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Abstract

Every object in the world has a physical size which is intrinsic to how we interact
with it: we pick up small objects like coins with our fingers, we throw footballs and
swing tennis rackets, we orient our body to bigger objects like chairs and tables and
we navigate with respect to landmarks like fountains and buildings. Here I argue
that the size of objects in the world is a basic property of object representation
with both behavioral and neural consequences. Specifically, I suggest that objects
have a canonical visual size based on their real-world size (Chapter 2), and that
we automatically access real-world size information when we recognize an object
(Chapter 3). Further, I present evidence that there are neural consequences of real-
world size for the large-scale organization of object knowledge in ventral visual cortex
(Chapter 4). Specifically, there are regions with differential selectivity for big and
small objects, that span from along the dorsal and lateral surfaces of occipito-temporal
cortex in a mirrored organization. Finally, I suggest that the empirical findings can
be coherently explained by thinking about the experience of an observer situated
in a three-dimensional world. This work provides testable predictions about retinal
size biases in visual experience, and an approach in which to understand the neural
representation of any object in the world.

Thesis Supervisor: Aude Oliva
Title: Associate Professor of Cognitive Science
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Chapter 1

Introduction

Over a lifetime of visual experience, our visual system builds a storehouse of knowledge

about the visual world. Incoming visual information rapidly makes contact with

these existing object representations, enabling us to effortlessly recognize objects

that are presented for only 100s of milliseconds (e.g. Grill-Spector & Kanwisher,

2006; Thorpe, Fize, & Marlot, 1996; for review see Logothetis & Shineburg, 1996).

Two fundamental endeavors for visual cognition and cognitive neuroscience are to

characterize the nature of these existing object representations and to understand

how are they organized in the brain.

Much behavioral research has focused on understanding the nature of object rep-

resentations, characterizing objects as either 3D-part-relationships (e.g. Biederman,

1987), or as image-based templates (e.g. Tarr et al., 1998). More recently, cog-

nitive neuroscience approaches have been increasingly important for understanding

object representation, but present an interestingly divided view. A few object cat-

egories drive responses in a spatially-contiguous and functionally-specific module of

cortex along the ventral surface of cortex, indicating category-specific object repre-

sentations (Kanwisher, 2010; Downing et al., 2006). However, most object categories

drive responses in a large swath of this cortex to varying degrees, suggesting more

category-general coding dimensions (e.g. Ishai et al., 1999; Haxby et al., 2001). The

patterns of activity to different object categories are reliable even across subjects

(Shinkareva et al., 2008), which suggests that there is some underlying organization



Figure 1: Real-world objects have a range of physical sizes, from objects you hold in
two fingers to objects that you can walk around.

to object representation that we do not understand (Op de Beeck, 2008a, see also

Freeman et al., 2011), and to date, there is no consensus on the features of visual

object representations (Kourtzi & Conner, 2011; Cavanagh, 2011).

One reason why we have yet to understand the overarching organization of object

representation is that it is not clear how to parameterize all of object knowledge.

There seems to be no continuous parameter that applies across all objects-instead,

objects have more typically been characterized using binary features (is it animate or

inanimate? Is a face or not?). However, one often overlooked and intrinsic property

of objects, that applies to every object in the world, is its physical size (Figure 1).

The real-world size of objects dictates how we interact with them, and fundamentally

shapes the distributions of our visual experience. My thesis is that real-world size

is a basic and fundamental property of object representation, with consequences for

both the nature of object representations and their organization in occipito-temporal

cortex.

Here I briefly review research that focuses on the nature of object representations,

and summarize our current state of understanding about how object representations

are organized in the brain. Next I discuss why the real-world size of objects may

be an important dimension for object representation, and review what is currently

known about the role of real-world size in object representation. Finally I outline the

contributions of this thesis, which presents both behavioral and neural evidence that

real-world size is a basic property of object representation.



Models of Object Representation

There are two classic theories regarding the underlying nature of object represen-

tations. Structural accounts claim that early transformations of the visual system

parse the world into simple geometric forms (e.g. geons), and objects are subse-

quently represented as a part-relations among simple 3D shapes (e.g. A suitcase is a

thin rectangular solid with a curved cylinder on top; Biederman, 1987). View-based

accounts claim that visual experience of the world is stored as a series of images or

views, and objects are represented by prototypical image templates (e.g. Ashbridge &

Perret, 1998). Distinguishing between these two accounts with behavioral measures

has proven to be empirically challenging, as demonstrations of view-dependent pro-

cesses do not necessarily imply view-based representation, nor do demonstrations of

view-invariant processes necessarily imply structural representations (e.g. Bar, 2001).

More recent approaches have tried to gain insight into the nature of high-level

object representations by focusing on the learning process. For example, Schyns and

colleagues have argued that as we learn new kinds of objects, we have to learn which

features will distinguish them from other objects (termed "functional features"); thus

the underlying features of object representation will be those that are in service

of categorization (e.g. Goldstone, Lippa, & Shiffrin, 2001; Schyns, Goldstone, &

Thibaut, 1998; Schyns & Rodet, 1997). This resonates with recent computational

approaches, which accomplish object recognition by using a set of hierarchal image-

based fragments (e.g. Ullman, 2007). For example, in this model proposed by Ullman,

small image fragments of car parts combine to make larger car fragments, which

further combine to make a car. In this model, the features are learned for a particular

category (e.g. fragments that help recognize a car), as opposed to category-general

features (like geons).

In general, modern models of object recognition rely on a hierarchy of learned

features, ranging from object-generic perceptual features like color and orientation

to mid-level features that have some specificity to particular object classes (e.g.,

Ullman, Vidal-Naquet, & Sali, 2002) to very high-level conceptual features that are



entirely object category-specific (e.g., Ullman, 2007). These models largely include

a computational efficiency constraint, such that the learned features are efficiently

represent the visual input. Such models derive a range of features, some of which are

shared across multiple object categories while others are more category-specific (e.g.,

Epshtein & Ullman, 2005; Ommer & Buhmann, 2010; Riesenhuber & Poggio, 1999;

Torralba, Murphy, & Freeman, 2004; Ullman, 2007). At the end of this thesis, I will

propose that the size of objects gives rise to systematic biases in visual experience

which may be extracted by efficient learning mechanisms in the visual hierarchy:

specifically, there may be mid-level precursor object representations that capture

features shared across objects of the same real-world size.

Organization of object representations in cortex

Object-responsive cortex is found along the ventral and lateral surfaces of the oc-

cipital and temporal lobes (Grill-Spector & Malach, 2004; Milner & Goodale, 1995;

Ungerleider et al., 1982). Patients with lesions to these ventral temporal areas cannot

recognize visually-presented objects though they can see that something is there (for

review see Mahon & Caramazza, 2009), indicating that this large swath of cortex is

the site of our stored visual object knowledge. What has the neural characterization

of object representation in the brain revealed about object representation, especially

with respect to the the different models described above?

Functional neuroimaging experiments have demonstrated that, within this cortex,

there are a few spatially clustered regions that show responses only for a specific

category. Specifically, this is true for faces, bodies, scenes, and letter strings (Cohen

et al., 2000; Downing et al., 2001; Kanwisher et al., 1997; McCarthy et al., 1997).

These kinds of representations are expected from the computational models that

propose category-specific features at the top of the feature hierarchy. However, not

all objects have a focal patch of category-selective cortex-e.g. there is no such region

for chairs or for shoes. Instead most object categories drive responses in a large

amount of ventral temporal cortex, but to varying degrees. Such distributed response



profiles are more consistent with the models that learn shared features across object

categories, or even with category-general features (e.g. Geons) that can be used to

construct any shape (e.g. see Tanaka, 1996). These distributed patterns of activation

for each object category are consistent and reliable within a person, across people,

and even across species (Carlson et al., 2003; Cox & Savoy, 2003; Haxby et al., 2001;

Norman et al., 2006; O'Toole et al., 2005; Shinkareva et al., 2008; Kriegeskorte et

al., 2008). Thus, our current state of understanding about the organization of object

representation across cortex is that there are islands of category selectivity amongst

a sea of heterogenous unorganized (but systematic) responses.

Interestingly, approaches to understanding these patterns of activity have largely

ignored how they are arranged spatially across the cortex. However, we know that

the spatial organization of information across cortex is far from random (Kass, 1997).

This is evidenced in primary sensory cortices most clearly, with body maps, mo-

tor maps, tonotopic maps, and retinotopic maps. In visual cortex these maps are

mirrored-where visual areas are aligned by eccentricity and smoothly flip along

polar angle between vertical and horizontal meridian (e.g. Wandell, Dumoulin, &

Brewer, 2007). Beyond the sensory areas, there is further evidence of potentially

meaningful proximity, with face-selective regions adjacent to body-selective regions

(e.g. Schwarzlose et al., 2008), and partial overlap between neural regions responsive

to tools, hands, and motion (e.g. Beauchamp et al., 2002). Assuming that cortex

has meaningful topographic representations, and given that people show similar dis-

tributed activation patterns for objects, this suggests there are organizing dimensions

of object representation that we have not discovered (Op de Beeck, 2008a).

The size of objects in the natural world

The nature and organization of object representation has been approached through a

number of different frameworks. However, a fundamental observation about objects

is that they are physical entities in a three-dimensional world. Our experience with

objects, both in our life time and over evolutionary time, arises as we move through



the world. The physical size of objects in the world thus has a dramatic impact on

our experience of them, both (i) in how we coordinate our motor actions with objects,

and (ii) how object information projects onto the retina. Both of these consequences

of object size may have an impact on how object knowledge is organized across the

cortex.

First, the real-world size of objects is a fundamental dimension for active visual

experience. When entering a movie theatre or attending a lecture, how do we choose

the best seat? When making this decision, we actively maneuver to place the visual

information of interest into a particular part of our visual field, adjusting our angle and

distance to an object like the screen or podium, based on its size in the world. More

generally, object information arrives in retinotopic coordinate frames, and if we want

to act on this object we have to transform the information for the relevant effector,

be it hand-, head-, or body-centered coordinates (e.g. see Cohen & Andersen, 2002).

The real-world size of the object reduces the complexity of this mapping problem:

not all object are equally relevant for all reference frames. Small objects like keys

or paperclips require finger-based action plans, while chairs require body-coordinate

frames, and the exact position of the fingers with respect to the chair is largely

irrelevant (Figure 1). Thus, demands of action systems on visual processes may place

top-down organizing constrains on object knowledge in the ventral pathway such that

it is computationally efficient to be grouped by real-world size.

Second, there are systematic biases in visual experience driven by the size of

objects in the world-in retinal size, eccentricity, height in visual field, head-angle,

shape, and spatial frequency. Due to the geometric structure of the world, objects

of different sizes are interacted with at different distances, and thus gives rise to

systematic distributions of retinal size (Figure 2). A peanut at arms length subtends 3

degrees visual angle, while a car at a typical distance subtends 30 degrees visual angle.

Given that our eyes view the world from a height off the horizon, big objects will also

tend to be higher up in our visual field than small objects. Further, small objects tend

to be shaped for the hand and are rounder whereas larger objects withstand gravity

and provide structural support and are boxier: these differences in shape statistics can
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Figure 2: Hypothetical distributions of visual experience based on typical interaction
distances. Objects of different physical sizes in the world have a distribution of
visual experience over viewing distances. Estimates of typical interaction distances for
objects indicate that objects of increasing physical sizes are experienced at increasing
retinal sizes (see also Hubbard, Kall, & Baird, 1989).

be measured by combinations of image measurements that capture power at different

spatial frequencies and scales and positions across the image (see Oliva & Torralba,

2001; see also Haldane, 1928). Head angle is another dimension that is affected by

object size, where we tend to look down to small objects in our hand, progressively

up to big objects at the horizon. In the appendix at end of the thesis, I explain these

visual biases in greater detail and suggest that they can explain a number of low-level

response properties that have been observed in high-level visual areas.

Taking these visual biases all together, a consequence of natural visual inputs

is that objects of different sizes will have systematically different low-level statistics

arriving in early visual cortex. If visual systems are tuned to efficiently encode visual

input by extracting covariances (Attneave, 1954; Carlson et al., 2011; Field, 1987),

then these low-level correlated statistics are viable candidates. This would lead to

mid-level visual representations that apply to all objects of a particular real-world

size. Due to the way eccentricity is laid out across cortex, these mid-level visual

representations, in essence pre-cursor high-level object representations, may naturally

be arrayed by real-world size in more anterior visual cortex.



Previous research on real-world size

Up to this point I have been referring to "visual object representations", which are

the representations along the visual processing stream that enable recognition. In the

broader study of memory systems, this is referred to as the perceptual representation

system, as distinct from the semantic system (e.g. Schacter & Tulving, 1994). The

former concerns visual form (e.g. what an object looks like, allows us to name an

object from a picture), and the latter concerns associated semantic facts (e.g. can

move on it's own, is edible, is big, is a cow). Interestingly, information about the

real-world size of objects straddles this divide, and research has been done in both

areas.

Semantic information about real-world size is exemplified by a fact-based knowl-

edge: just as you can know the capital of Colorado is Denver, so you can know that

a building is 152 ft tall, or that an elephant is bigger than a mouse. However, given

the task to say which of two named objects is bigger in the world, the time it takes

is related to the log of their real-world size ratios; this is a classic signature of per-

ceptual comparisons, e.g. indicating which of two lines is longer (Moyer, 1973; Pavio,

1975; Rubinsten & Henik, 2002; Srinivas, 1996). This has led some to argue that

real-world size knowledge may actually be stored in some analog or perceptual for-

mat that preserves real-world size, and suggests that real-world size may not have a

purely semantic (non-perceptual) representation. However, understanding "size" as a

semantic fact is outside the scope of this thesis. Rather, here I focus on if, and how,

real-world size influences the perceptual representation system.

Surprisingly, very few studies on the perceptual representation system, i.e visual

object representation, have focused on the dimension of real-world size. In Bieder-

man's discussion of scene schemas, objects presented at the wrong real-world size in

the scene are one of the 5 scene violations: objects were detected more slowly when

presented at an atypical sized were detected more slowly than objects at a typical

size in the scene context (Biederman, et al., 1982). Knowledge about the real-world

size of objects ("familiar size") can serve as a cue to depth, but the nature of this



familiar size knowledge has not been directly examined. In contrast, there have been

many studies examining the dimension of visual size in object representation (Bieder-

man & Cooper, 1992; Fiser & Biederman, 1995; Cave & Squire, 1992; Srinivas, 1996;

Furmanski & Engel, 2000; Jolicoeur, 1987; Millikan & Jolicoeur, 1992). Here, "visual

size" refers to the visual angle of the object projected to the retina. One potential

reason for this focus on visual size in perceptual representation is that visual size is

the input to the visual system, whereas physical size (and viewing distance) have to

be inferred from the retinal projection. Further, in theory an object of any physical

size can subtend any visual angle, by moving closer or farther away. However, as

previously discussed, typical viewing distances are constrained by geometry and in-

teraction. This over-simplification has made it easy to miss the impact of real-world

size on visual experience with consequences for object representations.

Contributions of this thesis

My thesis is that real-world size is a basic and fundamental property of object repre-

sentation, with implications for the object representations and their organization in

occipito-temporal cortex.

Chapter 2 examines how visual size information is represented in our existing ob-

ject representations. In a series of experiments which required observers to access

existing object knowledge, we observed that familiar objects have a consistent visual

size at which they are drawn, imagined, and preferentially viewed. This visual size

was not the same for all objects, but was instead proportional to the logarithm of

the known size of the object in the world. Akin to the previous literature on canon-

ical perspective (Palmer, Rosch, & Chase, 1981), we term this consistent visual size

information the canonical visual size.

Chapter 3 presents evidence that real-world size is an automatically-accessed prop-

erty of object representations. In this study, two real-world objects were presented

at different visual sizes observers had to indicate which was bigger (or smaller) on

the screen. Even though the known size of the objects was irrelevant for this task,



we observed a familiar size stroop effect. A second experiment demonstrated that

this effect was not cognitively penetrable, implying that real-world size knowledge is

a part of visual representations acquired with repeated experience.

Chapter 4 presents neuroimaging data, and examines the impact of real-world

size on the spatial distribution of neural representations for objects without selective

regions of cortex. In a series of studies, I demonstrate that the representation of

objects in ventral temporal cortex depends on their real-world size, and suggest there

is a large-scale mirrored organization across ventral and lateral occipito-temporal

cortex based on real-world size.

Finally, Chapter 5 summarizes and interprets these empirical findings within a

situated-observer framework. The object representations studied here were learned

over a life time; visual experience was not manipulated in any of these studies. How-

ever, I suggest that these behavioral and neural data can be coherently interpreted

in framework which takes into account the visual experience of a situated observer

in the three-dimensional world and assumes that the visual system is tuned to sta-

tistical regularities of experience. I also describe areas of future research where this

situated-observer framework can provide insight into the underlying representations

of objects and can make testable predictions about the neural representation of any

object.



Chapter 2

Canonical visual size for real-world

objects1

Real-world objects can be viewed at a range of distances and thus can be experi-
enced at a range of visual angles within the visual field. Given the large amount
of visual size variation possible when observing objects, we examined how internal
object representations represent visual size information. In a series of experiments
which required observers to access existing object knowledge, we observed that real-
world objects have a consistent visual size at which they are drawn, imagined, and
preferentially viewed. Importantly, this visual size is proportional to the logarithm of
the assumed size of the object in the world, and is best characterized not as a fixed
visual angle, but by the ratio of the object and the frame of space around it. Akin to
the previous literature on canonical perspective, we term this consistent visual size
information the canonical visual size.

Introduction

In the real world, the particular view of an object (i.e., its projected retinal image)

depends on where the observer is standing with respect to that object. This fact is

implicitly understood by observers choosing where to sit in a movie theatre, where

to stand in an art gallery, or where to move to get a better view of an item of

interest. When observers walk around an object, changing the viewing angle of an

object without changing its distance, this image transformation is called a perspective

'This chapter was published as Konkle, T. & Oliva, A. (2011). Canonical visual size for real-world
objects. Journal of Experimental Psychology: Human Perception and Performance, 37(1):23-37.



change. Similarly, when observers approach or back away from an object to change

its retinal size within their visual field without changing the viewing angle, the image

transformation is called a visual size change. Given the many possible object views

that can be experienced by an observer, what information about perspective and size

is present in object representations?

Seminal research by Palmer, Rosch, and Chase (1981) examined how object view-

point information was accessed in a number of different tasks, and found evidence for

consistently preferred viewpoints. For example, during goodness judgments of pho-

tographs of objects over different viewpoints, three-quarter perspectives-in which

the front, side, and top surfaces were visually present-were usually ranked highest 2.

The best" view was also the perspective imagined when given the name of the object,

the view most photographed, and enabled fastest naming of objects. The consisten-

cies across observers and across tasks led Palmer, Rosch, and Chase (1981) to term

this view the "canonical perspective."

Two main explanations have been suggested for why objects have a preferred,

canonical perspective. One account is motivated by object properties, where the

canonical perspective maximizes surface information visible with the least degree of

self-occlusion. The other account argues that canonical perspective arises based on

the distribution of visual experience. Evidence for the latter involves studies that

control exposure with novel objects, and find speeded recognition arises at more-

often experienced viewpoints (e.g. Bulthoff & Edelman, 1992; Tarr, 1995; Tarr &

Pinker, 1989). However, canonical viewpoints can be found for novel objects that

have been experienced equally from all angles in the viewing sphere (Edelman &

Bulthoff, 1992), suggesting that a purely experiential account cannot fully predict

the occurrence of canonical viewpoints. These explanations for canonical viewpoints

reflect a trade-off between constraints of object-centered properties, where shape and

orientation determines the best viewing angle, and viewer-centered properties, where

accumulated episodes with that object influence the preferred viewing angle. Likely

2There were a few objects for which this was not true, such as a clock, for which a pure front
view was ranked highest, probably due to the frequency with which it is viewed in this perspective.



both of these factors contribute to canonical perspective (Blanz, Tarr, & Bulthoff,

1999).

Perspective is determined by the physical orientation of the object relative to the

direction of gaze of the observer. Similarly, visual size is determined by the physical

size of the object relative to the distance of the observer to the object. Given that

there is evidence for canonical perspective, is there similar evidence for canonical

visual size? Here, we employed memory, imagery, and perceptual preference tasks

and asked whether these different mental processes yield consistent visual sizes across

observers. In addition, we examined the contributions of two factors that might

influence an object's canonical visual size-real-world size and framing.

First, we might expect knowledge about the real-world size of the object to mat-

ter for an object's canonical size. Intuitively, smaller objects in the world subtend

smaller visual angles on average than larger objects in the world. For example, a

typically sized car would subtend about 30 degrees visual angle at a typical viewing

distance of -9 m. For a penny to subtend that same visual angle it would have to be

held only ~3 cm away from one eye; at a more typical arms-length viewing distance,

it subtends 3.5 degrees. Thus, natural experience with objects might predict a sys-

tematic relationship between real-world size and canonical visual size. Alternatively,

maximizing the available object information could determine canonical size, e.g. if

the object is centered in the high-acuity foveal or parafoveal region of the visual field.

Such an account might predict that all objects would have the same canonical vi-

sual size that is related to acuity falloff with eccentricity, possibly modulated by the

internal complexity of the surfaces features of the object.

Second, size judgments are strongly influenced by the relative size of an object

within a fixed frame of space. In typical real-world viewing situations, a chair looks

the same physical size as we approach it, despite the increasing visual size it projects

on the retina-a phenomenon known as size constancy. However, failures of size

constancy can be found when the frame of space around an object is manipulated.

For example, Rock and Ebenholtz (1959) had observers adjust the length of one line

to match the length of a standard line. The standard line was framed in a small



rectangle, while the adjustable line was framed in a larger rectangle. Observers were

strongly biased to preserve the ratio of the line within the frame, adjusting the line

to be much larger than the standard, even though the task was to match the physical

length of the two lines (see also Kunnapas, 1955).

This framing effect occurs not only for simple stimuli but also for objects in the

real world, and is known as the vista paradox (Walker, Rupick, & Powell, 1989; see

also Brigell, 1977; Senders, 1966). Approaching an object makes it physically closer,

but approaching that object through the view of a window creates an illusion that

the object is both shrinking in physical size and getting farther away. On the retina,

both the visual size of the frame and the visual size of the object increase as one

approaches; however, the ratio of the object in the frame decreases because the frame

grows much more quickly than the more distant object. This illusion demonstrates

that our perception of an object's physical size and distance away are subject to

relative framing ratios, and are not derived from visual angle alone.

In the current experiments, we examined whether or not existing object represen-

tations show evidence for a canonical visual size. Using a drawing task (Experiment

1), an imagery task (Experiment 2), and a perception task (Experiments 3, 4, and

5), we found that all these tasks gave rise to consistent visual sizes across observers

and mental processes. We also observed a systematic and reliable correlation between

canonical visual size of objects and the logarithm of their assumed size in the world.

Further, we demonstrate that this canonical visual size is best characterized not as

a fixed visual angle, but as a ratio reflecting the object size relative to the frame of

space within which it is viewed.

Size Ranking

Observers have prior knowledge about the size of objects in the world, often referred

to as "assumed size" (e.g. Ittleson, 1951; Baird, 1963; Epstein 1963). In the following

experiments, we aimed to assess whether the assumed size of objects influences the

visual size at which objects are accessed across different tasks. Thus, first we gathered



100 images of real-world objects and had observers sort these objects into 8 groups of

increasing real-world size. These data will give us size ranks that reflect the assumed

size of objects in the real world, and will be used in the rest of the experiments. The

object images spanned the range of real-world sizes from small objects (e.g. a paper

clip) to large objects (e.g. the Eiffel Tower; see Figure 1). Additionally, we examined

how the size ranks compared with the actual real-world size of such objects.

Methods

Six observers (age range 18-35) gave informed consent and received $5 for their par-

ticipation. One hundred color pictures of real-world objects were selected from a

commercial database (Hemera Photo-Objects, Vol. I & II), and all objects appeared

on a white background (see Figure 1). The sorting procedure was adopted from Oliva

and Torralba, 2001. Thumbnails of 100 objects were arrayed on a 30 in (64.5 x 40.5

cm) screen, with a line separating the left and right half of the screen. Participants

were instructed to drag and drop the objects so that the large objects (large in their

real-world size) were on one half of the screen and the small objects (small in real-

world size) were on the other half of the screen. Next, the screen divided into fourths,

and participants refined the two sets of objects into four groups. This processes re-

peated one more time so that the objects were divided into 8 groups, ranked by their

size in the real world. Here, a rank of 1 represents the smallest object size and a

rank of 8 represents the largest object size. Participants were told that they did not

have to have an equal number of objects in each group and that instead they should

make sure each category of objects had roughly the same physical size in the world.

Participants could double click on a thumbnail to view a larger image of that object

(15cm x 15cm). Stimuli were presented using software written in MATLAB.

Observers were instructed to sort objects based on their real-world size", and we

did not explicitly instruct observers how to think of real-world size (e.g. volume, area,

extent). To obtain a measure of the "actual size" of each depicted object, we used the

following procedure. For each image a corresponding real-world object was measured

or approximated. In the case of the larger objects, the dimensions were found using
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Figure 1: Left: Database of 100 objects. Right: All objects were sorted into 8 groups
based on their assumed size in the world. These ranks are plotted as a function of the
actual real-world size of the object (cm), on a logarithmic scale. The graph shows is
a systematic logarithmic relationship between the actual physical size of the object
and the size ranks.

internet searches. The actual size of the object was quantified in cm (rather than

cm3 ), measured as the diagonal of its bounding box (i.e., the smallest rectangle that

completely enclosed the object), ignoring the depth of the object 3.

Results

The left panel of Figure 1 shows thumbnails of the object set. We defined the size rank

of each object as the mode of its rank distribution over the six observers. There were

9 to 23 objects for each size rank (mean 13 objects/size rank). Next we examined the

relationship between the size ranks and the actual size of such objects in the world.

The right panel shows the actual size of each object, plotted as a function of its size

rank, with the actual size plotted on a logarithmic axis. The graph shows that size

ranks and actual size are related by a logarthmic function. The correlation between

size rank and log1O(actual size) is r2 = .91, p < .001.

These results suggest that when sorting objects by assumed size, judgments about

which sizes are similar follow Weber-Fechner-like scaling (as do judgments about most

3 The actual size of the object could also be quantified as the diagonal of the three-dimensional
bounding box (height x width x depth). Because of the correlation between height, width, and depth
of these objects, the 3d diagonal and the frontal diagonal are negligibly different on a log scale.



other psychophysical variables, e.g. weight, sound intensity, frequency, etc; Stevens,

1957). For example, two objects at im and 10m in size are more different that two

objects at 1001m and 1010m. Similar ranking procedures and results were found by

Paivio (1975) and Moyer (1975).

These size ranks formed 8 groups of objects which were used in subsequent exper-

iments. While we could use the actual size measured from real-world objects, the size

ranks are used because (i) they reflect empirically gathered data about assumed size,

and (ii) provide natural bins of the assumed size dimension. However, it should be

noted that the size rank reflects a logarithmic scaling of real-world size, thus any sys-

tematic relationship found with size rank also shows a similar systematic relationship

with the logarithm of the real-world size of the object.

Experiment 1: Drawings from Memory

In Experiment 1, we used a drawing task to probe existing object representations,

which is a task that requires reconstruction from long-term memory. Similar tasks

have been used for studies of visual memory, but have typically been used as a measure

of visual free recall of a previously studied image (e.g. Carmichael, Hogan, & Walters,

1932; Intraub & Richardson, 1989). Here, we instead probed pre-existing long-term

memory representations. The observers' task was simply to draw a picture of the

named object on the page. Unbeknownst to the observers, we were interested in the

size at which they drew these objects.

One possibility is that all objects would be drawn at the same size on the page

(or at the same visual angle). This might be predicted by classic alignment models

of object recognition, which assume that all objects are stored at a specified visual

size in memory, and recognition proceeds by first mentally scaling the input or the

fixed template (e.g., Ullman, 1989). Another possibility is that there will simply be

no consistent relationship between the drawn size of objects and the assumed size of

those objects. Alternatively, there may be a systematic relationship between drawn

size and assumed size, where a number of quantitative relationships are possible.



Importantly, the task of drawing objects does not require explicit reasoning about

the assumed size of the object nor does it require making judgments about the drawn

size.

We also examined the role of the frame of space in which the object was drawn

by manipulating the paper size across observers. If the frame serves as a ceiling for

drawn object sizes, then we might predict that the physically small objects would

be drawn the same size across paper sizes, but the physically larger objects would

be drawn increasingly larger with bigger paper sizes. However, another possibility is

that objects might be drawn with a consistent ratio of the object to the frame across

paper sizes. This might be predicted if object representations are reactivated from

long-term memory representations relative to a space around them.

Methods

Sixty-four naive observers (age range 18-35) participated in Experiment 1. All gave

informed consent and received a candy bar and a beverage for their participation.

Twenty observers drew on the small paper size, 22 observers draw on the medium

paper size, and 22 observers drew on the large paper size. Participants sat at a table

and were given 18 sheets of paper (all of the same size) and a list of items to draw.

They were instructed to draw one object per page and were explicitly told that we were

not interested in artistic skills. We told participants to draw each object relatively

quickly (within 1 minute). When delivering the instructions, the word "size" was

never used.

The list of items contained 16 different objects that spanned the range of real-

world sizes, with two objects at each size rank. The objects were: paperclip, key,

pet goldfish, apple, hairdryer, running shoe, backpack, computer monitor, German

shepherd, chair, floor lamp, soda machine, car, dump truck, 1-story house, light house.

The order of objects was randomized for each observer. After all 16 objects had been

drawn, observers next drew two scenes, a beach and a park, in random order.

Across observers, we manipulated the size of the drawing paper. Observers were

not aware of this manipulation. The small paper size was 7.6 x 11.4 cm (3 x 4.5



inches), the medium size 18.5 x 27.9 cm (was 7.3 x 11 inches), and the large size

was 30.5 x 45.7 cm (12 x 18 inches), thus all three sizes had approximately the same

aspect ratio. All observers used a fine black sharpee marker to draw (i.e., the pen

width was fixed, and did not scale with the paper size).

To measure the drawn size of the objects, all drawings were scanned at a fixed

resolution (150 dots per inch). Custom software was written in MATLAB to auto-

matically find the bounding box around the object in the image, and these dimensions

were converted from pixels into centimeters using the known resolution. Drawn size

was calculated as the length of the diagonal of the bounding box around the object.

Using the diagonal, rather than as the height or width alone, better takes into account

variation in aspect ratio and has been shown to account for more explained variance

in relative size measures than height, width, principle axis, and area (Kosslyn, 1987).

The software proceeded one drawing at a time, and each object's identity and the

corresponding bounding box was verified by eye.

Results

The first author and one additional observer used a strict criterion to filter any draw-

ings with extraneous objects (e.g. trash bins behind the dump truck, a worm sticking

out of the apple, cords connecting the floor lamps, headlight beams on cars, air com-

ing out of the hairdryer), which constituted 21% of the images. The analysis reported

below was conducted on the filtered data set (887 drawings) 4 .

Figure 2 (left panel) shows the drawn size of the objects (in cm) plotted as a

function of the size rank of the object. The three lines represent the three different

paper sizes. A two-way ANOVA was conducted on drawn size with paper size as a

between-subject factor and object size rank as a within-subject factor. There was a

significant main effect of the size rank of the object on the drawn size of the object

(F(7, 391) = 30.1,p < 0.001, r = .35). That is, objects that are small in the world

4 The patterns in the data are unchanged when the analysis is conducted on drawn images using
a more moderate exclusion criteria (connected objects such as worms and wires included) or with
full inclusion (including the trash cans behind the dumptruck).
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Figure 2: Left: Drawn size of objects (measured in centimeters) as a function of their
size rank, for small, medium, and large paper sizes. Right: Drawn size of objects

(measured as the ratio of the drawn object and paper diagonal length), as a function
of size rank for small, medium, and large paper size. There was a separate group of
observers for each paper size. Error bars represent +1 S.E.M.

were drawn smaller on the page than objects that are large in the world. There was

also a significant effect of paper size on drawn size (F(2,41) = 70.9,p < 0.001,my =

.78), where the average drawn size of objects increased as the paper size increased.

Additionally, there was a significant interaction between the paper size and the effect

of the object size (F(14, 391) = 4.3, p < 0.001, = .13). In other words, there was

a smaller range of drawn object sizes on the small paper, with progressively greater

ranges of drawn sizes on the medium and large paper.

These data show a clear linear relationship between the drawn size and the size

rank (r2 = 0.88, p < 0.001, collapsing across paper size). Thus, this also demonstrates

that the drawn size of an object is proportional to the logarithm of its real-world size.

For each participant, a regression analysis was used to estimate a slope and intercept

for their drawn sizes as a function of the size rank. ANOVAs were conducted on

these slopes and intercepts, with paper-size as a between-subject factor. There was

a significant effect of paper size on slope (F(2, 61) = 28.7, p < 0.001, 2 = .48), and a

significant effect of paper size on intercept (F(2, 61) = 15.1, p < 0.001, rj2 = .33).

Across the 16 objects, the systematic variation in the drawn object sizes was

highly consistent. The effective reliability R, which is the aggregate reliability from

Size of Drawn Objects in Cm



a set of judges (see Rosenthal & Rosnow, 1991) was R=.97.

Figure 2 (right panel) contains the same data as in the left panel, replotted to show

the ratio of the drawn size of the object to the paper size. This was calculated as the

diagonal length of the drawing divided by the diagonal length of the paper size. When

considering the drawn size ratio, there was no longer an effect of paper size (F(2, 41) =

1.01, n.s.), whereas size rank still significantly influenced the drawn size of the object

in the frame (F(7, 391) = 38.19,p < 0.001, 2 = .41). However, there was a small,

but significant, interaction between paper size and size rank (F(14, 391) = 1.82,p <

0.05, i7 = .06), which indicates that some of the items had a slightly different ratio

from small to medium to large paper sizes. For example, the smallest objects drawn

on the smallest paper size show slightly larger ratios than for the medium or large

paper. One possible explanation is that because all observers used the same sharpee

marker for drawing across paper size, they may have drawn the smallest objects

on the small paper size somewhat larger than on the larger paper sizes. Separate

ANOVAs conducted on the single subject regression fits revealed no difference between

the slopes across paper sizes (F(2, 61) = 2.1, n.s.), nor any difference between the

intercepts (F(2, 61) < 1, n.s.). Figure 3 shows example drawings, both to scale and

with normalized paper sizes.

Discussion

When observers are instructed to draw an object from an existing representation in

visual long-term memory, the drawn size of the object depends on at least two factors.

First, the drawn size of the object depends on the assumed size of the object in the

world. Small objects in the world are drawn small on the page; large objects in the

world are drawn larger on the page. Further, this relationship is systematic: the

drawn size of an object is proportional to the size rank (and thus to the logarithm

of its actual real-world size). Second, the drawn size of the object depends on the

scale of the space it can occupy. Small objects such as a keys occupied 27% of the

image (as measured by the diagonal of their bounding boxes relative to the diagonal

of the paper), whereas large objects like houses occupied 41%. Critically, the raw
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Figure 3: Example drawings of a car from three separate participants. Upper: small,
medium, and large drawings, to scale. Lower: the same drawings, normalized to the
size of the frame. The dashed bounding box is the same size in all three normalized
drawings for reference.



size at which objects were drawn (and thus the visual angle which the drawn images

subtended in an observer's visual field) were very different for the small, medium,

and large paper sizes, whereas the ratio of the object within the frame was constant

across paper sizes. This strongly suggests that when objects are reconstructed from

memory, the drawn size is best characterized not by raw visual angle measurements

but as a relative proportion between the object and a frame of space.

It is interesting that observers did not fill the page, even for the objects with

the largest size, which were only about 40% of the scale of the frame. That is,

observers preserved space around the edges of the objects, even on the smallest paper

sizes. However, it is not the case that observers always leave blank space around

all drawings-when observers drew a beach scene and a park scene, which do not

necessarily have a clear edges as do objects, the average drawn size was 81% of the

frame (SEM 1.8%)5. Further, this preserved ratio of the object and the frame is

especially striking when considering the drawings of the small objects on the large

paper sizes. In this condition, a paperclip was drawn on average 14.0 cm on the large

paper (SEM 1.6 cm), which is dramatically larger than its actual size in the world

(~3-5 cm). Thus, one intriguing possibility is that internal object representations

contain information about the relative visual size of objects and a spatial envelope

around them. For example, when drawing an object, the object is not scaled to the

paper; rather, the object and its envelope are scaled to the paper. A representation

of this kind would produce consistent ratios across different frame sizes.

An important open question is whether the observed relationship between the

drawn size and the assumed size of objects reflects a conceptual (non-visual) bias or a

perceptual (visual) bias. In other words, are these results driven by explicit knowledge

that, for example, cars are typically 5 m long? Whereas semantic (non-visual) knowl-

edge of an object's physical size likely plays a role, several points suggest that there

is also a strong visual component. First, the relationship between assumed size and

'In these scenes, the calculated diagonal ratio was not 100% because observers typically drew a
horizon line which extended across the entire horizontal axis, but did not necessarily make marks
for grass/sand that touched the extreme bottom edge and for clouds/sun/trees that touched the
extreme top edge of the paper.



drawn size is systematically logarithmic, which is a classic quantitative relationship

between perceptual properties and physical stimulus properties (e.g. Weber-Fechner's

law; see also Moyer, 1975). Second, this adjustment of drawing small objects smaller

and large objects larger was not the same across paper sizes; the range of drawn sizes

on the large paper was 11.2 cm, with only a 6.9 cm range for the medium paper and

only a 2.5 cm range for the small paper. However, when normalized by the frame, the

ratios of the object to the paper size were remarkably consistent. Although this does

not rule out a purely conceptual (non-visual) representation driving these results, it

is unclear why explicit knowledge of the physical size would be influenced by a frame,

whereas it is known that perceptual tasks (e.g., adjusting the physical size of a line in

a frame) are biased by framing ratios (Rock & Ebenholtz, 1959). Neither the current

study, nor the subsequent studies can adequately answer the question about whether

physical size information is represented visually or conceptually, but we believe that

both are probably involved (see Hart, Lesser, & Gordon, 1992). The important points

for the current study are that object information accessed from long-term memory

representations contains visual size information that is consistent across observers,

is related to real-world size, and is best characterized as a ratio with respect to the

space or frame it occupies.

Experiment 2: Imagery

Here, we used an imagery paradigm to probe size information in existing long-term

memory representations of objects. Specifically, we examined the visual size at which

objects were imagined within the frame of a computer monitor. Imagery processes can

be thought of as instantiating visual long-term memory representations (i.e., stored

knowledge about the visual properties of an object or class of objects) in perceptual

buffers (see Kosslyn, 1999). Thus mental imagery, like drawing, relies on accessing

existing object representations. If observers imagine objects at a size within the

frame of the computer screen that matches the size they drew objects relative to the

page size, this would show converging evidence using an alternate method of probing



existing visual object representations.

Previous work examining the imagined size of real-world objects is consistent with

these predictions (Hubbard & Baird, 1988; Hubbard, Kall, & Baird, 1989; Kosslyn,

1978). For example, Kosslyn (1978) used a mental distance estimation procedure

to calculate the visual angle at which animals of various sizes were spontaneously

imagined. Interestingly, he found that small animals were spontaneously imagined

at closer distances than larger animals, and that the visual angle subtended in the

mind's eye was positively correlated with the size of the animal. In other words, small

animals were imagined at smaller visual angles than large animals. He also noted that

observers were not preserving an absolute scaling of the animals' physical size in their

mental images, as the largest animals were imagined at less than twice the angle of

the smallest animals despite being an order of magnitude bigger in size. Kosslyn's

study was aimed at quantifying the extent of the mind's eye and not the relationship

between object size and spontaneously imagined size; however, these results provide

suggestive evidence that imagined size of objects might show convergent patterns

with the drawn size ratio of objects we observed in Experiment 1.

Methods

A separate group of nine naive observers were recruited from the MIT participant pool

(age range 18-35), gave informed consent, and received 5 dollars for their participation.

Stimuli were presented using MATLAB with the Psychophysics toolbox extensions

(Brainard, 1997; Pelli, 1997).

At the start of each trial, the name of an object appeared at the center of the

computer screen. Observers pressed a key to continue, and the screen blanked for

2 seconds. Observers were instructed to form a clear mental image of the object on

the screen during that time. After two seconds, the mouse cursor appeared at the

center of the screen. As observers moved the mouse, a rectangular box centered on

the screen was drawn automatically: one corner of the rectangle was at the current

mouse position and the opposite corner of the rectangle was at the same distance

from the center of the screen in the opposite direction. Observers adjusted this



rectangle by moving the mouse, and then clicked when the rectangle "formed a tight

bounding box" around their mental image of that object. After the response, the

screen blanked for 2 seconds and the name of the next object appeared. The names

of the 100 objects in the object set were displayed in a random order. Observers were

given a demonstration of how to adjust the size of the bounding rectangle before the

experiment began.

Results

The left panel of Figure 4 shows the average size of imagined real world objects,

plotted as a function of object size rank. Here, the imagined size was calculated as

the visual angle subtended by the diagonal of the bounding box. The average imagined

size for two sample objects-an egg and a refrigerator, is illustrated in the right panel

of Figure 4. Averaging over the size rank of objects, observers imagined objects at

15.4 degrees visual angle (S.E.M.=4.5 degrees). Taking into account size rank, there

was systematic positive relationship with imagined size (slope = 2.8 degrees/size rank,

r2 = 0.98,p < 0.001).

Importantly, across the 100 objects, this systematic variation in the imagined

object size was again quite consistent across observers. The effective reliability was

R=.96. Thus, despite the subjectivity of the task to simply imagine the object, some

objects were consistently imagined smaller and others were consistently imagined

larger.

The imagery data can be converted into a ratio between the imagined size and the

size of the monitor. This allows for comparison between the drawing data (Experi-

ment 1) and the imagery data. Collapsing across size rank, there was no significant

difference in the average imagined ratio and average drawn ratio, (imagery: 34%, SEM

3.1%; drawing: 36%, SEM 1.2%; t(71) = 0.6,n.s.). However, the slope between size

rank and imagined size was steeper than in the in the drawing study (6.3% per size

rank in Experiment 2 vs. 2.7% per size rank in Experiment 1; t(71) = 6.2, p < 0.0001).
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Figure 4: The average imagined size of objects on the computer screen is plotted as
a function of the size rank of the object (black line). Error bars represent +1 S.E.M.
The average imagined sizes of two objects (upper: egg, lower: refrigerator) are shown
on the right.

Discussion

The data show that the imagined size of real-world objects scales with the assumed

size of the object: physically small objects are imagined at smaller visual angles than

physically large objects. Further, when the imagined visual size was normalized by

the monitor visual size, the resulting ratios were fairly compatible with those found in

Experiment 1. Thus, the relative measure between the object and frame holds across

different observers, different tasks, and different kinds of frames.

In the imagery experiment, the slope of the relationship between size rank and

imagined size was actually steeper than the corresponding slope in Experiment 1.

One speculative account of this finding is that during the drawing task, perception

of the drawn objects constrains the dynamic range of the drawn size, and imagery

processes are not constrained in the same way. Indeed, Kosslyn (1978) found that

objects imagined from existing long-term memory were imagined at larger sizes than

when pictures of those animals were shown and then subsequently imagined. Further,



in his estimation of the "extent of the mind's eye", larger estimates (-50 degrees)

were obtained using imagined objects from existing long-term memory than when the

same method was used on images of objects (-20 degrees).

Hubbard and Baird (1988) extended Kosslyn's study by quantifying the rela-

tionship between the physical size of objects and the distance at which they are

spontaneously imagined ("first-sight" distance). They found evidence for a power-

law relationship between object size and first-sight distance (see also Hubbard, Kall,

& Baird, 1989). For comparative purposes, this relationship between first-sight dis-

tance and object size can be transformed to reveal the corresponding relationship

between the imagined visual angle and object size (as in Figure 4). Interestingly, this

relationship is roughly linear with log object size, consistent with our findings.

To assess whether a visible frame is required to drive the relationship between

imagined size and assumed size, we ran another imagery experiment in which there

was no visual frame. Ten observers were blindfolded and asked to imagine an object

(spoken aloud by the experimenter). After observers had formed a mental image,

they remained blindfolded and traced a tight bounding box around the object in

their mental image on a wall-sized blackboard in front of them. The 16 objects from

Experiment 1 were used, and observers were guided to a new part of the blackboard

for each object. Here, there was no visually present frame, but we again found a

consistent linear relationship with the imagined size and size rank (r 2 = 0.89, p <

0.001), with an average slope of 3 deg/rank, though there was much more variability

across individual's slopes (min: I deg/rank, max: 6.2 deg/rank). Thus, both imagery

tasks on a monitor (with a frame) and blindfolded (without a frame) showed reliable

and systematic influences of assumed size on the imagined size of real world objects.

Experiment 3: Perception

Experiment 1 and 2 used tasks that require observers to know what objects look like

in order to draw and imagine them. In other words, they require retrieval of existing

visual object representations. In Experiment 3, observers simply had to view images



of real-world objects on the monitor and determine the size at which the objects

"looked best." Similar tasks have been used on studies of viewpoint preferences (e.g.

Palmer, Rosch, & Chase, 1981) and the aesthetics of spatial composition (Palmer,

Gardner, & Wickens, 2008).

Because this is a perceptual task, one possibility is that the best visual size of

the objects is driven by visual acuity constraints. One might predict that all objects

will be sized at the fovea or parafovea (e.g. 2-8 degrees visual angle), perhaps modu-

lated by the complexity of the image, without any systematic variation due to prior

knowledge about the real-world size of the object. Alternatively, we might predict

converging evidence with the results from Experiment 1 and 2. In this case, the visual

size at which an object looks "best" might be systematically related to the logarithm

of the real-world size of the object.

Methods

A separate group of ten naive observers were recruited from the MIT participant pool

(age range 18-35), gave informed consent, and received 5 dollars for their participation.

100 color pictures of real-world objects were used (see Figure 1). Larger versions of

a few example images can be seen in the Appendix, and the image database can be

downloaded from the first author's website. The experimental setup was the same as

in Experiment 2.

At the start of each trial, the mouse position was set to the right side of the

screen at a random height. Then, observers were presented with one picture of an

object centered on a white background. The initial size of the object was determined

by the height on the screen where the observer clicked to start the trial. Observers

were told to select their preferred size to view the objects. Specifically, observers

were shown a sample object at the smallest possible size of -2 pixels ("intuitively,

this size is too small or too far away") and at the largest size such that the edges

of the object extended beyond the monitor edges ("intuitively, this is too large or

too close"). Observers were shown that they could freely move the mouse up and

down to adjust the size of the object, and clicked the mouse to select their preferred
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Figure 5: The average preferred size of objects, in degrees visual angle, is plotted as
a function of the size rank of the objects (left). Error bars represent +1 S. E. M. The
average preferred size of two objects from different size ranks are shown on the right.

view ("choose the view that's not too big or too small, but the one that looks best").

Each observer resized all 100 objects, with the order of objects randomized across

observers.

Results

Data from one observer was excluded because they did not complete the task for

all objects. The left panel of Figure 5 shows the average preferred visual size of

the objects, plotted as a function of the size rank of those objects. As in previous

experiments, the preferred visual size was calculated as the visual angle subtended by

the diagonal of the bounding box. The average preferred size for two sample objects-

an egg and a refrigerator, is illustrated in the right panel of Figure 5. The data show

that as the assumed size of the objects increases, the preferred visual size at which to

view them on the screen also increases systematically (r 2 = 0.96, p < 0.001). Thus,

we again find a consistent relationship between the preferred visual size of the object

and the size rank of that object in the world.

Across the 100 objects, the systematic variation in the preferred visual size was

)



again very consistent across observers. The effective reliability was R=.84. Thus,

despite the subjectivity of the task to select the "best view," smaller objects were

consistently sized smaller and larger objects were consistently sized larger across ob-

servers.

These data can be converted into a ratio between the preferred visual size and the

size of the monitor. Collapsing across the size ranks, the average preferred size ratio

was 36% (SEM 3.6%), which was not significantly different from the average imagined

size ratio or the average drawn size ratio (Experiment 1 - drawing: t(71) = 0.17, n.s.;

Experiment 2 - imagery: t(16) = 0.56, n.s.). The slope of the regression line between

size rank and preferred visual size was 3.9% per size rank (SEM 0.8%), which was

significantly shallower than the imagery slope in Experiment 2 (mean: 6.3% per size

rank, t(16) = 2.25,p < 0.05) with a trend toward being steeper than the drawn slope

in Experiment 1 (mean: 2.7% per size rank, t(71) = 1.99,p < 0.06).

Discussion

These data show that when observers can freely resize objects on the screen, the

preferred view of the object is proportional to the logarithm of their real-world sizes.

These data rule out the simple account that acuity constraints drive visual pref-

erences, because objects were not all resized to subtend equal visual angles at the

maximal extent of the fovea or parafovea. Instead, we find that knowledge about

the physical size of objects systematically influences the visual size at which objects

are preferentially viewed. Similarly, the preferred visual sizes within the frame of the

monitor match the ratios observed in the drawing experiment well. Thus, these data

suggest that perceptual preferences about objects are related to the representations

invoked by drawing and imagery tasks.

The current experiment required subjective judgments about the size at which

pictures of objects "look best" (see also Palmer, Gardner, & Wickens, 2008). Despite

the subjectivity of this task, observers were remarkably consistent in their preferred

visual sizes, with high inter-rater reliability. One interpretation of what drives the

preferred view of an object is the view with the best representational fit to existing



long-term memory representations (Palmer, Schloss, and Gardner, in press). Specif-

ically, the visual size at which a refrigerator looks best is the visual size (and the

space around it) that matches with existing object representations, i.e., those that

guided the drawing and imagery tasks. Perceptual preference tasks have also been

conceptualized as a consequence of memory processes reflecting the output of the hu-

man inference system (Weber & Johnson, 2006). Akin to the previous literature on

canonical perspective, we term this consistent visual size information the canonical

visual size. This visual size depends on the assumed size of the object and is best

specified not in terms of visual angle but in terms of visual size ratios between the

object and a frame of space.

Experiment 4: Miniatures

In Experiment 4, we manipulated the size observers assumed an object to be in the

world by presenting them with an image of a real-world object but telling them that

it was a miniature version of that object, fit for a highly detailed architectural model.

If the visual size ratio is truly a consequence of the physical size the observer believes

the object to be in the world, then a "miniature" object should be preferentially

viewed at a smaller size than its larger real-world counterpart.

An alternate account that predicts the data from Experiment 3 is that perhaps

observers prefer to see all objects at a certain average visual size, but tend to mod-

ulate their settings around this size based on knowledge about the physical size of

the object in the world. On this account, in this experiment observers who are view-

ing "miniature" objects should not show any difference in their preferred size ratios

compared to observers who believed the objects to be typically sized real-world ob-

jects. They should have the same mean size setting, and should modulate around

that preferred size by the same or perhaps a smaller dynamic range.

Further, the preferred visual sizes found in Experiment 3 could have been driven by

image-level information solely (e.g. resolution, downward viewing angle, aspect ratio).

The converging evidence from Experiment 1 and 2 make this unlikely. However, the



miniature experiment serves as a control, as it uses exactly the same images and task

as in Experiment 3, with only instructional variations. Thus, any differences in the

preferred visual size between objects and miniature objects cannot be attributed to

image-level effects.

Methods

A separate group of ten naive observers were recruited from the MIT participant pool

(age range 18-35), gave informed consent, and received 5 dollars for their participa-

tion. Stimuli and procedures were identical to those in Experiment 3, except for the

instructions given. Here, the participants were told that they were looking at pictures

of "toys" from a "highly detailed architectural model" (i.e., the kind of model that

might have a toy cheese grater and a toy basketball). As before, participants were

instructed to resize the objects on the screen so that they "looked the best".

Results

The left panel of Figure 6 shows the average preferred size of the objects that are

thought of as "toys" (black line). For comparative purposes, these are plotted as

a function of the same size rank used previously. The data from Experiment 3 is

replotted for comparison (gray line). The average preferred size for two sample toy

objects-a toy egg and a toy refrigerator, is illustrated in the right panel, along side

the preferred size of the "typically-sized" egg and refrigerator from Experiment 3.

Overall, the average preferred size of toy objects on the screen was 5.5 degrees

(S.E.M=2.13 deg), whereas the average preferred size of the same objects from Ex-

periment 3 was 13.1 degrees (S.E.M.=3.3 deg; t(18) = 4.65,p < 0.001). As before, the

preferred size of the objects, when seen "as toys" by the observers, still preserve the

strong correlation with the size rank of the objects (r2 = 0.99, p < 0.001). The slopes

of the regression lines between Experiment 3 sizing regular objects and Experiment 4

sizing toy objects were not significantly different (Object: 3.9% per rank, Toy: 3.1%

per rank, t(18) = 0.9, n.s.). Further, observers were very consistent in the relative
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Figure 6: Left: The average preferred size to see images of "toy" objects on the
screen is plotted as a function of the size rank of the object (black line). The data
from Experiment 3 is replotted for comparison (gray line), in which a different set
of observers resized the same images but thought of them as regular objects. Error
bars represent ±1 S. E. M. Right: The average preferred sizes of two toy objects
are shown next to the average preferred sizes of those objects when assumed to be a
typical real-world size.

sizes across all 100 objects, with an effective rater reliability of R=0.94.

Discussion

When observers think objects are smaller in the world, the preferred sizes of those

objects are smaller on the screen. This is true even though separate groups of ob-

servers participated in Experiments 3 and 4. Further, this experiment demonstrates

that preferred visual sizes are not driven solely by the image-level differences or the

relationship between objects in the set, because the images in Experiment 3 and 4

were the same. Additionally, the relationship between preferred size and assumed size

is preserved when observers think of the objects as miniatures. Likely this reflects

the instructions that these objects were for a model, i.e., made "to scale" but at a

smaller physical size. The largest miniature objects (e.g., houses, statue) were sized

on the screen at around 27%. Thus we can estimate that observers likely thought of

these images as having a physical size of around 30 - 60 cm (e.g. a coffeemaker or



backpack), based on the Experiment 3 size ratios.

The current data also have interesting implications about how assumed real-world

size influences preferred visual size, and what kind of information is stored in object

representations. Likely, we don't have much visual experience with toy cheese graters,

but we do have experience with cheese graters and with toys. It is also likely that

learning from experience operates at multiple levels of abstraction (e.g., this specific

cheese grater, all cheese graters, all kitchen appliances; and this toy, toys in general).

Thus, such learned attributes can flexibly combine to generate a representation of,

for example, a toy cheese grater, without ever having seen one before. As evidence

that this is learned over experience, 18 to 30 month-old children sometimes make

scale-errors, in which they attempt to get into a toy car or sit in a dollhouse chair,

indicating that they can recognize a toy version of the object, but fail to incorporate its

apparent physical size and instead carry out the associated actions with the typically-

sized objects (DeLoache, 2004).

Another implication of this result is that assumed size modulates expectations

about visual size. Put more strongly, a cheese grater on a white background will

look more like a miniature cheese grater if it has a small ratio on the screen. Even

though there were completely different observers between Experiment 3 and 4, the

preferred visual size of miniatures was smaller than the preferred visual size of real-

world objects. This further reinforces the main result that smaller objects in the

world have smaller canonical visual sizes.

Experiment 5: Size Range

An additional factor that may be influencing the preferred size is the range of real-

world object sizes in the image set. In all of the experiments reported here, par-

ticipants were exposed to the whole range of real-world sizes (ranks 1-8, from very

small to very large size). Here, we tested the impact of stimulus set in the perceptual

preference task using a between-subjects design, where three groups of observers are

exposed to a restricted range of objects sizes (e.g. only small objects in the world,



only objects of medium size, or only large objects). If observers simply use a minimum

small visual size for the smallest object and a maximum visual size for the largest

objects, and scale the other objects between these two extremes, then the visual sizes

we observe will be largely due to the stimulus set and not due to the absolute assumed

size of the object. However, if there are reliable differences in the preferred visual

sizes between the observer groups, even when the groups are exposed to a restricted

range of real-world object sizes, then this would show that observers are guided by a

common canonical visual size representation.

Methods

Three groups of 11 nafve observers were recruited from the MIT participant pool (age

range 18-35), gave informed consent, and received 5 dollars for their participation.

Observers completed the same procedure as in Experiment 3, but were exposed to

only a subset of the items, with one group seeing only small items (ranks 1-4), another

group seeing only medium items (ranks 3-6), and the final group seeing only large

items (ranks 5-8).

Results

First, we examined if there were reliable differences between the three groups of

observers on the averaged preferred size. We found a significant effect of group on

the preferred size ratio (F(2, 30) = 4.4,p < 0.05, r 2 = .22), consistent with our

predictions from Experiments 1-4: smaller visual sizes were preferred for the group

seeing smaller real-world objects and larger visual sizes were preferred for the group

seeing larger real-world objects.

We next compared the preferred visual sizes of each group with the original exper-

iment in which observers were exposed to all size ranks 1 though 8. Three ANOVAs

were conducted on the size ratios, one for each group of observers, with size rank as

a within-subject factor, and stimulus set range as a between-subject factor (e.g. data

from the observers seeing only the smallest objects was compared with data from
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Figure 7: Results of size range experiment. The average preferred size of objects
for the three groups of observers, expressed as a ratio between the size of the object
and the size of the screen, is plotted for each group as a function of the size rank of
the objects. Dashed line indicates the preferred sizes from Experiment 3. Error bars
represent ±1 S.E.M.

Experiment 3 for only the object size ranks of 1, 2, 3, and 4, and similarly for those

seeing medium sized objects or large sized objects). The results are shown in Figure 7.

Overall, the average preferred size for small objects was the same whether observers

were only exposed to that range or the full physical size range (ranks 1-4; means:

32% and 29%; F(1, 18) = 0.7, n.s.). The same held for observers seeing only medium

size objects (ranks 3-6; means: 39% and 38%; F(1, 18) = 0.0, n.s.) and for those

seeing large objects only (ranks: 5-8; means: 45% and 45%; F(1, 18) = 0.0, n.s.).

However, observers who saw only medium-sized objects or only large objects used

a larger range of ratios on the screen than observers exposed to the whole range

of objects physical sizes (medium ranks 3-6: experiment x size rank interaction:

F(1, 18) = 8.2,p < 0.01, r/2 = .31; large ranks 5-8: experiment x size rank inter-

action: F(1, 18) = 4.2, p = 0.055, 72 = .19).
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Figure 8: Trial 1 Analysis. Average drawn, imagined, or preferred visual size for the
first trial only of all Experiments 1-5. These visual sizes are expressed as a ratio
between the size of the object and the size of the frame, plotted as a function of the
size rank of the objects. Each gray point represents a participant, with the average
visual size per size rank shown in black points.

Discussion

These results show that the range of physical sizes does have an effect on the preferred

visual sizes, by modulating the dynamic range between the smallest and largest item.

Specifically, the preferred sizes found in the three observer groups have more size

range than the preferred sizes found by participants exposed to the whole range in

Experiment 3. This reveals that the object set, or the context in which a collection of

objects is perceived, is another factor that modulates the preferred visual size. This

result is interesting because it suggests that people have some flexibility in the scaling

between assumed size and visual size. However, for the present purposes, it is also

important to note that overall, the average visual size increased for each group exposed

respectively only to small, medium or large objects and was consistent with the visual

sizes from a different set of observers who were exposed to the whole object set. This

demonstrates that the assumed size of objects influenced their preferred visual sizes,

even across observers and stimuli ranges: smaller visual sizes were preferred for smaller

objects and larger visual sizes were preferred for larger objects.

A related concern is that, over the course of multiple trials in the experiment,



exposure to different objects with different real-world sizes may lead observers to

adopt a systematic relationship between assumed size and preferred visual size over

time. Thus, perhaps without this exposure to a variety of stimuli with different real

world sizes, there would be no remaining effect of assumed size. If this were the case,

then one would not expect to find an effect of real-world size on the very first trial. To

examine this possibility, we conducted an analysis of the first trial completed for the

94 observers in Experiments 1 through 5 (excluding the first drawings of 21 observers

in El which did not meet the criterion for inclusion). We again observe a positive

relationship between the physical size rank the visual size (r 2 = 0.18, df = 93, p <

0.001; Figure 8). The slope of relationship is 3.2% per size rank. For reference,

the average slope was 2.7% for drawing, 3.9% for perception, and 6.3% for imagery.

Thus, despite the lack of power due to having only one trial per subject, this analysis

suggests that, even on the first trial, the small objects were drawn, imagined and

preferentially viewed at smaller size ratios than large objects. While there is likely

a contribution of intertrial comparisons on the size effects found here, these analyses

suggest that the consistency of the size ratios we have found in perceptual, imagery

and memory tasks are not solely a consequence of intertrial comparisons or object set

effects.

General Discussion

Evidence for canonical visual size

In the current studies, we asked whether accessing real world object knowledge yields

consistent visual size representations across different mental processes. Using drawing

from memory, imagery, and perceptual preference tasks we found that systematic

visual size ratios were observed across different mental processes and across observers

(See Figure 9). These results provide evidence for different canonical visual sizes for

differently sized physical objects. Second, the data demonstrate that the canonical

visual size of an object depends on the assumed real-world size of the object. Across
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Figure 9: Left: Results of Experiments 1 (Drawn), 2 (Imagined), and 3 (Viewed),
overlaid on one graph. The x-axis shows the size rank of the object; the y-axis shows
the diagonal ratio of the object in the frame. Error bars represent +1 S.E M. Right:
Example drawings of a fish, chair, and dump truck for a single observer. The average
imagined size and preferred size across observers are shown for these same objects
in the adjacent columns. Note that separate groups of observers participated in the
Drawn, Imagined, and Viewed conditions.

all experiments and observers, there was a strong correlation with the size rank, and

thus with the logarithm of the assumed size of the object in the world (Figure 9).

This claim is further supported by the miniatures experiment in which we manipulated

assumed size and showed corresponding changes in preferred visual size. Finally, these

data argue that the canonical visual size is best characterized as a ratio between the

object and the space around it. For instance, the canonical visual size of a chair is not

a specific visual angle but rather is 38% of a surrounding spatial envelope (Figure 9).

Experiment 1 most strongly supports specifying canonical visual size as a ratio, as the

drawn size for any given object was equivalent across paper sizes when characterized

as a ratio between the object and frame.

On a broader interpretation of these data, tasks which access object represen-

tations for visual size information are likely probing an underlying distribution of

visual sizes, rather than just one specific canonical visual size. For example, while

a strawberry may look best when presented at a size ratio of 18%, this may reflect

only the most probable of a range of possible visual sizes. Exemplar-based models

and view-centered models of object representation argue that observers store many



instances of objects (e.g. Nosofsky, 1986; Edelman & Butlhoff, 1992; Ullman, 1989);

if visual size information is also stored with these exemplars, this could give rise to

a probability distribution over this dimension. The idea that object knowledge oper-

ates over probability distributions along various spatial and featural dimensions has

received support from memory paradigms, in which systematic biases can be observed

that reflect coding an episode with respect to a prior distribution (e.g. Huttenlocher,

Hedges, & Duncan, 1991; Huttenlocher, Hedges, & Vevea, 2000; Konkle & Oliva,

2007; Hemmer & Steyvers, 2009; see also Baird, 1997). Broadly, accessing an existing

object representation, e.g., for a drawing or imagery task, can be thought of as taking

a sample from underlying distributions, of which visual size and perspective may be

stored dimensions.

Framing effects

We found that observers were sensitive to the amount of space specified by a frame,

drawing objects in such a way that across observers, a consistent ratio between the

object and the paper size was preserved over a range of different frame sizes. These

findings show converging evidence in support of a framing account of the "vista para-

dox," in which a large distant object viewed through a window (or through a naturally

occurring corridor, e.g. in a cavern or street scene) appears to both shrink in physical

size and recede in distance as the observer approaches it (Walker, Rupich, & Powell,

1989; see also the "coffee cup illusion", Senders, 1966). This notion that the framing

ratio affects the perception of an object's physical size properties, beyond information

from the object alone, has been documented in a number of other studies (e.g. Brigell

et al, 1977, Kunnapas, 1955, Rock & Ebenholt, 1959). Further, it is interesting to

note that under natural viewing conditions, objects are always seen in a space, max-

imally limited by the extent of the visual field. As such, any experienced view of an

object has an implicit frame of space around it.

The relationship of the object with the space around it is only one simple statistic

that may be stored from visual experience. More generally, these framing effects

support the notion that object representations are inherently linked to contexts, both



spatially and semantically (e.g. Bar, 2004; Oliva & Torralba, 2007). For example,

reaction time benefits are found for identifying objects in semantically consistent

versus inconsistent scenes (e.g., Palmer, 1975; Biederman, Mezzanotte, & Rabinowitz,

1982; Davenport & Potter, 2004), as well as for items appearing in a more likely

position given the identity and position of a previous item (e.g. Grunau, Neta, & Bar,

2008). Combined, these results highlight the relative nature of object representations:

in our accumulated visual experience with objects in the world, objects never appear

in isolation. As such, pre-existing knowledge of object properties may be specified not

only as item-specific information but also with more relative statistics, such as object-

object and object-scene associations (e.g. keyboard and mouse; bed and bedroom).

In the case of object size, for instance, we suggest that rather than simply storing

visual angle information about objects, the relevant statistics may actually be relative

measures between object angle and a visual frame of space.

Task-Demand Characteristics

One concern about these results is the issue of task-demands: are people showing ef-

fects of assumed object size because they are explicitly thinking about size while they

make a size response? There are several pieces of data that speak to this issue. First,

while both the imagery and perception studies (E2 and E3) directly involve making

a resizing response, the drawing study (El) does not. Here, the task instructions

focus much more on object identity ("draw a cat"), while the drawn size is an indi-

rect aspect of the task. Importantly, the results still show an effect of assumed object

size. Second, demand characteristics might arise over the course of the experiment, as

observers reference previous responses rather than treating each trial independently.

Indeed, this is evident in our data in the restricted size range experiment (E5). How-

ever, even on observers' very first trial, the drawn/imagined/preferred visual size was

still influenced by the assumed size of the object. Finally, the miniatures experiment

(E4) also speaks to the issue of task-demands. Observers were told that the images

were pictures of miniatures for an architectural model, i.e. very small in real-world

size. Surely as a participant, one might feel as if they should select smaller sizes.



However, smaller than what? The observers were not the same as those who did El.

If there was no common understanding about the preferred visual size of a typically-

sized car, they would not know how to make a toy car smaller. While none of these

analyses and experiments perfectly address the issue of demand characteristics (and

indeed, E5 points to the fact that other factors beyond assumed size and framing mod-

ulate the accessed visual size), the combined data from all the experiments strongly

point to a role that the canonical visual size depends on the assumed size of the object

in the world. The results of the drawing task (El) are the strongest evidence of this

point, as this experiment is least subject to task demand characteristics, and also

provides the clearest support that canonical visual size is a relative statistic between

the size of the object and its surrounding space.

Relationship between canonical visual size and real-world view-

ing

Experience typically arises in the real-world in which 3-dimensional geometry con-

strains the distributions of visual sizes that are likely for different sized objects. How

do the canonical size for real-world objects compare to typical viewing distances? To

explore this question, we first need to obtain typical viewing distances for real-world

objects and thus what the corresponding visual angle is in one's visual field. Hubbard,

Kall, & Baird (1989) obtained estimates of the typical distance of interaction for a

range of everyday objects, which can be converted into visual angle measurements

(from 1.5 degrees for a 3 cm object like a coin, to 25 degrees for a 4m object like

a giraffe). Next, our data suggest that canonical sizes are not specified in absolute

visual angles but are instead relative to a frame of space. Thus, in order to see if

the visual size subtended by objects at their typical viewing distance is the same as

the canonical visual size, one needs to specify what the "frame" is during real-world

viewing. One intuitive possibility for the frame of real-world viewing is the whole

visual field. However, with a 180-degree hemisphere as the frame, the corresponding

visual size ratios at typical viewing distances are all much smaller that the canonical



visual size ratios we observed in the present data. Another possibility is to use extent

of the mind's eye as a proxy for the useable visual field and frame. The estimation

varies between 20 to 60 degrees (Kosslyn, 1978; Hubbard & Baird, 1988; Hubbard,

Kall, & Baird, 1989), with the larger estimates obtained when estimating over-flow

distance of real-world objects. With a 60 degree estimate as the frame, typical visual

size ratios would be between 3% for the coin to 42% for the giraffe. These estimated

ratios are similar to the imagined ratios observed in the present data (see Figure 9).

Of course, this speculation should be taken lightly as assumptions have been made

about the size of the real-world frame and the accuracy of subjective reports of typical

viewing distances. More work is required to integrate the canonical sizes found on

the computer screen and drawn pages with the statistics of visual experience in the

real world.

Finally, Hubbard, Kall, & Baird, (1989) have some evidence suggesting that there

may be systematic differences between sizes arising from imagery vs. perceptual

processes. For example, in their study, observers imagined bird's nests an average

distance of - 1 m while the average typical viewing distance was - 6 m. In fact,

when Hubbard, Kall, & Baird had observers imagine rods (unfamiliar objects) of a

prespecified length, and then estimate their distance to the rod, they found that the

relationship between size and viewing distance was less noisy than with familiar ob-

jects. These data suggest that canonical visual size may be derived not only from

the distribution of visual experience, but also from structural or geometric properties

of the object (e.g. bird's nests are rarely seen up close but the canonical visual size

may be more similar to an object of similar size, such as a football, even though

the distributions of visual experience with these objects are likely quite different).

Future studies are required to distinguish between these hypotheses; as with canon-

ical perspective, likely both visual experience and structural geometric factors are

involved.



Familiar Size as a Depth Cue

Existing knowledge about the size of objects in the world can serve as a cue to depth-

this is typically referred to as the familiar size cue. For example, in a classic study by

Ittelson (1951), observers had to judge the distance to different monocularly viewed

playing cards, where unbeknownst to the observers, all the cards were presented at

the same distance but some playing cards were either three-quarters or one-and-a-half

times the size of a normal playing card. The larger playing cards were estimated to

be closer to the observer, such that a normal card at the reported distance would

match the visual size of the card. Similar results were found for the smaller playing

cards, estimated to be father away. These data show that when objects that have a

familiar or known size, seeing them at a particular visual angle influences the perceived

distance (see also Baird, 1962; Yonas et al., 1982).

Familiar size and canonical visual size are not the same: familiar size means

that observers know the real-world size of objects in the world (e.g. expressed in

meters). This is knowledge about an object property, i.e. object-centered information.

In contrast, canonical visual size indicates that there is a privileged visual size for

perceiving objects (where the visual size is expressed as a ratio between the visual

angle of an object relative to a frame). Canonical perspectives and canonical visual

sizes provide evidence that existing object representations contain specific information

about perspective and visual size, which are viewer-centered properties. For example,

at one extreme it might be argued that existing object representations are stored at

one particular perspective and one particular scale. Alternatively, likely each object's

representation has stored views from a range of perspectives and scales, with some

perspectives and scales being more probable or preferred than others.

What, then, is the relationship between familiar size as a depth cue and canonical

visual size? Both involve the observer having knowledge about the real-world size

of the object. In the first case, observers can use the familiar size of an object to

estimate its distance (e.g. Epstein 1963; 1965; Epstein & Baratz, 1964; Ittelson,

1951; Ono, 1969). In the case of canonical visual size, when observers access existing



object representations in order to draw, imagine, or make a perceptual preference, the

visual size that is outputted depends on the assumed size of the object. Combining

these two ideas, one empirical prediction is that observers might be better able to use

familiar size information to make accurate distance estimates if the familiar object at

its canonical visual size within the real-world viewing frame.

Conclusion

Akin to studies on canonical perspective, we provide evidence that existing object

representations also have canonical visual sizes, which depend on the assumed size of

the object in the world relative to a frame of space. Both perspective and visual size

are spatial dimensions that are under the control of an active observer-in this sense

canonical views connect physical objects to a viewer in an environment. In fact, if

one combines canonical perspective at the canonical visual size, this object knowledge

specifies the optimal place in three-dimensional space from which to view an object.

One intriguing possibility is that an active observer might use this information to

reflexively navigate to a better view of objects in the world (e.g., Merleau-Ponty,

1962).



Appendix

Figure 10: Sample objects used in Experiments 3, 4 and 5 are shown here, so the
level of object detail and resolution of the images is more apparent.
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Chapter 3

A Familiar Size Stroop Effect:

Real-world size is an automatic

property of object representation

When we recognize an object, do we automatically know how big it is in the world?
We employed a Stroop-like paradigm, in which two objects were presented at different
visual sizes on the screen. Observers were faster to indicate which was bigger or
smaller on the screen when the known size of the objects was congruent with the
visual size than when it was incongruent-demonstrating a familiar-size Stroop effect.
Critically, the known size of the objects was irrelevant for the task. In a second
experiment, participants learned a rule to categorize novel objects as big or small,
but these stimuli did not drive a Stroop effect, indicating that automatic known size
processing is not cognitively penetrable. These results show that people access the
familiar size of objects without the intention of doing so, demonstrating that real-
world size is an automatic property of object representation.

Introduction

Every object in the world has a physical size which is intrinsic to how we interact with

it (Gibson, 1979): we pick up small objects like coins and berries with our fingers,

and we orient our body to bigger objects like chairs and tables. When we learn about

objects, our experience is necessarily situated in a three-dimensional context. Thus,

the real-world size of objects may be a basic and fundamental property of visual



object representation (Konkle & Oliva, 2011) and of object concepts (Setti et al,

2009; Sereno & O'Donnel, 2009; Rubinsten & Henik, 2002).

One of the most fundamental properties of object representation is category in-

formation: we rapidly and obligatorily recognize objects and can name them at their

basic-level category (Grill-Spector & Kanwisher, 2006; Thorpe, Fize, & Marlot, 1996).

This indicates that when visual information about an object is processed, it auto-

matically makes contact with category information. Here we examined whether our

knowledge of an object's real-world size is also accessed automatically: as soon as you

see a familiar object, do you also know how big it typically is the world?

We designed a Stroop-like paradigm to test whether the known size of the object

is automatically accessed when you recognize a familiar object. In what is commonly

referred to as the "Stroop effect" (Stroop, 1935; see MacLeod, 1999), observers are

faster to name the ink color of a presented word when the word is congruent with

the ink color than when it is incongruent (the word "pink" in pink ink or green ink).

Even though the word itself is irrelevant to the task, fluent readers automatically

and obligatorily read the word, even at a cost to performance. Stroop paradigms

have been used as a tool to understand how we automatically draw meaning from

words, and this has been extended to understand how we draw meaning from pictures

(MacLeod, 1999).

In our familiar-size Stroop paradigm, we presented two objects at two different

sizes on the screen and observers made a judgment about the visual size of the object

("which is smaller/bigger on the screen?"). Here, the identity of the objects and

their known size are irrelevant to the task. Critically, the known size of the objects

could be congruent or incongruent with the visual size (Figure la). If the known size

of objects speeds or slows performance on this basic visual size task, this would be

strong evidence that as soon as you recognize an object, you automatically access its

known size as well.



Experiment 1: Familiar Object Stroop Task

Method

Participants

18 participants (age 18-35) gave informed consent and completed the experiment.

Apparatus

Observers sat 57 cm from a computer screen (29x39.5 cm) and viewed stimuli pre-

sented using the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997).

Design

On each trial, two images of real-world objects were presented side by side, with one

at a visually large size and the other at a visually small size. The task was to make a

judgment about the visual size of the object ("which is visually smaller/bigger on the

screen?") as fast as possible while maintaining high accuracy. In congruent trials,

the known size of the familiar objects matched the visual size. For example, an alarm

clock would be presented small while a horse was presented big. In incongruent trials,

this was reversed and the horse was small on the screen while the alarm clock was

big on the screen (Figure la).

Each trial started with a fixation cross for 700ms, then the two objects were pre-

sented until the observer responded. Correct responses were followed by a 900ms

interval before the next trial began. Incorrect responses were followed by error feed-

back and a 5 second interval before the next trial began. The visual sizes were set so

that the diagonal extent of the bounding box around each object was either 35% or

60% of the screen height, for visually small and big, respectively (11 and 18 degrees

visual angle). This method of setting the visual size takes into account variations in

aspect ratio across objects (Konkle & Oliva, 2011; Kosslyn, 1978).

Observers completed both tasks (which is visually smaller/larger?) with the order

of the tasks counterbalanced across observers. The 36 big objects and 36 small objects



were counterbalanced to appear in both congruent/incongruent trials with the correct

answer on the left/right side of the screen, across smaller/larger visual size tasks

(see also supporting information). There were 576 total trials (288 congruent / 288

incongruent).

Results

Incorrect trials and trials in which the reaction time (RT) was shorter than 200ms or

longer than 1500ms were excluded, removing 3.8% of the trials. One participant was

excluded due to a computer error.

Overall, reaction times for incongruent trials were significantly longer than for

congruent trials (38ms, SEM=6ms; Cohen's d=1.5; 2x2 repeated measures ANOVA,

main effect of congruency: F(1,67) = 18.2,p = 0.001; Figure 1b). All 17 observers

showed an effect in the expected direction. This Stroop effect was also reliably ob-

served in both visual size tasks, with paired t-tests showing significant Stroop effects

(visually smaller task: 58ms, SEM=12ms; t(16) = 4.98,p = 0.0001; visually larger

task: 17ms, SEM=4ms, t(16) = 4.401,p = 0.0004).

Additionally, people were faster to judge which was bigger on the screen than

which was smaller (main effect of task: F(1, 67) = 14.6, p = 0.001), consistent with

the classic finding of faster RTs for visually larger items (Osaka, 1976; Payne 1967;

Sperandio et al., 2009). The magnitude of the Stroop effect was significantly different

across these tasks (task x congruency interaction: F(1, 67) = 8.9, p = 0.009), with a

larger effect when people were judging which object was smaller on the screen.

These results demonstrate a familiar-size Stroop effect: people are slower to com-

plete a basic visual judgment when the familiar size of the object is incongruent with

the visual size.

One account of these data is that our familiar size knowledge arises from exten-

sive visual experience with objects in the world, and this expertise is required to

automatically activate familiar size. However, an alternate explanation is that the

interference between known size and visual size arises only at a very conceptual level.

For example, if this effect is cognitively penetrable (Pylyshyn, 1999), then it would



Task: Which is smaller/larger on the screen?

Congruent

Smaller? Larger? Overall

Incongruent

Figure 1: Known size Stroop task with familiar objects. A) Two familiar objects
were presented side-by-side, and observers indicated which object was smaller or
larger on the screen. The known size of the objects could either be congruent or
incongruent with the presented size. Congruent and incongruent example displays
are shown. B) The left panel shows overall reaction times for congruent trials (black
bars) and incongruent trials (white bars), plotted for each task (smaller/larger visual
size judgment) and combined across tasks. The right panel shows the difference
between incongruent and congruent reaction times (Stroop effect). Error bars reflect
±1 SEM.



be sufficient to simply instruct people that some objects are big and others are small

in order to observe a Stroop effect. We test this possibility in Experiment 2.

Experiment 2: One-Shot Learning Stroop Task

We introduced participants to novel bi-color objects from a "block world", where

observers were told that all objects in this world fall into two classes: Big objects

made out of blue and red blocks, and small objects made of yellow and green blocks.

Here we taught observers a simple rule with minimal experience, to see if this fact-

based knowledge was sufficient to drive a Stroop effect. If observers show a Stroop

effect on objects whose size is based on a rule, this would suggest that known size

can be rapidly incorporated into our object knowledge. Alternatively, if observers do

not show a Stroop effect, this would suggest that more experience with the objects is

required for automatic known size processing.

Method

Participants

17 new participants (between ages 18-35) gave informed consent and completed the

experiment.

Procedure

Observers were introduced to two example objects in the testing room, one small

(approx. 120cm x 75cm) and one large (approx. 30cm x 18cm), depicted in Figure

2a. Participants were told that these were example objects from a block-world, where

all blue-red block objects were big and all yellow-green block objects were small.

Observers completed drawing and change-detection tasks to expose them to the ex-

ample objects as well as the pictures of the bi-colored objects presented on the screen

(see the supporting information). Following this familiarization phase, which lasted

approximately 30 minutes, observers completed a block-world Stroop task.



Design

The trial design was as in Experiment 1, except that pictures of bi-color block objects

were presented (Figure 2b). Each observer saw 16 unique yellow-green objects and 16

unique blue-red objects. These were presented each 32 times (congruent/incongruent

trial type x correct answer on left/right side of screen x smaller/larger task x 4

repetitions), yielding 512 total trials (256 congruent / 256 incongruent).

The color-size rule was counterbalanced across observers (see Figure S1 in the

supporting information). Across observers each item appeared in both blue-red or

yellow-green, as both an implied big and implied small object, ensuring that object

shapes were fully counterbalanced across conditions.

Results

Incorrect trials and trials in which the reaction time (RT) was shorter than 200ms or

longer than 1500ms were excluded, removing 3.7% of the trials.

Overall, we observed no difference in reaction time between congruent and incon-

gruent trials (-4ms, SEM=3ms; Cohen's d=-0.3; 2x2 ANOVA, main effect of con-

gruency: F(1, 67) = 1.7, p = 0.21; Figure 2c). The Stroop effect was not present

in either task (smaller task: -12ms, SEM=6ms; larger task: 4ms, SEM=7ms; task x

congruency interaction: F(1, 67) = 1.9, p = 0.19). Of the 17 observers, 7 showed an

effect in the expected direction and 10 showed an effect in the opposite direction. A

power analysis indicated this study had very high power (>99%) to detect a stroop

effect of similar magnitude as in Experiment 1, and high power (83%) to detect an

effect of half the size. At a power of 99% this study could detect an effect size of

d=1.0 (-12 ms Stroop effect).

To compare the Stroop effect between experiments, we conducted 2x2 ANOVA

with familiar/bi-color objects as a between-subject factor, and congruency as a within-

subject factor. There was a significant main effect of congruency (F(1, 67) = 25.1, p <

0.001) and a significant interaction between experiments and congruency (F(1, 67) =

36.7,p < 0.001). That is, people in the familiar object experiment showed a Stroop
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Figure 2: One-shot learning Stroop task. A) Observers were familiarized with one
bi-color big object and one bi-color small object, and were told that all big objects
were made of blue and red blocks, and all small objects were made of yellow-and
green blocks (counterbalanced across observers). B) During the Stroop task, two
bi-color objects were presented side-by-side, and observers indicated which object
was smaller or larger on the screen. The implied real-world size of the objects could
either be congruent or incongruent with the presented size. An example display that
is congruent with the familiarization in (A) is shown. C) The left panel shows overall
reaction times for congruent trials (black bars) and incongruent trials (white bars),
plotted for each task (smaller/larger visual size judgment) and combined across tasks.
The right panel shows the difference between incongruent and congruent reaction
times (Stroop effect). Error bars reflect +1 SEM.
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effect (38ms, SEM=6) while people in the one-shot learning experiment did not (-

4ms, SEM=3). Two-sample t-tests confirmed this result (t(32) = 6.06,p < 0.0001).

Further, there was no difference in overall reaction time between the two experiments

(F(1, 67) = 0.4, p = 0.53), indicating that across experiments participants were not

any faster or slower overall to make visual size judgments.

These across-experiment comparisons show that there is a robust Stroop effect

with familiar objects that was not detected for stimuli whose real-world size is implied

based on an explicit rule. Even though observers know this rule with certainty, the

data show that this fact-based knowledge was not sufficient to generate a detectable

Stroop effect within the reasonable power of the current design. This suggests that

in order for known size to have a strong and automatic impact performance, more

extensive experience and learning is required.

General Discussion

A hallmark of our object recognition system is that object processing automatically

connects with stored knowledge, allowing for rapid recognition (Thorpe, Fize, & Mar-

lot, 1996). Nearly as soon as we are able to detect an object, we can also name it at

the basic-category level (Grill-Spector & Kanwisher, 2006; Mack et al., 2008). Here

we show that even when object information is completely task-irrelevant, familiar size

gives rise to a Stroop effect. These results suggest that we not only identify objects

automatically, but we also access their real-world size automatically.

A previous study used similar displays as in Figure la, but observers judged which

object was bigger in the world (Srinivas, 1996). They also found a Stroop effect, with

observers faster to make a known size judgment when the visual size was congruent.

Thus, Srinivas demonstrated that a perceptual feature (visual size) influenced the

speed of a conceptual/semantic judgment (which is bigger in the world), which makes

sense as visual size may be a route to accessing known size more quickly. The current

study demonstrates the complementary effect: known size facilitates/interferes with a

visual size judgment, revealing the speed and automaticity with which task-irrelevant



semantic information is brought to bear on a very basic perceptual task. Together

these results speak to the integral nature of perceptual and semantic features, demon-

strating a direct and automatic association between known size and visual size.

What is the underlying relationship between known size and visual size that gives

rise to a Stroop effect? One possibility is that interference occurs at a relatively high-

level concept, arising from a common abstract concept of size. However, the data

from the one-shot learning experiment are not wholly consistent with pure conceptual

interference. Had we found that teaching people a simple size rule led to a Stroop

effect, this would be strong evidence supporting a more abstract locus of interference.

However, we observed that simply being able to state whether something is big or

small with minimal experience did not lead to strong interference with visual size

judgments. Instead, the data imply that the association between an object and its

known size has to be learned with repeated experience before it can automatically

interfere with a visual size task.

A second possibility is that interference in this task arises in more perceptual

stages of processing. Consistent with this idea, a number of researchers have claimed

that stored information about real-world size is represented in a perceptual or analog

format (Moyer, 1973; Pavio, 1975; Rubinsten & Henik, 2002). Further, objects have

a canonical visual size, proportional to the log of their familiar size, where smaller

objects like alarm clocks are preferred at smaller visual sizes, and larger objects like

horses are preferred at larger visual sizes (Konkle & Oliva, 2011; Linsen et al., in

press). On this more perceptual account of interference, in the congruent condition

both objects have a better match to stored representations which include visual size

information, facilitating and/or interfering with visual size judgments.

Certainly, these two accounts of the familiar-size Stroop effect are not mutually

exclusive. It is likely that there is interference at multiple levels of representation,

from more perceptual ones (realized in visual-size biases) to more conceptual ones

(e.g. semantic facts that a horse is big). The present data do suggest, however, that

strong interference effects are not granted in one shot by learning a rule, but instead

must be grounded in repeated perceptual experience. This mirrors the results for



the classic stroop effect, where intermediate or fluent reading ability is required to

show interference with color naming (Comalli 1962; MacLeod, 1991). Importantly,

regardless of the sources of interference between known size and visual size, the present

data clearly show that the known size of objects is automatically activated when an

object is recognized.



Supporting Information

Experiment 1: Aspect Ratio Counterbalancing

Pictures of real-world objects vary in their aspect ratio, which influences the apparent

visual size of the object (e.g. a wide object tends to look smaller than a tall object,

even if they are equated on other dimensions such as the diagonal extent or fit inside

similar bounding circles). To account for this factor, the 36 big and 36 small object

stimuli were paired by aspect ratio in advance. Matching the aspect ratio of the two

objects removes uncertainty about how to compare the size of objects with different

aspect ratios.

In the first half of the experiment, all trials contained pairs of objects that were

matched in aspect ratio ("matched pairs"). Thus all observers saw these same pairs.

Each pair was fully counterbalanced, appearing in congruent/incongruent trials, with

the correct answer on the left/right of the screen, in both bigger/smaller visual size

tasks.

To double the number of trials to increase power, we pseudo-randomly paired the

big and small objects, and this pairing was different for each observer. Here, we

ensured that if a tall big object was paired with a wide small object (e.g. A door

and harmonica), then there would also be a tall small object paired with a wide big

object (e.g. A bottle and a train). Thus, the aspect ratio of two items on any given

display can be different, but across trials the ratio of aspect rations was balanced

across congruent and incongruent condition. Again each of these "pseudo-pairs" was

fully counterbalanced.

Both of these methods of stimulus selection ensure that the aspect ratio (or ra-

tio of aspect ratios) was completed balanced across congruent and incongruent trial

types. Thus, any differences in reaction times between these two conditions cannot

be driven by effects of aspect ratio on perceived visual size. Within each part of the

experiment (matched trials, paired trials), observers completed both visual judgment

tasks (which is visually smaller/larger?) with the order of the tasks counterbalanced

across observers.



Results. We analyzed the reaction times for matched trials in the first half of the

experiment and paired-trials in the second half of the experiment, and found consis-

tent convergent results. For the matched pairs, reaction times were again significantly

longer on incongruent than congruent trials (mean RT difference=34.0, SEM=8.7;

t(16) = 3.94, p = 0.001), and errors were more frequent in incongruent vs. congruent

trials (t(16) = 3.84,p = 0.001). Similarly, Stroop effects both in RT and errors were

observed in the pseudo-pairs (mean RT difference=28.6, SEM=8.7; RT difference:

t(16) = 3.29,p = 0.0046; Error difference: t(16) = 3.61,p = 0.0023). There was no

difference in the overall reaction time (t(16) = 0.32, p = 0.75) or magnitude of the

Stroop effect (t(16) = 0.53, p = 0.60) across these stimulus pairing conditions.

Experiment 2: Familiarization Methods

To ensure that observers were familiarized with the reference objects, participants

completed two tasks. For the first task, observers were given a sheet of paper, a

pencil, and markers, and had 3 minutes to create a colored drawing of each reference

object. For the second task, participants were given 10 seconds to study the reference

object, after which they closed their eyes and one or more blocks were added to the

object. They then had three guesses to indicate which blocks were added and were

given feedback. Added blocks were always of the same colors as the reference objects.

Observers completed three change-detection trials per reference object.

We next familiarized the participants to pictures of other objects from block world,

presented on the screen. Each trial, the participant was instructed to turn and look

at the big or small reference object, after which they looked back at the screen and

a picture of a new object from block world presented. This picture was always of

the same size class (e.g. a "small" object also made out of green and yellow blocks).

Observers' task was to determine if the depicted object was slightly taller or slightly

shorter than the reference object, were it in the world along side the reference object.

Each depicted object was presented for 500ms, which did not allow sufficient time

for observers to count the number of rows of blocks. The 32 novel bi-color object

pictures were presented in random order. This task ensured that participants were



familiarized with each depicted object on the screen, and further required them to

conceive of its physical size in the world. Combined, these familiarization tasks took

30 minutes to complete.

Experiment 2: Counterbalancing

Task: Which is smaller/larger on the screen?

Congruent / Incongruent

Supplementary Figure 1. To counterbalance for the pairing of color and known size,
some observers learned that big objects were yellow-green (left image) while others
learned that big objects were red-blue (right image). Thus depending on the famil-
iarization, the same display fell into either the congruent or incongruent condition

(center image).



Chapter 4

The representation of objects in

ventral temporal cortex depends

on real-world sizel

While previous work has shown systematic organization for specific object categories
with functional selectivity (faces, houses, bodies), the large-scale organization of other
object categories with more distributed cortical representations remains unknown.
Here we find that object representations can be differentiated by their real-world size
in adult human occipito-temporal cortex. In a functional neuroimaging experiment,
observers were shown pictures of known big and small objects presented at the same
retinal size. A region in the parahippocampal gyrus was preferentially active for
big objects, while an adjacent region in inferior temporal cortex was more active for
small objects, with a mirrored organization along the lateral surface. These regions
show known-size preferences across different object categories and retinal sizes, and
during mental imagery. The systematic medial to lateral organization of big and small
objects suggests that real-world object size is an organizing dimension of distributed
object representation.

Introduction

One of the most robust results in visual neuroscience is the systematic response of

a large section of ventral temporal cortex to objects and shapes (Grill-Spector &

'This chapter is under review as Konkle, T. & Oliva, A. (2011). The representation of objects in
ventral temporal cortex depends on real-world size.



Malach, 2004; Milner & Goodale, 1995; Ungerleider et al., 1982). How object repre-

sentations are organized within this cortex is an active research area, with evidence

for category-selective regions for only a few object categories (faces, bodies, letter

strings; Cohen et al., 2000; Downing et al., 2001; Kanwisher et al., 1997; McCarthy

et al., 1997), and for partially or fully distributed representations for all other ob-

jects, reflected in distinct and reliable multi-voxel patterns of activity (Carlson et

al., 2003; Cox & Savoy, 2003; Haxby et al., 2001; Norman et al., 2006; O'toole et

al., 2005). While it has been suggested that multi-voxel patterns of activity reflect

inhomogeneities of category selectivity at the sub-voxel level (e.g. for orientation

in VI see Kamitani & Tong, 2005), more recent analyses have shown that patterns

of activity are reliable even with increased spatial smoothing (Op de Beeck, 2010),

can generalize across subjects(Shinkareva et al., 2008), and likely are capitalizing on

large-scale organization (Freeman et al., 2011). These results indicate that there is

a systematic organization to these distributed object activation patterns that we do

not yet understand.

One intrinsic and often overlooked property of an object is its physical size in

the world (Cate et al., 2011; Konkle & Oliva, 2011; Mullally & Maguire, 2011):

Small objects, like blueberries or paperclips, are held in the fingers or hands, are

manipulable, tend to have rounder shapes, are typically experienced with a steep

head angle at small retinal sizes (<3 degrees at arms length). Big objects like chairs,

tables, or even houses, are interacted with by body movement, are more navigationally

relevant, tend to be boxier, and are typically experienced with a head angle more

parallel with the horizon and subtend large retinal sizes (~30 degrees for a car at

10 m; see also Haldane, 1928). Thus, the size of objects in the world influences how

an observer interacts with objects and leads to systematic biases in visual experience

with each object category, influencing distributions of experienced shape, features,

and eccentricity.

In the current study, we investigated if the known size of real-world objects was an

organizing dimension of object representation. Here we focused on the representations

of everyday objects excluding faces, animals, and classically-defined tools. Using a



large stimulus set of specific real-world objects, we examined if any neural regions

showed differential activity to big versus small objects, independent of retinal size.

Our findings showed a consistent organization of big and small objects in medial to

lateral regions of ventral temporal cortex in the left-hemisphere. A similar mirrored

pattern of organization was also observed along the lateral surface. Our results suggest

that the real-world size of objects is a systematic property that predicts large-scale

patterns of activity for objects in ventral visual cortex.

Results

Differential responses to big and small objects

To examine if objects of big and small real-world sizes were systematically represented

in different regions of cortex, we conducted a functional magnetic resonance imaging

experiment in which images of isolated big objects (e.g. car, piano) and isolated

small objects (e.g. strawberry, safety pin) were presented at the same retinal size on

the screen to 12 observers. (Fig. la; Experiment 1). We conducted a whole-brain

random effects analysis to identify regions preferentially active to known small objects

or to known big objects (P < 0.001, cluster threshold > 100mm3 ). Along the ventral

surface of the brain, a bilateral region of the parahippocampal gyrus was more active

to big relative to small objects (henceforth labeled as "BigV" or big-ventral region),

while a left-lateralized adjacent region in the inferior temporal sulcus extending to the

fusiform gyrus was more active to small relative to big objects (henceforth "SmallA"

or small-anterior region, Fig. 1b). Along the lateral surface, a more posterior small-

preference region was observed ("SmallP" or small-posterior), with a big-preference

region in the right transoccipital sulcus ("BigD", or big-dorsal; Table 1).

These regions were observed reliably in single subjects (Fig. 1b; Table 1), with a

SmallA region present in 9 of 12 participants, a SmallP region present in all 12 par-

ticipants, and a bilateral BigV region present in 10 of 12 participants (FDR < 0.05,

cluster threshold> 100mm 3 ). The SmallP region was bilateral in half of the partici-

pants. The Big-Dorsal region was less reliably observed at the single-subject level (5



"- Small Objects D.

Big Objects

pA
Figure 1: (A) Example objects of known small and big sizes. All images were pre-
sented at the same retinal size. The stimulus set contained 200 small and 200 big
objects. (B) Contrasts of known big vs. small objects. Upper Panel: Results of
a random-effects analysis, small big contrast, (n = 12, P < 0.002, cluster thresh-
old=10, see Online Methods), plotted on the brain of one sample subject (sagital
section, x=-42, coronal section, y=-42). The bilateral region with preference for big
objects on the ventral surface is shown (BigV). Two small-preference regions were
found, one anterior (SmallA) and one posterior (SmallP). Lower panel: These regions
of interest are shown for 4 participants (12 of 12 showed a SmallP region; 10 of 12
showed a SmallA region; 10 of 12 showed a bilateral Big region).

Region n X Y Z Peak T

L Inferior Temporal SmallA 9/12 -42 -46 -11 6.0

L Lateral Occipital SmallP 12/12 -42 -61 -2 5.9

L Parahippocampal BigV 10/12 -30 -40 -5 -6.5

R Parahippocampal BigV 10/12 30 -40 -2 -6.4

R Transoccipital Big-Dorsal 5/12 12 -73 40 -7.0

Table 1. Talairach coordinates of the peak voxel from the group random effects
analysis.



of 12) with a more variable position across subjects, and it was thus not included for

further analysis. For all subsequent experiments and for additional participants, this

experiment was used as a localizer to independently define these regions, and only

responses in the left-hemisphere are reported as there were no differences between the

responses in the left and right hemisphere.

To estimate the effect size within these regions, 8 new participants were shown

two runs of the big and small object localizer. Regions of interest were estimated

from the first run for each subject and the magnitude of activation to big and small

objects was computed in these regions using data from the second run using an ROI

GLM. All 8 participants showed a SmallP and SmallA region in the left hemisphere,

and 7 of 8 showed a BigV region in the left-hemisphere, providing a replication of

Experiment 1. These regions showed differential responses that were 1.5 to 1.7 times

higher for objects of the preferred size relative to objects of the non-preferred size

(see Supplementary Fig. 1; Supplementary Table 1). Both regions also showed a

significant above-baseline response to objects of the non-preferred size (Supplemen-

tary Table 1). Thus, these objects generally activate a large swath along the ventral

surface of cortex, and here we show big objects have a peak of activity on the medial

aspect while small objects have a peak of activity on the lateral aspect.

Tolerance to retinal size changes

Ventral temporal cortex has been well-characterized as having object-selective re-

sponses that are tolerant to changes in retinal size, position, and viewpoint-a hall-

mark of high-level object representations (DiCarlo & Cox, 2007; Grill-Spector et

al., 1999; Sawamura et al., 2005; Vuilleumier et al., 2002). Consistent with this,

in Experiment 2, we manipulated the retinal size at which the objects were pre-

sented, and found that all of these regions showed more activity to objects of the

preferred known size independent of retinal size (Fig. 2; main effect of known size:

BigV: F(1,23) = 51.5,p = 0.001; SmallA: F(1,23) = 85.8,p < 0.001; SmallP:

F(1, 31) = 317.7, p < 0.001). In the BigV region, there was also an effect of the

retinal size, with a stronger response to stimuli presented at retinally large compared
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Figure 2: Retinal Size Manipulation Results. A) Objects of known small and big
sizes were presented at small and large retinal sizes on the screen. B) Activations in
independently-localized BigV, SmallA, and SmallP, and anatomically-defined early
visual cortex regions (Calcarine) in left hemisphere were measured with ROI GLMs
and the beta weights for the four conditions are shown. Error bars reflect t 1. S.E.M.
The BigV region showed effects of both the known size and the retinal size, while the
small regions showed only preference for the known size of objects with no modulation
to retinal size. The early visual control region showed modulation by the retinal size,
with no effect of known size of the object.

to retinally small sizes (main effect of retinal size: Big-L: F(1, 23) = 14.8, p = 0.012;

SmallA: F(1, 23) = 0.6, p = 0.46; SmallP: F(1, 31) = 5.0, p = 0.06). Thus, the BigV

region shows a large retinal size preference for both known small and known big ob-

jects, suggesting that the features it represents are not fully scale-invariant and are

enhanced by peripheral input (Arcaro et al., 2009; Levy et al., 2001; Levy et al., 2004).

As a control region, we examined the response in an anatomically-defined region of

early visual cortex along the calcarine sulcus, and found more activity for retinally

larger images than retinally smaller images, with no effects of known size (Calcarine:

retinal size: F(1, 27) = 22.8,p = 0.003; known size: F(1, 27) = 2.5,p = 0.16).

The retinal size manipulation also serves as a control for the distribution of low-



level features in early retinotopic areas (Levy et al., 2001). One potential concern

is that pictures of big and small objects presented at the same retinal size may

give rise to an uneven feature distribution presented to early foveal and peripheral

retinotopic cortex. However, both big and small regions showed tolerance to retinal

size variation, which varies the features presented to early areas. Thus, any uneven

feature distribution stimulating foveal versus peripheral retinotopic cortex cannot

explain away the activity in the big and small regions.

Mental imagery of big and small objects

Mental imagery requires observers to draw on stored knowledge about the visual

form of an object (Mechelli et al., 2004). For example, mental imagery of faces and

places have been shown to activate face- and place-selective visually responsive regions

(O'Craven & Kanwisher, 2000). More recently it has been demonstrated that even the

multi-voxel pattern of activation across ventral visual cortex for tools, foods, faces,

and buildings is similar from perception to imagery (Reddy et al., 2010; Stokes et al.,

2009). These results suggest that ventral temporal cortex contains stored information

about the visual appearance of different kinds of objects, which is activated similarly

during mental imagery and perception. Thus, when imagining different real-world

objects, we predicted that big objects would preferentially activate medial ventral

cortex while small objects would preferentially activate lateral ventral cortex.

To test this, names of objects were presented aurally to a new set of observers,

whose task was to form a mental image of each object (Experiment 3). Afterwards

they were presented with known big and small objects visually (as in Experiment 1), to

independently localize the big and small regions of interest in each subject. Consistent

with our predictions, when these participants imagined big and small objects, the big

and small regions showed more activity to objects with the preferred known size (Fig.

2; BigV : t(6) = 4.0,p = 0.007; SmallA: t(7) = 2.4,p = 0.048; SmallP marginal:

t(7) = 1.8,p = 0.107). These results also serve as a control for any concerns that our

previous results were driven by pictorial artifacts of the stimuli: here, any perceptual

features instantiated via imagery processes are meaningfully tied to object concepts



and are not driven by unintentional feed-forward stimulus artifacts.

Size Processing versus Stored Knowledge

One potential interpretation of these data is that the magnitude of activity in these

regions is related to the size the observer thinks the object is in the world. For

example, the bigger one conceives of an object, the more it will drive activity in the

big region and the less it will drive activity in the small regions, independent of the

object's identity. To test this, observers in Experiment 3 also imagined the big and

small objects at an atypical size, e.g. a tiny piano (the size of a matchbox), or a giant

apple (the size of car). If activity in these regions is driven by the conceived size of the

object, then in these size-violation conditions the response in these regions should be

reversed. Alternatively, if activity is driven by activating stored representations of the

visual form of big and small objects, then the big and small regions should respond

similarly between the typical size conditions and the size-violation conditions.

When observers imagined big and small objects in the size-violation conditions,

we still observed that the big and small regions showed more activity to objects

with the preferred known size. That is, imagining an apple the size of a car still

activated the small-preference regions more than imagining a tiny piano (see Fig.

3; SmallA: t(7) = 2.6,p = 0.036; SmallP: t(7) = 2.4,p = 0.048; BigV trending:

t(6) = 1.7,p = 0.136). Thus activity in these regions do not reflect the conceived

size of the imagined object; these regions are not performing a size computation

independent of object identity.

The big region had a less pronounced preference for big relative to small objects

when those objects were imagined at the wrong sizes (marginally significant inter-

action: F(1, 27) = 5.9, p = 0.051). This suggests that this region may in part be

reflecting the physical size an observer imagines the object to be. However, a more

parsimonious account of this data is that the big region also has a peripheral prefer-

ence, as observed in our retinal size manipulation experiment (Fig. 2). If observers

imagine giant apples at a large retinal size and tiny pianos at a small retinal size (see

Konkle & Oliva, 2011), then this would give rise to the results observed here. Consis-
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Figure 3: Mental Imagery Results. Activations in independently-localized BigV,
SmallA, and SmallP regions in left hemisphere are shown. Orange bars show data for
imagined objects known to be small (e.g. strawberries) and blue bars show data for
imagined objects known to be big (e.g. pianos). (A) Bars with solid borders reflect
conditions where observers imagined typically-sized objects. (B) Bars with dashed
borders reflect conditions where the objects were imagined at atypical sizes. These
results show activity in these regions is driven more by the known size of the typical
object than by the conceived size of the object.

tent with this interpretation, the small regions did not have any strong modulations

by retinal size, and did not show an interaction in the size-violation conditions.

Organization of Category Information

In all experiments reported so far, objects were presented in blocks by the known

size of the object. Thus one potential concern is that only a few of the objects (e.g.

monuments or tools; Aguirre et al., 1998; Chao et al., 1999) drive the response in

these big and small preference regions. In Experiment 3 we presented observers with

object exemplars blocked by category (e.g. 16 backpacks, 16 grills), allowing us to

estimate the response in these regions to each object category independently. These

object categories parametrically varied in known size on a log scale (Fig. 4a, see

Supplementary Methods and Supplementary Fig. 2; see also Konkle & Oliva, 2011).

The big and small regions showed a systematic modulation of overall activity

based on the real-world size of the object (Fig. 4b; BigV: F(15, 127) = 8.1, p < 0.001;

SmallA: F(15, 79) = 3.6,p < 0.001; SmallP: F(15, 127) = 3.9,p < 0.001). In the

a Mental Imagery - typical size
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Figure 4: Stimuli and results of the category blocks experiment. A) 16 different
categories of objects were presented in a blocked-design. An example stimulus from
each object category is shown, arranged by known size. These object categories
follow a logarithmic scaling along this dimension. B) GLMs were conducted in the
independently-defined regions-of-interest in each subject, with data for BigV, SmallA,
and SmallP regions in left-hemisphere shown. Each plot shows the average beta
values along the y-axis, computed for each category across subjects. The categories
are arranged along the x-axis by real-world size, as shown in (a), and the regression
line over the group data is shown. Error bars reflect ± 1. S.E.M. Multiple object
categories showed high responses in each region, with systematically more activity
with increasing or decreasing object size in the big or small regions, respectively.
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big region, multiple categories of objects with a large real-world size significantly

activated this region, indicating the responses we observed in the first experiment

were not driven a select set of stimuli from particular categories. Similarly, the small

regions showed a high response to a variety of small object categories that are not

considered classical tools (Fig. 4a). We observed a relatively parametric modulation

of response in these regions as a function of known size, both when calculated on the

group averaged betas and also within single subjects (BigV: mean r = 0.51, t(7) =

8.1,p < 0.001; SmallP: mean r = -0.36,t(7) = -4.0,p < 0.005; SmallA: mean

r = -0.46, t(4) = -4.7, p = 0.01; see Methods, see Supplementary Table 2 for single

subject results). However, it is not the case that there is a clear linear mapping

between the log of known object size and the response of these regions. Nevertheless,

the data show that a variety of big object categories activate the big region, ruling

out any concerns that these regions were solely driven by specific categories in our

previous sets such as houses or monuments (Aguirre et al., 1998) or places (Epstein

& Kanwisher, 1998).

Discussion

Nearly all object categories besides faces, bodies, places, and letter strings, do not

have a spatially-contiguous and highly-selective cortical representation, but instead

activate a swath of ventral and lateral temporal cortex to varying degrees (Carlson

et al., 2003; Cox & Savoy, 2003; Haxby et al., 2001; Norman et al., 2006; O'toole

et al., 2005). The organizing dimensions of object representations within this cortex

have yet to be discovered. Here we show that object-responsive cortex has reliably

differential responses to known big and small objects, suggesting that the real-world

size of objects is a large-scale organizing dimension of object representation.

On the ventral surface, we observed a medial region responsive to big versus small

objects (BigV) and an adjacent lateral region more responsive to small versus big

objects (SmallA; see Fig. 5). Along the lateral surface of cortex, we observed another

region of cortex with preferential responses to small objects (SmallP) and a dorsal
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Figure 5: Relationship of these regions to other well-characterized regions. A)
Functionally-localized regions from a single representative subject are shown on
an inflated brain. Inner, middle, and outer eccentricity rings are shown in light,
medium, and dark blue respectively (see Supplementary Methods). LOC and pFS
(objects>scrambled) are shown in yellow, FFA (faces>objects) is shown in pink, and
PPA and TOS (scenes>objects) are shown in green. The SmallA and SmallP regions
are shown in orange and the BigV and BigD region is shown in blue, also indicated
with white arrows. B) Axial slices from two different subjects (z=-3; z=-6). BigV
and SmallP regions are outlined in black, with voxels that overlapped with PPA and
LOC shown in the green and yellow, respectively.
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region with preferential responses to big objects (BigD). The ventral activations were

reliable within and across observers and were localized with less than 10 minutes of

scanning. In subsequent experiments, we demonstrated that (i) these regions are more

responsive to objects of the preferred size independent of changes in retinal size, (ii)

these regions are activated during mental imagery of objects, both when imagining

typically-sized objects and objects at a non-normative size, and (iii) these regions are

not driven by a few specific categories but instead respond to many different object

categories, with a relatively parametric response to objects spanning the range of

real-world sizes.

Notably, objects of the non-preferred size also have a response well above baseline

in all of these regions (See Supplementary Information; see also Fig. 2, Fig. 4, and

Supplementary Fig. 1). Thus, the big and small regions described here should not be

considered highly-selective modules, as has been argued about other category-selective

regions along occipito-temporal cortex (Kanwisher, 2010). Rather, these data are

consistent with a distributed account of the representation of everyday objects, where

a large swath of cortex is active during the processing of such objects, but to different

degrees (Haxby et al., 2001; Ishai et al., 1999). We demonstrate that the size of the

object in the world predicts more medial or lateral ventral cortex engagement.

Relationship to surrounding characterized regions

Previous studies characterizing category-selective regions along the ventral and lat-

eral surface of visual cortex have found that these regions come in pairs, e.g for

faces (FFA-fusiform face area, OFA-occipital face area), bodies (FBA-fusiform body

area, EBA-extrastritate body area), general shape-selectivity (pFS-posterior fusiform,

LOC-lateral occipital complex), and scenes (PPA-parahippocampal place area, TOS-

transoccipital sulcus; see Schwarzlose et al., 2008). These regions are arranged in a

mirrored fashion from medial-ventral wrapping around the lateral surface to medial-

dorsal regions (Hasson et al., 2003), with the ventral surface showing more overall

visual form information and the lateral surface showing more location-, motion-, and

local shape information (Beauchamp et al., 2002; Drucker & Aguirre, 2009; Haushofer



et al., 2008; Schwarzlose et al., 2008). Consistent with this pattern, we also observed

big and small object regions fitting into this large-scale mirrored organization, with

BigV and SmallA on the ventral surface and SmallP and BigD on the lateral surface

(Fig. 5a). Thus the properties that have been discovered for the highly-selective re-

gions may also apply to the nearby regions of less-selective object-responsive cortex,

where object size predicts the large scale topographic organization of objects that

have a more distributed representation.

The SmallP and BigV ROIs show proximity to and overlap with the well-known

functionally localized regions of the lateral occipital complex (LOC: objects>scrambled;

Grill-Spector et al., 1999) and the parahippocampal place area (PPA: scenes>objects;

Epstein & Kanwisher, 1998, Fig. 5b, see Supplementary Methods). SmallP is just

anterior to LOC, which is nearby and partially overlapped with other related regions

such as the extrastriate body area (EBA), motion area MT, and the medial tempo-

ral gyrus tool area (MGT-TA; Beauchamp et al., 2002; Chao et al., 1999; Downing

et al., 2001; Valyear & Culham, 2010). BigV is partially overlapped with PPA,

a scene-selective region which has also been shown to have a reliable response to

objects, particularly large objects such as buildings (Aguirre et al., 1998; Diana et

al., 2008; Downing et al., 2006; Epstein, 2005; Litman et al., 2009), as well as to

strongly contextual objects (Bar, 2004), which tend to be larger than non-contextual

objects (Mullally & Maguire, 2011). Interestingly, both LOC and PPA have recently

been showed to modulate their responsiveness with the implied size/distance of the

depicted object (Amit et al., 2008; Cate et al., 2011), with object size predicting

parametric activity in parahippocampal cortex (Mullally & Maguire, 2011).

Given the relationship between the PPA and the BigV region, one concern is that

responses in the BigV region may be driven by scene imagery (O'Craven & Kanwisher,

2000), where bigger-sized objects are more likely to cause observers to imagine a scene

than smaller objects. However, such an account would predict that imagining giant

apples would lead to more scene imagery than tiny pianos, and this pattern of data

was not observed in the BigV region. Additionally, given the rapid presentation rates

of the visually-presented objects, we think scene-imagery is unlikely to account for the



full range of data reported here (Epstein & Ward, 2010; see also Mullally & Maguire,

2011)

While it is possible to test whether these overlapping regions along lateral and

ventral cortex are driven more by shape statistics, contextual associations, implied

distance, or objects of different sizes, likely there is no single "high-level" description

that will perfectly capture the response properties of these large regions of cortex.

Under the proposal here, these regions of cortex are more likely to be involved in

the processing and storage of small or large objects, where the exact nature of those

stored representations across the ventral surface remains an open question.

Proposals for the topography of object knowledge

Existing proposals for large-scale organization of object knowledge in ventral cortex

argued for spatial clustering by conceptual superordinate categories (e.g. food, an-

imals, tools; Chao et al., 1999; Mahon & Caramazza, 2011; see also Weber et al.,

2009), by some perceptual shape space (Ishai et al., 1999; Op de Beeck et al., 2008b)

or by eccentricity biases that stem from local or global visual processing needs (Hasson

et al., 2002; Levy et al., 2001; Malach et al., 2002) or high-level cognitive processes

(Gauthier, 2000). Here we make the proposal that a physical parameter (the size of

objects in the world) may capture some of the variance of organization and can refine

and extend these featural and processing-based proposals. Why might the real-world

size of objects be a natural parameterization of object knowledge?

One possibility is that the size of objects in the world gives rise to systematic biases

in retinal visual experience which are extracted in early visual areas and ultimately

dictate where high-level object representations will be in more anterior cortex. This

idea most closely dovetails with the eccentricity-bias hypothesis of Levy, Hasson, and

Malach, which proposes that high-level object representations extend anteriorly from

particular eccentricities bands in early retinotopic cortex (Hasson et al., 2003; Levy

et al., 2001; Levy et al., 2004; Malach et al., 2002). In support of this proposal, Levy

et al., (2001) found face-selective areas tend to have a foveal-bias while scene-selective

areas have a peripheral bias, and these extend from center and peripheral early vi-



sual areas respectively. This organization is consistent with recently discovered full

retinotopic maps, where the fovea to periphery maps from lateral to medial ventral

cortex (Arcaro et al., 2009). To apply the center-periphery organization to other cat-

egories, Malach et al. (2002) proposed that the location of different object categories

might be driven by different processing resolution needs, whether it be analysis of

fine-detail (foveal) or more holistic integration (peripheral), similar to arguments for

process-dependent organization (Gauthier, 2000). However, this proposal does not

easily lead to testable predictions about other objects until it is first determined what

kinds of processing resolution an object requires (Tyler et al., 2005). Further, it has

also recently been shown that scene-selective areas actually show a greater response

to high spatial frequency (Rajimehr et al., 2008), inconsistent with the idea of coarser

spatial processing.

Here we make a more explicit prediction that the experienced retinal size, as well

as other correlated dimensions such as object curvature and spatial frequency content,

are systematically related to the real-world size of the objects (with smaller rounder

objects subtending smaller visual angles at typical distances than larger boxier ob-

jects). Unsupervised efficient learning mechanisms in the early visual hierarchy may

extract these regularities in eccentricity and shape (Attneave, 1954; Carlson et al.,

2011; Field, 1987); by more anterior stages along the visual hierarchy, the more scale-

and position-tolerant visual representation in these areas may be naturally arrayed

along the cortical sheet in a continuous manner, with small-object features extended

from foveal cortex and large-object features extended from more peripheral cortex

(see Hasson et al., 2003).

In addition to biases in incoming visual experience, requirements for subsequent

processing for action and navigation might also predict that real-world size would

be a valuable organizing dimension of object representation. This is similar to the

connectivity-hypothesis proposed by Mahon and Caramazza, in which the organiza-

tion of object representation is driven by long-range network connectivity (Mahon &

Caramazza, 2011; Mahon et al., 2007): manipulable objects like tools may require

different "down-stream" processing requirements than animate objects like animals.



Thus, the ventral stream organization may be driven not by biases in experience, but

instead by functional-connectivity with dorsal regions subserving different action rep-

resentations. The real-world size of objects naturally constrains the kinds of actions

and effectors that will be used when an observer interacts with an object, and thus

extends this proposal beyond animals and tools to the large range of other biological

and manmade artifacts, which often get grouped together as "other objects" (Hasson

et al., 2003; Op de Beeck et al., 2008a). Real-world object size is a natural proxy

for the underlying continuum between manipulable and navigationally-relevant fea-

tures. Finally, while the eccentricity-bias and connectivity-driven hypotheses have

been discussed as competing alternatives, the real-world size of objects unifies these

proposals, suggesting both bottom-up experience-driven learning and top-down re-

quirements for subsequent actions provide convergent pressures for object knowledge

to be topographically organized by real-world size.



Methods

Participants

22 healthy observers with normal or corrected-to-normal vision participated in one

or more of the experiments in a 2 hr fMRI session (age 19-36, 13 female, 21 right-

handed). Informed consent was obtained according to procedures approved by the

MIT Internal Review Board.

MRI Acquisition

Imaging data were collected on a 3T Siemens fMRI Scanner at the Martinos Center

at the McGovern Institute for Brain Research at MIT. Experiments 1 and 3 used a

12-channel phased-array head coil and Experiment 2 used a 32-channel phased-array

head coil. Blood oxygenation level dependent (BOLD) contrast was obtained with

a gradient echo-planar T2* sequence (33 oblique axial slices acquired parallel to the

anterior commissure - posterior commissure line; 64 x 64 matrix; FoV = 256 x 256

mm; 3.1 x 3.1 x 3.1 mm voxel resolution; Gap thickness = 0.62 mm; TR = 2000 ms;

TE = 30 ms; Flip angle = 90 degrees).

Experiment 1: Big and Small Object Localizer

12 observers were shown images of big real-world objects and small real-world objects

in a standard blocked design. All objects were shown at the same visual angle (9x9

degrees). Each block was 16s during which 20 images were shown per block for 500

ms each with a 300 ms blank following each item. Fixation periods of 10s intervened

between each stimulus block. Ten blocks per condition were shown in a single run of

8.8 min (265 volumes). A total of 200 big and 200 small distinct object images were

presented. Observers were instructed to pay attention to the objects and to press a

button when a red frame appeared around an item, which happened once per block.



Experiment 2: Retinal Size Manipulation

8 observers were shown blocks of big and small objects at big and small retinal sizes.

The big and small objects stimuli were the same as in Experiment 1, and the retinal

sizes were 11x11 degrees visual angle and 4x4 degrees visual angle for the small and

big visual sizes, respectively. The blocked design and stimuli were the same as in

Experiment 1: each block was 16s during which 20 images were shown for 500 ms each

with a 300 ms blank following each item. Blocks were separated by fixation periods

of 10s. There were four conditions (2 real-world sizes x 2 retinal sizes), presented in a

pseudorandom order, such that all conditions appeared in a shuffled order 5 times per

run (8.8 min, 265 volumes). Two runs were conducted in this experiment, yielding 10

blocks per condition. Observers were instructed to pay attention to the objects and

to press a button when a red frame appeared around an item, which happened once

per block.

Experiment 3: Mental Imagery

The names of different objects were presented aurally to 8 naive observers, and ob-

servers were instructed form a mental image of each object. Observers' eyes were

closed for the entire duration of each run. In 16s blocks, observers heard 5 object

names (3.2 s per object), followed by the word "blank" signifying the beginning of

each 10s blank interval. Runs always began with a 10 second blank interval. The

two main conditions were blocks of small object names (e.g. "peach") and big object

names (e.g. "lawn chair"). In two additional conditions, observers imagined these

small objects at giant sizes (e.g. hearing the words "giant peach") and the big objects

at tiny sizes (e.g. hearing the words "tiny lawn chair"). There were 30 small objects

and 30 big objects, divided into two sets. Each run used the stimuli from one set

and contained 3 blocks of each condition, lasting for 5.4 min (161 volumes). Six runs

were conducted in the experiment, three for each object set, yielding 12 total blocks

per condition. All imagery runs were conducted first, prior to the presentation of any

experiments with visual stimuli, including the Big Small Object localizer.



Sounds were presented through Sensimetric MRI Compatible Insert Earphones.

To set the volume levels in the scanner, a functional run was started and the volume

of the stimuli was slowly increased until the participant pressed a button indicating

they could hear the stimuli clearly.

Before the experiment, observers were given detailed instructions that they should

imagine only isolated objects, and that "giant" versions of small objects should be

imagined "as having the same size as a car or piano" while tiny versions of large objects

should be imagined "as having the same size as a matchbox or something that could

fit in your hand." Observers then were given a short practice run outside the scanner

in which they were presented with one block each of small objects, big objects, tiny

versions of big objects, and giant versions of small objects, with intervening blank

periods. None of these practice object stimuli were used in the main experiment.

Experiment 4: Object Category Blocks

8 observers were shown blocks of objects by category. Each block was 16s, during

which 16 object exemplars from a category were presented for 700 ms with a 300 ms

blank following each item at 9x9 degrees visual angle. Fixation periods of 10s preceded

and followed each stimulus block. The visual stimuli consisted of 16 different object

categories, each with 16 different exemplars per category, which ranged systematically

in real-world size. The 16 object categories were divided into two groups of 8, both of

which contained the whole range of real-world sizes (see Supplemental Materials). In

each run, 8 categories from a set were shown in a random order and repeated in the

second half of the run again in a random order. This ensured that each category was

seen more than once per run and occurred in both the first and second half of the run.

Each run was 7.1 min (213 volumes). Four runs were conducted in the experiment,

two for each image set, yielding four stimulus blocks per category. Observers were

instructed to pay attention to the objects and to press a button when a red frame

appeared around an item, which happened once per block.



Data Analysis

Functional data were preprocessed using Brain Voyager QX software (Brain Innova-

tion, Maastricht, Netherlands). Preprocessing included slice scan-time correction, 3D

motion correction, linear trend removal, temporal high pass filtering (0.01Hz cutoff),

spatial smoothing (4-mm FWHM kernel), and transformation into Talairach coordi-

nates. For the ROI overlap computations, analyses were performed on unsmoothed

functional data in ACPC space (no talairach transform).

Statistical analyses were based on the general linear model. All GLM analyses

included regressors for each experimental condition, defined as square-wave regressors

for each stimulus presentation time convolved with a gamma-function to approximate

the idealized hemodynamic response. A whole-brain, random affects group average

analysis was conducted on data from the Big Small Object localizer (Experiment 1).

A contrast was performed at an uncorrected threshold of P < 0.001 (cluster threshold

of 100mm 3 ) to test for regions more active to small vs. big objects and visa vera.

To obtain regions-of-interest from the Big Small Localizer, whole-brain GLMs

were conducted for each individual. The SmallA and SmallP regions were defined from

contrasts of Small>Big, and the BigV regions were defined from the opposite contrast

of Big>Small. All ROIs were taken from t-maps corrected at FDR<0.05, with a

cluster threshold of 10. In some cases, the threshold was made more conservative,

e.g. when the SmallA and SmallP regions, which each have distinct peaks, were

connected by voxels with lower t-values. If any of the targeted ROIs were not present

at FDR<0.05, the threshold was lowered to FDR<0.02. If no clear ROI was present

at that threshold, then that ROI was not defined for that participant. ROIs were

defined as the set of contiguous voxels that were significantly activated around the

peak voxel identified from within a restricted part of cortex based on the anatomical

position.

For all ROI analyses, all ROIs were defined from the Big Small Localizer (indepen-

dent dataset), and the response of these regions to different experimental conditions

was assessed in subsequent experiments. For each subject and each ROI, GLMs were



run on the average time series of the voxels in the ROI to obtain regression coefficients

(betas) for the experimental conditions. For experiments with 2x2 designs (Experi-

ment 2: Retinal size manipulation; Experiment 3: Mental Imagery), to evaluate the

effects of each factor across observers, repeated-measures ANOVAs were run on the

betas across observers for each ROI. For the parametric ROI analysis (Experiment

3: Category Blocks), the correlation between the real-world size rank order and the

beta weights for those object categories was computed for each subject and each ROI.

These r-values were Fisher's-z transformed (to be distributed normally), and t-tests

were subsequently conducted to test whether these single-subject correlations were

reliably different than zero.



Supporting Information

Supplementary Methods: Effect size in big and small regions

In 8 participants, we presented two runs of the big small object localizer (see Experi-

ment 1 Online Methods). Regions of interest were defined from the first run of the big

small object localizer, and the magnitude of response in each region was estimated

using data from the second run of the same experiment. Each region showed a reli-

able differential response to objects of big and small known sizes, while also showing

an above-baseline response to objects with the non-preferred size. The results are

depicted in Supplementary Figure 1 and the statistics are reported in Supplementary

Table 1.
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Supplementary Figure 1. Effect Size estimation from independent data. Beta weights
are shown for the big- and small-preference regions in the left-hemisphere. Error bars
reflect i 1. S.E.M.

Small Objects
Mean Beta (sem)

Big Objects
Mean Beta (sem)

Small Objects vs.
Big Objects

Non-preferred vs.
Baseline

BIgV .71 (.23) 1.23 (.18) t(6)=3.54, p<0.05 t(6)=3.11, p<0.05

SmallA 1.4 (.18) .89 (.11) t(6)=4.61, p<0.005 t(6)=7.83, p<0.001

SmallP 1.59 (.14) 1.06 (.14) t(7)=16.63, p<0.001 t(7)=7.57, p<0.001

objects in indepen-Supplementary Table 1. Average beta weights for big and small
dently localized big and small regions in the left hemisphere.



Supplementary Methods: Category Blocks Stimuli

In the category blocks experiment, object categories were chosen based on size ranking

results from Konkle & Oliva, 2011. In that study, observers sorted 100 objects into

8 bins according to their known size. The 8 size ranks reflected a logarithmic scaling

of actual size in the world. In the current study, the 16 object categories used in

the category blocks experiment were chosen to have 2 objects from each size rank.

These 16 categories were divided into two image groups, where a single run of the

experiment used images from either group 1 or group 2. Image group 1 contained

keys, donuts, shoes, backpacks, grills decorative screens, tractors, and arches. Image

group 2 contained rings, video game controllers, pizzas, guitars, lawnmowers, tends,

fountains, and semi trucks. A graph of the actual typical size of these 16 object

categories is shown in Supplementary Figure 2.

Supplementary Figure 2. Known object size of stimuli in Experiment 2: Category
Blocks. The typical real-world size of 16 different objects categories was measured
or estimated based on internet searches. Here actual size was characterized as the
linear distance between opposing corners of the 3D bounding box (i.e sqrt(height2 +
width2 + depth2 )). Left: Plot of the actual size of objects with a linear scale. Right:
Plot of the actual size of objects with a log scale. See Konkle & Oliva, 2011.



Supplementary Methods: Single Subject Correlations in Category Blocks

Experiment

The big and small regions showed a parametric modulation of overall activity based

on the real-world size of the object category. This effect was reliable both at the

group level and single subject level.

At the group level, beta values were computed for each category from an ROI

GLM for each subject, the beta values were averaged across subjects, and then the

correlation was computed. Activation increased with increasing known size in the big

region (BigV: r = 0.69, p = 0.003), and decreased in the small regions, as predicted

(SmallA: r = -0.67,p = 0.005; SmallP: r = -0.58,p = 0.017).

At the single subject level, Pearson's r was computed for each subject, and Fischer-

z transformed to follow a normal distribution, and then t-tests of these single subject

correlation coefficients were conducted to test for difference from zero. We observed a

significant modulation of activity in the predicted directions for the big and small re-

gions (BigV: mean R = 0.51, t(7) = 8.1, p < 0.001; SmallA: mean R = -0.46, t(4) =

-4.7,p = 0.009; SmallP: mean R = -0.36, t(7) = -4.0,p = 0.005). This also held

when the Spearman rank-order correlation was computed for each subject. Sup-

plementary Table 2 indicates for each region the number of subjects who showed

modulation of activity in the predicted direction and in the unpredicted direction.

# subs with # subs with #subs with significant
correlation in significant correlation correlation in

predicted direction Predicted direction unpredicted direction

BigV-L 8/8 6/8 0/8

BigV-R 8/8 6/8 0/8

SmalIP-L 7/8 2/8 0/8

SmaliP-R 5/5 3/5 0/5

SmalIA-L 5/5 2/5 0/5

Supplementary Table 2. Summary of parametric modulations across subjects for Ex-
periment 4: category blocks. We predicted increasing activation with increasing size
for the big region, and decreasing activation for the small regions. Nearly all sub-
jects showed modulations in the predicted direction with most showing a significant
correlation at the single subject level. No subjects showed significant modulations in
these regions in the opposite direction.



Supplementary Methods: Characterizing Reliability and Overlap of ROIs

The Small and Big ROIs showed proximity to and overlap with the well-known func-

tionally localized regions of the lateral occipital complex (LOC: objects>scrambled;

Grill-Spector et al., 1999) and the parahippocampal place area (PPA: scenes>objects;

Epstein & Kanwisher, 1998). To characterize the overlap between these areas, we first

gathered data from a new set of 7 observers on two runs of the Big and Small ROI lo-

calizer and two runs of a PPA and LOC localizer described below. We then computed

overlap between two ROIs, e.g. LOC and SmallP, and compared it to the overlap of

the ROI to itself across runs. Overlap was characterized using a procedure modified

from previous methods (Scholz et al., 2009).

PPA and LOC were localized from a standard localizer experiment in which stim-

ulus blocks of scenes, objects, faces, and scrambled objects were shown, with each

block lasting 16s during which 20 images were shown for 500ms each with a 300 ms

blank (images shown at 9x9 degrees visual angle). Fixation periods of 10s preceded

and followed each stimulus block. The conditions were presented in a pseudorandom

order, such that all 4 conditions appeared in a shuffled order 4 times per run. A run

was 7.1 min (213 volumes). Observers were instructed to press a button when a red

frame appeared around an item, which happened once per block.

Overlap between two target regions was computed over a range of t-value thresh-

olds then averaged, allowing for regions to be different sizes. For any two regions

being compared, the range of t-values started at the maximum t-value of the two

region's FDR<0.05 threshold, and increased by steps of 0.02 to the lowest of the two

peak t-values. Additionally, we required a minimum of 10 voxels and a maximum of

500 voxels from both ROIs at any given threshold. The analysis proceeded by get-

ting the contiguous set of voxels around the peak voxel that were above the specific

threshold within an anatomically defined mask. At each threshold, degree of overlap

was quantified as the percent of voxels of the smaller region were contained in the

larger region, for left hemisphere ROIs only. This measure can be conceptualized as

what percent the smaller region is contained in the bigger region without relying on



a specific arbitrary t-threshold.

The overlap analysis showed that the LOC region across two runs was 72%

(SEM=6%) contained with itself, and the SmallP region was 81% contained with

itself (SEM=11%). Given these numbers as reference of within-ROI reliability, the

SmallP was on average 35% contained in the LOC region (SEM 6) (See Supplementary

Table 3). Thus while there is some overlap between LOC and SmallP, the regions

which show a preference for small objects are not capturing the same region as is

localized with objects>scrambled.

The PPA region across two runs was 85% contained (SEM=8%) and the Big

region across two runs was 90% contained (SEM = 3%). Comparing these two regions

together, the PPA and Big regions were on average 58% contained (SEM=11%) (See

Supplementary Table 3). On average there was relatively more overlap between PPA

and Big regions then there was with LOC and SmallP regions.

BigV1 PPA1 BigV1 PPA1 SmP1 LOC1 SmP1 LOCi
BigV2 PPA2 PPA2 BIgV2 SmP2 LOC2 LOC2 SmP2

Sub1 0.91 0.81 0.21 0.01 0.95 0.87 0.52 0.80

Sub2 - 0.98 - - 1.00 0.93 0.00 0.27

Sub3 0.81 0.86 0.38 0.95 0.75 0.57 0.26 0.46

Sub4 - 0.92 0.19 - 0.32 0.59 0.36 0.19

Sub5 0.98 0.93 - 0.91 - 0.69 0.61 -

Sub6 0.89 0.93 0.68 0.97 0.99 0.78 0.14 -

Sub7 0.93 0.36 0.84 0.44 0.86 0.58 0.27 0.35

Mean 0.90 0.83 0.46 0.66 0.81 0.72 0.31 0.41

SEM 0.03 0.08 0.56 0.11 0.11 0.06 0.08 0.11

Supplementary Table 3: Average % containment between a region with itself across
runs and with the comparison region across runs. For example, BigV1 indicates
the big-preference region (big>small) defined from the first functional run; BigV2
indicates the big-preference region defined from the second functional run. SmP1
and SmP2 indicates the SmallP region (small>big) defined in the first and second
runs.
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Chapter 5

Conclusions

In this thesis, I proposed that the real-world size is an intrinsic part of object represen-

tation, with behavioral consequences for perceptual tasks, and neural consequences for

the spatial topography of object knowledge. Here, I summarize the empirical findings

and suggest that they can be coherently explained by thinking about the experience

of an observer situated in a three-dimensional world. I introduce this situated ob-

server framework, and highlight the implications for models of object representation

and the organization of cortex.

Summary of Empirical Findings

Real-world objects have a canonical visual size

In Chapter 2, we observed that when people draw or imagine objects, requiring them

to access their perceptual object representations, the visual size at which objects

are elicited depends systematically on known size. Additionally, when people resize

pictures of objects to look best (putatively to provide the best "representational fit",

Palmer, Schloss, and Gardner, in press), they scale objects to be proportional to

the log of the known size. Thus, when accessing existing object representations to

perform a variety of tasks, there is a systematic relationship between the visual size of

the objects and their real-world size. Akin to the previous literature showing objects
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Figure 1: Canonical and non-canonical perspective of a tricycle, from Palmer, Rosch,
& Chase, 1981. Canonical and non-canonical visual size of the tricycle, from Konkle
& Oliva, 2011.

have a canonical perspective, this suggests that objects also have a canonical visual

size (Figure 1).

How does canonical visual size influence models of object representation? Objects

can be recognized across a range of visual sizes, and this visual-size invariance has

led to the inference that object representations do not contain visual size information

(e.g. Biederman & Cooper, 1992). However, we suggest that visual size information

is stored for each object, and this visual size information is systematically related to

the known size of objects in the world.

Real-world size processing is automatic

When we are presented with an object, we can automatically and rapidly recognize

it and name its category. In Chapter 3, we found that our knowledge of real-world

size is also accessed automatically during object processing: when you see a familiar

object, you not only know what it is, you also know how big it is in the world.

In our familiar-size Stroop task, two real-world objects of big and small known

sizes (e.g. A piano and an apple) were presented side by side on the screen at two

different visual (or retinal) sizes. Observers' task was to make judgments about

the visual size (e.g. Which is bigger on the screen?). Object identity and real-

world size was irrelevant to the task. Nevertheless, we observed a familiar-size stroop

effect: for example, when the piano was presented bigger than the apple (congruent

trials), observers were faster to make visual size judgments than when the known size
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Congruent Incongruent

Figure 2: Example congruent and incongruent displays for the familiar-size Stroop
task

mismatched with the retinal size (incongruent trials; Figure 2). We showed that this

effect is not cognitively penetrable, but instead likely arises from richer knowledge

about real-world size acquired over time.

One of the defining characteristics of object recognition is that we can recognize the

category of an object over different positions, viewpoints, and visual sizes. However,

even though we can recognize an apple whether it's depicted on a stamp or a billboard,

these data suggest that in doing so we also automatically access its typical size in the

world. The results suggest that our perceptual representations of objects not only

give rise to automatic categorization, they also give rise to automatic real-world size

information. This provides support for the claim that the real-world size of objects

is a basic and fundamental property of object representation.

Real-world size predicts the spatial organization of object rep-

resentation

In Chapter 4, we examined the impact of real-world size on the neural organization of

object knowledge. Specifically, we examined the representations of everyday objects

excluding faces, animals, and classically-defined tools, and asked whether there were

any regions that were differentially selective to objects of big and small known size.

Our findings showed a consistent organization of big and small objects in medial to

lateral regions of ventral temporal cortex in the left-hemisphere. This was mirrored
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Mirrored Macro Organization

Lateral Surface
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t
Small

Ventral Surface

Small

Big

Figure 3: Evidence for a mirrored macro organization. Along the ventral surface of
the temporal lobe, there was medial to lateral organization of preference for big to
small objects (BigV to SmallA). This organization was mirrored on the lateral surface
(SmallP to BigD).

along the lateral surface, with small to big organization moving from lateral to medial.

Thus, consistent with ideas of Hasson et al. (2003), we find support for a mirrored

macro organization of object knowledge (Figure 3).

Several follow-up experiments characterized the responses of these big and small

preference regions, showing the underlying representations are tolerant to changes

in visual size, are activated during mental imagery, and are active for a range of

different object categories of the preferred size, and thus not solely driven by objects

like monuments or tools. It is important to note that in general, these objects drive

a large above-baseline responses across ventral cortex. Thus these regions are not

highly-selective modules for big objects only or small objects only, but instead show

a systematic differential response.
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The current state of understanding about the organization of object representa-

tion across cortex is that there are islands of category selectivity amongst a sea of

heterogenous (but systematic) responses whose organization is unknown. The results

of Chapter 4 show evidence that real-world size is a coarse organizing dimension un-

derlying these distributed activation patterns of different object categories. It will be

exciting to more closely examine whether previously established category-selective re-

gions are arranged within this broader size-based organizational scheme, as the areas

for faces and bodies typically fall in between the Small and Big regions of selectivity

(see also Chapter 4, Figure 5).

A Situated-Observer Framework

The empirical results of this thesis argue for a critical role of real-world size for

object representation. This novel approach arises from the observation that objects

are fundamentally physical entities-our experience with objects, both in our lifetime

and over evolutionary time, arises as situated observers in a three-dimensional world.

Here I outline the critical points of this situated-observer framework and discuss the

implications of the empirical findings from within this unifying context.

The three-dimensional world structures the shape, size, and various features of

objects (Haldane, 1928; see Appendix): natural objects in the world have optimized

their shape and sizes to be coordinated with their biological infrastructure and func-

tions. This implies that there are systematic characteristics of objects based on their

physical size. Additionally, the three-dimensional world structures how we experience

these objects: we observe and interact with the world as observers standing from a

height above the horizon, with arms of a certain length, and bodies of a certain size.

The distributions of object information projected on our retina are naturally struc-

tured based on these geometric constraints, giving rise to biases in experienced retinal

size, eccentricity, elevation, spatial frequency, and orientation based on object size.

Furthermore, we adopt the prominent theory that the visual system is tuned

to the statistics of the natural world (Gilbert et al. 2001, Simoncelli & Olshausen
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2001, see also Kourtzi & Conner, 2011). Cortical circuits extract the covariance of

features in their input in order to form efficient representations of incoming visual

information (Attneave, 1954; Carlson et al., 2011; Field, 1987). Supporting evidence

for this comes from the tuning of V1, whose Gabor-like features can be derived from

a computationally optimal representation of natural scene statistics (Olshausen &

Field, 1996).

Combined, these assertions can provide a coherent framework explaining why we

have a canonical visual size for different sized objects, and how the cortex comes to be

organized by real-world size, and why some categories of objects may have clustered

regions while others have more distributed regions. It is important to point out that

experience was not manipulated in any of the current studies; rather we examined the

representations of objects an adult human observers, which have been acquired and

established over a lifetime of visual experience, with visual tuning priors established

over evolutionary time. However, this experience-based framework allows us to make

testable predictions about why object representation is organized this way and may

subsequently provide new insights for models of object representation.

Why do objects have a canonical visual size?

Within the situated observer framework, canonical visual size is most naturally ex-

plained by the most experienced retinal size. If the visual system naturally learns and

stores the regularities between the real-world size of objects and experienced retinal

size, then a strong prediction is that the canonical visual size reflects the mode of ex-

perienced retinal size. While geometric inferences can be made that small retinotopic

envelope sizes are typical for small objects in typical viewing conditions and large

retinotopic envelope sizes are typical for very large objects, characterizing the actual

distributions has not yet been done.

What drives the real-world size topography of occipito-temporal cortex?

A prominent proposal for what drives the organization of occipito-temporal cortex is

the eccentricity-bias hypothesis (Hasson et al., 2003; Levy et al., 2001; Malach et al.,
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2002). On this account, eccentricity mapping is observed even in higher level regions,

with some regions showing peripheral biases and other regions showing foveal biases.

They propose that some object categories require global processing and will be rep-

resented in peripherally-biased regions, whereas other object categories require local

processing and will be represented in foveally-biased regions. Thus the organization

of object representation is driven by eccentricity biases of different object categories.

However, one of the major criticisms of this account is that it is not clear what kind

of processing is required for different objects (e.g. if faces are processed holistically,

that might predict a more peripheral, global processing location; See Tyler et al.,

2005).

In the situated-observer framework, however, the real-world size of objects is cor-

related with experienced eccentricity: small objects are more likely to appear within

the fovea, whereas large objects tend to extend into the periphery and to appear

peripherally. Based on these retinal size statistics, small objects will drive more

foveal visual cortex while big objects will drive more peripheral visual cortex. Thus,

real-world size topography is a natural consequence of size-induced retinal biases in

visual experience. One strength of the account proposed here is that it makes spe-

cific predictions about the distribution of activity for any object category, based on

systematic biases in retinal size, and not processing-demands per se. For example,

future work can test whether the spatial distribution of activation for any arbitrary

object category can be predicted from the natural distribution of experienced retinal

sizes for that category, or whether experimentally manipulating the distribution of

experienced retinal sizes (e.g., for novel objects) would affect the spatial distribution

of activation.

Additionally, real-world size is correlated with other low-level features, e.g. spatial

frequency, orientation and elevation (see Appendix). This suggests that the kind

of early shape features extracted in foveal cortex will be more suited for efficiently

representing small objects, and similarly for big objects in more peripheral cortex.

As a consequence of the large-scale eccentricity organization, these pre-cursor object

representations may naturally be arrayed along the cortical sheet by real-world size.
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Why do only some object categories have focal regions?

One potential answer to this question is that some objects may have a tighter range of

experienced visual sizes than others. Additionally, in a specific band of eccentricity,

visual input may be dominated by one (or a few) kinds of objects (Figure 4). Indeed,

the frequency of experience, and in particular early experience, has been argued to

affect the degree of spatial clustering of category-specific features, for example in the

visual-word form area (McCandliss, Cohen, & Dehaene, 2003), and a similar symbol-

selective area in monkeys (Srihasam & Livingstone, 2011). On such an account,

faces, bodies, and word strings are some of the most frequent categories in our visual

experience; an efficient representational system might devote more representational

space to these categories.

abc

Experienced Retinal Size

Figure 4: Hypothetical distributions of for the frequency of different experienced
retinal sizes, for letters, thumbtacks, faces, chairs, and trees.

Interestingly, the proposed framework here also provides a hypothesis about where

these patches of more selective cortex should be located. For example, faces have a

particular range of experienced visual angle (larger than the smallest objects like

coins and berries, smaller than large objects like chairs, and tables), at which they

are likely the dominantly experienced object category. This may predict why the

face-selective regions of cortex are extended from more medium eccentricities (rather

than requiring a deformation step proposed in Hasson, 2003; see also Tyler et al.,
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2005). A similar argument can be made for letter strings. Further data is needed to

examine these specific predictions.

Real-world size as a proxy for the underlying representations

What do these results tell us about the underlying representations in these regions?

This organization raises a fundamental question that has not been addressed in pre-

vious research on object representation: what size-specific visual properties are used

to represent objects? Future research can address this question by investigating what

is being represented in the big and small regions. For example, a focus on this dimen-

sion makes sense of a number of low-level biases that have been observed in high-level

areas (see Appendix), and future work examining how shape changes as a function

of real-world size may be a valuable new approach to thinking about shape param-

eterization. In other words, the work presented in this thesis suggests that the real

world size of objects is a proxy for certain features underlying object representations,

and there future research focusing on these size-specific properties can provide new

insight into the nature of these underlying object representations.

Conclusion

The contributions of this thesis are to establish that real-world size is a core parameter

of object representation, as evidenced by its role in automatic object recognition

processes and the large-scale spatial topography of object knowledge in the visual

cortex. I have proposed a situated observer framework within which to understand

the role of real-world size in object representation and the organization of object

knowledge in the cortex. The visual experience of an active observer in the three-

dimensional world is systematically biased according to the real-world size of objects.

An efficient representational system must take advantage of such systematic biases for

optimal encoding. This work provides testable predictions about retinal size biases in

visual experience, the role of real-world size in object representation, and an approach

in which to understand the neural representation of any object in the world.
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Appendix:

Consequences of vision in a

three-dimensional world

Characterizing the statistics of visual experience is a challenging endeavor, usually

requiring head-mounted cameras and advanced image processing techniques. How-

ever, some biases in the retinal experience for different sized objects can be reasonably

inferred from the geometric constraints of an observer situated in a three-dimensional

world.

Here I discuss several dimensions of visual experience which likely have systematic

differences for big and small objects. These dimensions include (i) retinal size and

eccentricity, (iii) spatial frequency and orientation, and (iv) upper/lower visual field

position.

Next, I review neuroimaging results that show low-level visual biases in relatively

high-level object areas beyond extrastriate cortex. In general these different low-level

visual features tend to co-occur and drive object-responsive regions. I discuss these

in the context of eccentricity-bias proposals of object representation, which fail to

correctly predict the convergence of these low-level biases.

109



Retinal Size and Eccentricity

For this thesis, the most critical dimension of natural visual experience that needs

to be characterized is the relationship between the physical size of objects in the

world, viewing distance, and the subsequent distribution of experienced retinal sizes

(e.g. See Chapter 1, Figure 2). While this has not been characterized broadly across

object categories, we can make a reasonable inference about typical visual sizes of

experience for the two extremes of real-world size-tiny and giant objects.

In these edge cases, it is likely that very small objects are typically experienced

at smaller visual angles than larger objects. A paperclip subtends 3 degrees at arm's

length-at distances beyond that it is typically occluded and not the focus of attention,

and paperclips are rarely experienced closer than that. For a paperclip to subtend

30 degrees, for example, it would have to be held a couple inches from the eye. Big

objects like cars and houses, typically subtend 30+ degrees visual angle. At farther

distances they too are often occluded by intervening objects (to see a car at 3 degrees

it has to have a vast unblocked expanse in front of it). At closer distances you enter

the part-hierarchy of the object, where now what you are actually seeing is a car

door or handle, and the overall car becomes the context rather than the object of

attention.

It is an open question if this relationship between known size and visual size

holds systematically for entire range of real-world size. A strong prediction from

canonical visual size is that on average across objects, there is a general logarithmic

relationship between the physical size of the objects in the world and their most typical

viewing distance and thus their most experienced retinal size (Figure 1). Based on

the reasoning above, this function would arise because of two different limitations:

at far distances objects of any size become occluded, this happens at closer distances

for a paperclip than it does for a car; at close distances the entire object itself ceases

to be the focus of attention and instead parts of the object are the focus.

We can recognize objects at a large range of visual sizes, assuming they are

centrally-fixated. However, because acuity falls off with eccentricity, in order to rec-
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Figure 1: Top: hypothetical distributions of viewing distance for small and large
objects. Bottom: examples for three how visual size might scale with log real-world
size.

ognize something in the periphery, it has to subtend a larger visual size that increases

proportional to the eccentricity (e.g. Rovamo & Virsu, 1978). In natural experience,

when we are fixating an object, there will be other object information in the periph-

ery. Assuming the retinal size biases described above, it follows that bigger objects

in the world are more likely to be recognized in the periphery than smaller objects

because they tend to subtend larger visual sizes. Thus retinal size biases can also

produce eccentricity biases in object recognition experience for objects of different

real-world sizes.

Shape Biases, Spatial Frequency, and Orientation

Other correlated visual features regarding the shape of objects are evident when

considering that objects have to withstand gravity in the world. In Haldane's 1928

essay "On being the right size", he elegantly explains that there are structural reasons

why living things look the way they do: you cannot simply scale up a mouse to be
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Figure 2: Analysis of small and big object image statistics. Top: Average image
from 200 images of big objects (left) and 200 images of small images (right). Bottom:
Average Fourier spectrum across these image sets. Sections represent 60, 80, and90%
of the image energy. The Fourier representation is a polar plot: Spatial frequency is
reflected in the radial dimension with low spatial frequencies near the origin and high

spatial frequencies moving outward from the center; Orientation is mapped by polar
angle, with vertical at 0 degrees and horizontal at 90 degrees.

the size of an elephant because the bones would break, the lungs would not deliver

enough oxygen, and the arteries would not withstand the increased pressure needed

to pump blood. In general, if an object is scaled up in physical size keeping the same

material and construction, the mass of the object increases by the cube of the scaling

factor while the surface area only increases by the square of the scaling factor (the

square-cube law). Natural objects tend to have maximized this tradeoff, achieving a

shape that's not overly strong (or weak) for their size (Gordon, 1981). This implies

that there is systematic covariation between shape and real-world size.

What are the shape features that covary with real-world size? A very coarse

answer to this question comes from a inspecting the average Fourier spectra of big

and small objects (Figure 2). In general, big objects have more power at high spatial

frequencies than small objects. Further, big objects have relatively more power at

meridian orientations than oblique orientations, while small objects have relatively
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equal power at meridian and oblique orientations. Put simply, big objects are boxier

and small objects are rounder.

Upper-Lower visual field biases

A well known challenge of vision is to inferring the size (and shape) of an object from

an impoverished 2-dimensional projection: a small object at a close distance can

subtend the same visual angle as a large object of the same shape, at a far distance.

However, it is quite challenging to construct a real-world demo of this problem of

infinite solutions, in which there was an atypically-sized object (e.g. an extra-large

chair) hidden amongst a scene of regular objects, where the entire scene that looked

normal in the two-dimensional projection. Figure 3 shows a simple scene with a

normal sized desk and chair, as well as a chair that is twice the size and farther away

from the camera in order to subtend the same visual angle. Notice that the two

projected views of the scene are not the same. In fact, the large-far away chair is

higher in the picture. It looks either like it is, in fact, large and far away, or like it is

typically-sized but floating.

Aerial View Typically-Sized Chair Large Chair, Far Away

Figure 3: Left: Aerial view with a normal chair and a large chair placed father away
from the camera so as to subtend the same visual angle. Middle & Right: Views of
the typical and large chair.

What is going on here? The answer is that when we view the world, we view it

from an average height of 5.5 ft (1.67 m). It is in fact possible to make the typically-
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sized chair and desk scene project the same view as the large chair far from the desk.

To do so, you need to adopt a "crocodile" view, in which the center of your eye is at

exactly ground level The same scene with a crocodile view is shown in Figure 4.

3D world with "Croc-Eye" camera Matched 2D projections

Figure 4: Croc-eye view. In order for the two chairs and desk to cast the same retinal
projection, the camera needs to be placed at ground level. The matched 2D projection
from this view is shown on the right.

A direct consequence of viewing the world from a height above the croc-eye view is

that the farther objects are away from us, the higher in the visual field they appear.

Recall that bigger objects tend to be experienced at larger distances than smaller

objects. It follows that big objects tend to be experienced higher in the visual field

than small objects.

Correlated low-level features drive high-level regions

Interestingly, these correlated low-level visual biases described above are evidenced

in the response properties of high-level object-responsive areas.

The visual biases for small objects have been reported to drive lateral regions

of visual cortex. For example, in area LOC, which overlaps slightly with the small

posterior region, there is a lower-visual field bias (Carlson, et al., 2010; McKyton &

Zohary, 2007; Sayres & Grill-Spector, 2008; Niemeier, et al., 2005). Lower field biases

are also present in the extrastriate body area and fusiform face area (Schwarzlose et

al, 2008). LOC and surrounding cortex also has a foveal bias (Sayres & Grill-Spector,

2008; Arcaro et al, 2009; Levy et al., 2001; Hasson et al., 2003). LOC also shows a
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preference for concave rather than convex shapes (Haushofer et al, 2008), which is

consistent with the simple rounder/boxier shape statistics suggested here.

The systematic visual biases of big objects tend to drive responses in medial ven-

tral and medial occipito-parietal areas. For example, both the PPA and TOS show an

upper-visual field preference (Schwarzlose et al, 2008). PPA and BigV have a periph-

eral eccentricity bias (Arcaro et al, 2009; Levy et al., 2001; Hasson et al., 2003), and

a larger retinal size bias (Chapter 4). While there is less work specifically examining

shape representation in PPA, it has been recently been shown that PPA responds

more to cubes than spheres, and more to high spatial frequency than low spatial

frequency (Rajimehr, 2011).

Overall these data suggest that in object-selective cortex, along the ventral and

lateral surface, there are a number of consistent low-level biases that co-occur and can

be explained by systematic differences in visual experience for big and small objects.

Interestingly, in most of the paper reporting these biases, their co-occurrence is not

highlighted or explained, though most appeal to natural statistics of experience to

account for them. In none of them is the real-world size of objects, eye-height, or

viewing distance mentioned.

The main framework in which these visual biases are interpreted is the eccentricity-

bias proposal of Malach, Levy, and Hasson (Hasson et al., 2002; Levy et al., 2001;

Malach et al., 2002). In this framework, they suggest that some object categories

may require more local processing (faces) and other categories may require more

global/holistic processing (houses). They propose that the location of these category

selective areas can be explained by extensions of early foveal and peripheral cortex.

However, this account does not predict upper/lower visual field biases, and it reverses

the spatial frequency predictions. This failure of the eccentricity organization to

account for the particular co-occurrences of low-level visual biases has been pointed

to as a weakness of this account (Schwarzlose, 2008; see also Tyler et al., 2005). Here

we suggest that the geometric constraints of an observer in the world unifies these

low-level biases and is consistent with the responses in occipito-temporal cortex. High-

level areas show responses to low-level features because these are generally correlated
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during natural visual experience, and there is no gain in efficiency of representation

to de-correlate the high-level from the low-level responses.

Summary

There are a number of low-level visual statistics that are highly correlated with objects

of different sizes in natural experience. These include, but are not likely limited to,

retinal size and eccentricity, spatial frequency and orientation, shape curvature, and

upper/lower visual field position. These low-level features drive responses in more

anterior visual cortex including the category-selective areas. While this makes it

difficult to put a simple label that fully characterizes the response properties of a

high-level region, it does resonate with the prominent assumption that the visual

system is tuned to the statistics of natural experience. Moving forward it will be

valuable to empirically characterize the distribution of experience along various visual

dimensions, as this can provide leverage to understand covarying structure extracted

by different stages of the visual system.
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