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Abstract 

In this research, we use high frequency waveform information to determine the focal 

mechanisms of small local earthquakes at an oil reservoir. During the waveform inversion, we 

maximize both the phase and amplitude matching between the observed and synthetic 

waveforms. In addition, we use the polarities of the first P-wave arrivals and the S/P amplitude 

ratios to better constrain the matching between the synthetic and observed waveforms. The 

objective function is constructed to include all four criteria. Due to the complexity in the 

objective function, it is almost impossible to directly perform an inversion with derivative 

techniques. Instead, an optimized grid search method is used to search over all possible ranges of 

fault strike, dip and rake, as well as a predetermined range of earthquake locations. To speed up 

the algorithm, a library of Green‟s functions is pre-calculated for each of the moment tensor 

components and possible earthquake locations. Careful optimizations in filtering and cross-

correlation are performed to further improve the grid search algorithm, such that no filtering and 

cross correlations are performed in searching through the parameter space of strike, dip, and 

rake. Consequently, speed is boosted tenfold by these optimizations in filtering and cross 

correlation.  

 



We apply the new method to induced seismic events in an oil reservoir. Satisfactory matching 

between synthetic and observed seismograms is obtained, as well as reasonable focal 

mechanisms, considering the local geological structure and possible causes for induced 

seismicity. 

 

Introduction 

 

Induced Seismicity is a common phenomenon in oil reservoirs when production activities are in 

progress. It is mainly caused by water injection and gas and oil extraction, which change the 

stress distribution (Sarkar, 2008). By studying the patterns of the induced seismicity (e.g. 

location and focal mechanism), a time-lapse history of the stress changes in the oil reservoirs 

may be reconstructed and the influence of oil production on reservoirs may be better understood.    

 

Because the monitoring networks at the oil reservoirs are usually sparse, it is very challenging or 

impossible to use only polarity information to constrain the focal mechanism of the induced 

seismicity (Hardebeck and Shearer, 2002). Some previous research used waveform information 

(Zhao and Helmberger, 1994; Zhu and Helmberger, 1996; Tan and Helmberger, 2007); however, 

they all used dense station network with low frequency range, and only part of the waveform 

information was utilized in the inversion. Sze (2005) used only P wave information and a 

wavelet-based approach to invert for focal mechanisms from a sparse network. Our study uses 

high frequency, full waveform information to constrain the focal mechanism for induced 

seismicity. We use the known velocity structure to calculate the Green‟s functions for all moment 

tensor components of the source and for each location (hypocenter). To compare these with 

observed seismograms we design an objective function, which incorporates various information: 

the cross correlation values between the synthetic waveforms and the data, the L2 norms of the 



waveform differences, the polarities of the first P arrivals, and the S/P ratios. In this way, we can 

find robust solutions to the focal mechanisms of induced seismicity by a sparse shallow surface 

network in an oil field, even when only vertical component data are available. 

 

Method 

 

Earthquake locations are usually provided by the traveltime method. However, in most cases, 

due to an inaccurate velocity model and picking erroneous arrival times, the estimated seismic 

event locations from traveltime may have errors, which are greater especially at depth. 

Therefore, to find a better agreement between synthetic and observed waveforms, we also search 

for better locations around the catalog location. The search domain for a better location is shown 

in Figure 1. The red dot denotes the location given by the traveltime locating method, e.g., the 

double difference method (Zhang and Thurber, 2003), and the surrounding green dots (including 

the red dot) denote the possible locations in our search. 

 

                                         Figure 1. Search domain for a better event location. 



 

The focal mechanism can be simplified and represented by a 3 by 3 moment tensor (Stein and 

Wysession, 2003). Usually, as there is no rotation of mass involved in the rupturing process, the 

tensor is symmetric, and only has six independent components. Here we assume the focal 

mechanism of the small induced seismicity can be represented by pure double couples (Rutledge 

and Phillips, 2002), though it is possible that a volume change or Compensated Linear Vector 

Dipoles (CLVD) part may also exist. The constraining of focal mechanism as double couples 

(DCs) has additional advantages. Specifically, the anisotropy, which is not described by the 

isotropic Green‟s functions, often raises spurious non-DC components in focal mechanism 

determination (Eisner et. al., 2007); thus, by assuming focal mechanism to be DCs, this spurious 

non-DC components can be ruled out. Instead of searching through all possible double couple 

combinations, we search through all possible strikes, dips, and rakes for an event, and 

decompose these three parameters as double couples. For each of these six components, we can 

use a Discrete Wavenumber Method (DWN; Bouchon, 2003) to calculate its Green Functions. 

Then the synthetic waveform from a certain combination of strike, dip, and rake is expressed as a 

linear combination of weighted Green‟s functions: 
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where 
n
iv  is the synthetic i

th
 (north, east or vertical) component at station n; n

jkm  is the moment 

tensor component, )(, tGn
ijk  is the i

th
 component of the Green‟s function for the (j, k) entry at 

station n (note for different locations shown in Figure 1, )(, tGn
ijk  is different), and )(ts  is the 

source time function. In this study, a smooth ramp is used as )(ts . 



 

Before the grid search is performed, we build a Green‟s function library. We pre-calculate all 

s')(, tGn
ijk  for all possible event locations at all stations and store them on the disk. When we 

perform the grid search, we simply need to do a linear combination of )()(, tstGn
ijk , each of 

which  is weighted by 
n
jkm .  

 

To find the similarity between synthetic and observed waveforms, we need to do two kinds of 

basic computations: filtering and cross correlation. Even on modern computers, these two 

computations are very time-consuming, especially when they are executed repetitively. 

Therefore, the following manipulations are performed to solve this issue: 

                                

))]()(([

)()(

3

1

3

1
,

3

1

3

1

,

tstGFm

tstGmFvF

j k

n
ijk

n
jk

j k

n
ijk

n
jk

n
i

                                                (2) 

))]()(([

)()(

3

1

3

1
,

3

1

3

1
,

tstGDm

tstGmDvD

j k

n
ijk

n
i

n
jk

j k

n
ijk

n
jk

n
i

n
i

n
i

                                             (3) 

where F  denotes the impulse response of a filter; “ ” denotes time domain convolution; n
iD  

denotes the i
th

 component of the data at station n; “ ” denotes the cross correlation. These two 

equations indicate that after convolving the source time function with the Green‟s functions, we 

can apply the filtering or cross correlate the observed data to each of the convolved Green‟s 

functions. By inserting the filtering and cross correlation into the summation, we do not need to 



do filtering and cross correlation repetitively in the search over all strikes, dips, and rakes. A 

large amount of time is thereby saved, and the searching speed can be boosted tenfold.  

 

To determine if a solution is correct, we need to select an objective function that characterizes the 

similarity between the synthetic and observed waveforms. We design the following objective 

function, which utilizes four different aspects of the waveform information:  
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Usually, the amplitudes of P waves are much smaller than those of S waves. To balance the 

contribution from P and S waves, we need to fit P and S waves separately using equation (3). 

Also, separating S from P waves and allowing an independent time shift in comparing observed 

data with synthetic waveforms can help deal with incorrect phase arrival time due to incorrect 

P/S velocity ratios. We compute the first P and S arrival traveltime using the level set method and 

then the wave train is separated into two parts at about the beginning of the S wave. The level set 

method is able to solve the Eikonal equation in heterogeneous medium accurately and stably. As 

there usually is a tradeoff between the origin time and the event depth, we eliminate the influence 

of inaccurate origin time information by the following method:  we align the first P arrival 

moment in the synthetic data with the manual pick of first P arrival in the observed data 

automatically, and any later time shift by cross correlation is performed according to this 

alignment. The objective function J  consists of 4 terms; 1 through 4  are the weights for each 



term. The first term evaluates the maximum cross correlation between the normalized data ( n
jd

~
) 

and the normalized synthetic waveforms ( n
jv~ ). The normalization used here is the energy 

normalization, such that the energy of the normalized wave train within a time window adds to 

unity. In a concise form, this normalization can be written as: 
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where  1
t  and 2

t  are the boundaries of the time window. From the cross correlation, we find the 

time-shift to align the synthetic with the observed waveform. In high frequency waveform 

comparisons, cycle-skip is a special issue requiring extra attention: over-shifting the waveform 

makes the wiggles in the data misaligned with wiggles of next cycle in the synthetic waveforms. 

Therefore, allowed maximum time shift should be predetermined by the central frequency in the 

waveforms. The second term evaluates the L2 norm of the direct differences between the aligned 

synthetic and observed waveforms. The reason for both maximizing the cross correlation value 

and minimizing the direct difference between the observed and synthetic waveforms is to reduce 

the effect of attenuation and inaccurate density information, which affect the amplitudes of the 

synthetic data. The third term evaluates whether the polarities of the first P-wave arrivals as 

observed in the data are consistent with those of the synthetic waveforms. In numerical 

implementation, we first calculate the traveltimes for the first P arrivals, and then by summing 

over the waveform in a narrow window around that arrival time and checking the sign of the 

summation we determine the polarities robustly. For the observed data, we manually determine 

the polarities. Because it is difficult to obtain accurate absolute amplitudes due to site effects, we 

normalize the data and synthetic waveforms before comparison but lose the ratio and amplitude 



information by doing so. We retain the radiation pattern information by incorporating the fourth 

term in the objective function, which evaluates the consistency of the S/P ratios in observed and 

synthetic waveforms. The “ rat ” is the ratio evaluation function and it can be written as: 
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 where ][
21

TT  and ][
32

TT  define the time window of P and S wave, respectively, and n
jr  denotes 

either n
jd  or n

jv . The term h  evaluates the ratio differences. Note here we use the un-normalized 

waveforms n
jd  and n

jv . 

 

By pre-calculating the Green‟s function library and manipulating the filtering and cross 

correlation, we speed up the grid search process. Searching through all possible X, Y, and Z for 

location and strikes, dips, and rakes for focal mechanisms often results in over 10 million 

different waveforms to be compared with the data. Since the grid search can be easily 

parallelized, it can be done on a multicore desktop machine within 8 minutes. The computation 

of the Green‟s function library takes more time, but it only needs to be computed once. 

 

Result 

I. Numerical Test 

1.1 Noise Contamination 

We first test the reliability and robustness of our algorithm. The station distribution and velocity 

structure in an oil reservoir is used for this discussion (Figure 2). The stations are equipped with 



3-component short-period seismometers with a natural resonance frequency of 4.5 Hz. However, 

since these stations are located 150 m beneath the surface in shallow boreholes, the horizontal 

orientations of these stations are generally unknown. Therefore, only records from the vertical 

components are used. This constraint, which introduces many more difficulties into our focal 

mechanism determination, however, is a realistic constraint in most field oil reservoir 

monitoring. Therefore, our method can also be applied when only geophones are available. Two 

scenarios are tested: 1). the synthetic data are contaminated by Gaussian distribution random 

noise to simulate scattering; 2). we perturb the P and S velocity model for each station 

independently to simulate lateral velocity heterogeneity. For the first scenario, we use DWN to 

generate synthetic seismograms and then add Gaussian distribution noises to them. The noise on 

each trace has a standard deviation of 5% the maximum absolute amplitude of that trace, and this 

level corresponds to the largest noise level we encounter for valid data in the testing oil field.  A 

source located 1227 m beneath the surface, with a strike of 210
o
, dip of 50

o
, and rake of -40

o
 is 

used to generate the synthetic seismograms. In the later analysis, the hypercenter is re-

coordinated as (0, 0, 0) for X, Y and depth for studying the locating precision of this algorithm. 

Hereafter, we use a horizontal grid spacing of 150 m, and vertical grid spacing of 50 m. The 

reason for choosing smaller vertical grid spacing than in the horizontal direction is that the 

seismogram is not very sensitive to location variation in the horizontal direction, but very 

sensitive to the variation in the vertical direction due to multiple reflections and refractions. The 

frequency band used in our research is 3 ~ 9 Hz, which contains the majority of the energy in the 

typical induced seismicity (the spectrograms for a typical event will be shown in the real data 

study figures). The searching interval in strike, dip, and rake is 10
o
 in this test and hereafter in the 

real data test. This spacing choice indicates that our resolution is 5
o
 at the best situation. Because 



the auxiliary plane solution and the fault plane solution give the identical waveform, it means 

that half of the model space ]180180,900,3600[  rakedipstrike
 

is redundant. 

Therefore, by constraining the model space in ]9090,900,3600[  rakedipstrike
 

(Zhao and Helmberger, 1994) we can rule out the redundancy and further shorten the search time 

by half.  

 

Figure 2. Station distribution (red star) and the synthetic event (green dot); the faults, stations 

and event are plotted in a local reference system 

 

Figure 3 shows the focal mechanism determination results using only three first P arrival 

polarities (we assume two polarities out of five are not identifiable due to noise contamination). 

The best solution here (#1) almost matches the correct solution. The slight difference in strike is 

caused by our strike spacing choice: having an interval of 10
o
, the closest solution the grid search 



gives is 205
o
 or 215

o
. Figure 4 shows the comparison between the synthetic and observed 

contaminated waveforms. The “shift” in the title of each subplot indicates the time shifted in the 

data to align with the synthetic waveforms. We still have some time shift due to two reasons: 1) 

we introduce some artificial error in arrival time by manually picking the first P arrival in the 

observed data; 2) scattering noise can change the maximum cross correlation position according 

to the Banada-doughnut theory (Nolet et. al., 2005). The number to the left of the slash in the 

right column denotes the S/P ratio for the data, and the number to the right of the slash denotes 

the ratio for the synthetic waveform. They are quite close in most cases. The “+” or “-” signs in 

the left column indicate the first arrival polarities of P waves of the data and those of the 

synthetic waveforms; the upper signs are those for the data while the lower are those for the 

synthetic waveforms. We can see they are identical. Note that for evaluation of the polarities, we 

use the unfiltered waveforms, as filtering usually blurs or destroys the polarities.  

 

We further show the distribution of strikes, dips, and rakes from the determination. The fault 

plane solutions among the first 200 best solutions are evaluated and shown in Figure 5. The 

strike, dip, and rake all have a mean quite close to the correct solution (210
o
, 50

o
 and -40

o
, 

respectively). Among the strike, dip, and rake, dip has the least standard deviation (9
o
). This 

might be an indication of the sensitivity of these model parameters. Figure 6 shows the 

distribution of the relocated positions. We find in the X and Y direction that the error deviation is 

much larger than that in the Z direction. This is because a small change in the vertical direction 

changes the reflection and transmission pattern considerably in this layered medium, while 

horizontal dislocation only makes small variations in the waveform. Thus, this algorithm works 

quite well in determining depth. The capability to precisely relocate the depth indicates that using 



waveform information puts strong constraints on depth variation; therefore, this method could 

potentially be a new approach to constrain earthquake depth.  

 

 

Figure 3. Nine best solutions from contaminated data; the number before “str” is the order: “1” 

means the best solution and “9” means the relatively worst among these nine.  

 



 

Figure 4. Comparison between synthetic waveforms (red) and data (blue) at 5 stations. From top 

to bottom show waveforms at station 1 through 5, respectively. Left column shows P waves and 

right column shows S waves.  

 



 

Figure 5. Distribution of the strikes, dips, and rakes among the first 200 best solutions. 

 

 

Figure 6. Distribution of the best X, Y, and depth among the first 200 best solutions. 

 

 

 



1.2 Lateral Velocity Variation 

We further test the reliability and robustness of this new algorithm in the case where the velocity 

model has errors due to lateral variation. In general, we have a reliable velocity model for both P 

and S waves from well logs (Sarkar, 2008). However, since lateral velocity heterogeneity is 

inevitable the influence of perturbation in the velocity model on the focal mechanism 

determination has also been examined. We still use a 1-D layered structure to generate the 

synthetic observed seismogram from the event to a station. However, for a certain layer, a 

random Gaussian perturbation with a standard deviation of 5% of the velocity of that layer is 

added. The perturbation is independent for all five stations. The density here is not perturbed, as 

the variation in density only has a slight influence on the waveform‟s amplitudes but not on the 

phases, which have a dominant influence on the waveform. Also, the layer thickness is not 

perturbed, as perturbation in either layer velocity or thickness generates equivalent phase 

distortions in each layer. The perturbations in P and S velocity models are shown in Figure 7. 

Note the perturbations in P and S velocity are also independent for each layer and station.  

 



 

 

Figure 7. Perturbations in P and S velocity models. 

 



From Figure 7 we can find the variation in velocity for a certain layer is quite large from one 

station to another. Considering our study region is less than 10 km by 10 km, and this region is 

mainly composed of flat sedimentary rocks, this variation should be a reasonable approximation 

to the real maximum lateral heterogeneity. Here we still use only three first P arrival polarities. 

Figure 8 shows the best nine beachball solutions. Surprisingly, the solutions do not differ 

significantly from the correct one (strike = 210
o
, dip=50

o
, rake=-40

o
), and they are all very close 

to the correct solution by an error in strike, dip, or rake by about 10
o
 and one grid spacing (150 

m) in the horizontal direction. All of these solutions find the correct depth. Figure 9 shows the 

comparison between the synthetic waveforms generated from the reference model and the 

„observed‟ waveforms generated from the perturbed velocity model. Due to the different phase 

shift by velocity variation, many phases in the waveform have been distorted. However, allowing 

time shift in the observed data compensates for much of the phase shift and distortion caused by 

velocity variation (note the “shift” here is much larger than in the previous case). Therefore, by 

incorporating information from different aspects in the waveform, and compensating for the 

phase shift we are still able to obtain a focal mechanism quite close to the correct one. Figure 10 

shows the distribution of strike, dip, and rake of the focal plane solution from the first 200 best 

solutions. The mean values are quite close to the correct ones, and the standard deviations are 

small, considering that only vertical components in 5 stations and 3 polarities are used to 

determine the focal mechanism. Figure 11 shows the distribution of X, Y, and depth. Similar to 

the previous case, the deviation in depth is much smaller than in the X and Y direction; in fact, 

all results have the correct depth. Again, the depth variation is strongly constrained, and this 

indicates that using waveform information can greatly help to locate the depths of events, which 

are most difficult to constrain in the traditional traveltime method.  



 

 

Figure 8. Focal mechanism solutions with lateral velocity perturbation. 



 

Figure 9. Comparison between synthetic and the observed data with lateral velocity variation. 

 

 



 

Figure 10. Distribution of strike, dip, and rake with lateral velocity variation.  

 

 

Figure 11. Distribution of X, Y, and depth with lateral velocity variation.  

 

II. Real Data Study using an Induced Event 

We also study an induced microseismic event recorded by a five station shallow borehole 

network in an oil reservoir using our method. Figure 12 shows a typical event recorded at one of 

these stations and its spectrograms. We can see a majority of the waveform energy is between 3 

and 15 Hz.  



 

The layered velocity model is obtained from well logs, and is shown as the reference graph in 

Figure 7. The event studied in the reservoir occurred on March 4, 2001 (tagged 20010047). First, 

a double-difference traveltime locating routine is used to locate the hypercenter of the event 

(Sarkar, 2008). Then, within the neighborhood of this traveltime located hypercenter, we 

calculate the Green‟s function with DWN as shown in Figure 1.  

 

 

 

 

        Figure 12. A typical event used in the focal mechanism determination and its spectrograms. 

H1 H2 Vertical 



 

 

Figure 13. Focal mechanism solution for event 20010047. 

      



 

Figure 14. Comparison between synthetic waveforms (red) and real data (blue) at 5 stations.  



 

Figure 15.  Distribution of strike, dip, and rake among the first 200 best solutions for event 

20010047. 

 

Figure 16. Distribution of X, Y, and depth among the first 200 best solutions for event 20010047. 

 

 

 

 



Figure 13 shows the beachballs of the nine best solutions out of millions of trials. Our best 

solution (the one at the bottom right) has a strike of 195
o
, which is quite close to the best known 

orientation of the fault (219
o
). Also, this event is determined as a dip-strike event, which is a 

reasonable solution considering local oil production and water injection. Using our new 

algorithm, the epicenter is shifted northward by about 450 m, eastward by about 150 m, and the 

depth is shifted 50 m deeper. Figure 14 shows the comparison between the synthetic and the 

observed data. Comparing Figure 14 with Figure 9, the degree of matching between the synthetic 

and observed waveforms is quite close in both the synthetic test and the real data test. Figure 15 

shows the distribution of strike, dip, and rake. Again, we find dip has the minimum standard 

deviation. Figure 16 shows the distribution of X, Y, and depth. Our algorithm shows excellent 

ability in locating the depth of event. However, as discussed before, variation in hypocenter (X 

and Y direction) can be compensated by shifting the waveforms to find a better alignment with 

the synthetic data, and the phases in the waveforms are not very sensitive to the horizontal shift. 

Therefore, the constraint on lateral shift in weaker compared to that on the vertical direction. 

 

Conclusions 

 

We show that combining the vertical component of high frequency seismograms with a fast grid-

search algorithm leads to close determination of focal mechanism and locations of small 

earthquakes where subsurface velocity information is available. These conditions generally apply 

to petroleum fields. Therefore, the method is especially applicable to the study of induced 

earthquakes recorded by a small number of stations, even when some first P arrival polarities are 

not identifiable due to noise contamination. The new objective function, which includes 

matching phase and amplitude information, first arrival P polarities, and S/P amplitude ratios 



between synthetic and observed waveforms, is designed to utilize more information from the 

data, yielding very stable and reasonable solutions. The synthetic tests prove that our algorithm 

has strong reliability and robustness. Correct solutions can still be found even when noise 

contamination or lateral velocity variation exists and the 1-D layered velocity model becomes 

only an approximation to the real structure. For real events, focal mechanisms are found to be 

reasonable, considering the local geological structure and possible causes for those induced 

seismic events.  
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