Because the position itself remains unchanged, we must have pfor, = Pafter, and

thus:

Pp' e'O" + pc ei'O(1-ein&) (H.C.1.3)

where AO is the phase change because of the collision. Taking the magnitude of both

side of (H.C.1.3) and averaging over the random AO yields:

<pm%3, = p. 2 + 2pc2 - 2Pmpc cos(9m - (lH.C.1.4)

(For more realistic collisions, we would still perform this average. Though some

numerical factors might change, the structure of the result will remain the same.)

Assuming that the relative phases of Om and 9, are unimportant-for example, by

asserting that the background gas is uniformly distributed throughout the trap-we can

neglect the third term in (ll.C. 1.4) and we obtain the simple estimate:

P = PM2 + 2p, 2  (I.C.1.5)

Thus, on average, each collision tends to increase the magnetron orbit size.



If we assume the background gas remains in thermal equilibrium (that is, the

trapped ion is a minor perturbation that does not significantly heat up the background)

then it is reasonable to assume that, in the long run, the harmonic oscillators (the three

trap modes) will have their energies equally partitioned, and thus Eg = Ecy. In this

case, we can relate the cyclotron and magnetron orbit sizes (using Equation II.A.2.15):

PC 2 = PM2, and, per collision, we have:
("C

Apm =--P.(II.C.1.6)LAlm = O pm
(C

Thus the ions diffuse away with geometrically increasing step size.

To estimate the time scale for the diffusion, we must incorporate the mean time

between scattering events, r = (n av)-1. Note that v (as usual, dominated by the

cyclotron motion) increases with increasing orbit size:

v = (OcpC = ('z Pm (II.C.1.7)
1If we assume, on average, an increase of APm every seconds, we get:

n amoz pm

PM = n a p2 (II.C.1.8)
("C

and thus we see that the diffusion grows quite quickly with increasing orbit size.

Therefore, when we start from a magnetron orbit, pa,, much smaller than the trap

size, the time required for the ions to diffuse out of the trap, .tr, is practically

independent of the trap size:



14Ftra, a ].a,, = -- tar, (II.C.1.9)
(0c (OM

where rt is the mean time between collisions right after the ions are loaded,

nsignma 0 z Pstar~ . For example, using this formula, N2 ions in the presence of a

background gas at a density of 3x10 4 cm-3 (corresponding to a room temperature

background pressure of 10-12 T) and a - 10-12cm 2,2 created 0.2 mm from the center

of the trap, will remain trapped for about one month. (Note that if, instead of

equipartition, we assume that the cyclotron orbit remains fixed-set presumably by the

initial room temperature energy of the parent neutral-we get a much longer trapping

time:

= 8 1 n arom (II.C.1.10)
t trap ( c '[o -1

which, for identical conditions as above yields a life time of two years!)

Thus the radial diffusion becomes a minor problem in the ultra-high vacuum

regime in which we operate the trap [FLA87], especially when, as we shall see in

Chapter VI, we have the additional ability to decrease the magnetron orbit at will.

Collisional Line Broadening

2. Obviously difficult to determine in general, this estimate of the cross-section seems sufficiently
pessimistic. [PR186]
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Line broadening, on the other hand, can be a far more important problem,

especially for precision cyclotron frequency measurement. In the worst case, the

collision will entirely randomize the phase of the cyclotron motion and thus, in

analogy to atomic line broadening (e.g., [COR77]), will cause of a broadening of the

1
cyclotron resonance by = . There are two ways we can estimate the effects on

Tcolide

a cyclotron measurement. We either use this line width to estimate the precision of a

cyclotron measurement, or, instead, require that no collision take place during a

cyclotron measurement.

To estimate how a broadened line will affect the precision of a measurement, we

can use the standard rule of thumb that, when determining the central frequency, at

best one may split a resonance line by its signal-to-noise ratio. In later chapters, I will

discuss both the noise of the axial detector and how we use that detector to measure

the cyclotron motion. Specifically, in Section VI.A, I will show that cyclotron motion

with energy Ecyc can be transferred parametrically into axial motion with energy

coz
Ez = _-ECye. In addition, in Section IV.A, I will present measurements of our

(oc

present detector's noise. Using these facts, we can estimate the signal-to-noise ratio

for a cyclotron measurement.

One way we express axial signals and noise is in units of the current that a

single ion, moving endcap to endcap would produce. From Equation I.A.3.4, we

know this current is i = -eB loz, currently 6.4x1O-14A. For historical reasons3 we
2
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call these "["-units. For example 6 = 0.1 corresponds to the current a single ion

would induce moving, at its peak, 10% of the trap size. We can also express the

detector noise in these units, $,n;,,, which can then be compared quite easily to

motions of the ion. (P,,,,, then, has units of Hz-11 2) In terms of these units, an

experiment with integration time of Texp will yield, on average, a noise equivalent to

an rms ion excursion of $,,ise/(2T 1/2). In the collisionally-broadened limit, then, the

precision, P, of the experiment can be written:

ACO 1 --- (II.C.1.11)
c C tcollide 2T1 /22sgnal c1

where the middle part of the expression on the right is the estimated signal-to-noise.

Because tcollide goes like $ignal 1 -the larger ion velocity makes collisions occur

more frequently-we find that the critical background density, n, is independent of the

size of the ion signal:

n L5 t2P LcTexP ] (II.C.1. 12)
O~noise Zo 0 O)Z

For a 10 second experiment, which will achieve a precision of 10-10 on an N2+ ion,

using the present detector ($,ois, = 0.03 Hz~1/ 2) and a ~ 10-12cm 2, we must have

n < 2x10 5 cm-3, corresponding to a room temperature pressure of =6x10- 12 T.

3. That is, for no reason anyone can remember.



On the other hand, we might require that no collisions occur during one

cyclotron measurement. In that case, the effective width of the line will go like T-p

and thus the precision will go like T- 31 2 . Specifying a desired precision will then set

the length of time require to achieve that precision:

We then require, on average,

The velocity v will be set by

Texp = ]2/3
exp20signalP(OcI

no collisions during that period; that is:

1-

avTexp

$signal, using the parametric detection scheme:

v = Psignal z0 0 6 z

In this case, for the critical density we get the rather ungainly expression:

2P 1 2 1/6 1

n Noise G 0 Ozm ) Psignal1/ 3

This weak dependence on Psignal comes about because increasing the

decreases the mean time between collision. For $signa = 0.2, wi

parameters as above, we will require Texp = 10 s and thus n 2x10 5 cm

ion velocity

th the same

3 too.

II.C.2 Impurity Ions

While neutral atoms can be a nuisance and may ultimately limit the attainable

precision, background ions can be far more crippling, causing large frequency shifts,

broadenings, and, it appears, temporal instabilities in all the trap motions. Using a

(II.C.1. 14)

(II.C. 1. 13)

(I1I.C. 1. 15)

(II.C. 1. 16)



simple model, we can estimate the impact of these "bad" ions on the motion of our

"good" ions.

For simplicity, let me introduce a "toy" model for the evolution of the z motion

of two different ions, of mass m I and M2, coupled by their electrostatic repulsion. In

this model, I will assume that their radial separation is fixed at R, and that this

separation is much larger than the extent of the z motion. These assumptions let us

linearize the coulomb force in the z direction:

Fz= e (Z I - z 2) (II.C.2.1)
R3

where z1 and z2 are the positions of the two ions. Adding this force to the usual

trapping force, we can write down the coupled equations of motion:

.. eV, e 2

zi + e2V 3 (zi-z 2)
mid miR3

eV, e2

Z2 22 2
3 (z2-Z 1)

m2d m2R

and compute the normal modes and frequencies.

(II.C.2.2)

For Mi1 = M2, the coulomb interaction cancels for z1 + z2, as alluded to in

Section II.A.3. (Our detector is only sensitive to z1 + z2.) However, when mi # M2,

we must solve the matrix equation:

(II.C.2.3)

where:

.- = - 2 Z



mirnR3  mRn)3

02= 2 2 (l.C.2.4)
e22 e2

rn)3  ~ n) 3
m2R m2R

and

eV,
; = d (l.C.2.5)

mi d2

The usual way to solve this matrix equation is to find a new set of coordinate, zA and

zB, related to the original coordinates by a unitary transformation, U:

ZA zi
z = U Z2 (H.C.2.6)

such that, in the new coordinates, 02 is diagonal; that is, the coordinates zA and zB are

uncoupled. Plugging (Ul.C.2.6) back into (H.C.2.3), we see that U must satisfy:

2J) = U j22 U-1 (H1.C.2.7)
L0 (OB

where mA and oB are the frequencies of the uncoupled modes. Thus the eigenvalues

of Q2 are the squared normal mode frequencies and the eigenvectors of Q2 form the

rows of U.

In the simplest case, the frequency difference between the masses is much larger

tha te epusin;tha i, m2- 2| e23 In this case, to lowest order, wethan the repulsion; that is, I -co 1 M1 eR
n 1,2R

find:



WA = 1 - e2  (II.C.2.8)
S2m 2R 3 o,

e2
O)B C02 ~ 3

Quite remarkably, the resulting shift in resonance frequency is independent of the S

perturbing ion, and always toward lower frequency. (This result is reasonable: the

coulomb interaction is repulsive and always has the effect of weakening the spring

constant of the trap.) For a single perturbing ion, with a magnetron orbit 1 mm away,

for N2+ we expect from (II.C.2.8) a shift in v. of 0.4 Hz-about eight times its width!

However, when the ions are close together, or have nearly the same mass, the

coulomb force can have an even larger effect and cause the ions' motion to "lock"

together. In that case, we must use (II.C.2.4) to write down the eigenfrequencies, in

general:

1KO- K1 4K 2 (KO -K1) Am 2
+24-' - + [ (II.C.2.9) a

2 m mmm 2  i
where:



eV,
KO - = spring constant of the trap

e2K = = spring constant of the coulomb repulsion

Am =m2 -mI

and - -
mW 2 1mi M2

When the first term under the radical in (II.C.2.9) dominates, the axial modes will be

1closer to the symmetric/anti-symmetric combinations - (zI ± z2) than the separate

1 Am
ion modes, z, and z 2. That is, for K1 > -Ko---, the coulomb repulsion will cause

2 mW

the ions' motion to lock together into (correlated) symmetric and anti-symmetric

motions. Although the anti-symmetric mode always has the lower frequency, the total

current induced in our detector is proportional to zI + z2, and thus we can observe

only the symmetric mode. In the strongly-coupled case, that mode will have the

frequency:

KO 1 K, Am2
K02= --- (II.C.2.10)

iw 8 -- -2

The left-over effect of the coulomb interaction on the frequency of this mode is almost

non-existent: the coulomb coupling K, appears reduced by the factor - . Since
8 mf2

this modes is the only one we detect, we will see the two ions as if they had a mass

equal to the harmonic mean of the two locked masses, m-~. Equation II.C.2.10 also

shows that identical ions (Am = 0, mf = mI = M2) show no shift in frequency. This
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last fact is true more generally. For any cloud consisting of only one ion species,

whose ion-ion interactions can be described by a central potential, the center-of-mass

mode will have the same frequency as the single, isolated ion.

In several different instances, we expect coulomb coupling will have a bad effect

on the axial mode of ions we wish to detect ("good ions" 4 ). In the first case, other

species in the trap ("bad ions" made simultaneously with the good ions) can cause

temporally varying frequency shifts. Right after their creation, these bad ions probably

will have large axial orbits (because they will not be cooled effectively by the

detector), will be weakly coupled to the good ions, and hence will shift the trap's

spring constant by KO-K 1. As these bad ions slowly cool, (by collision, we assume,

since they are far away from resonance and thus can not be cooled directly by the

detector) the coulomb force will increase, causing a small, time-dependent shift of the

good ions' resonance. Eventually, when they cool sufficiently, the good and bad ions

may couple together and oscillate jointly far away from the expected resonance

frequency of the isolated good ions.

In the second case, we might have only one species in the trap, but have several

ions with very large magnetron (or even cyclotron) orbits. ("bad orbits") Because of

anharmonicity (Section II.B.3), we know that these orbits may have a slightly different

4. Value judgements like these are inescapable, and such labels usually originated late at night



frequency than ions in the center of the trap. We might consider this frequency shift,

2m
So, as if it were due to a slight mass shift, Sm = - S o. For example, for

C4 = 10, an N j ion in a magnetron orbit of 1 mm will have an effective

S10-4. In this case, too, we might get both frequency shifts and frequency
m

locking; that is, even though the good ion may be driven harmonically, because of the

coupling, its frequency will be pulled toward the ion in the bad orbit. That is, the

immunity to coulomb shifts that the (measured) resonant frequency of a cloud of

identical ions usually possesses is destroyed by anharmonicity.

A final comment about ion-ion coupling. We once envisioned comparing

simultaneously trapped, nearly degenerate ions (like 3He and 3H, for which

- = 6x10-6) The calculation above indicates that we would have to keep them
m

separated by R > 2.5mm in order to avoid frequency locking. Since the trap's radius

is only 7 mm, we would have to move one ion to the center and other right to the

radial fringe of the trap! More likely, then, when we try that experiment, we will

compare each ion to HD (- = 2x10- 3), for which we need only R > 0.35 mm, a
m

much more practical separation.

H.C.3 Patch Effects

One possible source of field imperfections is small patches of charge lying on

the trap electrodes. These patches could disrupt both reflection and azimuthal



symmetry and could cause all sorts of shifts due to higher order anharmonicity.

Because our electrodes are gold-plated, we must expect some patches to occur [REF],

and have taken steps to minimize these patches.

For example, a small patch of charge Q located on the upper endcap near the

hole through which the atoms enter the trap will generate a potential, near the center

of the trap:

"patch = (II.C.3.1)
- p2 + (z -zo

We can expand this potential in a Legendre series (trivially, it turns out, see [JAC75],

p 93.):

Opatch ( P (cosO) (I.C.3.2)

where r and 9 are the usual spherical coordinates. Thus a patch could effect the trap

dynamics at all orders.

For example, the 1 = 1 term is equivalent to an additional voltage imbalance,

AVA, between the upper and lower endcaps:

AVA = 2Q II.C.3.3)
B Iz(

which will shift the equilibrium position of ion. The I = 2 term effectively changes

the resonant frequency as if an additional trapping voltage AVT, were added:



AVT = 2Q d 2  (II.C.3.4)
Z0 Z0

and so on.

We could detect the presence of a patch several different ways. We can

measure the trapping potential required to bring different species into resonance with

our detector. In the absence of a patch, this voltage will be directly proportional to the

mass. Therefore, when we plot the trapping potential against the mass, if we find a

non-vanishing y-intercept, then we must have a patch causing a AVT. Alternatively,

we can measure the product B iB3 using the technique summarized by Equation

II.B.14, plotting the axial frequency shift against the applied endcap voltage. The

resulting parabola has a curvature which gives B 1B3 and a minimum, in the absence of

a patch, at V_ = 0. If the minimum of the parabola is not at zero, we may in fact be

compensating for a non-zero patch effect, although such a shift could also be caused

by an asymmetry in the spacing of the two endcaps. However, this mechanical

asymmetry should cause a shift that depends on the mass of the trapped ions (because

the shift should a constant fraction of the trapping potential) whereas a patch-induced

asymmetry should cause a shift which is roughly independent of the mass.

Although the 1 = 1 and I = 2 terms can be canceled out by additional potentials

on the lower endcap and the ring, the higher-order anharmonic terms will remain and,

as we've discussed in Section II.B.2 and II.B.3, we would prefer to eliminate such

terms. In addition, any time variation in the patches would be another nuisance.



Therefore, as I will discuss in Chapters V and IV, we have taken steps to eliminate

charged patches. -

I.C.4 Anharmonicity Revisited

While we have already discussed the effect of axial anharmonicity on the axial

motion, we have neglected the effects of non-harmonic electric fields on the other trap

modes. Using the discussion of anharmonicity in Section II.B.3 as a starting point, we

can see that C4-terms can cause shifts in all the modes and these shifts, in turn,

depend on the amplitudes of all the modes.

As discussed in Section II.B.3, the dominant imperfection in the trapping

potential is the quartic term:

Os C4 z4 - 3z2 P2 - 3p4 /8 (II.C.4.1)
2d4

In the presence of this perturbation, the effective axial frequency becomes:

Oz2 -+ Oz2 1 - 3C 4  + 2C4 Z2 (II.C.4.2)

As described in that section (Equation II.B.18), the z2 term causes a shift in the axial

frequency due to the non-linearity:

-- = - C4 z2  (II.C.4.3)
or 4 d2

In addition, the middle term in (II.C.4.2) gives a radius-dependent shift to the axial

frequency:



Am- 3 m2 + pc2- m2 C P (H.C.4.4)
COZ 2 4 d2

and thus the total axial frequency shift will be:

- = z2 - 2pm2 - 2pc2 (II.C.4.5)
oz 4 d 2

Thus, for C4 = 10~4, we expect a 1 mm magnetron orbit will cause about a 1 Hz shift

in the axial frequency of an N+ ion. In fact, this residual anharmonicity has been

used to detect changes in magnetron orbit size [M0087].

The potential D, also will shift the cyclotron and magnetron frequencies. To

compute these shifts, we can calculate the force due to this additional radial electric

field using (II.C.4.1):

Fp = 3m mz,2C4 z2 _dP 2/4 y(II.C.4.6)

For an oscillating axial motion, <z2> = z , and thus we can re-write (II.A.2.6) to

include this perturbation:

- mexy - loz2 1+3C4 z, 2 P _2/2 = (II.C.4.7)

For positive C4, the zpe, term effectively increases co, and, using (II.A.2.13), we

find:

a-= 3C4 (II.C.4.8)
Om d

and



= -3C4 peak (II.C.4.9)
McO Oc d2

The cyclotron shifts are smaller by a factor of -- than either the axial or magnetron
WC

shifts, as we might expect: the cyclotron motion is mostly magnetic; the electric fields

already are a small perturbation.

The p2V term in (II.C.4.7) causes radial anharmonic shifts, just like the z3 shifts

in section II.B.3. These shifts due to the radial motion are a bit more involved,

especially the effect of the cyclotron orbit on the magnetron motion (and vice versa),

and the calculation is not particularly enlightening. I will therefore use the results

from Brown and Gabrielse [BRG86], which, including the shifts we have discussed

above, summarize the effects of C4 anharmonicity on the trap modes:

ArC4m 2 2 1
A X C4 ( m c1 2 2 - PM2 (II.C.4.10)
Wc d2 1oc 2

AmO 3C4 2 2
__z-=-2pc2+z2-2pm2

amz 4d2

Awm 3C 4  22- -p e2 + z - - 2
Mm d2 2

Thus a small anharmonicity in the trapping potential is not likely to have a dramatic

effect on the cyclotron measurement.

ILC.5 Magnetic Inhomogeneity



Up to this point, I've mentioned only electric field inhomogeneities. In addition

to these, there cai be magnetic field inhomogeneity both in the magnetic field of our

original magnet and, more importantly, because of fields produced by the susceptibility

of the trap materials. While the magnetic field (without the trap in place) had a

measured homogeneity of about 10-8 over a 1 cm3 volume, we have estimated

[FLA87] that the 85000 gauss field should induce, at trap center, a second order

inhomogeneity of about 6 gauss/cm 2. Thus the trap'materials produce a "magnetic

bottle" four orders of magnitude larger than the inhomogeneity without the trap.

While bottles have been used extensively at Washington to detect the cyclotron motion

of electrons [WED73,BRG86], we consider this bottle to be a problem and, eventually,

will take steps to eliminate it.

We can calculate fairly directly the effect on the trap frequencies that a magnetic

bottle induces. The field, ABl, associated with a dipole bottle of strength B 2 is:

ABl= B2 (z2 - zpp (H.C.5. 1)

We can compute its effect on the axial motion by calculating the extra axial force,

AFT, that the bottle induces:

-e
AF., = (Vx AB9) -z (II1.C.5.2)

-±zB 2P'(V XV)
C

Since the magnetron and cyclotron orbits are circular motions, we can use

I xV = om,c -m,c and write:



AFz = -B2 (Wm P2+ WC pC2)>z (II.C.5.3)
c

Thus the bottle can cause an additional harmonic force and, for B2 > 0, strengthens the

trapping potential. Assuming this force is a small perturbation on the axial motion, the

bottle will induce a frequency shift:

Awz 1 B2 2+(eC--- - -B PM2 + -PC2 (II.C.5.4)
(oz 4 B M

While the shift due to the magnetron is quite small (a 1 mm orbit for an N+ ion gives

only an 0.03 Hz shift which will likely be overshadowed by shifts to an anharmonic

electric field), the effect of the cyclotron motion can be quite large. (Similar shifts

have been used to measure cyclotron resonances of electron. [WED73]) As an example

of the size of this shift, in our parametric pulse schemes, a starting z orbit of 1 mm

will cause a 1.6 Hz shift in the axial resonance frequency when the z motion has been

parametrically driven into the cyclotron mode.

This magnetic inhomogeneity will also shift the magnetron and cyclotron

resonances, and we could calculate those shifts using the same procedure we used for

the axial shifts. Rather than going through that algebra, I will just quote the results

from a similar calculation [BRG86]:

- - -2 z2 - P 2 _ PC 2 (II.C.5.5)
me 2 B

and



--- - B- z2 - PM2 - PC 2 (II.C.5.6)
. )m 2 B M

A 1 mm z orbit could cause a 3x10-7 shift in the cyclotron frequency. This shift,

though small, is still several orders of magnitude greater than the ultimate precision we

seek. In addition, in analogy to the anharmonic axial resonances of Section II.B.3, and

the anharmonic cyclotron effect mentioned in the previous section, this frequency shift

with P. 2 (and z2, for that matter) can cause hysteresis and sweep-direction dependence

in swept cyclotron resonances.

H.C.6 Magnetic Field Drifts

The central tenet of our experiment is that we can compare masses by comparing

the cyclotron frequencies of ions in the same magnetic field. Because it is difficult to

measure simultaneously the cyclotron frequencies of two different species, short term

jitter and longer term drift of the magnetic field will translate directly into uncertainties

in the mass ratio. Therefore, the stability of the magnet is very important.

Our particular magnet was selected by the manufacturer to have exceptionally

small drift [FLA87], and our preliminary measurements indicate a long-term stability

of better than 10-9 per hour. This decay should be linear, and, assuming our magnet

performs at least as well as earlier magnets, the uncertainty in this decay should be

less than 10-11 per hour. [VMF85]

However, short term fluctuations, due for example to moving elevators, changing

atmospheric pressure, etc., probably also contribute around the 10~9 level. These



fluctuations, too, will mimic fluctuations in the mass. There is no simple prescription

to eliminate these- fluctuations, though the superconducting solenoid itself should have

some shielding effect against external fields. We may supplement this shielding using

additional superconducting shields [GAB88] (which try to keep the flux threading them

constant) or try to develop suitable technology to measure these fluctuations directly.

II.C.7 Trap Asymmetry and Tilts

In this section, I will discuss the effect of azimuthal asymmetry in the trap

electrodes and misalignment between the magnetic and electrostatic axes. These last

two perturbations represent both the largest and, as it turns out, the least important

perturbations in the trap-least important because we can give a prescription that

compensates for these effects to all orders. This prescription enables us convert the

three measured trap frequencies of the ions into a robust, free-space cyclotron value,

proportional to its (mass)-'.

We first discuss the asymmetry, and then add the magnetic field tilt into the

same formalism. A simple counting argument shows that we need only one parameter

to specify the quadratic, azimuthal asymmetry in the electrodes. The quadratic

potential for the trap must be given by a symmetric, traceless, 3x3 tensor. (Symmetric

because the anti-symmetric part has no physical effect, and traceless because, in a

source-free region, 2CD = 0.) Thus, in general, there are 3-2-1 - 1 = 5 possible

parameters in the potential. The choice of axes is arbitrary, and, for convenience, we
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can rotate to the principal axes, for which the tensor is diagonal. Thus, of the

remaining 5 parameters, 3 are arbitrary (the three Euler angles of the rotation that gets

us to the principal axes). Of the two remaining parameters, one gives the overall

strength of the potential, leaving us with one remaining parameter. Following the

description by Brown and Gabrielse, (who first published the technique [BRG82]) we

call the left over paramenter e, and let it represent an ellipsoidal asymmetry:

= OZ z 2  + y2) (x 2 Y2) (II.C.7.1)

When written in cylindrical coordinates, we see explicitly that e breaks the azimuthal

symmetry:

= -mzh2 z2 - .p2(1-ecos2$) (II.C.7.2)
2e 2

In this formalism, we also can treat a tilt of the magnetic field with respect to the

electrostatic principal axes. Since we have specified these axes, the magnetic tilt has

two angles: 0 and $, the usual spherical angles. (The angle $ becomes important

because it couples to the asymmetry e.) Using rectangular coordinates for the moment,

we can write down the ions' equations of motion, taking e, 0 and $ explicitly into

account:

1
r 1 r 1 -(1 +e)x

y cos0 - i sin~sin$ 2
o - isin0cos$ - icosO + z2 -- (1 -e)y = 0 (II.C.7.3)

]L isin0sin$ - y sin0cos$ 2



and solve for the normal modes. Because Brown and Gabrielse explicitly do this, I

will only present their results.

We can label the three normal modes of the tilted, asymmetric trap 65, UYm and

Uc. We get these modes by trying solutions like e-4", and solving the determinant

equations that results from (II.C.7.3). The most important relation between these

frequencies is:

-2 = U 2+ U2 + -m2 (II.C.7.4)

Quite remarkably, even in the presence of tilts and asymmetry, the quadratic sum of

the normal modes, to all orders in e, 0 and $, remains oc2. Thus, this prescription

provides a robust, high-precision value for the true cyclotron frequency.

We also can estimate the relationship between the measured trap modes and the

ideal axial and magnetron modes:

-O 1 - sin20(l+ -ecos2$) (II.C.7.5)

and

-2
- m - (1 - -2) (1 + -sin20) (l.C.7.6)

2 -c 2 4

Since there is no way to measure the a priori ("untilted") axial frequency, Equation

II.C.7.5 cannot be used to measure the tilt. On the other hand, the magnetron

frequency can be used for this measurement. Assuming that the asymmetry is less

important than the tilt (a reasonable assumption [BRG82] which seems to hold for



most measured traps, unless the trap has been dropped on its side), we can use the

three measured modes to give the tilt between the trap's z axis and the magnetic field:

2 2 5c0 = sin-' - *- (II.C.7.7)
3 6Mz2

For example, a 1* tilt will cause (an easily measured) 2 Hz shift between Zmm and

6m =for N j ions, a shift of about 10. (In this sense, the tilts are, by far,
2 oc

the largest perturbation.)

Brown and Gabrielse also give a convenient power series expression for oc in

terms of the measured modes:

2 4 2 P"%

-- = 1+ - - -z +Z -1 + --- (II.C.7.8)
c c CO ic J OM

where Om is the "if the trap weren't tilted" magnetron frequency given above.

We see from this expression that, for measurements of a certain precision, Om

may not have to be measured at all, depending, of course, on the degree of tilt and

asymmetry. In terms of those parameters (and assuming that they are relatively small):

2 '4

COC 1 mz 9 Oz2+ - - sin2O. _ C_2 + (II.C.7.9)
2 16 ?i9

For N+ ions ( CO z 3.5x10-2), a 1* tilt will cause less than a 3x10- 10 error if we
C

ignore the magnetron measurement entirely. For 3He+ ions, ( -- Z z 3.7x10- 3), a tilt
C



as large as 30 would cause less than a 3x10- 13 error! Thus, for high precision

measurements on lighter ions, the magnetron frequency will only be important to cool

the ions. (See Chapter VI) An exact measurement of its frequency, however, will not

be important when calculating the free-space cyclotron frequency.

ILC.8 Relativistic Shifts

Special Relativity provides a final "perturbation" to our measurements, or rather,

a perturbation to our theory. All of our derivations in Section II.A.2 assumed that we

could apply classical mechanics completely and exclusively. However, for typical

single ion measurements, we expect the cyclotron orbits of lighter ions (like 3He+

ions) to have v /c as large as 3x10-5, and thus relativistic corrections will be important

at the 10- 9 level.

The relativistic shifts in the cyclotron frequency are fairly simple to calculate.

Since the cyclotron motion is perpendicular to the magnetic field, we expect

relativistic shifts due only to the increase of the ion's effective mass,

m --> 1 -v2/ c2J m. The cyclotron frequency depends inversely on the mass,

Aoc Am
(II.A.2.7); therefore, we expect - = . Averaging over the axial orbit and

c m

neglecting shifts due to the magnetron motions we have:



- = p 2+ -- Z2 (II.C.8.1)
. me 2 c2 PC eO

Even for strongly excited N2 ions, using detection schemes outlined in the next

chapter, the shifts due to the cyclotron and axial motions should be about the same,

roughly 3x10- 12. However, these shifts scale like m- 2, so the shift for 3He+ will be

closer to 3x10~10. For very light particles (electrons), Gabrielse [GDK85] has

observed hysteresis (as per Section II.B.3) due to this relativistic mass shift.

Determining the axial frequency shift is complicated by Lorentz contraction.

Brown and Gabrielse, using the large-n limit of a relativistic quantum calculation

show, for the axial shift:

AmDZ 1 meC 2 3 (m 2-- = C 2[+ - 2] (II.C.8.2)

We see that the relative axial shift is of the same order as the cyclotron shift;

therefore the absolute axial shift will always be negligible.

Summary of Perturbations

In these sub-sections, I have outlined the most important perturbations to the

ideal Penning trap modes. We will return to these shifts after we discuss detection

techniques (Chapters V and VI) when we will have better understanding of the relative
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amplitudes in the different modes. In Chapter VII, we will use these calculated shifts

to estimate the present systematics, (for example, the best C4 and bottle field) and

return conclude Chapter VII with an estimate of how well we ultimately can measure

mass ratios in the presence of the remaining perturbations.



CHAPTER HI

DETECTOR THEORY AND IMPLEMENTATION

This chaper addresses two crucial ideas central to our ion detection schemes:

SQUIDs and FFTs. I have grouped them together because, though central, they are

sufficiently unfamiliar in detail to most physicists to warrant an explanation. In

addition, these two ideas are logically linked: both represent crucial steps between the

trapped ions and the experimenters. The SQUID (and the associated cryogenic

electronics) provides the physical amplification required to detect the velocity of the

trapped ion. The FFT (and associated digital signal processing) provides the software

to interpret these physical signals in some of the convenient ways discussed in Chapter

III. Furthermore, both the SQUID and the FFT impose certain constraints on the

system, especially the signal-to-noise, and understanding these constraints in the

current system is crucial for future improvements. In both cases, then, I have tried to

include enough theory and explanation so that the reader can understand the specific

application to our experiment.

In another sense, too, this chapter serves as a bridge between the theory and the

results. Each section must, by necessity, begin to deal with the specific

implementations chosen for our experiment, and hence I begin to discuss some of the

experimental "nuts and bolts" of ion detection. For example, I will discuss the high-Q

tuned circuits we used with the SQUID because they are involved intimately in its

optimization for ion detection. Also, I will explain the specific algorithm for variance
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control required to make an effective spectrum analyzer using the FF17.

-I.A RF SQUIDs

In this section, I will describe how a superconducting ring, closed by a "weak

link" can be used as a very sensitive current amplifier. The earliest paper that outlines

this use of the Josephson effect appeared in 1967 [SIZ67], and the device became a

focus of attention for the next decade. By the end of that decade, the operating theory

and a reasonably sophisticated treatment of the noise processes in an RF SQUID had

been fairly well formulated and tested. (Many of the noise theory papers were written

as part of an effort to use RF SQUIDs in gravitational wave detectors

[HPE77,GUR77,JAB75].)

In the first part of this section, I will discuss how a Josephson Junction can be

used as an audio-frequency flux detector. In the second part, I describe how we

modified this flux detector to make it a sensitive enough to detect the current of a

single, trapped ion. Most of this second section is a paper we published in the Journal

of Applied Physics.

III.A.1 RF SQUIDs and Parametric Amplification

The principle effect of incorporating a weak link into a superconducting ring is

to make the circulating supercurrent periodic in the flux threading the loop

[FLS64,TIN75]):
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J, = -Je sin - (II.A.1.1)

where J, is the critical current of the weak link, D is the flux threading the loop, and

(o is the flux quantum, h = 2x10~' gauss-cm2. (Another nice, quantum
2e

mechanical derivation of this result is in [FLS64].) The minus sign in III.A.1.1

indicates that the induced current opposes flux changes through the loop. The total

flux threading the loop is the sum of the external flux and the flux set up by

supercurrent circulating in the loop. Since the current, J, in a ring of inductance L

gives rise to a flux LI,, the total flux threading the loop is:

0 = 0(-LJesin- (II.A.1.2)

This constant, LJa, determines the behavior of the loop. If it is very small (<(Do),

then 0 =0, and the weak link effectively destroys flux quantization by destroying the

coherence of the supercurrent. If, on the other hand, LJ -+oo, then 0 becomes

independent of Ox, and, it turns out, can only be a multiple of 0G. In this case, the

weak link is so weak as to have no effect at all, and the ring behaves like a perfectly

superconducting ring, opposing any applied flux by setting up the appropriate

supercurrent. Figure II.A. 1 shows a plot of 0 vs. Ox for L J, = 2;OI, a typical value

for commercial sensors. Note that equation III.A.1.2 ignores the resistance and

capacitance of the junction. This assumption is valid if the time scale of flux changes

is <- -iR, a constraint which is always satisfied in our system. [JAB75]
LS
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Figure III.A. 1.1. Graph of (D vs. (X (Equation III.A. 1.2).
The parts of the curve with negative slope correspond to
unstable conditions. Thus the flux follows the hysteretic paths
indicated.
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I will use the 0 vs. 0D, graph to explain the dynamics of the RF SQUID.

Kurkijaarvi [KUR72] has shown that the parts of the curve with negative slope

correspond to unstable behavior. That is, as D., is changed, 0 cannot remain on the

parts of the curve with negative slope, and b will jump to the nearest, stable value.

Thus, like the non-linear ion response discussed in Chapter II, this system exhibits a

characteristic hysteresis.

We can use figure III.A.1.1 to determine the energy loss associated with one

hysteresis loop. [TIN75] In general, the energy is the time integral of the power

dissipated over one cycle:

AW =§ I Vdt (III.A.1.3)

where I and V are the current and voltage around the loop. For an inductive device

(like a SQUID loop), V = LI, so V dt = LdI. In addition, as in equation III.A.1.2,

LI =D, - 4D. Thus, using di = dD and the fact that f IdD =0 around any

closed loop, we have:

AW = dO (III.A. 1.4)

Thus the area of a loop on Fig III.A. 1.1 is proportional to the energy dissipated around

the loop. (This energy is most likely dissipated as microwave energy through the weak

link [LOU74]). For many practical devices, this energy is - (O2/ L, typically 4x10- 21

j.
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The standard way of exploiting this relationship for sensitive flux detection

[SIZ67] is to conple an RF-tuned circuit loosely to the SQUID loop. (see Figure

III.A.1.2) By measuring the voltage across the excitation tank circuit, the energy-loss

discussed above can be detected. The peak voltage reaches a plateau, and the level of

this plateau depends on the external flux, 0x. This plateau can be explained quite

simply.

Assume that the constant external flux through the loop is such that there is no

"static" supercurrent flowing; for example, whenever 'D, = c. When we supply an RF

current, IRF, to the resonant tank circuit, (neglecting the presence of the SQUID loop

for a moment), the current circulating in the tank builds up to a steady-state value

Ik = QIRF, where Q is the usual quality factor of the tank circuit. This current, in

Mturn, induces a current in SQUID loop, ISQ = QIt,. Thus there is some energy,
SQ

4Ls 12Q associated with the SQUID loop. (This energy is a small fraction of the

inductive energy stored in the tank circuit, -L l -
4 tank' tnk)

Let us now increase the current IRF supplied to the tank. Since the voltage

across the tank circuit is ca&I ak, it will increase linearly as the current Ita

increases. Eventually, the energy built up in the SQUID loop will be large enough to

drive the SQUID around one hysteresis loop. That energy will be dissipated and there

will be a corresponding (though slight) drop in the tank circuit current and voltage. It
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R=Q

Figure III.A. 1.2. Schematic diagram of typical RF excitation
circuit used to pump the SQUID. As an example, our sensor
uses a 19 MHz resonant circuit with Q = 80. The SQUID
loop inductance is LSQ = 1 nH.
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then will require several cycles of RF for the tank current again to build up sufficient

energy in the tank to drive the SQUID through another hysteresis loop. Therefore,

increasing the drive current at this point does not increase the peak voltage across the

tank circuit (which is pegged at its value just before the SQUID transition), but rather

decreases the time between these flux transitions. Thus the detected peak voltage

reaches a plateau. (see Figure III.A.1.3, solid line) The peak voltage remains constant

until the current supplied is sufficient to driv.e one flux transition every half cycle of

RF. Above this current, the peak voltage again increases until more flux transitions

can be driven per RF cycle, and another plateau is reached, etc.

This description assumed that there was no current circulating in the SQUID

loop at IRF =0. However, for different choices of <D0, there will be different values

of ISQ at IRF = 0. This additional current in the ring means that the flux transitions

occur at different values of Ira,, and thus the voltage plateau will occur at a different,

lower value. (see Fig III.A.1.3, dashed line) This parametric dependence of the

voltage plateau on the external, DC flux makes the RF SQUID useful as a parametric

amplifier. Imagine sitting at one, specific RF level. As the external flux changes,

(slowly, relative to the RF pumping frequency) the peak RF voltage will change

(periodically) with the applied flux. This parametric change, as the physical basis of

the RF SQUID, forms the heart of our ion detector

Of course, there are many technical problems in converting this physical

principle into an ion detector. At the lowest level are the challenges in making a
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Figure III.A.1.3. Peak voltage across the tank circuit as a
function of the RF current. The solid line corresponds to 0D,
such that no DC supercurrent is flowing through the loop.
The dashed line corresponds to 1 /4 0o additional external
flux.
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useful flux detector: a quiet pre-amplifier, a low RF interference environment, etc.

These problems aie solved in our experiment with a commercial controller and SQUID

sensor. At the next level, this commercial flux detector must be converted into a low-

frequency current detector by adding an additional transforming linking the SQUID

loop with external current sources which, in turn, induce flux changes across the

SQUID. Finally, in order to operate at the ions' frequencies, we added additional

feedback systems to the commercial detector at the room temperature end of the

controller. I will discuss the details of transforming the commercial SQUID device

into a single ion detector in the next section.

IILA.2 SQUID-Based Ion Detector

One of largest technical difficulties in this experiment was detecting the ion's

motion. I gave the current induced by an ion in Equation II.A.3.4. In our apparatus,

one ion, oscillating 10% of the trap size, induces just 6x10~15 A. Detecting this small

current required understanding the noise processes of the RF SQUID detector.

There are two reasons why the SQUID noise presented theoretical difficulty.

First, as Kurkijaarvi and Webb showed [KUR72, KUW73, KUR73], the presence of

intrinsic fluctuations in the SQUID loop profoundly affects the VRF vs. IRF curve.

Second, the RF SQUID acts as a parametric amplifier, and the effective input

parameters (noise, impedance, etc.) of this type of amplifier are quite different from

normal amplifiers. [MAR56,ROW58]
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I will summarize briefly Kurkijaarvi's argument explaining the effects of noise.

Fluctuations in the ring tend to spread out the value of c, at which flux transitions

occur. Kurkijaarvi [KUR72], viewing the transition process as a tunneling event

between the stable parts of the 0-0) curve, argued the the potential barrier against

tunneling decreases as 4. approaches the critical values, 0b,. Kurkijaarvi and Webb

[KUW72] then applied this approach to a sinusoidally driven 4D., and concluded that

the VRF VSJRF plateaus slope up with increasing IRF. This rise occurs because of the

distribution of c, at the flux transition shifts with increased growth rate of (D. Thus

at higher IRF, the increased rate of growth of 0., after a flux transition leads to the

plateau shape.

From this insight, it took another five years for Enholm [EHN77] to incorporate

the physical idea into a complete, small-signal analysis that also correctly treated the

parametric amplifier part of the problem. His analysis was important to us for several

reasons. First, he predicted that the (low frequency) input impedance of the SQUID

would be negative, thus raising the possibility of oscillation. In addition, he gave

predictions for various noise sources and estimated their relative sizes. We used these

predictions and subsequent measurements to optimize our ion detector. We published

the details of the finished detector and I include this article as the rest of this section.

This article also includes the physical details of our detector, including the

construction of a high-Q, tuned circuit between the SQUID and the ion trap. This

tuned circuit provides additional current gain to achieve the current sensitivity
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necessary to detect single ions, but complicates the optimization of the detector. We

resolved this complication in the article.

-- article --
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ABSTRACT

We have designed and constructed a novel superconducting detector sensitive

enough to detect the axial motion of a single, trapped ion. This detector employs a

tuned, superconducting transformer matched to an RF SQUID to yield an effective

current sensitivity of 2.7 x 10-15 A [/iz at 160 KHz. To optimize the detection

system, we have used existing small signal equivalent circuit models, and thus have

tested these models in a new regime. We include details of our superconducting

circuitry and of the modifications required to stabilize the commercial SQUID controls

at 160 KHz. Finally, we present typical detected signals from trapped ions.
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INTRODUCTION

Charged.- particle traps are used throughout the physical sciences, with

applications ranging from precision measurements of elementary particles1 to chemical

analyses in commercia!!y manufactured ion cyclotron resonance (ICR) mass

spectrometers. Frequently. :he siznal that is detected is the small image current

induced in a trap electrode as the charged particles oscillate in the trap. In many

applications, then, increased detector sensitivity leads directly to improved

performance. We have begun a series of experiments that involve measuring cyclotron

resonance frequencies of ions in a Penning trap. Our goal is to determine the relative

mass of ions to high precision: ultimately, with a single ion in the trap at a time. This

paper describes an extremely sensitive detector we have developed in order to measure

the small currents induced by a single, trapped ion.

We have utilized the inherent sensitivity of an RF SQUID to develop a novel

detector that is capable of measuring the signal from a single ion. In our trap, this

signal is a current of < 10-14 A at 160 KHz. In developing and optimizing the

detector, we used existing models of RF SQUID's in a new, higher frequency regime.

We found these models account well for the SQUID's behavior.

In this paper, we also give details of our superconducting circuits, including

materials and techniques. We expect that this type of detector and these techniques

will be useful not only for trapped ion work but also in other applications that require



n xtremely sensitive detector at sub-.\'Hz frequencies.



THEORY

Ion Trapping-

We shall briefy descrihe our rapped ion experiment in order to indicate the

detector requirements. For fuirther detalis of precision measurements with charged

particles, see the recent review by Brown and Gabrielse .

Our goal is to measure ratios of ionic masses to very high precisions by

measuring cyclotron frequencies of the ions. In order to observe the ions for a time

long enough to make precision determinations of frequencies, we confine the ions in a

strong magnetic field using a weak, electrostatic quadrupole trap. This configuration is

known as a Penning trap. (see Fig. 1) The hyperbolic electrodes make an essentially

harmonic potential in the axial direction 3. The resulting axial motion has characteristic

frequency o.x:

, eV-~= - -i (1)

As the ions move up and down in the trap, they induce oscillating image

currents in the endcaps. For a parallel plate capacitor of spacing 2zo, we expect for an

ion of charge e displaced z above the center:

z
qinduced = e x -2 z0

Thus, for ions oscillating at angular frequency o, the amplitude of the induced current

is:



1
LLd~C~d =(2)

-- 0

where z is now the amplitude of the oscillation. In a Penning trap, because of the

hyperboloid geometry. i ec is lowered4 by about 20%.

As a circuit element. the trapped ion may be treated as an ideal current source.

Thus, in our application. the important quantity for evaluating a detector is current

sensitivity. In our trap, :o = 0.6 cm, co = 21n x 160 KHz. For an ion oscillating with

amplitude 0.1 zo, we get 6xl01 5 A/rms. Measuring this small current in one second

thus requires a noise of less than 1.1x10~ 4 A /Azi.

RF SQUIDs

An RF SQUID consists of a single Josephson junction in a superconducting ring.

Its non-linear properties may be exploited to make a parametric amplifier5. As pointed

out in a series of papers by Kurkijaarvi and Webb 6,7,8, and further incorporated into a

linear, equivalent circuit by Enholm9, the RF SQUID has some interesting noise

properties. Work along these lines was also performed by Hough and co-workersio,

Gusev and Rudenko 1 and Jackel and Burmann12

Following Enholm, we model the input to the SQUID as a parallel inductor, L,,

and negative resistor, R, with three noise sources. (Fig. 2) L, is the input inductor (the

current-to-flux converter), reduced a small amount by its coupling to the SQUID loop.

The three noise sources are the preamplifier noise, u,, and two correlated sources: iq
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and uts, w hich represent the interaction of the tank current noise and the so-called

intrinsic noise of the junction. Enholm provides theoretical expressions for these

parameters. Typical values for the :ype of commercial SQUID sensor we use are found

in Giffard and Hollenhorst .

We can simplify this model in :wo ways. In our case, the preamplifier noise

swarnps us, the effective vultage noise. Thus we neglect the term usq. Also, though

it would be difficult to get an exact a priori value for R, we can use Enholm's work

and Giffard and Hollenhorst's measurements to estimate its value:

R, =-45 Q(3)

Though this value should be taken only as an estimate, it does indicate that OL, <<

IRJ at our signal frequencies, with L, = 2.0 pH. Thus, except for stability questions,

can be neglected in what will follow.

With this small signal equivalent circuit, we can apply traditional. noise theory

(Robinson1 5) treating the SQUID's current noise and the equivalent noise of the

preamplifier as uncorrelated current and voltage sources. We can then optimize the

input circuit impedance, or, more precisely, the input circuit coupling to obtain the best

current sensitivity. Note that the preamplifier noise, which we call "voltage noise" is,

in fact, specified as an equivalent current at the SQUID's input: i,,, = -- The
r

sense in which it is a voltage noise is that it is independent of the source impedance,

in analogy to the voltage noise of a more traditional amplifier.



Circuit

We detect the ions' motion by connecting the upper endcap to the detector.

Since the total input noise of our RF SQUID is typically around 2-10-" A/NI-k, and

the ion signal is less that 10 A. we clearly need some extra current gain. In

addition, the ion looks like a high impedance current source, while the SQUID input is

a low impedance inductor. To get both impedance. matching and extra gain, we use a

high-Q tuned transformer between trap and the SQUID. Tuned inputs have been used

with SQUIDs previously 16 .17, but at lower frequencies, with smaller Q's, and with less

resulting current sensitivity.

We use the detector in a narrow-band fashion, driving the ions at known

frequencies, and looking for their response at known frequencies. Since the ion is a

current source, it must compete with the Johnson noise of the coil and the equivalent

noise of the SQUID. The Johnson current noise is given by iR = , with

R = coOLQ, where Q is the usual quality factor of the circuit, and W0 is its resonant

frequency. We can do no better than reducing the SQUID noise far below this Johnson

noise source. This relation tells us that, ultimately, we would like to make L and Q as

large as possible, and, in addition, make the SQUID's contribution to the noise

negligible.

Figure 3 shows an equivalent circuit of the cryogenic part of our detector. R, is

not shown on Fig. 3 since, as mentioned earlier, we can neglect it, except for the
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Interesting case of oscillations. Since the preamplifier noise is given as effective

current noise at the SQUID's input. we solve for the signal at that input:

Al -Lo-LC +
+.4 R .,

o, R L, + L L. 4 L 2+L, ,i fer
- - C +L,)2 - L L C +

R RffR

M23
where Leff = L-

We now calculate the optimal coupling. between L I and L2 to maximize the

signal to noise; specifically, the optimal value for M, the mutual inductance.

Weakening this coupling brings Leff closer to L, and thus brings the minimum in the

numerator of the iq term closer to canceling out the denominator. That is, weakening

the coupling tends to reduce the relative contribution of the current noise of the

MSQUID. However, we can't weaken the coupling indefinitely, since the gain,L ,
L 2+L,

decreases for L 2<L,. Eventually, any signal will be swamped by the preamplifier

noise, ipre- We will find that optimum coupling occurs when the two competing noise

sources, isq and ipre, have equal contributions.

We can simplify the algebra dramatically by making two approximations. First,

we can neglect the imaginary part of the numerator in the iy term. The difference

between L, and Lef,, when optimized, is large enough to make the real part much

larger than the imaginary part near the signal resonance, o2L fC=1. Second, we



umne that L <L. Minimizing :he total noise on resonance yields:

yL 1 L~(5.)

izire

.Tq

With this coupling. the contr'utions of the voltage and current noises are equal,

and the total noise density becones:

., ., 7L SQ 2

k
Since iR = , we can calculate the total noise of the optimized detector,

)L IQ

referred to the input. In our case, ipre = 15 pA /WIz, y = 6, and the SQUID detector

noise contributes about 1/3 to the total noise power. The rest is the 4.2 K thermal

noise of the tuned circuit, currently 2 x 10-15 A / 4II, for Leg = 5.7x10 3 mH and

Q = 12000.

Although the current signal-to-noise ratio is the most important parameter for our

experiment, it isn't the only parameter that might be interesting. For example, if we

were more concerned about extracting detectable energy from the system at a fixed

rate, then the noise power, i2 Re (Zdg could be more relevant. In that case, it might

be advantageous to detune the ions from the coil's resonance and, in addition, increase

.M. If the SQUID is sufficiently quiet, the noise power then can be reduced below the

usual thermal limit, 4KT, without undue degradation of the signal-to-noise.



TECHNICAL DETAILS

Superconducting Transformer

W.e have made many inductorcapacitor pairs on the route to a high-Q

combination. Since we found few details in the literature, we describe here some of

the techniques we used. Rather than listing the many unsuccessful combinations of

materials and techniques, w.e describe only what has worked best and what we believe

limits us at this stage.

The primary of our present transformer has approximately 1200 turns of 4 mil,

non-annealed Nb wire, insulated to 5 mils with Formvar, wound on a hollow bakelite

tube, 2 cm in diameter. When placed in a Nb superconducting shield, the primary has

an inductance of 5.7 mH. The secondary is just 3 turns, wound at the the end of the

primary. As discussed above, its inductance is not particularly important, as long as it

is much less than the the SQUID input inductance of about 2 pH. The optimized

mutual inductance is 2.2 pffH, but we have run with it as high at 25 gH. (see below)

The capacitor is made of two cylindrical blocks of Nb, 1.7 cm in diameter, 0.3 cm

high, spaced by a sheet of I mil Teflon, held together with Teflon threaded fasteners.

Normally, the resonant frequency is stable to about 1 ppm until the liquid Helium level

begins to drop below the top of the superconducting shield. The capacitance is about

100 pF.



The primary is spot-weided to Nn tabs which, in turn, are spot-welded onto the

capacitor blocks. The secondary is spot welded onto the input of the SQUID sensor'.

The transformer and capacitor are hed in a machined Nb shield which is physically

attached below a similar hield which houses the SQUID. This shield minimizes

losses due to eddy currents. Omission of the shield or the spot-welding limits the Q to

z2000 at 160 KHz.

Since the ion trap is in an 85000 gauss magnetic field, we need to put the

detector about 100 cm above field center, where the ambient magnetic field will permit

the SQUID to operate. To connect the detector to the trap, we use Teflon-insulated Cu

wire, made into twisted pair and soldered onto Cu-NbTi composite wire used in

superconducting magnet work. The Cu sheath of this wire is removed on one end and

we spot-weld the superconducting core onto tabs located under the superconducting

shield that houses the transformer. Finally the primary is spot-welded to these tabs.

In addition, since the ion trap is in a vacuum, we made a high-vacuum

feedthrough of formvar insulated, Cu twisted pair, passing through SS needle

tubing, sealed with Stycast. The vacuum side of the feedthrough is soldered to the

trap, while the other side is soldered to the twisted pair from the detector.

With this arrangement, we routinely obtain Q's of 12000 at 160 KHz. (Without

the feedthrough and twisted pair, and using a smaller, 1 mH coil, we have obtained

Q's > 2 x 105.) Most of the loss is in the twisted pair and the feedthrough that goes to



the ion trap: when tested without this line, we measure Q's of about 20000. We

believe the formvar insulation is the dominant source of this loss.

Room Temperature Controls

The control electronics for the SQUID system include two separate negative

feedback loops, operating in separated frequency regimes. At low frequencies, we use

a commercially available SQUID control (SHE Model 30), which provides a 19 MHz

pump signal and detection electronics that amplify signals at the SQUID's input. In

addition, this control supplies a low frequency (< 20 KHz) "flux-locked" servo loop,

which enables operation in electrically hostile environments. Since the leads running

between the trap and the coil are in the strong gradients of the superconducting

magnet, mechanical motion can induce significant low frequency noise.

The Model 30 controller also provides a higher frequency output, for signals

beyond the locked loop. The dynamics of a hysteretic SQUID limits signals from this

output (called the "HF out") to less than 1/4 of a flux quantum, $0. In addition, the

gain from this output typically fluctuates = 15% in eight hours. Therefore, both to

stabilize the gain and increase the dynamic range, we implemented a second, higher

frequency (160 KHz) feedback loop.

We take the error signal from the model 30 ("HF out"), and pass it through a

tunable bandpass filter (Q=70), followed by a variable gain, variable phase amplifier.



We return the output of this -ampiier through an 800 Hz low-pass filter into the

fetlback path of the SQUID. effectively putting the signal at the input of the SQUID

sen'r. We use the Lst in" on the Model 30.) Although our 160 KHz signal is

much attenuated (since .e operate far above the 3 dB point of the filter), we verified

that there are no other phase shifts across the range of frequencies at which we

operate.

When the feedback path is closed and the gains of the amplifiers are sufficiently

high, the gain of the whole system is set by the gain of the feedback path. Since this

path consists of simple circuit elements, the gain is quite stable. When our feedback

loop is closed, we adjust the phase of our amplifier to create negative feedback. (When

adjusted incorrectly, the system oscillates) The change in the output of the amplifier

after closing the loop lets us measure the total gain of the system. Typically, we

operate with an open loop SQUID gain of = 3 V/ 0 , and an amplifier gain of 10. The

feedback gain is frequency dependent (but time independent!), but roughly W O/V in

our frequency range. With the feedback, we find much improved stability, and we can

track signals up to 3 6o/pp before this external feedback loop loses lock.

We calibrated the detector in stages. We measured the current sensitivity

directly, by injecting a known current into the SQUID's input without our transformer

attached. We next determined the gain of the feedback path (through the "test-in") by

applying a known voltage at the feedback input. We then closed our external feedback

loop and measured the gain of the closed loop. This gain was consistent with the
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uie predicted by simpe fedback theory tusing the gains above), and reproducible to

abUut lO'c.



RESULTS

We have used the SQUID :md :nj>rmer with several values of coupling. In

preliminary runs the coupiinc was :00 ::;;ht and the detector oscillated because of the

negative resistance at the SQUID. These runs also allowed us to determine the

optimum choice for M. the mutual inductance between primary and secondary of our

transformer. We then were able to measure the performance with optimum coupling.

Tight Coupling

When the SQUID is too closely coupled to the high-impedance LC circuit (and

therefore sees an impedance which is too high), the noise on resonance will be

dominated by the SQUID's effective current noise. In our initial work with the

SQUID, we used M=25WH and L2=1.5pH. This is indeed too strong a coupling. The

noise spectrum (Fig 5) shows a peak due to the current noise of the SQUID. (It is

about three times larger than the theoretical 4.2 K noise of the transformer.) We can

evaluate i., from this peak. Using equation (4), this peak yields iq = 2.6 pA/4iz~.

With the SQUID's input shorted, on the other hand, we found ipre = 15 pA/I Ez , and

thus y = 6. Using equation (6), for this primary, M0 ,, = 2.5 p H

In addition, with the tighter coupling, we found that the nc.tive, real part of the

SQUID's input impedance caused the detector to oscillate: an interesting demonstration

of the validity of Enholm's model. We shall derive an expression for the onset of



oscillation as a function of the electrical parameters. We can transform the resistor R,

in Fig. 2. across our transformer, yielding R., its effective resistance at the input of

the detector. This resistor is in parallel with the dissipation resistance of the tuned

circuit. R in Fig. 3. The systern can oscillate if the parallel sum of these resistors is

negative. Thus, for two resistors of opposite sign in parallel, the sign of their parallel

sum carries the sign of the one with smaller absolute value. In the limit of a large

primary and -Rsq moLs, as discussed above, we find:

Leff L2 -
Rc,ff = Rs M (1+ ) (6)

where Leff = L-, as usual.
asus2+L,

Since the system oscillated (without our additional feedback), we conclude that

Rs,,,ff> - R, and thus we can use equation (6) to put a lower limit on R,. Using

measured values of Q and Leff to compute R, we conclude R, > -280 Q. When we

added our external feedback loop, however, we quenched these oscillations. It was

never clear whether the negative feedback itself or the noise introduced in the feedback

process actually stopped the oscillations.

Finally, the pronounced asymmetry apparent in the noise peak (Fig 5) can be

understood qualitatively . At the natural resonance of the primary (O2L C=1), with no

damping, the impedance diverges, and thus no current flows in the primary. As a

result, the secondary is effectively decoupled from the primary at this frequency, and



the SQUID sees only L-,. a relatively small impedance, and thus produces little current

at the output due to current noise. The low frequency side of noise peak, (which

occurs at orL "j C=l ) will be ;maller since it is closer to the (lower) natural

resonance frequency of the primarv.

Optimal Coupling

When we reduced the coupling to the optimum calculated above, we saw

immediate improvements: the detector stopped oscillating, the noise peak became

symmetrical (Fig. 6), and the net current sensitivity was increased. (Fig. 7)

The total noise peak is 32(3) pA/NHz at the SQUID, which gives an effective

input noise current of 2.7(3) fA/\Hz . This value is less than half the noise present

with tight coupling. When we subtract the effects of is and ide, the noise remaining,

referred back to the ion, is 1.8(2) fA/v7z. This value is precisely the calculated 4.2

K noise of the resonant circuit. These errors primarily come our absolute calibration

of the SQUID, with smaller contributions due to uncertainty in component values and

stability in the room temperature amplifiers.

In addition, the absence of oscillation puts another limit on the negative

impedance. Using equation (6) again, since Rs,,,ff < - R, we obtain: Rsq < -10 C.

Figure 7 also reveals a detrimental side effect of the weakened coupling: the

increased current sensitivity is achieved only at the cost of decreased bandwidth. In
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applications that demand wider bandwidth, a compromise toward tighter coupling may

be required.

Figure 8 shows trapped N" ions. Optimum coupling was used here since the

ions are driven so that they respond at the peak of the detector. To avoid capacitive

feedthrough, we drive the ions at two fixed frequencies whose difference is set to the

detector's peak. The ions, when present in the trap, act as a mixer. The trapping

voltage then is swept, thus sweeping the ions' natural resonance frequency (see eqn.

1). In figure 8, we have driven about 10 N ions about 1.5 x 10-2 cm, rms, and

detected them with a time constant t = 1 s. The rms noise of the detector corresponds

to one ion moving up and down about 0.03 cm. Thus the detector, when optimally

coupled, has sufficient sensitivity to observe the axial motion of a single ion.
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SUMMARY

We have used an RF SQUID as a very sensitive ion detector suitable for single

ion measurements. In order to :-ze the detector. we used Enholm's eauivalent

circuit model which reduces ine e -.e SQUID noise theory into a straight forward

circuit optimization problem. We have made the SQUID noise term much smaller than

the 4.2 K Johnson noise of the high-Q. tuned circuit, and measured the overall current

sensitivity of the detector.

We have developed techniques for constructing high-Q circuits around 160 KHz,

and made simple, high frequency additions to the feedback of our commercial SQUID

controls. With non-optimal coupling, we measured the current and voltage noise,

which allowed us to estimate the optimal coupling. When this couping was used, we

detected the noise on resonance, and found it approximately equal to the thermal noise

of the tuned circuit, as predicted.

We can make improvements on this detector. By winding toroidal inductors and

making lower loss feedthroughs, we can improve the Q to 50000, thus decreasing the

Johnson noise by a factor of 2. If we can replace the formvar insulation on the

primary, we may increase the Q even more. By making a one piece holder for the

capacitor and inductor, we can improve the stability by about a factor of five. In

addition, we recently obtained a more advanced SQUID control which operates at 200

MHz and which will virtually eliminate the preamplifier noise. Of course, with the
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new SQUID, the optimization becomes more subtle, because the voltage and current

noises are almost completely correlated. This new control unit may allow us to return

to a tighter coupling. &nd thus increase the bandwidth of the detector. Finally, though

all of our work used c'mmerciUly available SQUIDs operating at 4.2 K, a similar

detector could be made using high :emperature superconducting technology.
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FIGURE CAPTIONS

1. The basic Ieometry of a Penning trap. In

po = 0.696 cm . -, = 0.600 cm.

Figure 2. Enholm's sim-ied mocl for an RF SQUID. From reference .

Figure 3. Equivalent circuit of the cryogenic part of our detector. The left side is the

tuned transformer; the right side is the SQUID model.

High frequency feedback loop described in text. It is all at room

temperature.

Figure 5. Detector noise at SQUID input, tight coupling, M = 25 gH. The center

frequency is 157 KHz.

Figure 6. Detector noise at SQUID input, optimal coupling, M = 2.0 pH. The center

frequency is 147 KHz.

Figure 7. Effective current sensitivity, for the conditions shown in Figures 5 and 6.

The dashed line is an extrapolation using the model in the text.

Figure 8. N' ions. This signal comes from about 10 ions, driven 1.5 x 10-2 cm at

the peak in this curve.
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Appendix to Article

Since our submission of the Journal of Applied Physics article, we have made

several improvements to the detector and understand a little better some of its

limitations. We now use a torroidal inductor, wound on a teflon form, rather than the

solenoidal one described in the text. This coil still has roughly 5 mH of inductance,

but has a Q > 5x10 4 when tested by itself. The coil and superconducting capacitor are

held on a one-piece teflon form which allows less movement within the

superconducting shield. We found this arrangement improved the short-term stability

(-1 minute) of the resonant circuit to around 0.1 Hz.

When we wrote the article we believed that the high-vacuum feedthrough limited

the Q of the detector. However, by making an identical feedthrough and testing it

with the detector, we learned that the feedthrough is not the source of the dissipation.

In fact, we now believe that the Macor in the trap (the machinable, ceramic spacers)

provide most of the damping. We have several pieces of evidence to support this

belief. First, even with the SQUID and mocked-up feedthrough attached, the Q of the

superconducting resonant circuit was no less that 4x10 4. However, when the detector

was hooked up to the trap, the Q dropped to about 2x10 4. In addition, each time we

cooled the apparatus to liquid Helium temperature, the Q started even lower, Q = 104.

After a day or so, the Q stabilizes at the higher value. This slow increase in Q has

repeated itself every time we cycle the apparatus.
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Macor, we learned, has very high AC resistivity [LAW75]. That is, even though

the trap makes up' a small fraction of the total capacitance of the detector, its high loss

could make it responsible for the increased dissipation in the detector. In addition, this

loss decreases at lower temperatures, and the slow decrease is consistent with the long

thermalization times because the Macor spacers (which have high thermal inertia and

are only press-fit onto the copper endcaps and rings) are not well-coupled to the liquid

Helium thermal bath. As we shall discuss in Chapter VII, we have some plans to

construct the insulators for the trap out of better materials to improve both the

dissipation and the thermal equilibration problems.

With the higher Q coil, we found that we could measure the negative input

resistance of the SQUID directly. (Recall that in the paper we only could set order of

magnitude limits from the detector oscillation.) Because of the increased Q, the

impedance of our new circuit on resonance was sufficiently large that even without our

additional feedback, the detector did not oscillate. However, when we closed our

external feedback loop (to stabilize the detector gain), the overall Q of the detector

decreased. Using Equation 6 in the J.Appl.Phys. paper, we can determine the initial

negative impedance of the SQUID from this change. Although not a particularly

high-precision measurement, we get R, = -30(5) Q, in good agreement with both

theory [ENH77] and other experiments [GIH78,HOG80]. The error in this

measurement comes from run-to-run instabilities in the open-loop Q; that is, the width

before we stabilized it with our feedback. At its extremes, this Q varied as much a
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factor of two, while the closed-loop Q was constant to better than 1% throughout the

measurements.

Although we can increase the Q, it's not clear that we will want to increase it

indefinitely. The increased Q lowers the Johnson noise of the tuned circuit (by

increasing the impedance), but there comes a point when this increased impedance

might hinder the experiment: when, as discussed in Section V.A, the detector-induced

width of a single ion becomes the same order as the width of the detector. Above this

impedance, the ions and detector behave as a tightly-coupled system, and shifts in the

detector's resonance can cause shifts in the (observed) ion frequency. Clearly, if the

detector has an impedance large enough to broaden one ion to that critical width, we

will have to be very careful in the experiment. Using (V.A.1.8) and (V.A.1.5),

evaluating ReZ on the resonance of our detector, we see that, for a single ion, we

should avoid having Q > - Although this is not a particularly stringent

requirement for the more massive ions, for lighter particles, it can be quite severe. For

example, for the Helium/Tritium comparison, we probably should avoid Q > 5x10 4.

Protons would present a detection problem even with the present coil.

There were also some technical points we glossed over in the article. For

example, we still see occasions (albeit rare) when the detector is much noiser than

usual. In addition, after several months of continuous use, we find that the voltage

noise creeps up, due, we think, to relaxation of the RF shielding. 1 Also, when the
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SQUID otherwise appears to be working very well (when the background voltage

noise is especially low), the current noise seems elevated. We have no understanding

of this relationship between the current noise and environmental conditions.

Finally, although the detector does not oscillate, because of the time-delays and

gains involved in our room-temperature feedback, the overall network is underdamped.

That is, like a car with bad shocks, the detector is somewhat sensitive to bounces and

jolts, especially those due to environmental noise like bubbling liquid nitrogen and

helium. The feedback fails to damp out these excitations very quickly, and the

resulting "noise," even at 160 KHz, can be comparable in amplitude to the Johnson

noise of the tuned circuit. However, these occasions are fairly rare, and usually this

extra noise is not a problem.

IH.B FFTs and All That

We have used the Fast Fourier Transform (FFT) extensively in this experiment.

With just a little caution and understanding, the transform provides a very powerful

analysis and diagnostic tool. For example, the FFT plays a central role in the pulsed

modes of detection. In addition, we have used it to measure the background noise of

our detector and diagnose oscillation in the SQUID system.

1. That is, the aluminum foil sometimes loosens and even falls off
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In this section, I provide a simple introduction to the use and interpretation of

the FFT as used in this experiment. I'll begin with a definition and give the simple

examples of a cosine wave and white noise. Then, I will introduce some standard

theory in order to explain the differences between the FFT and the full fourier

transform, and use this theory to explain "windowing" and why it helps solve the

problems of leakage and scalloping loss. Finally, I'll touch on some of the more

subtle issues in the use of the FFT for general spectral estimation, again, within the

context of our experiment.

III.B.1 Naive Spectrum Estimation

The FFT is no more or less than a speedy implementation of the Discrete

Fourier Transform (DFT). It is covered in almost any introductory signal processing

book (e.g., [OPS75]), as well as numerical methods books [PFT86, DSP79] and books

specializing in the topic (like [BR174]). There are many versions of the algorithm,

distinguished by such labels as "decimation-in-time," "decimation-in-frequency,"

"Radix-2-4-8," "Complex General-N Winograd," etc., but in the end, each is just an

efficient algorithm to implement:

N-1 -2nink

X[k] = lx[n]e N (III.B.1.1)
n=0

In the simplest case, we take x[] to be an array of equally spaced samples of

some signal and x[n] to be that element sampled at time t = n /fanp, where farp is

the sampling frequency. (Let me put off, for a moment, any more mathematical
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treatment of what "sampling" means.) We hope that the X[k] then somehow

approximates the true fourier transform:

X[] = fdt x (t)e-i*t (III.B.1.2)

where, by analogy, o = 2f, X-. I will discuss shortly just how approximately

our hopes will be realized.

One quick comment on the sign convention. Physicists [PFT86] usually opt for

the e"' in the forward transform, unlike equation III.B.1.2, partly because that

convention has the correct sign for Schroedinger's equation. Electrical engineers, on

the other hand, more often use the sign convention above, because this makes

impedances have +i ws in them. Since most of my detector calculations required

many impedances, I've chosen to stick with the minus sign in the forward transform

here, too.

Let me begin the discussion of the FFT with a familiar example: a cosine wave.

In our experiment, we frequently use the FFT to detect nearly pure tones; that is, to act

something like a phase detector. We can compute the FFT of a cosine wave of

amplitude A:

x (t) =A cos (cot) (III.B.1.3a)

x [n] = A ei""'f + Ae~"' """ (III.B.1.3b)
2 2

Thus, using (III.B.1.1), we have:
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N- lnk 12d C 0)c/2X k 1A N-1xin -W A N-1 -2iin +
X 2]= e + - Y, e (III.B.1.4)

n=O n=O

Assume for the moment that

k Wo=N (III.B.1.5)

f saWn

is an integer. Then for every value of k, each sum will be zero, since we are just

summing a sine or cosine over an integer number of full cycles. The only exceptions a

are those values of k for which the exponent is an integer times 2xi: those sums

N-1
contribute N. (2 1 = N). Thus:

.n=O

A A
X[k2] = 0N280~+ ogkN-_o (II.B.1.6)

Therefore a cosine wave input yields two spikes. In the simplest case, when the

frequency of this input is less than fs,ng /2, the two spikes are the positive and

negative frequency components of the cosine wave. Note that the negative frequency

component (i.e., the part arising from the e~ ) occurs in the upper half (k > N/2) of 0

the FFT.

Note, too, that when the signal frequency is larger than half the sampling

Nfrequency we still get two spikes. For example, when ko = N + -, corresponding to
4

Nan input frequency of 1.25fsarnw, we get the same FFT as when ko = -. In fact, all

input frequencies of the form qfsap+f 1 where q is an integer and f 1 < fsanp /2 are

indistinguishable from input signals at frequency fsan. This ambiguity is called
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"aliasing". Although potentially useful, it often can be misleading. In many

experiments, including ours, an "anti-aliasing" low-pass filter is used preceding the

sampling. This filter cuts off sharply frequencies above fsam /2 to prevent, or at least

lessen, aliasing problems.

We also measure noise using the FFT. Noise, as a stochastic process (e.g,

ROB74]), is usually measured in units like power per unit bandwidth or volts / Nrz.

Assume that we have an anti-aliasing filter with bandwidth Af before the sampling. If

we feed white noise (i.e., equal power per bandwidth) into the filter, what comes out

when we FFT the input? The expectation of the FF1' is zero, since the expectation of

the input signal is also zero-it is equally likely to be positive or negative. We can

compute the expectation value of the square of the FFT:

N-1 -2xi(n-m)-
<IX[k] =Y, <x[n]x[m]>e N (III.B.1.7)

nm =0

For white noise,

<x [n ]x [M ]> = <x mnm = wnf samp n (III.B.1.8)
2

where wn is the voltage noise density. (Its units are volts2 / Hz. The rms noise, for

example, if measured on an oscilloscope would be wAf .)

Thus, we can evaluate the double sum (III.B.1.7) using the Kroeneker delta to do

the first sum, leaving:
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fsa N-1
<lX[k112> =w, - 7,1 (II.B.1.9)e

n=O

= Nw sam
2

Notice there is no k dependence in the result, as we expect for "white" noise. Thus it

appears we can use the FFT to obtain an estimate for wn. However, if we naively

attempt to do this manipulation, some problems will arise. I will return to these

problems below.

What happens when the input wave, (III.B.1.3b), doesn't occur at an integer

value of ko and, in addition, has a different phase? We can re-write (and generalize)

equation (III.B.1.4):

X [k] = - ' e ie 2 in(ko-k)YN + e~ e -2ni(ko+k YN(B 110)

We can sum that series to get:

A 1 -e~i(ko-k) 1- -2n(k~k)]

X[k] = - e I 2*(k*k)N + e 1-e -ei(ko+kYN] (III.B.1.11)
2 _ 1 2ni*Or-kW )1 -- 2ni (ko+kIN I N

If the input signal has frequency less than fsa /2, then the values of k for which X[k]

is large will be those values that make the denominator of the first term in (III.B.1.10)

small; that is, for k near ko. (In this case, the denominator of the second term is never

small.) Near ko, assuming k-ko < N:

X[k] = N e0 pr of kp (I .B. 1. 12)
2 21di(ko-k)

where E=fractional part of ko. The part of (III.B.1.12) in parentheses is the constant
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from (lI.B.1.5). The other part of (II.B.1.12) shows that the delta function has spread

over other frequencies, but peaks near ko. This spreading is called "leakage" in the

literature. In addition, the peak value now is:

X[k]peak - 2Ke (I.B.1.13)
2n2

Thus, for e = M, the worst case, the peak is lowered by 2-=0.64. This lowering of

peak values with small changes in input frequency is called "scalloping." [HAR78]

Another problem, especially for more precise measurements, is that scalloping is

phase-dependent. Although I won't demonstrate this effect explicitly, it certainly

seems reasonable from equation (II.B. 1.12). If we look at IX [k] 12, the interference

term will have a cos(2$) in front, and, it turns out, depend on e.

If we know the signal's frequency ahead of time, we can make scalloping and

leakage quite small by arranging ko to be an integer, either by manipulating the signal

frequency (if we can) or by changing the sampling frequency. The FFT then becomes

exactly analogous to phase detection, and any scalloping or leakage will come about

because of timing errors. However, in most cases that we use the FFT, we don't know

the frequency ahead of time (otherwise we would use a lockin!), and thus we need

some way to handle these problems. The usual handle chosen is called "windowing."

However, to explain why windowing ameliorates these problems, I need to introduce a

bit more theory.
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III.B.2 The FFT, Fourier Transform, and Sampling

In this section, I describe the FFT of a sampled process in more mathematical

detail. This description is not meant to be rigorous, but merely to provide sufficient

theory to understand some of the signal processing choices made in the experiment.

This discussion follows the illustrations of Brigham, but the words of Oppenheim and

Schafer, but similar descriptions can be found in many digital signal processing texts.

It will assume an understanding of "normal" fourier transforms and their properties.

This treatment uses delta-functions to represent the discrete and finite elements

of the DFT, and thus lets us make contact, through multiplication and convolution in

the time and frequency domains, with the continuous signals, and thus with our

intuition about the continuous transforms.

The sampling process can be described mathematically as a sum of 8-functions

whose amplitude is the value of the (continuous) process evaluated at the time when

the 8-function is non-zero. That is, if x(t) is the continuous process, and we sample

every to seconds, then:

x * (t) = 18(t-nto)x (nto) (III.B.2.1)
n

is the sampled process. Thus sampling can be thought of as multiplication by the 8-

function stream, A(t) = E8(t-nto). (See Fig 11I.B.2.1a).
n

Consider now the fourier transforms of x (t), A(t), and x * (t). Let X (co) be the
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Figure III.B.2.1. The left (a) and right (b) are the time and
frequency domain representations, respectively. The top graphs
are for a simple input signal. The middle graphs represent the
sampling process. The bottom graphs show the sampled
results.
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fourier transform of x(t). Also, let the fourier transform of A(t) be:

A(0) = f dt e-" 3'w1(t-nto) = D-iO(III.B.2.2)
--M n n

to n

Since x* (t) is the product of A(t) and x(t), its fourier transform is given by the

convolution X (co)* A(w). Thus the fourier transform of the sampled x(t) is the periodic

replication of the fourier transform of x(t), repeated at intervals of --. (see Fig
to

III.B.2.1b).

Note that if k (co) is zero outside of i--, there will be no overlapping of the
to

successive replications, and we could reproduce the full x(t) from the section of

X(o)* A(o) between ±-o. This fact is the essence of the Nyquist sampling theorem
to

[OPS75] which states, approximately, that no information is thrown away if one

samples at a rate greater than twice the highest frequency component of the input

signal. However, if there are frequencies greater than ,sampl,/2 (see Fig III.B.2.2),

then the input signal cannot be reconstructed uniquely. This overlapping is aliasing,

discussed in the previous section for a cosine wave.

This discussion assumes that we have the full time evolution of the input signal

at our disposal. On the other hand in any real experiment we can only sample for a

finite time. We represent this finiteness by multiplying x* (t) by a time window, w(t).
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Figure III.B.2.2. Aliasing. When the signal to be sampled'has
frequency components greater than o, /2, the fourier
transform of the sampled signal will not be simple replicas of
the fourier transform of the original signal. Instead, there will
be significant overlap. (This is an illustration of the Nyquist
sampling theorem.)
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For simplicity, consider a window centered at t=O, which is non-zero for a total time

T. (see Fig III.B.2.3a) Call the resulting time domain function y(t). Its transform,

Y (m), is the convolution of X (o)* A(m) with the fourier transform of the window,

W(w). In the case of the rectangular window, W(o) is a sinc function,

(- sin(wT/2)

wT/2

The final step to the FFT is to sample the frequency values of the resultant

transform, Y(03). Just as its time analogue, the frequency sampling is expressed

1 2x~k
mathematically by multiplying Y(co) by a stream of 5-functions, -- S(o -- ).2 n k T

For convenience, we can consider the coefficients in front of the 8-functions,

mT
X[k=--] as an array. This array, then, I call the DFT of our original signal, x(t).

27c

Expressing x(t) as an array, and shifting the origin of time by -, we get my original
2

definition of the FFT, Equation (III.B.1.1).
0

The sampling of Y (o) in the frequency domain becomes, in the time domain,

convolution with the stream 1S(t-mT); that is, the periodic replication of the
m

windowed input data. In words, then, the DFT is the fourier transform of the sampled,

windowed, periodically replicated input data. (See Fig III.B.2.3b)

Leakage and Windows
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w(t)x*(t)

W(c)

X[k]

Figure III.B.2.3. The left (a) and right (b) are the time and
frequency domain representations, respectively. The top
graphs represent the finiteness of our sampling interval. The
middle graphs incorporate the window into the results in
Figure III.B.2.1. The bottom graphs show the results of
sampling in the frequency domain.

CHAPTER III 130



This formalism lets us understand leakage and helps explain why various

windows can be useful. Imagine again sampling a cosine wave, x(t) = A cos(coot).

(I've shifted the sampling window to start at t=O for convenience.) Since the DFT is

the fourier transform of the periodic replication of the windowed original, we see that

only when x(O)=x(T) is the periodic replicate precisely the original wave. (Fig

HI.B.2.4a) This boundary condition is woT = 21rk, where k is an integer. Since T =

N/fse,, this requirement is the same condition as (III.B.1.5): there is no leakage.

For the cosine wave, Y(co) (the fourier transform of the sampled, windowed

input) is the periodic replication of the sinc function. We can ignore the replications

and focus our attention on the neighborhood of coo when we sample Y(o) to get y[n].

If ko= is an integer, then the samples all fall on the nodes of the sinc function,
27r

except for the one sample at ko. If, on the other hand, ko is not an integer, (Fig

III.B.2.4b) the samples fall on different parts of the sinc, and we get leakage.

But there is no need to use the rectangular window to do the apodization. In

fact, almost any function that is zero outside the sampling interval can be used. As

one (cynical?) observer noted:

There is a lot of perhaps unnecessary lore about
choice of a window function, and practically every
function which rises from zero to a peak and then
falls again has been named after someone.
([PFT86], p. 425)

There are, indeed, many windows, and, it seems, almost as many figures-of-merit to
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Figure III.B.2.4. Leakage. The top (a) shows a cosine wave
that "fits" neatly into the sampling interval. The samples of
the DFT (top, right) are non-zero at only one point. The
bottom (b) shows a cosine wave that is 7c radians away from
fitting into the sampling interval. The samples of the DFT
(bottom,left) are non-zero throughout the spectrum.
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judge these windows. (see, for example, [HAR78]).

It is easy to see how windows reduce leakage. If the fourier transform of the

window falls off quickly in the side lobes (and almost any smooth function falls off

faster than a rectangular window), then the contributions from the nearby samples of

Y(m) will be smaller.

For example, the "Hanning" (or "Tukey") window is:

1 1 2xt

w(t) = -2 2o T (III.B.2.3)

0 t<0, t>T
and fourier transforming yields,

.coT 2nsin- i-

T T

(see Figure III.B.2.5) Since the sides lobes now fall off like m3 instead of w, leakage

is dramatically reduced. However, notice that the main lobe is now broader. Thus we

have achieved the narrowing of the broadest at the expense of broadening the most

narrow: even if ko is an integer, the peak in the FFT will extend over three bins.

Another effect of using a Hanning window is a lessening of scalloping: when

8E=M/ (see III.B.1.12), the coherent peak is lowered to -- =0.84, an improvement of
37

more than a factor of two over the rectangular window.
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Figure III.B.2.5. Windowing to improve leakage. By using a
better apodization function (the dashed line), the side-lobes of
the fourier transform are much smaller, hence leakage is
reduced.
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In addition, a window affects noise differently than in affects a pure tone. In a

general, we can do calculations similar to (lI.B.1.4) and (III.B.1.9) to asses the impact

of the windows. [HAR78] An integer ko tone will have its amplitude peak reduced by

a factor:

1 N-1
CI -I w[n] (IH.B.2.5)

n=0

relative to the same tone analyzed with a rectangular window. For a Hanning window,

c 1=0.50. In addition, a general window will reduce <I X (k) 12> for white noise by a

factor:

SN-1
c 2 = , - w[n]2  (II.B.2.6)

n=0

relative to a rectangular window. For a Hanning window, c2=0.375.

Notice that, for any window, c2 > c2. Thus, for a pure tone with additive white

noise, there will always be a decrease in the signal-to-noise of the integer-ko tones.

For example, using a Hanning window, we expect about a factor of 1.2 decrease in the

amplitude S/N. However, this decrease is more than offset by the decrease in

scalloping loss for the non-integer ko tones, and by the ability to distinguish weak

tones near stronger ones. Besides, as mentioned before, if we can always arrange ko

to be an integer, a phase-detector is probably the more appropriate instrument.

II.B.3 More Spectrum Estimation
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Finally, let me discuss the FFT as a tool for spectrum estimation one last time.

The goal of this discussion is to explain the averaging scheme we use in the

experiment, and not the general use of FFT's in modem signal's applications. I will

avoid a rigorous discussion that makes use of the autocorrelation function, and instead,

motivate rather than prove the commonly used techniques which we, too, have

exploited. A drawback of this approach is that it leaves "power spectrum" undefined.

For a proper discussion of power spectra, see OPS or PAP or ROB.

The simplest estimate of the power spectrum is the "periodogram:" [OPS75] the

norm-squared of the FFT. I have already discussed the fact that the FFT is a "biased"

estimate; that is, it doesn't converge to the power spectrum regardless of the number

of data points we use in the FFT. Leakage is an example of this bias. It turns out that

the FFT is also an inconsistent estimate: additional points do not force the variance of

the estimate to zero.

We can illustrate this inconsistency by continuing the analysis of white noise

which ended with Equation III.B. 1.9. We already calculated <I X (k) 12 for white

noise. What is the variance associated with this estimate? In general:

var(z) = E[z 2] - (E[z])2  (II.B.3.1)

where E[] means "estimate." Taking z to be <IX (k) 1 :

E(z2) = <x [nix [m]x [p ]x [q ]>e-2ni(n-m)k/Ne-2ni(p-q)kN (Il.B.3.2)
n,m,p,q

For gaussian processes, there is a standard factorization of the 4-point expectations
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value [BRG86]:

<x [n Ix [m ]x [p ]x [q > = <x [n ]x [m ]><x [p ]x [q ]> (IH.B.3.3)
+ the 2 other permutations of nmpq

and, substituting (III.B.3.3) into (III.B.3.2), using (IH.B.1.8):

<IX [k]14> = <X22- 2 + e-4xi(n-m)k/N (II.B.3.4)

NThe second term in the braces is zero except for m=n or m=-+n, and thus, when
2

summed, that term only contributes - N, whereas the first term contributes - N2. We

thus neglect the second term, and write:

<IX [k] I4> = 2N2 <x 2  (Ill.B.3.5)

We plug the two estimates HI.B.3.6 and IH.B.1.9 into the variance expression,

III.B.3.1:

var IX[k] 1 2 = 2N 2<x 2 -N2X 2 2 (II.B.3.6)
= N 2 x2

= <|IX [k ] I122

Thus, the variance is always the square of the mean, no matter how many points we

take. Doubling the number of points, for example, appears to fail to improve the

estimate of IX[k]1 2 at all!

The resolution of this paradox is quite simple. Although we haven't improved

the estimate of any one particular X[k], were we to average over the whole spectrum,

then the estimate indeed would improve by the expected factor. That is, the

information obtained with the additional points provides finer frequency resolution
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rather'than improving the values of the existing points. Averaging, it turns out, is the

generally approved method for improving variance in FFT's.

For example, to get an improved estimate of the spectrum of the detector noise

in our experiment, we used the "Welch procedure" [WEL67] of averaging windowed

spectra. This procedure is simple to understand. Assume a total of M points of data

are recorded. Rather than doing the M-point FFT of the whole data set, the M points

are broken into a series of N-point FFTs. (M=PN) The first N points are multiplying

by a window (in our case, a Hanning window as mentioned above) and fourier

transformed. The resulting periodogram is stashed away. The window then is shifted

N 3N
over by N/2 points; that is, the next N points are taken from point - to point -,

2 2

windowed and transformed. The resulting periodogram is added to the one obtained

from the last step.

This procedure is continued until the whole data set has been transformed: a

total of 2P-1 N-point FFTs. The windows are overlapped to avoid "throwing away"

good data. Since windows tend to weight data in the middle move heavily than data

at the edges, overlapping by 50% takes the data at the edge of one iteration to the

middle of the window during the next. It can be shown (see [OPS75], section 11.4.3

for example) that this procedure eliminates inconsistency: the variance of <I X [k ] 1

does decrease like the number of periodograms averaged, P. At constant N (constant

FFT size), increasing points decreases variance like the inverse of the total number of
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points. In addition, the windowing has the desired effect of decreasing biases (like

leakage) as discussed above.

A final word about FFTs. With the relative ease of non-linear fitting using

standard software packages, it becomes reasonably simple to fit periodograms to

expected shapes, making it possible to reduce or eliminate the effects of bias, split

lines, determine damping, etc. from unwindowing transforms like (III.B.1.4). In these

cases, the leakage is used to help find where; to much smaller than a single frequency

bin, a signal occurs. However, fitting every signal would be excessively time

consuming, and we use this procedure rarely, for example, to measure the decay time

and frequency of a pulsed ion.
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CHAPTER IV

APPARATUS

In this chapter, I describe our ion trapping apparatus in greater detail. Much of

the overall structure and environment for our experiment was described in a previous

dissertation [FLA87]. Therefore, I will detail here only substantial changes since that

time. Before describing these improvements, though, in Section IV.A I will briefly

summarize relevant parts of the apparatus.

We made several changes so that we could measure the radial motions and shift

the ions within the trap. In Section IV.B, I discuss modifications to the Penning trap.

A schematic for the low-temperature, driving and filtering circuits will be presented in

Section IV.C.

We also modified the DC voltage source to improve its stability, flexibility and

to make computer-control easier. (Section IV.D) By replacing the Mercury cells (our

old voltage source) with precision voltage references powered by rechargeable gel-

cells, we also made this source more convenient and reliable.

In Section IV.E, I will describe the computer system and discuss some of our

signal processing. We made several computer-based instruments which became

indispensable for the experiment. We used one type, based on a software synchronous

detector-essentially a computer-controlled and -implemented lock-in amplifier-in all

the CW experiments. I will also describe our coherent transient-averager which

became invaluable for improving the signal-to-noise in the pulsed experiments.
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I will conclude this chapter with a description of how we prepared the apparatus

for a run; starting with alignment, continuing though sealing and cooling, finishing

with detecting and tuning-up the ions' resonance. This final section will provide a link

to the results in the rest of the thesis.

IV.A Overview of the Experiment

Figures IV.A.1, IV.A.2, and IV.A.3, (reproduced from [FLA87]) present a quick

sketch of the apparatus. The penning trap (modifications discussed further in Section

IV.B) hangs at field-center of an Oxford 360/89 persistent-mode, superconducting,

8.455 Tesla NMR magnet. The trap was attached at the end of a two meter-long, 3/4"

O.D., thin-wall stainless steel tube. Directly above the trap (in Figure IV.A.3) are

several copper platforms on which sit various capacitors, inductors and resistors.

These components filter the various trapping, shifting, compensating and driving

potentials. This end of the apparatus was sealed within an OFHC copper can to

complete the high-vacuum enclosure.

We attached the SQUID sensor and the superconducting tuned circuit about 75

cm above the top of the Copper can. Both the sensor and the coil were held within

individual Niobium cans. Since these shields, the coil, and the SQUID loop all are

made of pure Niobium (a Type-I superconductor with a critical field of about 2000

gauss [CRC]) we needed to keep the detector above the strongest parts of the magnetic

field. (It presently resides in a region of about 200 gauss.)
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Figure IV.A. 1. An overall sketch
apparatus, magnet, and cryogenic insert.

of the ion trapping
([FLA87], 3-9).
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The Liquid Helium end of the probe.
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Figure IV.A.3. The upper part of the probe. ([FLA87], 3-4).
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The top 40 cm of our vacuum tube is surrounded by a helix of G-10 disks,

partially clad with aluminum foil. This helical baffle forces the cold helium gas to

circulate around the experiment after the liquid boils, thus utilizing the enthalpy of the

cold gas. The aluminum foil cut down radiation from room temperature.

We attached the cold SQUID sensor to its room-temperature pre-amplifier (the

"RF-head") by a cryogenic, triax cable [note-spec] held fairly rigidly within small-

gauge, stainless steel needle tubing filled with vacuum grease. This tube, in turn, was

held within a 3/8" stainless steel tube by brass support disks placed at irregular

intervals. (We hoped this irregular spacing would help minimize acoustic resonances

within the probe.) The entire SQUID probe fit through a series of holes in the G-10

baffles.

Except for the connection between the trap and the detector, all the cables were

run within S.S. needle tubing held inside a larger, 1/2" S.S tube. (See Figure IV.A.4)

The stainless tubes end near the strong-field region of the magnet, and a 3/8" Copper

tube continues down toward the trap. This tube simplified alignment with the trap, and

reduced the likelihood that an errant wire could block the neutral atoms from entering

the trap. The whole harness fit inside the main vacuum tube and was thermally

connected to the it (and thus the Helium bath) at intervals with springy Be-Cu finger

stock. This harness is an improved version of the earlier design in [FLA87].

The ion signal wires (Copper twisted-pair) came up though the OFHC can via a
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Figure IV.A.4. The new wiring harness.
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high-vacuum feedthrough (mentioned in ILI.B, described in detail in FLA87), and

passed directly though the liquid Helium bath to the detector. This twisted-pair was

shielded within thin Copper refridgeration tubing. This shield was soldered at the

detector end (to the same platform that supported the detector) and strain-relieved at

the feedthrough end.

The trap biasing wires entered high-vacuum through another homemade

feedthrough at the top of our probe. Since these wires were made from special, high-

purity copper (an attempt to minimize thermoelectric effects), we kept them separate

from the other wires. (We did not use these wires in the previous experiment.) The

magnetron and cyclotron driving and coupling cables (more triax) entered though a

BNC/mini-conflat feedthrough. The high-voltage cable for the field emitter entered

through a similar MHV/mini-conflat flange. The axial drive cable and the DC guard

ring wire entered through a commercial, multi-pin feedthrough.

To make ions, we set a negative potential difference between the trap ring and

the endcaps, biased the field emitter to emit electrons, then, while electrons were

whizzing up the field lines through the hole in the lower endcap, let in a small puff of

gas at the top of the vacuum drift tube. Some fraction of the neutral atoms have

trajectories in the correct direction (either initially or after a bounce or two) to enter

the trap through a small, 1 mm hole in the upper endcap. Some positive ions then are

made within the trap by electron impact ionization. Because the parent neutral had, at

most, room temperature energy (25 meV), any atom ionized within the trap will
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become bound there. (The ion's recoil energy from the ionization is negligible and the

trap is at least 1 V deep, even for He.)

A few of the details on the old diagrams (Figures IV.A.2 and IV.A.3) no longer

are correct. We have removed the optical baffle shown in Figure IV.A.2, originally

designed to cut down room temperature radiation reaching the trap. This baffle made

alignment especially difficult: several times it reduced the number of neutrals entering

the trap so much that we could not make enough ions to detect. We decided that the

small decrease in Helium boil-off was not worth this inconvenience. In fact, since the

newer apparatus had about three times more cabling than the experiment described in

[FLA87] (and thus a much larger heat load), we could not measure any appreciable

increase in the liquid Helium boil-off rate without the baffle. The current helium

boil-off rate is about 120 ml/hour.

In addition, the teflon spacer shown at the bottom of Figure IV.A.3 was

removed and two, more substantial spacers were machined and placed farther up on

the stainless tube. We believe that these separated spacers force better alignment

between our apparatus and the magnet bore, and therefore better alignment between

the trap electrodes and the axis of the magnetic field.

IV.B Trap Modifications

1. Actually, it shattered and fell into the bore of the magnet
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To shift the ion cloud, cool the magnetron motion and detect the cyclotron

resonance, we made several modifications to the trap and its associated electronics.

An additional high-purity Copper wire was brought down from room temperature with

which we could set the lower endcap voltage independently from the ring voltage.

This modification allowed us to move the equilibrium position of the ions within the

trap, as described in Section II.B. In addition, we split the upper guard ring (by

physically removing two small sections of. the ring) to allow radial driving and

cooling, described in Section VI.A and VI.B. See Figure IV.B.1 for a diagram of the

completed trap and field-emitter.

Although it isn't immediately obvious, we can both couple and cool by splitting

only one of the two guard rings. As discussed in Section VI.A, we couple the axial

and radial modes with a quadrupole potential but drive the radial modes with a dipole

potential. That is, the difference between direct driving and indirect coupling lies in

the relative phase between the drives on upper and lower guard rings. (See Figure

IV.B.2.) When we split only the upper guard ring, leaving the lower guard ring intact,

we form a superposition of these two drives. (See Figure IV.B.3.) However, the

driving and coupling resonances have quite different frequencies, separated in both the

magnetron and cyclotron modes by o. Thus when one drive (either the coupling or

the direct drive) is resonant, the other must be so far from resonance that it can be

neglected. Thus we simplified the wiring significantly by splitting only the upper ring.
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Figure IV.B.1. The Penning trap with field emitter mounted.
The lower guard ring has been split, the gold surfaces painted
with AquaDag, and the LED removed from below the FEP.
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DrivingCoupling

Figure IV.B.2. Phasing for coupling (left) and driving (right)
the radial motions.
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Figure IV.B.3.
drive gives rise

When only one ring is split, the guard ring
to both driving and coupling.
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The other major modification to the Penning trap was that we coated its

electrode surfaces with Aqua-Dag, a carbon-colloid paint frequently used in

spectroscopy experiments to blacken surfaces and suppress scattered light. We felt

(the evidence will be presented Chapter VII; Section II.C.3 described the symptoms)

that there was a significant charged patch on one or several surfaces of the trap.

Although the trap was constructed from Copper for which one author [REF] found

very little patch effects at 4 K, we had the trap plated with a thin gold layer. We

discovered later that at low temperatures, such a surface can be particularly susceptible

to patch effects. At about the same time, we heard that some groups [NRV87]

studying Rydberg atoms (which are very sensitive to electric fields) found that Aqua-

Dag effectively reduced patch-effect problems. Although their work was performed at

room temperature, we felt it was worth trying at liquid Helium temperatures. We

believe that the carbon paint significantly reduced built-up charges on the trap. (We

give the evidence in Chapter VII.)

IV.C Trap Electronics

The added features-independent lower endcap, magnetron and cyclotron drives,

axial/radial coupling-required additional low temperature electronics. These

electronics, including some of the original filters mentioned in [FLA87] are shown

schematically in Figure IV.C.1. The resistors are 1/4 W, metal film resistors which,

unlike carbon film resistors, show good temperature stability and low 1/f noise at 4 K.
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Figure IV.C.1. Schematic diagram for the cold electronics.
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Most of the capacitors, originally mica capacitors, have been replaced by polystyrene

capacitors, dunked in several coats of Torr Seal (a low vapor-pressure epoxy). These

polystyrene capacitors are much smaller than the mica capacitors, and unlike the

micas, do not have long nickel leads which must be removed before we could place

them in the strong magnetic field. The inductors were wound on teflon forms

(supplanting the old MACOR forms) with small-gauge, teflon-insulated Copper wire.

To prevent them from moving, these forms were epoxied (again using TorrSeal) to

copper holders.

The DC bias filters for the ring, lower endcap and guard ring all pass low

frequency up to around 1 KHz, then cut-off dramatically at higher frequencies, as

much as 80 dB per decade. We chose such a steep stop-band because a single ion will

be significantly perturbed by small drives near its resonant frequency. For example, 1

pV of the right frequency surely could drive the ion strongly, perhaps even out of the

trap. Even if the ion were not so responsive, the SQUID detector is quite sensitive to

RF interference, and thus we tried to avoid all stray signals. We let the lower

frequencies pass so that we could implement the two-drive detection scheme (described

in Section V.D) with the local oscillator drive on the ring. For this scheme, we added

a 1 KHz drive through the battery box at room temperature (Section IV.D) so that no

additional low-temperature wires were required.

Notice from Figure IV.C.1 that we can also drive the lower endcap at 10 KHz.

This extra feature was more important in the early days of the experiment when our
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SQUID detector was so sensitive to RF interference that we could not always couple

the 1 KHz though the ring. (This effect was never fully understood: the 1 KHz itself

was not the likely cause of the interference; possibly the circuit coupling the 1 KHz at

room temperature allowed higher frequency interference to propagate to the SQUID.)

IV.D New Voltage Source

We designed a better, more compact DC voltage source to bias the trap. This

newer source was based on a particular precision reference integrated circuit, a Linear

LT1021C, which provided extremely good temperature stability (5 ppm / *C) and very

low noise (about 5 sV / pp). This residual noise, unfortunately is mostly 1/f and thus

extra filtering does not lower its level. The resulting circuit fit inside a Copper box,

12" x 6" x 3", which we have put inside a second, acrylic box whose temperature can

be controlled externally. Although noisier than a dry cell, the long-term (and as far as

we could tell, even the short-term) stability of this source is far superior to the old

Mercury cell source. A second function of this new "battery box" was to provide a

convenient circuit to add a second, computer-controlled voltage (for scanning the ions'

resonance) and the 1 KHz ring drive for two-frequency detection.

The voltage-source/voltage-adder circuit is shown in Figure IV.D.1. The trap

voltage is set roughly by 10-turn, wire-wound potentiometer R1 which divides down

the voltage given by the precision reference. Potentiometer R2 provides a fine

adjustment to this voltage. The external AC and DC voltages are added into this
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circuit using the offset capabilities of two AMP-01, ultra-low noise, high-stability

instrumentation amplifiers, ICl and IC2. Another feature of this circuit is that we can

control externally a divide-by-eleven (through the resistive divider R5-R6) which lets

us change between high- and low-resolution scanning. The divide-by-eleven, normally

in, can be defeated by shorting points X and Y together. This short can be made

manually or, as we do now, by an external relay driven by the computer.

The resulting voltage, buffered by an OP-27, ultra-low noise op amp, is sent

down one good wire to the ring, shown on Figure IV.C.1. Within the voltage source,

though, we divide the ring voltage by another pair of 10-turn pots, R3 and R4, buffer

it by another OP-27, and use the resulting voltage to bias the guard ring. By dividing

the trap voltage to produce the guard ring voltage, we keep their ratio the same. Thus,

in the absence of patches, the trap should remain compensated during any voltage

scan.

Though we could continue this buffering and dividing process one more time to

set the lower endcap voltage, presently we change it so rarely that we set it externally

by a simple 9 V transistor battery, divided down so that its small drift is unimportant.

In addition, we have an auxiliary voltage, set by another battery, that we can activate

with an external, computer-activated relay. In this way, we reproducibly can shift the

ion cloud by remote control; a technique invaluable for the individual ion plateaus

described in Chapter V.
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The voltage source is powered by a set of rechargeable, 27.5 V gel cells whose

outputs are regulated by a pair of ±15 volt regulators and a +20 volt regulator for the

precision reference. Although there is some evidence that we cannot run for longer

than 24 hours without recharging, as long as we do not need to make precision

measurements, we can charge the batteries and, simultaneously keep the ions trapped.

There are two disadvantages of this voltage source. First, because we used

"normal" 15 V op-amps, the total output voliage is limited to about 13.5 V, putting a

limit on the detectable m / e at about 43 amu/esu. This limit must be overcome to

study heavier molecules. Second, unlike batteries, our present silicon references have

noise that limits the width of the axial resonance. This limit, for N' ions and the

present detector, is just a bit below (a factor of three) a single ion's inductor-induced

width, % = 0.3 s-1. (This result improves at smaller masses. Because the bias is

derived from the divided reference, the relative noise in the bias remains the same.

However, the ion's width increase at lower mass, Equation II.A.3.7)

Both of these limitations can be overcome with appropriate technology. For

example, Linear promises a plug-compatible reference with one-third the noise of the

LT1021. Thus, when this noise becomes a problem, we will replace the chip.

IV.E Computer

We relied so much on our computer that it, too, must be considered part of the

experimental apparatus. We used the computer to manipulate the fine-tuning of the
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trap bias; sweep this bias in CW experiments; control the timing in pulse experiments

(even more so in separated-oscillatory-field type measurements); it has formed an

integral part of the narrow-band amplification of the ion signals; formed the central

part of a feedback system to lock the ions to an external frequency source; and

controlled the two, locked synthesizers necessary for the CW cyclotron resonance,

among other things. In addition, the computer provided an integrated environment for

simulating, recording, analyzing and presenting the data.

We used a DEC 11/73 microcomputer with various interface boards designed for

real-time measurement and control: a Data Translation DT-2781, 16-channel A/D, 2-

channel D/A board, configured to operate as 8 differential-ended inputs; an ADAC

1601GPT general purpose timing board to synchronize the experiment; a DEC

DRV11-C Parallel Input/Output board provided 16 independent control bits for setting

relays, starting timers, etc.; an MLSI GPIB interface board to communicate with our

synthesizers (two HP3325A, DC-60 MHz multi-function synthesizers) and, optionally,

a digital voltmeter (Keithley 197, 5 1/2 digit DVM).

The 11/73 ran under a UNIX-type operating system (called "VENIX") which

created a powerful system both for developing programs (simulations, analysis and

presentation) and for controlling the experiment (writing flexible, real-time control

code). Clearly this thesis is not the place to present reams of programs any more than

it is the place to show the schematic of every electronics box we slapped together for a

special purpose. However, several programs (and external hardware we used to
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cooperate with them) were sufficiently important and general that they are worth a few

paragraphs here.

Low Pass Filters

Narrowing the bandwidth of a detected signal is one the most common methods

used to improve signal-to-noise. Since measured white noise has an rms amplitude

that depends on the bandwidth of the detector, Af , like Af -112, we see that decreasing

Af can decrease the average noise without attenuating the signal. When we are

sampling the signal with the computer (a process discussed in Section III.B), it would

be convenient to allow filtering of the signal with software since the signal already has

been measured and stored within the computer. There is a whole sub-specialty in

Electrical Engineering devoted to the design of digital filters, and we took advantage

of their work [OPS75, DSP79] to design several particularly simple low-pass filters.

Because we used a general-purpose computer (rather than a machine designed

specially for signal processing) and because we did not want to become experts in

either multiplication-optimization or round-off error-propagation, we chose to

implement infinite impulse-response (IIR) filters rather than finite impulse-response

(FIR) filters. In general, FIR filters allow better phase control across their frequency

response (because they have no poles, only zeros, they have constant phase); however

they also require far more multiplications than an HR filter that implements the same

amplitude response. With an IIR filter, we needed so few arithmetic operations that

we could use floating-point multiplication and by-pass many round-off problems.
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The first type of filter we used was a (very) low pass filter designed with phase-

sensitive detection in mind. Although there is extensive lore about such filters (see, for

example, VOW86), much of the lore concerns squeezing the last few percent of

efficiency out of such filters. Thus for these long time-constant filters (tau between

1/4 and 25 seconds), we used the digital equivalent of a simple RC-filter, designed

using the conservative bilinear transformation procedure. This procedure takes the

poles of a continuous filter and maps them into the z-domain (the discrete-time space

analogous to frequency space in continuous-time, and thus appropriate for digital

filters). We then implemented the resulting z-domain pole using a direct form.

[OPS75] The c program text for this filter is given in Figure IV.E.l. The subroutine

filtinito, called before the filter is used, sets the proper constants within the filter and

initializes the storage. Every time a data point is read from the A/D board, it is

filtered using filt_go() which returns the filtered value

The second type of low-pass filter we used served a different purpose. As we

discussed in Section ILI.B, undersampling a signal with higher frequency components

can lead to aliasing; that is, signals sampled at less than twice their frequency will

appear at lower frequencies. Noise and coherent signals alike will alias, therefore

merely sampling at a low frequency does not perform any frequency narrowing: it just

aliases all the higher frequency noise into a narrower spectrum.

We often sampled signals at around 1 KHz, and used an analog filter (discussed

later in this section) designed to minimize aliasing by sharply attenuating any signals
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#define PI 3.14159265358979
#define C(n,i) sav[n+n+n+i]

static double sav[3],fb,gain;

/*
* filt init() must be called first to initialize the filter for
* the user-specified time-constant.
* "freq" is the sampling frequency-
* "tcl" is the time constant
*/

filt init()

double omega;
omega = 2. * tan( (double) 1. / ( 2. * freq * tc ) );
gain = omega / ( 2. + omega );
fb = ( 2. - omega ) / ( 2. + omega );
sav[0] = sav[1] = sav[2] = 0.;

}

/*
* filt-go() is called each time a new point is to be filtered.
* It returns the filtered value.
*/

float filt_go()
float x;
{

double in;

in = x * gain;

C(0,1) = C(0,0);
C(0,0) = fb * C(0,1) + in;
in = C(0,1) + C(0,0);

return( (float) in );
}

Figure IV.E. 1. Code for quick low-pass filter.
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above about 500 Hz. However, sometimes we wanted to look carefully at lower

frequency signals, say a 50 Hz wide part of the spectrum. In order to avoid aliasing

we designed a "down-sampling" filter that mimicked sampling at much lower filters.

This filter first performs a sharp cut-off of signals above about 1/4 of the sampling

frequency. Since this step filters out the higher frequency information, we can throw

away three of every four filtered points: they are redundant. This filtering-and-

discarding process, called down-sampling, effectively lowers the sampling frequency

without the risk of aliasing.

The c code for the down-sampling filter is shown in Figure IV.E.2. The

sharpness of the cut-off required cascading several stages together. We used a "Direct

Form-Il" [OPS75] implementation that minimized the round-off errors in successive

cascades. The theoretical and measured response of this filter is shown in Figure

IV.E3. The type of filter (Chebychev) gives a sharp cutoff at the expense of ripple in

the pass band. However, for precision application we can use Figure IV.E.3 to

compensate for the ripple when analyzing the amplitude of a response at any known

frequency. The 11/73 is fast enough so that we can cascade two of these down-

sampling filters together to make a 1/ 16 down-sampler, too.

For both of these filters, we made no determined attempt to optimize either for

speed or for the application. In much the same way that we might solder together a

few resistors and capacitors (for the first filter), or spend a day or two piecing together

some op-amps and other components (for the anti-aliasing filter), these filters barely
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#define C(n,i) sav[n+n+n+i]

static double sav[6];

* filt init() must be called first to initialize the filter
*1
filtinit()
{

register i

for (i=0; i<6; i++)
sav[i] = 0;

/*
* filtgoo is called each time a new point ig to be filtered.
* It returns the filtered value.
* This filter lets the user safely down-sample by a factor
* of four. As can be seen from the constants within the
* subroutines, it is quite inflexible.
* In fact, this subroutine was generated by another program.

float filt_go()
float x;

double in;

in = x * 0.001836; /* note = proton-electron mass ratio */

/* Iteration 1 */
C(0,2) = C(0,1);
C(0,1) = C(0,0);
C(0,0) = -0.848200 * C(0,2) + 1.499600 * C(0.1) + in;
in = C(0,2) + C(0,1) + C(0,1) + C(0,0);

/* Iteration 2 */
C(1,2) = C(1,1);
C(1,1) = C(1,0);
C(1,0) = -0.649300 * C(l,2) + 1.554800 * C(1,1) + in;
in = C(1,2) + C(1,1) + C(1,1) + C(1,0);

return( (float) in );
}-

Figure IV.E.2. Code for 4-pole Chebychev, down-sampling
filter.
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scratch the surface of what we might be able to do, should the need arise.

Phase-Sensitive Detector

As discussed in Section V.C and VI.B, we often measure the CW response of

the ions by driving them and detecting their response at a known frequency. In this

case, we'd like to use a phase-sensitive amplifier to narrow the bandwidth of the

detector and thus improve the signal-to-noise of the result. Early in the experiment,

we discovered that we could not use a commercial lock-in amplifier because the extra

RF noise it generated made it impossible to use the SQUID. We therefore

implemented a simple computerized lock-in using an external frequency generator, a

mixer, an anti-aliasing low-pass filter and the computer. (See Figure IV.E.4) The

frequency generator, mixer, and low-pass filter generate a low-frequency image of the

signal, typically around 250 Hz. Starting with a signal at osignal, when we multiply it

with a mixing signal at cn,,, we get two strong harmonics out at Osigna ± o,,. The

low-pass filter throws out the high frequency signal at osignal + w,,;, passing the

difference signal to the computer.

Although any reasonable low-pass filter would eliminate the summed harmonic,

to avoid aliasing, we used a 4-pole Chebychev filter, described in [HOH80],

implemented as shown in Figure IV.E.5. Like the digital anti-aliasing filter described

above, it has ripples in the pass band that must be remembered in precision work. The

predicted and measured responses are shown in Figure IV.E.6. (Notice how much

better we can predict a priori the response of digital filter, Figure IV.E.3!)
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The computer then performs another mixing step at 0 signa - OM,, by

multiplying by sine and cosine functions at the appropriate frequency, set by the user.

The results are passed to the first low-pass algorithm described above, resulting in a

phase-sensitive signal at DC.

We do the mixing in two steps-first with analogue mixers, then digitally-for

two reasons. First, we avoid the 1/f noise of the amplifiers, both the Evans amplifiers

on the schematic, Figure IV.E.4, and also those on the A/D board. Second, and more

importantly, we avoid generating explicitly the ions' resonant frequency. In the two-

drive scheme, the ion mixes together two different frequencies, and is resonant when

the sum of these frequencies matches the ions' natural frequency. To detect, we again

mix with two different frequencies that sum to the ions' response frequency. At no

time do we explicitly generate the ions' response frequency. Thus, in theory at least,

we never see a sum signal except when the ions themselves generate it.

In practice, however, there can be two sources of "false" signal. First, the two

driving signals, oLo and od from Section V.C, can mix together a little bit, either in

the output stage of the frequency generators or at the SQUID itself. (Each has non-

linear elements, and thus can generate harmonics.) Second, because we often use oo

to clock the A/D's (otherwise we run out of frequency generators), the small fraction

of od which is not attenuated by the low-pass filter will appear aliased at the same

frequency that the ion should respond. However, neither of these "signals" will tune

as we change the trap potential and thus these red herrings rarely cause great trouble.
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Coherent Transient Digitizer

For pulsed experiments, we cannot use phase-sensitive detection because we do

not know ahead of time the true frequency of the response. For example, when we

pulse the ion near its resonant frequency (as described in Section V.A.3), we expect

the ion and the detector to ring at their natural frequencies. Since, after all, we are

trying to measure these frequencies, we cannot know the phase of the response. In

that case, then, we must improve the signal-to-noise by averaging together several

independent runs. Even when we do not know what the frequency will be, we can

pulse the ions in ways that will guarantee (in the absence of drifts) that the phase will

be identical from run to run. The signals will add coherently, noise will add in

quadrature, and thus we get the usual -F5 improvement in signal-to-noise.

For example, in the two-drive pulse scheme, Section III.E, we synchronize the

two drive frequencies with a third frequency so that both drive frequencies are

multiples of this synchronizing frequency. In addition, we synchronize the start of the

pulse itself with this third frequency. The resulting ion response will have the same

phase each pulse, and therefore we can add several consecutive responses together to

improve the signal-to-noise of the result. This process is shown diagrammatically in

Figure IV.E.7. The pulse-synchronizer, a simple TTL device lifted from [HOH80], is

given in Figure IV.E.8.

The pulse-synchronizer acts like a switch. It takes a series of clock pulses
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Figure IV.E.8. Schematic diagram for pulse-synchronizer.
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(usually 1 MHz pulses) and lets them through them under certain conditions. When

the synchronizer is stopped, nothing passes. The pulse-synchronizer waits until it gets

a "RESET" pulse from the computer. After this pulse, the next state-change on the

synchronizing input "GO" lets through the 1 MHz clock pulses. These clock pulses

are used as the timing source for the general purpose timer board in the computer.

That timer, in turn, controls when the A/D's begin each analog-to-digital conversion.

For pulse detection, we use the same analog mixer and low-pass filter described for the

lock-in. The coherent averaging then takes place- in the computer, set up by the

pulse-synchronizer.

When the desired amount of data has been taken, the computer sends a "STOP"

pulse that the pulse-synchronizer uses to cut off the 1 MHz clock. The pulse-

synchronizer now ignores all input until it receives another RESET pulse, and the

cycle begins anew. In this way, we have synchronized the data-taking with the ions'

excitation. The largest phase error we can incur should be due to one missed cycle of

the 1 MHz clock out of the signal the computer measures; that is, the mixed, low-

passed signal. Since this signal always is less than 250 Hz, the phase error is

negligible. We then fourier transform the summed responses (See Section V.A) and

can determine the frequency, amplitude, and phase of the result.

IV.F Procedure

In this section, I describe the general procedure we used to prepare the apparatus
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for detecting ions. When warm, the apparatus hangs from a shelf in a lab one floor

above the magnet: Assume the worst: that we have taken the penning trap off the rest

of the probe, disassembled the trap, and taken the field-emitter (FEP) off the bottom

endcap. (In fact, the last time we completely warmed the apparatus-February,

1988- this was the state of affairs.)

We remounted the FEP, carefully fitting it into the recess in the lower endcap.

(Figure IV.B.1 shows the location) We reassembled the trap in the proper order: the

tight tolerances we required could only be met for a given orientation and assembly

order for each of the pieces. The FEP holder was then adjusted so that the place where

the FEP is spot-welded could be seen through the upper endcap. (The FEP itself is far

too small to be seen end-on.)

We then placed the trap on the three threaded copper rods on the probe, Figure

IV.A.2, using three threaded washers to place the trap at the location which should be

magnetic field center. Three springs above the trap force it together, and must be

"sprung" to assure that the trap holds together. We then used the threaded washers to

level the trap's upper surface, first with respect to the top plate two meters above, then

with respect to the perpendicular of the S.S vacuum drift tube. Because this drift tube

is slightly bent, these two methods gave slightly different results, and thus we tried to

compromise between the two. Finally, we sighted the FEP holder from the top of the

drift tube. We have mounted a window in a mini-conflat right at the top, and using a

prism and an alignment telescope, we checked that we could see all the way down the
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drift tube, out it's end, beyond the top of the trap (which we sighted first, because its

gold surface was 'illuminated easily), then, by lighting the trap from below, the FEP

itself. We were convinced that if we could see the FEP, neutral atoms would have a

path by which they could meet the beam of electrons within the trap. When we

cannot sight the top of the trap, we must adjust a series of set screws drilled into the

copper part of the drift tube (within the OFHC vacuum can, of course) that push at

different angles against the bottom of the wire harness, 'Figure IV.A.4.

We then tested, at room temperature, all of the "cold" electronics. Since it

usually takes several days to cycle the experiment from warm to cold and back to

warm again, we tested as much of the circuitry as we could: it seemed that every time

we were lazy at this step, we paid for that sloppiness in wasted time. We made sure

that the DC lines were continuous to the trap and had the appropriate resistances. We

checked that the drive lines had the proper frequency responses. (Since the

components do not vary much when cooled to 4 K, these measurements also serve as

absolute calibrations so that we can predict the amplitude of the response when we

drive the ions.) Currently, the damage we find is usually limited to exploded resistors.

(In olden days, we sealed the can at much higher temperatures, and often accidentally

unsoldered connections. We switched to a higher melting-point solder2 for connecting

2. "Stay-brite"
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the electrical components to minimize this risk.) At this point, we also checked that the

SQUID excitation circuit would tune at the appropriate frequency (19 MHz).

After checking the electronics, we sealed the OFHC can onto the probe with

Indium metal and StayClean flux (a general purpose, acid flux). To avoid overheating

the experiment or turning the trap into an oven, we follow a fairly rigid procedure to

seal the can which is quite different from the one described in [FLA87].

Unfortunately, we did not consider a good sealing surface when we designed the

experiment, and thus must rely on the roundness of the can and the tightness of its fit

to the thick Copper shelf (See Figure IV.A.2) to provide a good seal. (In fact, we had

to have a new can made when the first two became sufficiently out-of-round to seal

without gobbling up $50 worth of Indium.)

We cleaned the tinned surfaces with Acetone and then carefully fitted the can up

around the trap and electronics and against the Copper shelf. We held the can in place

on a platform mounted on a ring stand. Using Propane torches we heated the Copper

block until the flux wetted the surfaces. The can, which has much less thermal mass,

was heated indirectly by contact with the Copper block and by the edge of the torch

flame. Once parts of the block reach the melting temperature of Indium, (the top of

the can always reached this temperature first) some parts sealed themselves with the

Indium left from the previous seal. Where there was insufficient Indium, we added

small amounts of new metal and small amounts of flux. We believe the upper part of

the block will be just above the melting point of Indium, while the lower parts just
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below; this temperature differential created an effective sealing surface.

Usually, there were several small regions along the interface across which it was

obvious that the seal would leak. Often, Indium flowed badly at these points because

there was some junk just below the seal or the can was particularly out-of-round at

these points. Heating those spots directly and re-fluxing apparently brings these points

just above -the Indium flow temperature leaving neighboring regions just below; sealing

up these small imperfections. We let the seal cool, cleaned it with warm water, then

Acetone. We leak-tested the clean joint (and the room-temperature conflats, too) and,

when necessary, repaired any pin-holes in the seal, again by local heating.

Once convinced we had a seal, we baked the apparatus gently at about 90 C for

4-6 hours, to drive off solvents and water, especially from the trap surfaces and the

VYCOR pieces. (The VYCOR, a porous glass, sits loose at the bottom of the can,

providing extra 4 K surface area to pump away He and H when the experiment is

cold.)

After the experiment cooled from the bake-out, we painted the exposed Indium

surface (and some of the brazes) with a low-temperature, polystyrene-based cements

which we think minimized the risk of any additional leaks when the apparatus

becomes surrounded by liquid Helium. We then put about half a liter of liquid

3. Kurt J. Lesker Co. Leak Sealant
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Nitrogen into the (pre-cooled) cryogenic insert in the magnet's bore. (This amount of

Nitrogen should cool the experiment from room temperature to 77 K, leaving no liquid

Nitrogen left in the bore). We slowly lowered the experiment through a 16" hole in

the concrete floor directly into the bore of the magnet. (The magnet lives on the floor

below.) The boiling liquid Nitrogen cools the apparatus to near 77 K. We monitored

the temperature with a thermocouple near the bottom of the apparatus, and added

liquid Nitrogen if needed.

We let the apparatus rest at 77 K for at least twelve hours to let the long time-

constant parts of the dewar and the apparatus equilibrate. After determining that there

was no liquid Nitrogen left in the dewar (or blowing any out if there were), we

transferred liquid Helium (about 20 1) into the bore, passing the Helium through a long

extension on the transfer tube to the bottom of the bore. For the first 24 hours, the

Helium boil-off rate was always quite high, reflecting, we believe, the long time it

takes the dewar's radiation shields to cool. Although we could trap ions at this stage,

the extra noise from the boil-off (and the lower Q for the detector, as mentioned in the

last chapter) usually force us to wait a day.

After the boil-off had settled down, we determined the resonant frequency of the

detector (it varied by about 500 Hz from cool-down to cool-down), measured its Q,

checked for stability and, using past ion data, set the trap bias voltage to bring the

desired ions into resonance with the detector. At this point, we set the guard ring

voltage to its last good setting.

Chapter IV 180



Using the procedure outlined at the beginning of this chapter, we then tried to

make a relatively- large cloud of ions (say about 40) and tried to see their noise (the

damping of their initial energy), or, failing that, a pulsed or CW response. Since the

trap dimensions may have changed a small amount from cool-down to cool-down (or

there can be irreproducible patches), we sometimes have to search a bit to find the

ions.

Having found the ions, we then tuned the trap (for example, see results in

Section VII.A) by making swept, two-drive CW resonances as symmetric as possible

with these larger clouds. As discussed in Section II.B, smaller clouds become

increasingly sensitive to anharmonicity, and thus small mistunings of the guard ring

can obscure such clouds entirely. Once the guard rings have been set with moderate

clouds, we make smaller clouds and use their increased sensitivity to improve further

the tuning.

In the worst instances, the guard rings began quite mistuned, and thus we saw

very little. Unfortunately, mis-set guard rings mimic other problems (like

contamination by other ions or a small Helium leak), and thus we must spend

considerable time searching carefully through parameter space (both ring and guard

ring settings) to try and identify the difficulty. When all seemed amiss, we usually

found that making large clouds (-100 ions) and driving them right after they were

made very strongly off-resonance would inevitably give us some signal. When this

signal decayed over a period of several minutes and could not be found again, the
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problem was usually contamination by Helium ions. However, when that signal

showed some stability, then sweeping the ions (see the next chapter) and shifting the

guard rings in roughly 1% steps usually produced good results. However, it appeared

that when the guard rings were mistuned, impurity ions problems, especially drift in

the frequency of the "good" ions (see Section II.C.2) became particularly bad.

Therefore, we found that making a new batch of ions between each guard ring change

produced better results sooner.

Once the ion resonance has been found and the guard rings roughly tuned, the

experiment remains quite stable. That is, the uncertainty in trapping potentials comes

from the initial cool-down, and the settings, once found, need only minor adjustment,

at least for the several month periods for which we have kept the experiment cold.

Once we have found the ions' resonance, we can begin to try the more interesting

experiments.
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CHAPTER V

DETECTING THE AXIAL MOTION

In the next two chapters, we will discuss in detail detecting and cooling the ions

in the trap. In this chapter, we focus on the axial motion, deferring the radial motions

to Chapter VI. Within this chapter we will introduce theory to explain several

different schemes to excite and measure axial motion, discuss their advantages and

drawbacks, and present measurements made with each scheme.

We discuss in Section V.A driving the ions~ with a single, oscillating electric

field. Though this scheme is very simple to implement, the interaction of the ions, the

detector, and the trap capacitance make the resulting detector current somewhat

complicated to interpret. We demonstrate that the ions can be treated like a series

LC-circuit. Using this model, we then determine the detector and ion currents in both

the time and frequency domains.

In Section V.B, we describe an experiment that used pulsed, single-drive

excitations to measure the natural width several-ion clouds. In that section, we also

present data demonstrating several of the novel conclusions from the theory in Section

V.A.

In the rest of the chapter, we discuss two-drive schemes. For these methods, in

addition to the drive discussed in the previous sections, we also modulate the trapping

potential. In Section V.C, we show that this method allows us to induce ion motion

without exciting the detector with the drives. Although the equations of motion
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become time-varying, and thus not amenable to normal fourier transform analysis, we

present an approximate Green function that, for these purposes, lets us treat the system

simply.

We present results using this two-drive scheme in Section V.D. The first result,

unfortunately buried in the middle of this chapter, is our ion counting data, showing

steps due to single ions within the trap. We also show in Section V.D, practical

examples of several of the ideas from Chapter II. We show anharmonic resonances

and show that the guard rings have be used to make the trap more harmonic. We

demonstrate that moving the ions off the coil produced narrower resonances. We also

describe methods to lock the axial resonance to an external frequency source.

This chapter concludes with a discussion of two-drive pulsing, Section V.E.

This technique has many of the advantages of single-drive pulsing without the

additional complication of the detector/ion coupling. We show (theory and

experiment) that we can improve the signal-to-noise in this scheme by putting the ions

off the detector's resonance. These final data also show some drawbacks, both for

two-drive pulsing and for discrete fourier transforming.

V.A One Drive Techniques

The current which trapped ions induce in the endcaps in response to an applied

voltage has the same form as a series ic -circuit. Viewing the problem in this manner

lets us understand more easily the motion of a trapped ion hooked up to a detector and
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drive. The response of ions to an external drive yields several surprises, especially

when the ions are driven by a single oscillating voltage, simultaneously resonant with

both the ions and the coil. This equivalent circuit approach was introduced in

Wineland and Dehmelt's ion calorimetry paper [WID75], and is expanded below.

V.A.1 Equivalent Circuit for the Ions

We begin with the results from Section II.A.2. The ions can be affected by two

different electric forces. (See Fig V.A.1.1) First, the quadrupole trapping potential

yields a restoring force, F. = -molz. In addition, when there is an axially anti-

symmetric potential V across the endcaps, the ions will experience a force,

Pappl = e E = - V Z, where B1, as explained in section II.B, is a constant that

expresses, to first order, the difference between a Penning trap and a parallel plate

capacitor.

Combining these two forces, we have for the z motion:

+ m2Z = - V (V.A.1.1)
2mzO

In addition, as discussed previously and summarized in (II.A.3.4), the ion's motion

induces a current:

I -- i (V.A.1.2)
2zo

Now consider a configuration in which the trapped ion has been replaced by a series

1c -circuit, Figure V.A.1.2. Ignoring the trap capacitance, we can solve for the current,
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Figure V.A.1.1. The ion held within the trap. V,, biases the
trap to hold ions. V, oscillating near the trapped ions'
resonance frequency, drives the ions. As it oscillates, an ion
induces a current, I .
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Figure V.A.1.2. Electrical equivalent circuit for the trapped
ion in Figure V.A. 1.1. The ion has been replaced by a series
1c -circuit.
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I, in terms of the driving voltage, V:

-- 1 1I + - I = -v (V.A.1.3)
Ic 1

Taking the time derivative of (V.A.1.1) and using (V.A.1.2) to replace i with I:

+ o2I = B2 V (V.A.1.4)
4mz 2

Comparing (V.A.1.3) to (V.A.1.4) we see the strong similarity. Exploiting this

similarity, we can write:

4mzO
1 =

e 2

(V.A.1.5)
1

For one N+ ion in our trap, 1 = 4.1x10 8 H, c = 2.4x10- 21 F. Although such values

might appear to be too extreme to have any interactions with the detector or the trap,

we shall see, in fact, that unlike the case of trapped electrons discussed in [WID75],

these extreme values will have a profound effect on detection.

For more than one ion in the trap, as discussed in Section II.A.2, the induced

current increases. Indeed, for N ions, the current (I in Equation V.A.1.2) will be N

times larger. Thus, when we make the substitution into Equation V.A. 1.2, we find:
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{ -+1/ IN (V.A.1.6)
c -+ N c

That is, the equivalent inductance decreases inversely with the number of ions and the

capacitance increases linearly. The resonant frequency stays the same. We also can

relate yz , the damping introduced by detection, to the ions' inductance, 1. In Section

II.A.3 we showed

1 reBi 2
yz = N-- -- ReZ (V.A.1.7)m 2zJ

But from (V.A.1.5) and (V.A.1.6) above, we see readily that:

Yz = -- (V.A. 1.8)

This relation seems the most compact way of expressing the fact that the ion damping

comes directly and naturally from the detector.

The strength of this approach is that it will let us treat the ions, the trap, and the

detector on equal footing, using all the tools (and short cuts) of linear circuit theory.

We always can recover the ion's motion using (V.A.1.2) to determine the ion's

velocity from the current. I use this approach in the next section to determine both the

motion of the ions and the detected signal when a single, resonant voltage (CW or

pulsed) is used to drive the system.

V.A.2 Single Drive Green Function
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In this section, I will determine the response of the ions and the detector to a

single drive. This problem is important for two reasons. First, we frequently measure

the axial motion with this kind of drive (usually with a pulse), and, as we shall see,

this response can contain significant information. Second, the structure of the solution,

and in particular, the Green function for the problem, is very similar to the structure

for other problems in the experiment. For example,. magnetron cooling and two

different kinds of cyclotron resonance have similar structures. Therefore, the

discussion of the solution to this problem will be useful for the other problems, too.

Because the theory is central to our various detection schemes, this section is

rather long. In it, I extend the equivalent circuit method of the last section to include

the trap capacitance and our resonant detector. After making some general

observations about ion/detector coupling and the effects of trap capacitance, I

determine the detected current, first in the frequency domain, then in the time domain.

I then proceed with a similar analysis for the ion's motion. The analysis will point out

several important effects which have not been mentioned in the literature, including the

strong dependence of the driven motion on the trap capacitance and a weaker

dependence on the number of trapped ions.

Let me first explain the full equivalent circuit. In the experiment, we frequently

detect the axial motion by driving the ion from the lower endcap and detecting the

current induced in the upper endcap. (see Figure V.A.2.1) Following the results of the

previous section, the trapped ion can be replaced by a series ic -circuit in parallel with
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Figure V.A.2.1.
trapped ions.

Physical set-up for driving and detecting
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the trap capacitance, Ct,p . (Ct,, actually is the sum of the physical capacitance of

the trap plus the parasitic capacitance of the drive and detector cables.) In addition, I

replace the resistive detector of Figure II.A.3.2 with a more accurate model. This

detector is a parallel-resonant, LC-circuit, with some finite loss, which I represent as a

parallel resistor, R. (Since we will concentrate on effects near the detector's

resonance, it is unimportant whether the loss is modeled as a large, parallel resistor or

a much smaller resistor, in series with the detector capacitance. The actual mechanism

of the loss is inconsequential near resonance.) Finally, since we measure the current

through the detector inductor, L, I will concentrate here on determining that current.

The complete equivalent circuit is shown in Figure V.A.2.2.

Before grinding through the algebra, let me make a few guiding observations.

This problem is essentially that of two coupled harmonic oscillators; one damped, one

undamped. In such problems, there are usually two distinctly different regimes: a

"weakly-coupled" regime, corresponding to motion that resembles the independent

oscillations of the constituent oscillators; and a "strongly-coupled" regime,

corresponding to combined motions: symmetric and anti-symmetric sums.

We can estimate the transition condition between these two regimes for the

ion/detector system. I argued before (Equation V.A.1.8) that the width of the ion,

Re Z
because of the detector, is y =R . Right on the tuned circuit resonance, Re Z is

at its peak value, Re Z = R = comLQ. However, that argument assumed that the
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Ctrap

dVeR = C L

Figure V.A.2.2. Equivalent circuit for situation in Figure
V.A.2.1. The trapped ion has been replaced by a series Ic -
circuit, in parallel with the trap capacitance. The detector has
been replaced by a parallel LC -circuit with finite dissipation.
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induced width, y;,, is narrower than the coil width, Y,; = - When this is not the

case, the phase argument used in section I.A.3 to derive yj; is not valid. We can use

y;,,t <yeo; as the weak-coupling limit. In terms of the equivalent circuit components,

this limit yields 1 <Q 2L. Since we operate with Q > 104, the apparently huge value of

I for the ions isn't necessarily that large after all. Indeed, our experiment presently

crosses into the strongly-coupled regime at about 30 N+ ions, and, since 1 scales with

the mass of the ions, this limit will be only three, 3H+. (These values should be

compared to =10 4 e in the Washington experiments. [WID75])

Let me also make two important observations about the trap capacitance.

Neglecting the ions for a moment, what happens at the resonance of the LC-circuit?

At that frequency, oL = (LC )1/2, the detector has impedance R (the contributions

from the inductor and capacitor cancel), and thus the voltage across the detector is

given by:

Vt = V- I OWRnfrap (V.A.2.1)
1 + i mLc RCt,

Ctrap
Here, cLCRCtra,, = Q -a-. Since Q is so large, it is likely that WLCRCtra,, 1

(Currently, this limit requires only Ctrap 6x10- 15 F, a condition certainly met.) Thus

Vd = V;., and there is no voltage drop across the trap: drives near COLC should not

affect the ions because there will be no electric field to act on them.
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But cow is not the resonance frequency of the detector. Since the trap

capacitance is in~ parallel with the tuned circuit capacitance, the total resonance

frequency shifts down to co = [L (C + CtP,)]-1 /2, as we find when we calculate, in

general, the voltage drop across the detector.

Vda = V; I C 2LC trap (V.A.2.2)
1 - m2L [C + Cap + i o)L IR

Thus, on the detector's resonance, o:

V (o) = Vin - i wo R C = V;n -Q Ctrap (V.A.2.3)

C
As discussed above, Q *5 can be much larger than one. Therefore, at the detector's

C

resonance, the drive the ions see can be many times larger than the drive applied on

the lower endcap.

In passing, note that we can use Equation V.A.2.2 to determine the Q of the

detector. Since the current through the inductor is Vd / i oL, we get:

Id = It V;n (V.A.2.4)
1- 2L [C +C,,] + ioLIR

That is, the voltage drive acts like an current source, V; ,i WCer., and this current is

amplified by the resonance of the detector. Thus, despite the fact that the absolute

impedance of the trap capacitance is much smaller than the impedance of the tuned

circuit on resonance, as long as Ct,, <C this small impedance does not "ruin" the

high-Q resonance of the circuit.
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Bearing these points in mind, we can calculate the voltage drop across the

detector for a given drive voltage. Dividing that voltage by the impedance of the

inductor yields the current through the inductor, It:

= io~c +Ceap)(1-) 2lcp)
(1 - 2lc)(1- o2L[C +C, ]+i(I/R) - 2LcV (V.A.2.5)

where cp= Crap c is the effective capacitance of the trap and the ion in series.
Ctrap + C

Since Ctr,>3c in most cases, cp is indistinguishable from c. The denominator of

(V.A.2.5) has two resonant terms, corresponding to the detector and the (undamped)

ions. The third term, O2Lc, represents the coupling between the oscillators, and hence

depends on both the detector, through L, and the ions, through c.

We can rewrite (V.A.2.5) in a more tractable form in the narrow-resonance

approximation, which assumes that co is near the natural ion resonance frequency, (0,

and the detector resonance frequency, Oe. We can also simplify by noting that

Crap*c. Thus, near resonance, we have:

i1o2C Az
IL -2 Az(AO-iyo/2)-yyz/4 Vdrijy (V.A.2.6)

where the "0" subscripts denote coil parameters:
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C = C 1 )(V.A.2.7)a
L (C + Cy) 

*

ol%2L
7o = R- (V.A.2.7)b

R

AO = 0) - Ome (V.A.2.7)c

and the "z" subscripts denote ion parameters:

cz2 (V.A.2.7)a

R
Yz = 1 (V.A.2.7)b

AZ = w - oZ (V.A.2.7)c

The parameter y would be the damping of the ions if they were coupled to a purely

resistive detector as described above. This parameter is the true ion damping only

when yz <7 y, as we shall see below.

Equation V.A.2.6 summarizes the entire linear dynamics of the ion/detector

system. In fact, the admittance (the ratio of current to voltage) is the fourier transform

of the Green function G(t - t'):

I() =f d'G ( -t')V (t') (V.A.2.8)

The poles of the admittance identify the resonances of the system. The real part of a

pole corresponds to the resonant frequency, and the imaginary part corresponds to half

the damping. In Equation V.A.2.6, the poles are simply the zeroes of the denominator:

= z + %" + ± (z -o- /2)2 + 7o07 (V.A.2.9)

The relative size of the two terms under the radical determines the coupling regime.
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When the first term dominates (large ion-coil detuning or very small ion damping),

we call the system weakly-coupled. In this case, we can expand the square root in

(V.A.2.9) to lowest order:

1 707:z
MI = Z + 4 7 0  2 (V.A.2.10a)

4 w.z -o- iy7/2

i70 _1 707z
o 0 + 2 4 0 OY / (V.A.2.10b)

2 4 co, -coo - iyo/ 2

Here, coi clearly corresponds to the ions and oh to the coil. There is a small

frequency shift in both resonances, ±Re [- 1 which is almost always
i 4 coz -%0-iy/2

inconsequential. (For example, the axial frequency shifts at most a few parts in 108 per

N2 ion.) More importantly, the ions are given a width (and the coil is narrowed by):

[1 707____ 17___/4__
Yeff = 2 Im -] =2 + (V.A.2.11)

[4 cmz -moo-i70/2 I (mZ - 00)2 + y72/ 4

Thus, when the ions are near the coil, Ioz -o0 c y0 /2, the effective ion damping

becomes Yff =7Y, as discussed in Section II.A.3. On the other hand, when the ions

are moved off the coil, I oh -moI >o/2, their damping will be reduced by the square

of the detuning. This reduction exactly corresponds to the reduced real impedance of

the tuned circuit off its resonance. Thus the ion's damping always comes from the

real part of the detector impedance.

We can summarize the weakly-coupled limit by rewriting the Green function:
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1 __ __ _

IL ~ 1Az _ drive (V.A.2.12)
. A - i7 ; /2 AZ - lyeff / 2 rv

The first term in this expression is the normal, lorentzian-like response of the coil, with

a slightly reduced damping. In the second term, on the other hand, the zero in the

numerator dominates at the ion's resonance: on their resonance, the ions "short out"

the coil and no current flows in the detector. The total frequency response for the

weakly-coopled case is shown in Figure V.A.2.3.

However, when enough ions are in the trap (presently, >30 N2+ ions), the second

term in the radical of Equation V.A.2.14 dominates. In this case, neglecting the first

term entirely yields:

2g +(01,2 =0 iO + NF1-1- - (V.A.2.13)2 - 2 4

These modes represent combined motions of the ion and detector, with

eigenfrequencies split above and below the average of the uncoupled modes. The

amount of that splitting increases slowly with Yz. These two "strongly-coupled" modes

have the same damping, yo /2. Thus the ions can never be given a damping from the

detector larger than half the natural damping of the detector. (We will find a similar

limit when we discuss cooling the magnetron and cyclotron modes.) We can rewrite

the admittance in this limit:

IL - A - Vdrive (V.A.2.14)
(A,1- 7yo/ 4)(A2 -i7yo/ 4)

where A1,2 = ( - (01,2. Thus the strongly-coupled response resembles two identical
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IL(w), Weakly-Coupled
-7 ____r

Z3

-3 -2 -1
Ac/Y 0

Figure V.A.2.3.a. The spectrum of the detected current in the
weakly-coupled case. The dashed line shows the lorentzian
response of the detector when no ions are in the trap. The
solid line shows the ions "shorting-out" the detector on
resonance.
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detectors, split by the presence of the ions, each with half the damping of the real

detector. Notice, 'however, that on resonance the detector is still shorted out by the

presence of the ions. (see Figure V.A.2.3b)

We can use the admittance above to determine the time-domain response of the

coil. Since the admittance represents the fourier transform of the impulse response, we

can transform back to get the response in the time domain. When we do the inverse

fourier transform, terms like become, in the time domain, ertl 2e-it.
O-Ci-il~'2

We shall write frequency responses (V.A.2.13 and V.A.2.15) as the sum of two such

terms, the time-domain response therefore is the sum of two dying sinusoids, and thus

may destructively or constructively interfere.

For both the weakly- and tightly-coupled regimes, then, we seek to factor the

coil admittance:

G (0) - C O (V.A.2.15)
(CO- (0)(0)-W2)

into two terms:

A B
G T + a (V.A.2.16)

The algebra is straight forward, and yields:
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LL(co), Tightly-Coupled

no ions
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Figure V.A.2.3.6 The spectrum of the detected current in the
tightly-coupled case.
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A = Z - 1 (V.A.2.17)a
W2 - Wi

B = (V.A.2.18)b

Although the relative size of A and B is set by the relative proximity of 01,2 to the

uncoupled ion frequency, the absolute size of both will be set by the difference

between the two coupled modes, w2 - co.

Placing the ions right on the coil, o2z =coo, we now analyze the two coupling

regimes separately. In the weakly-coupled case, o, = co + iy,ff /2,

o 3o + iyo/2 - iyeff /2, and the time domain response will be:

I(t) { e-"7'2/)t /22 2 Yeff (- /2 V.A.2.19)
70 y - 2yff yo - 2yef.0

The first term corresponds to the coil excitation and dies out faster than the second

term. This second term corresponds to the ion excitation. Note that the sign

difference between the terms implies that at time to:

to = -n-o (V.A.2.20)
Yo Yeff

the current will go to zero because of the destructive interference between the two

signals. (See Figure V.A.2.4a)

In the strongly coupled case, however, the two factored terms have the same

damping (-) and are split by 8 =tfj/ 2. In that case, we get:
2

203



Detector Response, Weakly-coupled

0 10 20 30 40

Yot

Figure V.A.2.4(a). The time-domain response of the detected
current. At small times, the response is due primarily to the
detector's excitation, while at later times, the response can be
attributed to the decaying ions.
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1 0

46 sint (V.A.2.21)

Thus we see this current "sloshes" back and forth between the detector and the ions.

The coil current goes to zero every seconds, and damps at a rate slower than

either the coil or the ions (if they were hooked up only to a resistor). (See Figure

V.A.2.4b)

We also can use the admittance formalism to determine the motion of the

trapped ions. As discussed in Section V.A.1, the velocity of the ions is proportional to

the current passing through the Ic-circuit in Figure V.A.3.2. Going back to the

frequency-space representation, this current is:

I;o,(w) = IVdrive (0) - Vder (w)] 1 O (V.A.2.22)
1 - mOlc

Plugging in Equation V.A.2.5 and grinding through the algebra yields:

1 - w2LC + i mL /R.
Iion = 1 )L )Ri ocVd,;,, (V.A.2.23)

0(1 - 2L [C +Crp ] + i coL /R )(1 - (02 lc) - 2Lc "

Going again to the resonance approximation gives a function similar to Equation

V.A.2.6:

imoc Ad
2 Az (Ao -i7o/2) - 7T7% /4

except here the numerator is Aw = c - WW . The resonant structure is identical to

that for the detector current-after all, these are the two oscillators which are

coupled-but the ion motion has a zero at a substantially higher frequency, og . (I
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Figure V.A.2.4(b). The time-domain response of the detected
current in the tightly-coupled case. The current can be seen to
slosh back and forth between the ions and the detector.
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have neglected the small imaginary part of the numerator because, near the detector

and ion resonance, the real part dominates.) As argued above, this approximate zero

arises because of the trap capacitance: at the resonance of the parallel LC-circuit,

Vda=Var,j and there is no voltage difference across the trap to drive the ions.

Another interesting effect of the capacitance is that the amplitude of the ions'

response depends on the exact value of the trap capacitance. Since the ion resonance

is far from the pure LC resonance, Ag can be treated as a constant:

- Ct
AC = o-og = wo-og = - wo (V.A.2.25)

Thus the ion response is directly proportional to the trap capacitance. Physically, this

effect arises because right on the detector's resonance the voltage across the trap can

be much larger than the drive voltage, boosted by the detector's peak. The degree of

this enhancement depends, as in (V.A.2.25), on the trap capacitance.

In addition to the effect of Ctrap, the response of each ion also can depend on

the total number of ions in the trap. I will demonstrate this effect explicitly from

equation (V.A.2.24) in the case that mz =c0o. To determine the peak amplitude, we go

to the time domain, factor (V.A.2.24) as we did before, and use the fact that the

numerator is effectively a constant. The time domain behavior can be summarized in

both coupling regimes by the relatively simple relation:

I;,t -i 1 -- o e 4 sinh [4Y/4 - Oy,' t/2] (V.A.2.26)
y7/4 - yo7
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In the strongly-coupled case, the argument of the radical will be negative, and we use

the analytic continuation sinhiz = isinz. In Figure V.A.2.5, I show calculated

responses for several values of yz /Yo. We can use (V.A.2.26) to determine the peak

current and hence the peak ion velocity. The maximization is straight forward1 ,

though tedious, and the results are shown in Figure V.A.2.6. In that figure, I plot the

peak ion velocity (normalized against one ion) versus the number of trapped ions.

(For concreteness, I used the current setup, detecting Nj ions.) Notice that this is an

entirely different effect than the dependence of steady-state, driven response on the

damping (as it would for a normal, decoupled oscillator.) Indeed, this effect should

show up even for excitation pulses short compared to the damping time, for which the

conventional wisdom holds that the damping can be neglected.

The final effect of the tuned circuit is that the peak ion response depends

strongly on the frequency difference between the ion and coil resonance, co - wo. I

will demonstrate this effect explicitly when the ions are both far from the coil

Yo(I oz - co l m-) and have a small effective width. (Recall that the width decreases
2

dramatically when the ions are moved from the coil, Yy . U
col ff =yL(, o - ) Under.((Oz -CO)

these conditions, we always will be in the weakly-coupled regime, and Equation

1. Interestingly, the peak in the ion velocity occurs at the same time as the detector current minimum.
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Figure V.A.2.5. The peak ion current for different ion
dampings in the trap. This graph shows the current perion,
demonstrating that the peak response decreases with increasing
ion number.
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Figure V.A.2.6. The peaks from Figure V.A.2.5 for realistic
conditions with our current detector (7o/27c = 6.6 Hz and N i
ions (y. / 2n = 0.05 Hz per ion.
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V.A.2.26 reduces to:

I; (t) 1 e-ic't e r t /e 2  (V.A.2.27)
Oz -(00

This expression is the current equivalent of the ion's motion, not the detected current.

This frequency-dependent boost, as discussed before, arises from the large increase in

the field that drives the ions when that field is produced near the detector's resonance.

To summarize this rather lengthy section, then, we can treat the trapped ions an

a series ic -circuit, in parallel with the the trap capacitance. This treatment lets us

make several predictions for the detector and ion responses to external drives. The

capacitance of the trap and the presence of a tuned circuit (rather than a purely

dissipative detector) profoundly affects the response of the ions to external drives. I

have identified two regimes: in one the ions can be thought of as decoupled from the

detector, in the other, the detector and ions are strongly coupled. In both regimes, the

ions appear to short out the coil when they are resonant. The amplitude of the ion's

response depends strongly on the trap capacitance and on the detuning of the ions from

the coil. Additionally, the peak amplitude depends weakly on the number of ions in

the trap, decreasing with larger clouds.

V.A.3 Response to CW and Pulsed Excitations

We can use the admittance formalism of the previous section to predict, quite

simply, the frequency response from both a CW and a pulsed drive. A steady drive at

a given frequency, cod, can be represented in frequency space as the sum of two
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delta-functions at (o = Cod and (o = -Cod whose relative amplitude sets the phase.

Therefore the response in the time domain will be at frequencies ±cod, and the physical

amplitude of this response will be given by the magnitude of the admittance evaluated

at co = Cod. (We ignore the overall phase of the result.) In our experiment, coo is fixed

(the resonant frequency of the detector cannot be adjusted except when the apparatus is

warm), and we tend to keep Cod fixed and vary coz by varying the trapping potential,

Equation (II.A.2.5). Thus, we can compute the steady state response by evaluating

equation (V.A.2.6) at Cod. The resulting expression is a function of Az = Cod - co. with

Ao fixed at cod - coo. For large detunings, we find that:

imoCfrap 1
IL - Cod-ooao1 (V.A.3.1)

2 COg - coo - iyo/2

and thus IL is independent of the ions, as expected. As mentioned before, this current

comes entirely from the capacitive feedthrough from the lower to the upper endcap of

the trap, and we can use it to measure the Q of the detector as well as the trap

capacitance.

However, on resonance (Az = 0) we find again that the detected current vanishes

completely. We can compute the width of this dip, for example the full width at the

half (squared-magnitude) maximum of the dip:

FWHM y /4 8 (od -Coo) 2  (V.A.3.2)A" YZ I(Cod o)2 +y42 4 + J
Thus, at fixed drive-coil detuning, the width of the dip is proportional to the
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uncoupled ion damping regardless of the coupled widths computed in the previous

section. In addition, when the drive is exactly resonant with the coil, cod = O, the

width of the dip yields exactly y. Therefore, we can use the width of this dip to

count the number of trapped ions. Figure V.A.3.1 shows the calculated coil response

for several cloud sizes.

More frequently, however, we drive the ions with a short duration pulse,

centered near mo, on the lower endcap. This pulse contains a fairly broad spectrum of

frequencies, reasonably flat over a frequency band Ao = 1 / T, where T is the duration

of the pulse. If Aco is much larger than the detunings and dampings in the problem,

the resulting ion/detector spectrum will be identical to (V.A.2.6), multiplied by a

constant proportional to the duration of the pulse, T. In other words, Equations

V.A.2.6 and V.A.2.29 give the shape for the frequency spectra due to a pulsed drive

and V.A.2.19,21 and 26 should give the time domain response.

For example, Figure V.A.3.2 shows the time-domain response of 25 N j ions

excited by a single-drive pulse to about 8% of the trap size. As in the theoretical

illustration in the previous section (weak-coupling, Figure V.A.2.4a), the faster decay

in the early part of the transient can be attributed to the decay of the detector's

excitation. The slower decay (after 0.1 s), on the other hand, came from the ions

themselves. We can use the time at which the current envelope vanished (to = 0.11s)

to determine the damping of the ions, yz, as described in Equation V.A.2.20. This

value, 2n /2x = 1.2 Hz, is consistent with more direct measurements of the ions' width.
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Figure V.A.3. 1. The coherent response to a cw, one-drive
excitation. Far from the ions' resonance, the response is
constant, due to capacitive coupling from the lower to the
upper endcap. On resonance, the detected signal vanishes as
the resonant ions short-out the detector.
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Figure V.A.3.2. Actual time-domain response for a small
cloud of N ' ions in the trap. These data are the sum of 16
transients.
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In Figure V.A.3.2, the total current does not go completely to zero at to because of

residual anharmonicity. This anharmonicity can lead to amplitude-and thus time-

dependent frequency shifts. This lack of reproducibility tends to blur some of the finer

features when we add many scans together.2

As an example in the frequency domain, using the FFT, Figure V.A.3.3 shows

typical ions and detector response to a one-drive pulsed excitation. The trap voltage

was changed between each of the curves in order to move the 70 N ions about 4 Hz.

Each curve is the FFT of the sum of fifty identical, 4-second duration transient

responses. Because of the different ion/detector detunings, the amount of the

excitation should vary from about 10% of the trap size in the lowest curve to about

2.5% in the topmost, as described by Equation (V.A.2.27). However, in these curves

we cannot see that effect directly. (However, see Figure V.B.2 in the next section.)

The ion feature becomes noticeably narrower as the ions were moved further off the

detector, a reflection of the decrease in the damping rate.

The effects described in the previous section-dependence of ion response on

o0o - OZ, Cta, and number of trapped ions-can be directly observed by measuring

the spectrum. As I will describe in the the next section, we have used the FFT on

time-domain data to observe many these effects directly.

2. This figure is the sum of 16 independent scans.
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Actual frequency-domain response for 70 N2
are moved further from the detector as shown
labels on the right of the figure.
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V.B One-Drive Pulse Results

In this section, we describe several experiments that used the one-drive, pulsed

excitation scheme discussed in the last section. First, we will discuss a measurement

in which we used the pulsed scheme to determine narrow ion decay widths by

measuring their (rather large) resultant decay times. The second experiment shows the

validity of some of the conclusions of the admittance method. In particular, we show

that the ion excitation does, indeed, depend on the ion/detector detuning.

Both of these experiments used the coherent transient averager described in

Chapter IV to improve the signal-to-noise. Although both also made extensive use of

the FFT, the second measurement, in particular, shows some of the transform's

subtleties. As we shall see, it must be used carefully to measure the amplitude of a

decaying, sinusoid.

In the first experiment, we used the single-drive, pulsed excitations to measure

the natural damping, yz, of one, two, and four ions, by measuring directly the decay of

the ion signal as a function of time. In Figure V.B.1, we used two slightly different

implementations of this concept to measure the damping time of several very few-ion

clouds. In the upper two curves, we varied the length of time between the excitation

and the beginning of our recording of the transient. When we fourier transform this

response, the amplitude of its peak should depend on the delay time, T, like e .

For the bottom curve, we split up the time-domain transient response (16 seconds,
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time-dependence of the detected current.
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total) into two-second segments and fourier transformed each of these segments.

Again, the peaks should decay like e'T1 , where T marks the beginning of each

segment. In all three cases, we waited at least 0.2 seconds to allow the detector's

excitation to die down completely. The single-ion decay gives y, = 0.30(4) s- 1, in

excellent agreement with our a priori estimate, 7. = 0.33 s-1. (To make this estimate,

we inferred the impedance of the detector from its Q and inductance. The geometric

factor, B1, was estimated from [GAB83].) The two- and four-ion decays also agree

well. (For the one- and two-ion curves, we knew the number of ions independently by

a CW counting method, described below in Section D. The four ion curve, however,

had no other, independent measurement of the number of ions.)

One of the more interesting predictions from the preceding section is that the

pulsed response depends strongly on the detuning between the ions and the coil. (See

Equation V.A.2.27.) To test this prediction, we excited a cloud of about 30 N' ions

at many different ion/detector detunings and fourier transformed the resulting transient

decays. The results, at various stages of analysis, are shown in Figure V.B.2. The

raw data-FFT peak amplitudes-are given by the squares on the small, inset graph.

The solid line on that graph is a prediction using the theory of FFTs from Chapter III

and the theory of pulsed excitations from the last section. The dashed line on that

graph shows the location and width of the detector (its amplitude is meaningless).

The predicted response comes from competition between three different effects.

First, we expect that the ions' excitation will depend on their detuning from the
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Figure V.B.2. Demonstration that the one-drive pulse
response is strongly frequency-dependent. The larger graph
shows (analyzed) amplitudes as a function of the ions'
resonant frequency. The inset graph shows the raw, FFT data.
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detector. Second, the gain of the detector decreases away from the peak of the coil.

Third, the peak height of the FFT depends on the ions' damping. Thus, to

demonstrate the physical effect (the first effect above), we must eliminate the two

other instrumental effects.

Equation V.A.2.27 predicts that the ions' response to the peak should fall off

like the magnitude of -oo + i yo/2). In addition, the gain of the detector falls

of by an equal amount.3 Therefore, we expect that the peak current induced by the

ions should fall off like a lorentzian:

1
(00t~)2+Y2/4(or- m)2+ yo/4

as we move the ions off the coil. Since the ion's damping shares this dependence (c.f.

Equation (V.A.2.11) and the discussion below it.), we can say equivalently that the

peak current should depend linearly on the ions' effective damping, yeff.

However, when we perform the FFT to go into the frequency domain, we alter

this simple relationship. We can compute the peak FFT amplitude for a decaying

sinusoid from the similar expression for a pure sine wave, Equation III.B.1.11.

Inserting a complex frequency, co + i y/ 2, into the Equations (III.B. 1.5-11), we find

that the peak amplitude in the FFT depends on:

3. As discussed above, this equality comes about because the detector itself causes the ions'
frequency-dependence by boosting the electric field across the trap.
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peak ~ 1 - e 2f.,,,, fsnp (V.B.1)

where N is the number of points in the transform, fsm is the sampling frequency,

and y is the damping. For very small damping, we find that the peak - N /2, in

agreement with (II.B. 1.6). However, for larger damping, y > 2fsrp /N, Equation

(V.B.1) shows that the peak height should depend inversely on the damping, y.

In the experiment summarized in Figure V.B.2, fserp = 250 Hz and N = 1024.

From the argument above, then, peak heights for identical time-domain amplitudes will

go like f-1 as long as y > 0.5 s- 1. For 25 ions, this damping corresponds to about a 12

Hz detuning. However, in that region, as discussed above, the time-domain amplitude

should behave like yl. Therefore we expect the ions' FFT peak heights to remain

constant: while the time-domain amplitude is growing like %r, the FF17 peak is

simultaneously decreasing by the same amount. For larger detunings, the ion signal

decays negligibly during the time we observe the transient, N /fsp. Thus the FFT

no longer contributes a factor of y, and, at these detuning, the FFT peaks quickly

become smaller, decreasing like the detuning, squared.

The larger graph in Figure V.B.2, shows the peak current as determined from the

frequency domain spectra. The FFT response therefore has been removed from the

raw data. I have also removed the decrease in the signal due to the reduced gain of

the tuned detector off its resonance. The resulting amplitudes clearly demonstrate the

predicted behavior: the pulsed excitations fall off like the detuning of the ions from
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the coil. The dashed line in the larger graph is a fit to this response. Only the overall

amplitude was varied for this fit: the location and width of the resonance were held

fixed.

In practice, however, we found the one-drive scheme most useful as a quick

method for measuring, simultaneously, the ion and detector frequencies. For all but

the smallest clouds,4 we also got an immediate, though approximate, count of the

number of ions from the width of the dip, as in Figure V.A.3.2.

However, it is difficult to use these techniques for precision measurements, for

robust counting procedures, in the presence of anharmonicities, and so on. For

example, the strong dependence of the ion/detector detuning makes it difficult to

control the amplitude of the resulting excitation. In the presence of anharmonicities

(which can shift the detuning during the excitation), the transient produced can be

especially difficult to decipher. Therefore counting ions, for example, by looking for

plateaus in amplitude of the decay transient proved insurmountably difficult. Looking

for quantized steps in the ion width (as in Figure V.B.l?) also is a difficult

proposition. The ions' damping depends very strongly on the ion/detector detuning

(even more so than the resulting amplitude of the excitation), and thus, again, drifts

and anharmonicity can make these measurements very difficult.

4. For n < 10, jitter and anharmonicity made the count a bit suspect.
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In the next two sections, then, we will describe the theory and present results for

a two -drive detection scheme. We will find that this two-drive scheme, though more

complicated to implement, will provide far more robust techniques to count ions and

measure trap systematics.

V.C Two-Drive Techniques

In this section, we describe techniques which overcome many of the difficulties

of the one-drive schemes. Originally introduced [WED73] to eliminate the capacitive

feedthrough from the drive to the detector, these techniques also prove more robust to

disruptions by anharmonicity or contaminating ions and, in addition, make it easier to

measure those disruptions. The "standard" two frequency drive scheme, which I will

describe below, also provides additional ion counting methods and can be used to

"lock" the ions to an external frequency source. With the proper choice of parameters,

we also can use the two drives to produce many of the effects that a single drive can.

However, the main advantage of using two drives is that the detector itself is not

excited by the drives: it is only excited by the ions. This last feature obviously makes

the interpretation of the data much simpler.

Two-Drive Green Function

The two-drive schemes use, in addition to the drive on the lower endcap

mentioned in the last section, a second drive to modulate the trapping potential. That

is, the resonant frequency becomes time-dependent:
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o 2 -+ Co (1 + AcosCom t )N(.C. 1)

where om is the frequency of the modulation and X represents its depth. (The

subscript "LO" stands for "local oscillator," a term borrowed from RF-mixer

terminology.) The simple harmonic oscillation equation of motion, (III.A.1.1), thus

becomes a driven mathieu equation [MCL47]:

i+ Y i + of (1+coso t) z 1 Vdrive (V.C.2)2mz0

There are two simple ways we can make oz periodic. On the one hand, if we add a

small oscillating drive, Vm, to the static trapping potential on the ring, VDC, then the

resonant frequency term in the equation of motion becomes:

Wring eVDC Vw_
-(1 + --- cosLo t) (V.C.3)

md2 md2 VDc

and thus, referring to Equation V.C.2 above,

A O =(V.C.4)
VDC

On the other hand, we could put the additional drive on the lower endcap. As

discussed in Section II.B, when there are three different potentials on the ring and

endcaps, the part of the potential that is symmetric under z -+ -z will trap the ions,

while the anti-symmetric part will shift the center of the ion cloud. Thus, when an

additional drive, Vw cos com t, is put on just the lower endcap, half of it will drive the

ions, and half will shift the resonant frequency:

226



eVDc1 VLO
2 d= ( cOmLO t) (V.C.5)
md2 2 VDC

and thus,

1 LO
lv= (V.C.6)
2 VDC

Thus, the additional drive on the lower endcap is similar to a drive on the ring, though

only half as effective. (The change in sign makes little difference.) The half of the

drive that shifts the cloud is so far from resonance that we can neglect it.

(In passing, note that the one-drive schemes from the previous section also

modulate the trapping potential. The damping, 7. is modulated, too, because it, arises

from a voltage on only one endcap. However, the amplitudes of these voltages are

much smaller than the ones we will be discussing below and, in addition, are at

frequencies at which their effects will be small.)

The additional term, (XAm2cosLO t)z can have dramatic consequences for the

ions. Because this term destroys the time-origin (shift) invariance of the system, it

creates several new effects. Most importantly, the destruction of shift-invariance

allows the generation of harmonics and subharmonics, and introduces possible regions

of unstable growth in the ions' response.

The simplest case of instability occurs at LO = cz /2. Neglect damping and

assume that there is some small amount of ion motion at moLO, z = A cosLO t. Then

the term (cos cLO t) z becomes A cos2cLO t = A (1 + cos z t) /2. This additional term
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thus looks like a resonant acceleration at coz and, since it is proportional to A, it can

grow exponentially. (Arnold [ARN78] gives a good treatment of these unstable islands,

including damping.) Although such "resonances" are used in some Penning trap

experiments, we have avoided this method since the resulting amplitude is usually set

by trap or even detector anharmonicities, and thus not wholly time independent.

The drive at comO also can produce sidebands. For example, ion motion at an

arbitrary frequency, z = A coscot, yields, for the additional term,

Acos(co+cow )t + cos(o -cow)t
A which to the ions acts like additional drives at

2

0 om'L. These forces induces motion at those frequencies, which, in turn, induces

additional motion at o± 2 mmL, and so on.

Using this simple approximation technique, we can estimate the response due to

two drives, Vd cos0O t and Vw coscom t when (od + OmD ozo; that is, when the two

drives sum to the ion's resonance frequency. We also use the simplifying assumption

that cow < Od, oz, and, in addition, com o yz. Under these assumptions, cod will be

quite far from resonance, and thus we neglect damping and write down the simple

harmonic oscillator response of the ion due to the non-resonant drive at cod:

Z - eBV coso t (V.C.7)
2mzO o(c - o(

We now concentrate on the part of ( 2 Xcoscomt)z oscillating near cor since that is

the part that is "resonant" and thus will have a large effect:
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*.w2SW1 eB1 1 (2fA costo+t)z = z - c t + eB1t 2 Vd (V.C.8)
2 2mo of- (Og

This term looks like an acceleration at toL + cod caused by a voltage:

Vd' - 1--Vd (V.C.9)
4 COLO

where I have used f -o22 = 2oz moL. Thus, when this approximation holds, these

two drives act just like a single drive with its amplitude reduced by $/2, where

1 C0
@ = - -, the traditional "modulation index" of FM, the ratio of the maximum

2 mow-

frequency deviation to the modulating frequency. [HOH80]

Although we could, in principle, continue this approach to higher orders, it

becomes increasingly awkward. As as alternative, we can generalize the Green

function of the simple harmonic oscillator to include the effects of LO. Since this

approach was used by Brown and Gabrielse [BRG86], I will only sketch their results.

They make a generalization of the standard harmonic oscillator Green function:

Gz(t - t = 0(t -t') yp,(t-t')/2sin oz(t - t (V.C.10)

by replacing coz with ?5, (OZ (1+ Xcoswo t)1 /2:

t

Gz(t, t') = e t->'2 sinf dt-() (V.C.11)
(-CZ (t)WZ (t'))1/2 t'1

This expression is their equation 3.52. It is correct for small XO" J, which is

almost always the case for us, even when 3 >1. Notice that G. does not depend
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solely on (t - t'), but depends, explicitly, on the value of t. This fact makes fourier

analysis much more difficult and thus, for the moment, we remain in the time domain.

The key to their solution lies in expressing the sin integral as a double sum:

t

sinf dt Air(t) = Jn(O)J,(P)sin (cqz'+fnLOm)t - (z'+fn'cw)t'}(V.C.12)
fP n,n'

where

Oz' Z(-1 ) (V.C.13)16

Thus the second drive has two important effects. First, it causes a small, but

measurable, shift in the natural resonance frequency, o,. The second effect arises

from all those sin terms. In a Green function, a term sin(cA t - op t') means that a

drive at oB will induce a steady-state response at 0 A. Thus, the double sum expresses

the sideband structure om, makes possible.

In our experiment, when we drive the ring at omD, we often drive the endcap at

cod ~ z - com and detect near coz. Thus we are interested in the term of (V.C.12)

that looks like sin(oz't - (oz'- mW)t'); that is, the n =0, n'=1 term. In particular,

then, we have an approximate steady-state response:

z(t) = Jo($)Ji() Re ( eBj Vd _i (W+ m) (V.C.14)
4mzowz (z-cod+Om) + i yz /2) J

The term inside the ( ) is the "normal" response of the ions to a drive Vd ei(w+O2)r

Thus the total effect of the second drive is to reduce Vd by the amount JO($)J 1 ($).
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For small $, Jo(P) = 1, Jt(D) = D/2, and thus we recover the earlier approximation,

Equation V.C.9. ~ However, for stronger drives we find that the amplitude of the

response begins to decrease with increasing VLO, and eventually even goes to zero at

$ 2.4, the first zero of JO. (See Figure V.C.1) We have used both this effect and the

much smaller shift in o' with X check the amplitude calibration of the ring drives.

For example, Figure V.C.2 shows a series of measurements in which we used

the Bessel function dependence in the ring drive to verify our voltage calibrations. We

loaded a rather large cloud (about 400 N I ions) into the trap. After we used the one-

drive, pulsed technique (described in the previous sections) to determine their natural

resonance frequency, we moved the ions onto the detector, cqz = o. We then set up

the two-drives to excite the ions about 100 Hz off their resonance; that is, we set the

lower endcap drive at od = coz - cLO - 21(100 Hz). We detuned this far from

resonance to simplify the interpretation of the results: for our apparatus, the ring drive

required to reach the first zero of JO ((3 2.4) should shift the ions' resonance

(Equation V.C.13) by about 9 Hz. By driving the ions 100 Hz off resonance, this shift

caused less than a 10% change in the ions' response. Using this method, the

calibration agreed to about 15% with our room-temperature measurements, Section

IV.F.

With fixed local oscillator drive, the ions' response to the drive at cod should

look just like a harmonic oscillator excitation. In Figure V.C.3, we show a typical
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Two Drive Response
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Figure V.C. 1. Bessel-function dependence for the resulting
ion amplitude when two-drives are used to excite the ions.
(Theory)
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Figure V.C.2. Using the dependence in Figure V.C. 1 to
calibrate the ring drives. In this case, there was a 15%
difference between our room-temperature measurements and
the cryogenic calibration.
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Figure V.C.3. Axial response for 140 N' ions, demonstrating
normal, harmonic oscillator response.
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example of a swept, CW resonance. Using the phase-sensitive detection technique

described in Section IV.E.3, we measured both the real ("In-phase") and imaginary

("Orthogonal") parts of the response, (V.C.14). From the width of this resonance, we

conclude that we had about 140 ions in the trap. (These data were taken with our

older, Q=12000 detector. For that detector, roughly 40 ions cause one Hz of line-

width.) We drove the ions very lightly for this sweep; their maximum excursion was

about 30 p at the peak of the resonance.

V.D Two-Drive, CW Results

The two-drive scheme avoids many of the complications which arose from a

single drive. For example, since neither drive is sufficiently close to the detector

resonance, the ion does not see a drive significantly boosted by the detector response.

In addition, when we drive at constant frequency and sweep co,, (similar to our

discussion in Section V.A.3 for the one-drive case) the response will be identical to an

oscillator with resonance frequency o., and damping y, even though the true damping

is still Yeff given in Section V.A.2. Thus the two frequency CW scheme lets us ignore,

almost entirely, the subtle issues brought up in the last sections. With two drives, we

can treat a CW resonance as if it were caused by a drive Jo(s) J 1() Vd at a frequency

cod + cLO , measured by an entirely uncoupled detector.

Ion Counting

The two-drive scheme provides two additional methods for counting the number
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of ions in the trap. The first method, sometimes called the "Milliken method," is

technically impossible using one-drive schemes. This method provides the most

convincing, and, for that matter, the most robust ion-counting technique. As we see

from (V.C.14), far from the ions' resonance, z(t) becomes independent of 7%, and thus

each ion acquires a velocity independent of the total number of ions. Hence, the total

induced current will be proportional to the total number of ions. By selectively

expelling ions from the trap, we therefore can observe quantized steps in the output

current. Like Milliken, then, we can count the ions; here, without exact knowledge of

the trap parameters, like zo and B1, or the drive and detector gains. This counting

method is thus far less model-dependent than any of the counting schemes that depend

on measuring an absolute value of y.

In Figure V.D.1, we show the first series of single-ion steps we observed with

our apparatus. 5 We first loaded a small number of N ' ions into the trap. Each plateau

in the figure was made with the same excitation drives. (We increased the drive Vd

from zero in about 30 seconds to avoid transient effects. We reversed the ramp at the

end of each plateau for the same reason.) We drove the ion(s) 15 Hz off their

resonance, to about 20% of the trap size at the peak. Between each of the plateaus,

we lowered the potential on the lower endcap in order to force the ions perilously

5. March 2, 1988
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4.5

Figure V.D. 1. Steps in the axial signal as one ion after
another is expelled from the trap. The ions were driven to
20% of the trap size.
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close to the lower endcap, (See Section II.B) and then "cooled" the remaining ions by

resting on the detector for roughly 60 seconds. We then repeated the ramp-wait-ramp

procedure. By slowly decreasing the endcap voltage between plateaus, we could expel

one ion at a time. In Figure V.D1, we lost one ion between plateau 3 and 4, another

between 6 and 7, and the final ion after plateau 10.

As shown on the figure, our estimates for the trap size, drive amplitudes,

detector gain, etc., were fairly good, and the size of the resulting, single-ion signal

agreed within its error to our a priori prediction. To our knowledge, these data

represent the largest m / e yet detected as a single ion in a Penning trap, and brings to

two the number of research groups that have detected a single, trapped ion

electronically.6

The second counting method, the analogue of the CW, one-drive method, uses

the width of a swept resonance. This resonance has a peak whose width is ', and

thus is proportional to the number of ions in the trap, as in Equation V.A.1.7. We

used this method, for example, to determine the number of ions in the cloud from

Figure V.C.3.

To convince ourselves that the widths we measured indeed were due to

detector-induced damping, we performed some measurements by moving the sum of

6. Several other groups have performed single-ion experiments using lasers.
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the drives off the detector resonance. Under these conditions, the swept response

should become narrower because Yff becomes smaller off resonance (Equation

V.A.2.1 1).

In Figure V.D.2, we have trapped about 140 N' ions. (These data were taken

with our older, Q=12000 detector. Its half-width, yo/ (4n), was about 6 Hz.) In these

scans, we- swept the trap voltage and observed peaks when the ions' resonant

frequency matched the sum of the drive frequencies. We changed one of the drive

frequencies Vd between the scans, but kept the drive amplitudes constant in the three

scans.

As predicted, the resonance became narrower when the ions were excited further

and further from the detector. The ions' peak amplitude should grow like y 1

(Equation V.C.14), while the resonant detector becomes less sensitive to the ions'

current like Y1/2. Thus the amplitude of the detected current grows like y-1/2. Since

both the widths and the peaks in Figure V.D.2 behaved in the proper way, we were

confident that the widths we measured were due to the ions "natural" damping, and

not, for example, to instabilities in the trapping potential or in the internal dynamics of

the ion cloud. Therefore we felt some confidence in using the width of swept

resonances (in general) to count larger clouds in the trap.

Anharmonicity
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Varying Drive/Dectector Detuning

7.1490 7.1495 7.1500 7.1505 7.1510
Trap Voltage [V]

Figure V.D.2. The ions' damping (and thus their peak,
resonant response) depends strongly on the detuning between
the ions and the detector. The ions were moved
approximately one half-width of the detector between sweeps.
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In addition to ion counting, we have used the two-drive CW scheme to measure,

and compensate for, trap anharmonicity. Because the two-drive scheme lets us focus

on the ions' response, we can observe the anharmonic effects described in Chapter II.

Although we will discuss anharmonicity and the guard rings in more detail in Chapter

VII, we will illustrate here the theory of Chapter II with some examples from our

experiment.

Figure V.D.3 shows a CW swept resonance of a single ion. Because the trap

was not perfectly harmonic, we were able to observe hysteresis, as described in

Section II.B. (See, for example, Figure II.B.2b) In Figure V.D.3, we drove the ion to

about 20% of the trap. However, the anharmonicity caused an 0.6 Hz shift in the

ion's resonant frequency at this amplitude (c.f Equation II.B.18). Since the natural

width of this resonance is = 0.05 Hz, the anharmonic shift is many times the natural

width, and, as discussed in Equation II.B.21, we observed different behavior in the two

different sweep directions. We will discuss these single ion sweeps further in Chapter

VII.

By changing the potential on the guard ring we could control the amount of

anharmonicity in the trap. Figure V.D.4 shows how the line-shape of a larger cloud

(about 30 ions, for variety) changed when we adjusted the guard ring potential, about

50 mV across the whole figure. The detected signal in Figure V.D.4 is about the same

as the previous figure because we drove the ions about 30 times less hard. Since this

drive did not exceed the critical drive required to induce hysteresis, the anharmonicity
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Single Ion, Two-Drive Anharmonic Response

-0.60 -0.55 -0.50 -0.45 -0.40
Vtrap -8.725 V [mV]

Figure V.D.3. Single ion anharmonicity. One N' ion, driven
20% of the trap size, demonstrates hysteresis.
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Tuning the Trap (Many Ions)
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C4 ~ -3x10~ 4

(No te:
peaks

C4 ^ 0

splitting between
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C4 ~v2x10-4

Trap Voltage

Figure V.D.4. Tuning the guard rings by symmetrizing the
line-shape for clouds of ions. The sign of the asymmetry is
different on the left and right line-shapes.
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changed the symmetry of the peaks without causing sweep-direction dependent results.

Notice, that the many-ion cloud has more symmetric line-shapes than the single

ion, Figure V.D.3, even though, all three cases, the anharmonicity is larger than the

single ion case. This effect is an illustration of the idea expressed in Section II.B: for

equal amplitude output signals, the effects of anharmonicity scale like y-3/2, and thus

are much worse for smaller clouds.

In the presence of drift and jitter, the two-drive scheme becomes even more

useful. For example, the frequency jitter of small clouds of trapped ions can be

comparable to their width. In this case, the dip discussed in Section V.A cannot be

observed. However, when we use the two-drive scheme to excite the ions far from

their resonance, the jitter becomes inconsequential: we can adjust the detuning to be

much larger than the jitter, and then increase the drives to recover the lost signal.

Finally, we have used the two-drive method to lock the ions to an external

frequency reference. The feedback system was very simple. We took the orthogonal

part the resonant signal (Figure V.C.3), amplified it, and added it to the D.C. trap bias.

(Since both the trap bias offset and the lock-in signal were produced by the computer,

this addition was very easy to implement.)

At this stage in the experiment, locking remains a curiosity, letting us tell, for

example, when bad ions are shifting the axial resonant frequency (Section II.C.2), or

enabling us to look for jitter in the axial frequency (we didn't have the signal-to-noise
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to see any). However, as we shall discuss in Chapter VII, in order to make very high

precision cyclotron measurements, we probably will need to keep the axial frequency

locked. We have not yet locked a single ion-because of signal-to-noise

constraints-and thus expect that we will refine our locking techniques when we

attempt 10-10 cyclotron measurements.

V.E Two-Drive Pulsing

We have pulsed the ions using the two frequency drives. For practical reasons,

we usually pulse com and leave on cod constantly. (When pulsed this way, the coil

remains unexcited by the wings of the pulse since om < oq.) In this section, we will

use the Green function, G, to find the amplitude of the ions' response.

We have, at the end of a pulse of duration T, amplitude Vw, centered at

frequency om, in the presence of a CW drive of amplitude Vd at frequency (od, a

response:

T
z (t>T) - J dt'J0 (D)J 1($) sin(coz't - (coz '-co )t') Vd coswd t' (V.E.1)

0

- (I have ignored damping.) Throwing out the term oscillating at the high frequency

z'+cod - om yields:

T
z (t>T) - Vd Jo($)Ji($) J dt'cos(coz 't - (coz'- (od +com ))t') (V.E.2)

2 0

When the pulse is shorter than the detuning, (coz - (cow + cod))T < 1, we get:
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z(t>T) - 1TJo($)JI(O)Vd (V.E.3)
2

Once again, the two-drive scheme gives identical results as the one drive

implementation except that Vd is replaced by JO($3)Ji($) Vd. Notice that this result is

true even though Vd is not the drive that is pulsed! The two drives again help

simplify the interpretation of the data: in these pulse experiments, the coil is not

directly excited and the ions decay as if decoupled from the detector.

In Figure V.E.1 we show two-drive, pulsed results similar to the one-drive pulse

experiment described in Figure V.B.2. Each peak on Figure V.E.1 represents the

average of 40 transients from the 30 N' ions stored in the trap. The trap potential

was changed to shift the ions about 2 Hz between each set of transients. The ions were

excited to about 3% the trap size by a 10 mS pulse at mLO = (2x)1KHz in all the

peaks. Unlike the single-drive case, the excitation amplitude does not depend on the

ion/detector detuning.

However, the discrete fourier transform and the detector tuning do change the

relative amplitude of the resulting peak in frequency space. That is, we again must

use Equation (V.B.1) to account for the peak heights. Combining this relationship

with the decreased gain off the resonance of the detector (as discussed in Section V.B,

the gain falls off like TYI2), we see that the resulting FFT peaks should depend on the

ions' damping:
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Two-Drive Pulsing with Different Detunings

10 15 20 25 30 35 40

vz ~.159159 [Hz]

Figure V.E.1. Pulsing with two drives. Raw FFT data for
lightly-driven ions, moved by 2 Hz intervals between scans.
The minimum in the middle-at the location of the detector-
is due to the ions' increased damping on resonance.
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Ny,

peak- f' (1 - e ""'") (V.E.4)

Thus near the coil, we expect the peak dependence to be dominated by the -1/2 term.

Therefore when the ions are right on the detector (y at its maximum value), the peak

height should be at a local minimum. For larger detunings, y > 2fsp / N, though, the

exponential kills off this dependence, and the peaks will depend on y1/2. Therefore

the peak heights eventually decrease like the detuning. Thus we expect a maximum

peak amplitude to occur somewhere near, but still somewhat detuned from, the

detector.

We can find the damping for which Equation V.E.4 predicts a maximum peak.

The resulting transcendental equation has the simple numerical solution:

Ypeak = 2.51 (V.E.5)YZI, T

where T is the total length of the transient, N /fsar

The dashed lines on Figure V.E. 1 show the expected limits between which the

peaks should lie. (They actually represent a one parameter fit- the total amplitude

was allowed to vary.) We can only establish limits because of scalloping losses (see

III.B.1.13) in the FFT. That is, because the frequency of the ion signals was not

known-and the signal-to-noise is insufficient to determine it to sufficient accuracy-

the amplitude of the peak can be as much as 30% reduced besause of leakage. (As

indicated on the figure, scalloping is much less important for the broader peaks near

the detector: damping already causes the peak to be spread over many bins of the

248



FFr.)

The asymmetry in the data (peaks are larger near v. = 0) was a natural result

caused by the duration of the pulses. The pulsed excitation is only flat (in frequency

space) when the excitation-ion detuning, A, is much smaller than the effective

(angular) frequency width of the excitation, 1 /r, where r is the duration of the pulse.

sin A
In general, the frequency dependence of the excitation goes like , (a "sinc"

AT
2

function). This sinc dependence has been included in the dashed curves on Figure

V.E.1, and is apparent in the data.

Despite all these advantages over one-drive pulses, the two-drive scheme has a

fundamental limitation. In our experiment, we cannot get enough drive voltage on the

trap to excite the ions any more than was shown in Figure V.E.1. The amplitude of

Vd (the high-frequency, CW drive) is limited by the dynamic range of the SQUID.

Too much drive causes the SQUID to lose lock (see Section IV.A) and thus makes

detection impossible. The amplitude for the pulsed (ring) drive is limited by the bessel

function structure. Thus turning up this drive does increase the total excitation of the

ions, but only spreads the excitation to additional sidebands.

The single-drive pulse does not suffer from this particular problem because of

the detector boost. For the present detector, this boost gives about a factor of 40

increase in the effect pulse drive. Without this boost,then, the two-drive pulsed
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scheme, for all its apparent advantages, will most likely remain a curiosity.
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CHAPTER VI

COOLING AND DETECTING THE RADIAL MODES

We have discussed, in great detail, now, the axial motion and its detection,

leaving the radial modes aside. In the this chapter, we shall consider these radial

modes and describe the methods we can use to control and detect the magnetron and

cyclotron motions. While other groups have split the trap ring to detect directly the

cyclotron motion (the "quad-ring" method of Van Dyck, et. al., [VMF85]), we use

indirect methods to detect and cool the radial modes. The main advantage of our

methods is that they leaves the cyclotron motion undamped (except when we choose to

damp it), and therefore the resonance lines can be made arbitrarily narrow. In

addition, because we detect only the axial motion, (whose frequency can be set by

changing the trapping potential) we can measure different species without changing our

detector or the magnetic field.

However, to understand these methods, we must introduce a bit more formalism.

In this section, we will discuss the use of an oscillating, inhomogeneous electric field

to cool the magnetron and cyclotron motions. In Section VI.B, we will extend these

concepts to include cyclotron resonances, detected via the axial motions. This second,

more rigorous section will also contain more correct expressions for the magnetron and

cyclotron cooling rates.

We want to "cool" the radial modes in order to control the resonance lines (both

axial and cyclotron) for precision measurements. As discussed in Section I.C, a
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whole host of perturbations scale as the square of the mode amplitudes. A lack of

control over initial amplitudes therefore can translate directly into uncertainty in our

final measurements. For example, though we try to create ions at the center of the trap

(p = 0), some slight misalignment of the field emitter (our e source) is inevitable.

However, as we shall see, it should be possible to electronically cool the magnetron

radius to smaller than 10 p, far better than any possible alignment. In addition, the

ability to decrease the magnetron radius provides a cure for radial diffusion caused by

impurity collisions (Section II.C.1), thus making trapping times practically indefinite.

The cyclotron motion, as we shall see, cannot be cooled nearly as effectively,

though heavier mass ions (m > 15 amu or so) can be cooled somewhat. Even in those

cases, the final cyclotron temperature still will be far greater than the background 4 K.

This fact is important to the ultimate precision of the experiment: since our

measurement schemes involve coupling to the detector (and its thermal noise), we

actually may heat the cyclotron motion (in the thermodynamic sense) while measuring

it. On the other hand, collisions between strongly-driven ions and background gas

accidentally can impart a large velocity to the cyclotron motion. In such cases, then,

cyclotron cooling would become essential.

VLA Cooling the Magnetron Mode

In our trap, we use an oscillating, quadrupole electric field to couple together the

axial and radial modes. We have broken the azimuthal symmetry of the trap by
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splitting the guard rings (the small electrodes between the ring and endcaps whose

other purpose is to compensate for the anharmonicity of the trap-see Section II.B.3).

By driving the two halves of the split electrode withe the appropriate phase, we can set

up an inhomogeneous field in the center of the trap. The potential varies both along

the z axis and the axis of the split, which we call "x" for convenience.

To see how this field can couple the axial and radial modes, imagine an ion

moving in a magnetron orbit in the z=O plane. (Ignore any cyclotron motion.) Because

the potential goes like zx, the axial force depends linearly on x and the radial force

depends on z. (See Figure VI.A. 1) Assume that the coupling drive, at frequency cod, is

in phase with the ion at point A on Figure VI.A.1. The ion thus receives an upward

kick at t = 0. We want the coupling drive to kick the ion again, in phase with the first

kick, when the ion comes around its magnetron orbit again at a time t = 2 N/ om later.

That is, at this later time we want an integer multiple of 2n radians to have passed in

both the coupling drive and the axial motion. Therefore, the difference between those

frequencies must satisfy (cod - 0z )t = 2nn where n is any integer. Using t above, we

see that:

COd = coz + n com (VI.A.1)

The sign of n has a profound impact on the results of the coupling drive. As we shall

see, for n = +1 the coupling drive tends to equilibrate the magnetron and axial

motions. For n = -1, on the other hand, the coupling tends to increase both the

magnetron and axial motions exponentially, eventually driving the ion out of the trap.
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aZ(x)

- I

Figure VI.A.1. An inhomogeneous electric field causes a
force in the z-direction which depends on the x-position.
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In order to understand the difference between heating and cooling, we now

return to the ion's equations of motion. When driven by a voltage, Vdcoswdt, the split

guard ring creates a potential, near the center of the trap:

D = 4Vd -cOosd t (VI.A.2)

where ( is a geometric shielding factor. The acceleration in the x direction, ax, is

thus:

ax= - 4 2 Z cOsa t (VI.A.3)
md2

= 2-azm; cosOdt

where:

Vd
a = 4- (VI.A.4)

Vtrap

where a is a dimensionless constant which much be measured empirically. Inserting

this acceleration into the radial equation of motion, (II.A.2.6), we find:

(0 Xf 1(0- -az co2 cosmad t
? cz x 2 - zo 0 (VI.A.5)

Changing to the Vi) variables, and explicitly writing out the vector components, we

can express (VI.A.5) as:

*-V, -az co t

- V i (VI.A.6)

Focusing our attention on the magnetron motion (the lower signs in VI.A.6), we find:
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.. - 02 V = -az _0 2COSmd t (VI.A.7)y - Y z

The acceleration in the z direction, from (VI.A.2), is:

az = -ax(OZ2COs(a t (VI.A.8)

We can find x in terms of the 0 using Equation (II.A.2.10). Taking the difference

between V+) and V~-, we find:

V () - V
x = Y '(VI.A.9)

(0+ -

and thus we can close the system of coupled equations between V H and z with:y

S+ Y i + mz2 z = a mz VY( cosd t (VI.A.10)

We have ignored the cyclotron part of x (Vy))) because it is oscillating at an

unimportant frequency. In addition, we have ignored the trap capacitance and assumed

that the only effect of the detector is to give the ions some small datping, Y.. (We

will relax these last conditions in the next section.)

We can use these equations of motion to demonstrate that coupling at

(od wmz + co_ will cool the magnetron and od = mz - _ will heat it up. We can also

estimate the rates for these processes, deferring until the next section a more precise

calculation. Consider the cooling or heating due a coupling drive exactly resonant

between the two modes, od = cz ± m_. -Let us begin with some magnetron motion,

V(- = A e". From (VI.A.7), we see that the component of V ( cosod t oscillatingy y

near 2 MZ 4 -e')t, wildrive the axial mode strongly, resulting in motion
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z = i a0_ Ae)j". Putting this motion back into the radial equation,
2 7z ( + .

(VI.A.7) and again ignoring the non-resonant term yields, for the added radial force:

ia 2(0-(0
ax =A e "-I (VI.A.1)

47z (o+ - (_)

=+a 2o,

04 (o+-m_) "

Thus, depending on the sign of this term, the coupling either provides stable damping

(a~ -#V")) or unstable heating (ax - +VC ). With the coupling drive at

od o ± co- we thus have an effective "damping" constant:

± a2o3

* = ± ( 3 (VI.A.12)" 47z ((o+-co.)

Therefore, the upper sideband truly damps the radial motion, whereas the lower

sideband leads to exponential growth the both the radial and axial motions. As we

shall see in Section VI.B, this expression is optimistic: it is only true for sufficiently

weak coupling drives, such that clag <- . For stronger drives, the cooling

saturates at y /2, though the heating continues unbounded.

The discussion above applies equally to cyclotron-axial coupling at

cod = co +zco. In that case, however, we see from (VI.A.9) that the axial acceleration

has the opposite sign, and therefore the role of the sidebands is reversed: (o)+- cz

cools while (O)++ coz heats.
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Our language has been a little sloppy here. When we write "heating" and

"cooling," we do not mean them in the strict thermodynamic sense. Rather, by heating

we only mean an exponential growth of the orbit; by cooling, exponential damping. In

fact, for the magnetron motion, we do not even mean heating or cooling in the energy

sense at all! Because of the sign of the radial electrostatic potential, we "cool" the

magnetron motion (that is, decrease its orbit) by increasing its energy. To keep down

confusion, then, we choose colloquial meanings; cooling always means reducing the

orbit sizes, heating always means increasing them.

Figure VI.A.2 shows the results of a typical magnetron cooling cycle. Right

after loading about 20 N' ions (and attempting to rid the trap of other ions), we set

one of our HP3325 oscillators to sweep its frequency continuously, back and forth

between 162341 and 162357 Hz, at about 120 seconds per sweep. (This was ±8 Hz

around the expected magnetron cooling frequency, v, + v_.) There was no axial drive.

Each time the cooling drive swept through the cooling frequency, we observed axial

action being transferred from the magnetron motion by the cooling drive. We

recorded the axial noise with a r = 0.25 s filter, centered at the axial frequency,

159603 Hz. (We used the lock-in program described in Section IV.E.3.)

In the lower graph, we plotted the oscillator frequency as a function of time and

marked with an "x" the approximate location of the axial noise peaks. They all fall at

about 162351(1) Hz, indicating a magnetron frequency of 2748 Hz. We typically saw

no additional cooling after about 500 seconds, indicating that the cooling had reached
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Typical Magnetron cooling

0 100 200 300 400 500 600 700
Time [s]

Figure VI.A.2. Magnetron cooling. The upper graph shows
the axial noise (as a function of time) when the
magnetron/axial coupling frequency. was swept across the
cooling resonance. The lower curve shows the coupling
frequency as a function of time.
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some limit.

The peak induced axial signals were quite large. If they came from a coherent

axial motion, its equivalent amplitude would be about 10% of the trap size. Using the

equal-action argument to be presented in the next sub-section, this axial amplitude

could come from coupling to a magnetron radius of about 0.15 mm, consistent with a

reasonable misalignment between the field-emitter and the electrical center of the trap.

Cooling Limit

This cooling proceeds until it reaches a limit, set by thermodynamics. The axial

detector provides a heat bath which bring the axial motion into thermal equilibrium at

some temperature, Tz, the effective temperature of the amplifier. Though the cooling

limit can be given by quantum mechanical arguments [BRG86], we derive the limit

here using purely classical ideas. The core of the argument is that a quadrupole RF

coupling, linear in both coordinates, conserves the sum of the action of the two modes.

For a harmonic oscillator of mass m, displacement y, using the usual conserved

quantities, we find that the action (classically, JP -di) is proportional to the energy

divided by the frequency, co:

E0 = m2 1M y2 (VI.A.13)

Using the equations of motion, (VI.A.7) and (VI.A.10), we can write down the time-
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derivative of the total action of the coupled axial and magnetron modes:

s ~ - Z mz + V, 0 _ }COSCO t (VI.A. 14)

where, to get the magnetron action, we have used x - VM/ o)+. For the couplingy

frequencies cod = co ± ., and the short-term mode behaviors, Vy - e **-' and

z ~e eOt, we find:

~-iS i i mz C_ VH z (VI.A. 15)

and thus for magnetron cooling, (the upper sign), S = 0. Therefore, since the total

action is conserved, we can decrease the magnetron motion only by adding axial

action, and vice versa. Since the axial mode has some finite temperature, it thus must

have some average, minimum action. Therefore cooling cannot continue after the

action in the two modes has been equilibrated to this thermal value. Thus we find a

thermal limit:

PM = 2 -O - z~,(VI.A.16)
coz

For N + ions, using a detector at 4 K, this thermal limit becomes zrs = 3.5x10 3 cm

and Pm = 6.5x104 cm. Another way of expressing this limit is as an effective

temperature for the magnetron mode [BRG86]:

CO)
TM =- TZ (VI.A.17)

wz

where the negative sign expresses the fact that the magnetron motion is inherently
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unstable. Since ) > o, we therefore see that the magnetron motion will be cooled

far below the axial temperature.

This limit also applies to the cyclotron cooling (on the proper sideband,

wd = Co+-o.r). However, since the cyclotron frequency is higher than the axial

frequency, the cyclotron motion will equilibrate at a temperature much greater than the

detector temperature:

T=-- TZ (VI.A.18)

Thus, cyclotron "cooling" can actually produce greater random fluctuation in the

cyclotron motion if, for example that motion had been cooled near T, by collisions

with cold background gas. In terms of the the thermal axial motion, the cyclotron

cooling limit can be expressed as an effective cyclotron radius, pC:

PC= z(0 , (VI.A. 19)

Since 2m3.s+ = 0o2, we see that the magnetron and cyclotron cooling limits produce

identical orbit sizes. Thus, for Nj. at 4K, the cyclotron limit also yields

PC = 6.5x104 cm.
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VI.B Detecting the Cyclotron Mode

We have developed two techniques to measure the cyclotron frequency of our

trapped ions. In the first, we measure axial frequency shifts induced by a very strong

cyclotron cooling drive. In the second, we drive the cyclotron mode directly and

measure the axial motion coherently induced by the cooling drive. The first method,

very simple in practice, is rather complicated to describe theoretically. The second

method, rather more difficult to implement, is a simpler to explain. In this section, I

will describe the framework we use to explain both resonant techniques.

This framework is an extension of the operator method used in [BRG86),

extended to included the effects of our resonant detector. Within this framework, we

will predict both the shift in the axial resonance due to the coupling drive ("cyclotron

resonance by avoided crossing") and axial motion induced because of a joint cyclotron

and cooling drive ("cyclotron induced axial resonance"). As a side benefit, we will get

the true, "saturable" magnetron (and cyclotron) cooling rate, alluded to in the previous

section.

Let us write down the equations for the axial motion, z (t), the radial motion,

V ±(t) (cyclotron or magnetron), and the voltage induced across the detector, VI(t).

We need to include this voltage for the same reason that we did in Section V.A: the

dynamics of the detector and the ions are intricately related. For generality, let us also

include, in addition to the coupling drive, a coscodt, an axial drive V;n(t), and a radial
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drive V,(t). The axial acceleration due to the first drive as we saw in (V.A.1.1) is

eB 1aV = V;,(t). Similarly, the radial acceleration due to the second drive is
2mz0

ax = a' Vx(t), where X is another geometric constant, here < 1. (In our
2mzO

experiment, we also use the split guard rings to create this radial drive. The relative

phase of the two guard rings determines whetier the drive is a coupling drive or a

radial drive. This implementation will be discussed further in Chapter V.)

We can extend the harmonic oscillator equations

include these axial and radial forces. The detector voltage

behaves like a harmonic oscillator, driven both by V;.(t)

by the ions' motion, (II.A.3.4):

(VI.A.7) and (VI.A.10) to

(recall Figure V.A.2.2) also

and by the current induced

00 1 0 1 C, . eB 1  (1I.B .
V1 + R (CV+C,) + L (C +C,) V (CC,) N. + (VI.B.1)

where L, R, and C are given in Figure V.A.2.2, and C, is C,,p on that figure.

Using these equations we can write, in matrix form, the coupled dynamics for

the ion and the detector:

d2  
2

dt2 z

C+C

a (ic 2 cosw t

I have removed the

(VI.B.2)
a o.

1 ± COS(Odt

C+C, d2  d eB
C., + C* +d d z2 0 V1 a,

0 + V,* azdmV b
damping from Equation VI.A.lO here because, in fact, that
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damping comes from the detector, and thus is a result from, not an input to (VI.B.2).

The frequencies and dampings, yo, yz, coo, and coz are given in (V.A.2.7) and

(V.A.2.8). The matrix on the left side of (VI.B.2) is an operator, and thus the time, t

(as in, cosod t) is also an operator. We seek to invert this operator matrix; that is, we

want a set of operators that, given the drives a. (t) and az (t), yield the motions:

z (t) 'Gz G2X aeB1 "Ia

2mzOV =(t)= Giz Gjx lax (VI.B.3)
12m0  Gxz Gxi

Vf(t) --

This operator formalism, used in Brown and Gabrielse, is very compact. For example,

the z (t) term with the operator notation and time dependences spelled out says:

z (t) = f dt'Gzz(t,t')a,(t') + f dt'Gz(t,t')ax (t') (VI.B.4)

The explicit time-dependence of the matrix (VI.B.2) destroys the time-shift invariance

of the system; that is, G (t,t') # G (t - t'). However, as we shall see below, by

neglecting some sideband structure, we can in some cases restore the shift-invariance

and thus consider the fourier transform of all the variables, essentially returning to the

admittance formalism of Section V.A, but now incorporating the coupled degrees of

freedom.

In analogy to quantum mechanics, Gz (for example) is an operator (analogous

to the forward propagator [GOT79]) and G. (t,t') is a matrix element of that operator,

expressed (t I Gz I t'). The constant operator yields a delta function,
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(till t')=St-t'), and we have a completeness condition, 1= Jdt I t)(t I. To

illustrate the use of these operators, let us make contact with our "usual" notion of

Green functions. The Green function, G(t-t'), for the differential equation

d2
- + 0o z = a, (t) must satisfy [JAK83]:

We+o G (t,t') = S(t -t') (VI.B.5)

We consider G (t,t') and 8(t - t') as the matrix elements of the operators G and 1,

respectively. Let us introduce another function, G-1 (t,t') that is given by:

21
G-1(t,t') j-o 2 8(t-t') (VI.B.6)

We can re-write (VI.B.5) by inserting a complete set of states:

-+ f dt S(t - tA )G (tA ,t') =S(t - t') (VI.B.7)

Expressing this relation as a matrix element, we have:

fdtA (t |G-ItA)(tA IG It') = (t i l I t') (VI.B.8)

and thus, integrating over the states I tA ):

G-1 G = 1 (VI.B.9)

I have belaboured this explanation to show that the actual manipulation of these

operators becomes straight forward algebra when we remember what the notation

means.

Now, defining:
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=, dt2 + dW

Gz- = + 2(VI.B.10a)
dt 2

C +C d2 df-L+'oA+0G-1 = Crrj y o (VI.B.10b)

Gi_1I = 2 + 04 (VI.B. 10c)
dt2

we can re-write (VI.B.2) and (VI.B.3) as:

G1- COSOMt 1
[G. Gx [101

C +CtQz G 0

- +C, lb z Gil 0 G1, Gi =1 0 (VI.B.11)

acost 0 G[G G 0 i

We thus have six equations for the six, unknown operators in the middle matrix.

Different operators will be important for different applications. For the avoided

crossing measurement, we are interested in G iz: this operator produces the detector

voltage from an axial drive in the presence of the cooling drive. On the other hand,

for the induced resonance, Gzx produces the axial ion response from the cyclotron

drive. Yet another operator, G, will contain the information that determines the true

magnetron damping.

Obviously, I won't give all the steps in solving these equations, just the

highlights. To solve, we first write the mixing operators (GZX, G 1z, G1, Gxz) in

terms of the "diagonal" operators, Gz and G,:
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Gxz =-a w±o2G ±sco t G

C +C,

Gz= G11+c 71 + tG]

Gjx = + C G o+ 77 G- c G coscotG
m+-m C,-0 1z C

C +C, ac@,'07, C1 +C, ~1 dz

Using the equation, we can solve for Gz:

G,, = IG.I + CC ___G a cosm G±cosmt 1 - G1 )

and for G.;

G. = GI o st [G;- + GCG1 COsOt}

To use these expressions, we must evaluate terms like cosodt

Following Brown and Gabrielse, we can insert several complete sets of

write:

(VI.B.12a)

(VI.B.12b)

(VI.B.12c)

(VI.B.12d)

(VI.B.13)

(VI.B.14)

G coswdt.

states and

(t Icosod t G cosom t I t') = JdAdtB (t Icoscod t ItA )(tA IG \tB )(tB Icoswdt It') (VI.B.15)

=G (t,t') cosmad(t - t') + coscod(t + t

The coscod (t + t') term causes sidebands and, unlike similar terms in Section V.C,

these sidebands are always off-resonance. We therefore disregard them. Thus, when

G (t,t') is shift-invariant, we have returned the shift-invariance to the problem. In that

case, we can simplify everything by using fourier transforms. Using tildes to mark
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fourier transforms, and using the sign convention:

0 (m) = Jdt G (t)e"'O (VI.B.16)

(the opposite sign convention of BRG86), we find the fourier transform of the right-

hand side of (VI.B.15) = -G (c+w d) + (om-og).
4 4

We now have sufficient tools to evaluate Gz, in the presence of cyclotron

cooling and heating. To use (VI.B.13), we must evaluate G+(±wd) when co= c

and cod - c ± co. (The top sign is heating, the bottom sign is cooling.) Now G,(w)

is only large near ±o),, and thus only one of two sidebands will contribute. Defining

the coupling detuning, Ad, by od = o+ ± oz + Ad, we find, for the cosod t G + coscod t

term in G.z,:

- 04(m+mg)+0-ma) 1 (VI.B.17)
4 8w,(co-co, FAd)

Therefore, using:

C C2
1 - G1(o) = (VI.B.18)C +C, (02 -yC-&

(where, as before, wLc = (LC)-/2) we can write, in the presence of a cyclotron

coupling drive:

C _ _2__ _ _ _ _ _ _ _ _ _

C+C a2 4 2_gyo-_
8(w .- ot) w-z +Ad

When a = 0 (coupling drive off), we recover the admittance equation (V.A.2.23). For

a 0, we can simplify (VI.B.19) using the notation of Section V.A:
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O -+) 1 (VI.B.20)
1a2mo. AO-i70 /2

Az(A-yo/2)-4 16(o+ -co_) Az +Ad

We can use this expression together with (VI.B.12b) to find the detector admittance,

O +(co):

, = o 16(m.- - .) A, + A d (V I.B.21)
T,(2 A, (Ao-iyo/2) - y0y, /4 ± 16( -) A, +A/

Compare this equation to its zero-coupling analogue, (V.A.2.6). In that earlier

equation (and here when a = 0) the ions short out the coil and produce a single dip in

the frequency response at A, = 0. However, when a * 0, we see from (VI.B.21) that

we can get two dips because the numerator can have two zeros. The location of these

dips are the solutions to the quadratic equation:

A~+Az~d+ a2co3
Az + AzAd a C = 0 (VI.B.22)

16(o+ - c_)

And thus:

a~m
-Ad ± A2 _

AZ = (VI.B.23)

My notation here is a bit awkward. The first ± refers to the two roots of the quadratic

equations, but the second ; inside the radical refers to the heating/cooling sidebands in

(0d. For the heating sideband (the minus sign in the radical), we see that a strong

heating drive does not lead to a zero because A. is complex. For a cyclotron cooling
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drive, on the other hand, both roots are real, and we therefore expect two dips in the

frequency response. The separation of these dips depends characteristically on Ad.

When the cooling drive is exactly resonant between the two states (Ad = 0), we

see that the two dips are separated by a frequency Aavod:

a2 o3
Aavoid - (VI.B.24)

4(co+-_

which is directly proportional to the strength of the coupling, a. The form of the axial

frequency shift is identical to the standard avoided level-crossing formula [CDL77] for

the energy shift of a two-level system coupling by an oscillating interaction.

Exploiting this analogy, we call these shifts of the axial frequency a "classical avoided

crossing." When the frequency of the perturbation equals the energy splitting between

the two levels, the states repel each other, avoiding by an amount proportional to the

strength of the interaction.

In Figure VI.B.1, we show a plot of the axial dips versus the detuning of the

cooling drive. As discussed in Section V.A, when we excite the ions by pulsing the

axial drive (Vi,), the admittance (in this case, G Iz (w)) gives the frequency response of

the detector. We can therefore measure both the cyclotron frequency and the strength

of the cooling drives by exciting the axial motion with a pulse V1(w) and recording

the response for different cooling drive frequencies. When the cooling drive is nearly

resonant, od - o,-wz, we will observe the double dip in the response instead of the

usual single minimum. We can then plot the frequencies of the dips from different
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axial
frequency

+ z
coupling

frequency

Figure VI.B. 1. "Avoided crossing" in the axial resonance
frequency as a function of the axial/cyclotron coupling drive
frequency. Right on the coupling resonance, the two axial
resonances are separated by Aa,oid which is directly
proportional to the strength of the coupling drive.
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cooling drive frequencies against coupling detunings, Ad, and fit the avoided-crossing

line-shape, Equation (VI.B.23) through the dips.

In order to understand the true axial resonances, we can re-write the denominator
C

of (VI.B.20):

[ a2 1 2
I 16(mo-o_) Az +Ad J 4

We see that the resonant structure of the axial motion is identical to that for the

uncoupled case, (V.A.2.6), except that the coupling drive causes Az to be replaced by

a23
Az iA . Thus we see that an effect of the cooling drive is to shift

16(o+ -co.) Az +Ad

the axial resonance mz . Since the axial damping is frequency dependent, the real part

of the detector's impedance at the shifted oz will determine the axial damping,

(V.A.2.12).

We have performed cyclotron measurements using this method. One avoided

crossing is presented in Figure VI.B.2. The data on this graph are the measured axial

frequency of the dips against the cyclotron coupling drive frequency. These data come

from eleven, one-drive excitations of 15 N2+ ions to 5% of the trap size. In four of

these excitations, both dips were clearly visible in the FFT spectra. We then fit the

frequency of these dips to the avoided-crossing line shape, Equation VI.B.23, letting

the cyclotron frequency and the strength of the coupling, a, vary.
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Cyclotron Resonance by Avoided Crossing

535.0 537.5 540.0 542.5 545.0 547.5
V rI- V-. 4468000 [Hz]

Figure VI.B.2. An actual cyclotron measurement by avoided
crossing. The NI ions were pulsed with a one-drive scheme
and the frequencies of the resulting "dips" were recorded as a
function of the coupling frequency.
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From this fit, we determined the cyclotron cooling frequency,

v -vz = 4468541.9(2) Hz. Adding on the (independently) measured axial

frequency, v2 = 159537.2(1) Hz, we obtain the cyclotron frequency in the trap,

4628079.1(2). Using the quadratic sum rule, (II.C.7.4), we get a final, free-space

cyclotron value, vc = 4630828.8(2) Hz. However, before claiming these as 50 ppb

measurements of the true cyclotron frequency, we should note that the errors above are

the statistical and do not include systematic effects.

In fact, the possible systematic effects point to some of the immediate drawbacks

of using avoided crossings for precision measurements. Since these measurements

were made with the single-drive pulse scheme, we know from Section V.A that the

resulting ion amplitude will depend on the detuning of the ion from the coil.

However, the cyclotron coupling changes this detuning, and thus changes the

amplitudes of the axial responses. These different amplitudes will cause different

frequency shifts due to the various perturbations described in Section II.C. For

example, if our MACOR trap does indeed create a 6 gauss / cm 2 magnetic bottle, then

the 5% excitation used in this experiment should cause roughly 0.5 Hz shift in the

cyclotron frequency! This shift would be several times our statistical error, and would

be different at different coupling frequencies.

In addition, in this scheme, we must add the axial frequency to the measured

coupling frequency to obtain va'. Therefore, errors in the axial frequency become

directly errors in the measured cyclotron frequency. Since we will never know the
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axial frequency to ultra-high precisions of 10-11, (or even to the 10-9 level), there is

no reason to extend this technique beyond its present accuracy.

Though the avoided-crossing scheme can't provide high-precision data, it does

give us a measurement of the cyclotron coupling strength, a. Since our best a priori

guess for this value depends strongly on shielding factors which are very difficult to

estimate, this coupling strength calibration was particularly useful.

True Cyclotron/Magnetron Damping Constant

We can determine the effective damping of the radial modes by evaluating

G.(w). As we might imagine from Equation VI.B.14, G.(o) has a very similar

structure to G(). We must evaluate an expression like (VI.B.15), but this time for

an operator G2:

+ C +Ct -^1 G

G2 = Gz-1+ ) YoGzGi] (VI.B.26)

This Green operator is beginning to look familiar (c.f. V.A.2.23). It is time-invariant,

and its fourier transform is:

G2(0)) = - (VI.B.27)
(of mz2(eg_ g7,(_ - 24) _ 0)2yz

To use the prescription (VI.B.15), we need to evaluate G2(m o± d) for co = co, again

with od = (o+ i z + Ad:
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(VI.B.28)

.o +G2(+md)+ G2(m-md)l -- 1 w-A -]=iy±/2)
8Co, (c -w,-AdXo-+-A (og, -ozoiyo/ 2) - yoy, /4

Plugging back into (VI.B. 14) we get an expression for G. ():

(VI.B.29)

1.o --
2o+ a

2 Oz 3  
o_-_o_-(A_ _ (m, -oiyo/_2

m-*16(co,- (t) (-m,- Ad) (0)- 04-(Ad i (O, -(og iyO / 2))

As usual, the poles of G, () give the resonances: the real part yields the resonant

frequency; the imaginary part, half the damping. In the most general case, though, we

see that we must solve a cubic equation to finds these poles. However, in the case

< yo/ 4 (the weakly-coupled case from Section V.A), we can use (V.A.10-12) to

simplify the term in the braces:

23( = (VI.B.30)
2co+ awmz3

16(o+-o-) -+-o- Ad -iyeff /2

where yff is the effective damping which comes from the real part of the detector

impedance at co, given by Equation (V.A.2.12). We can solve the quadratic equation

for the root of (VI.B.30) that, as a -+ 0 connects to co = co+:

a 20)3
Ad+iyeff / 2 - (Ad +iyeff /2) 2 4 - z

2-+ = (VI.B.31)

In the limit of small a, we see that cod = +-coz (the lower sideband) cools, and the

cooling rate is proportional to the square of the coupling. However, for very strong

cooling drive, a Yff , we see that the radical will be positive for all Ad,
4(co+- a_)
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and thus the entire damping will be given by i yff /4. Since the axial damping

saturates at half the coil damping, we find that the cyclotron damping must saturate at

one quarter the coil damping.

For magnetron coupling, G, (w) is almost identical, except that the role of the

sidebands is reversed, and the upper sideband cools. For small coupling drive, we

recover our earlier approximation, (VI.A.12). For large coupling, the magnetron

damping, too, saturates at yff/2.

Before leaving this topic, note that there is also a small shift in the cyclotron

resonance because of the coupling, given by the real part of the pole, (VI.B.31). (This

is the complementary effect to the axial shift discussed above.) See further the

paragraph above Equation V.A.2.12 for more discussion.

Induced Resonance

Building on our discussion of G. and G., we can use the operator formalism

to determine the axial response to an additional cyclotron drive, a,. Unlike the axial

response to an axial drive, the detector and ion response to a cyclotron drive are very

similar. We can see from (VI.B.12b and c) that:

G 1. = 07 GIGa (VI.B.32)
C

and thus the only difference between GI., and G. is the resonance enhancement of
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the induced current because of the high-Q detector (the G I term.) That is, when there

is no direct axial drive, we can think of the detector simply as a current amplifier,

effectively increasing the induced current by the Q of the detector, coo / yo.

We see from (VI.B. 12c) that we have a term in G, that looks like:

G = GA coso)d t GB (VI.B.33)

Evaluating' the matrix element of such a term, G (t,t') gives:

(t,t') jB 00~ (0m)e +''' + damm)e~-'''' eiu'-'I (VI.B.34)
f. ,IJ _ C 3(A 0 2E0 o die0 + d j -)

Notice that this green function depends not only on (t - t'), but also has t' dependence.

Therefore, we cannot explicitly fourier transform an operator like G2 . However, we

can determine the coherent response to a harmonic drive. For example, we can

determine the action of our (hypothetical) operator G (t ,t') on a drive e i"A' Calling

this response r (t):

r (t) = J dt'G (t,t')e'OA' (VI.B.35)
_-00

Plugging in (VI.B.34), doing the dt' integral first, then integrating do over the

resulting delta-function we see that:

r (t) = OA ) IA (oA +m3)e'*^+Od)t + GA (WA -og)e-'(^)A (VI.B.36)

Thus operators like G produce sidebands at ±cod.

Combining this result with our calculation of G (co), we can compute the

amplitude of these sidebands for G., the ion's axial response to the cyclotron drive.
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We have from (VI.B.12c) and (VI.B.26):

a co2
GzX = - G 2 cosd t G;= (VI.B.37)

We can use the result (VI.B.36) above, writing WA = co++Ax, and

wd = (wo +Ax) - (oz +Az). We consider simultaneously sweeping the cyclotron drive

and the cooling drive, with their frequency difference held constant at o, + A. We

then find:

ao2
z(t) a G= ()++Ax)G 2( 2 + Az )e ,+ AI (VI.B.38)

2(co -- _)

and, for the radial motion,

V(+)(t) = 0=(++Ax)ei(++Az. (VI.B.39)

In this method of resonance, we sweep Ax with Az fixed. Thus, while Az sets

the maximum response (through G2), the axial resonance is observed through the peak

in G when Ax goes through zero. We can use these equations to estimate the

amplitude of the axial response. When the ions are weakly coupled to the coil, we

have:

d2(COz +Az) (VI.B.40)
2mz(Az - iyeff /2)

and thus, the full axial response is:

1
z(t) = ----o. a 2mO/ o ax (VI.B.41)8m2Az -Yeff /2{A - ~ o a

8 16(co-_) Az -iyeff /(2B4

This expression lets us predict the width and amplitude of the cyclotron-induced axial
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resonance. We can adjust the width by adjusting A.: by increasing A., we decrease

the imaginary part of the term in the braces in two ways. First, in the usual way, the

imaginary part for large A. will be given by 2 . Additionally, yeff itself depends

on A,: detuning the ion from the coil decreases the real part of the impedance the ion

sees from the detector and thus decreases 7,ff .

Notice that, for A, = 0, Equation (VI.B.41) predicts an effective width for the

induced resonance:

8 FWHM a 203 (VI.B.42)CyC 4 yeff (o+-)

This width continues to increase with increased strength of the coupling drive. Thus,

like the CW one-drive resonances (recall Figure V.A.3), the width of this resonance

does not saturate even though the true damping does.

We can use (VI.B.41) to compute the maximum axial response on resonance

(AX = 0):

2 7eff / 2

Zpeak = Yeff /2 (VI.B.43)
a co+mz2 Az - i eff / 2

At the same detuning, (VI.B.39) gives the maximum cyclotron response:

Vy+peak 3 as (VI.B.44)
a~z

V (+)
Since pc = , we find that:

0)+
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zpea { = - PC (VI.B.45)
14 AZ - i7-eff / 2

Therefore the amplitude of the cooling drive changes the relative amount of cyclotron

and axial motion induced on resonance. This effect can be valuable for minimizing

shifts due to perturbations (because of PC) without sacrificing undue signal-to-noise,

which depends on zo..

We can see the vivid differences between this induced resonance and the

avoided-crossing measurements. Comparing (VI.B.24) and (VI.B.40), we see that the

width of the avoided crossing and the width of the induced resonance are related:

N2

SeFWHM avoid (VI.B.46)Yeff

Therefore, if we were to use the same cooling drive that gives a good avoided

crossing, we would get an extremely broad induced cyclotron resonance. For example,

if the same cooling amplitude that produces an 8 Hz avoided crossing (Figure VI.B.3)

were used to drive a single N ion's induced resonance, that resonance would be over

1 KHz wide!

Another interesting observation about the second method is the relative

efficiency of the induced resonance in terms of cyclotron amplitude. If we turn down

the cooling drive to the amplitude at which the true cyclotron damping just begins to

saturate, we find:

282



Pc,pea =z,,a (VI.B.47)

That is, the relative cyclotron-to-axial response is the same as the thermodynamic

cooling limit, (VI.A.19). For stronger cooling drives, there will be less radial motion

for a given axial signal but a broader response. Thus we can trade the width of the

resonance for smaller cyclotron orbits when we are very worried about perturbations.

It is worth reiterating here the comment from the end of Section II.C.5. In the

presence of magnetic field inhomogeneities, this induced cyclotron resonance almost

certainly will be hysteretic. Recall from our discussion of non-linear resonances

(Section II.B) that the hysteretic regime begins when the frequency shift (due to the

orbit size) equals the damping of the oscillator. Because the cyclotron damping

saturates at yff /2 (presently, 0.15 s-1), small axial motion will cause shifts in the

cyclotron frequency of this order. For example, using the prediction for the cyclotron

shift, (II.C.5.5), and our estimated bottle, 6 gcm 2 , axial orbits of 0.1 mm should send

us into the hysteretic regime. With our present signal-to-noise we often drive the ion

ten times harder than this to detect it. Thus we understand the need to eliminate the

magnetic inhomogeneities for precision cyclotron work.

Figure VI.B.3 demonstrates some of the typical difficulties encountered when we

attempted these induced resonances. To obtain these data, we swept (discontinuously)

two, locked HP3325 oscillators across the cyclotron resonance. One oscillator was set

near the cyclotron resonance frequency, ve', the other near the cooling frequency,
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Two-Drive Cyclotron Resonance (?)

2 3 4 5 6 7 8 9

[Hz]

Figure VI.B.3. The subtleties of two-drive cyclotron
resonances. The top curve (swept first, right-to-left) shows the
resonance and then the increase in non-resonant signal after
the peak. The lower curve (swept immediately after, left-to-
right) shows the increased noise slowly vanishing as we
moved back across the cooling resonance.
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vC' - vz. The frequency difference between the two oscillators was kept fixed at the

(previously determined) axial frequency. Each point on Figure VI.B.4 represents a

10-second average of the coherent axial amplitude induced at the fixed vr. After each

average, we moved both oscillators by 0.1 Hz and began averaging anew. The error

bars on the graphs indicate the standard deviation of the mean of axial signals

averaged. That is, they are not traditional error bars, but rather an indication of how

much "noise" (meaning signals not at vz) was present at each frequency.

The order and direction of the sweeps is important here. The top curve was

taken first, sweeping from right to left. As we reached the middle of the curve, just as

the amount of coherent signal appeared to be peaking, the amount of "other" signal

increased dramatically. We could not determine whether this extra noise was due to

the initial cyclotron motion (left over from the ions' creation) or, possibly, to coherent

motion left in the sweep because the cyclotron oscillation was so undamped that we

could not sweep slowly enough to assure adiabaticity across the resonance.

However, we have just started induced cyclotron measurements, and at this stage

it is too early to tell if these problems can be overcome simply by a more clever

choice of experimental parameters. As we shall discuss in the next Chapter, these

difficulties have also led us to design other techniques to measure the cyclotron

resonances, all variations of separated oscillatory field methods [RAM56], which, in

the long run, we think are the techniques most likely to produce the highest precision

results.
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CHAPTER VII

CONCLUSIONS FOR THE FUTURE

This final chapter summarizes the measurements and calculations we have made

to understand systematic effects in the apparatus, especially those parameters that will

affect a high-precision mass measurement. The chapter also discusses the directions of

our future work.

In the first section, VII.A, we present measurements of some of the perturbations

in the trapping fields. We explain several techniques we have used to measure the total

electrostatic anharmonicity. Using these methods, we have measured how well the

guard rings can compensate for this anharmonicity and, in addition, we measured the

(inconvenient) shifts in the natural resonance frequency which accompanied this

compensation.

We also explain how we measured the anti-symmetric electrostatic potential used

to shift the ions within the trap. Although we have only measured to high accuracy

the product of the linear and cubic coefficients of this potential, we use other

measurements to estimate (at lower precisions) the individual coefficients. These

coefficients also determine the natural damping rate of the ions and the current they

induce in the trap.

We also include in Section VII.A evidence for the presence of charged patches

on the trap electrodes. Measurements show that after we coated the electrodes with a

carbon colloidal paint, these effects were cut down at least by a factor of three.
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Section VII.A concludes with brief discussions about trap tilt, eliminating

contaminant ions; and magnetic field effects. The discussion of magnetic field

problems is brief not because the problems are less important-in fact, they are

crucial-but because have only started making careful measurements. The discussion

of contaminant ions is brief because our observations are rather qualitative.

In Section VII.B, we outline several modification in the experiment which we

are in the process of making, or expect to make in the near future. Some of these

improvements-switching to a quieter SQUID detector, eliminating the magnetic

bottle-are rather concrete, while others-single sideband detection, separated

oscillatory field measurements-deal more with techniques. We will also mention

some of the more speculative modifications we are considering: for example,

stabilizing the magnetic field and redesigning the trap electrodes to make patch effects

less of a problem.

Finally in Section VI.C, we assess the possible accuracy and precision of the

experiment, both with the present apparatus and with the modifications we feel will be

required in order to reach our goal of accuracy at the 10-11 level.

VILA Measurement of Systematics

In this section, we discuss measurements of various systematic shifts, drifts, and

geometric coefficients for ions in the trap. In some cases we measured things which

we'd prefer were absent (anharmonicity, patch effects); for other effects, we need to
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know the coefficients to interpret other data correctly (anti-symmetric "shifting"

potentials); for still others we will need for corrections in our ultimate mass

measurements (trap tilt, magnet drift).

We will first discuss the electrostatic potentials. Since most of our experiments

focussed on detecting the axial motion, we have made many measurements of

electrostatic systematic effects. Using the terminology of Chapter II and Chapter V,

we have measured the lowest order anharmonic coefficient, C4, and the two lowest

order anti-symmetric coefficients B1 and B3. We have also observed an anti-

symmetric potential which persists in the limit of zero applied potential. We attribute

this potential to patch effects.

Using the Guard Rings: Measuring C4

Measurements of the electrostatic potentials, in particular, played a rather

symbiotic role with the single-ion experiment. In order to detect one ion, we needed

to excite it to rather large orbits in the trap. At these orbits, anharmonicity plays an

increasingly important role. On the other hand, these large orbits are the best

laboratory for making anharmonicity measurements. Thus, as we were able to see

fewer and fewer ions, our ability to characterize the trapping potential improved

dramatically, and we therefore could improve the harmonicity to see even fewer ions.

As we discussed in Section II.B, the symmetric electrostatic potential provides

axial confinement of the ions. As we showed in Equation (II.B.2), we can write the
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symmetric potential as a power series:

Ck Pk (cosO) (VII.A. 1)
2k event I

The k = 4 term in this potential is the leading-order anharmonic term. As we showed

in Equation (II.B.18), this term leads to an amplitude dependent shift in the axial

resonant frequency:

Acmz 3 z2
-- = -- C4 - 2  (VI.A.2)
coz 4d2

where z is the size of the axial amplitude and d is the characteristic size of the trap,

(II.A.2.5). We also showed (Figure II.B.2b) that this shift can lead to bistability; that

is, swept resonances can show sensitivity to sweep direction and hysteresis. In

Chapter V, we gave some typical examples (Figures V.D.3 and V.D.4) of anharmonic

axial sweeps. We will discuss in this section how we used similar data to make

quantitative estimates of the anharmonicity; in particular, how we measured C4.

All the techniques we used were essentially applications of Equation VII.A.2

above. For small numbers of ions (< 10), our best results came from cw swept, two-

drive resonances (described in Section V.C); though I will also mention a newer, one-

drive pulse method that shows promise of yielding values more quickly. For larger

clouds, we had to use more approximate techniques, and I will not mention those

methods below.

When the drives are sufficiently large (Vd > Vd"7i in Equation II.B.21) the
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hysteresis can be so large that we should only observe the ion response when we

sweep in one direction. For these drives, the anharmonic frequency shift, Equation

VI.A.2, determines the total response. We can therefore turn those resonant sweeps

"on their side;" that is, plot o against the measured ion response, z:

0) Co+3 WeC 424 d2 z2 (VII.A.3)

The curvature of the resulting parabola thus yields C4. The danger of this technique is

that it relies on the absolute calibration of the detector and an accurate count of the

number of ions in the trap to determine from the SQUID's output the absolute ion

response. Errors in those determinations will be squared in the final value of C4.

(However, especially after the single-ion measurement, we have reasonable confidence

in our absolute calibrations.)

When the anharmonicity is smaller (or the drives are lowered if we have enough

signal-to-noise), we can observe the ions in both direction of the sweep, though

hysteresis is still present. (Figure V.D.3 is an example of one such sweep.) For these

sweeps, we can use the different peaks in the two directions to determine C4. When

the total frequency shifts involved are of the same order as the (harmonic) width of the

resonance, y, we need to be a little more careful when we compute C4. Using the

complete anharmonic line-shape, Equations II.B.19 and II.B.20, one prescription that

yields C4 is:
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where o is the frequency at which the maximum response occurs (the shifted peak),

$1 is the response at that peak (in units of the trap size, that is, zp /zo), and w2 and

$2 are the frequency and response respectively at any other point on either of the two

sweep directions. For this second point, we usually used the peak on the response

curve for the sweep in the "bad" direction: that is, the smaller peak.

Both of these methods (parabola fitting and explicit computation) also allowed us

the measure the natural frequency, w0, though it is usually very close to the smaller

peak. This determination, though, does not depend on the explicit calibrations because

both the shifts and our estimate of C4 depend on the calibration in the same way. Thus

these estimates are a bit more robust.

Using these two techniques, we measured the anharmonicity of several clouds of

ions at different guard ring settings. Figure VII.A.1 shows the combined results of

two of the most precise measurements, separated in time by several months. One

measurement (Figure V.D.3 was one of the guard ring settings) was performed on a

single N ion. The other measurements were performed on a cloud of four N ' ions.

Since we changed several things between these measurements, (for example, we

entirely disassembled the trap, painted its surfaces with Aquadag, etc.) the absolute

guard ring settings were different for the two clouds. To include both clouds on the
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Measuring OC4 / aVr
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Figure VII.A.1. Guard ring effectiveness. The change in the
anharmonicity, C 4, is plotted against the change in the guard
ring voltage, Vgr..
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same graph, then, we have plotted the C4 measurements against the difference between

the guard ring voltage and the voltage at which C4 = 0 for each cloud.

As we have discussed in several places, for equal signal-to-noise measurements,

the ions show a number dependence of n 312 in sensitivity to C4. Thus with one ion,

we could make about 8 times better estimates of C4. Of course, we also needed an 8

times better C4 just to see the ions at all.

The slope of the points in Figure VII.A.1 gives the change in C4 for a change in

the guard ring voltage. We can express this value as a dimensionless constant by

multiplying it by the trap voltage. The resulting constant is the change in C4 for a

given change in (Vgr / Vt,,). This ratio, called D 4 by Gabrielse [GAB83], measures

the overall sensitivity of the guard rings:

D 4C4 == .076(4) (VII.A.5)
gr

Gabrielse's paper predicts D 4 for different guard rings shapes at different distances

from the center of the trap. For our trap (Figure IV.B.1), his formulae predicts

D 4 = 0.11. Since D 4 depends exponentially the position of the guard rings (because

of the strong electrostatic screening by the nearby ring and endcap), our measured

results shows fair agreement with his calculation.

In order for a single ion to show no hysteresis when driven to 20% of the trap

size, this value of D 4 requires setting the compensation potential correct to about

1 mV; a difficult, but not impossible demand. However, sweeping these resonances is
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rather time consuming, and thus we have been exploring quicker methods. One

particular method, using the single-drive pulse scheme of Section V.A shows great

promise.

The rapid method to measure C4 is to measure the axial frequency change of a

pulsed ion as a function of its decaying amplitude. To use this method, we pulse the

ions to very large orbits, up to half the trap size. After the direct detector excitation

decays away, we record the ion's transient decay. We then partition that decay into

smaller time chunks and fourier transform these chunks independently. In this way,

we measure the ion's frequency at different times, and thus as the ions decays, at

different amplitudes. Presently, we can measure the frequencies fairly well, but we do

not have enough signal-to-noise to measure the amplitudes with sufficient precision to

use them as an accurate indicator of the ion's amplitude. Since anharmonicity shifts

the ion's frequency with respect to the detector, these shifts also change the damping

time of the ion during the transient. Thus we have not been able (yet) to convert the

frequency-vs-time graphs to the frequency-vs-amplitude data we need to compute C4.

However, we expect to solve these problems in the near future.

Using the Guard Rings: Shifting o

Whenever we use the guard rings to change C4, we simultaneously shift the

ions' resonant frequency, too. In terms of Equation VII.A.1 above, this means that the

guard rings shift C2 as well as C4. Although not catastrophic, these shifts are
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somewhat inconvenient, and as mentioned in Section .B, several traps have been

designed that should minimize this additional shift. For a simple Penning trap,

Gabrielse showed that the ratio of the endcap spacing to the inside ring diameter,

zo/po, determines the relative shift in C2 for a given change in C4. (Different ratios

set the ring and endcaps at different distances from the asymptote of the hyperbolic

electrodes. Thus the various terms in the guard ring's potential at the center of the trap

will be screened differently.) Following his prescription, we constructed our trap with

po = 1.16zo for which there should be no shift in the ions' frequency as we adjust the

guard rings.

Using the same raw data that provided the aC4/aVg, measurement in Figure

VII.A.1, we determined the ions' axial frequency at the different guard ring settings.

Again, to combine the two sets of data, we measured the shift in the axial frequency

for the different clouds relative to the axial frequency at which C4 = 0. The results

are shown in Figure VII.A.2. The shifts, though small, are clearly non-zero.

To compare these data with other traps, Gabrielse suggests another

dimensionless parameter, D 2, that measures the shift in the ions' frequency that the

guard ring produces relative to the shift that an equal voltage change on the ring would

have produced. For the data in Figure VII.A.2, the trapping potential was 8.725 V and

the resonant frequency was about 158.9 KHz. Using Equation (II.A.2.5), then, a 1 mV

change on the ring would produce a 9.1 Hz shift. Thus using the slope of Figure

VII.A.2:
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D2 = z 3.7(2) x 10 (VII.A.6)
achz / aVta

As a measure of trap-tuning convenience, Gabrielse suggests an "optimality"

coefficient, y, which is the ratio of the two dimensionless D-constants just discussed.

For example, moving the guard rings further away would decrease D 2, but such a

decrease would be meaningless because the guard rings' ability to cancel out

anharmonicity would be diminished equally. This ratio y thus measures

(approximately) the relative change in C2 for a given change in C4. The smaller this

ratio, the more conveniently we can tune out trap anharmonicities.

For our trap, comparing Equations VII.A.5 and VII.A.6 we see that:

D = 0.049(4) (VII.A.7)
D4

This value should be compared to the y typical for non-optimal traps. The usual

practice (before GAB83 and BEA86) was to build "asymptotically symmetric" traps;

that is, traps for which the ring and the endcaps were symmetric about their mutual

asymptote: po = 4-4 zo. All these traps, regardless of the location of the guard rings

had y = 0.56. Thus our trap shows better than a factor of 10 improvement in

optimality, similar to other traps in current use. [VMF85]

We have one rather disturbing piece of historical data. We had made crude

measurement of the shifts caused by the guard rings with large clouds of ions even

before we could measure C4 accurately. All of these measurements show a three times

larger D2. It is very difficult to find a mechanism that can explain these results. For
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example, we could get C4 shifts in the axial frequency due to the magnetron orbit size.

(Equation II.C.4.10) For a constant magnetron orbit size, then, changing C4 will also

change (o. However, using the measured sensitivity D 4, a magnetron orbit of 1 mm

would be required to cause such a large shift. Though not impossible, such a

consistently large magnetron orbits seems improbable. We have no other reasonable

explanation for this discrepancy.

Before concluding our discussion of anharmonicity, it is worth recalling that C4

is not the only anharmonic term. For example, asymmetric charged-patches or

machining errors (ruining reflection symmetry) could cause odd order potentials. In

addition, we expect some higher-order anharmonicity due to the symmetric terms, C6,

C8, etc. In both cases, then, we need to extend (VII.A.2) to include terms that look

like z4 /d 4, and so on. Therefore, even though we may be able to eliminate entirely

C4 we none-the-less might have amplitude-dependent shifts. Alternatively, and a bit

exotically, if we have large patches, we may have adjusted C4 to cancel a substantial

C3 term in the z2/d 2 term (which also contributed at that order like C2 [LAL76])

only to left with a rather large z4 / d 4 term in which these contributions add together.

Regardless of their origin, we certainly have observed the effects of these higher

order terms. For example, Figure VILA.3 shows a very anharmonic single-ion sweep

(swept right-to-left) taken at the same time as the single ion data for the previous two

figures. The C4 term (that is to say, the z2 / d 2 term in the frequency shift) was
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Evidence for Higher-order Anharmonicity
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Figure VII.A.3. Demonstration of higher-order anharmonic
effects in the trap. The solid line shows an anharmonic sweep
of one N+ driven to 25% of the trap size. The dotted line
extrapolates the measured anharmonicity for stronger drives.
The dashed line, taken at the stronger drive, shows that C4
alone is insufficient to account for all the anharmonicity the
very strongly driven ion experienced.
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measured using an excitation which drove the ion to about 25% of the trap size. (the

solid line of Figure VI.A.3) We then increased the drives by a factor of 3 (the dashed

line). When the ion's motion was smaller than 30% of the trap size, the ions response

was identical. However, as the sweep continued, we clearly see that the ion's resonant

frequency is shifting faster than the square of its amplitude. (The dotted line on

Figure VII.A.3 is an extrapolation assuming the ion only been subject to a z2 shift.)

Thus using very strong excitations, we have strong evidence for other orders of

anharmonicity.

Measuring B1 and B3

In Chapter II, we described in detail a method to shift the ions in the trap by

applying voltages to the lower endcap. By investigating the anti-symmetric potential

in the trap:

1r k
D= - Bk Pk (cos9) (VII.A.8)

2 k odd Zo J
we discovered that the cubic term caused shifts in the resonant frequency of the ions

as we shifted a cloud within the trap:

Veff = vz 4 z4 BB3 (VII.A.9)

where V_ is the voltage on the lower endcap and Vr is the ring (trapping) voltage. (V+

has been set to zero.)

Thus we can measure the product B 1B3 by measuring the resonant frequency as
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we put different voltages on the lower endcap.

Figure VII.A.4 present the data from one such measurement. To obtain these

data, we used the one-drive pulsed method of Section V.A on a cloud of about 20 N'

ions. We used this method because it provides the quickest measurement of the ion's

frequency at the precision required for these data. After each measurement, we shifted

the voltage on the lower endcap and, to keep the ions at the same resonant frequency,

we shifted the ring voltage by half that amount. (Recall from Section II.B that

changing just the lower endcap voltage changes both the symmetric and anti-symmetric

potentials.) We also shifted the guard rings so that they were at the same fraction of

the ring voltage. We used a 5 1/2 digit DVM to set the trap potentials. Since the

trap voltage was about 9 Volts, we could therefore only make reproducible changes in

the resonant frequency to a bit better than 1 Hz. (This coarseness in the frequency

allowed us to use the "sloppier" one-drive pulse method to determine the frequencies.)

We fit these data to a parabola, shown as a solid line on Figure VII.A.4. Using

Equation VII.A.9 above, to convert the curvature of this parabola to a value for B 1B3,

we found B 1B3 = 0.198(4) where the error bar is the 1a limit from the non-linear X2

fit. We have made five different measurements of B 1B3 in the past nine months.

Except for one measurement, (made right after we cooled the trap, and when there

may have been a background gas problem), all the measurement agree fairly well with

this results. Averaging the four remaining measurements yields:
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Measuring B1B3 by Shifting Ions in Trap

-0.05 -0.03 -0.01 0.01 0.03
V/V r

Figure VII.A.4. Measuring the anti-symmetric potential in the
trap. The equilibrium position of the ions were shifted by a
potential applied to the lower endcap. The frequency shift
occurs because of a cubic term in the electrostatic shifting
potential.
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BIB 3 = 0.202(5)

This value agrees quite well with an estimate from a graph in the Brown and Gabrielse

review article [BRG86], which predicts this value to be about 0.21.

We noticed in all our early measurements that the parabola was always

displaced, indicating the presense of an additional, anti-symmetric voltage on one of

the endcaps. For example, for the data in Figure VII.A.4, the shift was 68(3) mV.

There are many possible causes for small differential potentials, including

thermocouple effects in the lower endcap bias wire, and different work functions for

the different endcaps. From the measurement above on a single ion species, we

couldn't rule out the possibility that machining errors had caused a shift in the center

of the trap. The 68 mV error above corresponds to a 5 mil shift in position, whereas

the axial dimension was specified to better than 1 mil [FLA87], so trap asymmetry

seems unlikely to be the major cause. Quite possibly, the major part of the

asymmetric potential comes from built-up charge on the surfaces; that is, to a patch

effect. We present further evidence that points to a patch effect in the next sub-

section.

Although we could measure the product B 1B3 with fairly high precision, it was

quite difficult to isolate either of these coefficients. We discussed one crude way in

Section II.B. The endcap voltage at which the ions are shifted out of the trap, Vk9 ,

depends on the sum, B I + 3B 3, as described in Equation II.B.13:
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B, + 3B3 = 2 - VIA11)d2 LI~J
(This expression takes into account the fact that V- both shifts the ions and weakens

the trapping potential.) We measured VU 1 several times. For example, to make the

single-ion plateaus (Figure V.D.1), we edged V_ closer and closer to VA11 in order to

release one ion from the trap at a time. However, we never observed a "hard" limit;

that is, some ions would leave the trap at V_ well above (0.2 V) other ions. (A

possible explanation is given below.) Thus we could only set a fairly rough limit on

VY9. For the trap voltage set at 8.72 V, the most we can say is that Val > 7.36 V.

When this value is used in (VII.A.11) above, we find that BI + 3B 3 < 1.64. This limit

can be combined with our value for B IB3 above. The resulting quadratic equation sets

the (rather relaxed) limit:

0.19 < B3 < 0.36 (VII.A. 12)
1.06 > B1 > 0.56

though physically, B1 cannot be greater than one.

We have other, indirect measurements of B 1. The amplitude of the single ion

response in Figure V.D. 1), for example, depends on BI as discussed in Section II.A,

Equation H.A.3.4. Using our detector calibration and our drive calibrations, the single

ion peak in Figure V.D.1 sets B1 = 0.80(5)(8), where the first error bar is statistical

from the detector noise, and the second is (a guess, really) of the calibration reliability.

A somewhat more sensitive determination of B I comes from the measurements of the
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few-ion damping constants in Figure V.B.1. We can use the three values of yz

measured from those data, to make a better estimate of y.0, the damping of a single ion

on the detector's resonance: y2= 0.31(2) s-1. Using the room temperature

measurement for the detector inductance, and the frequency and Q of the detector at

liquid helium temperatures, we can invert (II.A.3.7) to give B i:

2zo 0

B = RZ (VII.A.13)
e NRe Z

= 0.77(2)(4)

where the statistical error comes from 'yz above, and the other error represents a

(conservative) 10% uncertainty in the cryogenic inductance. This final value of B1,

combined with the measurement of B 1B3, gives B3 = 0.26. These final estimates

agree well with the [BRG86] calculation.

However, if these estimates are correct, then an interesting effect may be

happening. We see from Equation (II.B. 11) that for large V_, eo,ff can become zero:

our trap disappears, and our ions will leak away. We can use (II.B.11) and (I.B.8) to

determine the value for £ (the new equilibrium position) at which we lose trapping. If

this value is less negative than -zo, then the ions will "de-trap" before they are pushed

into the lower endcap. We find:

Sde -tra -zo 0 z02 2 Vta - 1 (VII.A.14)
6B3 d2 y, _de-tra
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Comparing this expression to Equation VII.A. 11 above, we see that the trapping

B,
potential vanishes just as the ions reach the lower endcap for - = 3. For larger

B3

ratios, the ions will hit the lower endcap; for smaller ratio, the trapping potential will

vanish before they get that far.1 We see that our best estimates for BI and B3 are very

close to this limit. This effect may explain the relative "softness" of the V_ barrier

mentioned above. Our trap may be close enough to the limit ratio that the thermal

motion of the ions is enough to get them over the vastly weakened potential barrier

when we adiabatically relax2 the trap with increasing V_.

Patch Effect

As mentioned above, the B 1B3 measurement demonstrated an offset in the anti-

symmetric potential. To better understand these offsets, we put different ion species in

the trap and measured the potential required to bring these ions into resonance with

our detector. Inverting Equation II.A.2.5, we see that:

V,= fm (VII.A.15)

Thus the mass of the ions and the trapping potential should be directly proportional.

1. However, since most of their velocity is in the z-direction, the ultimate fate of the ions will still
likely be smashing into the lower endcap.

2. The speed of the relaxation is essentially unimportant: when we lower the potential, we shift the
ions off the detector, and they become uncoupled from the thermal bath.
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Even in the presence of machining errors (see above), we expect a graph ofVre vs.

m should go through the origin.

Figure VII.A.5 shows two such measurements of trapping voltage versus ion

mass, made with two different detectors, and thus at two different frequencies. In both

sets of data, the three species lie precisely on a line, and this line does not pass

through the origin. In both cases, the curves show about a 150 mV offset at zero

mass, though differing by about 10 mV. (The total offset is many times greater than

even the most conservative error estimate.) The magnitude of this offset precludes

thermocouple effects, though not some of the more exotic, low-temperature metal-

metal offsets.

We can use the slopes of the lines in Figure VII.A.5 as a measurement of the

trap size, d2. Using the known frequencies and the known charge and mass of the

ions, we found, for the dashed line:

d146250 = 0.2988(2) cm 2  (VII.A.16)

and for the dot-dashed line:

59600= 0.3001(2) cm 2  (VII.A.17)

where the subscripts on d 2 correspond to the frequency of the detector. The difference

in length between the two values of d is less than 0.5 mil. Since the trap was cycled

to room temperature between these measurements, we find this a very satisfactory

agreement. The theoretical size of the trap, from the machining drawings, should have
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Patch Effect Evidence: Vtrap for different Ions

5 10 15 20 25
Ion Mass [amu]

Figure VH.A.5. Trapping potential required to bring different
species of ions into resonance with our detector. The two,
independent measurement have y-intercepts of about
-150 mV, indicating a differential voltage on the trap surfaces.
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been d 2 = 0.3011 cm2; again agreeing with our measured value to about 0.5 mil.

After we coated the trap with carbon paint, we performed another B IB3

measurement. The results, shown in Figure VII.A.6, show a factor of three

improvement in the offset of the parabola: the solid line in Figure VII.A.6, is offset is

19(3) mV from the origin. Also included on this Figure are two earlier measurements,

taken several months apart during which the apparatus was kept at liquid helium

temperature. (One measurements was presented as Figure VI.A.4.) We have included

these data to show that the voltage offsets had been very stable. Since the voltage

offset was reduced by coating the surface of the trap, we must conclude that the offset

was caused by a charged patch.

We have not yet performed a test of voltage vs. mass like that of Figure VII.A.5.

The reason is practical: to make a measurement at low masses, we need use a gas,

Helium or Deuterium, neither of which pump very quickly from the trap region.

Therefore, we usually make these measurements right before we warm the apparatus to

make other modifications. However, combining our one data point (N+ at 8.725 V)

with the measured values of d 2 above, we find about a 50 mV offset, again a factor of

three improvement over the unpainted trap. While this improvement has helped in the

detection of a single, N' possible, we may find that we need additional improvements

to go to lower masses, such as 3He'.

Trap Tilt
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Patch Effect
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Figure VII.A.6. After the trap was coated with carbon paint,
we observed a decrease in the voltage offset, here apparent as
a shift in the location of the parabola minimum.
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We discussed in Section II.C.7 the effects of misaligning the magnetic and

electrostatic axes of the trap. The signature of this tilt is that the usual relationship,

i = 21c -65m, will not be satisfied. (The bar denotes measured values of the ions in

the trap) Equation II.C.7.7 gives a prescription to convert the trap frequencies into a

tilt. In the small angle limit, we find the tilt, 0:

Z = pNj- -- (VII.A.18)
3m

-2

where, as in Section II.C.7, em = -

We used this method to measured the tilt before we last warmed the apparatus.

At that time, Vz = 159594 Hz, V, = 4628076 Hz, and Vm = 2756(1) Hz. (The

magnetron frequency was determined from magnetron cooling data, for example,

Figure VI.A.2) Using these data, we see that 9. = 2751.7 Hz, and thus, using

(VII.A.18), we find:

0 = 1.5(3) 0 (VII.A.19)

When we warmed the experiment (primarily to apply Aquadag to the trap), we

physically measured the tilt using a level and some shim stock. We found a 1-2* tilt,

in agreement with the measurement above. When we reassembled the trap, we did our

best to zero this tilt. We believe that the tilt now should be less than 10. Although

measurements of the cyclotron frequency have not been made, a more accurate

measurement of the magnetron frequency, combined with an extrapolation for the
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cyclotron frequency from the magnet drift (see below) indicate a tilt of about 0.8*. As

discussed in Section II.C.7 (see Equation II.C.7.9), this tilt would cause a negligible

(< 2x10- 14) error if we use only the measured cyclotron and axial frequencies to

compute the true cyclotron frequency of 3He+, ignoring the magnetron frequency

measurement entirely.

Killing the Bad Ions

Qualitatively, one of the worst nuisances continues to be contamination by other

ions. Impurity ions could cause shifts, anharmonic effects, time-dependent drifts; all

appearing as irreproducibilities in the measurements. When there enough impurity

ions in the trap, we have had difficulty detecting the good ions at all! For example,

when we had a high background pressure of Helium gas in the trap, we frequently

made so many helium ions that we could not detect any other species. (This problem

was traced to the ion pump, which had been saturated with Helium from an earlier

cryogenic leak. We removed this pump from the system.)

However, even in the absence of leaks, we still expect to create several

undesired ion species at the same time that make the ions we wish to trap. The

Penning trap is so deep and mass insensitive that any background neutral ionized

within its confines will remain trapped. We have tried many techniques to eliminate

these ions, and though no one of them seems to work by itself, in combination they

seem to remove the contaminant ions for many hours, at least from the central region

312



of the trap.3

The primary difficulty in eliminating the contaminant ions is that at large orbits,

the anharmonicities in the trap shift the ion frequencies unpredictably, especially right

near the surface of the trap. Thus simple resonant techniques are incapable of adding

enough energy to expell all the bad ions. However, driving very strongly near the

(calculated) resonant frequency for each contaminant species 4 followed immediately by

dropping the lower endcap voltage to drive all the ions near (but not too near) the

lower endcap has proven fairly successful. The driven ions should have large orbits

and thus should hit the lower endcap at the lower excursion of their excited orbit. The

undriven ions, ideally unexcited, should have orbits too small to bring them into

contact with the lower endcap.

It was hard for us to believe that such a seemingly fool-proof method should

fail, but it does. Typically, three or four hours after the treatment above, the axial

resonance begins shifting and we need to repeat the process. Perhaps ion/ion

collisions convert some of the axial motion of the contaminant ions into magnetron

motion while they are being driven, and thus give these ions large radial orbits. At

3. As mentioned in Section II.C.2, we could tell that the good ions were being affected by contaminant
ions when we saw their resonant frequency begin to drift. The magnitude of these drifts were
typically of -Hz / min order.

4. We usually assumed water, 14N+, tungsten (from the field emitter), gold (from the surface),
helium, and hydrogen would be the most likely contaminants.
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large radii, they are unaffected by the drive and cool very slowly, presumably by

coupling to the good ions in the center of the trap.

More recently we have tried a variation of the method above, using incoherent

excitations. We use the computer to generate white noise (to an adjustable bandwidth)

and use this voltage to amplitude modulate an excitation drive set near the contaminant

ions' resonant frequency. By clever choice of parameters, we can put the good ions at

a node of the noise (it has a sinc2 dependence far away from its central frequency) to

minimize their excitation. Again, we dip the cloud after such an excitation. Using

this technique, we have trapped a single good ion, apparently with no other

contaminant ions. (For example, one ion was stable for over 13 hours, when we let it

go free.) However, to achieve this isolation, we sacrificed many of the good ions each

time we shifted the cloud, indicating that the good ions were still being heated during

the contaminant ions' excitation.

Magnetic Field Measurements

As we shall discuss in Section VII.C below, magnetic field perturbations-drift,

inhomogeneity, and short-term instability-will be the most important factors that

determine the accuracy of our mass measurements. However, at this point, we have

made only minimal observations of these perturbations. In fact, we only have data for

one of these factors-the magnetic field drift-and those data should be considered

preliminary.
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In Figure VII.A.7, we show our four reliable cyclotron measurements. The

frequencies were obtained from the measured cyclotron and axial frequencies,

corrected according to Equation II.C.7.9. The error bars are statistical, and,

importantly, do not contain any systematic corrections for orbit sizes. Since the

corrections for the magnetic bottle alone are likely to be at least as large as the error

bars given, (see Sections II.C.5 and VI.D.) the spread of these points about the least-

square line is not a surprise. For these data, X2 = 8, showing that we have likely

underestimated the errors at least by a factor of two.

We have made no measurements of the magnetic bottle, or verified the radial

cooling limits in Section VI.A. Our earlier calculation [FLA87] for the bottle caused

by the copper and MACOR in the trap recently was repeated, confirming the earlier

results: the trap should cause about a 6 gauss/ cm 2 magnetic bottle.

To measure this bottle, we could move the ion cloud within the trap (using the

lower endcap) and measure the cyclotron frequencies at the different locations. Since

we have fairly good values for BI and B3, we should have a fairly good idea of the

absolute equilibrium position of the shifted cloud. Alternatively, we could measure the

cyclotron frequency with the axial motion locked at different amplitudes (using the

absolute calibrations of the detector to determine the absolute amplitude of the axial

motion) and measure the shifts in the cyclotron frequency, (II.C.5.5) to measure the

magnetic bottle. This last method may be particularly relevant because it measures

directly the systematic corrections we will need to apply in a real cyclotron
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Magnet Drift, Preliminary Data
I I ,

drift = -0.5(2) x 10-9 /hour

1000 2000
Time [hours]

3000

Figure VII.A.7. Preliminary magnet drift measurements. The
cyclotron frequencies are plotted against time. These data
have not been corrected for bottle effects.
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measurement.

To verify the magnetron cooling limit, anharmonicity effects will probably be

easier to use than the magnetic bottle. Although the magnetic bottle also shifts the

magnetron frequency (sometimes called the "continuous Stern-Gerlach" effect

[BRG86]), these shifts can be overwhelmed by electrostatic anharmonicity. Comparing

their shifts (Equations (II.C.4.4) and (II.C.5.4)), using the magnetic inhomogeneity

calculated above, an electrostatic anharmonicity of only C4 = 4x10- would cause an

identical shift to our present bottle.

Thus one method to measure the magnetron radius would be to use our guard

ring calibrations to change C4 and measure the axial frequency shifts beyond those

given in Figure VII.A.2. However, these shifts probably will be too small to measure

a radius anywhere near the magnetron cooling limit. (For example, a single-ion line

width, 0.05 Hz, would be caused by a radius p, = 0.25 mm at C4 = 10~4, about forty

times larger than the expected cooling limit, (VI.A.16).

Alternatively, then, we could lock the axial frequency (as discussed in Section

V.D) with C4 purposely set rather high-but not so high that the resonance is

bistable-and then measure changes in the locking voltage when we heat the

magnetron motion from its cooled state. As the magnetron orbit size increases

exponentially, the trap voltage will have to shift to accommodate the changing axial

resonance frequency. Using the observed growth rate of the magnetron orbit, we
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should be able to extrapolate back to determine the original (cooled) magnetron orbit.

This procedure would also let us verify the cooling and heating rates given in Section

VI.B.

VII.B Proposed Improvements

In this brief section, we shall outline some of the modifications we believe will

improve the accuracy and precision of the experiment. As we shall see in the next

section, several of these improvements will be required in order to reach our desired

precision of 10-11. Others mentioned here will simply make the goal more convenient.

One obvious area of improvement is the SQUID detector. Following our

discussion in Section III.A.2 (the J. Appl. Phys. paper), there are three possible

directions for improvement. If we can increase the Q of the detector, we will lower its

thermal noise on resonance, and thus improve our ion current sensitivity. We also

have a higher-frequency SQUID (which uses 200-MHz RF pump frequency) This

device shows noticeably quieter voltage noise (at least, when it is not connected to the

ion trap), and thus, all other things being equal, we could increase the coupling

between our coil and the SQUID to increase the bandwidth of our detector.

In addition, we have been using pulsed excitation and transient detection more

and more frequently. However, we have optimized the detector for CW use,

minimizing its total, effective current noise on resonance, i. However, for pulsed

experiments, the integration time is limited by the ion's life-time. Since the life-time
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depends inversely on the real part of the detector impedance, we therefore must

minimize i ReZ, the effective noise power. Likely, then, we will find that we want

to operate off the detector resonance (where ReZ has decreased but i2 is still

relatively small), and tighten the coupling to recover the lost signal.

Another area of improvement will be in the electric and magnetic field stability.

Although I leave a more complete discussion until the next section, it is worth

emphasizing our unique requirements for short-term magnetic field stability: instability

in the magnetic field translates directly into inaccuracy in measured mass ratios.

Electric field instability and anharmonicity, though less crucial, are far from

unimportant. For example, although we have reduced the patch effect, we have not

eliminated it. We even may need to sputter a new surface onto the trap which is less

sensitive to patch formation than gold. Alternatively, we have discussed redesigning

the trap in rather radical ways. For example, we might construct a trap with the

endcaps very close together while the ring remains further away. The trapping

frequency depends on the combination of these dimensions

(2 d' d 2 =z /2 + p2/4), so such a trap would not have vastly different

frequency properties. On the other hand, patches on the rings would have minimal

effects, whereas the endcap electrodes would have much smaller surface area to

support patches. However, this kind of trap will require significant theoretical work

(for example, to determine how to compensate it efficiently, etc.) and thus we have no

short-term plans to implement these ideas.
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We have several schemes to improve or eliminate the magnetic bottle. One idea,

for which the design is complete, to decrease the magnetic bottle by about a factor of

five by adding MACOR disks at strategic locations. We could use the superconducting

shims of our magnet to eliminate the remaining inhomogeneity. However, the extra

MACOR would significantly lengthen the thermal time constant of the trap, and with

all the magnetic compensation disks, it might take a week (or longer) for the trap to

cool to 4 K. Another option would be to use different materials as insulators in the

trap (for example, fused quartz) which has better thermal, conductivity and magnetic

properties.

Finally, we have been developing better detection techniques and technology.

One simple improvement will be to use single-sideband detection techniques.

Presently, for both transient and phase-sensitive detection, we use a double-balanced

mixer to bring the ion signal into a convenient frequency range for the computer to

measure and store. However, after mixing with cosco,,,& t, both a signal at co = csig

and noise at co = 2cm,,,& - c,;g will appear at a detected frequency co,ig - cax. That

is, by mixing with only one phase, coscx t, we cannot distinguish the sign of the

resulting frequency. For example, signals above and below oj.. & will show up in the

FFT spectrum.

However, by using two mixers, driven independently by cosOM, t and sinwOMixt

we can recover the complete input signal. For example, we can use the two mixed

signals as the real and imaginary parts of a complex time signal and perform the
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complex fourier transform on the resulting data set. Exploiting the fourier-transform

symmetry relationship, X(m) = *(-3), we can reconstruct the positive and negative

spectra from the even and odd parts of the resulting complex spectrum. Off the

detector resonance, where the noise is due entirely to the voltage noise of the SQUID,

this technique should provide a 1/ 42 improvement in the amplitude signal-to-noise,

providing somewhat less improvement on the detector's resonance.

A second improvement in techniques is to switch to pulsed, separated field

measurements, akin to those devised by Ramsey [RAM56,PRI86]. In addition to

yielding a 42 improvement in peak-center determination (by narrowing the resonance

line), separated field measurements are particularly useful on undamped systems for

which sweeping across the resonance with CW excitation is impractical.

These methods all use the ion's free precession between pulses to give an

amplitude response that is phase dependent. As an example, we describe one

experiment which has already yielded results. We first excited the magnetron mode

with a frequency-selective pulse near the magnetron frequency. After waiting some

time, T, we pulsed the ion with a magnetron-axial pulse. The product of the

amplitude and the duration of that pulse was designed to swap the action between the

axial and magnetron motions. (See Section VI.A) Thus the phase of the resulting

axial motion (which we detected) should depend sinusoidally on the free-precession

period, T. Using this method, we have measured the magnetron magnetron frequency

to 10 mHz; a factor of 100 improvement over our CW cooling method. (This was
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how we determined the magnetron frequency for the recent tilt measurement described

above.) We expect to attempt this method on the cyclotron resonance in the near

future.

VH.C Future Prospects and Future Limits

Finally, having demonstrated that we could detect one trapped ion, having shown

several techniques for measuring cyclotron frequencies which soon will be attempted

on single ions; having measured or estimated many of the systematic perturbations to

the cyclotron frequency, we shall conclude in this section by speculating on how well

we might be able to compare masses in our experiment, both with our current

apparatus and ultimately.

There are two classes of problems that limit the accuracy of this (or any high-

precision) experiment: run-to-run instabilities, and measurement imprecision. We

have two major kinds of measurement uncertainties; first, errors when we extrapolate

to zero perturbation and second, our ability to split thermally-broadened, noise-

contaminated resonance lines. In this section, we will discuss first the limits causes by

magnetic and electric field instabilities. Many of these limits can be improved by

actively or passively stabilizing the fields. We then turn to measurement imprecision.

Using estimates of the perturbations, thermal motions and detector signal-to-noise, we

try to give predictions for the best width of cyclotron lines, our ability to split those

lines, and our ability to combine several measurements to extrapolate to zero

perturbations. We will find that the thermal motion and the zero-drive extrapolations
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are intimately related.

Magnetic Field Fluctuations

The first source of field fluctuation comes from the slow decay of the magnetic

field. All superconducting magnets show some drift [WIL83], and even though our

drift is particularly small (measured to be 10~9 per hour or so), we could imagine that

errors in measuring this drift will translate into uncertainty in the field at the 10-11

level, if other resports using similar magnets (VMF85) prove consistent.

Much of the additional field fluctuations could come from changes in the

ambient conditions. When the atmospheric pressure changes, for example, we expect

several small changes in the apparatus. First, the pressure change should directly alter

the size of the magnet. An extremely crude calculation, assuming that the magnet has

the same bulk modulus as steel gives, for typical pressure fluctuations in the Boston

area, instabilities somewhat below level of 104 per hour level. More importantly,

though, [GAB88,CAS88] changes in atmospheric pressure change the boiling

temperature of the liquid helium surrounding the magnet, and thus can cause thermal

expansion or contraction of both the magnet and our ion trap, again at the 10~9 level.

To overcome these problems, like other experimenters [GAB88], we probably will

need to regulate the pressure of our Helium bath against an absolute pressure. This

regulation, though crude, has performed well enough to bring these pressure-induced

variations below measurable levels; that is, below 10-11, and, we expect, could be
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extended even further.

External magnetic field "noise," caused by the small fluctuations in the Earth's

field and by magnetic pollution (due to trucks, trains, elevators, and low frequency

electromagnetic fields which propagate though ferromagnetic building materials) may

prove to be an even worse problem. Although superconducting magnets provide (via

flux quantization) some inherent screening against external field changes [GAT88], we

probably will have to perfect some additional field stabilization methods. At

Washington, Van Dyck's group [VMF86] have begun using a "variable bottle," (two

cleverly chosen loops of superconducting wire) which, among other things, screen out

external magnetic field changes by keeping the flux threading the loops constant. This

method screens out environmental fluctuations as well as the field fluctuations of the

superconducing magnet. Another method, currently being implemented at Harvard by

Gabrielse [GAT88], is to add extra superconducting solenoids along the axis of the

magnet which should increase by a factor of ten or more the passive self-shielding of

the magnet system without sacrificing the field homogeneity. To keep fields stable to

the 10-12 level, we probably will need to combine these techniques, possibly with

some form of active stabilization.

On the other hand, if we can simultaneously trap the two ions whose masses we

wish to compare (an open theoretical question), many of these field problems could be

reduced considerably, and, in fact, we might get to the 10-11 level using any of the

existing stabilization methods.
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Electric Field fluctuations

Electric field fluctuations are important, too, because the axial frequency affects

the measured cyclotron frequency, ce' through the magnetron shift, Equation

(II.A.2.13):

CO 2
e' 14"C + -- (VII.C.1)

2 coc

Therefore fluctuation in the axial frequency &oz become fluctuations in the measured

cyclotron frequency &o':

moz
'= --- So (VII.C.2)

When we measure all the modes simultaneously, these fluctuation are not a problem:

the quadrature sum rule (II.C.7.4) takes care of them. (Shifts in the magnetron

frequency are rarely a problem because there must also be a large tilt for them to have

an impact on the cyclotron frequencysee further the discussion in Section II.C.7,

especially equation II.C.7.9.) However, sequential measurements would be a problem.

In order to understand the problems electric field instability might introduce, let us

describe its effects for a particular measurement scheme.

We expect that "separated-field" measurements have the greatest chance to

provide extremely high precision frequency resolution. For such a measurement, we

would excite the cyclotron motion directly, wait some extended time, then pulse the

coupling drive to transfer the cyclotron motion into the axial motion, swapping action
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between the two modes as described in Section VI.A. By measuring the phase of the

resulting axial motion as a function of the time between the excitation and coupling

pulse we could reconstruct the natural cyclotron frequency. The precision of this kind

of measurement depends roughly on the product of the signal-to-noise and the

maximum length of time we can allow the ion to freely precess. The field instabilities

therefore limit the precision by limiting the time we can integrate the phase during the

free precession.

We can estimate the electric field stability using preliminary measurements we

have made on pulsed, single ions. Though only a rough estimate, we saw fairly

reproducible stability in o, to about 1/20 Hz over a four second period, consistent

with estimates for the noise of the voltage reference given in Chapter IV. (Pressure-

induced temperature fluctuations changing the size of the trap should be two orders of

magnitude smaller [FLA87]). Assuming the axial frequency performs a kind of random

walk, we might naively expect a roughly T312 dependence for the phase error in time,

T. (One factor of T 112 for the random walk, one factor of T for the integration over

frequency to get the phase.) Using this instability estimate, we would be limited to a

40 second integration time for N ' and about 160 seconds for 3He+, thus yielding a

minimum width -= 10-1 for N+ and 2x10-" for 3He+. (We get the longer times

for 3He+ because its larger oc suppresses the axial contribution to a greater extent

than in N'.) The somewhat disappointing figure for N+, however, can be overcome
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by locking the axial motion to an external frequency source (and possibly locking the

ion's amplitude, too) to avoid this diffusion of the axial frequency.

Thus both electric and magnetic field instability will be a problem at the 10-9

and active and/or passive stabilization of the fields will be required to push beyond

that level. However, the stabilization required should not be particularly sophisticated

or complex, and thus these field fluctuations, though extremely important, should not

present a fundamental or insurmountable limit in the future.

Thermal Widths and Shifts

Each of the major perturbations alters the mode frequencies through the random,

thermal motion of the ions. As we saw in Section II.C, the perturbations shift the

mode frequencies by the square of the various mode amplitudes. The axial mode is

coupled directly to a heat bath through the detector dissipation. Since the cyclotron

mode, in turn, must be coupled to the axial mode to measure it, all modes will be

given both widths and shifts from this thermal interaction.

In general, we need to separate and understand widths and shifts of four

different types in cyclotron motion for each of the major perturbations. First, the axial

frequency itself may have shifts, which, as described in Equations VII.C.1 and VII.C.2,

indirectly affect the cyclotron frequency. Second and third, the thermal energy in both

the cyclotron and axial modes will broaden and shift the cyclotron frequency directly.

Finally, the thermal motion in the modes makes it impossible to know precisely the
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initial conditions before excitation. When we then extrapolate to zero drive strength,

we will have uncertainties because we could not know the true excitation.

Thus, if we plot measured cyclotron frequency versus amplitude of the drives

with with we measured it, we expect a parabola because all the shifts are second order

in the amplitudes of the modes. The first three effects above yield errors in the

cyclotron frequency while the last effect causes an error in the amplitude. The local

slope of the parabola at that amplitude then convert this amplitude error into a

frequency error.

How large are these effects for the various perturbations? We will show that for

the present MACOR trap, the magnetic inhomogeneities should far outweigh the two

other dominant perturbations, electric anharmonicity and relativistic shifts.

Electrostatic Anharmonicity

We first show that the electrostatic anharmonicity (Section II.B.3) will have

nearly negligible thermal effects. As shown in Equation (II.C.4), anharmonicity

presents a fairly minor effect in the cyclotron motion since it is suppressed by the

large factor cm / oc. Even for the heavier ions (like nitrogen), this shift will be

several orders of magnitude smaller than the bottle shift. The axial width, given by

Equation (II.C.4), could be significant when the trap is not well compensated.

Estimating z2 from equipartition for an oscillator in equilibrium at temperature T, the

axial width is be given by:
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AOz 3 C4 kT C4
oz 4 d 2 eV m (amu) (VH.C3)

where V is the trapping potential and m is the mass of the ion in atomic mass units.

Using (VII.C.1), we see that this axial width translates into a cyclotron width:

Ac
-- = 6x10-9 C4 m (amu) (VII.C.4)

(C

and thus is never a problem for the kinds of compensation we have achieved,

C4510 5 . The magnetron shifts, which could be larger on an relative scale, will be

suppressed by an even larger factor, and, as discussed in Section II.C.7 only enter the

cyclotron equation through a tilt in the trap. We therefore neglect them.)

Magnetic Inhonogeneity

The bottle, on the other hand, can cause a much larger width. First, we see that

the thermal motion in the axial mode will cause a width in the cyclotron frequency.

Using (II.C.5.5), we see that:

2xAOm B2 (Gauss / cm 2)
- - -(=ax10 ~ (V II.C .5)meC m (amnu)

In addition, as discussed above, we expect a breadth in the line because of the

uncertain initial conditions. Using a cyclotron/axial coupling pulse that completely

swaps the action between the two modes, the cyclotron radius, pe, when transferred,

becomes a larger axial peak amplitude, zpk:
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Zpeak = c (VII.C.6)

(See Section VI.A) We then detect the phase of the induced axial motion. However,

while the cyclotron motion is precessing, the random component of pc is causing a

small shift. Our uncertainty in the cyclotron orbit size, ap, propagates into an

uncertainty in the shift, aO:

B2  B2
as~~ = cj c aP =_ *z --- z az(VIC7

where az is the thermal axial motion.

These two widths (the direct thermal width and the initial-condition-uncertainty

width) can have different relative magnitudes for different ions and different size

drives. Using the present signal-to-noise of our detector (in terms of an axial

displacement, about 0.2 mm/ Hz 1/2) and our best estimate for the bottle (about 6

Gauss /cm 2), we can tabulate the bottle shift, the spread in the shift due to the

uncertain initial conditions, and the uncertainty in a measurement with a 40 second

separation time on a single N2+ ion, for several different cyclotron pulses and their

resulting axial amplitudes (the cyclotron frequency is about 4.630 MHz):

Axial Amplitude Bottle Shift Thermal Spread S/N-Limit Uncertainty
(mm) (mHz) (mHz) (mHz)

1.2 80 8 0.5
0.6 20 4 1.0
0.3 5 2 2

We see that for the high signal-to-noise pulses, the uncertainty in the frequency shift
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will be due almost entirely to the uncertain initial conditions, and thus there is little

reason to use long separation times on the larger amplitude pulses. We thus see that

the bottle limits the possible accuracy of the experiment to around 10~10 for N'.

For 3He+, on the other hand, (VII.C.5) predicts a much larger relative width in

the cyclotron frequency due to the thermal z motion, about 4x10 9 . Thus integration

times much longer than one second would be superfluous with our existing trap. In

fact, for the Helium/lTritium measurement, the uncertainty due to random initial

conditions should be swamped by the width of the bottle. Computing the same table

for the 3He* cyclotron at 43.2 MHz, we get:

Axial Amplitude Bottle Shift Thermal Spread S/N-Limit Uncertainty
(mM) (mHz) (mHz) (mHz)

1.2 80 20 20
0.6 20 10 35
0.3 5 5 70

Thus, assuming that we have sufficiently small (and well measured) anharmonicity in

the trap, we can use the large pulses effectively to measure the bottle and thus have

some hope of performing a measurement at a precision of about 4x10~10 (about 1 eV)

on the Helium and Tritium.

In addition to the thermal spread, there will be a small thermal shift due to the

fact that we neglected the average thermal energy in the cyclotron motion; much

smaller than the shift due to axial energy because the thermal cyclotron motion is so

much smaller. Even for our large bottle, this effect gives a cyclotron shift of about
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10-12 (its the same for all ions). In addition, it is only through the uncertainty in the

temperature of the cloud that this width gives an error, and thus we expect this error

ultimately should be less than 10-13.

Special Relativity

However, we have plans to eliminate this magnetic inhomogeneity. Our magnet,

before we put the trap in, had nearly 3000 times better homogeneity. [OXF85,FLA87]

If our MACOR "shimming" (described in the previous section) works and we can

reduce this bottle by a factor of five or so we may be able to use the superconducting

shims on the magnet [OXF85] to eliminate the rest of the inhomogeneity.

Alternatively, as mentioned in the previous section, we might make a trap from less

paramagnetic materials and thus stay within the shimming limits of our magnet without

adding extra magnetic material. If we can eliminate the bottle in either of these ways,

would we then be home free?

No. As discussed at the end of Section II.C, special relativity takes over when

the bottle disappears. Comparing (II.C.5.5) and (II.C.8.1), we see that for an ion of

mass m, the shifts in the cyclotron frequency due to the cyclotron orbit size, special

relativity behaves just like a bottle of size B "':

B rel = 60 gauss/ cm2  (VII.C.8)
m2 amu 2

Conveniently, relativity for 3He * corresponds to roughly the same size bottle as the

one used in the previous table, about 6 gauss /cm 2.
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Although we may neglect the thermal-axial width (because relativistic shifts due

to axial motion are reduced by the large factor o, / 2o) we cannot eliminate the

uncertainty in the cyclotron shift due to the uncertainty in the cyclotron's initial

conditions. This remaining thermal uncertainty is about 10-11 for 3He+, and thus for

large signal-to-noise pulses, we should thus have a corresponding error less than 1

mHz.

Extrapolating to zero relativistic perturbation, then, we get an uncertainty,

roughly, of about 10-11 divided by the square-root of the number of times we can

measure the ions before the field instabilities overwhelm the uncertainty.

Special relativity coupled with field instability thus provides the fundamental

limit to our measurements. However, the specific values above still might be

overcome. Recall from Section III.C that the axial and cyclotron temperatures are

related by:

(oc
Te = ---- TZ (VH.C.9)

coz

and thus the cyclotron temperature is usually much higher than the ambient 4 K. The

thermal uncertainty in the cyclotron orbit (given by the cyclotron temperature) could

be lowered significantly if we could somehow beat this temperature down.

We could lower the axial temperature, perhaps by using continuous feedback or,

since we can measure the axial motion more accurately than its thermal noise, by a

clever application of a "super-cooling" pulse with the ion off the detector resonance.
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By combining this temperature lowering with axial/cyclotron coupling, we could

reduce the uncertainty in the cyclotron orbit size.

Alternatively, we could cool the cyclotron motion directly. For example, we

could split the ring, use a variable-frequency tuned circuit to damp the cyclotron mode,

and change its tuning to remove the damping during a cyclotron measurement. After

cooling the axial motion with its detector, we would move the ion off the detector so

that it would have a very long equilibration time with the axial detector. If we detune

far enough so that the equilibration time is longer than the time we take to measure the

cyclotron frequency, the uncertainty in the cyclotron initial condition would then come

from a much cooler source. Conceivably, we also could cool the cyclotron motion to

4 K directly by collisions with background ions (which are in equilibrium with a

detector), and then dump out all but the good ion before measuring its mass. If we

want to be really far-fetched, we might imagine using collisions with trapped positrons

which would cool quickly to 4 K by their microwave cyclotron radiation! Since the

final precision, in general, is directly proportional to the cyclotron temperature, any

method that could lower this temperature should yield dramatic improvement.

Summarizing, we must stabilize the magnetic field to achieve precisions beyond

10. In addition, our present magnetic field inhomogeneities will limit the experiment

at the 10-10 level. If we can control these problems, we should be able to reach our

goal of 10-11 and, if we can cool the motions further, beyond.
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