
Planning under Uncertainty and Constraints r(9g-

Teams of Autonomous Agents
by 1 K2

Aditya Undurti
iL k IE m S

Submitted to the Department of Aeronautics and Astronautics -
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Aeronautics and Astronautics
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2011 3

© Massachusetts Institute of Technology 2011. All rights reserved.

A uthor .......................... .........................
Department of Aeronautics and Astronautics

August 1, 2011

Certified by ........... ........ .........................
Jonathan P. How

R. C. Maclaurin Professor of Aeronautics and Astronautics
Thesis Supervisor

Certified by.....................
Cynthia L. Breazeal

Associate Professor, Program in Media Arts and Sciences

C ertified by .........................
Ehilio Frazzoli

Associate Professor, Department of Aeronautics and Astronautics

Certified by..............
Niioas Roy

Associate Professor, Department of Aerpnauics and Astronautics

A ccepted by ...........................
Eytan H. Modiano

Chair, Gra uate Program Committee

ARCHIVES



2



Planning under Uncertainty and Constraints for Teams of

Autonomous Agents

by

Aditya Undurti

Submitted to the Department of Aeronautics and Astronautics
on August 1, 2011, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Aeronautics and Astronautics

Abstract

One of the main advantages of unmanned, autonomous vehicles is their potential
use in dangerous situations, such as victim search and rescue in the aftermath of
an urban disaster. Unmanned vehicles can complement human first responders by
performing tasks that do not require human expertise (e.g., communication) and
supplement them by providing capabilities a human first responder would not have
immediately available (e.g., aerial surveillance). However, for unmanned vehicles to
work seamlessly and unintrusively with human responders, a high degree of autonomy
and planning is necessary. In particular, the unmanned vehicles should be able to
account for the dynamic nature of their operating environment, the uncertain nature
of their tasks and outcomes, and the risks that are inherent in working in such a
situation. This thesis therefore addresses the problem of planning under uncertainty
in the presence of risk. This work formulates the planning problem as a Markov
Decision Process with constraints, and offers a formal definition for the notion of
"risk". Then, a fast and computationally efficient solution is proposed. Next, the
complications that arise when planning for large teams of unmanned vehicles are
considered, and a decentralized approach is investigated and shown to be efficient
under some assumptions. However some of these assumptions place restrictions -
specifically on the amount of risk each agent can take. These restrictions hamper
individual agents' ability to adapt to a changing environment. Hence a consensus-
based approach that allows agents to take more risk is introduced and shown to be
effective in achieving high reward. Finally, some experimental results are presented
that validate the performance of the solution techniques proposed.

Thesis Supervisor: Jonathan P. How
Title: R. C. Maclaurin Professor of Aeronautics and Astronautics



4



Acknowledgements

First, I would like to thank my advisor, Jon. His feedback, while sometimes harsh,

was always fair and accurate and his guidance was invaluable in completing this thesis.

I would also like to thank my committee members, Professors Cynthia Breazeal, Nick

Roy and Emilio Frazzoli. It has been a pleasure working with them for the past four

years. I am also grateful to Luca and Brett, the two readers of this thesis, for their

timely feedback and for the many discussions over the years on problems addressed

here and other related topics.

I would also like to express my gratitude to the students at the Aerospace Controls

Lab, both current and former. I have learned far more from working with them than

through formal coursework. They are all very bright and talented, and each brings

with them their own special skills and strengths. Whether it be discussing MDPs

with Alborz, getting coding help from Josh, or discussing random topics with Dan

and Luke, they have all been great colleagues and made the lab an interesting place

to be everyday. I would also like to give a special thanks to Philipp Robbel - all the

things that we accomplished under the MURI project in the past four years would

not have been possible had we not worked so well together.

Of course, lab and research were only one component of the MIT experience -

perhaps more than anything else, the thing I will remember about my time at MIT

in the years to come will be the amazing people I met and befriended. Neha, Parul,

Dan, Sharmeen, Mrin and Simran - it looks like I finally did finish my (real) PhD

thesis. Jen, Carolyn, Hoda - it was amazing seeing you all in India, we should do

that more often. Fatima - I miss the late-night discussions, conversations and gossip

we shared during the time you were here. Prabhod, Vimi, Swini, Sunaina - it has

been an amazing experience working with you, and I regret having to leave behind

the awesome team we built. I am also grateful that I got to spend time with Sheetal

and Guru in the past couple of years, I only wish we had seen each other more often.

I would also like to thank Ali Motamedi for the many pointless and content-free

conversations that we had. Except of course for that one time when we solved all



problems known to science. I am also grateful to count among my friends Tara and

Premal. Their friendship and affection are truly genuine - something I feel even now,

years after we stopped seeing each other on a daily basis. I am also thankful for my

long friendship with Kranthi, a friendship which has survived being on opposite sides

of the world for four years. He managed to convince me (or should I say "konvince")

that nothing should ever be spelled with a "C" when it can be spelled with a "K".

And then of course there were Rajiv and Vikas - whether it be deciding where to go

on a Friday night (and the question was always "where", never "whether"), or picking

the right orange juice, or deciding which non-linear programming algorithm to use,

or debating the existence of free will - life on the Cambridge side of the river would

have been far less glorious had it not been for them.

Most importantly, I would like to thank my family. My grandparents in India

have always had us in their prayers and I know I always have them in mine. My

sister Arundhati and brother-in-law Sagar have always been caring, affectionate, and

supportive. I know I do not call them or visit them as often as I would like, but they

have always been and will always be in my thoughts. My wife Rasya has also been an

invaluable source of support - her constant cheerfulness and humor never fail to lift

my spirits, and for that I cannot imagine life without her. And finally, to my parents

- twelve years ago they made an incredibly bold decision to leave everything they had

in India and move to the US, trusting that we would succeed here. Life has never

been the same since then, and I cannot even imagine where I would be today if they

had not done so. The sacrifices they have made to give us the best opportunities in

life are truly heroic and to them I dedicate this thesis.



Contents

1 Introduction

1.1 Challenges . . . . . . . . . . . . . . . . . . ....

1.2 Literature Review . . . . . .............

1.2.1 Probabilistic Travelling Salesman Problem

1.2.2 Stochastic Vehicle Routing Problem . . . .

1.2.3 Dynamic Vehicle Routing . . . . . . . . .

1.2.4 Linear Programming . . . . . . . . . . . .

1.2.5 Auctioning and Consensus . . . . . . . . .

1.2.6 Markov Decision Processes . . . . . . . . .

1.2.7 Constrained MDPs . . . . . . . . . . . . .

1.3 Proposed Approach . . . . . . . . . . . . . . . . .

1.4 Contributions . . . . . . . . . . . . . . . . . . . .

2 Planning Under Uncertainty and Constraints

2.1 A pproach . . . . . . . . . . . . . . . . . . . . . .

2.2 Literature Review . . . . . .............

2.3 Problem Formulation . . . . . . . . . . . . . . . .

2.3.1 Constraints as Penalties. . . . . . . ..

2.3.2 Definition of Risk . . . . . . . . . . . . . .

2.4 Proposed Solution . . . . . . . . . . . . . . . . . .

2.4.1 Off-line Risk Estimate . . . . . . . . . . .

2.4.2 On-line Reward Optimization.. . . ..

2.5 R esults . . . . . . . . . . . . . . . . . . . . . . . .

2.5.1 Constraints as Penalties...........

2.5.2 Approximate On-line Solution vs. Optimal

2.5.3 Memoryless Risk vs. Accumulated Risk . .

2.6 Extension to POMDPs . . . . . . . . . . . . . . .

2.7 Sum m ary . . . . . . . . . . . . . . . . . . . . . .

Off- line Solution

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .



3 Planning Under Uncertainty and Constraints in Continuous Do-
mains

3.1

3.2

3.3

3.4

3.5

3.6

Proposed Solution. . . . . . . . . . . . . . . . . . . . . . . .
3.1.1 Solving Continuous MDPs: Function Approximation

R esu lts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Impact of Features . . . . . . . . . . . . . . . . . . . . . . .
Computational Complexity . . . . . . . . . . . . . . . . . . .

Online C-MDP Algorithm vs. Function Approximation . . .

Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Planning Under Uncertainty and Constraints for Multiple Agents
4.1 A pproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.1.1 Off-line Library Computation and Joint Policy Iteration . . .
4.1.2 O nline Search . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 E xam ple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 .3 R esu lts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3.1 Off-line Centralized vs. On-line Decentralized . . . . . . . . .
4.3.2 Comparison of Risk . . . . . . . . . . . . . . . . . . . . . . . .
4.3.3 Performance in High Risk, High Reward Environments . . . .

4.4 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Distributed Planning Under Uncertainty and Constraints

5.1 Literature Review . . . . . . . . . . . .

5.2 Exam ple . . . . . . . . . . . . . . . . .

5.3 Proposed Solution . . . . . . . . . . . .

5.4 Results . . . . . . . . . . . . . . . . . .

5.4.1 Impact of Team Structure . . .

5.5 Summ ary . . . . . . . . . . . . . . . .

6 Experimental Results

6.1 Test Environment: Unreal Tournament

6.2 Task Planning Problem . . . . . . . . .

6.3 R esults . . . . . . . . . . . . . . . . . .

6.3.1 Case 1: Single UAV Failure .

6.3.2 Case 2: Single MDS Failure .

6.3.3 Case 3: Two MDS Failures . . .

6.3.4 Case 4: UAV, MDS Failure . .

63

64
66

68

72

75

76

78

79

80

82

83

86

92

93

94

95

99

101

102

105

107

118

123

123

125

125

128

134

134

137

139

140

. . . . . . . . . . ..

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .



6.3.5 Case 5: New Activity . . . . . . . . .

6.4 Sum m ary .......... . .. ......

7 Conclusions and Future Work

7.1 Future W ork . . . . . . . . . . . . . . . . . .

7.1.1 Approximate Dynamic Programming

7.1.2 Continuous Domains. . . . . . ..

7.1.3 Asynchronous Networks . . . . . . .

7.1.4 Operator Interface . . . . . . . . . .

A Computational Complexity

References

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

143

145

147

150

150

151

151

151

153

155



10



List of Figures

1-1 An autonomous robot operating in a dangerous post-CBRNE environ-

m en t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2-1 A counter example to show that a penalty value corresponding to the

optimal policy does not always exist (Courtesy: Alborz Geramifard) . 40

2-2 Online forward search with an optimistic heuristic, one that underes-

timates the risk. Infeasible paths are incorrectly assumed to be feasible 46

2-3 Online forward search with a pessimistic heuristic, one that overesti-

mates the risk (Uc > Uc) - feasible, high-reward paths are incorrectly

assumed to be infeasible.... . . . . . . . . . . . . . . . . . . . . . 47

2-4 Vehicle dynamic model . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2-5 The MDP problem set up . . . . . . . . . . . . . . . . . . . . . . . . 50

2-6 Constraint-feasible paths.. . . . . . . . . . . . . . . . . . . . . . . 50

2-7 The policy computed by MDP value iteration when the constraint is

modeled as a high negative reward leads to a very conservative policy

that fails to achieve high reward. The nominal path from the start

state is shown in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2-8 The policy computed by MDP value iteration when the constraint

penalty is lowered. The nominal path from the start state is shown

in b old . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1

2-9 The policy computed by MDP value iteration when the constraint is

modeled as a low negative reward leads to a policy that violates the

safety constraint. The nominal path from the start state is shown in

bold. . . ........ ... .... ..... ... .. ........... . 51

2-10 The policy computed by the on-line constrained solver. The solver

correctly recognizes that going right from location (4, 2) is constraint-

feasible and yields high reward. The nominal path from the start state

is shown in bold............ . . . . . . . . . . . . . . . . . . 51



2-11 Comparison of the approximate online solution with the optimal, off-

line solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2-12 Difference in reward performance due to the choice of type of risk . . 55

3-1 Problem setup showing constrained areas (red) and reward area (green). 70

3-2 A two-dimensional radial basis function . . . . . . . . . . . . . . . . . 71

3-3 A representative trajectory showing the approximated reward value

function. Dark areas are regions where under the current policy, risk is

greater than 0.15 as measured by the approximated risk value function.

The shades represent contours of the reward value function. . . . . . 72

3-4 The empirically measured risk: RBF vs. Discretization . . . . . . . . 73

3-5 The empirically measured reward: RBF vs. Discretization . . . . . . 73

3-6 Presence of constraints must be accounted for in estimating reward . 74

3-7 Comparison of the online C-MDP algorithm, function approximation

and the offline optimal solution . . . . . . . . . . . . . . . . . . . . . 77

4-1 The MDP problem set up, showing the inner "Courtyard" (dashed

line) which contains danger zones (red). Rewards RA and RB exist

both within the danger zone and outside (shown in green) . . . . . . 87

4-2 The highest-reward nominal paths through the rewards are constraint-

infeasible....... . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4-3 Constraint-feasible nominal paths...... . . . . . . . . . . . . . . 88

4-4 Nominal paths computed by value iteration when the constraint is a

high negative reward . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4-5 Policy (arrows) computed by MDP value iteration when the constraint

penalty is lowered - note that under this policy, Agent B's nominal

path never leaves the Courtyard area . . . . . . . . . . . . . . . . . . 89

4-6 Policy (arrows) computed by value iteration when the constraint is a

low negative reward . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4-7 Policy (arrows) and nominal paths (lines) computed by the online con-

strained solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4-8 Vehicle dynamic model . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4-9 A comparison of the off-line centralized solver and the on-line decen-

tralized solver for five agents . . . . . . . . . . . . . . . . . . . . . . . 94

4-10 A comparison of accumulated risk and memoryless risk for five agents 95

4-11 Average reward for three planning methods . . . . . . . . . . . . . . . 97

4-12 Empirically observed risk for three planning methods . . . . . . . . . 98



4-13 Average reward for a team of five agents . . . . . . . . . . . . . . . .9

5-1 Agents A and B both plan their actions up to a horizon of length

T = 4. Initially neither agent sees the rightmost reward. Agent A

plans a zero-risk path, whereas Agent B takes some risk to reach its

rew ard sooner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5-2 After the agents have both executed two time steps, Agent A sees that

it can achieve twice the reward by taking more risk. Agent A bids on

more risk, and Agent B identifies that it can give up some of its risk

to Agent A while still increasing the overall team reward. . . . . . . . 107

5-3 Every set of policies (7 1 , 7 2 ... TN) is associated with a single unique

point in the space (p11,p21 .-- PNE). Shown here (circle) is the case

where N:= 2 and E = 1. Also shown (by *) are the policies associated

with the optimal team reward. . . . . . . . . . . . . . . . . . . . . . . 110

5-4 The set of policies that agents are allowed to explore is restricted to lie

in the shaded region with a fixed risk allocation. The * indicates the

policies that yield the optimal team reward. . . . . . . . . . . . . . . 110

5-5 In Stage 1 of the algorithm, both agents keep the other agents' risk

fixed and find their individually optimal policy. That policy is T' for

Agent 1 and 7' for Agent 2. Shown are the risks associated with each

policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

5-6 Agent 1 wins the right to keep its new policy 7', and Agent 2 recom-

putes its new policy -F' to account for Agent l's new policy. The risks

associated with the new policies are shown by the solid circle. .I.I..111

5-7 Results of the next iteration. . . . . . . . . . . . . . . . . . . . . . . . 113

5-8 Grid world example with rewards (green) and constraints (red) . . . . 119

5-9 The communications architecture for a team of five agents . . . . . . 119

5-10 Comparison of the performance of the risk negotiation algorithm with

a fixed risk allocation for two agents . . . . . . . . . . . . . . . . . . 121

5-11 Reward obtained by a team of five agents using fixed risk allocation

and risk negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5-12 Reward obtained by a team of ten agents using fixed risk allocation

and risk negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5-13 Comparison of the risk accumulated by the risk negotiation algorithm

with a fixed risk allocation for ten agents. The horizontal line shows

the bound on the future risk.. . . . . . . . . . . . . . . . . . . . . 122

99



6-1 A UGV (left, foreground) and UAV (right, foreground) operating in

Unrealville. Also shown are several victims and obstacles in the oper-

ating environment such as lamp-posts and trees. . . . . . . . . . . . . 126

6-2 The Unrealville test environment. This birds-eye view shows an ur-

ban landscape with streets (black), buildings (brown), paved sidewalks

(grey), grassy areas (green) and water bodies (blue) . . . . . . . . . . 127

6-3 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6-4 Response of the MDS robots to a single UAV failure . . . . . . . . . . 135

6-5 Response of the UAVs to a single UAV failure . . . . . . . . . . . . . 135

6-6 Response of the UAVs to a single MDS failure . . . . . . . . . . . . . 138

6-7 Response of the MDS robots to a single MDS failure . . . . . . . . . 138

6-8 Response of the planner to two MDS failures . . . . . . . . . . . . . . 139

6-9 Response of the UAVs to a UAV and MDS failure . . . . . . . . . . . 142

6-10 Response of the MDS robots to a UAV and MDS failure . . . . . . . 142

6-11 Response of the UGVs to the appearance of a new Bomb Surveillance

task .. .. ...... ... .................. .... .. .. 144

6-12 Response of the MDS robots to the appearance of a new Bomb Surveil-

lance task........... . . . . . . . . . . . . . . . . . . . . . . 144



List of Tables

2.1 Impact of heuristic properties on the performance of the On-line C-

MDP forward search algorithm . . . . . . . . . . . . . . . . . . . . . 47

6.1 Capabilities of the three different types of agents. . . . . . . . . . 130

6.2 Probability of an agent failing during the execution of an activity . . 131

6.3 Initial agent assignment.... . . . . . . . . . . . . . . . . . . . . . 134

6.4 Agent re-assignment after a single UAV failure . . . . . . . . . . . . . 136

6.5 Agent re-assignment after a single MDS failure . . . . . . . . . . . . . 137

6.6 Agent re-assignment after two MDS failures.... . . . . . . . ... 140

6.7 Agent re-assignment after a UAV and MDS failure . . . . . . . . . . . 141

6.8 Agent re-assignment after a UAV and MDS failure . . . . . . . . . . . 143



16



Chapter 1

Introduction

One of the primary advantages of autonomous vehicles is that they can be deployed

in situations where there are potential dangers for human agents. One such situation

is search and rescue in the aftermath of a Chemical, Biological, Radiological, Nuclear

and Explosive (CBRNE) incident in an urban area [1, 2]. Examples from recent

history of robots being deployed in such incidents include clean-up and reconnaissance

operations after the 9/11 attacks in New York City [3] and the Fukushima nuclear

reactor meltdown in Japan [4]. Sending human first responders to a location where

such an incident has occurred could be dangerous [5]. Deploying autonomous vehicles,

such as Unmanned Air Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs)

into a post-CBRNE search and rescue mission thus has obvious safety advantages. In

addition, the human resources available might be limited - since it is likely that there

will be a significant number of casualties spread over a substantial area, the available

HAZMAT (Hazardous Materials) and EMS (Emergency Medical Services) personnel

must be carefully and judiciously used. Using autonomous vehicles to supplement

the human personnel, e.g. by performing some tasks that would otherwise have

to be performed by a human, can be beneficial. Furthermore, UAVs and UGVs can

perform tasks that humans would not be capable of performing, e.g. aerial surveillance

and continuous vigilance. Thus there are multiple advantages to having autonomous

vehicles when dealing with a CBRNE incident.

The objective for a team of first responders in the aftermath of a CBRNE incident



Figure 1-1: An autonomous robot operating in a dangerous post-CBRNE environment

is victim search and rescue, while keeping the first responders themselves safe [6]. This

task is challenging because of the high uncertainty and dynamic nature of CBRNE

incidents. The number of victims that need to be rescued, and their locations might

not be known, or are known only approximately. The team of first responders might

not have the ability to acquire this information directly and with certainty, making

the environment partially observable. Spreading fires and contaminants could also

be changing the numbers of victims and their locations even as the search and rescue

mission is underway. Furthermore, the victims might be moving in ways that are

hard to model, making the environment very dynamic and stochastic [7]. Acting

in this fast-changing environment will require the agents to react quickly to local

information, while retaining awareness of the overall mission. Achieving fast local

response requires significant decentralization while retaining mission perspective

requires team communication and consensus.

Furthermore, the responders and agents themselves have to stay safe. The team



cannot risk sending humans to areas that are suspected of having contaminants.

Autonomous agents must also be used carefully, keeping away from known dangers.

These safety considerations impose constraints on the mobility of the agents [8].
Victim rescue is also a time-critical task, and imposes time constraints within which

the team must work. And finally, the incident commander, based on information that

is not available to the team on the ground or the planner, might order agents to visit

certain locations or take certain positions. All these factors set constraints within

which the team must operate.

An additional complicating factor is that the response teams include both au-

tonomous robots and human team mates. Treating a human the same as a robotic

agent is unlikely to lead to good solutions, because of various factors. First, the

performance of human agents will be affected by hard-to-quantify measures such as

workload, stress, situational awareness, and skill level. Furthermore, these measures

are not constant - the levels of stress and situational awareness, and perhaps even skill

level, vary as functions of time. The exact dynamics are highly individual-dependent

and history-dependent, e.g. a human agent that has just performed many tasks is

much more likely to be stressed and exhausted than an agent that has not performed

any tasks. Second, human agents have far more complex behaviors and responses to

instructions than robotic agents. Even if a human is allocated a task by the central

tasker, there is a chance that the human will not execute the instruction. This could

be because the human is not paying attention, or because the human judges some

other task to be of greater urgency and/or greater reward. The behaviors that a

human agent is capable of are very diverse and extremely difficult to capture in any

one model. Therefore, any planning scheme must take into account this complex

and unmodeled agent behavior.

In summary, a response to a CBRNE scenario requires planning in an stochastic,

dynamic, partially-observable and poorly-modeled environment for a decentralized

team with complex agents in the presence of constraints. The objective of the team is

to maximize the number of victims rescued. This is a very challenging and interesting

problem that draws upon several areas of recent research, specifically 1) planning



in uncertain environments in the presence of constraints 2) planning for multi-agent

teams that include complex unmodeled agents and 3) decentralized planning for multi-

agent teams.

The key research question that will be addressed by this thesis is the following:

Can we generate plans in real-time for a large, decentralized team of complex agents

while accounting for constraints and uncertainty in the system and the environment?

In the presence of various types of uncertainty, both modeled and unmodeled, creating

plans that can guarantee constraints may be difficult. This thesis will begin by

proposing a planning architecture that can provide guarantees on constraints in the

presence of modeled uncertainty. Then, an extension of this architecture to centralized

multi-agent teams will be proposed, and finally the architecture will be generalized

to decentralized teams.

1.1 Challenges

Solving the research question posed above presents several significant challenges.

They are:

* Complexity: Planning even for a single agent can be a difficult and computa-

tionally challenging problem. As we shall see in the Literature Review, much

work has been done on the various aspects of planning, e.g. path planning

and task planning. In all but the simplest cases, the number of possible paths

and plans increases combinatorially, making an exhaustive search through all

possibilities computationally infeasible.

" Scaling: Planning for multiple agents adds even more complexity. This is par-

ticularly true if some tasks require cooperation between several agents. The size

of the planning problem grows exponentially in the number of agents, making

real-time planning for multi-agent teams particularly difficult.

" Uncertainty: Uncertainty in the environment and the system's response to

commanded plans must be accounted for in the planning process. Failure to



do so could lead to poor performance. Furthermore, the dynamics of the envi-

ronment are poorly understood. Accounting for uncertain system response and

unknown environment dynamics requires a combination of planning for known

uncertainty and being able to replan fast to deal with unmodeled uncertainty.

This in turn further motivates the need to reduce the computational complexity

of the planner.

" Feasibility: An important feature of the CBRNE planning problem is the

presence of safety constraints. Maintaining these safety constraints restricts the

number of possible plans. Also, guaranteeing safety constraints in the presence

of uncertainty is difficult. For instance, if the response of an agent to a command

is uncertain, and that agent happens to be operating in an unsafe environment,

even a "safe" command might lead to the execution of an unintended unsafe

action. Thus a planner would have to account for such unintended behavior to

maintain safety. On the other hand, the mission objectives entail operating in

a risky environment and good performance may require taking some risk. Thus

achieving a balance between risk and performance is an important consideration

when planning in constrained environments.

" Consensus: Since the environment is dynamic, agents need to be able to re-

spond quickly to local changes. However, they must not lose sight of the team

objective. In addition, they must not take any action that might jeopardize

other agents working on other tasks. Thus agents must not only respond rapidly,

but achieve consensus with other team members. This needs to happen suffi-

ciently fast to react to the environment. Achieving consensus while also acting

in real time poses a significant challenge.

In the next section, we review some of the approaches and formulations that have

been taken to address some of the challenges described above.



1.2 Literature Review

As stated above, planning for a team of first responders require the ability to plan

in an uncertain, dynamic environment with constraints. The problem of planning

under uncertainty and constraints has been formulated and addressed in various ways,

including Travelling Salesman Problems (TSPs), Vehicle Routing Problems (VRPs),

Linear Programming (LP), Model Predictive Control (MPC), Consensus, Markov

Decision Processes (MDPs) and Constrained Markov Decision Processes. The work

in each of these fields is reviewed below.

1.2.1 Probabilistic Travelling Salesman Problem

Work in the existing literature has looked extensively at various aspects of the task

allocation and vehicle routing problem in the presence of uncertainty. Related prob-

lems include the Probabilistic Travelling Salesman Problem (PTSP) presented in [9]
which is similar to the well-known Travelling Salesman Problem (TSP) with the ex-

ception that every customer i has a probability pi # 1 of being realized. These pi are

assumed to be independent. It is shown that in some cases, not accounting for the

stochasticity of the customers (and solving the problem as a standard TSP) results

in expected cost being as much as 30% higher [9]. However, the problem considered

in [9], and the TSP in general, does not contain any information about demands at

specific nodes, and only a single vehicle (or salesman) is assumed. While [9] does

not consider time constraints on visit times, this is partly addressed in [10]. How-

ever neither [9] nor [10] allow for time to be spent at each customer (i.e. no loiter

time constraints are considered). And finally, the pi are assumed to be independent,

whereas in the CBRNE scenario dependencies between tasks might be critical.

1.2.2 Stochastic Vehicle Routing Problem

Another related problem that has been studied extensively is the Stochastic Vehicle

Routing Problem (SVRP) [11, 12]. Many variations of this problem exist - the SVRP

with stochastic demands [13], with stochastic customers [14], with stochastic travel



times [15], and with both stochastic customers and demands [12]. The SVRP also

allows for multiple vehicles [11]. Thus the SVRP is better suited for the CBRNE

scenario, and although algorithms exist to solve the problem, it is computationally

much harder to solve [12]. The SVRP also assumes the probability of customers'

existence is independent.

Due to the computational complexity of the PTSP and SVRP, the algorithms are

intended to be run just once to come up with an allocation, with no replanning as

the plan is being executed. Indeed, the desire to eliminate online reallocation and

replanning is one of the motivations for developing algorithms dedicated to solving

the PTSP and the SVRP [9, 16]. Thus these algorithms are incapable of adapting to

completely unexpected information - for instance, in the PTSP case, if a customer

were to appear in a city that was not part of the TSP tour at plan time, this new

information would never be accounted for and the customer would be missed. Since

unexpected incidents are characteristic of a CBRNE scenario, a planning technique

that plans only once initially and is too computationally complex to be run on-line

would not be suitable.

1.2.3 Dynamic Vehicle Routing

Other approaches that explicitly account for the stochasticity in tasks include work

by Pavone, Bisnik, Frazzoli and Isler [17] and by Pavone, Frazzoli and Bullo [18]. In

this work, the objective of the planner in [17] is to minimize the average waiting time

between the appearance of a demand and the time it is visited by a vehicle. For a

single vehicle, a Single Vehicle Receding Horizon (sRH) policy is developed, that plans

a TSP tour through all existing demands and executes the most optimal fragment of

length q of this tour before replanning. When there are multiple vehicles available,

the space is divided into Voronoi regions and areas of dominance for each vehicle are

established. Upper bounds on the average waiting time are also derived when the

spatial distribution of the tasks is known. The work presented in [18] is an extension

of [17] because it allows for customer impatience, i.e. existing tasks disappear after a

certain time, with the time itself being a random variable. The minimum number of



vehicles required to service each task with a probability of at least 1 - e. A strategy

to assign tasks to vehicles is also presented. The strategy is essentially similar to that

presented in [17], with a TSP tour over all existing demands at each iteration [18].

1.2.4 Linear Programming

Another approach to solving planning problems is to formulate the problem as a Lin-

ear Program (LP), possibly with integer variables thus making it a Mixed-Integer Lin-

ear Program (MILP). However, the size of the LP (the number of decision variables)

that needs to be solved grows combinatorially in the number of agents and tasks.

Thus several approximate algorithms exist that provide a feasible solution to the LP

without necessarily achieving the optimal solution. Algorithms that make use of such

an approach include the Receding Horizon Task Allocation (RHTA) algorithm and its

decentralized version, the Receding Horizon Decentralized Task Allocation (RDTA)

algorithm. RHTA only allocates those m tasks that are nearest to each of the vehi-

cles - nearest either spatially or temporally [19]. RHTA is typically formulated as a

Mixed-Integer Linear Program, and by restricting the size of the look-ahead horizon,

the computational complexity is greatly simplified. And by choosing a horizon size

that is sufficiently large, the obvious disadvantages of using a myopic, greedy alloca-

tion strategy are reduced although not completely eliminated. RHTA is also capable

of handling time constraints, loiter constraints [20] and multiple vehicles, including

sending multiple vehicles to the same task in the same time window. RHTA has also

been extended to include robustness when task information is uncertain. In [21], the

value of the various tasks (in this case, the number of targets to be struck) is assumed

to be uncertain with a known variance and a robust version of RHTA is developed.

Robust RHTA sacrifices high-reward plans in exchange for safe plans, and thus re-

duces the variation in the reward for different realizations of task rewards [21]. Other

work such as [22] takes a similar approach and looks at the value of assigning vehicles

to an information-gathering mission to reduce uncertainty in tasks.

Work presented in [23] looks at the problem of assigning vehicles to depots at

various locations in a city to respond to traffic incidents. Since the location of these



incidents and their resource demands are unknown, although the stochastic distribu-

tion is known. The allocation of vehicles to depots is chosen to maximize a "quality

of service" metric, which is defined as the lower bound of the probability that all the

resources requested by potential incidents will be satisfied. The problem is formu-

lated an LP with probabilistic chance constraints, which in turn can be written as a

deterministic MILP.

Other work that follows the receding horizon paradigm is work by Lauzon et

al. [24] and Wohletz [25]. The strategies presented in both these papers optimize a cost

function over a finite horizon (the predictive horizon in [24]) and execute the resulting

strategy for a short time before replanning again. Chandler et al. have proposed

formulating the task allocation problem as a network flow optimization problem [26].

Work by Sujit and Beard [27] looks at the problem of creating coalitions of vehicles

to accomplish certain missions, and uses a particle swarm optimization technique to

solve it.

1.2.5 Auctioning and Consensus

In some planning problems, not only is computational complexity an issue but com-

munication between agents as well. Reliable communications to a central planner

might not exist, or a central planner itself might not exist. Various approaches to

solving this decentralized problem have been suggested, and among the more promis-

ing are auctioning and consensus algorithms. Auctioning as a means for solving

assignment problems in a distributed fashion was first proposed by Bertsekas in 1979

[28]. Bertsekas and Castanon then applied auction algorithms to linear network flow

problems [29] and to assignment problems [30]. This work was subsequently extended

to cases where not all agents could submit auction bids in a synchronous fashion [31].

Sujit, George and Beard [27] describe a decentralized auction algorithm for vehicles

with limited sensor and communication ranges to decide what task to perform in

a distributed fashion. Auctioning has recently emerged as a mechanism by which

to perform multi-robot planning and coordination. Bererton, Gordon, Thrun and

Khosla [32] use an auctioning mechanism to decouple the planning problem for a



team of robots each planning independently. The planning problem is first written

as a linear program and then decomposed into a smaller planning problems for each

individual robot using the Dantzig-Wolfe decomposition. The decomposition intro-

duces additional costs in the objective function of the individual robots. A central

planner sets these additional costs, following which individual robots plan separately.

The solutions are sent back to a central planner that then changes the costs in a

manner that improves the overall team performance. This semi-decentralized way

of solving the planning problem is shown to converge to the optimal solution in a

reasonable number of iterations. Another auctioning-based consensus algorithm used

to solve task planning problems is the Consensus-Based Bundle Allocation (CBBA)

algorithm [33]. In CBBA, each agent individually builds a "bundle" of tasks that it

would like to perform. The agents then communicate with each other and resolve

conflicting claims based on a set of rules that are designed to optimize team reward.

CBBA is guaranteed to be within 50% of the optimal solution. Several extensions

to CBBA have been proposed, including Asynchronous CBBA (ACBBA) [34] which

eliminates the need for all agents to be synchronized. One major advantage of CBBA

is the fact that it is decentralized and does not become computationally infeasible

as the number of agents increases. Another advantage is that each individual agent

solves a much simpler problem, and all agents can solve their respective planning

problems in parallel. For these reasons decentralized planners are preferred when

solving to optimality is not strictly required.

1.2.6 Markov Decision Processes

A plan is a sequence of actions that the vehicle is expected to execute in the future.

However, in deciding this sequence, the planner makes certain assumptions about the

outcomes of actions in the future. When these outcomes are not realized perfectly,

i.e., when there is error, the planner will have to recompute from the new, previously-

unexpected state. But it would be ideal if the planner could account for the fact

that future actions are uncertain, and come up with contingency plans for all possible

outcomes. In this case, planning needs to happen only once initially, and the vehicle



will thereafter have a large set of plans for every possible realization, i.e., it has a

policy. This is the key idea behind a Markov Decision Process (MDP) [35]. The

solution to an MDP is a policy, which is defined as a mapping from states to actions

[36]. A policy therefore tells the vehicle what to do in every possible state the vehicle

might encounter. MDPs are a very useful tool for planning, but the computational

cost for most practical problems is extremely high [36]. A further complication is that

the current state might not be known exactly, because of noisy or incomplete sensing.

This makes the problem a Partially-Observable Markov Decision Process (POMDP).

There are three main challenges when solving a POMDP - first, POMDPs do not

explicitly allow constraints. Constraints can be treated as large negative rewards,

but it will be shown later that for finite negative rewards, the constraints cannot be

guaranteed to hold. Second, the POMDP solution depends on the accuracy of the

transition and observation models that were used in computing the policy. If these

models are inaccurate, the POMDP solution cannot be guaranteed to be optimal. In

the CBRNE search and rescue problem, we cannot be sure that the transition model

is accurate since the rate at which victims are dying is uncertain and is probably

changing in uncertain ways. Furthermore, secondary incidents might occur unpre-

dictably, giving rise to new victims. A new policy would have to be computed using

the best transition and observation models available. This brings out the third major

disadvantage of POMDPs, which is their computational complexity. Recomputing an

exact POMDP policy in real-time (using value iteration, for instance) is extremely

difficult since the computational complexity grows very rapidly with the size of the

problem. Thus we need to turn to approximate methods.

Several approximate methods exist for MDPs and POMDPs, for example [37, 38].

POMDPs can be either discrete or continuous. For discrete POMDPs, factored meth-

ods make use of the structure of the problem to direct the search for a policy [39].

Point-based methods [40] [41] have also been proposed for approximate solutions. In

point-based methods, only a subset of the total belief space is used in computing the

policy. Other methods include belief-space compression using principal components

analysis [42] [43], and a Belief Roadmap (BRM) algorithm that relies on factoring



the covariance matrix in a linear Gaussian system [44]. POMDPs can also be solved

as linear programs by using the Bellman equation (which must be true for an op-

timal policy) as a constraint [45]. For continuous POMDPs, extensions of discrete

algorithms such as PERSEUS can be used [46]. Some recent work [46] has begun

to address the problem of solving POMDPs in the presence of constraints. All these

strategies are offline, i.e. a policy is computed for all possible states and beliefs ahead

of time, before the execution phase.

One disadvantage with approximate offline algorithms is that the computed poli-

cies depend on the modeled system dynamics, i.e. on the transition model. In the

event that the model is inaccurate, the policies can no longer be guaranteed to be

optimal. Therefore, being able to recompute policies online is important. Several

online algorithms for solving POMDPs have been developed, for example Real-Time

Belief Space Search (RTBSS) [47] and Rollout [48]. Several other algorithms are sum-

marized in a review paper by Ross et al. [49]. Generally speaking, on-line algorithms

first obtain an offline approximate solution. Then, the expected value of executing

an action in the current belief space is estimated by searching through a finite depth

AND-OR tree with actions and observations as the branches and belief states as the

nodes. The estimated cost-to-go for each of the leaves of the tree is estimated with the

approximate solution obtained previously. In the next section, we discuss the prob-

lems with guaranteeing hard constraints in the presence of uncertain dynamics, and

in particular when using on-line algorithms to compute plans in such an environment.

1.2.7 Constrained MDPs

Several authors have previously investigated adding constraints to a standard MDP,

leading to what is known in the literature as a constrained MDP [50, 51]. Work

by Chen and Blackenship [52, 53], and by Piunovskiy and Mao [54] demonstrated

the application of dynamic programming to solving constrained MDPs. The opti-

mality equations that are satisfied by the optimal policy are derived, existence and

uniqueness of solutions are explicitly proven, and a modified dynamic programming

operator is introduced and shown to be a contraction, i.e. repeated application of



the operator to a policy is shown to lead to a fixed-point solution which is also the

optimal solution. The work is extended by Chen and Feinberg [55, 56] and shown to

yield non-randomized policies, i.e. a deterministic action in every state. Dolgov and

Durfee extend the constrained MDP literature to include more complex formulations,

in particular cases with multiple constrained quantities with multiple discount fac-

tors [57, 581. The problem is formulated as a Mixed-Integer Linear Program, and the

proposed algorithm finds both randomized and deterministic policies, although solv-

ing for deterministic policies is computationally more difficult [58]. Zadorojniy and

Shwartz study the robustness of optimal policies to changes in problem parameters,

i.e. whether the a computed policy remains constraint feasible when the transition

model (the system dynamics) and the constraint parameters are modified. They show

that optimal policies are robust to small changes in the transition model, but not nec-

essarily in the constraint parameters since a change in the constraint parameters can

lead to infeasibility [59). Others have looked at using reinforcement learning to solve

constrained MDPs. A summary of those methods is provided by Geibel [60]. These

methods include LinMDP, a linear programming formulation of the constrained MDP

problem; WeiMDP, which converts a constrained MDP into an unconstrained MDP by

adding the constraint as a reward penalty with a weight than can be chosen by the

designer [61]; and RecMDP, a recursive Q-Learning algorithm that gives suboptimal

solutions [62].

1.3 Proposed Approach

In this work, we formulate the multi-agent constrained planning problem as a Markov

Decision Process (MDP). We choose the framework of MDPs for several reasons.

First, MDPs naturally incorporate uncertainty and noise and are particularly conve-

nient when the noise is not Gaussian and the system dynamics are not linear. Second,

MDPs provide a means by which to encode the mission objectives in the form of a

reward model. There are no restrictions on the form and nature of the reward model

- the model can be non-linear, continuous or discrete, convex or non-convex. Third,



MDPs can be extended to include the partially observable case, and that is one of

the areas this work will investigate. Partially Observable Markov Decision Processes

(POMDPs) are capable of deciding when to take actions that improve knowledge of

the world and when to act upon information that is already available.

The flexibility and power of MDPs comes at the price of computational complex-

ity. MDPs suffer from "the curse of dimensionality" [63], i.e. the computational effort

required to solve an MDP grows dramatically as the size of the problem state space

increases. This is especially true in the case of multi-agent systems since the size

of the problem is directly related to the number of agents in the team. As we have

seen previously, much effort has been done in the broader planning community to

develop fast, approximate MDP solvers. This work will use and extend some of these

solvers. Another shortcoming is that MDPs do not naturally incorporate hard con-

straints. This work therefore investigates an extension to the standard MDP, called a

Constrained MDP (C-MDP). The C-MDP formulation of the planning problem will

then be solved using a fast on-line algorithm developed as part of this work. The

issues that arise as the size of the team grows will then be investigated, and some

approximate techniques will be used to simplify the multi-agent planning problem.

1.4 Contributions

As indicated above, the contributions of this work are to the broad area of planning

under uncertainty and constraints, and more specifically to the field of Constrained

MDPs. They may be summarized as follows.

Contribution 1: Planning Under Uncertainty and Constraints This work

begins by proposing an extension to the standard MDP. The extension is the con-

straint model and provides a means by which to incorporate any general constraints

into an MDP, thus turning it into a C-MDP. A fast, computationally efficient on-line

algorithm is then presented to solve the C-MDP. This algorithm relies on a finite

horizon forward search to optimize the reward and an off-line approximate solution



to estimate constraint feasibility beyond the search horizon. It will be shown that

this algorithm achieves good performance in constrained environments. However, the

off-line approximate solution becomes a computational bottleneck, and this becomes

particularly acute when the environment and the constraint map are not static. The

complexity of this off-line approximate solution grows exponentially in the number of

agents, and therefore becomes important when we attempt to extend this algorithm

to large teams. This directly motivates the third contribution. But before addressing

the multi-agent problem, we complete the development of the algorithm by extending

it to continuous domains.

Contribution 2: Planning Under Uncertainty and Constraints in Contin-

uous Domains Solving MDPs defined over continuous domains (continuous state

and action spaces) is in general a difficult problem. A solution to an MDP is a policy -

a mapping from states to actions. In other words, a policy prescribes which action to

take in every state. In discrete MDPs, this mapping can be expressed (conceptually, if

not actually) as a look-up table. In continuous MDPs, representing policies is signifi-

cantly more challenging. One approach is to express the policy as the gradient of the

value function, which is the cost-to-go from any state. However, solving for the value

function is just as computationally challenging as solving for the policy itself. One

method that has been used successfully in the literature [64-66] for finding the value

function (which can be applied to both discrete and continuous domains) is function

approzimation. Function approximation finds the value function by assuming it to

be a linear combination of a set of basis functions. These basis functions, also known

as features, are picked by the designer to be appropriate for the specific problem of

interest. In this work, we extend MDP function approximation techniques for con-

strained continuous MDPs. We show that when the underlying system is continuous,

approximating continuous domains by discretization can yield poor results even for

reasonable discretizations. On the other hand, function approximation with the right

set of features achieves good performance.



Contribution 3: Planning for Multiple Agents Under Uncertainty and

Constraints The size of an MDP for multi-agent teams grows exponentially in the

number of agents. This "curse of dimensionality" makes the use of MDPs for teams of

agents computationally difficult. However, there are some significant simplifications

that can be made under sensible assumptions. One key assumption we make is to

assume transition independence, i.e. the action of one agent only affects its own

dynamics, and not those of other agents. While this is not strictly true (the action of

one agent is connected to the actions of other agents at the high-level planning stage)

it is a good approximation. However we do need to account for the fact that the

agents are still coupled through rewards and constraints. Some rewards may require

a joint action by more than one agent, and some constraints might be applicable to

the entire team rather than individual agents. Specifically this work investigates the

case where there is constraint coupling and proposes a mechanism by which agents

can plan their own individual actions while accounting for their impact on the team

constraints. In planning for themselves, the agents must make some assumptions

about the actions of the other agents. Specifically, they have to assume that the

probability of the other agents violating a team constraint (henceforth referred to

as joint constraints), defined as the risk, is fixed. This assumption will introduce

some conservatism in the agents' behavior, and in the next contribution we seek to

eliminate that conservatism through team communication and consensus.

Contribution 4: Distributed Planning Under Uncertainty and Constraints

The final contribution of this work looks at the benefit of having team communication

and consensus in the presence of joint constraints. As mentioned previously, agents

can plan their own individual actions even in the presence of constraint coupling

provided they make some assumptions about the actions of other agents. Specifically,

they have to assume the other agents will not take actions that exceed a certain

threshold of risk. In this section, we remove that assumption and instead allow the

agents to communicate with each other and arrive at a consensus about how much

risk each agent can take. This risk negotiation can take place throughout the mission,



so that as the environment changes and some agents have to take more (or less) risk

than was originally foreseen, the team can adapt. The properties and complexity

of this risk negotiation are discussed, and it will be shown that significantly higher

rewards can be expected particularly in highly constrained environments.

The rest of the thesis is organized as follows. Chapter 2 discusses the first contri-

bution, Chapter 3 the second, Chapter 4 the third and Chapter 5 the fourth. Chapter

6 will present some experimental results in both virtual environments with simulated

physics (Unreal Tournament) and actual hardware (RAVEN). Chapter 7 concludes

with a summary and some suggestions for future work.



34



Chapter 2

Planning Under Uncertainty and

Constraints

2.1 Approach

Markov Decision Processes (MDPs) provide a broad and generalized framework within

which to formulate and solve planning problems in uncertain environments. How-

ever, the standard MDP formulation does not allow for the incorporation of hard

constraints, such as fuel constraints and path constraints [35].

This work investigates an enhancement to the standard MDP by adding con-

straints, called a Constrained Markov Decision Process [50]. This work proposes an

online algorithm with finite look-ahead for solving the constrained MDP. This algo-

rithm consists of two parts - an offline approximate solution that predicts whether

a constraint-feasible solution exists from each belief state, and an online branch-

and-bound algorithm that computes finite-horizon plans and uses the approximate

offline solution to guarantee that actions taken at the current time will not make the

constraints infeasible at some future time beyond the planning horizon.



2.2 Literature Review

The problem of planning in the presence of uncertainty and constraints has been

addressed in existing literature. Various ways of formulating such problems have been

proposed, including Mixed Integer Linear Programming, randomized algorithms and

Markov Decision Processes. Some of these approaches have been reviewed in Chapter

1. For instance, Ono and Williams investigated the problem of constraints in the

presence of process noise [67, 68] and the planning framework used in their work is a

Mixed-Integer Linear Program (MILP). Obstacle avoidance constraints are written as

chance constraints, i.e the probability of violating a constraint is required to be below

a certain threshold. The probabilistic constraints are then converted into tightened

deterministic constraints where the tightening factor is proportional to the bound

on the constraint violation probability. A similar constraint-tightening approach was

used by Luders and How [69], but with the planning problem formulated as a path

planning problem and is solved with Rapidly-Exploring Random Trees (RRTs).

Generally speaking, a standard Markov Decision Process does not explicitly in-

clude constraints [35]. However some work has been done to extended the MDP

framework to include hard constraints, an extension called Constrained Markov De-

cision Processes [50]. Recent work includes work by Dolgov [57], which investigates

resource constraint problems and introduces the resource constraints into a standard

MDP. However, Dolgov's work mostly looked at off-line methods [58], whereas in this

work we seek fast on-line algorithms to deal with a dynamic environment. Addi-

tionally, in this work the resource we consider is risk which is a continuous variable

whereas Dolgov et al. do not consider continuous state spaces. Solving MDPs with

continuous state spaces is difficult and is best accomplished using function approxi-

mation techniques. This approach will be investigated in this work (Chapter 3).

Similar work has been done in the field of Partially Observable Markov Decision

Processes (POMDPs). The problem of solving Constrained POMDPs has been ad-

dressed by Isom et al. [46], but the proposed methods are again off-line methods that

are computationally too expensive for fast planning. In this work, we propose using



online algorithms to solve constrained MDPs and POMDPs due to their speed and

scalability.

2.3 Problem Formulation

As stated in the previous chapter, we formulate the planning problem as an MDP.

An MDP is formally defined the tuple < S, A, R, T >, where S is the state space and

A is the set of actions. Throughout this work, unless otherwise specified, we assume

that ISI and |A| is countable and finite. R(s, a) : S x A - R Vs C S, a C A is

the reward model, and gives the reward (in this work, a non-negative real number)

for taking action a in state s. T(s' s, a) : S x A x S -+ R Vs', s E S, a E A is the

transition model that gives the probability of transitioning from state s to state s'

under action a, and hence Es'cs T(s'ls, a) = 1 Vs, s' E S, a C A. A solution to

an MDP is a policy r(s). Formally defined as ir(s) : S -4 A Vs C S, a policy is a

mapping from states to actions - in other words, a policy prescribes as action in every

state. An optimal policy qr*(s) is one that maximizes the expected reward over time,

and therefore satisfies the following optimality condition.

Targ max E Y'R(st, r(st))] (2.1)
t=0O

In the above cost calculation, -y is the discount factor applied to future rewards and

is between 0 and 1.

This work seeks to address the problem of solving a constrained MDP. A con-

strained MDP is defined as the tuple <S, A, R, T, C>. S, A, R and T are exactly as

defined previously. C(s, a) : S x A -- a R Vs E S, a E A is the constraint model, and

the value it returns is defined as the constraint penalty. In this work, the constraint

penalty is defined as follows. If action a in state s is disallowed for the system, i.e.

violates a constraint, C(s, a) = 1, and 0 otherwise. Furthermore, states for which

C(s, a) = 1 Va are always absorbing states. Thus constraint-infeasible states are

terminal states.



With these definitions, we can state that the objective is to compute a policy ir*

to maximize the cumulative expected reward while keeping the expected constraint

penalty below a, i.e.

T~

r*= argmax E Y'R(st,7(st)) (2.2)

.t=to

.T

s.t. E C(str(st)) <a (2.3)

Since the constraint penalty is always non-negative, E [ET C(st, at) < 0 if and

only if C(st, at) = 0 Vt. Thus by setting a = 0, we can impose hard constraints. By

setting a to a value between 0 and 1, we can specify the probability with which we

want constraints to be enforced. This probability is henceforth defined as risk. Note

that in some existing literature (e.g. Dolgov and Durfee 2004, [70], Cavazos-Cadena

and Montes-De-Oca 2003, [71] and Geibel 2005 [72]) risk is defined differently - as

the probability that the reward will lie outside an acceptable bound defined by the

designer. However, in this work risk is defined as the probability that a constraint

will be violated, the constraints being defined by the constraint model just described.

The standard approach to dealing with constraints in MDP literature [35] [61] is

to impose a penalty for violating the constraints. The method is discussed below,

and along with a discussion of its shortcomings.

2.3.1 Constraints as Penalties

The simplest approach is to convert the constraint penalty into a large negative

reward. Thus a new reward function is defined as

N(st, at) = R(st, at) - MC(st, at) (2.4)

where Al is a large positive number. This new reward function R(st, at) is used

to solve a standard unconstrained MDP, < S, A, R, T >. Varying the value of M

can make the policy more risky or more conservative. However, a counterexample



presented below and shown in Figure 2-1 illustrates that an M value does not always

exist for all risk levels.

In the problem shown in Figure 2-1 an agent starts in state si at time 0. The

agent can take two actions in states si and S2 - a walk action that reaches the goal

state with probability 1, and a hop action that reaches the goal state with probability

0.9 and the state s4 with probability 0.1. State s4 is a constrained state (C(s4 , .) = 1),

and therefore also an absorbing state. The hop action is therefore rewarding but risky,

while the walk action is safe but unrewarding. The objective is to maximize the path

reward while keeping risk (probability of entering S4) below 0.1. By inspection, the

optimal policy r* corresponding to a risk level a = 0.1 is to hop in state si but walk

in state s2 .

In a standard MDP, we would prevent the agent from entering state s4 by imposing

the constraint penalty M on that state. It can be shown that hop is chosen as the

best action from state S2 for M < 900, but walk is chosen as the best action in state

si for M > 990. There is no value of M for which hop is chosen in S2 and walk in si

- the planner switches between being too conservative (only walks) to too risky (only

hops).

The intent of this simple example is to illustrate that incorporating constraints as

negative penalties does not always yield good policies, particularly in cases where some

risk is required to achieve high performance. In this work we present an algorithm

that does not have this shortcoming, but first we provide a more thorough discussion

of the notion of risk.

2.3.2 Definition of Risk

In the discussion above, we defined risk as the probability that a constraint will be

violated. However, there are two different ways to measure this quantity - defined

here as accumulated and memoryless. Memoryless risk is the risk that is expected

in the future, at times t > to where to is the current time. Since the agent cannot

perform any more actions after violating a constraint (constrained states are always

absorbing states), it is reasonable to assume that no constraints have been violated



Walk Walk
S >82 8 3

00 0. 0.9

0. .01

S4

Figure 2-1: A counter example to show that a penalty value corresponding to the
optimal policy does not always exist (Courtesy: Alborz Geramifard)

so far. Risk that was taken in the past was not realized and is therefore ignored,

and only the risk that is expected in the future is constrained to be less than a.

Accumulated risk on the other hand is the total risk that has been accumulated by

the agent since t = 0, i.e. we set to = 0 in Equation 2.3. Under this definition, we

require that the total risk - the risk taken in the past, plus the risk that is expected

in the future - to be less than a. Thus the planning problem for the case where we

use accumulated risk is given by

T~

= arg max E [ t R(st, (s)) (2.5)
t=0

T~

s.t. E C(St, 7(St)) < (2.6)
t=0

Note that the only difference between Equations 2.2-2.3 and Equations 2.5-2.6 is the

time over which the risk and reward are computed. In Equations 2.2-2.3 that time

is from the current time to to the problem termination time T, whereas in Equations

2.5-2.6 the time is over the entire time 0 to T. We notice that since the policy from

time 0 to time to - 1 has already been executed, the left side of Equation 2.6 can be

broken into two terms as follows.

T ~ 'to-i T

E [ C(st, (st)) = E [ZC(st, 7(st)) + E C(st, x(st))
t=0 _ t=0 t=to



" T~

Vco+E (c(st,7(s))

Where we define Vco --- EZ -1 C(st, 7r(st))]. A key advantage of using an online

algorithm is that since the policy from time 0 to to has already been executed, the

actions in states so, - - - sto are not decision variables, and the online MDP solver does

not have to account for the various values that Vco may take. At any time to, Vco is

a constant and a parameter that is supplied to the online MDP solver, but does not

have to be incorporated as a state variable. Similarly, the past reward does not have

to be incorporated as a state variable, since it does not affect the reward-to-go.

When using an offline solver - for example value iteration - running the solver

for T iterations (from time 0 to time T) naturally computes the accumulated risk,

therefore making it unnecessary to incorporate the past risk in the state. However if

the offline solver were used to solve for a policy from to to T, and accumulated risk

from times 0 to T were being used as the risk definition, then the past risk (from

time 0 to to - 1) does have to be incorporated as a state. The inverse is also true

- if the offline solver were being used to compute a policy from time 0 to T, and

memoryless risk were being used as the risk definition, then the past risk again has to

be incorporated as a state variable. This highlights one significant advantage of using

an online approach - the choice of memoryless risk or accumulated risk can have a

major impact on the complexity of an offline algorithm, whereas an online algorithm

can incorporate either by simply keeping track of the past risk Vco without having to

explicitly condition its policy on all possible values of Vc0 .

Both methods of measuring risk are equally valid, and choice of accumulated

versus memoryless risk is problem-dependent. In problems where a policy is expected

to be executed repeatedly, accumulated risk is a more sensible measure, whereas in

problems where a policy is expected to executed only once (or in which the the policy

is frequently recomputed) memoryless risk might be a better measure. In this thesis,

we focus our attention mostly on problems with memoryless risk, although some

results and comments for problems with accumulated risk are also provided.



2.4 Proposed Solution

The proposed solution to the constrained MDP defined in Equations 2.2 and 2.3 is

to use an on-line forward search to optimize the reward and check for constraint

feasibility up to a horizon of length D. Constraint feasibility for times beyond D is

ensured by using a risk-to-go estimate that is computed off-line. The solution requires

two quantities to be tracked - the reward R and the constraint C. For this reason,

we maintain two separate value functions - one associated with the reward R(s, a)

which we call VR(s) and another associated with the constraint value C(s, a) which

we call Vc(s). The algorithm presented has two components - an off-line component

where an approximate solution for Vc is obtained, and an on-line component where

the off-line estimate for Vc is refined and VR is computed over the finite horizon to

select the best action.

2.4.1 Off-line Risk Estimate

The overall goal of the planner is to maximize the expected reward obtained while

keeping the risk below a threshold, in this case a. In the off-line component of the

algorithm, we solve for a policy 7r* that will minimize the risk. If the minimum

risk from a certain state is below a, we can guarantee that there exists at least one

action in that state (the action associated with the policy r*) that will satisfy the

risk bound. During the on-line portion of the algorithm (described in detail the next

section) we use this guarantee to ensure constraint feasibility for times beyond the

on-line planning horizon.

Therefore, we first obtain the minimum risk, Ut(s), by solving the following un-

constrained optimization problem:

D

U* (s) = min E C(st, at) (2.7)
t=0

If, for any state s, Us(s) < a, then there exists at least one policy (the optimal policy

7r*) that guarantees that starting from s, the constraints will never be violated. In



solving the optimization problem shown in Equation 2.7, we may use approximate

algorithms for unconstrained MDPs. The only requirement is that the solver provide

an upper bound when minimizing. In that case, we know that if the approximate

value for Uc(s) returned by the solver remains less than a, we can guarantee that

the true risk-to-go Uc(s) will also be less than a. Thus the system will remain

constraint-feasible if we use the corresponding approximate policy 7r*.

2.4.2 On-line Reward Optimization

During the on-line part of the algorithm, we compute the future expected reward

VR(s) and the future expected risk Vc(s) using a forward search. The previously-

obtained minimum risk policy is then evaluated at the leaves of the tree to ensure

constraint feasibility beyond the planning horizon. The forward search is executed

by solving the following set of equations:

7r*(s) = argmax [R(s, a) + T(s', s, a)V(s')] (2.8)aeaC 0 '] 28
S/

VR(s) = max [R(s, a)+Z T(s', s, a)VR(s')] (2.9)
aEac

St

ac {a:Qc(s,a)<a} (2.10)

Qc(s, a) = C(s, a) + T(s', s, a)Vc(s') (2.11)
St

Vc(s) = Qc(s,7r*(s)) (2.12)

Note that the terms VR(s') and Vc(s') are obtained by solving Equations 2.8 -

2.12 recursively. The recursion is terminated at a depth equal to the desired search

horizon, and at that depth values of VR(s') = 0, Vc(s') = U(s') are used. Algorithm

1 is the complete algorithm, implemented as the subroutine Expand.

When the Expand subroutine is called with a depth of 0, i.e. if the belief node

on which the function has been called is a leaf node, the function simply returns the

minimum risk U . For nodes that are not leaf nodes, the algorithm looks through

all possible successor states s' by looping through all possible actions. Any successor

state that that does not satisfy the constraints (Vc(s') < a), is not considered. For



Algorithm 1 The Constrained MDP Forward Search Algorithm

1: Function Expand(s,Uc,D)
2: if D = 0 then
3: Vc(s) = Uc (s); VR(s) = 0; w(s) = nC (S)
4: return T(s), VR(s),Vc(s)
5: else
6: for a E A do
7: [VR(s'), Vc(s'), 7 (s')] Expand(s', Uc, D - 1)
8: QR(s, a) Es VR(s')P(s', s, a) + R(s, a)
9: Qc(s, a) = Es1 Vc(s')P(s', s, a) + C(s, a)

10: r'(t) = r(s)Vt f s
11: 7'(s) = a
12: end for
13: ac = [a: Qc(s, a) < a]
14: ir'(s) argmaxaeac QR(s, a)

15: VR(s) Q R(S, 7'(s))
16: VC(s) = Qc(s, w'(s))
17: return 7'(s), VR(s),Vc(s)
18: end if

those states that do satisfy Vc(s') < a, the Expand routine is called recursively to get

the expected reward and the expected constraint penalty for that state. The action

that provides the best reward VR is returned as the best action to execute in the

current state.

The inputs to Expand are the current state s, the planning horizon length D, and

the minimum risk (or its overestimate) Uc. The planning algorithm then begins the

cycle of planning and executing. First, the function Expand is called on the current

state. Expand computes the best action to execute as already discussed in the previous

paragraph. It is discussed in more detail in the next paragraph. Once the action is

executed the state s is updated and the Expand routine is again called on the most

current belief. This cycle is repeated until execution is terminated. The complete

algorithm is shown in Algorithm 2.

Off-line Risk Estimate as an Admissible Heuristic

The off-line minimum risk estimate serves as the risk-to-go estimate for the on-line

forward search. In this section, we show why the minimum risk serves as a good



Algorithm 2 Pseudo-code for an on-line algorithm to solve constrained MDPs
1: Function ConstrainedOnlineMDPSolver()

Static:
sc : The current state of the agent
T :The current search tree
D: Expansion Depth
Uc :An upper bound on Vc
<b(s, a): System dynamics

2: sc +- So

3: Initialize T to contain only sc at the root
4: while ExecutionTerminated() do
5: Expand(sc, Uc, D)
6: Execute best action a for sc
7: sc <-- <D (sc, a)
8: Update tree T so that sc is the new root
9: end while

heuristic that provides both good reward performance and constraint feasibility.

Assume that search horizon is of length D > 1, and the current state is so. Suppose

the optimal policy (one that satisfies Equations 2.2 and 2.3) has a reward value

function of VR(s), and a risk value function of Vc(s). Also, suppose that Vc(so) < a,

i.e. we start from a feasible state. UR(s) is the reward-to-go for V (s) and Uc(s) is

the risk-to-go for Vc(s). And finally, Uc(s) is the minimum risk, i.e the risk value

function obtained by solving Equation 2.7.

Suppose we were to use an estimate for UR(s) as the reward-to-go estimate, and

Uc(s) as the risk-to-go estimate. There are several possibilities to consider - first,

that we underestimate true Uc(s) for all s E S, and call this underestimate Uc(s).

In this case, there is a possibility that the on-line forward search will return a policy

that is infeasible, by directing the agent into a state from which no further constraint

feasible policies exist. This possibility is shown in Figure 2-2. State S2 is high-reward

(R = 100) but infeasible (Uc > a), but since Uc underestimates the risk, an infeasible

path is explored. On the other hand, the on-line forward search investigates more

paths than are actually feasible and therefore will not miss the actual optimal path -

in other words, it is optimistic. This is made especially clear by considering the case

where we overestimate Uc(s), shown in Figure 2-3. The overestimate is designated at



R =1 3 Uc(s) < Uc(s) < a

R = 100
so_ y 2 c(s) < a < Uc(s)

R = 10 s Uc(s) < Uc(s) < a

Figure 2-2: Online forward search with an optimistic heuristic, one that underesti-

mates the risk. Infeasible paths are incorrectly assumed to be feasible

Uc(s). In this case, the on-line forward search always returns feasible plans but can

be poor in reward performance since it rules out paths that are in reality feasible. In

Figure 2-3, state si is in fact a high-reward, feasible state (R = 10, Uc < a) but since

the heuristic Uc overestimates the risk that state is ruled out in the forward search.

In fact, it is possible that no feasible paths will be found if Uc is a sufficiently high

overestimate.

Thus, a good heuristic for Uc(s) is an underestimate that accounts for the fact

that in some states, there might be no feasible actions. The minimum risk, U (s)

serves as one such heuristic. If a risk-free action exists in a particular state s, then

Us(s) = 0 in that state. If all actions in that state are risky, then Us(s) returns the

least risky action. If the least risky action has risk greater than the threshold a, then

U(s) > a and the on-line forward search eliminates any path that visits state s. At

the same time, U (s) is guaranteed to be an underestimate to Uc(s) (it is the lowest

possible risk) and therefore does not pessimistically eliminate plans that are feasible.

For the reward-to-go estimate UR(s), there are two possibilities - one is that the

heuristic is optimistic, i.e. UR(s) > UR(S) Vs E S, the second is that it is pessimistic

with UR(s) < UR(s) Vs E S. However for good reward performance, the heuristic



R = 1 Uc(s) < Uc(s) < a

SO a < Uc(s) < Uc(s)

R=10 s Uc(s) <a <Uc(s)

Figure 2-3: Online forward search with a pessimistic heuristic, one that overesti-
mates the risk (Uc > Uc) - feasible, high-reward paths are incorrectly assumed to be
infeasible

also has to be ordered the same as the optimal reward value function, which means

that if UR(sl) > UR(s 2 ) Vs 1 ,s 2 C S, then UR(S1) > UR(S 2 ) and UR(si) > ELR(s2).

In the absence of this property, being optimistic does not necessarily provide any

significant benefit. Finding this ordering essentially requires solving the complete

C-MDP problem, and thus we simply set UR(s) = 0 Vs E S and avoid incurring

any additional computation. The properties of heuristics for the reward and risk, and

their impact on the quality of the solution generated are summarized in Table 2.1.

Table 2.1: Impact of heuristic properties on the performance of the On-line C-MDP
forward search algorithm

Up>V UR<VI
Uc > Uc Feasible, Conservative Feasible, conservative

U Feasible, optimistic Feasible, pessimistic
Uc < Uc Infeasible Infeasible



2.5 Results

The example problem considered is a robot navigation problem with some constraints.

We present three sets of results - first, we show that treating the constrained MDP

problem as a standard MDP with constraints treated as penalties does not yield the

optimal policy. Second, we show that the on-line approximate solution presented

here performs reasonably well when compared to the exact off-line optimal solution.

And finally, we show that the definition of risk that is used - memoryless versus

accumulated - makes a significant difference in the reward performance.

2.5.1 Constraints as Penalties

The dynamic model for the agent is shown in Figure 2-4. When the agent is given

a command to move in a certain direction, there is a probability of 0.9 that it will

move in the intended direction, and a probability of 0.05 that it will move in one of

the two perpendicular directions. In the case shown in Figure 2-4, when the agent

is commanded to move right, there is a probability of 0.9 that it will move right,

probability of 0.05 that it will move up and a probability of 0.05 that it will move

down.

The environment used in the example is shown in Figure 2-5. The vehicle starts

in location (1, 3), shown with S. There are three locations where a reward can be

acquired - locations (5, 3) and (4, 4) give a high reward of 100, whereas location

(4, 2) gives a lower reward of 50. Furthermore, locations (3, 3), (4, 3) and (4, 5) are

constrained locations - the vehicle cannot execute any further actions once it enters

one of these states. The vehicle is not allowed to violate any constraints with a

probability of more than 0.05, i.e. the allowed risk a < 0.05.

It can be easily verified that a path through all the reward locations violates the

constraints with a > 0.05. Two constraint-feasible paths, by inspection, are shown in

Figure 2-6. Both paths incur a constraint violation probability of 0.05, since there is

a probability of veering into location (4, 3) during the transition out of location (4, 2).

However, the vehicle cannot proceed any farther, because any action taken in location



(5, 3) will lead to a greater probability of constraint violation. We now show that even

in this relatively simple problem, modelling the constraints as negative rewards will

lead to either very conservative or very risky behavior. We will also show that the

proposed on-line algorithm with an off-line constraint-feasible approximate solution

achieves high performance in problems such as this example that require operating

close to constraint boundaries.

In a standard MDP formulation, con-

straints may be modeled as large nega- 0.05

tive rewards. For instance, in this case,

we give a reward of -5000 for entering 0.9

any of the constrained states. The result-

ing policy is shown in Figure 2-7. The 0.05

vehicle moves along the bottom, away

from the constrained states, until reach- Figure 2-4: Vehicle dynamic model

ing (4, 1). At that point, the vehicle

moves up into (4, 2) to reach the reward of 50. However, after reaching this state, the

vehicle moves back into (4, 1). This action is chosen because it is the only action that

guarantees that the vehicle will not enter one of the constrained states and acquire

the associated penalty. The vehicle decides that the reward of 100 that awaits two

steps away is not worth the large negative reward that could be incurred if the vehi-

cle veers into the constrained location (4, 3). Due to this conservative behavior, the

planner fails to achieve the higher reward in location (5, 3). It might seem that low-

ering the constraint violation penalty is one potential solution to this conservatism,

but we show that lowering the penalty causes the planner to switch from being too

conservative to too risky.

Figure 2-8 shows the outcome of lowering the constraint penalty. Since the con-

straint violation penalty is lower, the planner decides to follow a path adjacent to

the two constrained states with the probability of a constraint violation of 0.095.

Lowering the penalty even farther leads to the outcome shown in Figure 2-9. The

planner assumes that the reward at location (4,4) (which is higher than the reward



Figure 2-5: The MDP problem set up

Figure 2-6: Constraint-feasible paths

Figure 2-7: The policy computed by MDP value iteration when the constraint is
modeled as a high negative reward leads to a very conservative policy that fails to
achieve high reward. The nominal path from the start state is shown in bold.



Figure 2-8: The policy computed by MDP value iteration when the constraint penalty
is lowered. The nominal path from the start state is shown in bold.

Figure 2-9: The policy computed by MDP value iteration when the constraint is
modeled as a low negative reward leads to a policy that violates the safety constraint.
The nominal path from the start state is shown in bold.

Figure 2-10: The policy computed by the on-line constrained solver. The solver
correctly recognizes that going right from location (4, 2) is constraint-feasible and
yields high reward. The nominal path from the start state is shown in bold.



at location (4, 2)) is now feasible, and thus switches to the top path which is also

constraint-infeasible.

This abrupt switch from conservative to risky is because an MDP planner has

only a single reward function that must capture both performance and constraint

feasibility, and therefore lacks the fidelity to accurately specify an acceptable level

of risk. This lack of fidelity becomes an important factor in problems where high

performance requires operating close to constraint boundaries, as is the case in this

example problem. The on-line constrained MDP algorithm presented in this work

provides a general way to constrain risk while optimizing performance.

The on-line algorithm presented in this work generates the policy shown in Figure

2-10. The algorithm first generates a conservative off-line solution that minimizes

the risk. The conservative solution is a policy that minimizes the total constraint

penalty. This policy is the same as the conservative policy shown in Figure 2-7. The

on-line forward search algorithm with a finite search horizon (which for computational

reasons was set to 3 in the current problem) uses this approximate solution to identify

that location (4, 4) is constraint-infeasible. The forward search sees that a constraint-

feasible, high-reward path to (4, 2) exists and therefore begins executing this path.

As the search horizon reaches state (5, 3) (for a horizon of 3, this happens when the

vehicle is in location (4,1)), the forward search recognizes that a path to the high-

reward location (5, 3) exists, and that path is also constraint-feasible (since the risk

of constraint violation is only 0.05). The on-line planner therefore chooses to move

right and claim the reward at (5, 3). Thus the off-line approximate solution provides a

conservative, constraint-feasible policy while the on-line algorithm adjusts this policy

for better performance.

2.5.2 Approximate On-line Solution vs. Optimal Off-line So-

lution

It is clear that the on-line solution presented here is an approximate solution - the

search horizon for the forward search is finite, and the reward-to-go and risk-to-go



used at the end of that horizon are approximate. Thus we should expect that the

policies generated on-line will yield a lower reward than those generated by the exact

optimal solution. In order to test loss in reward performance, we compare the on-

line solution against an exact off-line optimal solution method proposed by Dolgov

et al. [58]. The problems upon which the two algorithms were tested were similar to

the problem shown in Figure 2-5, but with a larger 10 x 10 grid size. Rewards and

constraints were placed randomly in the environment. Performance was measured as

a function of the constraint density, which is defined as the fraction of states in the

environment that are constrained states (shown in red in Figure 2-5). The number

of reward states was kept fixed at 5 out of a total grid size of 100 states. For each

value of the constraint density, 40 problems were randomly generated and the two

algorithms applied to each. The results are shown in Figure 2-11.

First, we note that the reward for both methods decreases as the constraint den-

sity increases, since more rewards become infeasible as the number of constraints in

the environment increases. Also as expected, the approximate on-line policy under

performs the optimal policy, on average by a factor of 2. The gap between the two

seems lower in more highly constrained environments, but this mostly due to the fact

that both the optimal policy and the approximate policy both achieve low reward in

these domains.

Its important to note that both the optimal and the approximate methods were

using accumulated risk, i.e. the total risk (including the past risk) is constrained to

be less than a. This was done to facilitate comparison with the offline optimal policy.

In the next set of results, we show that the definition of risk used makes a significant

difference to the reward performance.

2.5.3 Memoryless Risk vs. Accumulated Risk

We expect that using memoryless risk (only constraining future risk) will yield higher

reward than using accumulated risk (constraining total risk). In this section, we show

that the definition of risk does make a significant difference in the policies computed,

and therefore the performance of the system. We again used a problem set-up similar



4-
Offline Optimal

V Online Approximate

3.5

3-

2.5-

00

V 0
1 VV V @

V V. 0
0.5- VV..

V V
V

5 10 15 20 25
Constraint Density

Figure 2-11: Comparison of the approximate online solution with the optimal, off-line

solution

to that shown in Figure 2-5. As in the previous set of results, we used a 10 x 10 grid

size and place rewards and constraints at random locations. The number of rewards

was kept fixed at 5, and the number of constraints - the constraint density - was varied.

For each value of the constraint density, 40 such problems were generated and the

on-line approximate method was used to solve each problem with both memoryless

risk and accumulated risk. The results are presented in Figure 2-12.

As expected, the reward in the memoryless case was found to be significantly

higher than for the accumulated case. Furthermore, the difference is greater for

higher constraint densities. This is particularly noticeable when we account for the

fact that total reward is in fact lower for both methods when the constraint density

is high. Again this is to be expected, since an agent operating in a highly constrained

environment is likely to take more risk. By adding all the risk that the agent has



M Memoryless Risk
V Accumulated Risk

1.8-

1.4-

0.8

VV
0.8-

V U0.6 U

0.4-

0.2

05 0 15 20 25 30 35 40
Constraint Density

Figure 2-12: Difference in reward performance due to the choice of type of risk

taken in the past - which rises quickly in highly constrained environments - the

agent's behavior is much more severely restricted. In fact, comparing Figures 2-11

and 2-12, we see that in the highly constrained cases (constraint density greater than

20) the Memoryless Risk case actually achieves higher reward than even the optimal

policy with Accumulated Risk. We will observe in Chapter 4 that this effect becomes

especially important in the multi-agent case, where risk is accumulated quickly even

in less constrained cases due to the presence of many agents. Thus we see that the

definition of risk that is used can have a significant impact on the overall performance

of the agent. This difference has rarely been considered explicitly in the existing

literature, but will be considered in the results and applications to be presented later

in this work.

Another variation in the way risk can be measured arises if the agent cannot fully

observe its environment - an assumption that we have made thus far by formulating



the problem as an MDP. If the agent cannot observe its environment, i.e., the environ-

ment is partially observable - then we must also specify whether the risk constraint is

to be imposed on the true state (which the agent does not know with certainty) or on

the belief state (which is the probability distribution that gives the likelihood of the

agent being in any given state). A constraint on the true state will yield more con-

servative policies than a constraint on the belief state. While it is not the main focus

of this work, we briefly discuss the extension of this work to the partially observable

case.

2.6 Extension to POMDPs

An important variation of MDPs are partially observable Markov Decision Processes

(POMDPs). In a POMDP, knowledge of which state the system is in is uncertain

- instead of perfect knowledge of past and current states, we only have a probability

distribution over all states, defined as the belief. As the system executes actions,

this probability distribution changes in a manner described by the transition model.

In addition, the system receives observations, potentially noisy, about its current

state. The relationship between the observations and the current state is given by

the observation model.

Formally, a POMDP is defined by the tuple < S, A, Z, R, T, 0 > where S, A, R

and T are exactly as defined for an MDP. Z is the set of possible observations, and

O(z, s) where z E Z, s E S is the observation model that returns the probability

that observation z will be made in state s. The belief is defined as b(s) Vs E S

and gives the probability that the system is in state s. A solution to a POMDP is

a policy defined over the belief space, r(b). The policy determines which action to

take at every point in the belief space. The belief is computed from the transition

and observation models, and the previous belief b(st_1), the received observation zt_1

and action at_1. Thus the belief at time t is related to the belief at time t - 1 by the



following relation.

b(st) = riO(zt ist1,ati) E T(stst_1, at I)b(st_1) (2.13)
st-i CS

1/ b(st_ 1) Z T(st st_1, atI)P(zt_1|st_1, at_1)
st_1ES siEs

An initial belief, b(so) is assumed to be known. Note that to simplify notation, we

henceforth define bt -- b(st). As in an MDP, the optimal policy is one that maximizes

the expected future reward (given by the reward model R), shown below.

'T

7 arg max E [R(st, r(bt)) bt] (2.14)
_t=0 st ES

The belief bt is computed using the Equation 2.14, where at_1 =r(bt- 1) and the initial

belief b0 is assumed to be known. A constrained POMDP (C-POMDP) is defined as

the tuple < S, A, Z, R, T, 0, C >, where the constraint model C is defined the same

as for MDPs. An optimal policy for a constrained POMDP maximizes the expected

future reward subject to a constraint on the expected risk, as given below.

r =argmaxE E 3[R(st,7r(bt))|bt] (2.15)
t=0 stES

T~

s.t. E [C(st, 7r (bt))Ibt] < a (2.16)
. t=0 St G s

Several algorithms exist to solve unconstrained POMDPs. Off-line algorithms include

POMDP value iteration [73], Point-Based Value Iteration (PBVI) [74] and on-line

algorithms include RTBSS, Rollout and others that are summarized in [49]. Off-line

algorithms exist for constrained POMDPs [46], and in this work we extend the on-

line algorithm for constrained MDPs to constrained POMDPs. As in the MDP case,

there are two parts to the algorithm - first, we compute the minimum risk off-line,

and use this minimum risk policy to ensure constraint feasibility during the on-line

reward optimization. The minimum risk is computed by solving the following the



unconstrained POMDP.

T

Uc(s) = minE [fC(st,T(bt))|bt (2.17)
_ t=0 st ES

Note that Equation 2.17 is the POMDP equivalent of Equation 2.7. As in the MDP

case, the above unconstrained POMDP can be solved using either exact or approxi-

mate methods. The only requirement is that any approximate solution be an overes-

timate to the exact Uc(s). For instance, one method that provides an upper bound

when minimizing is Point-Based Value Iteration (PBVI). Since the approximate so-

lution is guaranteed to exceed the correct value of Uc(s), if the approximate solution

is found to be less than a then the exact solution is also guaranteed to be less than

a. Next, we compute the future expected reward and future expected risk using a

forward search. The minimum risk Uc is used at the end of the search horizon to

ensure constraint feasibility beyond the horizon. The forward search is executed by

solving the following set of equations recursively.

r*(s) = argmax[ R(s,a)b(s)+ [ZZO(z,s)V(s)b'(s, a, z)] (2.18)
a~ac sCS zGZ sCS

VR(s) = max [S R(s, a)b(s) + 55 O(z, s)VR(s)b'(s, a, z)] (2.19)
aEac sES zEZ sES

ac = {a: Qc(s,a)b(s) < a} (2.20)

Qc(s, a) = C(s, a)b(s) + 0 5 O(z, s) Vc(s)b'(s, a, z) (2.21)
sCS zEZ sCS

Vc(s) = Qc(s, 7*(s)) (2.22)

The main differences between Equations 2.8 - 2.12 for MDPs and Equations 2.18 -

2.22 is the fact that we must now account for imperfect state information (in the

form of the belief b(s) and the observations Z. Therefore in Equation 2.18, we have

to take the expected future reward over all possible future belief states b' (instead

of the future states s', as in Equation 2.8). Future belief states depend on not just

the transition model but also the observation model, and are computed as shown in



Equation 2.23.

b'(s',a,z) O(zIs') EsES T(s'ls, a)b(s)
P(zlb(s), a)

P(zlb(s), a) = 3 O(z s) 3 T(s'|s, a)b(s) (2.23)
s'CS seS

The complete algorithm is presented as the subroutine Expand as shown in Algo-

rithm 3. Note that we abbreviate EZSS VR(b(s)) as VR(b), and similarly EsES Vc(b(s))

as Vc(s). When the Expand subroutine is called with a depth of 0, i.e. if the belief

node on which the function has been called is a leaf node, the function simply re-

turns the off-line constraint penalty approximation Uc (lines 3-4). For nodes that are

not leaf nodes, the algorithm generates all possible successor nodes b'(s) by looping

through all possible actions (line 10) and observations. Any successor node that 1)

has a VR value that is lower than the best VR found so far in the tree, or 2) that

does not satisfy the constraints, is not considered (line 10). For those nodes that

do satisfy these criteria, the Expand routine is called recursively to get the expected

reward value and the upper bound on the constraint penalty for the successor nodes.

The reward is propagated from the successor nodes to the current node according

to Equation 2.19, and the constraint according to Equation 2.22. The action that

provides the best reward VR is returned as the best action to execute in the current

node (lines 15 and 21). The constraint and reward values associated with taking that

action in the current node are also returned (line 14, 17 and 21), since these values

have to be propagated to the parent node.

Algorithm 4 is the main on-line C-POMDP planning algorithm. The inputs to this

algorithm are the current belief state b, the planning horizon length D, and the upper

bound Uc on the constraint value function VC. The current belief state is initialized

to the initial belief bo (line 2) and the forward search tree contains only the current

belief node. The planning algorithm then begins the cycle of planning and executing

(lines 4 and 5). First, the function Expand is called on the current belief node. Once

the action is executed and a new observation is received, the current belief is updated

[49] (line 8) again using 2.23, but this time for just the actual observation.



Algorithm 3 The expand routine for solving constrained POMDPs
1: Function Expand(b, D)

Static:
Uc(b)

2: if D = 0 then
3: VR(b) +- 0
4: Vc(b) <- Uc(b)
5: else
6: i 4- 1
7: VR(b) +~ -00

8: Vc(b) +- -o

9: while i < |AI do
10: T(b, aj, z) = b'(s b, aj, z) (future belief given b, aj, z as in Equation 2.23)
11: QR(b, aj) +- R(b, aj) +

7 Izez P(zlb, ai)Expand(T(b, aj, z), D - 1)
12: Qc(b, aj) +- C(b, aj) +

y 1:Ez P(zlb, ai)Expand(r(b, aj, z), D - 1)
13: if QR(b, ai) = max (VR(b), QR(b, ai)) and QR(b, ai) < a then
14: Vc(b) = Qc(b, aj)
15: a* +- ai

16: end if
17: R(b) <- max (R(b), R(b, at))
18: i-i+ 1
19: end while
20: end if
21: return a*, R(b), C(b)

Notice that the constraint is propagated the same as the reward. The reason this

can be done is because the constraint in Equation 2.16 is imposed on the belief, i.e.

the belief must satisfy the constraint a at all times. The constraint would have been

much tighter if it had been imposed on the state instead. Had the constraint been

imposed on the state, the planning algorithm would have to account for the fact that

the observations being received might be too optimistic, i.e. might suggest that the

system is farther from violating the constraint than it actually is. Such observations

would lead the planner to underestimate the risk of taking an action. One way to

ensure that a constraint on the state remains satisfied is to use the max operator

over the observations in Equation 2.21 instead of the expectation operator, thereby



Algorithm 4 Pseudo-code for an on-line algorithm to solve constrained POMDPs
1: Function ConstrainedOnlinePOMDPSolver()

Static:
b : The current belief state of the agent
T : An AND-OR tree representing the current search tree
D: Expansion Depth
Uc : An upper bound on Vc

2: b <- bo
3: Initialize T to contain only bo at the root
4: while ExecutionTerminated() do
5: Expand(b, D)
6: Execute best action a for b
7: Receive observation z
8: Update b according to Equation 2.23
9: Update tree T so that b is the new root

10: end while

modifying the Equation to be

Qc(s, a) = C(s, a)b(s) + max Z O(z, s)Vc(s)b'(s, a, z) (2.24)
sCS sCS

Such a modification would ensure that the constraint will continue to be satisfied no

matter what observation we receive after executing the planned action. Note that this

adds additional conservatism, since we are now requiring that all future belief states

satisfy the constraint, and not just the expected value of the future belief states.

2.7 Summary

This chapter proposed a fast on-line algorithm for solving constrained MDPs and

POMDPs. The algorithm relies on an off-line approximate solution to estimate the

risk beyond the search horizon. It was shown that this algorithm provides constraint-

feasible plans while giving higher reward than simply treating constraints as reward

penalties. In this chapter, we considered the case where there is a single agent oper-

ating in a static environment. In a later section we applied the methods to a team

of two agents. However, there are several significant obstacles to fully extending this



work to multi-agent teams and dynamic environments. First, the size of the state

space and the action space grow exponentially in the number of agents. An on-line

search becomes computationally expensive as the branching factor of the search tree

becomes large, in this case A IN where N is the number of agents. Second, the above

approach assumes that the constraint map of the environment is fixed. But this may

not be the case, particularly in a dynamic environment. The ability to recompute

Uc(s) quickly becomes important. For both these reasons, it is desirable to have a

solution scheme that scales reasonably as the number of agents grows. In the later

chapters, we will investigate ways to overcome this scaling problem. But first, we

complete the discussion for the single agent case by looking at the case of an agent

operating in continuous domains.



Chapter 3

Planning Under Uncertainty and

Constraints in Continuous

Domains

So far we have dealt exclusively with discrete MDPs and discrete state spaces. Exist-

ing literature on constrained MDPs has also focused on discrete MDPs. For example,

Dolgov El al. have investigated resource constraint problems, where the resource

(e.g. the number of robots) is a discrete quantity [57, 58]. Other work includes off-

line methods for solving discrete constrained POMDPs [46]. The previous chapter

proposed an online algorithm for solving constrained MDPs, but was only applied to

discrete problems.

The size of the state space for realistic domains is often large and possibly infinite.

This property often limits the applicability of discrete representations in two ways: (1)

representing the value function in such domains require large storage capacity, and (2)

the computational complexity involved in calculating the solution is not sustainable

(e.g. complexity of exact policy evaluation is cubic in the size of the state space).

One approach to deal with continuous state spaces is to write the value function as

a weighted sum of known continuous functions, known as basis functions or features.

The problem of representing the value function then becomes a matter of finding

he weights associated with each basis function - generally a much more tractable



problem.

Function approximators have elevated the applicability of existing MDP solvers to

large state spaces [75-78]. The main virtue of function approximators is their ability

to generalize learned values among similar states by mapping each state to a low

dimensional state space and representing the corresponding value as a function of the

mapped point. Linear function approximation, in particular, has been largely used

within the community due to its simplicity, low computational complexity [79], and

analytical result [80]. The set of bases for linear function approximation can been

defined randomly [81], hand picked by the domain expert [82], or learned adaptively

[83, 84]. As the main focus of this thesis is to extend constrained MDP solvers to con-

tinuous domains, we focus our attention on the hand picked function approximators

and leave the extension of our work to adaptive function approximators for future

work.

3.1 Proposed Solution

As we have seen the previous chapter, an MDP is defined by the tuple < S, A, R, T >

where s C S is the state space, a E A is the set of actions, R(s, a) : S x A -+ R is a

reward model that maps states and actions to rewards, and T(s', a, s) : S x A x S - R

is the transition model that gives the probability that state s' is reached when action

a is taken in state s. The stochastic dynamics of the system are captured in the

transition model T, and the mission objectives are encoded in the reward model R.

A solution to an MDP is a policy r : S -* A that maps states to actions. In other

words, a policy informs us about which action to take given a state. The optimal

policy -r* is defined as one that satisfies the optimality condition given in Equation

2.1 and reproduced below:

T ~

yr* = arg max E E Y R (st, 7 (st)),
t=0 .



where -y C [0, 1] is a discount factor that time-discounts rewards. S can be discrete

or continuous, although in this work we focus on continuous state spaces.

Previously, we extended the standard MDP framework by defining a constrained

MDP as the tuple < S, A, R, T, C >, where S, A, R, and T are the same as the

MDP formulation, and C(s) : S -- {0, 1} is a constraint model that identifies if

being at state s would violate a constraint. The optimal policy w*, that solves a

constrained MDP was defined as the policy that satisfies Equations 2.2 and 2.3,

which are reproduced below:

~T

7* = arg max E m'R(st, x(st))
t=0

T~

s.t. E C(st,7(st)) < a
t=0

We define risk as the probability that a constraint on the system will be violated. aZ

is therefore the tolerable risk threshold. In order to assure that the risk is bounded

by 1.0 for all states, we assume that all violating states are terminal states as well.

The standard MDP framework does not provide a mechanism to explicitly capture

risk because there is no natural means by which hard constraints can be incorporated.

Typically, hard constraints are treated as penalties in the reward model. As penalties

for violating constraints are increased, the resulting policy will be more conservative.

By adding -oc as the penalty for any constraint violation, MDPs can easily capture

scenarios where no tolerance is acceptable. However, in realistic domains accomplish-

ing a mission objective often requires some risk tolerance. For example, a rescue

robot looking for civilians in a disastrous situation might face fire explosions along

the way. If no tolerance is allocated for the mission, the solution might command

the robot to stand still for the whole mission horizon. Hence, we assume some de-

gree of risk is acceptable. Unfortunately, we showed in the previous chapter that in

many situations the choice of penalty value that achieves the desired balance is not

clear, and tuning that penalty value might require more a priori knowledge of the

optimal policy than can reasonably be expected. Furthermore, there might not even



be a value for which this balance is achieved - it was shown that in some situations a

planner that models both rewards and risks in the reward model can switch abruptly

between being too conservative or being too risky. Therefore, we proposed a solution

that explicitly keeps track of both reward and risk. We now extend this work to

continuous domains.

3.1.1 Solving Continuous MDPs: Function Approximation

In a continuous state space, the computation of expected values can be accomplished

by taking integrals over expected future distributions of the st. However, this can be

tedious and difficult to carry out for all but the simplest cases, such as linear systems

with Gaussian noise. Since we are interested in solving more general problems, we

seek approximation techniques.

Function approximation has been a popular choice for solving large unconstrained

continuous MDPs [85, 86]. In our work, we focus on linear function approximation

where the value function is written as linear combination of a set of basis functions

#i(s), which we refer to as features. Thus the value function is represented as

M

V(s) Z Oii(s) (3.1)
i=O

The 6 Mx1 vector is the weight vector associated with all features. Since the features

are known (they are picked by the designer) the problem of determining V(s) is

transformed into the problem of determining the weight vector. If the value function

is known at a set of sample states Si, S2 , - SN, and N > M, we can use linear

regression to solve for 0:

& = (@T 4 ))--l@TV (3.2)

V = [V(si), V(s 2), - , V(SN)]



# 1 (si) #2 (Si) ... A (Si)

01(S2) #2(S2) ... M(S 2 )

#1 (SN) 02 (SN) ... #M(SN) NxM

The matrix ( 4 Tp) is invertible under the condition that there is at least one feature

#i(s) that is non-zero for every state s C S, and all features are linearly independent,

i.e the relation aqi5(s) + a#5(s) + akk(s) = 0 has no solution (except the trivial

solution ai = aj = ak = 0) valid for all s E S, for any i, j, k. The problem, of course,

is that V is unknown. However, we do know that the value function must satisfy the

Bellman condition for optimality, given by

V(s) = max R(s, 7r(s)) + T(s', r (s), s)V(s') (3.3)
7(s) .s'

We use this condition to iteratively generate the new weight vector. We begin by

initializing 6 to some vector. Substituting V in Equation 3.3 using Equation 3.1

yields the following:

M
V(s) = max R(s, 7r(s)) + >3 T(s', gr(s), s) 1: Oi Oi(s') (3.4)

7r(s) . s i=I

Thus with an existing weight vector 6, we can compute an updated value function

V(s). A new 6 is then obtained by applying Equation 3.2 to the updated V(s). The

process is repeated until there is no further improvement in V(s). This process is

called fitted value iteration [36, 87-89]. In this work, we adapt fitted value iteration

and apply them to continuous constrained MDPs. This process requires two major

changes. First, we need to maintain two value functions, one associated with the

reward and the other associated with the risk. It is also desirable, while not essential,

to maintain two sets of features as the value function and the risk function might have

different complexities each captured best with an individual set of features. Second,

the Bellman condition in Equation 3.3 needs to be modified so that the max operator

is applied only over those policies 7r that satisfy the bound on the risk.



We call the value function associated with the reward VR(s) and the value function

associated with the risk as Vc(s). The features for describing VR(s) are #Ri(S) whereas

the features describing Vc(s) are #ci(s). The value functions can then be written as

VR(s) = E"60i#5R(s) (3.5)

Vc(s) = Oci Oci (s) (3.6)

The Bellman condition is modified as follows

VR(s) = max R(s, r(s)) + 1j T(s', 7r(s), s)VR(s') (3.7)
7(s)Cac S

Qc(s, a) = C(s, a) + 1 T(s', a, s)Vc(s') (3.8)
S/.

Where ac is the set of constraint-feasible actions, given by

ac = {a : Qc(s, a) < a} (3.9)

Finally, we obtain Vc(s) as Vc(s) = Qc(s, ir(s)). The complete algorithm is shown in

Algorithm 5.

Note while the risk features #c and the reward features #R are independent, a

poor choice of #c will affect the reward performance. For example, if #c are chosen

such that all features have a value of 0 over the constraint-infeasible parts of the state

space, then the weights Oc will always remain 0 and the risk will always be estimated

as 0. This can lead to policies that are too risky. Thus the choice of features is an

important design criterion. In the next section, we show some results that emphasize

this point.

3.2 Results

In this section, we solve a continuous constrained MDP with the function approxi-

mation technique presented above. We compare the solution against the performance



Algorithm 5 Fitted Constrained Value Iteration
1: Input: S, A, R, T, C, So, 3R, 4c

2: Output: OR, Oc
3: Initialize 6R, 0c, A # 0
4: while A # 0 do
5: VR 4)ROR

6: VC & 4cP c

7: for s E So do
8: for a E A do
9: Qc(s, a) <- [C(s) + E,, T(s', a, s)Vc(s')]

10: end for
11: ac <- {a : Qc(s, a) < c
12: VR(s) - maxacac [R(s, a) + E, T(s', a, s)VR(s)]
13: a * <- arg maxacac [R(s, a) + E,, T(s', a, s)VR(s')]
14: Vc(s) <- Qc(s, a*)
15: OR' <- RR)-

1
I VR

16: 00' + (CT~c)- IV 0
17: A -max{||Ic - 0c'||2, ||OR - OR12}

18: Oc c'

19: OR R OR'

20: end for
21: end while

of a discrete constrained MDP solver on a discretized version of the problem. The

problem studied is a robot navigation problem in a space that has some regions that

are dangerous and must be avoided with probability p > 0.15 - therefore aZ = 0.15.

The definition of risk used is accumulated risk, i.e. the sum of the past and future

risk. The goal is to reach a reward region that is located adjacent to a constrained

region. Note that under this setup, achieving a reward entails taking some risk, i.e.

approaching the danger zones. The problem layout is shown in Figure 3-1. The

agent is assumed to be operating in a continuous state space s C S and is allowed

discrete actions a. The outcome of an action is stochastic and is given by a Gaussian

distribution centered at s + a:

P(s'|s, a) = N(s', s + a, o-) (3.10)

The standard deviation o determines the amount of noise in the system. However

when there are obstacles present, the noise is no longer Gaussian - we account for



9-
8-

7-

6 -

1 -

0 1 2 3 4 5 6 7 8 9 1

Figure 3-1: Problem setup showing constrained areas (red) and reward area (green).

the fact that passing through the obstacle has zero probability and re-normalize the

distribution accordingly. The performance of the proposed algorithm for various

values of o- in the presence of obstacles will be investigated in this section. We use

Radial Basis Functions (RBFs) as features and apply Algorithm 5. A generic radial

basis function is defined as a function whose value at a point x depends only on the

distance from some other point c, i.e. #(x) = #(||x - c|). The norm ||x - cI| a metric

that defines a unique distance between two points in the space that contains x and

c. The norm is typically defined as the Euclidean distance, although other distance

functions may also be used. The specific radial basis function used in this work is

given as

#(si) = e-(iso) (ssO)/" (3.11)

Graphically, Figure 3-2 shows the geometric form of an RBF. An RBF is radially

symmetric and has the same form as a Gaussian function. so c S is a reference



Figure 3-2: A two-dimensional radial basis function

location where the RBF is centered, si C S is the point at which the RBF is evaluated

(the sample states Si, s2, - SN) and o- is a parameter that determines the shape of

the RBF.

The performance of this algorithm will be compared against a discrete CMDP

using a uniform discretization scheme shown as dashed grids in Figure 3-1. The

discrete transition model is obtained by integrating the continuous transition model

(Equation 3.10) over each grid. A total of 100 cells (10 x 10) were used in the

discretization.

As mentioned above, we solve the problem by using radial basis functions (RBFs)

as features. The reward value function VR is represented by a single RBF centered at

the reward region, and the constraint value function Vc is represented by four RBFs

at each constrained region (for a total of twelve features). Algorithm 5 is then applied

to these features and the resulting value functions are plotted in Figure 3-3. Figure 3-

3 shows the approximated reward value function VR with a representative trajectory.

The path towards the high-reward region is not a straight line as one would expect,

due to the constrained regions. The high-risk regions (risk greater than 0.15) are

highlighted as dark blue. The path taken by the agent curves to avoid the high-risk

areas. Although the trajectory shown successfully avoids the constrained regions, this

is not a requirement - since we allow a probability of 0.15 for constraint violation, we

expect about 15% of the trajectories to be constraint-infeasible.



10

7

6

0 1 2 3 4 5 6 7 8 9 10

Figure 3-3: A representative trajectory showing the approximated reward value func-
tion. Dark areas are regions where under the current policy, risk is greater than 0.15
as measured by the approximated risk value function. The shades represent contours
of the reward value function.

This is shown in Figure 3-4. First, we compute VR and Vc for various values of

a. The resulting policy is then executed 100 times, and the number of trajectories

that violate constraints are counted. The RBF function approximation technique

stays below the bound of a < 0.15 except for high values of a. At these high noise

levels, there are in fact no trajectories that can guarantee constraint feasibility with

a < 0.15. In contrast, uniformly discretizing the state space is too conservative for

low a, and then completely fails to find constraint-feasible policies as a increases. This

is also reflected in the reward shown in Figure 3-5 - the reward obtained by uniform

discretization drops drastically as a increases whereas RBF function approximation

performs better, showing only a slow degradation as noise increases.

3.3 Impact of Features

Selection of the right set of features is important to achieve good performance with

function approximation. Although there is only one reward in the problem, the use



0.9

0.8

0.7

5 0.6

* 0.5
C

0.4

S0.3

L 0.2

0

0

0

0

RiskAf Aft. @ kek nk fteft p pkAd&Af

.1! -

o C~.4 0.5 0.6 0.7 0.8 0.9 1
Process Noise Standard Deviation

Figure 3-4: The empirically measured risk: RBF vs. Discretization
Reward

1 I

I Function Approximation
Discretized CMDP

.9-

.8-

.7

.6 -

.5-

.4 -

3-

2

1

0 0.1 0.)2 ' .4 .

Process Noise Standard Deviation

Figure 3-5: The empirically measured reward: RBF vs. Discretization

* Discretized CMDP
E Function Approximation

- Threshold

M*



Figure 3-6: Presence of constraints must be accounted for in estimating reward

of only one RBF to represent the reward value function does not capture all the

complexity in the problem. This is illustrated with an example shown in Figure 3-6.

Suppose two agents A and B are equally distant from a reward and each take an

action to reach the reward as shown in Figure 3-6. Also assume that the probability

of B entering the constrained region under the action shown is less than a, i.e. the

action shown is feasible. The expected reward for agent A can be shown to be close to

1 (it is not exactly 1 since the probability of entering the constrained region, although

small, is not zero). However, the expected reward for agent B will be significantly

lower than 1, since there is a relatively high probability of the agent entering the

constrained region after which the agent cannot perform any further actions (the

constrained states are absorbing states). Therefore, despite the risk bound being

satisfied for both agents, and despite both agents being the same distance from the

reward, the expected reward is not equal. In other words, constrained regions directly

affect not just the risk, but the expected reward as well. If the reward value function

(which is just the expected future reward) is approximated with a single RBF, this

complexity is lost. The expected future reward for both A and B will be the same

since an RBF has transverse symmetry and only encodes radial distance information.

For small values of o, this impact will not be very great. For very high values of

u, the action will be identified as infeasible and the underlying policy itself will be

changed. But for moderate values of a, the action will still be identified as feasible,

but will affect the expected reward.

The overall effect will therefore be as follows. For low values of a, the effect of

ignoring the constrained regions is insignificant. However, as a increases but remains

small, the expected reward drops. As o increases even more, the underlying policy



switches to be "safer" and therefore the expected reward (which is not discounted)

again increases. As o- continues to increase, the expected reward again drops since

the probability of violating a constraint (and hence being unable to gather any more

rewards) also increases. This can be accounted for by adding RBFs to the reward

value function VR that are centered at the constraints. These features would capture

such behavior and would allow for the direct effect of constraints on the reward to

be captured. The results shown in Figure 3-5 use these RBFs associated with the

constraints.

3.4 Computational Complexity

The complexity of each while loop iteration in Algorithm 5 is 0 (ISo 2 +M 3 + So A IL)

where the first term is due to <Tbp , the second term corresponds to matrix inversions,

and the last term corresponds to calculating Qc values. The L parameter specifies

the MDP's degree of locality based on sampled points, highlighting the maximum

branching factor. Formally L = maxsesaEA C{s'IT(s, a, s') # 0}|. For most realistic

domains L, JAI < |So|, hence the complexity can be approximated in a simpler form

0(ISOl2 + M 3 ).

Discretizing the problem is essentially the same as using M features, where M is

the number of grid cells. Consequently, #j() maps all states within grid i to 1 and rest

of states to 0. Thus using M = 100 requires inverting two 100 x 100 matrices (one

for the reward and one for the risk), whereas the proposed function approximation

technique requires inverting a 13 x 13 matrix (for the reward) and a 12 x 12 matrix (for

the risk). By using a relatively small number of RBFs, we decrease the A parameter,

making the problem computationally more tractable.

There is yet another computational advantage to using Algorithm 5 with RBFs

as features. Since RBFs are defined throughout the entire state space, knowledge

gained in one part of the state space, by design, generalizes over the entire state

space. Hence, the number of sample points |Sol does not need to be very high.

However with discretization, knowledge gained over one grid is only generalized for



states within that gird. RBFs by potentially requiring less samples to capture the

risk and value functions over the whole state space, reduce the quadratic term of the

computational complexity.

3.5 Online C-MDP Algorithm vs. Function Ap-

proximation

This chapter developed a function approximation method that potentially provides

a fast solution to constrained MDPs. However speed comes at the price of accurate

representation - an increase in speed requires a more approximate solution (essen-

tially fewer features 0h). As indicated in the previous section, the complexity of each

iteration in the algorithm, for small |AI and L, is O(ISo 2 + M 3 ). In contrast, value it-

eration has a complexity of O(IS||AIL) [35]. Online C-MDP algorithms, on the other

hand, scale as O((L|A|)D) where D is the horizon length [49]. Clearly, by choosing

a set of values for L, D and M, the performance of each of these three algorithms

can be compared. In these comparisons, only one agent is used and S is set to 3200

(a 10 x 10 world with 5 reward states) and |AI = 4 corresponding to actions in four

compass directions. Given the transition model discussed in Chapter 2, L = 4. Also

D = 4 is chosen for the online C-MDP algorithm. For the function approximation

algorithm, the number of features M is set to the sum of the reward density and

the constraint density, which in this case we allow to vary from 5 to 25. Since the

reward density is kept fixed at 5, the maximum number of features used is 30. The

number of sample states is set to be |Sol = 100. With this choice of parameters,

the three algorithms have comparable computational complexity. The online C-MDP

algorithm has complexity of O((L IA)D) = O((16 x 16)4) = O(104), the function ap-

proximation algorithm O(|Sol2 + M 3 ) = 0(1002 ±303) = O(104), and value iteration

has complexity O(IS||AIL) = 0(3200 x 4 x 4) = O(104).

In Figure 3-7, we see how the three algorithms perform in terms of the reward.

Note that this is the same figure as in Figure 2-11, but with the data for the function



Offline Optimal
35 V Online Approximate

* Function Approximation

3

2.5

00
S2-

0 0

1.@

0.5

V

05 10 20 25
Constraint Density

Figure 3-7: Comparison of the online C-MDP algorithm, function approximation and
the offline optimal solution

approximation method added. Function approximation with the choice of features

used generates policies that achieve high reward, in many cases outperforming the

Online C-MDP algorithm. A more dense set of features would come close to matching

the performance of the optimal solution, but computation times would correspond-

ingly increase.

Note that although the size of the problem was carefully chosen to make computa-

tional complexity comparable, the algorithms scale very differently to larger problem

sizes. For instance had the size of the state space |S| been chosen to be bigger (with

more reward states, or with a larger grid world) value iteration would become slower.

Function approximation will also require more features and more sample states to be

effective. However under the condition that the transition model and action space

do not change significantly, the online algorithm would be unaffected. For these var-



ious reasons, the Online C-MDP algorithm is considered for extension to multi-agent

planning, which is the topic of the next Chapter.

3.6 Summary

Function approximation has been used to solve continuous MDPs quickly and effi-

ciently. By an appropriate choice of basis functions, called features, good approxima-

tions to the optimal value function can be computed. In this work, we extend function

approximation techniques to constrained continuous MDPs. Crucially, in constrained

MDPs, there are two value functions to be approximated, one for the reward and one

for the constraints. We show that the proposed algorithm is computationally more ef-

ficient and generates higher-performing policies than uniform discretization. We also

show that function approximation is significantly faster in terms of computation time

than exact value iteration. It also performs better than the Online C-MDP algorithm

from Chapter 2, but at the price of greater computational complexity.



Chapter 4

Planning Under Uncertainty and

Constraints for Multiple Agents

In this chapter, we extend the on-line constrained MDP solution technique to teams

of multiple agents. A straightforward extension of the work from Chapter 2 to multi-

agent systems would involve formulating a large MDP whose state space is the joint

state space of individual agents' state spaces, and whose action space would be a joint

action space consisting of all the individual agents' actions. The state space of this

joint constrained MDP would therefore include the states of all N agents, and would

be of size i7N Sil, where |SiJ is the size of each individual agent is state space. Note

that this expression simplifies to |SilN if all agents have the same state space size |Si|.
The action space would be all possible joint actions, and would be of size Hi 1 lAil
The reward model R and the constraint model C would be defined over this joint

state space and action space, allowing for joint rewards and joint constraints to be

incorporated. Theoretically, the on-line constrained MDP solution technique from

the previous chapters can be applied to this larger problem without any significant

changes.

The drawback of formulating the multi-agent problem as a single constrained

MDP is computational complexity. As the number of agents N increases, the size

of the state space and the action space grow exponentially. This is undesirable for

two reasons. First, the off-line minimum risk computation (designated as Uc in



the previous chapter) becomes difficult as the MDP size increases. This becomes

a particularly severe limitation if the constraint map is dynamic, i.e. the constraint

model C varies as the mission progresses. For the types of scenarios being considered,

this is a real possibility. Second, the speed of on-line reward optimization is directly

related to the branching factor of the forward search tree, which in turn is the size

of the action space. As the size of the action space grows exponentially, the on-line

reward optimization also slows down considerably. Thus a naive application of the

proposed solution to multi-agent teams quickly becomes infeasible.

The rest of this thesis deals with the issue of solving constrained MDPs for multi-

agent teams. We begin by looking at ways to separate the planning problem for each

agent, so that each agent can solve a much simpler planning problem individually

and in parallel with other agents. In order to make such a separation, we use the

notion of transition independence, i.e. the actions of one agent affect only its own

dynamics and not those of other agents. Note that although the agents are in fact

independent in their transition models (their dynamics) they are in fact coupled at the

policy level. This occurs due to reward and constraint coupling. Others, specifically

Becker, Zilberstein and Goldman [90] investigate using transition independence to

handle reward coupling in the unconstrained case. In this work, we mostly focus on

constraint coupling. We also discuss the consequences of the transition independence

assumption and situations where the assumption breaks down, and address the issue

again in Chapter 6.

4.1 Approach

We approach the problem by first noting that the agents are transition independent.

Transition independence is defined as follows. If the state vector can be decomposed

into N sub-vectors s = [s, -. . sT,. .. T]T and the action vector into sub-vectors

a = [af, a ,... a ,-... a T]T such that p(s'lsi, aj, ak) = p(s'lsi, a1 ) for all k / i, the

MDP < S, A, T, R > is said to be transition independent [91] [90]. In this case, si

is the state of agent i, and ai is the action of agent i. Therefore the multi-agent



system under consideration is transition independent due to the fact that the agent

dynamics are decoupled. Each agent's individual transition model will henceforth be

denoted Ti(s , ai, si). The only coupling between the agents occurs in rewards and

constraints. Becker, Zilberstein and Goldman [90] investigate reward coupling in the

unconstrained case. Wu and Durfee [91] also solve the problem with reward coupling,

but with a linear programming formulation. Yin, Rajan and Tambe address the

problem of solving continuous MDPs with transition independence, and again consider

reward coupling [92]. This work addresses a different problem, that of transition

independence with coupled constraints.

The constraint coupling between the agents is represented as follows. We define an

event ei as the tuple < si, ai, s' >. Agent i is said to have experienced an event e, when

there is a transition from si C Si to s' E Si under the action ai C Ai. Then, we define

a joint event as the tuple < ei, e2,--- eN, JC > where ei is an event associated with

agent i and JC is the joint constraint penalty that is awarded to every agent when

events e1 , - - eN all occur. Note that this is in addition to the penalty awarded by the

constraint model Ci(si, a). We further define pij(7i) as the probability that event ei

in the joint event j will occur when agent i follows policy w . With these definitions,

we can write the constrained optimization problem from Eq. 2.2 and Eq. 2.3 as

~T

7T arg max E ( t Ri(sit, 7ri(sit)) (4.1)
t=0

'T E N

s.t. E ( Ci(sit,i(sit)) +E JCj r pkj(7k) < a (4.2)
_ t=0 j=0 k=0

Knowledge of the other agents' policies are summarized in Pkj (irk). The additional

term added to the left side of the constraint (Equation 4.2) is the expected joint

constraint penalty. Since one MDP must be solved for each agent, we have to solve

N MDPs of size S x A, rather than one single MDP of size SN x AN. However, the

policy for any agent depends on Pkj (irk) of all the other agents, which in turn depend

on their policies. In the next section, we present an iterative scheme for finding the

solutions for all agents given this mutual dependency.



The technique to be described below has two components - first, we compute

a "library" of policies that give the minimum risk for chosen values of pij (wi). This

library is computed off-line. The agents then communicate with each other and decide

which one of the policies from their libraries they will use as the minimum risk-to-go

policy. This policy, and its corresponding value function, provide the minimum risk

Uc(s) that is then used in the on-line reward optimization to estimate the risk-to-go.

However, since this on-line reward optimization modifies the agents' policies 7i, at

each step the agents must recompute their new pij (Wi). In general the joint policy

iteration must be repeated, but we use a heuristic to avoid doing so. A more detailed

description is given below.

4.1.1 Off-line Library Computation and Joint Policy Itera-

tion

First we need to compute the minimum constraint penalty Uc(s). Since we have

multiple agents, each with potentially different constraints, each agent i maintains its

own individual Uc(si). By definition, Uc1 (s) satisfies

' T ~ E N

Uci(si) min E 1ZCi(suxit)) +( JCJpki(wk) (4.3)
. t=0. j=0 k=

In order to compute Uci(si) as shown above, it is essential to know the pk (rk), i.e.

the probability that the other agents k will perform their respective actions in event

j. Since these are not known, the above optimization problem is solved off-line by

assuming some values for Pkj (7k). The Uci(s) corresponding to those values of Pkj (7)

are stored in a library Uci. Once this library is created, the agent simply needs to

look up the appropriate Uc (si) E Uci when the other agents decide on their actual

Pkj(7k) values. If the Pkj(7) received do not correspond to any of the sample points,

interpolation is used to find the appropriate Uc0 (si). It is important to note here that

the size of the library is crucial - for example, if a very dense set of sample Pkj (k) are

used in computing the library, the library will be large but will also be more complete



than for a smaller sample. In general, there are a maximum of |Si lAi policies per

agent. Thus the worst-case number of policies that need to be maintained in the

library are N Hi 0 Sil Ail. Given that many of the agents have similar dynamics

(e.g. ground vehicles, Dubins vehicles, helicopters), and since many policies may have

the same pij(ri), in practice the total number of policies in the library is less than

in the worst-case. It was found during Monte Carlo simulations (whose results are

presented in the next section) that the number of policies that need to be maintained

to span the entire space of Pkj (7k) E [0, 1] Vj, k is finite and typically several orders

of magnitude smaller than N i 0 Sil Ail. This is particularly useful in situations

where the constraint model C(s, a) are not fixed - new Uci can be computed more

quickly and efficiently than if the problem were formulated as a single, centralized

MDP.

Once every agent computes its library, each agent picks one policy out of this

library and the pij (wi) (probability of its own event ei) corresponding to that policy

is communicated to all other agents. Since all the other agents perform the same

procedure, agent i also receives values for Pkj (r) from all other agents k # i. Agent i

then picks the policy in the library that corresponds to the received set of Pkj (7k). This

policy yields a new pij (7i), and the process is repeated until the all agents converge on

a policy. This is called the joint policy iteration and is shown in Algorithm 6. Once

this process is completed (and it is known to converge, see [90]), the agents each have

a policy * that minimizes the risk-to-go. The value function corresponding to this

policy, Uc1 (si), is then used as the risk-to-go estimate during the on-line search. This

process is described in the following section.

4.1.2 Online Search

During the on-line search (Algorithm 7), every agent maintains two quantities - the

expected future reward VR(si) and the expected future risk Vc(si). Both values are

initialized to be zero. The Q values for every state si and action ai are computed



using the definition of expected reward:

QR(si, ai) =R(si, ai) + T(s', si, ai)VR(s'i) (4.4)

Qc(si,ai) C(si,ai) + ZT(s',si,ai)Vc(s'i) (4.5)
Si

wi(si) = arg max QR(si,ai) (4.6)
a Caci

aci = {ai:Qc(si,ai )<a}

VR(si) = QR(si, 7r(si)) (4.7)

Vc(sO) Qc (si, ag (si)) (4.8)

VR(s'i) and Vc(s'i) are obtained by calling Equations 4.4-4.8 recursively. At the end

of the search horizon (the end of the recursion) we use VR(s'i) = 0, Vc(s'i) = Uci(s'i)

and 7i(si) = 7c (si).

In the process of optimizing the reward, the policy 7i(si) (Equation 4.6) is mod-

ified. In general, this will lead to a change in the value of pi3 (wi), which would then

require all the agents to repeat the joint policy iteration. Since doing so at each

node in the forward expansion can be computationally expensive, we use a heuristic

instead. Each time the policy is modified (Equation 4.6), a new pij is computed for

the new policy 7'. If pij (7') > pij (7i), the new policy 7' is discarded - in other words,

the agent is not allowed to take more risk than was announced to the rest of the team.

Since the joint constraint penalty zEt JC N=0 pkj(7k) is proportional to Pkj (7rk),

the risk-to-go estimate Uc(si) that was computed previously becomes an overesti-

mate and remains valid (as discussed in Chapter 2). Thus we avoid having to repeat

the joint policy iteration, and can ensure that the joint constraint is not violated de-

spite a unilateral change in policy. The disadvantage is the additional conservatism

introduced - if an agent finds an opportunity to increase reward by taking more risk

that opportunity cannot be exploited. Despite this conservatism, the main computa-

tional advantage of the proposed method is significant - we only need to solve O(N)

MDPs of size S x A, instead of one MDP of size SN x AN. Furthermore, in practice,

the proposed method achieves good performance. These results are presented next.



Algorithm 6 Joint policy iteration for computing the minimum constraint-penalty-
to-go

1: Function JointPolicyIteration(Uci)
2: Initialize Pkj = 1Vk, p'y # Pkj
3: while p' # Pk3 do
4: grci =UCi (pky)
5: p'j ComputeP(7rci)
6: if p'j # pij then
7: Broadcast p'j
8: Pij = p,
9: end if

10: Receive p'i
11: end while
12: return 7Tcj

Algorithm 7 Decentralized Constrained MDP Algorithm
1: Function Expand(si,Uci,D)
2: if D = 0 then
3: VC(si) = Uci(si); V(si) = 0; 7ri(si) = rCisi)
4: return ri(si), VR(si),Vc(si)
5: else
6: for ai E A do
7: [VR(s'i), Vc(si), 7ri(s'i)] = Expand(s', Uci, D - 1)
8: QR(Si, aj) = E, VR(s'i)P(s', si, a1 ) + R(si, aj)
9: Qc(s , a1 ) = Z Vc(s'i)P(s'i, si, aj) + C(si, a)

10: 7 (ti) = 7ri(sj) Vt, # si
11: 7Tr(si) = ai
12: p y(ai) ComputeP(wr) Vj
13: end for
14: aci = [ai : Qc(si, ai) <a AND pij(ai) <pij]
15: 7 (si) = arg maxaeaci QR(si, a)

16: VR(Si) =QR(si, 7 (Si))
17: Vc (si) QC (si, 7 (si))
18: return 7 (si), V(si),Vc(si)
19: end if



4.2 Example

In this section, we apply the methods developed in the previous sections to a more

complex problem that captures some features of a CBRNE search and rescue scenario.

We deal with the fully-observable MDP case. The environment is shown in Figure

4-1. It is characterized by an inner "Courtyard" area (shown by the dotted outline).

The Courtyard has several danger zones (shown in red) that contain potential threats,

but these danger zones also contain victims that must be approached, assessed and

rescued. There are two agents, both of which start in location (5,8), shown as A and

B. The dynamics of these agents are the same as shown in Figure 2-4. The victims

are treated as rewards and marked with RA (reward acquired if the location is visited

by Agent A) and RB (reward acquired if the location is visited by Agent B) in Figure

4-1. In general RA # RB since there may be a preference as to which agent visits

which victim. For instance, Agent A can be viewed as a human first responder and

Agent B an autonomous vehicle, in which case RA > RB-

Agents A and B are not allowed to both be in the danger zone with a probability of

more than 0.1, i.e the constraint is that only one agent is allowed into the danger zone,

and the risk allowed (the maximum constraint violation probability) is a < 0.1. Also,

the rewards RA and RB become 0 at time T = 10. In other words, there is a strong

incentive for the agents to acquire all rewards before time T = 10. The uncertainty

in the vehicle dynamics is of the same order of magnitude as the constraint violation

probability, thus making the interaction between the uncertain dynamics and the

constraints an important factor in computing policies. Furthermore, the layout of

the problem is such that acquiring high rewards entails taking some risk, as would be

expected in a realistic CBRNE situation.

The two highest-reward nominal paths are shown in Figure 4-2. The highest re-

ward is obtained by having Agents A and B both enter the danger zone to acquire

reward, with Agent A gathering more rewards than Agent B since RA > RB. How-

ever, it can be easily seen that this nominal path violates the joint constraint with

a > 0.1, since it requires both Agents to enter the danger zone with probability 1.



10,1

Figure 4-1: The MDP problem set up, showing the inner "Courtyard" (dashed line)
which contains danger zones (red). Rewards RA and RB exist both within the danger
zone and outside (shown in green)

Therefore the highest-reward nominal paths are constraint infeasible. In the next

section, we show that an MDP with relatively small negative rewards for constraint

violations leads to one of these paths. Two constraint-feasible paths, by inspection,

are shown in Figure 4-3.

The highest-reward, constraint feasible paths for the agents are for Agent B to

gather all the rewards located inside the danger zone, and for Agent A to travel

through the Courtyard area (but never entering the danger zones) to reach the rewards

on the other side of the courtyard. The risk associated with these paths is non-zero,

since there is a finite probability that Agent B, in the course of travelling through the

Courtyard, will accidentally enter the danger zone. In the next section, we will show

that modelling the constraints as negative rewards will lead to either very conservative

or very risky behavior, but fails to achieve an optimal balance, i.e. fails to maximize

the reward while meeting all constraints. Finally, in the last section, we will show

that the proposed on-line algorithm with an off-line constraint-feasible approximate



B Al

10,11

Figure 4-2: The highest-reward nominal paths through the rewards are constraint-
infeasible

A B

10,1

Figure 4-3: Constraint-feasible nominal paths



10,1

Figure 4-4: Nominal paths computed by value iteration when the constraint is a high
negative reward

A B

10,1

Figure 4-5: Policy (arrows) computed by MDP value iteration when the constraint
penalty is lowered - note that under this policy, Agent B's nominal path never leaves
the Courtyard area



A B

Figure 4-6: Policy (arrows) computed by value iteration when the constraint is a low
negative reward

B A

Figure 4-7: Policy (arrows) and nominal paths (lines) computed by the online con-
strained solver



solution achieves high performance in problems such as this example that require

operating close to constraint boundaries.

Unconstrained Solution

We first attempt to treat the problem as an unconstrained MDP and impose a high

penalty C > R for entering any of the constrained states. The resulting policy is

shown in Figure 4-4. First thing to note is that the planner does not send Agent A

into the courtyard because of the large penalties that are incurred by following that

path. Therefore the vehicle moves around the courtyard, away from the danger zones,

and reaches the rewards outside the courtyard. This policy is chosen because it is the

only policy that guarantees that Agent A will not enter the heavily-penalized danger

zone. The path through the Courtyard is regarded as not worth the large negative

reward that could be incurred if the Agent were to veer into the danger zone. In other

words, the MDP planner, by not having a mechanism by which to measure risk, fails

to see that the risk associated with moving through the courtyard is an acceptable

amount of risk, and acts too conservatively.

Figure 4-5 shows the outcome of lowering the constraint penalty. Since the con-

straint violation penalty is lower, the planner decides to follow a path through the

courtyard. However, after reaching location (6, 6), the planner decides to move to the

right since this action offers no risk of entering the danger zone, while still giving a

probability of 0.05 of moving downwards and therefore closer to the rewards outside

the courtyard. Therefore lowering the penalty makes the planner less conservative

in one aspect (entering the courtyard), but the resulting policy is still inefficient.

Lowering the penalty even farther leads to the outcome shown in Figure 4-6. A low

penalty leads the planner to generate a policy that travels adjacent to the danger

zone. Clearly, this policy is too risky and gives a constraint violation probability

a > 0.1. Thus in this problem as well, treating constraints as penalties generates

policies that are either too conservative or too risky. The results of applying the

proposed algorithm to the current problem are presented in the next section.



Constrained On-line Algorithm Solution

The on-line algorithm presented in this work generates the policy shown in Figure 4-7.

The on-line forward search algorithm with a finite search horizon (which for was set to

10 in this case) identifies that the path through the courtyard - moving right in state

(5, 7) - is in fact constraint-feasible since the constraint violation probability of moving

right in state (5, 7) is 0.05, and therefore lower than the threshold of 0.1. The forward

search also uses the off-line solution to see that at least one constraint-feasible action

exists once state (5, 7) is reached, and therefore continues to explore this path. As the

forward search reaches state (5, 3), it is recognized that a path to the reward at this

location exists, and that path is also constraint-feasible (since the risk of constraint

violation along this path from its starting location is 0.095). The on-line planner

therefore switches its action at location (6, 5) to move down (out of the courtyard)

to claim the reward at (5, 3). Thus the off-line approximate solution provides a

conservative, constraint-feasible policy while the on-line algorithm adjusts this policy

for better performance. The off-line exact value iteration algorithm also generates the

same policy, but requires much more computational time (approximately 10 minutes,

compared to approximately 5 seconds for the online algorithm).

4.3 Results

This section presents simulation results that compare the performance of the decen-

tralized Constrained MDP algorithm presented here with that of a standard MDP

and an off-line centralized Constrained MDP solver. The problem layout is character-

ized by three quantities - the constraint density, the reward density and the obstacle

density. The constraint density is the fraction of states that are constrained states,

the reward density is the fraction of states that are reward states, and the obstacle

density is the fraction of states that are blocked by obstacles. The goal is to maxi-

mize the rewards gathered while keeping the risk at a < 0.15. The transition model

is shown in Figure 4-8 - the probability of executing the intended action is 0.9. In

the first set of results, we compare an off-line, centralized constrained MDP solver



Figure 4-8: Vehicle dynamic model

with the decentralized, on-line solver developed in the previous sections. We use a

team of five agents in these results. In the second set of results, we compare the

decentralized on-line solver with a standard MDP formulation and show that even

when we use only future risk, the decentralized on-line solver generates policies that

are significantly less risky than those generated by the standard MDP, particularly

in highly constrained cases. To enable a comparison with centralized MDP solutions,

the problem size is restricted to two agents.

4.3.1 Off-line Centralized vs. On-line Decentralized

As in Chapter 2, we investigated the difference in performance, as measured by the

reward, between the off-line, centralized constrained MDP planner (which gives the

optimal solution) and the on-line, decentralized approximate planner. Since the cen-

tralized planner gives the optimal policy, we expect that its performance will be better

than that of the decentralized planner. As discussed above, the decentralized plan-

ner makes some conservative assumptions and uses a finite-horizon forward search,

and as a result does not give the optimal policy. This is measured quantitatively in

the robot navigation problem described in the previous paragraph. For each value

of the constraint density, 40 problems each with randomly-generated constraint and

reward locations were created and both the centralized and decentralized planners

were applied. The results are shown in Figure 4-9 and confirm our expectations.



* Offline Centralized
V Online Decentralized

0

0.0

0e

0
S

0.0

yV

V V

V V~~
V V V V V V O

10 15 20 25 31
Constraint Density

Figure 4-9: A
ized solver for

comparison of the off-line centralized solver and the on-line decentral-
five agents

4.3.2 Comparison of Risk

We also investigate the difference between the two definitions of risk, memoryless and

accumulated. We expect that the reward for accumulated risk will be lower because

the agents' choice of actions will become more and more restricted as risky actions

are taken during the course of the mission. Figure 4-10 confirms these expectations.

Note that the reward for the memoryless planner is substantially higher than that

of the accumulated risk planner, particularly for constraint densities greater than 15.

This is qualitatively different than in the single agent case (see Figures 2-11 and 2-

12), where the two forms of risk did not differ as much, particularly when compared

to the centralized optimal planner. Therefore in the multi-agent case, the choice of

risk has a bigger impact on the team performance. This can be explained by the

IF V

yV



|u --

N Memoryless Risk
V Accumulated Risk

9-

7-B
UB

5- y V
VU

VV

3 --

2V -

1V - V V
3- V

VVyVV

2- IF

05L

10 15 20 25 30
Constraint Density

Figure 4-10: A comparison of accumulated risk and memoryless risk for five agents

fact that multiple agents operating in a space of the same size (both the single and

multi-agent cases used a 10 x 10 grid) will encounter more constrained states and

therefore have to take more risk than a single agent. Thus using accumulated risk, in

the multi-agent case, will constrain the agents much more severely and sooner in the

mission than in the single agent case. In fact, if the constraints are placed close to

the reward (instead of being placed at random locations) the decentralized planner

with memoryless risk might even get a higher reward than the optimal centralized

planner with accumulated risk. Such a case is presented in the next set of results.

4.3.3 Performance in High Risk, High Reward Environments

The purpose of this section is two-fold - first to show that a standard MDP planner

generates policies that are far too risky for the amount of reward they provide, and



second to show that in these high-risk, high-reward environments the choice of risk

makes a much bigger difference in performance than in the randomly-generated en-

vironments we have investigated thus far. In the following set of results, we apply

a standard MDP planner (with constraints treated as reward penalties), the off-line

centralized planner with accumulated risk, and the on-line decentralized planner with

memoryless risk to problems where high reward necessarily entails operating close

to the constraint boundary, i.e taking significant risk. The problems are similar to

the robot navigation problems that have been presented thus far, with the exception

that the constrained states are placed adjacent to rewards. Thus even low constraint

densities require the agents to take substantial risk to achieve high rewards.

The first solution technique we use is MDP Value Iteration with constraints

treated as penalties. The shortcoming of this method is that as the penalty is in-

creased, the MDP solution becomes more conservative, taking less risk at the cost

of a lower reward, whereas when the penalty is lowered, the solution becomes too

risky. Furthermore, this trade-off is determined by the constraint density - a low

constraint density would have very little effect on the MDP solution, whereas a high

constraint density would have a significant impact. The second solution technique is

one that explicitly accounts for risk - centralized, Constrained MDP value iteration.

This method solves the following optimization problem:

7r*(s) = argmax R(s, a) + T(s', s, a)VR(s1
a~aC I t(s

VR(s) = max [R(s, a) + Y T(s', s, a)VR(s')
aE acs

ac = {a: Qc(s, a) < a

Qc(s, a) = C(s, a) + E T(s', s, a)Vc(s')
S/

Vc(s) = Qc(s,w7*(s))

The main shortcoming of this method is that the plan is made off-line and does not

account for the fact that in most cases, risk is not realized. This method effectively

uses accumulated risk, making the planner more conservative than the Decentralized



3

2.5 H

1.5 F

.5

* *

_.

El MDP Value Iteration

Decentralized MDP
+ C-MDP Value Iteration

Li

' '

6 7 8 9 10 11 12 13 14 15 16 17
Constraint Density (%)

Figure 4-11: Average reward for three planning methods

0

18 19

MDP solution, which uses memoryless risk and is the third solution technique in the

comparison.

In order to compare these three methods, we generated problem layouts as de-

scribed above for varying constraint densities while keeping the reward and obstacle

densities fixed. The constraint density is relatively high compared to the reward den-

sity - in this case, we use a reward density of 0.05 whereas the constraint density is

varied from 0.05 to 0.2. The relatively high constraint density ensures that the risk in

the environment is non-trivial, as would be expected in a realistic CBRNE operation

[1] [2]. For each value of the constraint density, 40 such random problems were gen-

erated. The plans computed by each of the three methods were executed and average

reward for each method computed. The fraction of runs in which a constraint was

violated was also computed, and this value was compared against the specified risk of

I I - T I I . I I I I . I I

'I



0.7

e Decentralized MDP

0.6 D MDP Value Iteration
+ C-MDP Value Iteration

U[]

05

0 

*0 6 1l1 2 1 14 1 L1I8 9 2

*0.3-
C El

0.2

tA

0 6 0 84 940 1 2 1 4 15 1 17 1 9 2

Constraint Density (%)

Figure 4-12: Empirically observed risk for three planning methods

a < 0.15. The results for the average reward and the risk are shown in Figures 4-11

and 4-12 respectively. First, we note that the reward for all three techniques decreases

as the constraint density increases. This is because rewards become less accessible as

the number of constrained states increases. In Figure 4-12, we see that unless risk is

explicitly accounted for and kept bounded (which the standard MDP does not do),

the risk correspondingly increases. Figures 4-11 and 4-12 show that the reward is

highest for the standard MDP planner but the risk associated is extremely high. The

decentralized planner achieves approximately 25% lower reward than standard MDP

planner for any given value of the constraint density, but the risk remains bounded

below the threshold of a < 0.15. The off-line centralized planner also achieves the risk

levels specified, but the reward is much lower than the decentralized planner due to

the fact that risk taken in the past, even risk that was not realized, is still accounted

for in planning. The results show that the decentralized planner obtains good reward



10
U Decentralized MDP

9 0 C-MDP Value Iteration

8-

7

4-

3 0m -

2 -

30 25 30 35 40
Constraint Density

Figure 4-13: Average reward for a team of five agents

while keeping the risk bounded. Finally, in Figure 4-13, we show that similar trends

hold for larger teams, in this case five agents. The standard MDP planner is not

shown due to the computational difficulty of solving an MDP for that size team.

4.4 Summary

In this chapter, the on-line constrained MDP solver that was proposed previously

was extended to multi-agent teams. The exponential growth in the size of the MDP

problem with increasing team size was handled by assuming transition independence,

i.e. the actions of one agent affect only its own dynamics and not those of other

agents. Under this assumption, the problem can be decoupled into N separate and

significantly smaller MDPs. To handle reward and constraint coupling, we make some

assumptions about the actions of the other agents. We specifically look at constraint



coupling, and assume that the agents all observe a pre-allocated limit on the amount

of risk they take. This simplifying assumption is called the Max Risk heuristic. This

heuristic introduces some conservatism, but was still shown to give good performance

in simulated problems. In the next chapter we again look at the problem of planning

for multi-agent teams, but remove the conservative Max Risk heuristic. In order to

preserve constraint feasibility, we instead introduce a consensus-based risk negotiation

strategy.

100



Chapter 5

Distributed Planning Under

Uncertainty and Constraints

The work presented previously for planning for multi-agent teams involved using the

transition independence of the agents to break a single, large joint planning prob-

lem into several smaller individual planning problems. The computational benefit of

doing is clear, since the solution technique scales easily to large teams. However, in

decentralizing the planner, some assumptions about the actions of the other agents

had to be made to ensure that overall team safety is not compromised. Specifically,

agents were not allowed to take more risk than was decided by team consensus at the

beginning of policy execution. This restriction introduces some conservatism to the

planner. In this chapter, we investigate a method for overcoming this conservatism.

This is achieved by allowing the agents to take greater risk under the condition that

the rest of the team is informed and consents to the agent's proposed increase in risk.

The mechanism by which such consensus is obtained is presented in this chapter. We

begin by reviewing other work that has looked into the problem of distributing risk

among agents in a team. Then a consensus-based planner that extends the work from

the previous chapter is presented. This planner allows agents to renegotiate the risk

distribution during the execution of the mission. And finally, the results of executing

this algorithm in a risky environment are presented.

101



5.1 Literature Review

The problem of planning in the presence of risk and uncertainty has been investigated

in the past. Ono and Williams [68], and Blackmore and Williams [93-99] have looked

at the problem of avoiding obstacles with a certain guaranteed probability. The

obstacles are treated as constraints, and the probability of colliding with an obstacle

is treated as the amount of "risk" the agent is allowed to take. The agent has uncertain

dynamics and the underlying planner used is a Mixed-Integer Linear Programming

(MILP) solver. Ono and Williams in particular investigate the problem of planning

for multi-agent teams with joint constraints. Specifically, the problem they seek to

solve is the following.

U1I:

s.t. Xi A'x + B'u + wi (5.2)

u, < <u U, (5.3)

P [nin, lhiTXi < gi] ; 1 - S (5.4)

Where x' is the state of agent i at time t, u' is the action (or control) applied by

agent i at time t, J is the reward function of agent i, A' and B2 collectively define the

dynamics of agent i, ui and utx define the range of possible actions (or controls)

and h" and g' define the constraints on agent i, with n E (1, Ni) where Ni is the

total number of constraints on agent i. w' is zero-mean Gaussian noise that adds

uncertainty into the dynamics of the agent. S is the probability with which each

agent is required to satisfy its constraints. In other words, Ono and Williams require

all agents to satisfy joint constraints in order for the entire multi-agent team to be

constraint-feasible. A violation of a joint constraint by any agent is taken as a system

failure. In the formulation used in this work, an agent i can violate a constraint j
with probability pij greater than a, but the system is said to have failed only if the

joint constraint probability of 1k Pkj is greater than a. In other words, a subset of

all agents Ik E I is allowed to violate a constraint provided agents not in Ik follow

102



"safe" policies such that the joint constraint is still satisfied. In the language of Ono

and Williams, the problem we seek to solve in this work is given by

I

min JZ(UI) (5.5)UIJ
i=1

s.t. X = Ax' + Bu + wt (5.6)

u - u - maxi < 1<(5.7)

P [uJAc n nIh1 Nih Xi gi ;> 1 S (5.8)

In the formulation shown above, the union operator (U) is non-convex, thus making

it difficult to provide optimality guarantees in a manner similar to Ono and Williams.

Other literature addressing the problem of planning under constraints includes Luders

and How [69] who also have addressed the problem of avoiding obstacles with finite

probability, but by using Rapidly-exploring Random Trees (RRT) as the underlying

planner due its better scalability. All the work cited above uses approximation tech-

niques that rely on process noise in the system being Gaussian white noise. Geibel

[72] proposes a method for reinforcement learning in the presence of risk and con-

straints, and use a definition of risk that is very similar to the formulation used later

in this work. However their main focus is learning, whereas in this work we focus on

fast on-line planning. Work discussed in [100] investigates the problem of consensus

in the presence of constraints, but that work addresses the problem of consensus when

there are constraints on each agent's estimate of the consensus value. In this work, we

are interested in the problem of consensus on a value whose total value is constrained

and that value is the total team risk.

Previously the multi-agent constrained planning problem was formulated as a con-

strained Markov Decision Process (MDPs) since MDPs provide a natural framework

in which to capture system uncertainty. MDP formulations are also easily extended

to the partially observable case [101]. A major drawback of MDPs is the issue of

scalability - as the size of the state space increases, MDPs become very challeng-

ing to solve. Particularly in the multi-agent case, the state space and action space

103



of the MDP grows exponentially in the number of agents. In the previous chap-

ter we proposed and demonstrated a method for dealing with this scaling problem.

When the agents are transition independent, i.e. the actions of one agent only af-

fect the dynamics of that agent, we can decompose the single, large MDP into a

number of significantly smaller MDPs, all of which can be solved in parallel and

with far less computational effort than solving the original MDP. Formally, tran-

sition independence is defined as follows. If the state vector can be decomposed

into N subvectors s = [sT,-... -, s T T and the action vector into sub-vectors

a=[aT, a, -... a, -.. aN T] such that p(s'l si, ai, ak) = p(s'lsi, ai) for all k # i, the

MDP < S, A, T, R > is said to be transition independent. In this case, si is the

state of agent i, and ai is the action of agent i. Therefore the multi-agent system

under consideration is transition independent due to the fact that the agent dynamics

are decoupled. Each agent's individual transition model will henceforth be denoted

Ti(s', ai, si). The only coupling between the agents occurs in rewards and constraints.

Existing literature (e.g. [90]) has investigated reward coupling in the unconstrained

case, and in this work we account for constraint coupling.

The constraint coupling between the agents is represented as follows. We define

an event ei as the tuple < Si, Ai, Si >. Agent i is said to have experienced an event ei

when there is a transition from si E Si to s' E Si under the action ai C Ai. Then, we

define a joint event as the tuple < ei, e2 , - eN, JC > where ei is an event associated

with agent i and JC is the joint constraint penalty that is awarded to every agent

when events e1 , .- - eN all occur. Note that this is in addition to the penalty awarded

by the constraint model Ci(si, a). We further define pij(7i) as the probability that

event ei in the joint event j will occur when agent i follows policy wr. With these

definitions, we can write the constrained optimization problem from Eq. 2.2 and

Eq. 2.3 as

~T

7 =arg max E 'Ri(sit, (5.9)77 (5.9) sit
t=0

~T ~ E N

s. t. E E Ci (Sit, 7i (Sit)) + 1:JCj fl pki (7k) < a (.0

t=0 j=0 k=0

104



Knowledge of the other agents' policies are summarized in pkj(7Tk). The additional

term added to the left side of the constraint (Equation 4.2) is the expected joint

constraint penalty. Since one MDP must be solved for each agent, we have to solve

N MDPs of size S x A, rather than one single MDP of size SN x AN. However, the

policy for any agent depends on Pkj (rk) of all the other agents, which in turn depend

on their policies. Thus each agent picks an initial policy, and the pij(7i) (probability

of its own event ei) corresponding to that policy is communicated to all other agents.

Since all the other agents perform the same procedure, agent i also receives values

for Pkj (7k) from all other agents k $ i. Agent i then picks a policy that is optimal

for the received set of Pkj(7k). This policy yields a new pij(7i), and the process is

repeated until the all agents converge on a policy. This is called the joint policy

iteration and is shown in Algorithm 6 in Chapter 4. Once this process is completed,

the agents each have a policy and its corresponding risk. In the previous chapter,

we introduced an approximation - called the Max Risk heuristic - that assumes that

the other agents never exceed this amount of risk. The conservatism introduced by

the heuristic reduces team performance, and in this chapter we present a method by

which risk can be redistributed during plan execution. But first, we show with the

help of an example the potential impact of not redistributing risk.

5.2 Example

In this example we see the disadvantage of being able to take on more risk during

mission execution. We have two agents, both of which start to the left side of a long

and narrow corridor. Red indicates constrained areas, and green indicates rewards.

The agents each have a planning horizon of length T = 4. The events in this prob-

lem are transitions into constrained states. The additional penalty for both agents

transitioning into constrained states is set to be JV = 1. The vehicle model used is

the same as shown in Figure 4-8. The probability of taking a step in the intended

direction is 0.9 and the probability of moving in a direction perpendicular is 0.1. Risk

for each agent is constrained to be less than 0.05 (a = 0.05), and we use memoryless

105



0.8960 0.9432 0.9928
A

0.0 0.0 0.000125

0.8574 0.9025 0.95
B
0.0475 0.05 0.05

0.0 0.8123

0.0025 0.05

Figure 5-1: Agents A and B both plan their actions up to a horizon of length T = 4.
Initially neither agent sees the rightmost reward. Agent A plans a zero-risk path,
whereas Agent B takes some risk to reach its reward sooner.

risk.

Initially, the two agents each decide upon plans shown in Figure 5-1. In each

state, the number at the top represents the expected reward under the policy shown,

and the number in the bottom shows the expected risk. Agent B takes a starting

risk of 0.0475 (which is the risk associated with the highest-reward constraint-feasible

policy) while Agent A takes 0 risk. Under a fixed allocation strategy, the agents

are henceforth constrained to keep their risk values below these initial allocations.

However as both agents begin executing their respective policies and move towards

their rewards, a second reward appears within Agent A's planning horizon. This

reward requires Agent A taking higher risk than previously announced, specifically a

risk of 0.0475. Under a fixed risk allocation, Agent A is not allowed this higher risk

since it has no means by which to communicate with Agent B and ensure that Agent

B's policy does not become infeasible. Note that in fact Agent B's current plan would

not become infeasible - its total risk will now be 0.0475 + 0.05 x 0.05 x 1 = 0.05,

where the additional term 0.05 x 0.05 x 1 represents the joint risk. Thus a fixed

risk allocation is unnecessarily conservative - even in this simple example, allowing

the agents to communicate and arrive at a consensus on taking greater risk can

significantly improve reward.

The underlying features of the problem that make reward redistribution impor-

106



0.855 1.8074 0.95

0o0 0. 0 75 0.05

0.8 [95
Br

0.0

Figure 5-2: After the agents have both executed two time steps, Agent A sees that
it can achieve twice the reward by taking more risk. Agent A bids on more risk, and
Agent B identifies that it can give up some of its risk to Agent A while still increasing
the overall team reward.

tant are found frequently in the types of problems we are considering. From the

perspective of the agents, the environment is dynamic - either because the rewards

and constraints themselves are changing, or - as was the case in this example - because

new rewards appear within the horizon of the planner as the mission is executed. In

the risky environments that this work addresses, both those conditions are expected

to be common, hence the importance of being able to renegotiate risk during mission

execution.

5.3 Proposed Solution

As we have seen, allowing an agent to modify its policy and take on more risk as

the mission progresses has clear advantages. However, if any one agent i unilaterally

changes its policy, the policies of all other agents might need to change to accom-

modate the additional risk that agent i might be taking. This in turn changes the

risk of all other agents k, requiring agent i to recompute its own policy. Clearly if all

agents are changing their policies simultaneously, the outcome may be unpredictable

and may not converge to a feasible solution. Therefore we design an algorithm that

lets only one agent modify its policy at a time, and select this agent in a way that

107



maximizes the benefit to the entire team (as indicated by the total reward).

The algorithm works in two stages. In the first stage, all agents initialize their

Pkj((7k)'s. Using these pJ (lk)'s, every agent solves Equations 4.1 and 4.2. This

yields the reward improvement each agent k expects, given by ARk. The agents all

broadcast their ARk to all other agents. Each agent now compares the ARks that is

has received from the other agents, and if its own ARi is the highest, it broadcasts its

pij(7ri) value. The agent thus essentially "wins" the right to keep its optimal policy

with risk pij(7r).

In the second stage, the other agents need to recompute their policies for the new

Pij (7ri), which we call pi (7ri). All agents k / i thus compute their new policies, and

broadcast their new ARk. With this information, every agent (including i) computes

the new team reward E AR. If the new team reward is greater than the previous

team reward by less than E, where c > 0, p' (7i) is rejected and pij(ri) is restored to

its previous value. The agent with the next highest ARk is allowed to broadcast its

Pkj(7k), and the second stage is repeated. If a p 3 (7i) is not rejected, both the first

and second stage are repeated with the new set of Pkj(7rk)'s. The complete algorithm

is shown in Algorithm 8.

Graphically, we can visualize the progress of the algorithm as follows. For sim-

plicity, assume there are only two agents and one joint event, so the probabilities

associated with each event is given by pu (probability that Agent 1 will experience

event 1) and P21 (probability that Agent 2 will experience event 1). The event proba-

bilities are determined by the agents' policies 7r1 and r2 , and this dependence is made

explicit by writing the event probabilities as pii(7rl) and p21(7 2 ). Since each pair

of policies (7r1 ,7r2) is associated with a unique pn(7r1) and p21 (7 2 ), we can represent

each pair of policies as a point in the space spanned by pu C (0, 1) and P21 E (0, 1),

as shown in Figure 5-3. Note that only policies that lie below the line defined by

PlIP12 = o' are constraint-feasible.

Suppose the agents are initially assigned event probabilities of fil and P21. With

a fixed risk allocation, agents are allowed to explore only those policies in the region

0 < pu , :i, no < P21 < P21, shown as the shaded region in Figure 5-4. If the optimal

108



Algorithm 8 The two-stage Risk Auctioning Algorithm
1: Initialize pi, P2, PN, R0  -e, R = 0
2: while R > Ro do
3: Stage 1
4: Solve MDP(i) for pi unconstrained
5: Send AR to all j # i, Receive AR, from all j i
6: Stage 2
7: J = {1, 2, ... N}, StageComplete = false
8: while NOT StageComplete AND J # 0 do
9: k = arg maxjEj ARj

10: Pok Pk
11: Pk P'k
12: Solve R = MDP(i) for bounded pi
13: Send R' to all j # i
14: Receive R' from all j / i
15: if R > R + c then
16: Pk Pok
17: Ro= R
18: R = R
19: StageComplete = true
20: else
21: J = J\k
22: end if
23: end while
24: end while

policies (optimal defined as maximum team reward) are located outside this region

as shown in Figure 5-4, a fixed risk allocation strategy will not find these policies.

We can now follow the progress of the risk negotiation algorithm in the (P11,P21)

space. First, both agents compute their individual optimal reward while keeping the

risk for the other agent fixed. Thus Agent 1 searches along the blue line shown in

Figure 5-5 and Agent 2 along the vertical red line. Both agents find their individual

optimal policies 7 and 7r' along these lines and communicate the reward and risk

associated these policies to each other. The agent whose policy yields the highest

individual reward improvement wins its bid. Assume that Agent 1 wins the bid, thus

keeping its pu (7r'). In Stage 2 of the algorithm, Agent 2 has to recompute its optimal

reward given the new pu (r'). Agent 2 thus searches along the line shown in Figure

5-6 and finds its individual optimal policy, giving rise to a new P21(7r2 ). If the total

109



P21 P11 = 1
-- P21 = 1

*max i Ri

wri), k2 (7r2)) 1IP21 =

- )P11

Figure 5-3: Every set of policies (71, r2 . .. 7N) is associated with a single unique point
in the space (p1, P21 ... PNE). Shown here (circle) is the case where N = 2 and E 1.
Also shown (by *) are the policies associated with the optimal team reward.

P21 P11 1
P21

*max R

(fu 7r1), p21(7r2 )) P P21 =

P11

Figure 5-4: The set of policies that agents are allowed to explore is restricted to lie in
the shaded region with a fixed risk allocation. The * indicates the policies that yield
the optimal team reward.

110



P21
-P1 = 1P 2 1

P21 = 1

P11

Figure 5-5: In Stage 1 of the algorithm, both agents keep the
and find their individually optimal policy. That policy is 7r'
Agent 2. Shown are the risks associated with each policy.

P21

T2~+

P1 (7,1 )

0

other agents' risk fixed
for Agent 1 and 7r for

P11 = 1
I P21 = 1

P IIP21 = A

-P11

Figure 5-6: Agent 1 wins the right to keep its new policy 7r', and Agent 2 recomputes
its new policy 7r' to account for Agent 1's new policy. The risks associated with the
new policies are shown by the solid circle.

111



team reward at this new (p1i(7r),p 21(7r')) is less than the previous optimal team

reward (Pr(71),P21(7r2)), 7r' is rejected. Stage 2 is then repeated, but with keeping

7T fixed and Agent 1 computing a new policy r'. If wr' is also rejected, the algorithm

terminates.

However, if one of the bids is accepted - say Agent 1's bid - there is now a new

set of p11(7rK), P21(7"), and both Agents repeat Stage 1 starting with these policies.

Agent 2 does not change its policy (since it is already the optimal individual policy

given piI(7r)), but it is possible that Agent 1 will find a new optimal individual policy

7r' along the line p21 (7'), shown in Figure 5-7. If r"[ is accepted, Agent 2 will have to

recompute its policy, and the process continues. There are three ways in which the

process can terminate:

1. The process terminates when no agent finds a better individual policy, i.e. the

algorithm terminates during Stage .

2. The process terminates when all agents' bids are rejected because none of the

bids increase team score, i.e. the algorithm terminates during Stage 2.

3. The algorithm terminates when every agent finishes exploring all possible poli-

cies, i.e. the algorithm finds the globally optimal team reward.

We can easily verify that the algorithm does not get stuck in cycles, and this is

primarily due to Stage 2 - we check to see if the new policy actually improves the

total team reward. Suppose, as in the example, the agents start with policies w1 and

r2, and the team reward associated with the policies is R(71 , 7r2). Also suppose that

Agent 1 wins the bid to change its policy to 7r, in the first iteration, and in the next

iteration Agent 2 wins the bid to change its policy to 7r". By construction of the

algorithm, this means that R(7r, 7r") > R(r 7r2 ) > R(7i,7 2). For a cycle to occur,

Agent 1 and Agent 2 must both win bids to return to policies w1 and 7T2 . However, this

is possible only if R(7, 7r") < R(ri, 7 2 ) - a contradiction of the previous statement

that R(7r'1,7"r') > R(7', r2 ) > R(ri, 7r2 ). Thus the check on the team reward ensures

that policies that were previously explored are not explored again.

112



P21 Pii = 1
P21 = 1

*max R

P~21 (7 2)

P1I1I)21

Pu1

Figure 5-7: In the next iteration, Agent 1 again computes a new individually optimal
policy 7" while keeping p21(7r") fixed, and this results in a new risk p11(7r"). If the
team reward with this new policy is greater than the team reward with 7r' and wr",
this new policy is kept and Agent 2 would have to recompute the policy for with the
new p11(7r'). In the worst case, this process terminates after |S12|A12 iterations (i.e.
after all possible policies are explored). We can guarantee that cycles do not exist
due to the check in Stage 2 to ensure that the team reward always improves.

This allows us to bound the maximum number of iterations before the algorithm

terminates. The total number of policies available to Agent i is given by |Si||Ail.
Assuming |Sil and JAjl are countable and finite, the number of policies is finite.

Thus the total number of policies the algorithm explores before terminating is at

most ]=1 JSjllAjl. However in reality the algorithm only explores feasible policies

- the total number of feasible policies is only a subset of all policies. The size of

this subset depends on a number of factors - the transition model, the constraint

model, and a and is difficult to estimate in general. Furthermore, the existence of

constrained states from which no further actions are possible also reduces the total

number of policies, from |Si||Ai| to (1 - pc)|Si||AiI where Pc is the constraint density

- the fraction of states that are infeasible. Taking this into account, we arrive at

113



H1I (1 - pc)|Sil Ail as a loose upper bound on the number of iterations required for

the algorithm to terminate. Note that in particular if c > 0, the algorithm may not

explore all possible solutions, but will terminate once it finds solution that cannot be

improved by more than E.

By construction, the algorithm terminates when no agent can find a higher-reward

policy that preserves feasibility of all agents' policies and improves the overall team

performance. Based on this, the following shows that the algorithm converges to

a Pareto optimal solution. A Pareto optimal solution is one in which no agent

can improve its own reward without reducing the reward of at least one other agent

[1021. We show this first for the case e = 0, where e is the minimum improvement in

team reward for an agent's bid to be accepted.

Suppose the algorithm has terminated at a set of policies 11 . -- i, 7i. N, that

have rewards given by R 1 (7r1), - - -Rj(wr), - - -RN (7N) and event probabilities given by

P(ei li1), -.-. , P(eil ri), - - - P(eN 17N). Suppose these policies are not Pareto optimal

such that one agent, Agent i, can feasibly change its policy to wr and increase its own

reward to Ri (7r) > Ri (7i) without requiring any of the other agents k $ i to get lower

rewards. In such a case, running the risk consensus algorithm for one more iteration

results in Agent i computing the new policy r' and bidding for it in Stage 1. Since we

assumed that only Agent i can feasibly achieve a higher reward while keeping other

agents' policies fixed, Agent i is the only agent with a non-zero reward improvement.

Therefore Agent i wins Stage 1. In Stage 2, agents k / i recompute their policies

to account for Agent i's new policy. Since the agents' original set of policies were

not Pareto optimal, all k / i agents will be able to achieve at least the same reward

performance even with Agent i's new policy. Furthermore, since the reward of k / i

agents get no worse and Agent i's reward has increased, the overall team reward also

increases. Thus Agent i's new policy is accepted, contradicting the supposition that

the algorithm had terminated at a non-Pareto optimal solution. Thus we show that

for E = 0 the risk consensus algorithm does not terminate unless at a Pareto optimal

solution.

We can show this to be true in a more general case. Suppose the algorithm

114



has terminated at a set of policies 7 1 ,. . - 7i . ... 7N, that have rewards given by

R1(7r 1), . .. Ri(ri).... RN (FN) and event probabilities given by P(ei lr1 ),..., P(eilri),

... P(eN rrN). Suppose these policies are not Pareto optimal such that M agents,

Agents 1 to M where M < N, can feasibly change their policies to r.. . .7' and

increase their own rewards to Ri(7r') > Ri(7ri) Vi C (1, .. , M) without requir-

ing any of the other agents k E (M + 1, ... N) to get lower rewards. In such a

case, running the risk consensus algorithm for one more iteration results in Agents

1 to M computing the new policies 7r, ... 7' and bidding for these policies in

Stage 1. One of these agents, say Agent 1, has the highest reward improvement

(R(7r') - R(7r1) > R(7) - R(7ri) Vi E (2,... M)). Agent 1 thus wins Stage 1.

In Stage 2, all agents k - 1 must compute new policies 7r, ... .r' to account for

Agent 1's new policy. Since the original set of policies were not Pareto optimal, a

change in Agent l's policy does not reduce the reward of any of the other agents

(R(7r') > R(7i) Vi E (2, . .. N)). As Agent 1's reward has increased and all other

agents' rewards have not decreased, the overall team performance has improved and

Agent 1's new policy 7Tr' is accepted. This contradicts the supposition that the algo-

rithm had terminated, hence again showing that the risk consensus algorithm does

not terminate at a non-Pareto optimal solution. Intuitively, the algorithm terminates

when any gain by one subset of agents requires offsetting losses to some other subset

of agents. For the case where e = 0, the algorithm terminates when the gains are

exactly offset by the losses.

For the case e > 0, we must consider the possibility that the algorithm may

terminate without converging to the Pareto optimal solution. Consider the general

case described above. If there is even a single agent which can improve its reward

by more than E without the other agents reducing reward, the algorithm does not

terminate. But suppose all M agents that can improve their reward can do so by less

than e. In that case, all M agents may have their bids rejected, leading to an early

termination of the algorithm. Thus the algorithm will converge to solution whose

team reward is within ME of a Pareto optimal solution. Since M = N in the worst

case, we see that in the worst case the algorithm will terminate with a team reward

115



that is within Ne of a Pareto optimal solution.

Another relevant notion of optimality is Hicks optimality [103], which is defined

as a solution where no agent can improve its own performance without degrading

the total team performance. However we cannot guarantee that the risk consensus

algorithm will converge to a Hicks optimal solution. We show this by using the

following counter-example. Using the same notation as before, suppose that during

the optimization, the agents currently have a set of policies 1 ,... 7i,... 7N, that

have rewards given by R1(-1), . . . Ri(7j), . . .RN(TN) and event probabilities given by

P(ei1|X1), ... , P(eil[i),... P(CNLTN). Assume that these policies do not constitute

a Hicks optimal solution. In other words, a new solution exists in which one agent,

Agent i, can improve its own reward by adopting a new policy 7r if in addition one

other agent, Agent j, adopts a policy I" that has a lower reward. Finally, assume

that the policies of all other agents remain the same and that

|Ri(7') - Ri(xi) > |Rj(7') - Rj(7j)I

so that the overall team reward improves by agents i and j changing their policies to

7' and w' respectively. In Stage 1 of the algorithm, when agent i initially computes

its potential reward improvement, policy 7T is not guaranteed to be identified as a

higher-reward policy. This is because T' yields higher reward, but only when Agent

j follows policy w. But in computing which policy to bid on in Stage 1, Agent i

is constrained to assume whatever policy (7j in this case) Agent j had previously

decided upon. When Agent j follows policy 7j, there is no guarantee that w will

yield a reward improvement, or even that it will be feasible. Thus in Stage 1 of

the consensus algorithm Agent i is not guaranteed to identify 7' as a higher-reward

policy than 7r, and is not guaranteed to bid for that policy. Thus it is possible

that the algorithm may terminate at this solution. However 7i and 7Tj are not a

Hicks optimal solution, so the algorithm will have terminated at a non-Hicks optimal

solution. Furthermore, the algorithm will not find any other Hicks optimal solution

because it has terminated. Intuitively, the reason the algorithm cannot be guaranteed

116



to find the Hicks optimal solution is because both Agent i and j would need to modify

their policies simultaneously. Since the algorithm does not allow that, it is possible

that it will terminate with a solution that is not Hicks optimal. We observe that every

Hicks optimal solution is a Pareto optimal solution, but not every Pareto optimal

solution is a Hicks optimal solution. Hicks optimality is a "stronger" optimality

condition (stronger from the perspective of the team reward) and the risk consensus

algorithm does not achieve those stronger conditions.

Since in Stage 2 of the algorithm we specify that the leader's new risk value can

be accepted only when there is an overall team performance improvement, it is clear

that the team performance never gets worse. Also, since the total reward available

in the environment is finite, the algorithm will eventually converge to a finite value

which at most will be the maximum reward that can be obtained by the team if no

constraints were present.

Since the algorithm requires agents to communicate, the performance critically

depends on the connectivity between the agents. The communication structure is

given by a graph G = (V, E) that is defined by a set of nodes V and edges E. The

nodes in this case are the agents, and the existence of an edge between any two nodes

(agents) implies that those agents can communicate with each other. The diameter

of the graph DG is the longest path between any two nodes in the graph. A fully

connected graph (where every node is connected to every other node) has diameter

1. A strongly connected network is one in which a path exists from any node to

any other node, although there may not be a direct link between each node. Given

these definitions, and assuming the communication network between the agents to

be strongly connected, each iteration of the algorithm requires 2DG communication

steps. This can be seen by observing that the first stage of the algorithm is essentially

a leader election problem, with the message being their expected performance gain

ARk. The election of a leader takes DG steps [104]. Next, the agents all compute their

new reward, using the new risk value for the "leader", and their new performance is

transmitted to all agents they are connected to. It takes DG time steps for all agents

to receive updates about all the agents' new performance values, and the decision to

117



accept or reject the leader's new risk value can be taken only after this stage. Thus,

the communication time to arrive at a decision in each iteration is 2DG steps-

Clearly, the worst-case limits for the algorithm are not very strict. We have al-

ready seen that the complexity of solving an individual agents' planning problem

is of size O(S 2 AE), and thus when the number of joint events E is very large, the

complexity of solving individual planning problems is significant. Furthermore, the

number of event probabilities that need to be communicated also grows. In addi-

tion, if there are a large number of events, it is very likely that a small change in

the policy of one agent will require other agents to also change their policies, since

more events indicate greater coupling between the agents. In other words, a large

number of events increases the likelihood that the number of policies explored will

approach the worst-case upper bound. Intuitively, the larger the number of events,

the greater the coupling between the agents and therefore the greater the deviation

from the assumption of transition independence. Thus with many events, solving

several decentralized planning problems approaches the complexity of solving the

complete centralized planning problem. Assuming transition independence allowed

us to avoid the "curse of dimensionality" associated with the centralized planning

problem, but as that assumption becomes less valid the curse of dimensionality again

returns, although in a slightly different form. The increase in the number of events,

the increase in the number of iterations required to terminate the risk negotiation,

and the increase in communications requirements are therefore all a manifestation

of the curse of dimensionality in domains where transition independence is a poor

assumption.

5.4 Results

We compare the performance of the Risk Negotiation algorithm with a fixed risk

allocation. The types of problems considered are shown in Figure 5-8. The world is

discretized into a grid with reward (green) and constrained states (red). The location

of the rewards is chosen at random, and the dangers are randomly placed within a

118



Figure 5-8: Grid world example with rewards (green) and constraints (red)

Figure 5-9: The communications architecture for a team of five agents

finite distance from the rewards. This reflects the fact that in a CBRNE scenario

mission performance typically involves going into danger areas. Entering a danger

area causes the agent to fail. The number of states that are constrained, defined as

the constraint density, is varied, and the impact on performance and risk is discussed

here. We use team sizes of two, five and ten agents. The size of the state space of the

full problem, formulated with joint state and action spaces, varies from 1.024 x 107

for the two-agent case to 1.126 x 103 for the ten-agent case. The agents are assumed

to have limited communication capability and can therefore communicate with only

two other agents, forming a line network. An example of such a network for a team

of five agents is shown in Figure 5-9. The diameter of a line network DG= N where

N is the number of agents. For the five and ten agent teams, the constraint imposed

is that no more than three agents should fail. For the two-agent team, we require

that no more than one agent fail. The allowed risk a is set to 0.15. Note that these

constraints are joint constraints since they are imposed on the team and not on any

individual agent. In this case, there are no individual constraints.

In Figures 5-10, 5-11 and 5-12 we compare the performance of the risk negoti-

119



ation algorithm with a fixed risk allocation for teams of two, five and ten agents

respectively. For very low constraint densities, the risk negotiation algorithm does

not achieve significantly higher reward than a fixed risk allocation, since the risk

required for good reward performance is low. As the constraint density increases,

using a fixed risk allocation becomes increasingly conservative leading to a significant

drop in performance. The risk negotiation algorithm also achieves lower reward -

the more constraints in the environment, given the same risk bound, the lower the

maximum reward that can be obtained. However the reduction in performance is

less pronounced than for a fixed risk allocation since the risk negotiation algorithm is

less conservative. For very high constraint densities both methods give low reward,

and this reward is close to zero. This is to be expected, since a highly constrained

environment is one in which the agents cannot access most reward states easily.

As mentioned previously, the risk negotiation algorithm is less conservative than

a fixed risk allocation. Thus we expect that the risk taken by the risk negotiation

algorithm will be higher than that taken by fixed allocation. This is seen clearly in

Figure 5-13, which shows the risk - specifically, the accumulated risk - the total risk

taken by the team during the entire mission - for both methods. Clearly, the risk

negotiation algorithm accumulates more risk. Note that at any given time during

the mission, the future risk is constrained by a = 0.15, therefore we expect that the

accumulated risk (past + future risk) over the course of the mission can be higher

than a.

The policies computed by the Risk Negotiation algorithm meet the risk require-

ments only under the condition that the events that constitute a joint event remain

independent. In this case, an event corresponds to a single agent entering the red

danger zone and failing. Thus by assuming independence of events, we are effectively

assuming that the probability of an agent failing is independent of the probability of

another agent failing. While this may be an accurate assumption for the problems

considered here, it is not necessarily true in general. If the agents' failures were in

fact correlated (due to unmodeled environmental factors, for instance), the Risk Ne-

gotiation algorithm would underestimate or overestimate risk, leading to policies that

120



5 10 15 20 25 30 35
Constraint Density

40 45 50 55 60

Figure 5-10: Comparison of the performance of the risk negotiation algorithm with a
fixed risk allocation for two agents

25 30 35
Constraint Density

Figure 5-11: Reward obtained by a team of five agents using fixed risk allocation and
risk negotiation

121

3

0

* Total Risk
Future Risk

V
WV

.5

2- V

* V70,VVVVV
5 -

1 V

.5-

A" | |



I No Negotiation
V Negotiation

I I

V V
VV

I I I I I IN V

5 10 15 20 25 30 35 40 45 50 55 60
Constraint Density

Figure 5-12: Reward obtained by a team of ten agents using fixed risk allocation and
risk negotiation

0.

0.

0.

S0.

2 0.
E

.~0.

0.

25 30 35
Constraint Density

40 45 50 55 60

Figure 5-13: Comparison of the risk accumulated by the risk negotiation algorithm
with a fixed risk allocation for ten agents. The horizontal line shows the bound on
the future risk 122

UNegotiation
VNo Negotiation

9-

8

V
7 V

v
6

5T
V:

4~ TV
4-

W V
3 V

V VvM

2

1 --Wvq~rv v
V- v v



are either too conservative or too risky, respectively.

5.4.1 Impact of Team Structure

One way to reduce the complexity of the algorithm is to eliminate Stage 1, i.e. elimi-

nate the leader election stage. In place of this stage, we impose a team structure - we

always permit the same agent to bid first, another agent to bid second, and so on. The

convergence time of the algorithm is faster (D instead of 2D) but team performance

is in fact negatively impacted. We see why this is the case by looking at the example

problem in Figures 5-1 and 5-2. Suppose only Agent B is allowed to initiate Stage

2, i.e. the team structure is defined such that Agent B is always computes its best

policy and other agents have to adjust their policies to ensure constraint feasibility.

In such a case, Agent B would always plan the straight, risky path shown in Figure

5-1, and Agent A will have no option but to plan the path shown in Figure 5-1. In

reality, the team can benefit from having Agent B take a longer, less risky path as

shown in Figure 5-2. Thus having a rigidly defined team structure makes Agent A

unable to execute a higher-reward policy even when such a policy is feasible. Stage 1

of the algorithm picks the agent with the potential to improve performance the most,

which in a dynamic environment and a finite-horizon planner can vary through the

course of the mission. Thus having a rigid team structure prevents the team from

adapting to these unforeseen opportunities and risks.

5.5 Summary

In this chapter, we investigated the problem of achieving good performance for a team

of unmanned agents in the presence of constraints. The agents are allowed some prob-

ability of violating the constraints, a quantity defined as "risk". We seek a planning

mechanism that will maximize the team performance, quantitatively measured as a

reward, subject to a constraint on the total risk the team can take. The previous

state-of-the-art was to divide the risk allowed for each agent initially and keep those

allocations fixed for the duration of the mission. In this work, we proposed an auc-

123



tioning mechanism through which agents can bid for higher risk allocations if they

perceive a performance advantage for taking more risk. This requires other agents

to reduce their own risk allocation, potentially reducing their performance. Whether

the re-allocation of risk results in a team performance improvement or not is decided

by the agents through consensus. Simple examples showed that a significant improve-

ment can be expected through this process. Monte Carlo simulation results were also

presented showing a significant improvement in overall team performance particularly

in environments with tight constraints.

124



Chapter 6

Experimental Results

In this chapter, we apply the methods developed previously to solve a planning prob-

lem for a large heterogeneous team. The algorithms are tested in a realistic environ-

ment - a simulator with a physics engine, Unreal Tournament [105]. First, this test

environment is briefly discussed. Next the task planning problem is formulated, and

finally the results of the experiments are presented.

6.1 Test Environment: Unreal Tournament

The game Unreal Tournament@ is used in this work as a simulation environment.

The game has a built-in Physics Engine that can simulate winds, obstacles, collisions,

terrains and other real-world dynamics. The game also allows for multiple agents,

called "avatars" to be operating in the same environment, thus providing a platform

for testing multi-agent algorithms. While some real-world testbeds allow for rapid

prototyping [106], in general it is difficult to field many agents at once to test scenarios

that involve complex multi-agent teaming. Furthermore, the overhead of maintaining

a large team of autonomous agents is significant and can distract from the testing

of the algorithm itself. Unreal Tournament thus provides a good balance between

eliminating many of the constraints and overhead of a real-world test, while retaining

some degree of realism in the operating environment. An additional advantage is the

availability of models for a wide range of commonly used robots such as Pioneers,

125



Figure 6-1: A UGV (left, foreground) and UAV (right, foreground) operating in Un-
realville. Also shown are several victims and obstacles in the operating environment
such as lamp-posts and trees.

AirRobots, TALONs and MDS robots through the Unreal add-on, USARSim [105].

The operating environment used is an urban setting. Buildings, streets, stationary

cars, trees, and various terrains (sidewalks, grass) are provided. Victims, some moving

and some stationary, are also provided. A screenshot of the environment, including

victims and two robots is shown in Figure 6-1. A map of the environment is shown

in Figure 6-2. Grassy areas are shown in green, sidewalks in gray, streets in black,

buildings in tan, and water bodies in blue. The main feature of the environment is

the inner courtyard area which can be accessed only through a few narrow doorways.

Besides the large-scale features shown on the map, there are several smaller ones such

as parked cars and lamp-posts. Victims are not shown on the map, but are located

throughout the courtyard area.

126



Figure 6-2: The Unrealville test environment. This birds-eye view shows an urban
landscape with streets (black), buildings (brown), paved sidewalks (grey), grassy areas
(green) and water bodies (blue).

Tasks

Task

Goal Position

Waypoint

Goal Position Goal Fjosition

Wayboint

Figure 6-3: System architecture

127

MUMM



6.2 Task Planning Problem

The objective of a team of UAVs, UGVs and MDS robots operating in the environ-

ment described above is to rescue victims. The team consists of four UAVs, three

UGVs (Pioneer P2ATs) and three humanoid MDS (Mobile, Dextrous, Social) robots.

The mission requires the execution and completion of several tasks which are spec-

ified by a human operator. The tasks generated by the human operator are high

level tasks, e.g. "Guide Victims to Safety". These high-level instructions must be

interpreted and acted upon by the autonomous planner. The four types of tasks that

are realistic for a search and rescue problem are described below.

" Area Search: Aerial search of an operator-defined area. The aircraft execut-

ing this mission fly search patterns (e.g. spiral, perimeter search, lawnmower

patterns) that are also specified by the operator.

" Bomb Surveillance: Observe and investigate a suspicious device. This task

is executed by ground robots by traveling to the location of the suspicious

device and sending video feedback to the operator, and includes potentially

manipulating the device as instructed by the operator.

" Guide Victims: Guide victims from incident area to safety. Victims that are

still inside the area where the CBRNE incident has occurred, but are still mobile

are guided out of the incident area by ground robots.

* Victim Assessment: Assess whether victims are mobile, ambulatory or not

responsive. This requires ground robots to travel to the locations of victims and

attempt interaction with them.

The behaviors associated with these tasks are generated by "Activity Planners".

There exists one Activity Planner for each agent, as shown in the system architecture

in Figure 6-3. The assignment of agents to tasks is performed by the Planner, which

is the main object of interest in this work. The tasks themselves are created by the

operator, and the operator also specifies the parameters associated with each task.

128



An interface that allows the operator to intuitively set the parameters defined above

is important in the functioning of the overall system. Such an interface would have

to include the following.

" Task Creation: The operator decides which tasks need to be executed, and

the parameters associated with the tasks. For example, the operator decides

whether there needs to be a search, and if so which area is to be searched and

possibly how many robots are required. Note that the operator can specify

more than one task of the same type, e.g. there may be several Area Search

activities.

* Failure Probability Specification: Associated with each task is the prob-

ability that the robot performing this task might fail. These probabilities are

also decided by the operator. It is possible that the operator simply selects from

several subjective options (e.g. "Very Dangerous", "Safe") but in general it is

assumed that the operator has a better intuition (based on past experience or

training) as to which tasks are risky which safe.

* Constraint Specification: The operator also sets the constraints on the sys-

tem. For instance, the operator may decide that a minimum of two UAVs and

one MDS robot is required for a certain task, or required for the mission over-

all. This is directly translated into the constraint model in the planner. This

information would have to be provided to the planner at the time of task or

mission creation.

* Risk Specification: Finally, the operator decides the probability with which

the constraints can be violated. This is again a probability, and a reasonable

interface would be one that allows the operator to select from several options -

for instance, the operator could indicate the importance of a constraint rather

than the actual allowed risk, and these importance ratings could then be con-

verted into a risk specification. This is preferable since humans are known to

be poor at assigning numerical values to abstract notions such as likelihood of

129



failure. Thus a good interface would query the operator for to select an option

that is then converted into a probability.

Clearly, some activities can only be performed by some types of agents. Also the

human operator may explicitly specify that a task be performed by a certain type

of robot. For instance, the operator may specify that the Area Search activity be

performed by an aerial platform. We quantify these requirements as follows. The

state space of each vehicle Si is defined as

Si = [i Y, Vi, t, t 2 , tN] (6-1)

Where xi, y2 is the location of the agent on the map, vi is the status of the agent

(active or failed) and tj is the status of activity j (active or completed). The action

space of each agent Ai is the set of tasks that are available. Thus at any time, an agent

can execute a maximum of N actions, action j corresponding to task j. However, not

all agents can execute all activities. We have three types of agents - UAVs, UGVs

and MDS robots. Each of these agents has different capabilities, and Table 6.1 below

lists which agents can perform which tasks.

Table 6.1: Capabilities of the three different types of agents

Area Search Bomb Surveillance Guide Victims Victim Assessment
UAV Yes No No No
UGV No No Yes Yes
MDS No Yes Yes Yes

Thus while each agent can perform a maximum of N activities, in reality the

action space of each agent is smaller. If an agent can perform an activity, the reward

for executing that activity is given by the reward model shown below:

R(si,aj) = r if tj = ACTIVE (6.2)

R(si,aj) = 0 if tj = COMPLETED (6.3)

130



In other words, an agent that executes an active task receives a reward of r E R. r

is interpreted as the priority of that task and is set by the operator when the task is

first created.

We also account for the fact that an agent might fail while executing a task. This

is captured in the transition model as follows:

T(s', a, si) =pj if v'= FAILED and vi =ACTIVE (6.4)

Note that the probability of an agent failing, pj, depends on the task that it is

executing. For instance, pj might be very high for a Bomb Surveillance task, but

significantly lower for an safer Area Surveillance task. The exact numbers used are

shown in Table 6.2.

Table 6.2: Probability of an agent failing during the execution of an activity

Task Agent Failure Probability
Area Search 0.01

Bomb Surveillance 0.25
Guide Victims 0.1

Victim Assessment 0.1

The probabilities reflect the fact that Bomb Surveillance is an extremely dangerous

activity. Guide victims and victim assessment are also considered risky since they

involve entering a zone with potential hazards. Area search is considered the safest,

since it is executed by air (only UAVs are capable of performing Area Search).

Next, we define the constraint model. In this problem, we impose two constraints,

C1 and C2 . The first constraint which we label C 1, constrains the total number of

active agents to be greater than or equal to a minimum number Mmin. Note that this

constraint is a joint constraint, i.e. it acts upon the team as a whole and not individual

agents. As noted previously, it is through joint constraints that coupling is introduced

between the plans of each individual agent. In order to write the joint constraint,

we must first define the event ei as the event than an agent i fails. Formally, this is

131



expressed as

(s',a, si) Vj, Vsi E S, Vs' : v = FAILED (6.5)

Since we want to ensure that there are Mmin active agents out of a total of M agents,

we have E = (M ') joint events, each with a different combination of agents. In the

following set of results we set the joint constraint penalty is set to JV = 1, and Mmin

is set to 7. Note that Mmin can be set to any value between 0 and M. Using Mmin = 0

essentially removes the constraint. Using Mmin = M results in extremely conservative

assignments. Therefore we pick an intermediate value of Mmin and in a later section

discuss ways in which varying Mmin impacts the performance of the planner. The

second constraint C 2 requires that at least two MDS robots be operational at all

times. This is due to the fact that MDS robots have capabilities that the other

agents do not, specifically the ability to interact with humans. The constraint model

therefore also has to capture this requirement. This is set by defining an additional

set of events specifically for the MDS robots.

eIDSi = (sDS, aj, SMDS) Vj, VSMDS E S, VS'MDS D - FAILED (6.6)

Where MDSi represents the ith MDS robot. Besides C1 and C2 , we impose no

further constraints. No local constraints are imposed on any of the agents. We run

the decentralized online planner developed in Chapter 5 and test its performance

in several cases. We investigate the behavior of the planner closely and show that

it is capable of handling agent failures and environmental changes during mission

execution. Specifically, we look at the behavior of the planner in five cases:

1. Single UAV Failure: During mission execution, we simulate the failure of a

UAV conducting an Area Search activity and observe that the total team risk

increases due to the reduction in team size. The planner therefore re-assigns

an MDS robot from the risky Bomb Surveillance task to a Victim Assessment

task.

132



2. Single MDS Failure: We simulate the failure of an MDS robot performing a

Victims Assessment activity and show that the planner responds by re-assigning

the MDS performing the Bomb Surveillance task to a Victim Assessment task.

Furthermore, the planner also pulls back a second MDS robot that was pre-

viously assigned to the risky Bomb Surveillance activity, since we require that

at least two MDS robots be operational at all times. However, even this does

not reduce the team risk sufficiently, and therefore a UAV performing an Area

Search task is idled.

3. Two MDS Failures: With the failure of two MDS robots, the joint constraint

that at least two MDS robots must be operational is violated. The remaining

team thus does not have any feasible actions remaining, and is prevented from

performing any more activities. We discuss ways in which this behavior can be

modified by changing the joint constraint penalty JC.

4. UAV, MDS Failures: When a single UAV and a single MDS both fail, the

team size is close to the minimum allowed (Mi = 7). The planner therefore

removes one UAV from operation, and re-assigns one of the remaining MDS

robots from a Bomb Surveillance task to a Victim Assessment task.

5. New Activity Created: When the operator creates a new activity, the plan-

ner has to re-assign agents. Thus the agents have to re-negotiate their risk

distribution. In our case, we add a second Bomb Surveillance task, and observe

that since one of the agents needs to take on more risk to perform that task,

the risk available to other agents is reduced. This leads the planner to idle two

UGVs, and assign an MDS to the new Bomb Surveillance task.

133



6.3 Results

In the results to follow, a team of ten agents begins by executing a series of tasks

initially created by the operator. There is an Area Search task that four UAVs are

currently assigned to, a Bomb Surveillance task that an MDS robot is assigned to,

and seven Victim Assessment tasks, five of which have been assigned to three UGVs

and two MDS robots. Table 6.3 shows the initial assignment. Highest priority is given

to the Bomb Surveillance task with a priority of 5, the Victim Assessment tasks all

have a priority of 2, and the Area Search task has a priority of 1. Under this initial

assignment, the risk of violating constraint C1 (the Mmin > 7 constraint) is 0.0817,

and the risk of violating C2 (the constraint that the minimum number of MDS robots

must be 1) is 0.0729. The total probability of violating C1 U C2 is 0.1484, which is

less than a = 0.15. Thus the initial assignment is feasible. We then simulate the set

of failures listed above, and observe the planner's behavior in response.

Table 6.3: Initial agent assignment

Agent Task
UAV 1 Area Search
UAV 2 Area Search
UAV 3 Area Search
UAV 4 Area Search
UGV 1 Victim Assessment
UGV 2 Victim Assessment
UGV 3 Victim Assessment
MDS 1 Victim Assessment
MDS 2 Victim Assessment
MDS 3 Bomb Surveillance

6.3.1 Case 1: Single UAV Failure

When a single UAV fails, the existing plan becomes infeasible because there are now

only nine agents and the probability of any constraint (P(C1 U C2 )) increases to

0.1860. The increase is due to the greater likelihood that more than three agents

will eventually fail, given that one agent has already failed. Thus the planner now

134



MDS

Idle H

Area Search F

Victim Assessment -

Bomb Surveillance F
Z117

Guide Victims0O 1 2 3 4
Time

Figure 6-4: Response of the MDS robots to a single UAV failure

UAVs

Area Search F

Victim Assessment F

Bomb Surveillance F

0.5 1 1.5 2
Time

2.5 3 3.5 4

Figure 6-5: Response of the UAVs to a single UAV failure

135

GuideV 0cImi 

ti



re-assigns agents in such a way that the team remains constraint-feasible. This re-

quires two changes - first, as shown in Figure 6-4 the MDS robot performing Bomb

Surveillance is re-assigned to perform Victim Assessment - a less risky task. However,

even this single change only brings the overall team risk to 0.1626, still slightly higher

than o = 0.15. In order to reduce risk further, the planner also idles an additional

UAV (Figure 6-5), reducing its probability of failure to zero. This brings the overall

risk down to 0.1189. The reduction could also have been achieved by idling one of

the MDS robots or UGVs, but since Area Search has lower priority than the Victim

Assessment tasks the planner prefers to idle a UAV.

Table 6.4: Agent re-assignment after a single UAV failure

Agent Before Failure After Failure
UAV 1 Area Search Failed
UAV 2 Area Search Idle
UAV 3 Area Search Area Search
UAV 4 Area Search Area Search
UGV 1 Victim Assessment Victim Assessment
UGV 2 Victim Assessment Victim Assessment
UGV 3 Victim Assessment Victim Assessment
MDS 1 Victim Assessment Victim Assessment
MDS 2 Victim Assessment Victim Assessment
MDS 3 Bomb Surveillance Victim Assessment

136



6.3.2 Case 2: Single MDS Failure

When a single MDS robot assigned to the Victim Assessment task fails, the overall

risk increases to 0.3231, making the starting assignment infeasible. The increase is

primarily due to a large increase in the probability that constraint C2 (that there

must be at least two live MDS robots) will be violated - the risk drastically increases

from 0.0729 to 0.3250. The probability of violating C1 (that there must be at least

seven live agents) also increases slightly to 0.0974. In order to account for this failure,

one of the MDS robots is switched from the risky Bomb Surveillance task to a Victim

Assessment task (Figure 6-7). However this only brings the overall risk down to

0.1932, still higher than a. To achieve constraint feasibility, the planner also idles a

UAV (Figure 6-6), bringing the total risk to 0.1189.

Table 6.5: Agent re-assignment after a single MDS failure

Agent Before Failure After Failure
UAV 1 Area Search Idle
UAV 2 Area Search Area Search
UAV 3 Area Search Area Search
UAV 4 Area Search Area Search
UGV 1 Victim Assessment Victim Assessment
UGV 2 Victim Assessment Victim Assessment
UGV 3 Victim Assessment Victim Assessment
MDS 1 Victim Assessment Victim Assessment
MDS 2 Victim Assessment Failed
MDS 3 Bomb Surveillance Victim Assessment

137



Idle F

Area Search k

UAV

I.00z

Victim Assessment F

Bomb Surveillance F

Guide Victims0-0 2
Time

Figure 6-6: Response of the UAVs to a single MDS failure

MDS

Idle

Area Search

Victim Assessment F

Bomb Surveillance F

Ouiide ictimI

ZIZY
2

Time

Figure 6-7: Response of the MDS robots to a single MDS failure

138

Guide _0



MDS

Idle -

Area Search -

Victim Assessment -

Bomb Surveillance -

Guide Victims 2 40 1 2 3 45
Time

Figure 6-8: Response of the planner to two MDS failures

6.3.3 Case 3: Two MDS Failures

The case where two MDS robots fail is one where constraint C2 has already been vio-

lated. Thus the risk associated with C2 is now 1, and there are no constraint-feasible

actions remaining for the live agents. Recovery from such a situation is impossible

without some intervention. Specifically, the constraint model has to be modified to

remove constraint C2, or the penalty associated with violating the constraint, given

by JC, should be lowered from JC 1 to JC < 1 so that the remaining agents can

continue operating. Setting JC = 0 would effectively remove the constraint, in which

case the planner would re-assign the UAVs to the Area Search task, the UGVs to

Victim Assessment tasks, and the single remaining MDS robot to the Bomb Surveil-

lance task for a total risk of 0.1340. This assignment is shown in Figure 6-8. Thus the

human operator of the team is provided with the flexibility to adapt to a catastrophic

failure.

139



Table 6.6: Agent re-assignment after two MDS failures

Agent Before Failure After Failure After Failure, No C2
UAV 1 Area Search Idle Area Search
UAV 2 Area Search Idle Area Search
UAV 3 Area Search Idle Area Search
UAV 4 Area Search Idle Area Search
UGV 1 Victim Assessment Idle Victim Assessment
UGV 2 Victim Assessment Idle Victim Assessment
UGV 3 Victim Assessment Idle Victim Assessment
MDS 1 Victim Assessment Idle Bomb Surveillance
MDS 2 Victim Assessment Failed Failed
MDS 3 Bomb Surveillance Failed Failed

6.3.4 Case 4: UAV, MDS Failure

In the case of a UAV and MDS failure, no constraint has yet been violated. Hence the

remaining agents continue to operate with modified assignments. The probability of a

constraint being violated after a UAV and MDS failure is 0.2998, which is significantly

higher than a. Thus the planner removes an MDS robot from operation. Furthermore,

the one MDS robot that was performing a Bomb Surveillance task is now switched

to a safer Victim Assessment task (Figure 6-10). However these measures reduce

the risk only to 0.1664 which is still greater than a, and the planner has to idle yet

another agent. Thus a UAV is also removed from the Area Search task (Figure 6-9).

It is interesting to note that the failure of one of the MDS robots on the Victim

Assessment task causes three re-assignments (a UAV and MDS are idled, and a sec-

ond MDS is switched to the Victim Assessment task). However, when the MDS robot

assigned to the Bomb Surveillance task fails, only two re-assignments are required (a

UAV and MDS are idled). Thus the failure of the MDS during Victim Assessment

"disturbs" the original plan more than the failure during Bomb Surveillance. Intu-

itively, this is because it was known a priori that the Bomb Surveillance task was

risky. The planner therefore had already accounted for a likely failure. The Victim

Assessment task, on the other hand, was assumed to be safer and a failure is more

unexpected. The original plan therefore requires a greater modification.

140



The same behavior can be noticed if we let two UAVs fail during the Area Search

task, which was a priori assumed to be a very safe task. The probability of violating

constraint C1 (that there must be at least seven live agents at any time) greatly

increases to 0.2048, and a large number of agents must be idled to ensure constraint

feasibility. On the other hand, if two UGVs had failed, the risk increases to only

0.1348, and the team has more options. The failure of an agent that was assumed to

be relatively safe is much more difficult to adapt to, than the failure of an agent that

was known to be undertaking a risky task.

Table 6.7: Agent re-assignment after a UAV and MDS failure

Agent Before Failure After Failure
UAV 1 Area Search Failed
UAV 2 Area Search Idle
UAV 3 Area Search Area Search
UAV 4 Area Search Area Search
UGV 1 Victim Assessment Victim Assessment
UGV 2 Victim Assessment Victim Assessment
UGV 3 Victim Assessment Victim Assessment
MDS 1 Vict im Assessnient Failed
MDS 2 Victim Assessment Victim Assessment
MDS 3 Bonb Surveillance Victim Assessment

141



UAV

Area Search F

Victim Assessment

Bomb Surveillance F

2
Time

Figure 6-9: Response of the UAVs to a UAV and MDS failure

MDS

Idle F

Area Search F

Victim Assessment H

Bomb Surveillance -

Guide Victims'g

Figure 6-10: Response of the MDS robots to a UAV and MDS failure

142

VictimsII
u- i4C 

ide



6.3.5 Case 5: New Activity

When a new activity is created, the agents have to decide whether to undertake the

new activity, and if so which agent. In this case, we add a Bomb Surveillance task

and give it high priority, so that the reward for being assigned to that task is very

high. However, a Bomb Surveillance task is high-risk and therefore requires that an

agent previously performing a relatively low-risk task take on more risk. In order to

keep the team risk bounded, some other agents will have to take less risk.

Table 6.8: Agent re-assignment after a UAV and MDS failure

Agent Before Failure After Failure
UAV 1 Area Search Area Search
UAV 2 Area Search Area Search
UAV 3 Area Search Area Search
UAV 4 Area Search Area Search
UGV 1 Victim Assessment Idle
UGV 2 VictiM1 Assessment Idle
UGV 3 Victim Assessment Victim Assessment
MDS 1 Victim Assessment Victim Assessment
MDS 2 Victim Assessment Bomb Surveillance
MDS 3 Bomb Surveillance Bomb Surveillance

The outcome of adding a Bomb Surveillance task is shown in Table 6.8. First,

since the Bomb Surveillance task has high priority, an MDS robot is re-assigned from

a Victim Assessment task to the new Bomb Surveillance task. However, this requires

the MDS robot to take more risk, from 0.1 to 0.25. In order to keep the team risk

bounded and less than a, some agents must take less risk. This is done by idling

two UGVs that were previously assigned to the Victim Assessment task, therefore

lowering their risk from 0.1 to 0. With this re-assignment, the team risk is kept at

0. 1390, which is less than a = 0.15.

It is interesting to note that even a high-risk task, given sufficiently high priority

(i.e. high reward) will be assigned to an agent. For instance, suppose the new Bomb

Surveillance task had a risk of 1. In that case, given sufficiently high priority, all other

MDS robots and one UGV would be idled to give a total team risk of less than a (in

143



UGV

Idle -

Area Search F

Victim Assessment F

Bomb Surveillance F

Guide VictimsgL
0

Time

Figure 6-11: Response of the UGVs to the appearance of a new Bomb Surveillance
task

MDS

Idle F

Area Search F

Victim Assessment liz"Bomb Surveillance F

Guide Victims00
Time

Figure 6-12: Response of the MDS robots to the appearance of a new Bomb Surveil-
lance task

144



fact, nearly zero). Thus a high priority task, even if practically suicidal in terms of

risk, will be assigned to an agent as long as there are sufficient agents remaining to

satisfy the team constraints.

6.4 Summary

In this chapter, the methods developed in the previous chapters were applied to a

realistic CBRNE operational environment for a significant team size of ten agents,

composed of UAVs, UGVs and human-like MDS robots. The only constraints imposed

were joint constraints, and the joint risk was kept bounded. The performance of the

planner in the presence of agent failures, constraint violations, and environmental

changes (creation of a new task) were investigated. The impact of the joint constraint

penalty JC, and the manner in which an operator can change that penalty to achieve

various behaviors was discussed. Finally, the balancing of risk and reward in such

a heterogeneous, multi-agent team was shown to lead to team behaviors that ensure

that high-priority tasks get done, even if it means individual agents taking significant

risk.

145



146



Chapter 7

Conclusions and Future Work

This work seeks to solve the problem of planning under uncertainty and constraints

for multi-agent teams of unmanned vehicles. The presence of both constraints and

uncertainty introduces the possibility that constraints might be violated - a probabil-

ity that we define in this work as risk. We then seek to generate policies for the agents

that maximize the performance, as measured by a reward function, while keeping the

risk bounded to a finite, acceptable and operator-defined value.

This planning problem as a Constrained Markov Decision Process (C-MDP). We

choose the framework of C-MDPs for several reasons. First, discrete MDPs naturally

incorporate uncertainty and noise and are particularly convenient when the noise

is not Gaussian and the system dynamics are not linear. Second, MDPs provide a

means by which to encode the mission objectives in the form of a reward model.

There are no restrictions on the form and nature of the reward model - the model

can be nonlinear, continuous or discrete, convex or non-convex. Third, MDPs can

be extended to include the partially observable case, and that is one of the areas this

work will investigate. Partially Observable Markov Decision Processes (POMDPs)

are capable of deciding when to take actions that improve knowledge of the world

and when to act upon information that is already available.

The flexibility and power of MDPs comes at the price of computational complexity.

MDPs suffer from "the curse of dimensionality" [63], i.e. the computational effort

required to solve an MDP grows dramatically as the size of the problem state space

147



increases. This is especially true in the case of multi-agent systems since the size of

the problem is directly related to the number of agents in the team. This work seeks

to address the issues of computational complexity and scaling to multi-agent teams

through the contributions listed below.

Contribution 1: Planning Under Uncertainty and Constraints This work

began by proposing an extension to the standard MDP. The extension is the con-

straint model and provides a means by which to incorporate any general constraints

into an MDP, thus turning it into a C-MDP. A fast, computationally efficient online

algorithm was then presented to solve the C-MDP. This algorithm relied on a finite

horizon forward search to optimize the reward and an offline approximate solution to

estimate constraint feasibility beyond the search horizon. It was shown that this algo-

rithm achieves good performance in constrained environments. However, the offline

approximate solution becomes a computational bottleneck, and this is particularly

acute when the environment and the constraint map are not static. The complex-

ity of this offline approximate solution grows exponentially in the number of agents,

and therefore becomes important when we attempt to extend this algorithm to large

teams. This directly motivated the third contribution. But before addressing the

multi-agent problem, we extended the algorithm to continuous domains.

Contribution 2: Planning Under Uncertainty and Constraints in Contin-

uous Domains Solving MDPs defined over continuous domains (continuous state

and action spaces) is in general a difficult problem. A solution to an MDP is a policy

- a mapping from states to actions. In other words, a policy prescribes which action

to take in every state. In discrete MDPs, this mapping can be expressed (conceptu-

ally, if not actually) as a look-up table. In continuous MDPs, representing policies is

significantly more challenging. One approach is to express the policy as the gradient

of the value function, which is the cost-to-go from any state. However, solving for the

value function is just as computationally challenging as solving for the policy itself.

One method that has been used successfully in the literature [64] [65] [66] for finding

148



the value function (which can be applied to both discrete and continuous domains) is

function approximation. Function approximation finds the value function by assum-

ing it to be a linear combination of a set of basis functions. These basis functions, also

known as features, are picked by the designer to be appropriate for the specific prob-

lem of interest. In this work, we extended MDP function approximation techniques

for constrained continuous MDPs. We showed that when the underlying system is

continuous, approximating continuous domains by discretization can yield poor re-

sults even for reasonable discretizations. On the other hand, function approximation

with the right set of features achieves good performance.

Contribution 3: Planning for Multiple Agents Under Uncertainty and

Constraints The size of an MDP for multi-agent teams grows exponentially in the

number of agents. This "curse of dimensionality" makes the use of MDPs for teams of

agents computationally difficult. However, there are some significant simplifications

that can be made under sensible assumptions. One key assumption we made was

to assume transition independence, i.e. the action of one agent only affects its own

dynamics, and not those of other agents. While this is not strictly true (the action of

one agent is connected to the actions of other agents at the high-level planning stage)

it is a good approximation. However we do need to account for the fact that the

agents are still coupled through rewards and constraints. Some rewards may require

a joint action by more than one agent, and some constraints might be applicable to

the entire team rather than individual agents. Specifically this work investigates the

case where there is constraint coupling and proposes a mechanism by which agents

can plan their own individual actions while accounting for their impact on the team

constraints. In planning for themselves, the agents must make some assumptions

about the actions of the other agents. Specifically, they have to assume that the

probability of the other agents violating a team constraint (henceforth referred to

as joint constraints), defined as the risk, is fixed. This assumption introduced some

conservatism in the agents' behavior, and in the next contribution we eliminated some

of that conservatism through team communication and consensus.

149



Contribution 4: Distributed Planning Under Uncertainty and Constraints

The final contribution of this work looked at the benefit of having team commu-

nication and consensus in the presence of joint constraints. As mentioned previ-

ously, agents can plan their own individual actions even in the presence of constraint

coupling provided they make some assumptions about the actions of other agents.

Specifically, they have to assume the other agents will not take actions that exceed

a certain threshold of risk. In this section, we removed that assumption and instead

allowed the agents to communicate with each other and arrive at a consensus about

how much risk each agent can take. This risk negotiation can take place throughout

the mission, so that as the environment changes and some agents have to take more

(or less) risk than was originally foreseen, the team can adapt. The properties and

complexity of this risk negotiation were discussed, and it was shown that significantly

higher rewards can be expected particularly in highly constrained environments.

7.1 Future Work

The work done in this thesis explores the area of planning under uncertainty and

constraints, and the scope for further work in this area is significant. Some extensions

of the work presented here are suggested below.

7.1.1 Approximate Dynamic Programming

We have already seen that one key component in the online algorithm proposed in

Chapter 3 is solving for the offline minimum risk policy, which is obtained by solving

the following unconstrained MDP.

T " E N

Uci(si) min E [ Ci(st,7(Sit)) +( 1 JCj1 flpkj(7k) (7.1)
7 t=0 . j=0 k=0

In the work presented here, value iteration was used to solve this unconstrained MDP.

However, significant work has been done in the field of approximate dynamic program-

ming, for instance by Bethke and How [37], Geramifard, Doshi, Roy and How[107],

150



Powell [64], and Bertsekas. These methods can be used to generate approximate

policies efficiently, increasing the speed of the offline computations and allowing the

methods presented here to be expanded to even more complex problems.

7.1.2 Continuous Domains

While the work done here has been extended to continuous domains for a single agent,

the extension to continuous domains with multiple agents has not been considered

here. Transition independence in continuous domains has been addressed previously,

for instance by Yin, Rajan, and Tambe [92]. Definitions used in discrete domains, such

as the definitions of "events" will need to be revised to be appropriate for continuous

domains. Furthermore, the risk negotiation algorithm would have to be modified to

include a modified termination condition, since the total number of possible policies

is infinite in continuous domains, and hence it is unlikely that the proposed algorithm

without modifications would terminate in a reasonable time.

7.1.3 Asynchronous Networks

The risk negotiation algorithm presented in Chapter 6 implicitly assumes that the

agents are able to communicate synchronously. However, it is possible that some

communications links between agents have time delays that make it difficult to carry

out certain parts of the algorithm. For instance Stage 1 of the algorithm requires the

agents to arrive at a consensus. In the absence of reliable synchronous communication,

this consensus might be difficult to carry out. Thus modifications to the algorithm

to account for the absence of reliable synchronous communications are a potentially

useful area of work.

7.1.4 Operator Interface

Although beyond the scope of this thesis, the design of an operator interface for

a human to interact with the planning system is a major challenge. Some of the

features that such an interface must have were previously discussed, in Chapter 6.

151



Of the several parameters that human operator is required to provide, one is the risk

associated with each task. The risk is a probability, and it is unlikely that a human

operator will be able to produce a reasonable estimate. A more viable solution is for

the interface to provide the operator with a visual representation of risk - for instance

a slider bar indicating the risk level. The operator would manipulate this visual

representation to set the risk. The design, calibration and implementation of such

visual representations is a significant challenge in the human-computer interaction

community and must be addressed before the planning algorithms discussed here can

be made operational.

152



Appendix A

Computational Complexity

In this section, we investigate the computational implications of assuming transi-

tion independence in problems where transition independence is a poor assumption.

We show that the worst-case computational complexity of the decoupled MDPs ap-

proaches that of solving the single large MDP, and in the case where transition inde-

pendence does not exist (i.e. every single state-action-state transition for every agent

depends on the states and actions of other agents) the complexity is exactly the same

as solving the complete MDP.

The computational complexity of a single iteration of MDP value iteration is given

by ISJ2|Al, where ISI is the size of the state space, JAI is the size of the action space.

This is due to the fact that in the worst-case, in each iteration MDP value iteration

must loop through all possible actions and successor states to compute the updated

value function. Thus the worst-case complexity for a team of N agents, whose joint

state space is given by S = S X S2 ... SN and whose joint action space is given by

A:= A1 x A2--- AN is given by N 2 1. Assuming S S21 ... SN sil,

and |A1 | = IA 2 = |.. AN = AJ, we can simplify the complexity to |SJl2 N AIN. By

decomposing the single MDP problem into several individual MDPs, as in Chapter

4 and as in Becker, Zilberstein, Lesser and Goldman [90], we convert the problem

into one of solving several MDPs of size |Sil x |Ail, thus reducing the complexity to

|Sl2 |Ail. However by introducing events (See Chapter 4) we require value iteration

to also loop through all possible events to check to see if a particular state-action-

153



state triple is part of an event. This increases the complexity to |Sil2|Ai|E. As long

as |S| 2 |Ai|E < |S,| 2N  N, i.e. E < |Si| 2N-2 AIN-1, the computational gain of

decomposing the MDP will be significant.

Now consider the case where transition independence is not a correct assumption,

i.e. the agents are in fact closely coupled. To capture this coupling behavior, one

needs to define a very large number of events. Specifically, every possible state-action-

state triple for all other agents will have to be considered as a joint event. Since each

agent has |Sl2 Ail state-action-state triples, the total number of joint events for each

agent will be E = |Sl2(N-1) A N-1. Clearly the condition E < |Sl 2N-2 AN1 is no

longer true (in fact E = |S,|2N-2 N--1) and hence there is no computational gain

from decoupling. Note that the total computational complexity in this case is the

same as for value iteration. This is easily verified by substituting E = ISl 2 N-2A N-1

into the relation for computational complexity S2 Ail E, which yields the expression

for the worst-case MDP value iteration, IS,|2N N

154



Bibliography

[1] R. V. Welch and G. 0. Edmonds, "Applying robotics to HAZMAT," in

The Fourth National Technology Transfer Conference and Exposition, vol. 2,
pp. 279-287, 2003.

[2] A. Hemmerly-Brown, "CBRNE Command Zeros in on Ever-Changing Threats."

http: //www. cbrne. army.mil/cbrneX20defenseX20summit .htm, May 2010.

[3] P. Morgan, "This is not a game: Fukushima robots operated by xbox 360
controllers." Discover Magazine (Electronic) 2011, April 2011.

[4] M. Yamaguchi, "Japan sends robots in to stricken nuclear plant." Associated

Press, 2011, April 2011.

[5] "Robots Find Radiation Still Too Deadly for Humans to Enter two Japan Re-

actor Units." Associated Press, 2011, April 2011.

[6] B. A. Jackson, J. C. Baker, M. S. Ridgely, J. T. Bartis, and H. I. Linn, Pro-

tecting Emergency Responders: Safety Management in Disaster and Terrorism

Response. Department of Health and Human Services, Centers for Disease Con-

trol and Prevention, National Institute for Occupational Safety and Health.

[7] D. Brittain, Hong Kong's Reponse to a Chemical, Biological, Radiological or

Nuclear Attack. Hong Kong Hospital Authority, April 2010.

[8] L. Greenemeier, "Robots Arrive at Fukushima Nuclear Site with Unclear

Mission." Electronic, March 2011. http://www.scientificamerican.com/

article.cfm?id=robots-arrive-fukushima-nuclear&page=2.

[9] P. Jaillet, Probabilistic Travelling Salesman Problems. PhD thesis, Mas-

sachusetts Institute of Technology, 1985.

[10] A. M. Campbell and B. W. Thomas, "Probabilistic travelling salesman problems

with deadlines," Transportation Science, vol. 42, pp. 1-21, February 2008.

155



[11] M. Gendreau, G. Laporte, and R. Seguin, "Stochastic vehicle routing," Euro-

pean Journal of Operational Research, vol. 88, pp. 3-12, 1996.

[12] M. Gendreau, G. Laporte, and R. Seguin, "An exact algorithm for the vehi-

cle routing problem with stochastic demands and customers," Transportation

Science, vol. 29, no. 2, pp. 143-155, 1995.

[13] M. Dror, G. Laporte, and P. Trudeau, "Vehicle routing with stochastic demands:

Properties and solution frameworks," Transportation Science, vol. 23, pp. 166-

176, August 1989.

[14] C. D. J. Waters, "Vehicle-scheduling problems with uncertainty and omitted

customers," Journal of the Operational Research Society, vol. 40, pp. 1099-
1108, 1989.

[15] G. Laporte, F. V. Louveaux, and H. Mercure, "The vehicle routing problem with

stochastic travel times," Transportation Science, vol. 26, pp. 161-170, August

1992.

[16] D. Bertsimas, Probabilistic Combinatorial Optimization Problems. PhD thesis,
Massachusetts Institute of Technology, 1988.

[17] M. Pavone, N. Bisnik, E. Frazzoli, and V. Isler, "Decentralized vehicle routing

in a stochastic and dynamic environment with customer impatience," in A CM

International Conference Proceedings, vol. 318, 2007.

[18] M. Pavone, E. Frazzoli, and F. Bullo, "Decentralized algorithms for stochastic

and dynamic vehicle routing with general demand distribution," in Proceedings

of the 46th Conference on Decision and Control, December 2007.

[19] M. Alighanbari, Robust and Decentralized Task Assignment Algorithms for

UAVs. PhD thesis, Massachusetts Institute of Technology, Department of Aero-

nautics and Astronautics, Cambridge MA, September 2007.

[20] M. Alighanbari, Y. Kuwata, and J. P. How, "Coordination and control of mul-

tiple UAVs with timing constraints and loitering," in American Control Con-

ference (ACC), vol. 6, pp. 5311 -5316 vol.6, 4-6 June 2003.

[21] M. Alighanbari and J. P. How, "A robust approach to the UAV task assign-

inent problem," International Journal of Robust and Nonlinear Control, vol. 18,
pp. 118-134, January 2008.

156



[22] L. F. Bertuccelli, Robust Decision-Making with Model Uncertainty in Aerospace

Systems. PhD thesis, Massachusetts Institute of Technology, Department of

Aeronautics and Astronautics, Cambridge MA, September 2008.

[23] K. Ozbay, W. Xiao, C. Iyigun, and M. Baykal-Gursoy, "Probabilistic program-

ming models for response vehicle dispatching and resource allocation in traffic

incident management," I&SE-Working Paper 04-014,, Industrial and Systems

Engineering Department, Rutgers University, 2007.

[24] E. Gagon, C. A. Rabbath, and M. Lauzon, "Receding horizons with heading

constraints and collision avoidance," in AIAA Guidance, Navigation, and Con-

trol Conference (GNC), August 2005.

[25] D. A. Castanon and J. M. Wohletz, "Model predictive control for stochastic

resource allocation," IEEE Transactions on Automatic Control, vol. 54, no. 8,
pp. 1739 - 1750, 2009.

[26] C. Schumacher, P. R. Chandler, and S. R. Rasmussen, "Task allocation for

wide area search munitions via network flow optimization," in AIAA Guidance,
Navigation, and Control Conference (GNC), August 2001.

[27] P. B. Sujit, J. M. George, and R. Beard, "Multiple may task allocation using

distributed auctions," in AIAA Guidance, Navigation and Control Conference

and Exhibit, August 2007.

[28] D. P. Bertsekas, "A distributed algorithm for the assignment problem." Labo-

ratory for Information and Decision Systems Unpublished Report, MIT.

[29] D. Bertsekas and D. A. Castanon, "The auction algorithm for the transportation

problem," tech. rep., Laboratory for Information and Decision Systems, MIT,
1989.

[30] D. P. Bertsekas, "The auction algorithm for assignment and other network flow

problems," tech. rep., MIT, 1989.

[31] D. P. Bertsekas and D. A. Castanon, "Parallel synchronous and asynchronous

implementations of the auction algorithm," Parallel Computing, vol. 17,
pp. 707-732, 1991.

[32] "Auction mechanism design for multi-robot coordination," in In Proc. 17th

Annual Conf. on Neural Information Processing Systems, 2003.

157



[33] H.-L. Choi, L. Brunet, and J. P. How, "Consensus-based decentralized auctions

for robust task allocation," IEEE Transactions on Robotics, vol. 25, pp. 912-

926, August 2009.

[34] L. B. Johnson, S. Ponda, H.-L. Choi, and J. P. How, "Improving the efficiency

of a decentralized tasking algorithm for UAV teams with asynchronous com-

munications," in AIAA Guidance, Navigation, and Control Conference (GNC),

August 2010 (AIAA-2010-8421).

[35] M. L. Puterman, Markov Decision Processes: Stochastic Dynamic Program-

ming. John Wiley and Sons, 1994.

[36] D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. I-II. PO

Box 391, Belmont, MA 02178: Athena Scientific, 2007.

[37] B. Bethke and J. How, "Approximate Dynamic Programming Using Bellman

Residual Elimination and Gaussian Process Regression," in American Control

Conference (ACC), (St. Louis, MO), 2009.

[38] B. Bethke and J. How and A. Ozdaglar, "Approximate Dynamic Programming

Using Support Vector Regression," in IEEE Conference on Decision and Con-

trol (CDC), (Cancun, Mexico), 2008.

[39] C. Boutilier and D. Poole, "Computing optimal policies for partially observable

decision processes using compact representations," in Proc. Thirteenth National

Conference on Artificial Intelligence, August 1996.

[40] M. T. J. Spaan and N. Vlassis, "Perseus: Randomized point-based value itera-

tion for pomdps," Journal of Artificial Intelligence Research, vol. 3501, pp. 450-

455, 2005.

[41] H. Kurniawati, D. Hsu, and W. Lee, "SARSOP: Efficient point-based POMDP

planning by approximating optimally reachable belief spaces," in Proc. Robotics:

Science and Systems, 2008.

[42] N. Roy, Finding Approximate POMDP Solutions Through Belief Compression.

PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, 2003.

[43] N. Roy, G. Gordon, and S. Thrun, "Finding Approximate POMDP Solu-

tions Through Belief Compression," Journal of Artificial Intelligence Research,

vol. 23, pp. 1-40, 2005.

158



[44] S. Prentice and N. Roy, "The belief roadmap: Efficient planning in lienar

POMDPs by factoring the covariance," in Proceedings of the International Sym-

posium of Robotics Research, (Hiroshima, Japan), November 2007.

[45] C. Amato, D. S. Bernstein, and S. Zilberstein, "Solving pomdps using quadrat-

ically constrained linear programs," in International Joint Conference on Arti-

ficial Intelligence, 2007.

[46] J. D. Isom, S. P. Meyn, and R. D. Braatz, "Piecewise linear dynamic pro-

gramming for constrained pomdps," in Proceedings of the Twenty- Third AAAI

Conference on Artificial Intelligence (A. Cohn, ed.), vol. 1, pp. 291-296, AAAI

Press, 2008.

[47] S. Paquet, L. Tobin, and B. Chaib-draa, "Real-time decision making for large
pomdps," Advances in Artificial Intelligence, vol. 3501, pp. 450-455, 2005.

[48] D. P. Bertsekas and D. A. Castanon, "Rollout algorithms for stochastic schedul-

ing problems," Journal of Heuristics, vol. 5, pp. 89-108, 1999.

[49] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa, "Online planning algorithms

for pomdps," Journal of Artificial Intelligence Research, vol. 32, pp. 663-704,

2008.

[50] E. Altman, Constrained Markov Decision Processes. Chapman and Hall/CRC,

1999.

[51] E. Altman, "Denumerable Constrained Markov Decision Processes and Finite

Approximations," Mathematics of Operations Research, vol. 19, p. 169, 1994.

[52] R. C. Chen and G. L. Blankenship, "Dynamic programming equations for con-

strained stochastic control," Proceedings of the 2002 American Control Confer-

ence, vol. 3, pp. 2014-2022, 2002.

[53] R. C. Chen and G. L. Blankenship, "Dynamic programming equations for dis-

counted constrained stochastic control," IEEE Transactions on Automatic Con-

trol, vol. 49, pp. 699-709, 2004.

[54] A. B. Piunovskiy and X. Mao, "Constrained Markovian Decision Processes:

The Dynamic Programming Approach," Operations Research Letters, vol. 27,
pp. 119-126, 2000.

159



[55] R. C. Chen and E. A. Feinberg, "Non-randomized policies for constrained

markov decision processes," Mathematical Methods of Operations Research,
vol. 66, pp. 165-179, 2007.

[56] R. C. Chen, "Constrained stochastic control and optimal search," Proceedings

of the 43rd IEEE Conference on Decision and Control, vol. 3, pp. 3013-3020,
2004.

[57] D. Dolgov, Integrated Resource Allocation and Planning in Stochastic Multia-
gent Environments. PhD thesis, University of Michigan, 2006.

[58] D. Dolgov and E. Durfee, "Stationary deterministic policies for constrained

MDPs with multiple rewards, costs and discount factors," in Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence, pp. 1326-
1331, 2005.

[59] A. Zadorojniy and A. Shwartz, "Robustness of policies in constrained markov
decision processess," IEEE Transactions on Automatic Control, vol. 51, 2006.

[60] P. Geibel, "Reinforcement Learning Approaches for Constrained MDPs," In-
ternational Journal of Computational Intelligence Research, vol. 3, pp. 16-20,
2007.

[61] E. A. Feinberg and A. Shwartz, "Constrained Markov Decision Models with
Weighted Discounted Rewards," Mathematics of Operations Research, vol. 20,
pp. 302-320, 1995.

[62] Z. Gabor, Z. Kalmar, and C. Szcpcsvari, "Multi-criteria reinforcement learn-
ing," in Proceedings of the 15th International Conference on Machine Learning
(M. Kaufmann, ed.), pp. 197-205, 1998.

[63] A. E. Bryson and Y.-C. Ho, Applied Optimal Control. New York: Hemisphere
Publishing Corp., 1975.

[64] W. Powell, Approximate Dynamic Programming. John Wiley and Sons, 2007.

[65] M. Irodova and R. H. Sloan, "Reinforcement learning and function approxima-
tion," in American Association for Artificial Intelligence, 2005.

[66] F. S. Melo and M. I. Ribeiro, "Q-learning with linear function approximation,"
Proceedings of the 20th Annual Conference on Learning Theory, pp. 308-322,
2007.

160



[67] M. Ono and B. C. Williams, "An efficient motion planning algorithm for

stochastic dynamic systems with constraints on probability of failure," in Pro-

ceedings of the Twenty Third AAAI Conference on Artificial Intelligence, 2008.

[68] M. Ono and B. C. Williams, "Iterative risk allocation: A new approach to

robust model predictive control with a joint chance constraint," in Proceedings

of 47th IEEE Conference on Decision and Control, 2008.

[69] B. Luders, M. Kothari, and J. P. How, "Chance constrained RRT for probabilis-

tic robustness to environmental uncertainty," in AIAA Guidance, Navigation,
and Control Conference (GNC), (Toronto, Canada), August 2010. (AIAA-2010-

8160).

[70] D. A. Dolgov and E. H. Durfee, "Approximate Probabilistic Constraints and

Risk-Sensitive Optimization Criteria in Markov Decision Processes," in Proceed-

ings of International Symposiums on Artificial Intelligence and Mathematics,

vol. 28, 2004.

[71] R. Cavazos-Cadena and R. Montes-De-Oca, "The Value Iteration Algorithm

in Risk Sensitive Average Markov Decision Chains with Finite State Space,"

Mathematics of Operations Research, vol. 28, pp. 752-776, 2003.

[72] P. Geibel and F. Wysotzki, "Risk-sensitive reinforcement learning applied to

control under constraints," Journal of Artificial Intelligence and Research,
vol. 24, pp. 81-108, 2005.

[73] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge, MA:

MIT Press, 2005.

[74] J. Pineau, G. Gordon, and S. Thrun, "Point-based value iteration: An anytime

algorithm for POMDPs," in Proceedings of the International Joint Conference

on Artificial Intelligence, 2003.

[75] W. Zhang and T. G. Dietterich, "High-Performance Job-Shop Scheduling With

A Time-Delay TD(lambda) Network," in Advances in Neural Information Pro-

cessing Systems 8, pp. 1024-1030, MIT Press, 1995.

[76] R. S. Sutton, "Generalization in reinforcement learning: Successful examples

using sparse coarse coding," in Advances in Neural Information Processing Sys-

tems 8, pp. 1038-1044, The MIT Press, 1996.

161



[77] G. Tesauro, "Programming backgammon using self-teaching neural nets," Ar-

tificial Intelligence, vol. 134, no. 1-2, pp. 181-199, 2002.

[78] R. Munos and A. Moore, "Variable resolution discretization in optimal control."

Mach. Learn., vol. 49, no. 2-3, pp. 291-323, 2002.

[79] A. Geramifard, M. Bowling, M. Zinkevich, and R. Sutton, "iLSTD: Eligibility
traces and convergence analysis," in Advances in Neural Information Processing

Systems 19 (B. Sch6lkopf, J. Platt, and T. Hoffman, eds.), Cambridge, MA:

MIT Press, 2007.

[80] J. N. Tsitsiklis and B. Van Roy, "An analysis of temporal-difference learn-

ing with function approximation," IEEE Transactions on Automatic Control,
vol. 42, no. 5, pp. 674-690, 1997.

[81] R. S. Sutton and S. D. Whitehead, "Online learning with random representa-

tions," in proceedings of the Tenth International Conference on Machine Learn-

ing, pp. 314-321, 1993.

[82] D. Silver, R. S. Sutton, and M. Mller, "Sample-based learning and search with

permanent and transient memories," in ICML '08: Proceedings of the 25th

international conference on Machine learning, (New York, NY, USA), pp. 968-

975, ACM, 2008.

[83] R. Parr, C. Painter-Wakefield, L. Li, and M. Littman, "Analyzing feature gener-
ation for value-function approximation," in ICML '07: Proceedings of the 24th

international conference on Machine learning, (New York, NY, USA), pp. 737-

744, ACM, 2007.

[84] M. J. Valenti, Approximate dynamic programming with applications in multi-

agent systems. PhD thesis, M.I.T., Cambridge, MA, USA, 2007. Adviser-Farias,
Daniela Pucci and Adviser-How, Jonathan P.

[85] M. Bowling and M. Veloso, "Scalable learning in stochastic games," 2002.

[86] P. Stone, R. S. Sutton, and G. Kuhlmann, "Reinforcement learning for robocup

soccer keepaway," International Society for Adaptive Behavior, vol. 13, no. 3,

pp. 165-188, 2005.

[87] G. Gordon, "Stable function approximation in dynamic programming," in Pro-

ceedings of the Twelfth International Conference on Machine Learning, (Tahoe

City, California)., p. 261, Morgan Kaufmann, July 9-12 1995.

162



[88] L. Busoniu, R. Babuska, B. D. Schutter, and D. Ernst, Reinforcement Learning

and Dynamic Programming Using Function Approximators. CRC Press, 2010.

[89] J. N. Tsitsiklis and B. V. Roy, "Feature-based methods for large scale dynamic

programming," pp. 59-94, 1994.

[90] R. Becker, S. Zilberstein, and C. V. Goldman, "Solving transition independent

decentralized Markov decision processes," Journal of Artificial Intelligence Re-

search, vol. 22, p. 2004, 2004.

[91] J. Wu and E. H. Durfee, "Mixed-integer linear programming for transition-

independent decentralized mdps," in Proceedings of the Fifth Interational Joint

Conference on Autonomous Agents and Multi-Agent Systems, 2006.

[92] Z. Yin, K. Rajan, and M. Tambe, "Solving Continuous-Time Transition-

Independent DEC-MDP with Temporal Constraints," in The Sixth Annual

Workshop on Multiagent Sequential Decision-Making in Uncertain Domains,
2011.

[93] L. Blackmore, H. Li, and B. Williams, "A probabilistic approach to optimal

robust path planning with obstacles," in American Control Conference (A CC),
2006.

[94] L. Blackmore, "A probabilistic particle control approach to optimal, robust

predictive control," in AIAA Guidance, Navigation, and Control Conference

(GNC), 2006.

[95] L. Blackmore, "A probabilistic particle control approach to optimal robust pre-

dictive control," in American Control Conference (ACC), 2007.

[96] L. Blackmore, A. Bektassov, M. Ono, and B. C. Williams, "Robust, optimal

predictive control of jump Markov linear systems using particles," in Hybrid Sys-

tems: Computation and Control, Lecture Notes in Computer Science, Springer

Berlin, 2007.

[97] L. Blackmore, "Robust path planning and feedback design under stochastic

uncertainty," in Proceedings of the AIAA Guidance, Navigation and Control

Conference, (Honolulu, HI), August 2008.

[98] L. Blackmore and M. Ono, "Convex chance constrained predictive control with-

out sampling," in Proceedings of the AIAA Guidance, Navigation and Control

Conference, 2009.

163



[99] L. Blackmore, M. Ono, A. Bektassov, and B. C. Williams, "A probabilistic

particle-control approximation of chance-constrained stochastic predictive con-
trol," IEEE Transactions on Robotics, vol. 26, no. 3, pp. 502-517, 2010.

[100 A. Nedic, A. Ozdaglar, and P. Parrilo, "Constrained consensus and optimization

in multi-agent networks," LIDS Report 2779, Laboratory for Information and

Decision Systems, MIT, December 2008.

[101] A. Undurti and J. P. How, "An online algorithm for constrained POMDPs," in

IEEE International Conference on Robotics and Automation (ICRA), pp. 3966-

3973, 2010.

[102] D. Fudenberg and J. Tirole, Game Theory. MIT Press, 1991.

[103] E. Stringham, "Kaldor-Hicks Efficiency and the Problem of Central Planning,"'

The Quarterly Journal of Austrian Economics, vol. 4, pp. 41-50, 2001.

[104] F. Bullo, J. Cortes, and S. Martinez, Distributed Control of Robotic Networks.

Princeton Series in Applied Mathematics, Princeton University Press, 2009.

[105] J. Wang, USARSim V3.13. National Institues of Standards and Technology,
University of Pittburgh and The Carnegie Mellon School of Computer Science.

[106] M. Valenti, B. Bethke, D. Dale, A. Frank, J. McGrew, S. Ahrens, J. P. How, and

J. Vian, "The MIT Indoor Multi-Vehicle Flight Testbed," in IEEE International

Conference on Robotics and Automation (ICRA), pp. 2758-2759, 10-14 April
2007.

[107] A. Geramifard, F. Doshi, J. Redding, N. Roy, and J. P. How, "incremental

Feature Dependency Discovery," in Proceedings of the 23rd International Con-

ference on Machine Learning (ICML), 2011.

164


