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ABSTRACT
One of the primary functions of the human auditory system is to separate the complex mixture of
sound arriving at the ears into neural representations of individual sound sources. This function
is thought to be crucial for survival and communication in noisy settings, and allows listeners to
selectively and dynamically attend to a sound source of interest while suppressing irrelevant
information. How the brain works to perceptually organize the acoustic environment remains
unclear despite the multitude of recent studies utilizing microelectrode recordings in
experimental animals or non-invasive human neuroimaging. In particular, the role that brain
areas outside the auditory cortex might play is, comparatively, vastly understudied.

The experiments described in this thesis combined classic behavioral paradigms with electrical
recordings made directly from the cortical surface of neurosurgical patients undergoing
clinically-indicated invasive monitoring for localization of epileptogenic foci. By sampling from
widespread brain areas with high temporal resolution while participants simultaneously engaged
in streaming and jittered multi-tone masking paradigms, the present experiments sought to
overcome limitations inherent in previous work, namely sampling extent, resolution in time and
space, and direct knowledge of the perceptual experience of the listener.

In experiment 1, participants listened to sequences of tones alternating in frequency (i.e., ABA-)
and indicated whether they perceived the tones as grouped ("1 stream") or segregated ("2
streams"). As has been reported in neurologically-normal listeners since the 1950s, patients
heard the sequences as grouped when the frequency separation between the A and B tones was
small and segregated when it was large. Evoked potentials from widespread brain areas showed
amplitude correlations with frequency separation but surprisingly did not differ based solely on
perceptual organization in the absence of changes in the stimuli. In experiment 2, participants
listened to sequences of jittered multi-tone masking stimuli on which a regularly-repeating target
stream of tones was sometimes superimposed and indicated when they heard the target stream.
Target detectability, as indexed behaviorally, increased throughout the course of each sequence.
Evoked potentials and high-gamma activity differed strongly based on the listener's subjective
perception of the target tones. These results extend and constrain theories of how the brain
subserves auditory perceptual organization and suggests several new avenues of research for
understanding the neural mechanisms underlying this critical function.
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Chapter 1: Introduction

1.1 Auditory scene analysis
One of the primary functions of the auditory system is to decompose the complex mixture

of sound arriving at the ears into a neural representation which isolates individual sound sources.

This process, termed auditory scene analysis (ASA), is thought to be crucial for survival and

communication in noisy environments such as a crowded restaurant or busy street corner. The

abilities to understand speech or perceive music - uniquely human abilities - are both thought to

rely on the ability of the auditory system to first separate incoming information into components

where, when the system functions properly, each component in the representation reflects a

single source in the environment. Failures to segregate incoming acoustic information result in

illusory grouping of sounds from multiple sources as well as in sound sources going undetected

entirely. Even in the absence of traditionally-defined presbyacusis, older listeners often report

difficulty in situations which tax the segregating abilities of the auditory system. Figure 1.1

shows a cartoon which highlights the conditions under which the auditory system's ability to

segregate sound is necessary (B. Shinn-Cunningham, personal communication). In this example,

there are several conversations proceeding simultaneously, yet most young and early middle-

aged listeners have no problem understanding the message of the person with whom they are

engaged - the cocktail-party effect (Cherry 1953). Furthermore, this ability is dynamic in that a

listener can focus their attention on different sources at different moments in time.

At the most basic level of analysis, the perceptual organization of the auditory scene

begins with the quanta - i.e. most basic attributes - of auditory objects. These attributes include

pitch, loudness, duration timbre, and location in space, and are largely perceptually independent

19



from each other. That is, a change in one perceptual attribute (e.g. pitch) does not tend to covary

with a change in another perceptual attribute (e.g. loudness). Similar to the way in which it's

defined in vision, an auditory object can be thought of as a unitary perceptual consisting of an

ensemble of basic attributes which are bound together to form a perceptual whole. This is the

auditory version of the binding problem defined over 100 years ago by the Gestalt psychologists

(Kohler 1947; Koffka 1935) and elaborated upon by several recent authors (for reviews see

Neuron 24 1999). At any moment during our auditory experience, there can multiple objects

present in the auditory scene which may or may not correspond to physical sound sources

present in the acoustic environment.

Much is now known about the object-level perceptual grouping cues that are inherent in

sound as well as the schema-driven processes which allow listeners to segregate one sound

source from another (Bregman, 1994; Darwin, 1997; Carlyon, 2004). In general sound energy

tends to group perceptually when the energy (i) is circumscribed in time-frequency space, (ii) is

inherently harmonic, (iii) possesses common onsets across frequency, or (iv) is perceived to arise

from a similar spatial location. Auditory events (abrupt changes in sound energy from one

moment to the next) can be further grouped together across time into "streams" if the basic

perceptual attributes constituting successive events are sufficiently similar to one another. This

grouping or segregation of successive auditory events is known as auditory streaming, typical

examples of which include melody (successive grouping of different pitches) or rhythm

(temporal patterns of related auditory events) (Handel 1993; Cariani 2011; Meyer 1956;

Bregman 1990).



Figure 1.1. The cocktail-party problem.

How auditory perceptual organization is implemented in the neural architecture of the

auditory system is not nearly as well understood as the perceptual phenomena themselves [for

recent reviews, see (Micheyl et al., 2007b; Snyder and Alain, 2007b; Bidet-Caulet and Bertrand,

2009; Bee and Micheyl, 2008; Shamma and Micheyl, 2010; Shamma et al., 2010)], despite

several recent studies utilizing both microelectrode recordings in experimental animals (Fay,

1998, 2000; Fishman et al., 2001, 2004; Kanwal et al., 2003; Bee and Klump, 2004, 2005;

Micheyl et al., 2005; Schul and Sheridan, 2006; Pressnitzer et al., 2008; Elhilali et al., 2009a;

Itatani and Klump, 2009, 2010; Bee et al., 2010) and human neuroimaging techniques (Sussman

et al., 1999; Gutschalk et al., 2005, 2007; Snyder et al., 2006; Snyder and Alain, 2007a; Wilson

et al., 2007; Cusack, 2005; Deike et al., 2004, 2010; Kondo and Kashino, 2009; Schadwinkel and

Gutschalk, 2010a, 2010b, 2011). In particular, there is an extreme paucity of data regarding the

role of brain areas outside of the classically-defined auditory cortex in ASA [but see (Pressnitzer

et al., 2008; Cusack, 2005; Kondo and Kashino, 2009)].



1.1.1 Auditory streaming

One commonly-used paradigm to study the basic neural mechanisms involved in auditory

perceptual organization involves presenting a listener with triplets of the form ABA-ABA-

(Figure 1.2), where A and B are short-duration sounds (usually pure tones), and the dash is a

silent gap (van Noorden, 1975). When either the frequency separation is small or the

presentation rate slow, the tones are perceived as grouped and as arising from a single

environmental sound source.

N 1one stream"

B B

AF ----. "two streams"
A A~ A A

Time (sec)

Figure 1.2. Depiction of auditory streaming paradigm.

When the frequency separation is large or the presentation rate fast, the A and B tones are

perceived as segregated, each forming their own auditory "stream." Figure 1.3 shows the

common percepts of a typical listener across the parameter space defined by frequency

separation and presentation rate (van Noorden, 1975). Phenomenally, given the typical tone

durations and inter-stimulus intervals used during this paradigm, when the A and B tones group

(i.e., 1 stream), a distinctive galloping rhythm is heard which is segmented into successive 3-tone

triplets occurring approximately every half second. When the A and B tones segregate, the

percept of a galloping rhythm is lost; what can be heard in its place are two isochronous rhythms,

one of the A tones at a rate half that of the B tones. Furthermore, the most common report

among listeners hearing two streams is that of a perceptual foreground and background, either of

which is occupied by either A tones or B tones at a given moment.

Sussman et al. (1999) were the first to use such sounds while simultaneously measuring

neural activity (Sussman et al., 1999). They recorded event-related potentials while subjects
22



ignored alternating tone sequences which varied in their rate of presentation. When the

presentation rate was slow, conditions known to produce the percept of individual tones heard in

succession, infrequent deviant tones did not evoke a mismatch negativity; when the rate was fast,

conditions known to produce the percept of separate auditory streams (one of the high tones and

one of the low tones), same infrequent deviant tones did evoke a mismatch negativity response,

indicating that change detection occurs within, but not across, auditory streams.
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Figure 1.3. "Fission" and "fusion" boundaries during the ABA auditory
streaming paradigm, depicting the boundaries at which one stream (fusion)

or two streams (fission) can no longer be perceived.

Fishman et al. (2001) were the first to explicitly correlate neural responses with

changes in a stimulus parameter - the presentation rate of alternating-frequency pure tones -

known to produce changes in how the tones are perceptually organized by human listeners

(Fishman et al., 2001). Multi-unit activity and current source densities were recorded from

several sites in primary auditory cortex (Al) of awake monkeys. When the presentation rate was

slow, responses to both A and B tones were found in sites with best frequencies close to the A-

tone frequency. In contrast, when the presentation rate was fast, responses to the B tones were

differentially suppressed, leaving only responses to the A tones. This suppression was made

23



stronger by increasing the frequency separation between the A and B tones, again paralleling

human psychophysical results with similar parameter manipulations. These results have since

been replicated several times by both animal neurophysiological studies (Fishman et al., 2004;

Micheyl et al., 2005; Bee et al., 2010) and human neuroimaing (Gutschalk et al., 2005; Snyder et

al., 2006; Wilson et al., 2007; Snyder and Alain, 2007a).

1.1.2 Informational masking

Another commonly-used paradigm to study auditory perceptual organization, at least

from a psychoacoustical perspective, involves presenting a listener with a sequence of tones

placed randomly in time and frequency with, on some sequences, a regularly-repeating stream of

target tones (Figure 1.4). On some trials in which the regularly-repeating target stream of tones

is present, they will "pop out" from the otherwise random mixture as an independent stream in

the form of a simple isochronous rhythm. On other trials, they will go entirely unperceived.
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Figure 1.4. Depiction of the jittered multi-tone masking stimulus.

This task produces large changes in subjective perception despite physically-identical stimuli in

that the target tones sometimes are detected but sometimes go undetected. In the non-jittered

version of this task (i.e., when the masker tones are always synchronous with the target),

randomly varying the frequency content of the masker tones while holding the target tone



constant can produce as much as a 40 dB shift in detection threshold relative to the fixed masker

case (Neff and Green, 1987; Kidd et al., 2003, 2008). Furthermore, it has been shown using

stimuli with a protected frequency region (as in the stimuli shown in Figure 1.4) that the

behavioral masking effect of the multi-tone background is thought not to be entirely due to

energetic masking effects at the level of the auditory periphery or, for that matter, at any

tonotopically-organized site along the ascending auditory pathway (Neff et al., 1993; Kidd et al.,

1994, 2008; Micheyl et al., 2007a). Instead, researchers have conceptualized an information-

processing bottleneck in the brain (Overath et al., 2007; Gutschalk et al., 2008; Zylberberg et al.,

2010) that gates a sensory stimulus' access to perceptual awareness. Behaviorally, this type of

masking has been termed "informational masking." Consistent with the idea of an information-

processing bottleneck in non-primary auditory cortex, Gutschalk et al. (2008) measured long-

latency auditory evoked fields which differed substantially based on whether or not the target

tones (as shown in Figure 1.4) were detected (Gutschalk et al., 2008). Detected targets evoked a

large Nlm-like response which localized to the superior temporal plane either on the lateral

aspect of Heschl's gyrus or just posterior to it, in non-primary auditory cortex. Undetected

targets evoked activity similar to the case in which the target tones were not present at all. The

only other neural study to use jittered multi-tone masking stimuli focused on the effects of

selectively attending to the regularly-repeating target tones and found that doing so enhances it's

representation (as indexed by power in the MEG response at the frequency of occurrence of the

target tones) (Elhilali et al., 2009b).

1.1.3 Multistable perception

Multistable perception, or the tendency of a given physical stimulus to elicit two or more

distinct but stable percepts, is a well-known phenomenon that can occur in a variety of sensory

25



modalities, including vision, somatosensation and, most interestingly for the purpose of this

thesis, audition. The phenomenon is highlighted by the classic Necker cube shown in Figure 1.5,

which can be experienced in two ways by an observer, with the foreground of the figure being

located (i) in the upper-right portion or (ii) lower-left portion (Necker, 1832). It is now well

known that alternations in how the cube is perceived can occur both spontaneously and with

effort, and that this phenomenon can be extended to several other types of stimuli in the visual,

somatosensory, and auditory systems. The temporal dynamics of such switching behavior are

also similar across the various sensory modalities (Pressnitzer and Hup6, 2006).

Figure 1.5. Necker cube demonstrating the concept of multistable perception.

From a neural point of view, such multistable stimuli are of extreme interest due to their

utility in isolating brain responses related directly to one's perceptual experience, the so-called

Neural Contents of Consciousness (Koch, 2009). By comparing responses to the same physical

stimulus for different perceptual experiences of the same stimuli, it is possible to dissociate brain

activity related to parameters of the stimulus vs. brain activity related directly to perception.

This approach is widely used in visual scene analysis (Leopold and Logothetis, 1999; Rees,

2009; Sterzer et al. 2009), but there are surprisingly few examples of it in other sensory

modalities, including the auditory domain (Sterzer et al. 2009). Current theories of the neural

26



basis for whether a sensory stimulus will (or will not) reach perceptual awareness posit the

necessity for the instantiation of large-scale feedback loops between frontoparietal areas and

sensory cortex (in the case of vision, visual cortex, etc.) in order for a subject to become aware of

it (Del Cul et al. 2007, 2009; Gaillard et al. 2009; Libedinsky and Livingstone 2011).

The clearest demonstration of neural covariates of perception comes from studies

utilizing a phenomenon known as binocular rivalry (Tong et al. 2006) in which distinct images

are presented to each eye. Instead of perceiving a mixture of the two images, observers report

perceiving each image in alternation. As could be expected, when the stimuli consist of images

which drive different neural populations (e.g., a face and a house, which would elicit activity in

the "face" and "house areas" of the inferior temporal cortex when presented in isolation), activity

in these different populations correlates with which image has access to consciousness at

successive moments in time (Leopold and Logothetis 1999; Blake and Logothetis 2002; Rees

2007). Activity in early visual areas (i.e. primary visual cortex and the lateral geniculate

nucleus) has also been shown to covary with subjective visual perception during binocular

rivalry as well as other bistable visual paradigms (Haynes and Rees 2006).

Only four studies to date have shown neural correlates of subjective auditory perception

(Hillyard et al. 1971; Cusack et al. 2005; Gutschalk et al. 2005, 2008). The results from these

studies suggest that correlates of auditory bistability may be found in secondary auditory cortex

(Gutschalk et al. 2005, 2008) as well as supra-modal brain areas (Hillyard et al. 1971; Cusack et

al. 2005).

The simplest paradigm capable of generating bistable perception is detection. In the

auditory domain, a near-threshold sound with the same trial-to-trial intensity will only sometimes

be perceived by the listener (Hillyard et al., 1971). The two aforementioned ASA paradigms -
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auditory streaming and the multi-tone masking paradigm - also produce bistable perception

(Anstis and Saida, 1985; Carlyon et al., 2001; Neff and Green, 1987; Kidd et al., 2003). In the

case of streaming, the same physical sequence can be heard as either grouped (i.e., "one stream")

or segregated (i.e., "two streams"). In the case of the multi-tone masking paradigm, target tones

can go either detected or undetected.

A qualitative model for bistable perception is depicted in Figure 1.6. The horizontal axis

depicts a linear variation of a given stimulus parameter (e.g. frequency separation between A and

B tones in the ABA streaming paradigm). The vertical axis depicts some uni-dimensional

measure of the neural response to such stimuli. A parametric variation of a given stimulus or

stimulus feature could produce neural activity pattems which vary linearly or categorically as

shown by the blue and red curves, respectively. Noise in the response of a population showing a

linear relationship with the stimulus, when fed to a population showing a more categorical

relationship, could engender sufficient trial-to-trial variability for bistable perception. While

such activity patterns have been widely reported in vision [for reviews see (Logothetis, 1998;

Leopold and Logothetis, 1999; Sterzer et al., 2009)], only limited evidence for such a mechanism

exists in the auditory system (Hillyard et al., 1971; Cusack, 2005; Gutschalk et al., 2005, 2008;

Riecke et al., 2007, 2009; Kondo and Kashino, 2009; Lemus et al., 2009a, 2009b; Schadwinkel

and Gutschalk, 2011).
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Figure 1.6. Qualitative model of bistable perception.

The y-axis can be thought of as a uni-dimensional projection of an N-dimensional
space rather than the amplitude of a given measure of neural activity.
Presumably, such a state-space exists in which the neural activity associated
with two different percepts given a fixed stimulus can be robustly dissociated.



1.2 Intracranial EEG
Since the 1950s, epileptologists have used intraoperative surface electrocorticography in

epileptic neurosurgical candidates to map both epileptogenic and eloquent cortex (Penfield and

Jasper, 1954). Recently, basic cognitive neuroscientists have realized the opportunity that such

clinically indicated invasive recordings offer and have begun taking advantage of the unique high

spatiotemporal resolution afforded in such settings (Engel et al., 2005). Currently, such

recordings are even sometimes semi-chronic, allowing researchers to sample from widespread

brain areas simultaneously while patients are awake and behaving. The technique circumvents

limitations inherent in commonly used noninvasive neuroimaging methods (e.g., electro- or

magneto encephalography and fMRI. As more and more epilepsy centers around the country and

around the world have begun their own neurosurgery units, intracranial EEG has become an

increasingly popular method to map the neural correlates of normal cognitive function.

Although each epilepsy center is slightly idiosyncratic in its surgical procedures for

invasive monitoring, many centers use some form of semi-chronic electrocorticography, i.e. sub-

dural electrodes resting directly on the pial surface. An intraoperative photograph of a typical

example from such a case is shown in Figure 1.7. Panel A of this figure shows the exposed pial

surface of one patient during the implant procedure, where the craniotomy has been performed

and the dura has been peeled away from the parenchyma. Panel B shows the same patient's brain

with an 8x8 array of platinum disk electrodes overlaid. As can be seen from Figure 1.7,

widespread cortical brain areas are sampled simultaneously from such an array of electrodes,

allowing for coverage of distinct functional anatomical networks without suffering from common

interpretational issues associated with noninvasive methods such as the ill-posed inverse problem

in EEG and MEG and the unspecified link between neural activity and hemodynamics in fMRI.



Figure 1.7. Intraoperative photographs of a sub-dural grid implant.

A second commonly used method for invasive monitoring of epileptogenic cortex

involves inserting linear arrays of penetrating depth electrodes to target mesial structures of the

temporal, frontal, and parietal lobes. A depiction of such an array is shown in Figure 1.8. Panel

A shows a 1x8 electrode array (in red dots) which has been overlayed onto a resliced image in

the cortical volume (slice orientation shown in B).

A B

Figure 1.8. Localization of a depth-electrode array.

These electrode arrays often sample from medial temporal and medial frontal lobe structures,

such as hippocampal and peri-hippocampal areas as well as cingulate cortex, structures that are

often - if not always - inaccessible to either EEG or MEG. These depth electrode arrays are also

often combined with arrays resting on the pial surface.

Many neuroscientific advances have come from the various methods used for iEEG.
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While a comprehensive review of all such studies is beyond the scope of this thesis, a subset of

the intracranial studies which focused on the auditory system, or relevant from other sensory

systems, are reviewed briefly below

Several groups have attempted to use iEEG to define functional auditory areas in the

superior temporal plane and lateral superior temporal cortex, including anatomical boundaries

defined by the transverse gyrus of Heschl, the planum temporale, and the superior temporal

gyrus (Liegeois-Chauvel et al., 1991, 1994; Howard et al., 1996, 2000; Brugge et al., 2003, 2008;

Oya et al., 2007). Based on overall responsiveness, relative latency, tonotopic organization, and

functional connectivity measures, these studies indicate an areal sub-definition of the posterior

superior temporal plane that includes the posteromedial and anterolateral portions of the

transverse gyrus as well as a circumscribed area of the posterior STG, with only the

posteromedial portion of Heschl's gyrus defined as the core area. One seminal study (Bitterman

et al., 2008) has demonstrated that single neurons in the human auditory cortex (likely the core

area) exhibit frequency tuning that is much sharper than previously shown in experimental

animals, either at the level of the cortex of at the auditory periphery.

Some of the earliest work to use iEEG for neurocognitive purposes came from Halgren

and colleagues (Halgren et al., 1980). Halgren et al. (1980) used an auditory change-detection

paradigm and demonstrated large closed-field potentials in the hippocampus, peaking between

300 and 600 msec post stimulus onset, to infrequent auditory events when those events were

attended. Given it's latency range, the authors interpreted this large peak to be associated with

the scalp-recorded P3b component, though the nature of the potential fields found in the

hippocampus indicate that they would be very difficult to observe from outside the head. Further

work with similar auditory oddball-like tasks demonstrated a series of endogenous components
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to rare events in trains of acoustic stimuli, beginning with an auditory-specific mismatch

negativity between 100 and 200 msec, localized to the superior temporal plane followed by other

auditory-specific components (included the P2, N2a and N2b) and diffuse supramodal P3a-like

components located in anterior and posterior cingulate gyrus, supramarginal gyrus, temporal

pole, middle temporal gyrus, parahippocampal gyri, fusiform gyrus, and widespread frontal areas

(Halgren et al., 1995a, 1995b; Baudena et al., 1995). Finally, large monophasic waveforms

reminiscent of the scalp-recorded P3b were found in more circumscribed areas including the

hippocampus and parahippocampal areas (though these likely do not propagate to the scalp),

ventrolateral prefrontal cortex, and posterior superior parietal cortex (Halgren et al., 1995a,

1995b; Baudena et al., 1995; Halgren et al., 1998). More recent work has expanded on the

auditory change detection paradigm with intraoperative electrocorticography (Bekinschtein et al.,

2009) to examine high-gamma activity (Edwards et al., 2005) - thought to be a marker of

functionally-active cortex, correlating with both summed synaptic activity and multiunit firing

(Steinschneider et al., 2008) - in response to deviant tones.

High-gamma activity has been a topic of much recent interest, particular in intracranial

studies given the fact that it is much more readily observable when compared with noninvasive

methods such as EEG and MEG. Crone et al. (2001) was the first to examine high-gamma

activity in response to acoustic stimuli (including tones and phonemes) and demonstrated greater

STG activity during discrimination of phonemes than words (Crone et al., 2001). Since then,

several studies have examined high gamma activity in response to several types of acoustic

stimuli including tones (Edwards et al., 2005), speech sounds (Steinschneider et al., 1999, 2011;

Nourski et al., 2009; Edwards et al., 2009, 2010; Chang et al., 2010a, 2010b), click trains

(Brugge et al., 2008, 2009), pitch (Griffiths et al., 2010), and long-duration complex auditory
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scenes (Bidet-Caulet et al., 2007a). Other studies have shown that high gamma activity is a

strong predictor of the fMRI BOLD response in the auditory cortex (Mukamel et al., 2005). A

comprehensive review on the topic of event-related gamma-band activity across a wide range of

cognitive tasks has recently been published (Jerbi et al., 2009).

The only intracranial studies which were explicitly focused on mechanisms of auditory

scene analysis were those from Bidet-Caulet and colleagues (Bidet-Caulet et al., 2007a, 2007b).

In both studies, listeners were presented with complex auditory scenes consisting of three

amplitude-modulated pure tones at different carrier and modulation frequencies. Depending on

the stimulus onset asynchrony (SOA) of the different tones, they could be perceived as grouped

(in the case of zero SOA) or segregated (in the case of non-zero SOA). In one study, listeners'

attention was directed away from the stimuli with an orthogonal target detection task in order to

examine automatic mechanisms of scene analysis (Bidet-Caulet et al., 2007a). Comparing

identical acoustic stimuli with differing preceding contexts, the authors reported that transient

evoked and sustained broadband (gamma and high-gamma range) activity was enhanced when

the context lead to the test stimulus being perceived as a single stream vs. two segregated

streams. However, another plausible interpretation is that a larger change in the acoustics of the

stimulus occurred for the 1-stream stimulus vs. the 2-stream stimulus, despite the fact that they

were subsequently identical or how they were then perceptually organized. In the other study

which used very similar stimuli, listeners' explicitly attended to one stream or the other; selective

attention enhanced both steady-state and transient evoked responses in medial Heschl's gyrus and

lateral STG, respectively (Bidet-Caulet et al., 2007b).



1.3 Organization of dissertation research
The principal aim of this thesis was to explore how the brain performs various ASA

functions. To this end, we combined electrical recordings made directly from the cortical surface

of neurosurgical patients with what are now considered to be classic behavioral paradigms in the

ASA literature, including (i) a simple auditory streaming paradigm consisting of alternating tone

triplets and (ii) an informational masking paradigm consisting of a randomly-varying

background masker stimulus and a regularly-repeating target stream. These two behavioral

paradigms are extremely well studied psychophysically, each having a literature dating back at

least 40 years. This affords us the opportunity to compare psychophysical results from our

patient population (note: the fact that they are neurosurgical patients is entirely tangential to the

aims of this thesis) with that of a large body of literature, providing inherent controls for the fact

that the subjects used in our study to examine the neural correlates of ASA are not neurologically

normal. Furthermore, by comparing neural responses to acoustic stimuli that are physically

identical but perceived differently, we were able to dissociate brain activity related to the

processing of stimulus information vs brain activity directly related to the subjective experience

of a listener.

Chapter 2 outlines the general methods used, including details about the idiosyncratic

nature of attempting to perform well-controlled cognitive experiments in a clinical setting.

Chapter 3 describes an ad hoc method devised for accurately localizing intracranial electrodes

with respect to each individual's neuroanatomy. Chapter 4 reports the results from the main

experiment in the thesis, demonstrating that the brain areas engaged during the classic auditory

streaming paradigm are much more widespread than has been previously shown. Surprisingly,

there were few consistent correlates of perceptual organization, per se, in the absence of
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differences in the physical stimulus. Chapter 5 builds on chapter 4 to examine brain responses

over the entire duration of each tone sequence rather than focusing exclusively on triplet-locked

responses. Several timescales of acoustic segmentation were exhibited in the responses across

widespread brain areas. Generally, areas near the posterior superior temporal gyrus - the

putative location of secondary or tertiary unimodal auditory cortex - showed responses that

persisted throughout the duration of the acoustic stimulation, while areas in frontal and parietal

cortex - putative supramodal areas - showed responses only at the onset or offset of sound.

Chapter 6 describes the results from experiments using the multi-tone informational masking

paradigm. Evoked potentials and high-gamma activity showed strong correlations with whether

or not the target stream was detected (i.e., with the subjective perceptual experience of the

listener). Chapter 7 discusses the results with reference to current theories of the neural

mechanisms of auditory perceptual organization.
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Chapter 2: General Methods

2.1 Participants
Participants in the experiments described in this thesis were patients with drug-resistant

partial epilepsy undergoing clinically-indicated invasive monitoring for localization of the

seizure focus prior to its surgical removal. In total, we recruited 27 such patients (Table 1) from

three different epilepsy centers - Brigham and Women's Hospital (N=3), Massachusetts General

Hospital (N=18), and New York University Medical Center (N=6) - to participate in two

different experiments described below. Each patient was implanted with either (i) sub-dural disc

electrode arrays resting directly on the cortical surface, (ii) linear penetrating depth arrays in

order to directly sample medial structures such as the hippocampus or cingulate cortex, or both

(Adtech Medical, Racine, WI, USA). In every case, the decision to implant intracranial

electrodes as well as where to implant them was made solely on clinical grounds; the

experimental protocols described herein were not considered. In total, collated across all patients

and all behavioral tasks, 2,474 individual sites were sampled, providing coverage of nearly every

area of the brain.



Hemisphere of

bnplant
Left

Type of electrodes Number of
implanted contacts

Sub-dural grid/strip 72

Seizure Focus
Left mesial.

Task

Auditory streaming

S3 F 31 Right Linear depth 34 Riht neS181 Auditory streaming MGtenmnoral tr temn G

S7 F 58 Bilateral Linear depth

SQ M 2R FiIntirnml T in nqr ripnth

S11 F 52 Left Sub-dural grid/strip
Linear depth

78 Multifocal Auditory

AR Mitifnein1 Aiieitnru ztrPnrMina MA(9 I

Left anterior Auditory streaming
temporal

MGH

S13 M 19 Right Sub-dural grid/strip 116 Right parietal Auditory streaming MGHLinear depth neocortex

S15 M 23 Bilateral Linear depth 80 Left frontal Auditory streaming MGH
neocortex

S17 F 42 Bilateral Linear depth 80 Unclear Auditory streaming MGH

S19 F 42 Bilateral Sub-dural grid/strip 182 Right nesial Auditory streaming NYU
te eom1

S21 M 37 Left Sub-dural grid/strip 88 Left mesial Auditory streaming NYU
3 Mutemoral A
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temporal

S27 M 31 Left Sub-dural grid/strip 100 Leftmesial
temporal Informational masking MGH

Table 2.1. Patient information.

Patient

Sl

Sex Age

M 21

Hospital

BWH



2.2 Stimuli and behavioral tasks
Two behavioral paradigms were used. The first was a classic auditory-streaming

paradigm that has been used in many psychoacoustic studies dating to the early 1970s. The

second was a modified version of a classic informational-masking paradigm. Both paradigms

involve listening to sequences of pure tones and making simple, subjective judgments about

them. What both paradigms have in common is that they allow for the comparison of neural

activity between conditions in which physical stimuli remain constant but subjective perception

differs greatly. Such a comparison allows for the examination of the neural mechanisms which

are directly involved in perception, eliminating confounds of changing physical stimuli which

often covary with perception. Each paradigm is described in more detail below as well as in the

relevant respective chapters (4 and 6) of this thesis.

2.2.1 Auditory streaming

The first experimental paradigm used was a classical auditory-streaming paradigm

devised in the early 1970s (van Noorden, 1975) and elaborated upon by Bregman (Bregman,

1994). The stimuli used in this paradigm consist of sequences of alternating pure tones of the

form ABA-ABA-..., where A and B denote short-duration pure tones of different frequencies and

the dash denotes a silent period (see Figures 1.2 and 4.1). Most often, the listener's task is to

listen to each stimulus sequence and indicate by button press whether they perceive the tones as

grouped or segregated; that is, whether they hear a single "stream" comprised of both A and B

tones in the form a "galloping" rhythm or two parallel isochronous streams, one comprised of the

A tones at a fast (relative) rate and another comprised of the B tones at a slow (relative) rate.

Manipulations of precise stimulus parameters such as the frequency separation (AF) between A

and B tones or overall presentation rate can engender the percept of one (small AF or slow
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presentation rates) or two (large AF or fast presentation rates) streams (see Figure 1.3). For the

purposes of this thesis, we held the presentation rate constant and varied AF between 0 and 100

% or, in musical terms, between 0 and 12 semitones. Sequences with a 0-semitone AF should, by

definition, always be heard as a single stream while sequences with a 12-semitone AF are almost

always heard as two streams. Our participants were asked to indicate, at the end of each

sequence, whether they were hearing one or two streams at the end of each sequence.

2.2.2 Informational masking

The second paradigm used was a modified version of another classical auditory task, the

multi-tone masking paradigm. In the classic version of this task, listeners are presented with a

sequence of inharmonic complex tones separated by short intervals and asked to report whether

there was a single component which repeated throughout the sequence (Neff and Green, 1987).

Recently, a modified version of this paradigm was devised for use with AER experiments in

which the target tones repeat at a regular interval but the other components of the sequence are

jittered in time and frequency (Gutschalk et al., 2008) (see Figures 1.4 and 6.1). The task of the

listener is to indicate as soon as they begin to hear the regularly-repeating target stream. What

makes this task difficult is the fact that the frequency of the repeating target tone is unknown at

the start of each sequence. The jittered nature of the masker tones allows for the isolation of

time-locked activity elicited by the targets. Our participants listened to approximately 7-second

long sequences comprised of a randomly varying multi-tone masker stimulus and, on some trials,

a regularly-repeating target tone (at one of six predetermined frequencies) and indicated by

button press as soon as they began to hear the target stream "pop out" from the background. The

masker-only trials served as catch trials in order to measure the participants' behavioral ability to

detect the targets accurately.



2.3 Data acquisition

2.3.1 Imaging

At each center (MGH, BWH, and NYU), preoperative high-resolution TI-weighted MRI

was acquired for each patient prior to their implant procedure. All scans were acquired by the

radiology department at each of the three centers. The precise scan sequence differed depending

on hospital site, but were either sagittal MPRAGE (on Siemens scanners at MGH), SPGR (on

GE scanners at BWH and NYU), or similar. For patients at MGH and BWH (NYU),

postoperative CT (MRI) scans were acquired in order to localize electrodes and verify the

absence of hemorrhage and/or mass effect. In both postoperative CT and postoperative MRI,

electrodes produce a visible artifact which was subsequently used to localize electrodes to the

individual's reconstructed pial surface (computed from the preoperative MRI scans using

Freesurfer).

2.3.2 Behavioral interface

All stimuli were presented via Etymotic ER-2 insert earphones at a comfortable listening

level from the on-board sound card of a portable laptop computer running Presentation software

(Neurobehavioral Systems Inc., Albany, CA). Experiments were run at the patient's bedside in

their hospital room. The laptop computer was placed on a table directly in front of the patient in

order for the patient to view experimental instructions and a fixation cross presented on the

screen. Patients entered their responses by button press via a multicolored button box (Cedrus

Corporation, San Pedro, CA) interfaced with Presentation via USB. Efforts were made to ensure

that, during each experiment, the patient's hospital room was as quiet as possible, including

turning off non-essential monitoring equipment, closing the hallway door, and turning off the
50



patient's television. However, the nature of the hospital environment precludes ideal conditions

for psychoacoustic experiments.

2.3.3 Intracranial electroencephalography

The iEEG for patients at MGH and BWH was recorded by each hospital's clinical

acquisition system (XLTEK, Natus Medical Corporation, Oakville, Ontario, Canada) which is

capable of recording 128 channels simultaneously. Data were sampled at either 250 or 500 Hz

and digitized with 32-bit resolution. All data were referenced to an either an inverted disc

electrode placed against the inner skull table or a C2 reference placed on the back of the neck.

The iEEG for patients at NYU was recorded by a customized acquisition system

sampling at 30 kHz and 64-bit resolution (Bijan Pesaran et al., personal communication). All

data were subsequently downsampled to 500 Hz for analysis. A screw bolted to the skull was

used as the reference electrode.



2.4 Data analysis

2.4.1 Imaging and electrode localization

Pre- and post-operative imaging data were analyzed using a combination of open-source

packages (Freesurfer, http://surfer.nmr.mgh.harvard.edu/fswiki) and custom in-house software

written in the MATLAB programming environment (The Mathworks Inc., Natick, MA, USA).

#High-resolution TI-weighted preoperative MRI volumes were used to render a three-dimensional

cortical surface for each patient in the Freesurfer environment. The same MRI volumes were

simultaneously coregistered with either postoperative CT (MGH and BWH) or postoperative

MRI (NYU). Individual RAS coordinates in each patients native anatomical space were

obtained for each electrode by visual inspection of the postoperative CT or MRI volume. These

coordinates were then overlaid onto the patient's individual pial surface (in the case of grid

electrodes) or onto a single slice of the preoperative MRI volume (in the case of depth

electrodes). For group analyses, electrodes across patients were projected into the same

anatomical space using either spherical (for grid electrodes) or volumetric (for depth electrodes)

registration methods These methods are described in more detail in Chapter 3 of this thesis.

2.4.2 Auditory streaming task

2.4.2.1 Behavior data

Behavioral responses were recorded at the end of each stimulus sequence by asking the

listener to report whether they were hearing one or two streams at the end of the sequence. Early

on in the study, attempts were made to get participants to continuously update their percept

throughout the course of each sequence, but this proved difficult for the patients to understand,

so behavioral responses were subsequently only entered at the end of each 6.5-10 second long

sequence. For each AF condition, the proportion of trials that were heard by the listener as two
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streams was calculated and plotted as a function of AF. The large previous behavioral literature

using this paradigm provides an inherent behavioral check indicating whether the patient

understood the task correctly, an important point given the fact that our participants were

neurological patients. If the patients understand the task, the proportion of trials heard as two

streams should monotonically increase as AF increases.

2.4.2.2 Intracranial EEG

After appropriate preprocessing (see Chapter 4 of this thesis), the iEEG was epoched

relative to (i) the onset of each stimulus sequence and (ii) the onset of each ABA- triplet in the

stimulus sequence. Trials were binned according to either AF or percept (one vs. two streams).

Statistical effects of AF and percept in both the EP and high-gamma power amplitude were

computed using non-parametric cluster-based Monte-Carlo estimates of permutation

distributions (Chapter 4). Waveform differences across conditions and across patients were

quantified using a dissimilarity index in order to account for the highly-variable waveforms we

observed from one patient and one electrode to the next. A further analysis was carried out on

the sequence-length epochs in order to quantify the time course on which a particular electrode

was response (Chapter 5). A waveshape index was computed whose value was close to -1 if a

given site responded in a sustained or steady-state manner throughout the stimulus and close to 1

if the site responded only at the onset or offset of the stimuli.

2.4.3 Informational masking task

2.4.3.1 Behavioral data

As in the auditory streaming task, behavioral responses were entered with a button box.

Participants listened to sequences of jittered multi-tone sequences and pressed a button to

indicate the moment at which they began to hear a regularly-repeating target stream of tones.



Button presses for target stimuli that were indeed present were considered "hits" while button

presses in the absence of target stimuli were considered "false alarms." Since the task was to

"detect repeating targets, it was assumed that, at minimum, the two target tones preceding a

button press were also detected. Behavioral curves were constructed to show the percentage of

hits and false alarms as a function of time since the sequence began. The inherent behavioral

check in this experiment is the ratio of hits to false alarms. Ideally, for the purposes of

comparing brain activity to detected vs. undetected target tones, the hit rate should be near 50%

while the false alarm rate should be close to 0%. This would indicate that the patient understood

the task, but was not able to perform near ceiling.

2.4.3.2 Intracranial EEG

After appropriate preprocessing, the iEEG was epoched relative to the onset of target

tones and binned according to whether the target tones were detected or undetected. In two

control conditions, the iEEG was epoched relative to target tones in isolation and relative to

virtual target tones - had they been present - in the masker-only stimulus. The targets-only

condition provided an EP and high-gamma template against which to compare the response to

the detected target tones and the masker-only condition provided a template against which to

compare the response to the undetected targets. Theoretically, the response to the virtual targets

in the masker-only condition should be flat since the time-locking was respect to randomly-

presented tones in the absence of a regularly-repeating target. The main comparison of interest

was detected vs. undetected targets. Statistical effects of detection in both EP amplitude and

high-gamma activity were computed using non-parametric cluster-based Monte-Carlo estimates

of permutation distributions (Chapter 6).
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ABSTRACT
In addition to its widespread clinical use, the intracranial electroencephalogram (iEEG) is
increasingly being employed as a tool to map the neural correlates of normal cognitive function
as well as for developing neuroprosthetics. Despite recent advances, and unlike other established
brain mapping modalities (e.g. functional MRI, magneto- and electroencephalography),
registering the iEEG with respect to neuroanatomy in individuals - and coregistering functional
results across subjects - remains a significant challenge. Here we describe a method which
coregisters high-resolution preoperative MRI with postoperative computerized tomography (CT)
for the purpose of individualized functional mapping of both normal and pathological (e.g.,
interictal discharges and seizures) brain activity. Our method accurately (within 3mm, on
average) localizes electrodes with respect to an individual's neuroanatomy. Furthermore, we
outline a principled procedure for either volumetric or surface-based group analyses. We
demonstrate our method in five patients with medically-intractable epilepsy undergoing invasive
monitoring of the seizure focus prior to its surgical removal. The straight-forward application of
this procedure to all types of intracranial electrodes, robustness to deformations in both skull and
brain, and the ability to compare electrode locations across groups of patients makes this
procedure an important tool for basic scientists as well as clinicians.



3.1 Introduction

In a large subset of patients with complex partial epilepsy, pharmacological intervention

is ineffective (Engel et al. 2005). If non-invasive measures (e.g. EEG, PET, fMRI) fail to

sufficiently localize the epileptogenic zone or if that zone abuts or overlaps eloquent cortex,

arrays of electrodes placed either directly on the cortical surface or into deep structures (e.g.

hippocampus, amygdala) may be indicated. Since its inception (Penfield & Jasper 1954; Engel

et al. 2005), iEEG has been the gold-standard method for localizing seizure foci and delineating

eloquent cortex in patients with medically-intractable epilepsy. Owing to its high spatiotemporal

resolution and simultaneous coverage of wide areas of cortex, iEEG is increasingly being used as

a tool to study the neural correlates of normal cognitive function (e.g., Crone et al. 2001; Yoshor

et al. 2007; Brugge et al. 2008; Jerbi et al. 2009; Sahin et al., 2009) and examine spontaneous

brain activity (e.g., Canolty et al. 2006; He et al. 2008; Cash et al. 2009). It has proven

particularly informative in studying certain aspects of brain activity (e.g. gamma-band activity)

which are less observable with non-invasive methods (i.e., EEG or MEG). More recently,

intracranial electrodes are also being used as a recording platform from which to design brain-

computer interfaces for various neuroprosthetic purposes, including communication aids for

patients who suffer from amyotrophic lateral sclerosis or stroke (e.g., Wilson et al. 2006;

Leuthardt et al. 2006; Felton et al. 2007; Schalk et al. 2008; Schalk 2010; Shenoy et al. 2008) .

For clinical as well as scientific purposes - including seizure-onset localization, eloquent-

cortex mapping, and cross-subject comparison, as well as relating results to other

neuroanatomical structures (e.g. white matter tracts) and the larger neuroimaging literature -

knowledge of electrode location with respect to the patient's individual neuroanatomy is critical.



This is especially true given the spatial specificity of iEEG (due to its proximity to neural

generators). Despite its importance, registering iEEG with a patient's individual cortical folding

pattern remains a major challenge. Several solutions to this problem have been proposed,

utilizing photography (Wellmer et al. 2002; Mahvash et al. 2007; Dalal et al. 2008), 2D

radiography (Miller et al. 2007), postoperative MRI (Bootsveld et al. 1994; Kovalev et al. 2005;

Wang et al., personal communication), or postoperative CT (Grzeszczuk et al. 1992; Winkler et

al. 2000; Noordmans et al. 2001; Nelles et al. 2004; Hunter et al. 2005; Tao et al. 2009; Hermes

et al. 2010), each with inherent limitations.

Here, we describe an electrode-localization procedure which combines the coregistration

of high-resolution preoperative MRI with postoperative CT and the 3D rendering of each

patient's cortical surface (Dale et al. 1999; Fischl et al. 1999a) or volumetric reslicing to align the

slice with the long axis of depth-electrode arrays. The parenchymal shift introduced by the

implantation of subdural electrodes (Hill et al. 1998; Hill et al. 2000; Hastreiter et al. 2004;

Miyagi et al. 2007; Dalal et al. 2008; Hermes et al. 2010) is accounted for by using an

optimization algorithm that minimizes an energy function defined by inter-electrode distances

and global deformation of electrode configuration. This method minimizes assumptions about

the nature of the parenchymal shift introduced by the implant and allows for accurate localization

of electrodes near highly convex cortical regions. We extend previous work by providing a

procedure for cortical surface-based inter-subject registration of each individual's electrode

ensemble, allowing for surface-based group analyses of studies utilizing subdural electrodes.

Given the fact that subdural electrodes are positioned on the cortical surface, this method of

group analysis should prove more accurate when compared to the standard volumetric-based

analyses (Collins et al. 1994; Miller et al. 2007; Ritzl et al. 2007; Talairach & Tournoux 1988).
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We validate our registration method by comparison with intraoperative photographs, using

prominent anatomical landmarks in order to determine the distance between estimated and actual

electrode locations in reference to the 3D cortical reconstruction.



3.2 Methods

3.2.1 Patients

Patient Hemisphere Sex Age Electrode Arrays Seizure Focus

P1 Left Male 21 Four 2x8 Left Anterior Temporal
One 8x8

P2 Left Male 22 one 18Left Cmngulate Cortex
Foiu14
One 8x8 Left Antenior Temporal

P3 Left Male 29 One lx8 and
Four lx4 Left Parietal

P4 Left Female 23 FAntenior Middle Frontal

One 8x8 Posterior Superior Temporal
P5 Left Male 20 Four x4 and

Middle Frontal

Table 3.1. Patient information.

Five patients with medically-intractable epilepsy underwent clinically-indicated invasive

monitoring of the seizure focus prior to its surgical removal (Table 1). Patients gave their

informed consent, and all procedures were approved by the Institutional Review Boards at

Partners Healthcare (Massachusetts General Hospital and Brigham and Women's Hospital) and

the Massachusetts Institute of Technology. Prior to electrode implantation, each patient

underwent high-resolution TI-weighted MRI. During the implantation procedure, patients were

placed under general anesthesia, a craniotomy was performed, and the overlying dura was

reflected to expose the lateral aspect of the cortical surface (Fig. 3. lA and Fig. 3. IB). In each

patient, arrays of platinum electrodes embedded in silastic sheets (2.3mm exposed diameter,

10mm center-to-center spacing, Adtech Medical, Racine, WI) were placed over temporal, frontal,

and parietal cortex. In some cases inferior temporal, interhemispheric, and occipital cortex was

covered as well. The reflected dura was then sewn over the electrode array and the skull was



replaced. After a brief recovery period, each patient underwent postoperative CT in order to

assess electrode placement and to verify the absence of hemorrhage and mass effect.

Figure 3.1. Intraoperative photographs, MRI-CT coregistration, and maximal-
intensity projection.

(A) Reflected dura, exposed pial surface and overlaid electrode array (B) from a
typical craniotomy. (C) The sagittal maximal-intensity projection of the
postoperative CT scan, showing most of the electrode sites in a single view. (D)
Illustration of the accuracy of the coregistration between the preoperative MRI
and the postoperative CT. The left panels show sagittal (top) and coronal
(bottom) views of a single subject's (patient 5) MRI; the right panels show the
same orientations for the postoperative CT. Electrode sites can be seen as
bright spots in the coronal CT section. The yellow trace outlines the pial surface
in both the MRI and CT.

3.2.2 Coregistration of preoperative MRI with postoperative CT
High-resolution postoperative CT was automatically registered to the same patient's

preoperative MRI using the mutual-information-based transform algorithm provided by SPM

(http://www.fil.ion.ucl.ac.uk/spm/; Wells et al. 1996) in the Freesurfer environment

(http://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki). Using the CT scan as the movable



volume, the registration was visually checked and, if necessary, manually adjusted. Fig. 3. ID

shows an example of this registration for a single patient.

3.2.3 Manual selection of electrode coordinates

Electrode coordinates were obtained in the patient's native anatomical space by visual

inspection in the Freesurfer environment using tkmedit. Nearly all electrodes from an individual

patient can be visualized in a 2D image by computing the maximum intensity projection of the

CT volume in the plane approximately perpendicular to the long axis of the electrode arrays

(usually sagittal for subdural arrays as shown in Fig. 3. 1C and Fig. 3.3A, and usually coronal or

horizontal for stereotactically-placed depth arrays). Doing so significantly reduces the time it

takes to manually localize each electrode in three dimensions and transcribe its coordinate (either

native Freesurfer RAS or MNI space). After locating each electrode in the 2D image, the final

electrode coordinates were obtained by traversing slices in the 3rd dimension (through the plane

in Fig. 3.1 C) and selecting the approximate center of the hyper intensity created by each

electrode. Each electrode's coordinate (in native RAS space) was then manually transcribed.

This procedure yielded an initial estimate of a subdural electrode's coordinate on the cortical

surface or a depth electrode's position within the volume.

3.2.4 Volumetric reslicing for visualization of depth-electrode arrays

In order to visualize all electrodes from a signal depth array, new slices from the 3D MRI

volume were computed which aligned the new slices with long axis of each array. In general,

stereotactic depth arrays are placed orthogonal or near-orthogonal to the sagittal plane; thus,

reslicing was performed to yield peri-coronal or peri-horizontal images. The peri-coronal or

peri-horizontal plane for each new slice was defined by the most superfical and deepest contacts.

Results using such volumetric reslicing are shown in Fig. 3.2.
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Figure 3.2. Slice views of five arrays of depth electrodes after reslicing the 3D
MRI volume to the long axis of each array. The middle panel shows the entry

point for each array overlaid on the reconstructed cortical surface.

3.2.5 Construction of pial and dural surfaces
3D rendering of each patient's cortical surface was performed in the Freesurfer

environment using high-resolution Ti-weighted MRI. Talairach registrations (using the

Freesurfer talairach volume as a movable template) and white and gray matter surfaces were

inspected and manually corrected if necessary. After a satisfactory pial surface was obtained, a

smoothed pial surface (effectively a dural surface, Fig. 3.3B) was computed for both

hemispheres using the morphological closing algorithm built into Freesurfer (Schaer et al. 2008).



Cortical Reconstruction 2D Registration w/

A B and Electrode Localization c Freesurfer

Preoperative
MRI

~coregistration

Postoperative
CT

Figure 3.3. Outline of electrode localization and inter-subject mapping
procedure.

(A) The preoperative MRI is coregistered with the postoperative CT volume. The
lower panel shows the maximal intensity projection of the CT volume in the
sagittal dimension, which shows all the electrodes in a sagittal plane. (B) Due to
the parenchymal shift from the implant procedure, some electrodes initially
appear as though buried in the gray matter. To correct for this, each electrode
coordinate is projected first to a smoothed pial surface (effectively a dural
surface) and subsequently back to the pial surface. (C) 2D registration with the
Freesurfer average brain. An inflated spherical surface is computed from the
individual's pial surface and aligned with that of the Freesurfer average. (D)
Projection of each electrode coordinate from the individual's pial surface to that of
the Freesurfer average.

3.2.6 "Snapping" electrode coordinates to the cortical surface
Due to brain deformation known to be caused by the implant procedure, initial electrode

coordinates obtained from CT scans (coregistered with preoperative MRI) appear buried within

the parenchyma instead of on the cortical surface when overlaid onto the cortical reconstruction

(left panels of Fig. 3.3B). Our method accounts for this deformation automatically in two steps:

(1) pulling the initial coordinate estimates to the dural surface via an energy minimization

algorithm and (2) projecting the coordinates from the dural surface to the closest vertex on the

pial surface (lower right panel of Fig. 3.3B).



The electrode coordinates are initially pulled to the dural surface using a constrained

energy minimization algorithm. The algorithm must fulfill the constraint that all electrodes lie

on the dural surface, while minimizing the displacement between the original and current

electrode locations, as well as the deformation in the spatial configuration of the electrodes. The

energy function is therefore composed of a displacement term as well as a deformation term and

is defined as,

N N N

E (e)=Edisplacement +deformation i -e2+X X a (d -- d(
i=1 i= 1 j=i+1

with the constraint,

Vi,||e,-sA|=0

where N is the number of electrodes, e, is the location of electrode i, ei are the original

coordinates for electrode i, dy is the distance between electrodes i andj, do is the original

distance between that same pair of electrodes, ai is a parameter which takes values 1 or 0

determining whether the pair of electrodes i andj contribute to the energy function, and si is the

location on the dural surface closest to electrode i.
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Figure 3.4. Illustration of the energy-minimization procedure used to project the
electrode coordinates onto the cortical surface.

(A) Dural surface showing each electrode's path from it's initial volumetric
location estimate to it's final location on the dural surface. (B) The top panel
shows the value of the energy function across successive iterations of the
algorithm. Note how the function approaches a stable value as the number of
iterations increases. The bottom panel shows the value of the constraint
function.

Intuitively, the energy algorithm places a series of "springs" between each electrode and

its original position (displacement springs), as well as springs between the electrodes themselves

(deformation springs). The energy in each spring increases if the electrodes are pulled apart or

pushed together further than their equilibrium distance (0 for displacement springs, ai for

deformation springs).

Ideally, the pairs of electrodes which define adjacent contacts on a grid or strip of

electrodes would be included in the deformation term of the energy function ( ay=1 ), while

distant pairs of electrodes would not exert an influence on the energy minimization ( a=O0 ).

This would result in a mesh-like structure of springs which prevents individual electrodes from

greatly deviating from the initial spatial configuration, but allows for "bending" or "flexing" of

the silastic grids and strips (Fig. 3.4A). To automatically determine the pairs of electrodes

included in the energy function, the distances between all pairs of electrodes are first computed

and sorted. 2.5*N of the shortest distances are averaged to obtain a "reference" distance. This

reference distance approximates the distance between two adjacent grid electrodes. Any pair of

electrodes, i andj, with a distance smaller than 150% of this reference distance is included in the

energy function (i.e. a% is set to 1 for the pair of electrodes i andj). Empirically, this threshold

yielded the best tradeoff between the desire to preserve local inter-electrode distances and



minimize long distance electrode pairings that could prevent flexibility of the grids or strips.

The optimization was performed in MATLAB using thefinincon algorithm in the

optimization toolbox. The optimization was set to terminate when the total constraint function

was less than 0.01*N, the change in the energy function was less than 0.03, or the change in any

ei was less than 0.1. The total number of iterations was limited to 50.

After the electrodes are pulled to the dural surface, they are projected to the closest vertex

(in Euclidean distance) on the pial surface. This second projection is necessary for functional

mapping within an individual as well as accurate projection to the Freesurfer average brain (see

section 2.8).

3.2.7 Validation

Validation of our localization procedure was carried out in two of five patients through

visual inspection of intraoperative photographs and comparison with estimated electrode

locations in reference to the reconstructed cortical surface. For electrodes which were visible in

intraoperative photographs, local anatomical landmarks including prominent sulci and gyri were

used to estimate, manually, an electrode's actual position on the reconstructed surface.

Subsequently, for each electrode, the Euclidean distance between the location estimated by the

MR-CT procedure and that determined by visual inspection of the photographs was computed.

We used this distance as a measure of error.

3.2.8 Surface-based coregistration with Freesurfer average brain
For each patient, we computed a 2D spherical rendering of the pial surface and

coregistered it with the average spherical surface provided in Freesurfer. Electrode coordinates

from an individual were then transformed to the individual's registered spherical surface using a

one-to-one look-up table, projected onto the spherical Freesurfer average surface by nearest-
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neighbor transformation. Finally, these coordinates were overlaid onto the template pial surface

by one-to-one look-up table (Fig. 3.3D). Given that this registration method is known to yield

better alignment of structural as well as functional brain areas across subjects (Fischl et al.

1999b) and the fact that subdural electrodes most often rest on or near gyral crowns, projecting

electrode coordinates from an individual's pial surface onto a template brain by spherical means

could prove useful for group studies.



3.3 Results

3.3.1 Individual localization

Fig. 3.3B shows the results of our projection method for an individual subject implanted

with four 2x8 and one lx8 strip arrays. As can be seen in the upper and lower left-hand panels of

Fig. 3.3B, several electrodes are either invisible or outside the brain as defined by the smoothed

pial surface. After the snapping procedure outlined in section 2.5 was performed (Fig. 3.4), the

electrodes now appear on the smoothed pial surface (upper right-hand panel of Fig. 3.3B), and

were finally snapped to the original pial surface by nearest-neighbor mapping (lower right-hand

panel of Fig. 3.3B).

3.3.2 Cross-subject registration

Unlike more established brain-mapping modalities such as fMRI, the ability to

cross-register functional intracranial recordings across various individuals has proven difficult.

The accurate localization of electrodes within individuals could allow for cognitive

generalizations if those locations could be compared across subjects.

Fig. 3.3C and Fig. 3.3D show the surface-based coregistration of a single subject with the

Freesurfer average surface (Fischl et al., 1999b). The 2D spherical surface of the individual

subject is shown in the lower panel of Fig. 3.3C (Fischl et al., 1999a). Gyri and sulci are

indicated by green and red, respectively. This surface has been coregistered with the Freesurfer

average surface, shown in the upper panel of Fig. 3.3C using the procedure described in Fischl et

al., 1999b. Each electrode coordinate was projected from the individual's pial surface (lower-

right panel of Fig. 3.3B) to the same individual's spherical surface by a one-to-one mapping of

the vertex. Electrode coordinates were then projected onto the Freesurfer average brain by

nearest-neighbor mapping defined by Euclidean distance in the 2D spherical space. Electrodes
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from an individual subject after having been projected onto the Freesurfer average are shown in

Fig. 3.3D. Fig. 3.5 shows the results of the spherical registration procedure collapsed across all

five subjects in the study after each subject's cortical surface was aligned with that of the

Freesurfer average. While electrodes from different patients rarely overlap, this mapping allows

direct comparison across subjects.

AB

superior lateral

anterior anterior 2

Figure 3.5. Electrode coordinates collapsed across all four patients mapped
onto the Freesurfer average brain.

Each black dot represents an electrode from one of the four patients. (A)
Lateral view of the left hemisphere. (B) Inferior view of the left hemisphere.

3.3.3 Validation

Estimates of the error in the electrode localization procedure were obtained in 2 of the 5

subjects in the study by manual inspection of electrodes visible in intraoperative photographs

(Fig. 3. 1A and Fig. 3. 1B). An electrode's true location on the cortical surface was estimated with

reference to major anatomical landmarks (e.g. gyri/sulci and/or vascular features). The estimated

difference between the true electrode locations and those obtained by our localization procedure

was 2.52mm and 3.00mm in patient 3 and patient 5, respectively. These values were found to

qualitatively typical of the error distance across other patients. Interquartile ranges as well as

minimum and maximum errors are given in table 2.



Patient Median Lower Upper Min MaxQuartile Quartile
P3 2.52 1.27 3.66 0.05 5.56
P5 3.00 2.04 4.01 0.52 8.16

Table 3.2. Estimated error of the localization procedure. All values in mm.

3.3.4 Example of method's utility

To illustrate application of the localization method, Fig. 3.6 shows the spatiotemporal

voltage pattern of a single interictal discharge in patient 5 from 100 ms before to 1000 ms after

the peak of the discharge. As can be seen from this figure, the discharge initiates at around 70ms

along the border between the inferior and middle frontal gyri and subsequently spreads dorsally

and ventrally to include the posterior middle frontal gyrus, anterior inferior frontal gyrus, and

possibly anteroventral temporal areas. The initial spike was followed by a broader slow wave

that initiated at approximately 130ms and continued throughout the remainder of the times

shown in the figure. Our method has also recently been used to compare low-frequency (< 0.1

Hz) resting-state fMRI networks with corticocortical evoked potentials elicited by single-pulse

stimulation with intracranial EEG electrodes (Keller et al., in press).
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Figure 3.6. Spatiotemporal voltage map of an interictal discharge from patient 5.

Color intensity indicates amplitude of positive (red) or negative (blue) voltage.
The discharge initiates near the border of the middle and inferior frontal gyri at
approximately 70ms into the epoched time window. A post-discharge undershoot
can be seen beginning around 130ms and continuing until the start of the slow
wave 230ms.

3.4 Discussion
The localization of intracranial electrodes is a critical issue in electrocorticography for

clinical as well as scientific purposes. We have demonstrated a method for accurately aligning a

postoperative CT scan with preoperative MRI for the purpose of individualized localization of

semi-chronic intracranial electrodes. The method coregisters preoperative MRI with

postoperative CT using a combination of an automatic mutual information-based procedure

(Wells et al., 1996) and visual inspection. After this alignment, electrode coordinates were

obtained manually using Freesurfer and projected onto the pial surface using a combination of an

energy-minimization function and nearest-neighbor mapping. Our method affords patient-

specific localization accuracy with estimated error on the order of half a centimeter or less,
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comparable with previously-demonstrated methods using either a similar CT-MRI method

(Hermes et al., 2010) or a method utilizing X-rays and intraoperative photographs (Dalal et al.,

2008).

The main advantages of our method include (i) the same initial coregistration procedure

operates on either subdural electrodes or depth electrodes accessing the mesial temporal-lobe

structures (Fig. 3.2), (ii) it minimizes assumptions about the parenchymal shift (Hill et al. 1998;

Hill et al. 2000; Hastreiter et al. 2004; Miyagi et al. 2007; Dalal et al. 2008; Hermes et al. 2010)

introduced by the implant by using an optimization procedure to project the electrodes to the

smoothed pial surface, (iii) it provides a procedure for cortical-surface-based inter-subject

mapping (Fig. 3.5), (iv) - as mentioned by others (Hermes et al., 2010) - it can accurately

localize electrodes positioned anywhere in the volume, rather than solely those in the vicinity of

the craniotomy or away from highly convex areas such as the ventral temporal lobes, and (v) the

method relies on very little commercial software (with the exception being MATLAB). With

respect to (ii), our method provides a particular advantage over local-norm-based projection

(Hermes et al., 2010) in that it applies equally well to different electrode configurations (e.g., 8x8

vs. lx8) because it does not rely on the computation of a normal vector for which there may be

no unique solution, e.g. in the case of 1xN array.

Our method is useful for basic scientific as well as clinical purposes. Knowledge of

electrode location is critical for the interpretation of cognitive experiments and allows clinicians

to extraoperatively visualize ictal and interictal activity at anatomically correct locations,

possibly mitigating risk to the patient by reducing the need for intraoperative mapping. The

surface-based inter-subject mapping procedure is especially useful for group studies. It has been

shown previously that 2D spherical alignment of individual brains provides far greater
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localization accuracy of both structural and functional neuroanatomical features when compared

with volumetric-based alignment methods (Fischl et al., 1999b). This is especially likely to be

the case for subdural electrode studies given that each electrode rests on or near the crown of a

gyrus. A surface-based procedure is also likely to yield better overlap between

electrocorticography findings and those from non-invasive methods such-as functional MRI,

scalp EEG, and magnetoencephalography.

Both the MRI-CT coregistration and the pial-surface projection are likely to introduce

some localization error. The pial-surface projection error occurs due to some electrodes

positioning between adjacent gyri over the intervening sulcus. However, in order to perform

inter-subject surface-based registration, the error introduced by the pial-surface projection is

unavoidable; thus, most of the correctable error is likely due to subtle inaccuracies in the MRI-

CT registration. In our method, this registration was semi-automated, using a mutual-

information-based algorithm shown previously to provide good alignment of within-subject

multimodal images (Wells et al., 1996). This procedure is rendered more difficult, however, by

the deformation of the skull caused by the craniotomy, and manual adjustments were often

required. In our experience, scans yielding high-resolution isotropic or near-isotropic voxels

provided the best initial coregistration estimate with the preoperative MR volume. In principle,

it should be possible to use only the hemisphere opposite the craniotomy in computing the MRI-

CT registration. This is likely to yield better automatic registration estimates but would require

manual editing of the CT volume in order to mask the hemisphere with the craniotomy-induced

deformations.

One limitation of our method is the time it takes to manually localize each electrode in

the coregistered CT volume. Automation of the electrode localization would significantly reduce
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the time spent during this step. A possible automation algorithm would use the dural surface as

an inclusive volumetric mask for the CT volume after the MRI and CT have been coregistered.

This would prevent the extraneous metal (e.g. wires and connectors) often included within the

CT's field of view from generating false alarms during automatic electrode detection. A similar

procedure has previously been described for coregistering preoperative and postoperative MR

images (Kovalev et al., 2005). However, such an automation procedure would only be useful as

a first pass electrode localization, and manual validation would likely still be required.
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ABSTRACT
The auditory system must constantly decompose the complex mixture of sound arriving at the
ear into perceptually-independent streams constituting accurate representations of individual
sources in the acoustic environment. How the brain accomplishes this task is not well
understood. The present study combined a classic behavioral paradigm with direct cortical
recordings from neurosurgical patients with epilepsy in order to further describe the neural
correlates of auditory streaming. Participants listened to sequences of pure tones alternating in
frequency and indicated whether they heard one or two "streams." The intracranial EEG was
simultaneously recorded from sub-dural electrodes placed over temporal, frontal, and parietal
cortex. Like healthy subjects, patients heard one stream when the frequency separation between
tones was small and two when it was large. Robust evoked-potential correlates of frequency
separation were observed over widespread brain areas. Waveform morphology was highly
variable across individual electrode sites both within and across gross brain regions.
Surprisingly, few evoked-potential correlates of perceptual organization were observed after
controlling for physical stimulus differences. The results indicate that the cortical network
engaged during the streaming task are more complex and widespread than has been
demonstrated by previous work, and that, by-and-large, correlates of bi-stability during
streaming are probably located on a spatial scale not assessed - or in a brain area not examined -
by the present study.



4.1 Introduction
The auditory system is constantly faced with the challenge of decomposing the complex

mixture of sound arriving at the eardrums into an accurate representation of the acoustic

environment. This decomposition, termed auditory scene analysis [ASA, (Bregman, 1994)], is

critical for survival and communication and its failure is a common symptom reported by elderly

individuals and those with sensorineural hearing loss. Despite its importance in daily life, the

neural mechanisms of auditory scene analysis remain unclear (Shamma and Micheyl, 2010;

Shamma et al., 2010; Snyder and Alain, 2007b; Micheyl et al., 2007; Bidet-Caulet and Bertrand,

2009; Carlyon, 2004; Winkler et al., 2009; Elhilali and Shamma, 2008; Nelken and Bar-Yosef,

2008). One aspect of ASA - auditory streaming (the segregation of time-varying acoustic energy

into distinct perceptual objects) - can be studied in a controlled setting using sequences of pure-

tone triplets of the form ABA-ABA- (Bregman, 1994; van Noorden, 1975; Miller and Heise,

1950), where A and B denote tones of different frequencies separated by a silent gap (Figure IA).

Many psychophysical studies dating back to the 1950s have shown that when the frequency gap

(AF) between the A and B tones is small, listeners hear the sequence as a single stream

comprised of both A and B tones and that when AF is large, they hear the sequence as two

isochronous streams, one of A tones and one of B tones (van Noorden, 1975; Miller and Heise,

1950) (see http://web.mit.edu/~adykstra/Public/streamingdemo.wav for a demo). Interestingly,

percepts evoked by sequences with intermediate AF are bistable (i.e., can be heard as either one

stream or two) and can switch between two stable states, either spontaneously or with effort (van

Noorden, 1975; Anstis and Saida, 1985; Carlyon et al., 2001).

Recent interest in the neural underpinnings of auditory streaming has produced several

studies using ABA tone sequences while recording from the auditory cortex in a variety of
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species including insects (Schul and Sheridan, 2006), fish (Fay, 1998, 2000), bats (Kanwal et al.,

2003), songbirds (Bee and Klump, 2004, 2005; Bee et al., 2010; Itatani and Klump, 2009, 2010),

ferrets (Elhilali et al., 2009), non-human primates (Fishman et al., 2001, 2004; Micheyl et al.,

2005), and humans (Sussman et al., 1999; Gutschalk et al., 2005, 2007; Snyder et al., 2006;

Snyder and Alain, 2007a; Wilson et al., 2007; Cusack, 2005; Deike et al., 2004, 2010; Kondo and

Kashino, 2009; Schadwinkel and Gutschalk, 2010a, 201 Ob). A prevailing model from these

A 500ms 125ms 1ooms B

AF
Time (sec) 2 Percept Coding"lone stream"

"two streams" N Stimulus Coding

Stimulus parameter

Figure 4.1. Behavioral paradigm and conceptual model.

(A) Schematic illustration of the altemating-tone stimuli used in the experiment
and how those stimuli are perceptually organized by the listener. The frequency
of the B-tone was held constant at 1000 Hz and the frequency separation
between the A- and B- tone varied between 0 and 12 semitones, resulting in A-
tone frequencies between 500 and 1000 Hz. (B) Conceptual model of varying
neural responses to parametric manipulation of the acoustic parameter
(frequency separation). A linear variation of the neural response is to be
expected if that response is coding the stimulus parameter, whereas a sigmoidal
(i.e. categorical) response is to be expected if the response is coding the percept
directly.

studies posits that a two-stream percept will be evoked whenever the A and B tones excite non-

overlapping populations of neurons [but see (Elhilali et al., 2009)]. However, inherent

limitations in previous work related to spatiotemporal resolution, sparsity of coverage, and lack



of direct behavioral measures in experimental animals preclude straight-forward interpretation.

A general extension of this model is schematized in Figure lB. Specifically, a parametric

variation of a given stimulus or stimulus feature could produce neural activity patterns which

vary linearly or categorically as shown by the blue and red curves, respectively. Noise in the

response of a population showing a linear relationship with the stimulus, when fed to a

population showing a more categorical relationship, could engender sufficient trial-to-trial

variability for bistable perception. While such activity patterns have been widely reported in

vision [for reviews see (Leopold and Logothetis, 1999; Logothetis, 1998; Sterzer et al., 2009)],

only limited evidence for such a mechanism exists in the auditory system (Cusack, 2005;

Gutschalk et al., 2005, 2008; Kondo and Kashino, 2009).

Here, we report the results from experiments in which direct cortical recordings were

made from widespread brain areas of neurosurgical patients with epilepsy (Engel et al., 2005)

while they participated in a classical auditory streaming paradigm. Our aims were to better

characterize the neurophysiological correlates of auditory streaming, extend them into brain

areas outside the auditory cortex and frequency regions less observable with non-invasive

measure (Crone et al., 2001), and test the idea of neuronal variability as a mechanism for

perceptual bi-stability in the auditory modality (Almonte et al., 2005; Deco and Romo, 2008;

Deco et al., 2008; Moreno-Bote et al., 2007; Gigante et al., 2009; Shpiro et al., 2009) by

comparing evoked responses to physically-identical stimuli when they were perceived as one vs.

two streams. Our participants listened to ABA tone sequences and indicated at the end of each

sequence whether they were hearing one or two streams at the end of the sequence. For each

electrode sampled in a given patient, we compared responses across AF conditions as well as

perceptual report in an attempt to identify correlates of both during a classical auditory streaming
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task. We hypothesized that when a participant perceived one (two) stream(s), the evoked

response would be similar to those conditions which consistently engender a one-stream (two-

stream) percept. Responses from widespread brain areas showed robust correlates with AF but,

surprisingly, rarely differed based on percept per se.



4.2 Methods

4.2.1 Ethics Statement

All procedures were approved by the Institutional Review Boards at Partners Healthcare

(MGH and BWH), the New York University (NYU) Langone Medical Center, and the

Massachusetts Institute of Technology (MIT) in accordance with NIH guidelines. Written

informed consent was obtained from all patients prior to their participation.

4.2.2 Listeners

Twelve patients with intractable epilepsy underwent invasive monitoring in order to

localize the epileptogenic zone prior to its surgical removal.

Patient Hemisphere Sex Age Stimulation AF conditions Seizure Focus
S1 Left M 21 Binaural 0,5,6,7,12 Left Anterior Temporal
S2 Left M 22 Binaural 0,5,6,7,12 Left Cingulate Cortex
S3 Left F 52 Binaural 0,5,6,7,12 Left Anterior Temporal
S4 Right F 42 Binaural 0,5,6,7,12 Right Anteromesial Temporal
S5 Left M 37 Binaural 0,5,6,7,12 Left Anteromesial Temporal
S6 Right M 19 Binaural 0,2,4,6,8,10,12 Right Parietal
S7 Left F 38 Monaural (R) 0,2,4,6,8,10,12 Left Mesial Temporal
S8 Left M 29 Binaural 0,2,4,6,8,10,12 Left Anterior Temporal / Left Parietal
S9 Left M 25 Monaural (R) 0,2,4,6,8,10,12 Left Anteromesial Temporal

Table 4.1. Patient information.

Each patient was implanted with an array of sub-dural platinum-iridium electrodes embedded in

silastic sheets (2.3mm exposed diameter, 10mm center-to-center spacing; Ad-tech Medical,

Racine, WI) placed directly on the cortical surface. Prior to implantation, each patient underwent

high-resolution TI-weighted MRI. Subsequent to implantation, patients implanted at

Massachusetts General Hospital (MGH) and Brigham and Women's Hospital (BWH) underwent

postoperative computerized tomography (CT); patients implanted at NYU underwent

postoperative MRI. Electrode coordinates obtained from postoperative scans were co-registered

with preoperative MRI and overlaid onto the patient's reconstructed cortical surface using



Freesurfer (Dale et al., 1999; Fischl et al., 1999a) and custom MATLAB (The Mathworks,

Framingham, MA) scripts (A. Dykstra et al., submitted; H. Wang et al., Comprehensive Epilepsy

Center, NYU School of Medicine, personal communication]. Electrode coordinates were then

projected onto the Freesurfer average brain using a spherical registration between the individual's

cortical surface and that of the Freesurfer average (Fischl et al., 1999b). The data from three

patients were excluded from analysis due to excessive noise caused by technical malfunction; the

data reported here are from the remaining nine patients (Table 1).

4.2.3 Stimuli and procedure

Stimuli were long sequences of pure-tone triplets of the form ABA-ABA-..., where A and

B represent individual tones and the dash represents a silent gap (Figure 3A). Each tone was

1 Oms in duration with 1 Oms raised-cosine on- and off-ramps. The inter-stimulus interval (ISI)

between the first A-tone and B-tone, as well as between the B-tone and second A-tone, was

25ms; the ISI between the second A-tone and subsequent triplet was 150ms. Stimulus onset

asynchrony (SOA) between successive A-tones was 250ms; SOA between successive B-tones

was 500ms; triplet onset asynchrony was also 500ms. Total duration of each sequence varied

between 6.5 and 10 seconds (13 and 20 triplets, respectively) depending on the listener (for P1-

P5, duration varied between 6.5 and 7.5 seconds; for P6-P9, duration was 10 seconds). The B-

tone frequency was fixed at 1 kHz. The A-tone frequency varied between 0 and 12 semitones

below the B-tone. Listeners P1, P2, P3, P4, and P5 participated in conditions in which the

frequency separation was 0, 5, 6, 7, or 12 semitones, where 1 semitone is an approximately 6%

frequency difference. Listeners P6, P7, P8, and P9 participated in conditions in which the

frequency separation was 0, 2, 4, 6, 8, 10, or 12 semitones. Each patient listened to between 200

and 378 triplets for a given frequency separation. All sounds were generated digitally in
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MATLAB, stored as .wav files, and converted to analog waveforms by the on-board sound card

of a laptop equipped with Presentation software (Neurobehavioral Systems, Albany, CA). Stimuli

were presented at a comfortable listening level via Etymotic ER-2 insert earphones (Etymotic

Research, Inc., Elk Grove Village, IL), diotically (when possible) or monaurally contralateral to

the hemisphere of implantation. Patients were instructed to listen to the sounds and to indicate at

the end of each sequence whether, at the end of the sequence, they were hearing a single

"stream" comprised of all tones or two "streams," one comprised of A tones and the other of B

tones. Responses were made by button press with a response box (Cedrus Corporation, San

Pedro, CA) interfaced with Presentation via USB. Response windows were unconstrained, and

the subsequent stimulus began one second after a response to the previous stimulus was entered.

4.2.4 Data acquisition

Intracranial EEG (iEEG) data at MGH and BWH were acquired with standard clinical

EEG monitoring equipment (XL TEK, Natus Medical Inc., San Carlos, CA) at a sampling rate of

250 Hz (P1) or 500 Hz (P2,P3,P6,P8). At NYU, iEEG data were acquired with a customized

system at a sampling rate of 30 kHz (P4,P5,P7,P9). All data were subsequently re-sampled to

500 Hz for analysis. All data were referenced to either an inverted intracranial electrode (i.e.

facing the inner skull table) remote from the electrodes of interest (P1,P2,P3,P6,P8) or a screw

bolted to the skull (P4,P5,P7,P9). For each patient, clinically-indicated, high-resolution Ti-

weighted structural MIRI scans were acquired prior to surgery. High-resolution CT

(P1,P2,P3,P6,P8) or structural MRI (P4,P5,P7,P9) scans were acquired subsequent to surgery for

the purpose of electrode localization.

4.2.5 Data pre-processing

Intracranial EEG data were bandpass filtered offline between 1 and 190 Hz and notch filtered at
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60 Hz and its harmonics using zero-phase shift FIR filters. Independent component analysis

using the runica algorithm (Bell and Sejnowski, 1995) in EEGLAB (Delorme and Makeig, 2004)

was performed on the "raw" data. Components dominated by large artifacts were identified and

removed by inspection. The component data were then back-projected in order to remove the

artifacts from the original data.

The iEEG was epoched relative to the onset of sound sequences (yielding long epochs

encompassing the entire sequence) as well as to the onset of individual ABA triplets (yielding

short epochs of 0.5 seconds) and binned with respect to either AF or perceptual report within a

given AF. For triplet-locked epochs, the first triplet in each sequence was discarded. Epochs

were baseline-corrected with respect to either the 500 ms preceding sequence onset (for

sequence-locked epochs) or the 50 ms preceding triplet onset (for triplet-locked epochs). Epochs

containing large artifacts were rejected automatically using joint probability and kurtosis

algorithms in EEGLAB (Delorme et al., 2007). Specifically, trials with joint probabilities or

kurtosis values more than 4 and 5 standard deviations from the normalized mean of these

measures, respectively, were rejected as artifact. Additional epochs found to contain large

epileptiform activity were rejected by visual inspection.

4.2.6 Statistical analysis

A modified version of the cluster-based, non-parametric statistical procedure outlined by

Maris and Oostenveld (Maris and Oostenveld, 2007) was used to test for effects of AF and

bistability on triplet-locked EP amplitude. Spearman (nonparametric) rank correlation (in the

case of a multiple-level factor, e.g., AF) and unpaired t-test (in the case of two-level factors, e.g.,

percept) were used as the sample-level (i.e. individual time point within a single channel)

statistics in order to evaluate possible effects of AF (five levels for P1-P5 and seven levels for
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P6-P9) and bistability (always two levels), respectively. Contiguous, statistically-significant

samples (defined as p<0.05) within a single electrode were used to define the cluster-level

statistic, which was computed by summing the sample-level statistics within a cluster. Statistical

significance at the cluster level was determined by computing a Monte Carlo estimate of the

permutation distribution of cluster statistics using 1000 re-samples of the original data (Ernst,

2004). For multiple-level factors (AF), the estimate of the permutation distribution was

performed by 1000 re-samples of the condition labels associated with each level in the factor.

Within a single electrode, a cluster was taken to be significant if it fell outside the 95%

confidence interval of the permutation distribution for that electrode. The determination of

significant clusters was performed independently for each electrode. This method controls the

overall false alarm rate within an electrode across time points; no correction for multiple

comparisons was performed across electrodes.

Due to the known buildup effects of auditory streaming (i.e., 2-stream percepts become

more likely as time since sequence onset increases and the fact that listeners only reported what

they heard at the end of each stimulus sequence, two independent analyses were carried out. The

first used only the data from the second half of each sequence while the second used all data after

removing the onset response (0-0.5 sec after stimulus onset). The method of analysis did not

effect the results, and only the results from the second analysis are shown.

4.2.7 Dissimilarity index

In order to further evaluate possible effects of perceptual bistability on the evoked waveforms,

we computed a dissimilarity index between waveforms from individual trials and a template

waveform within individual channels in which significant EP-AF correlations were found.

Qualitatively, this index is defined as the difference between the sum-squared error (SSE)
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computed for the condition of interest (i.e, a specific AF or percept) and the minimum SSE

computed across all conditions, normalized by the difference between the maximum SSE and

minimum SSE computed across all conditions. The index was computed by normalizing the

average sum-squared error between the trial and the template, as follows:

T

SSE =1 t XtX 2

t=1

where Xo is the template waveform and Xi1 is the individual-trial waveform for trial i in condition

j, t is the individual time point, and T is the overall number of significant time points in condition

j. The average SSE for condition j was computed as:

N

Y SSE.

SSE.= i
i N

where N is the number of trials.

The index was then defined as:

SSE -nnSSE

DIj = jna SSE - min SSE

Except for trials from the 0-semitone condition, the template was defined as the average EP for the 0-

semitone condition. The template to which individual trials from the 0-semitone condition were

compared was the average EP from the 0-semitone condition including all waveforms but the one from

the trial i ("leave one out"). This index provides a measure of how dissimilar two waveforms are from

each other. Although this index is biased to show a significant correlation with AF, it provides a means to

(i) collapse waveforms across individual electrode sites and patients into a single quantitative metric and

(ii) quantitatively compare responses to one- vs. two-stream percepts in a way that circumvents variable

latencies and durations of percept- or AF-based effects across sites.
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4.2.8 High-gamma power
Waveforms of high-gamma power were constructed using the wavelet transforms built into

EEGLAB (specifically, the newtimeffunction). Sequence-length (between 6.5 seconds and 10 seconds)

epochs were used to compute the event-related spectral perturbation (ERSP) which was baseline corrected

to the 500ms preceding stimulus onset. The number of wavelet cycles used varied logarithmically with

respect to frequency from three cycles at the lowest frequency tested (5 Hz) to 10 at the highest (190 Hz),

yielding approximate temporal resolution of < 500 ms at 8 Hz and < 125 ms in the gamma band. High-

gamma power waveforms were constructed by summing the power in frequencies from 80-190 Hz for

each time point in the full time-frequency representation. These waveforms were then baseline-corrected

by subtracting the mean power in each trial computed across the 500 ms preceding stimulus onset.

Triplet-locked gamma-power epochs were constructed by time-locking with respect to each triplet onset

and subsequently binned across the various AF and percept conditions in the same way as the evoked

potentials. The same statistical procedures described above were applied to the high-gamma waveforms.



4.3 Results
12 patients with intractable epilepsy listened to sequences of alternating pure tones

(Figure 1 A) and indicated at the end of each sequence whether, at the end of the sequence, they

were hearing the tones as grouped ("1 stream") or segregated ("2 streams") while we

simultaneously recorded the intracranial EEG (Figure 2). Three patients were excluded from

analysis for technical reasons (see Materials and Methods). Summed across the remaining nine

patients (Table 1), we recorded from nearly 700 electrodes in the left hemisphere and 250

electrodes in the right hemisphere, mostly on lateral cortex of the temporal, frontal and parietal

lobes (Figure 2E).

Figure 4.2. Intraoperative photographs, post-operative CT, and 3D
electrode coordinates on the cortical surface.

registration of

(A) and (B) Intraoperative photographs showing the reflected dura, exposed pial
surface, and overlaid electrode array (B) of an example subject who participated
in the study. (C) Maximal-intensity projection of sagittally-oriented CT scan
showing all of the intracranial electrodes collapsed onto a single plane. (D)
Electrodes overlaid onto a 3D rendering of the patient's cortical surface.(E)
Summary of all individual electrode sites. Electrode coordinates from all 9
participants in the study were co-registered and overlaid onto the Freesurfer
average surface. In total, we sampled from nearly 1000 sites, mostly over lateral
cortex.

4.3.1 Behavior
Figure 3 shows the probability of hearing two streams as a function of AF averaged
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across all nine patients included in the analysis. Patients reported hearing a single stream when

the AF was small and two streams when AF was large. At intermediate AF, the percept was

bistable, i.e. patients sometimes reported hearing one stream and sometimes reported hearing two

streams. A Kruskal-Wallis test confirmed a main effect of AF (X(1,8) 34.1; p < 0.0001).
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Figure 4.3. Behavioral results.

Subjects heard one stream when the frequency separation was small and two
when it was large. Intermediate frequency separations perceptually bistable.
Error bars represent the standard error of the mean across subjects.

4.3.2 Evoked Potentials: AF

In order to assess putative correlates of streaming, we tested for correlations between

triplet-locked EP amplitude and AF which, when parametrically varied, produced changes in how

the sequences were perceptually organized. In light of the known effects of perceptual buildup

in streaming tasks, two analyses were carried out: one using only the triplet-locked responses

from the second half of each sequence and another using all the
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Figure 4.4. Example responses from an individual subject.

Triplet-locked evoked potentials from an 8x electrode array over the right
hemisphere whose configuration on the individual's cortical surface is shown at
right. Different frequ en cy-se pa ration conditions are represented by different color
waveforms as shown at lower right. Significant correlations between the acoustic
parameter (frequency separation) and EP amplitude are indicated by gray
shading behind the waveforms in each plot. The responses showing significant
correlations with frequency separation are also indicated by red text or dots.

responses to all triplets save for the first (see Materials and Methods). The results did not differ

based on which analysis was used, thus only the second analysis is reported here. Significant

correlations between AF and EP amplitude were determined by cluster-based nonparametric

permutation statistics (Materials and Methods). Figure 4 shows the average triplet-locked

evoked responses across an Wx grid of electrodes for the different AF conditions from a single

patient (P4). The positions of each electrode are overlaid onto the patient's cortical surface

rendering. Examples from other patients can be found in the chapter 4 appendix. As can be

seen, waveform morphology was complex and highly variable between different electrode sites,
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yet evoked responses in varying time windows and spatial positions robustly correlated with AF.

The majority of sites which showed strong correlations with AF were over or adjacent to the

posterior superior temporal gyrus (pSTG). However, several other sites also showed responses

which correlated with AF. The sites which showed significant AF correlations across all nine

patients included in the analysis are summarized in Figure 5, where electrode sites from each

individual have been overlaid onto a template brain by spherical surface registration of each

patient's pial surface with that of the Freesurfer average (See Materials and Methods). Across

patients, a widespread set of brain areas showing significant correlations with AF included pSTG

(as was expected), middle temporal gyrus, pre- and post-central gyri (mainly ventrally), inferior

and middle frontal gyri, and the supra-marginal gyrus.

Figure 4.5. Summary of electrode sites that showed significant EP amplitude
correlations with frequency separation.

4.3.3 Evoked Potentials: Bistable Perception
After having established significant correlations with a physical stimulus parameter (AF)

known to produce changes in perceptual organization, we explicitly tested whether the same

electrode sites showed significant triplet-locked EP differences based solely on how the

sequences were perceptually organized (i.e., we compared EPs between sequences perceived as

one stream vs. two streams within a given AF condition). For a given AF, responses were binned

and averaged according to whether the listener reported hearing one or two streams. As for the
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Figure 4.6. Evoked potentials from individual peri-Sylvian electrode sites in each
of the 9 subjects.

Blue and red traces for a given frequency separation and subject indicate that the
percept for that condition was bistable (*, this patient did not understand the
task). Waveforms traced in black indicate that the percept for that condition was
unistable. Electrode sites, shown in the top row over each subject's cortical
reconstruction, were chosen based on their having the largest RMS power grand-
average triplet-locked evoked response in the vicinity of the superior temporal
gyrus. The frequency separation (AF, semitones) for each set of waveforms is
indicated in the left-most column. The timing of individual tones in the triplet is
shown in the bottom row

analysis testing for effects of AF, two analyses were carried out; one using only the responses

from the second half of each sequence and the other using responses from the entire sequence,

expect for the first. Only the results from the second analysis are presented here. The results of

this analysis for individual peri-STG sites across all nine patients are shown in Figure 6. The

sites, overlaid onto each individual's pial surface as shown in the top row, were chosen based on

the fact that each showed a significant correlation with AF and was the site with largest triplet-

locked RMS power in the vicinity of the pSTG. Responses to sequences that were perceptually

bistable (defined as: 0.3 5 P(2-stream percept) < 0.7) are shown by the blue (1-stream percepts)
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and red (2-stream percepts) traces; otherwise, traces are black. As can be seen, EP morphology

was highly variable across individual subjects. Waveforms changed significantly as a function of

AF as determined by Monte Carlo permutations using Spearman rank correlation as the sample-

level statistic (see Methods), but, surprisingly, did not show significant differences based on

percept per se. Across all the channels in the study, there were individual channels which

showed significant differences based on percept, but this effect was inconsistent across the

multiple AF conditions for which a bistable percept was evoked. In summary, several brain areas

both within and outside of the auditory cortex showed evoked responses that significantly

correlated with AF but not conscious perceptual organization.

4.3.4 Dissimilarity Analysis
In order to further evaluate whether sites showing significant EP-AF correlations also showed

correlates of perceptual bistability, we carried out a dissimilarity analysis using the grand average triplet-

locked response to the 0-semitone condition as the template. Responses from each AF condition were

binned according to percept as well as collapsed across them and compared to the template by sum-

squared error (SSE, see Materials and Methods). Our hypothesis was that responses from conditions with

greater AF - as well as responses from trials in which the subject reported hearing two streams - would

show a larger "dissimilarity index" computed from the SSE between the response of interest and the

template. Figure 7 shows the results of this analysis. The value of the dissimilarity index increased as AF

increased (Spearman's rho = 0.46, p < 0.0001) and, across all channels from all patients, showed a

marginally significant difference based on percept alone (W.= 3427, p = 0.097) in the expected direction

(i.e., greater dissimilarity indices for 2- vs. 1-stream percepts), suggesting a propensity for activity during

2-stream percepts to be more similar to activity evoked by large AF conditions. However, a sufficient

number of channels (23%) showed the opposite pattern so as to limit the statistical significance of the

effect. Individually, across all sites which showed a significant correlation with AF (N=44), four channels
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showed significant effects of percept on the dissimilarity index in the expected direction, while none

showed a significant effect in the opposite direction. Three of those channels were from S4 [G30, G37,

and a site over the left posterior STG (not shown)] whose data are shown in Figure 4, and the fourth was

from a site over the inferior post-central gyrus in SI (not shown). None of the four channels which

showed significant percept-based differences in the dissimilarity index showed significant differences in

the waveforms when evaluated directly.

0.8 0.8
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0.4 0.4

0.2 0.2
0

0 0
0 2 4 5 6 7 8 10 12 1 stream 2 streams

AF (semitones) Percept

Figure 4.7. Dissimilarity index.

The left panel shows the dissimilarity index as a function of frequency separation
collapsed across percept. The right panel shows the dissimilarity index as a
function of percept collapsed across delta-F conditions in which the percept was
bistable.

A complementary analysis was carried out using the grand-average triplet-locked

response collapsed across all conditions as the template (Figure 1 in appendix). Averaged

evoked responses from each AF condition were binned according to percept as well as collapsed

across them and compared to the template by sum-squared error. Using this analysis, the

dissimilarity index increased as AF increased (W(8,46) = 200.47, p < 0.000 1) but, across all

channels from all patients, did not differ based on percept alone (W. = 1076, p = 0.33),

confirming a significant main effect of AF and lack of a significant main effect of percept.
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4.3.5 Gamma Power Analysis

Two sets of triplet-locked high-gamma (80-190 Hz) power waveforms were constructed

using either (i) wavelet transforms or (ii) analytic signal methods (see Methods). These

waveforms were subjected to the same Monte Carlo permutation statistics as the triplet-locked

evoked potentials to test for effects of either AF or percept. No significant effects were found

(Figure 2 in appendix).
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4.4 Discussion
Combining a classical behavioral paradigm using long sequences of tones alternating in

frequency and direct cortical recordings in humans, the present results demonstrate a widespread

set of brain areas - mainly in posterosuperior temporal and peri-rolandic cortex, but also

extending to the middle temporal gyrus as well as inferior and middle frontal gyri - putatively

involved in auditory streaming. EP amplitude tightly correlated with AF, but did not consistently

differ based on perceptual organization alone. Waveform morphology was highly variable within

and across brain areas, suggestive of their having different roles in auditory stream formation.

4.4.1 Complex meso-scale activity in the auditory cortex during streaming
Results from previous M/EEG (Gutschalk et al., 2005, 2007; Snyder et al., 2006) and

fMIRI (Gutschalk et al., 2007; Wilson et al., 2007) studies of streaming have suggested either a

uniform role for the whole of the auditory cortex in stream formation or that the majority of

activity in response to stimuli similar to those used in the present study is localized on the

superior temporal plane (either on Heschl's gyrus or just posterior to it). The results from the

present study demonstrate that, in addition to there being responses in higher auditory areas (i.e.,

lateral STG), the activity within a given macroscopic brain area is not uniform, a result that has

also been noted by other investigators using evoked responses from iEEG with other classic

auditory paradigms (Crone et al., 2001; Howard et al., 2000; Brugge et al., 2003, 2008; Edwards

et al., 2005, 2009), especially from presumed higher-order auditory areas such as that on the

lateral STG. This can be seen in the single-subject data shown in Figure 4, where the responses

in adjacent electrode sites (e.g. G14 and G15 on the pSTG) indicate intra-areal variability in the

response to the ABA- triplets.

This discrepancy may be due to several factors. First, the lead fields of the electrodes
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used to measure brain activity in the present study are more likely to measure responses from

gyral crowns than from sulcal sources such as those located on the superior temporal plane (the

area to where non-invasive studies have localized dipoles during streaming), although others

have reported iEEG potentials interpreted to arise from sulci (Edwards et al., 2005; Acar et al.,

2009; Whitmer et al., 2010). We observed little evidence for sources on the STP in that (i) there

were very rarely clear polarity reversals across the lateral fissure and (ii) the earliest peak in the

average response to sequence onset was > 50ms, later than the earliest response in the medial

portion of the transverse gyrus of Heschl, which occurs at < 25ms (Liegeois-Chauvel et al.,

1991). This last point does not preclude the possibility that some of the responses we measured

arose from lateral portions of the STP, particularly in the NI-latency range (Gutschalk et al.,

2005; Snyder et al., 2006). However, to us, this seems unlikely given point (i). Second, the

responses we observed from the lateral STG could have radial source orientations, which would

not be identified with MEG but could be with EEG. Indeed, Snyder and colleagues (2006)

reported radially oriented sources which could have been localized to the STG. Third, although

both aforementioned fMRI studies of streaming - as well as others (Deike et al., 2010) - reported

activation maps with multiple foci of activation, the complex relationship between auditory-

evoked responses and the fMRI BOLD signal (Mukamel et al., 2005; Mayhew et al., 2010;

Mulert et al., 2010, 2005; Gutschalk et al., 2010; Steinmann and Gutschalk, 2011) as well as

BOLD-fMRI's low temporal resolution precludes a detailed characterization of areal sub-

specialization. Fourth, and perhaps most likely, the activity recorded by EEG and, to a lesser

extent, MEG, represents a spatially-smoothed version of the true cortical source configuration

(Ahlfors et al., 2010; Halgren, 2004), and does not tend to see brain activity having response

variability with high spatial frequency, contrary to the locally-generated signals measured by
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intracranial EEG.

4.4.2 The role of extra-auditory areas in streaming

The present study is the first to report brain activity from extra-auditory cortical areas

with high temporal resolution during the streaming paradigm. As shown in Figures 5 and 6,

evoked potentials from several widespread brain areas correlated with AF. Waveform

morphology was spatially variable both across and within macroscopic brain areas (though

consistent across trials), even within individual participants, suggesting that (1) areas outside the

auditory cortex may play an as-yet undetermined role in streaming and (2) the role of a given

macroscopic brain area may not be uniform, known issues of EP variability notwithstanding (e.g.

Edwards et al., 2009).

While several authors have posited a role for areas outside the classically-defined

auditory pathway in streaming (Snyder and Alain, 2007b; Bidet-Caulet and Bertrand, 2009;

Elhilali et al., 2009; Micheyl et al., 2005), nearly all neurophysiological studies of streaming

have focused exclusively on the auditory cortex (but see (Cusack, 2005; Kondo and Kashino,

2009; Pressnitzer et al., 2008)). Only two previous studies examined whole-brain activity during

the streaming paradigm (Cusack, 2005; Kondo and Kashino, 2009).

Cusack (2005), using a perceptually-bistable sequence of tones similar to those used in

the present study, reported increased BOLD activity in the intraparietal sulcus during 2-stream

vs. 1-stream percepts, but did not report percept or AF-based differences in the auditory cortex.

The present study could not assess the intraparietal sulcus given that (i) the sub-dural electrodes

used were confined to superficial gyri and (ii) the lead field of sub-dural electrodes is unlikely to

measure activity from as deep in the sulcus as the foci reported by Cusack. Studies utilizing

methods with high temporal resolution (e.g. MEG, iEEG, or microelectrodes in experimental
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animals) focusing on this region could elucidate it's precise role in streaming and auditory

perceptual organization more generally [e.g. (Rauschecker and Scott, 2009; Teki et al., 2011)].

Given the results of the present study as well as previous work (Bee and Klump, 2004, 2005; Bee

et al., 2010; Fishman et al., 2004, 2001; Micheyl et al., 2005; Gutschalk et al., 2005; Wilson et

al., 2007; Snyder et al., 2006), it is unclear why Cusack did not observe a neurophysiological

correlate of AF in the auditory cortex, though an account based on subtle paradigmatic

differences cannot be ruled out.

Kondo and Kashino (2009) used an event-related fMRI paradigm in order to measure

brain activity during perceptual switching. Their subjects listened to tone sequences nearly

identical to those used in the present study and indicated when the percept switched from one to

two streams and vice versa. In addition to the auditory cortex, significant switch-related

activations were found in the posterior insula, medial geniculate body, supra-marginal gyrus. No

explicit contrasts were carried out to test for effects of perceptual organization or AF, but the

results do highlight the need for further examination of the involvement of areas outside the

auditory cortex in streaming.

Our results demonstrate that the cortical areas engaged during the streaming paradigm is

much more complex and widespread than has been shown by previous work, and highlights the

need for detailed neurophysiological examinations of the streaming paradigm in behavioral

animal models.

4.4.3 Failure to observe correlates of bistability

Contrary to the study of the visual system in which there are many reports of brain

activity covarying directly with perception (Leopold and Logothetis, 1999; Logothetis, 1998;

Sterzer et al., 2009), such observations are scarce in the auditory system (Hillyard et al., 1971;
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Cusack, 2005; Gutschalk et al., 2005, 2008). By recording brain activity with high

spatiotemporal precision from widespread areas of the human cortex, the present study attempted

to identify neural correlates of streaming, per se, in the absence of physical stimulus differences.

As mentioned above, Cusack (2005) reported increased BOLD activity in the anterior

intraparietal sulcus during 2- vs. 1-stream percepts but did not find percept- or AF-based

differences in the auditory cortex. The latter finding is contrary to what Gutschalk et al. (2005)

reported using magnetoencephalography, namely amplitudes of the P1m and Nim components

evoked by the B-tone in a sequence of ABA- triplets which co-varied with both AF and

perceptual organization, per se. No evidence for activity in the intraparietal sulcus was found in

that study, though this could be due to activity in the Cusack study not being precisely time-

locked to the stimuli, a condition necessary for the measurement of evoked responses with EEG

or MEG. Neither finding - increased activity in the intraparietal sulcus or planum temporale

during 2- vs. 1-stream percepts - was replicated by the present study, possibly due to lack of

coverage in the areas of activity reported by both Cusack and Gutschalk et al. (intraparietal

sulcus, transverse gyrus on the superior temporal plane) or, again, that the electrical activity

responsible for the generation of the BOLD effects reported by Cusack was not time-locked to

the stimuli.

Possible explanations for why we did not observe robust correlates of perceptual

bistability despite widespread cortical sampling (see Figure 3) are many. First, although it seems

unlikely to us given the large amount of data suggesting a role for frontal areas in conscious

visual perception (Libedinsky and Livingstone, 2011), it could be that the areas reported by

Cusack (2005) and Gutschalk et al. (2006) are unique in maintaining representations of auditory

perceptual organization and that we simply were unable to examine activity from these areas.
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Second, although the possibility that the known issue of trial-to-trial variability in the evoked

potentials caused the lack of a significant percept-based finding cannot be ruled out, we find this

explanation unlikely given the robust effects of AF as well as the relatively flat waveforms in the

pre-sequence baseline period we observed. Finally, the neural correlates of auditory streaming

could be found (i) in another cortical area not sampled, (ii) in a distributed network of brain areas

which couldn't be determined based on the uni-variate analyses used, (iii) on a finer spatial scale

than was assessed by the present study, or (iv) in an aspect of neural activity not examined such

as sustained potentials or sustained gamma-band activity, though our analysis of evoked gamma-

band power showed neither AF- or percept-based effects. This is perhaps due to the relatively

constant acoustic stimulation used in our paradigm vs. the less frequent stimuli used in previous

reports demonstrating large gamma-band effects (Crone et al., 2001, 2006; Edwards et al., 2005).
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4.6 Appendix
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Figure 4.SI. Complementary dissimilarity index.

Dissimilarity index computed using the grand-average EP collapsed across all
conditions as the template and the per-condition average EPs as the test
waveforms. As in Figure 7, the left panel shows the dissimilarity index as a
function of frequency separation collapsed across percept. The right panel
shows the dissimilarity index as a function of percept collapsed across delta-F
conditions in which the percept was bistable.
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Figure 4.S2. High-gamma power waveforms.

High-gamma (70-190 Hz) power waveforms for the same subject as in Figure 4.
The legend is as in Figure 4 except for ordinate units, which are now in dB with
respect to the pre-stimulus baseline period.
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Figure 4.S3. Evoked potentials from S8 across the seven AF conditions used for
this participant.
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Figure 4.S4. Evoked potentials from S7 across the seven AF conditions used for
this participant.
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ABSTRACT
Auditory perception is organized on multiple timescales, ranging from milliseconds (pitch), tens
of milliseconds (flutter), hundreds of milliseconds (acoustic events or rhythm) to much longer
timescales which support melody perception, sentence comprehension, and auditory memory.
How the auditory system segments the acoustic environment to support organization on these
multiple timescales is unclear. In the visual system, recent evidence suggests that cortex
organizes it's sensory input into increasingly-longer timescales in a hierarchical manner such that
relatively fast timescales are more strongly represented in early unimodal cortex and slower
timescales in higher-order association cortex and/or multi- and supra-modal areas. We recorded
the intracranial EEG from nine patients with epilepsy while they listened to sequences of
alternating-frequency pure tones. Each tone sequence elicited a clear rhythmic percept and
lasted between 6.5 and 10 seconds. Simultaneously-recorded evoked responses from widespread
brain areas showed organization on multiple temporal scales. Some sites responded only to the
onset and offset of sound, while other sites showed either sustained or steady-state responses
throughout the duration of the stimulus. In general, sites which showed sustained or steady-state
responses were located near the posterior superior temporal gyrus, while sites which showed
onset or offset responses were outside this region. The results support the idea of a hierarchical
segmentation of acoustic input on progressively longer temporal scales.
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5.1 Introduction
The natural acoustic environment is organized on several timescales, ranging from

milliseconds for auditory percepts such as pitch to hundreds of milliseconds for rhythm to longer

timescales for melody, speech comprehension, and auditory memory. How - and where in the

auditory system - this segmentation is performed is not well understood. It has long been

proposed that the anatomical hierarchy of the auditory system, from the auditory nerve to the

auditory cortex could support the perceptual organization of the acoustic world into

progressively-longer temporal scales (Seifritz et al., 2002; Harms et al., 2005; Harms and

Melcher, 2002; Kiebel et al., 2008; Hasson et al., 2008; Lemer et al., 2011). Indeed, the

discrepancy of timescales of neural adaptation observed between auditory centers located early

in the ascending pathway (i.e. the auditory nerve, cochlear nucleus, and inferior colliculus) vs.

that which occurs at higher auditory centers (medial geniculate body and the auditory cortex)

(Harms and Melcher, 2002), in addition to the degradation of phase locking as one ascends the

auditory pathway (Creutzfeldt et al., 1980; Langner and Schreiner, 1988; Schreiner and Langner,

1988; Langner, 1992), has been interpreted as evidence for a neural instantiation of the

hierarchical organization of acoustic time (Kiebel et al., 2008; Harms et al., 2005).

In humans, evidence for such discrepancies in the timescales of adaptation has relied

exclusively on studies utilizing non-invasive methods, including fMRI and M/EEG, which have

focused primarily on the auditory cortex [but see (Harms and Melcher, 2002)]. However,

inherent limitations such as, in the case of fMRI, the indirect relationship between neural activity

and the BOLD signal and, in the case of M/EEG, the lack of unique inverse solution, render it

difficult to use those techniques to examine neural correlates of acoustic temporal segmentation

across widespread brain areas simultaneously. Direct evidence for the neural differentiation of
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acoustic timescales remains sparse, especially in cortical areas outside the auditory cortex.

Here, we report the results from a series of experiments in which neurosurgical patients

with epilepsy actively listened to long (on the order of several seconds) sequences of pure tones

while we simultaneously recorded their intracranial electroencephalogram (iEEG). Each

participant was engaged in an auditory streaming task and indicated at the end of each acoustic

sequence whether they perceived one or two acoustic "streams." Evoked responses, including

low-frequency evoked potentials (EPs) and gamma-band activity (GBA), displayed organization

on several timescales, ranging from (i) steady-state responses that followed the envelope of

individual tones in the sequence, (ii) onset and/or offset responses that occurred only at the

beginning or end of a sequence, or (iii) sustained responses in the GBA that persisted throughout

the course of a sequence without an accompanying steady-state response. Most steady-state and

sustained responses were found in the auditory cortex overlying the superior temporal gyrus

(STG), while onset and offset responses without accompanying steady-state or sustained

responses were most often found in electrodes outside the auditory cortex (i.e., not over the

STG). The results support the idea that the anatomical hierarchy of the auditory system could

recapitulate the temporal hierarchy found in natural acoustic signals.
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5.2 Materials and Methods

5.2.1 Ethics statement

All procedures were approved by the Institutional Review Boards at Partners Healthcare

(MGH and BWH), the New York University (NYU) Langone Medical Center, and the

Massachusetts Institute of Technology (MIT) in accordance with NIH guidelines. Written

informed consent was obtained from all patients prior to their participation.

5.2.2 Listeners

Twelve patients with intractable epilepsy underwent invasive monitoring in order to

localize the epileptogenic zone prior to its surgical removal. Each patient was implanted with an

array of sub-dural platinum-iridium electrodes embedded in silastic sheets (2.3mm exposed

diameter, 10mm center-to-center spacing; Ad-tech Medical, Racine, WI) placed directly on the

cortical surface. Prior to implantation, each patient underwent high-resolution TI-weighted

MRI. Subsequent to implantation, patients implanted at Massachusetts General Hospital (MGH)

and Brigham and Women's Hospital (BWH) underwent postoperative computerized tomography

(CT); patients implanted at NYU underwent postoperative MRI. Electrode coordinates obtained

from postoperative scans were co-registered with preoperative MRI and overlaid onto the

patient's reconstructed cortical surface using Freesurfer (Dale et al., 1999; Fischl et al., 1999) as

well as custom software written in MATLAB (The Mathworks, Framingham, AIA). Electrode

coordinates were then projected onto the Freesurfer average brain using a spherical registration

between the individual's cortical surface and that of the Freesurfer average (Fischl et al. 1999b).

The data from three patients were excluded from analysis due to excessive noise caused by

technical malfunction. From the remaining nine patients, we sampled from nearly 700 sites in

the left hemisphere and 250 sites in the right hemisphere (Figure 5. 1A).
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Figure 5.1. Recording sites across all nine patients overlaid onto the Freesurfer
average brain (A) and a depiction of the stimuli used in the present study (B).

In (A), each black dot represents a single electrode from one of the nine patients.
In total, we sampled from nearly 1000 sites, nearly 700 from the left hemisphere
and more than 250 from the right hemisphere. In (B), each bar represents a
short (100 msec) pure tone and the space between A and B tones is the
frequency separation, or AF.

5.2.3 Stimuli and procedure
Stimuli were long sequences of pure-tone triplets of the form ABA-ABA-..., where A and

B represent individual tones and the dash represents a silent gap (Figure 5.1B). Each tone was

lOOms in duration with 1Oims raised-cosine on- and off-ramps. The inter-stimulus interval (ISI)

between the first A-tone and B-tone, as well as between the B-tone and second A-tone, was

25ms; the ISI between the second A-tone and subsequent triplet was 150ms. Stimulus onset

asynchrony (SOA) between successive A-tones was 250ms; SOA between successive B-tones

was 500ms; triplet onset asynchrony was also 500ms. Total duration of each sequence varied

between 6.5 and 10 seconds depending on the listener (for P1-P5, duration varied between 6.5
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and 7.5 seconds; for P6-P9, duration was 10 seconds). The B-tone frequency was fixed at 1kHz.

The A-tone frequency varied between 0 and 12 semitones below the B-tone. Listeners P1, P2,

P3, P4, and P5 participated in conditions in which the frequency separation was 0, 5, 6, 7, or 12

semitones. Listeners P6, P7, P8, and P9 participated in conditions in which the frequency

separation was 0, 2, 4, 6, 8, 10, or 12 semitones. Each patient listened to between 10 and 45

sequences for a given frequency separation. All sounds were generated digitally in MATLAB,

stored as wave files, and converted to analog waveforms by the on-board sound card of a laptop

equipped with Presentation software (Neurobehavioral Systems, Albany, CA). Stimuli were

presented at a comfortable listening level via Etymotic ER-2 insert earphones (Etymotic

Research, Inc., Elk Grove Village, IL), diotically (when possible) or monaurally contralateral to

the hemisphere of implantation. Patients were instructed to listen to the sounds and to indicate at

the end of each sequence whether they heard a single "stream" comprised of all tones or two

"streams," one comprised of A tones and the other of B tones. Responses were made by button

press with a response box (Cedrus Corporation, San Pedro, CA) interfaced with Presentation via

USB. Response windows were theoretically infinite, and the subsequent stimulus began one

second after a response to the previous stimulus was entered.

5.2.4 Data acquisition

Intracranial EEG data at MGH and BWH were acquired with standard clinical EEG

monitoring equipment (XL TEK, Natus Medical Inc., San Carlos, CA) at a sampling rate of 250

Hz (Pt) or 500 Hz (P2,P3,P6,P8). At NYU, the intracranial EEG was acquired with a

customized system at a sampling rate of 30 kHz (P4,P5,P7,P9). All data were subsequently re-

sampled to 500 Hz for analysis. All data were referenced to either an inverted intracranial

electrode (i.e. facing the inner skull table) remote from the electrodes of interest
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(P1,P2,P3,P6,P8) or a screw bolted to the skull (P4,P5,P7,P9). For each patient, clinically-

indicated, high-resolution TI-weighted structural MIRI scans were acquired prior to surgery.

High-resolution CT (P1,P2,P3,P6,P8) or structural MRI (P4,P5,P7,P9) scans were acquired

subsequent to surgery for the purpose of electrode localization.

5.2.5 Data pre-processing

Intracranial EEG data were bandpass filtered offline between 0.5 and 190 Hz and notch

filtered at 60 Hz and its harmonics using zero-phase shift FIR filters. Independent component

analysis using the runica algorithm [69] in EEGLAB [70] was performed on the "raw" data.

Components dominated by large artifacts were identified and removed by inspection. The

component data were then back-projected in order to remove the artifacts from the original data.

5.2.6 Evoked-potential analysis

The intracranial EEG was epoched relative to the onset of sound sequences (yielding long

epochs encompassing the entire sequence and shorter epochs of 0.5 seconds) as well as to the

offset of sound sequences (yielding short epochs of 0.5 seconds) and either collapsed across all

stimulus/response conditions or binned with respect to either AF or perceptual report within a

given AF. Onset epochs were baseline-corrected with respect to either the 500 ms preceding

sequence onset (for long epochs) or the 100 ms preceding sequence onset (for short epochs).

Offset epochs were baseline-corrected with respect to the 100 ms preceding sequence offset.

5.2.7 Time-frequency analysis

Time-frequency analysis was performed using a combination of built-in Morlet wavelet

functionality in EEGLAB including the newimef function and custom MATLAB scripts. A

measure termed the event-related spectral perturbation (ERSP) which compares post-stimulus
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amplitudes across the frequency range of interest (here, 5-190 Hz) to that during a pre-stimulus

baseline period (-500ms to Oms, 0 being stimulus onset). ERSP was computed separately for

each trial and subsequently averaged for stimulus and/or response condition of interest. The

temporal width of the Morlet wavelets increased logarithmically proportional to frequency from

three cycles at the lowest frequency examined (5 Hz) to 10 cycles at the highest (190 Hz),

yielding approximate temporal resolution of < 500 ms at 8 Hz and < 125 ms in the gamma band.

The ERSP for each trial was divided into pre-defined bands including alpha (7-13 Hz), beta (13-

30 Hz), low gamma (30-80 Hz), and high gamma (80-190 Hz) and subsequently summed within

each band to generate stimulus-locked power waveforms representing the total time-varying

power in each band with respect to the pre-stimulus baseline. These waveforms were low-pass

filtered using 4th-order zero-phase-shift elliptical filters at 2.5 or 10 Hz for analysis of sustained

and onset/offset/steady-state responses, respectively.

5.2.8 Statistical analysis

A modified version of the cluster-based, non-parametric statistical procedure outlined by

Maris and Oostenveld (Maris and Oostenveld, 2007) was used to test for effects of AF and

bistability on EP amplitude and band-limited power waveforms, both time-locked either to the

onset or offset of the sequence. Spearman (nonparametric) rank correlation (in the case of a

multiple-level factor, e.g., AF) and unpaired t-test (in the case of two-level factors, e.g., percept)

were used as the sample-level (i.e. individual time point within a single channel) statistics in

order to evaluate possible effects of AF (five levels for P1-P5 and seven levels for P6-P9) and

bistability (always two levels), respectively. Contiguous, statistically-significant samples

(defined as p<0.05) within a single electrode were used to define the cluster-level statistic, which

was computed by summing the sample-level statistics within a cluster. Statistical significance at
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the cluster level was determined by computing a Monte Carlo estimate of the permutation

distribution of cluster statistics using 1000 re-samples of the original data (Ernst, 2004). For

multiple-level factors (AF), the estimate of the permutation distribution was performed by 1000

re-samples of the condition labels associated with each level in the factor. Within a single

electrode, a cluster was taken to be significant if it fell outside the 95% confidence interval of the

permutation distribution for that electrode. The determination of significant clusters was

performed independently for each electrode. This method controls the overall false alarm rate

within an electrode across time points; no correction for multiple comparisons was performed

across electrodes.

5.2.9 Waveshape index

In order to quantify the propensity of a given electrode site to be dominated by either

on/off responses or a more sustained response, we defined a waveshape index modified from

Harms et al. (2005), varying between -1 and 1, where an index value of -I indicates that a site is

dominated by transient responses occurring at the onset or offset of sound stimuli and an index

value of 1 indicates that a site is characterized more by sustained, ongoing responses. The index

was computed per channel i as:

wI I1- max(ON ,OFF)
2 SSi +mean(ON,,OFFJ)0'

where ON, and OFF, are the root-mean-squared (RMS) power in the average EP from 0-500

msec post-onset and post-offset, respectively, SS is the RMS power in the steady-state average

EP, and SNR is the RMS power in the average EP from 0-500 msec post-onset divided by the

RMS power in the average EP in the 500 msec pre-stimulus baseline period.
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5.3 Results

5.3.1 Evoked potentials
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Figure 5.2. Example of evoked potential waveforms from a single subject
demonstrating multiple timescales of responses.

(A) Grand average EPs collapsed across all stimulus conditions for each of the
64 electrodes shown in (C). (B) Average EPs per AF condition for each of the five
conditions used for this participant (0, 5, 6, 7, and 12 semitones). The blue
curves are for the 0-semitone condition, and the red curves are for the 12-
semitone condition, with 5, 6, and 7 semitones shown as the colors in between
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blue and red. (D) Examples of onset and offset responses from individual
channels over temporal (G14, G15) and frontal (G27, G35) cortex. Gray shading
indicates significant correlation between EP amplitude and AF condition. Several
sites outside of the auditory cortex only showed correlations in the offset
response.

Figure 5.2 shows an example of the evoked potentials from an individual participant (P4)

during the duration of the entire sequence, locked both stimulus onset and, due to the sometimes

variable length of each sequence, stimulus offset. Panel A shows the grand average evoked

potential collapsed across all stimulus conditions. As can be seen from this figure, several brain

areas showed responses to sound, with highly variable waveform morphology across individual

electrode sites. Most sites near the posterior superior temporal gyrus (e.g. G14, GI 5, G22)

tended to show responses throughout the duration of the sequence (i.e., steady-state responses).

In contrast, most of the sites demonstrating exclusively on or off responses were located outside

this area (e.g. G27, G35, G44, G46), although there are certainly counter examples in both

directions, i.e. sites near the STG whose responses were dominated by on and off components

(e.g. G23) and sites away from the STG whose responses displayed steady-state as well as on

and off responses (e.g. G63).

Evoked responses were further subdivided based on the frequency separation between the

A and B tones (panels B and the color panels in D). Several sites showed EP amplitude in the on

and off responses which correlated with frequency separation, though there were several sites

which only showed this correlation for off responses (e.g. G27 and G35, shown in panel D). The

distribution of these sites for this patient is shown in Figure 5.2B.

5.3.2 Event-related spectral perturbation

Figure 5.3 shows an example of the time-frequency analysis we performed for each
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electrode site. This site (G22) was taken from the same patient as in Figure 5.2, and is indicated

by the red dot in Figure 5.3B. Figure 5.3A shows the average evoked response time-locked to

sound onset and collapsed across all conditions. For each electrode site, the event-related

spectral perturbation (ERSP) was computed by computing a wavelet-based time-frequency

representation (see Materials and Methods) for every trial and subsequently averaging these

representations across trials to calculate an average ERSP, shown in Figure 5.3C. Figure 5.3D

shows the average post-stimulus power in the ERSP, which is a baseline-corrected measure, as a

function of frequency. This electrode site showed a steady-state response around 8 Hz (the

frequency of tone repetition), a widespread alpha/beta decrease extending even into the low

gamma range, and a broadband high gamma increase. Power waveforms for these three bands,

and their corresponding power spectra, are shown in panels E, F, and G, and H, I, and J,

respectively. Note that all three bands of activity showed fluctuations around 2 Hz (the triplet

frequency), but only the high gamma band showed fluctuations at 8 Hz (the individual tone

frequency).
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Figure 5.3. Example of the analysis we carried out for each channel.

(A) Grand-average EP across all conditions for the channel depicted in red in (B).
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(C) The grand-average event-related spectral perturbation across time and
frequency. Red (blue) colors indicates stimulus-driven increases (decreases) in
band-limited power. The time averaged power at each frequency for this
response is shown in (D). In both (C) and (D) it can be seen that there were
three distinct bands of interest (theta/low alpha: 7-9 Hz, beta: 10-30 Hz, and high
gamma: 70-190 Hz). The time courses of power modulations in each of these
bands, and their associated power spectra, are shown in E and H (theta/low
alpha), F and I (beta), and G and J (high gamma).

G64 G63 G62 G61 G60 G59 G58 G57
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G4 G47 G46 G45 G44 G43 G42 G41
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1.5 dB - theta/low alpha

-500 msec 41 7000 msec beta
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Figure 5.4. Waveforms of the three different frequency bands (theta/low alpha,
beta, and high gamma) across all the electrode sites for the same patient as in
Fig. 2. Theta/low alpha, beta, and high gamma are shown in blue, green an
orange, respectively. It can be seen that each band displayed characteristic
spatial patterns, with widespread beta reductions, focal high gamma activity, and
alpha patterns which were either dominated by the EP (e.g. G22), or showed true
oscillatory increases or decreases across space.

Due to prevalence of task correlates found in high gamma activity, we focused on that

spectral region for the subsequent analysis of timescales of acoustic segmentation. Figure 5.4

shows the average power waveforms in several frequency bands (alpha, beta, high gamma)

time-locked to stimulus onset and offset for the same patient as in Figure 5.2. As can be seen
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from this figure, there were several profiles of high-gamma activity, varying from very sustained

(e.g. G14) to highly phasic (e.g. G35). In general, the high-gamma activity corresponded well

with the evoked responses in that if an electrode site showed a sustained (phasic) response, the

high-gamma activity also was sustained (phasic). However, it can also be seen that the spatial

extent of the sustained responses is more focal in the high-gamma activity than in the evoked

responses. In contrast, beta activity (12-30 Hz) displayed widespread sustained decreases

relative to the pre-stimulus baseline period, and theta/low alpha (7-9 Hz) activity, when not

simply reflecting the evoked response (e.g. G22), displayed patterns of sustained increases (G39,

G55) and decreases (e.g. G14, G21). Figure 5.5 shows the spatial patterns of activity for the

evoked potentials and

Evoked Potential Theta/Low Alpha Beta High Gamma

Onset

Steady-state/
Sustained

Offset

0 pV 1 35 pV -1.5 dB 1.5 dB

Figure 5.5. Cortical maps of the evoked potentials and individual frequency
bands across three different time periods: stimulus onset (top row), steady-state
or sustained responses (middle row), and stimulus offset (bottom row). The
spatial pattems of sustained vs. phasic responses can be seen clearly in both the
evoked potentials and high gamma activity where temporal lobe sites showed the
greatest propensity for a robust response throughout the stimulus and frontal
sites showed more phasic responses at stimulus onset and offset. In contrast,
beta activity showed widespread decreases which persisted throughout the
stimulus duration, while theta/low alpha activity showed separate pattems of
increases and decreases, some of which were driven by the evoked potentials,
especially at stimulus onset and offset.
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various frequency bands (theta/low alpha: 7-9 Hz; beta: 12-30 Hz; high gamma: 70-190 Hz)

across time within the sequence of acoustic stimulation. Both the evoked responses and high

gamma activity showed spatial patterns of phasic vs. sustained responses. Much of the sustained

and/or steady-state responses were from sites near the lateral fissure, while sites outside this

region showed primarily onset or offset responses. The widespread beta decrease is confirmed

by the maps in Figure 5.5. The theta/alpha activity tended to show responses which were either

(i) driven by components in the evoked potential (e.g. G22) or sustained increases or decreases

which were spatially segregated.

5.3.3 Waveshape index

The tendency of individual electrode sites to show phasic or sustained and/or steady-state

responses was quantified by calculating a waveshape index (See Methods) for both the evoked

potentials and high-gamma responses. The index was calculated by summing the RMS power in

the ON and OFF responses divided by the sum of the average steady-state (in the case of EPs) or

sustained (in the case of high-gamma) response and the max of the ON and OFF responses, and

finally normalized by the signal-to-noise ratio for each channel. The left panels of Figure 5.6

show
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Figure 5.6. Cortical maps of the waveshape index defined for both the evoked
potentials (A) and high-gamma activity (C), and there corresponding averages
broken down across brain area (B and D). Phasic responses were most often
observed in frontal areas, while sustained/steady-state responses were most
often observed in temporal areas, though this comparison did not reach statistical
significance for the high-gamma activity, perhaps due to a strong sustained high-
gamma response near the central sulcus.

the waveshape indices for the EPs (panel A) and high-gamma activity (panel C) mapped onto the

cortical surface. The right panels show the average waveshape indices for temporal (blue) and

extratemporal (red) electrode sites for the EPs (panel B) and high-gamma activity (panel D). The

difference between the waveshape index in temporal vs. extra-temporal brain areas was highly

significant for the evoked response (p<0.001) but failed to reach statistical significance in the

high-gamma activity (n.s.), as assessed by Mann-Whitney U tests.
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5.4 Discussion
Utilizing direct cortical recordings from humans engaged in an auditory streaming

paradigm, we have demonstrated that a multitude of temporal acoustic scales are present in the

evoked responses (and high-gamma activity) to long sequences of tones. These timescales

ranged from steady-state responses to individual events within the tone sequence (hundreds of

milliseconds), persistent sustained responses as well as on and/or off responses (several seconds).

Although not wholly segregated anatomically, responses in peri-Sylvian regions showed a

propensity for sustained and/or steady-state responses which persisted throughout the duration of

the tone sequence while responses in frontal and parietal cortex tended to respond only at the

onset and offset of the tone sequence. This was especially true of of averaged evoked potentials

and high-gamma activity, though the latter tended to show more fine-grained patterns, a result

that has been consistently demonstrated with intracranial recordings in humans (Crone et al.,

2001; Edwards et al., 2005, 2009). Interestingly, the finer-grained patterns of high-gamma

activity and - to a lesser extent - the evoked potentials in the auditory cortex tended to break

down along the boundary between the putative dorsal and ventral processing streams

(Rauschecker and Scott, 2009), with those sites located more dorsally showing more phasic

responses and those located more ventrally showing more sustained and/or steady-state

responses. In contrast, alpha and beta activity (10-30Hz) showed widespread suppression during

acoustic stimulation and did not tend to show easily-segregated anatomical patterns (c.f. Figure

5.5).

5.4.1 Mechanisms underlying varying temporal sensitivity
While the neural mechanisms underlying the varying temporal sensitivity observed across

different hierarchical levels of the brain are not well understood, one process that may play a key
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role is neural adaptation. Several previous studies, in both experimental animals (Fitzpatrick et

al., 1999; Creutzfeldt et al., 1980; Burkard et al., 1999; Lu et al., 2001; Bartlett and Wang, 2007;

Wang et al., 2008) and humans (Davis et al., 1966; Fruhstorfer et al., 1970; Fruhstorfer, 1971;

Picton et al., 1974; Thornton and Coleman, 1975; Naatanen and Picton, 1987; Harms and

Melcher, 2002; Seifritz et al., 2002; Harms et al., 2005; Brugge et al., 2009), are consistent with

the idea that neural adaptation in response to successive acoustic stimuli increases along the

ascending auditory pathway. The results from the present study extend empirical evidence for

this idea further into what are thought to be high-level association areas of the auditory cortex

(including lateral STG, STS, and MTG) as well as supra- and multimodal areas in the frontal and

parietal lobes. However, several sites showed responses which were much larger at stimulus

offset than onset (c.f. Figure 5.2), suggesting that mechanisms in addition to neural adaptation

may be operative there. A recent study has also shown support for offset-specific mechanisms in

the auditory cortex (Scholl et al., 2010). If similar mechanisms exist in auditory-responsive

areas of frontal and parietal cortex, then it could be that in the sites which only showed offset

responses, our electrodes were somehow sensitive to the synapses driving off-, but not on-,

responses. Alternatively, it is known that the representation of acoustic information undergoes

drastic transformations from being primarily temporal-based to primarily rate-based at the level

of the auditory cortex (Lu et al., 2001; Bendor and Wang, 2008; Wang, 2007; Schreiner and

Winer, 2007; Wang et al., 2008; Sharpee et al., 2011), and it could be that the representation of

acoustic information at supra- and multimodal levels of the brain is further transformed (Cohen

et al., 2004, 2009; Russ et al., 2008; Lee et al., 2009; Lemus et al., 2009) such that it is difficult

to observe sustained responses with relatively gross methods (e.g. iEEG, such as was used in the

present study) in these high-level brain areas.
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5.4.2 Comparison with fMRI studies

Several previous reports have examined the change in BOLD response properties across

anatomical subdivisions of the auditory cortex to varying rates of acoustic stimulation (Harms

and Melcher, 2002; Harms et al., 2005; Seifritz et al., 2002) or perceptual organization of

alternating-frequency tone sequences (Gutschalk et al., 2007; Wilson et al., 2007; Schadwinkel

and Gutschalk, 2010). Taken together, the general conclusions from these studies are that (i)

auditory centers situated higher in the ascending auditory pathway (i.e. medial geniculate body,

Heschl's gyrus, superior temporal gyrus) demonstrate large changes in BOLD-signal waveshape

with changes in either physical or perceived rate of acoustic stimulation which covaries with the

expected amount of neural adaptation for a given stimulus configuration and that (ii) for a given

rate of acoustic stimulation above a certain critical rate, higher auditory centers show responses

which are robust at the onset and offset of sound but weak or non-existent sustained responses.

Although purely hemodynamic explanations for this effect cannot be completely ruled out, the

authors of those studies interpreted their results to reflect concomitant changes in neural activity

responsible for generating the BOLD signal. Our stimuli were most similar to those used by

Wilson et al. (2007) and Gutschalk et al. (2007), though it is not straight-forward to compare

because the physical rate of stimulation used in our study had components between 2 and 8 Hz

which, in the STG, for example, would span the categorical changes seen in the BOLD response

waveshape (Harms et al., 2005). Given that (i) transient evoked responses are a major

contributor to the fMRI BOLD response in the auditory cortex (Gutschalk et al. 2010) and (ii)

the steady-state responses we measured did not show drastic qualitative changes based on our

stimulus manipulations (Dykstra et al.), our data - at least that from sites over auditory cortex -

might not be expected to result in large changes in fMRI waveshape. In contrast, we did measure
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offset responses in the auditory cortex that increased dramatically with increasing frequency

separation between the alternating tones in our stimulus in a manner consistent with the changes

seen in the fMRI off response with increased physical or perceived presentation rate. If one

assumes a consistent relationship between neural activity and the hemodynamic response across

brain areas, the responses we measured in areas outside the auditory cortex which were

extremely phasic, especially in frontal cortex, would suggest that the fMRI BOLD response in

these areas would also be much more phasic, at least across the acoustic parameter space used to

date.

5.4.3 Functional role in scene analysis

The present results are consistent with the idea that the anatomical hierarchy that exists in

the auditory system recapitulates the temporal hierarchies that exist in natural acoustic signals

(Kiebel et al., 2008, 2009a, 2009b; Harms and Melcher, 2002; Hasson et al., 2008; Lerner et al.,

2011) and extends empirical support for it into areas outside the auditory cortex including frontal

and parietal areas. The functional role of this anatomical recapitulation could be to support

auditory scene analysis in decomposing the acoustic environment into different temporal

receptive windows in order to register short-term vs. long-term changes in the acoustic

environment. This registration process could be critical for auditory functions operative on

successively longer timescales (e.g. pitch, rhythm, word, sentence, and melody comprehension).

It has previously been proposed that the neural activity underlying phasic BOLD

responses to perceptually contiguous events in the auditory cortex (Harms and Melcher, 2002;

Harms et al., 2005; Seifritz et al., 2002) represents the coding of the onsets and offsets of those

events. The present results are broadly consistent with this idea, at least to the level of auditory

association cortex. The responses in supra-modal areas and - to a lesser extent - even those in
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very posterior STG observed in the present study could extend this idea to even longer

timescales. Under such a scheme, frontal and parietal areas could support the encoding of

qualitative changes in the acoustic scene (Knight, 1984; Halgren et al., 1995a, 1995b, 2010;

Baudena et al., 1995; Winkler et al., 2009; Bekinschtein et al., 2009; Naatanen et al., 2010) for

the purposes of attentional reorienting. Halgren and colleagues, using a change-detection

paradigm which was completely controlled for effects of tone frequency, rarity, and habituation,

recently reported direct evidence for this idea. However, this scheme does not account for

responses which only occur at the onset or offset of stimulus sequences, a phenomenon clearly

present in the current data set. A simple explanation for this might be that on and off responses

are driven by different sets of synapses (Scholl et al., 2010) to which our electrodes are

differentially sensitive.

Finally, given that we did not compare activation patterns for attended vs. ignored stimuli,

it is difficult to make statements regarding what role the fact that our subjects were engaged in an

active behavioral task may have played in the responses we measured. However, given recent

results (Halgren et al. 2010), we would expect strong modulation of frontal activity based on

whether or not the stimuli are attended along with lesser effects of attention in superior temporal

areas.
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Abstract
In complex acoustic environments, our ability to perceive specific sounds of interest is thought to
be limited by information-processing bottlenecks in the central auditory system. The neural
activity underlying the conscious perception of target sounds in such environments has not been
well characterized. We recorded the intracranial EEG from three neurosurgical patients with
epilepsy who reported when they began to detect regularly-repeating target tones amongst
random multi-tone maskers. Compared to undetected targets, detected targets elicited early
(-50-200 ms) activity in the posterior auditory cortex as well as a broad long-latency (-300-600
ms) response that was widespread, including auditory cortex as well as ventrolateral prefrontal
and anterolateral temporal cortices. The results demonstrate that the neural activity associated
with the perceptual awareness of specific target sounds in complex settings engages diverse brain
areas, including early sensory cortex as well as supramodal areas known to be involved in
aftentional selection and target detection.
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6.1 Introduction
The human auditory system must constantly decompose the cacophony of acoustic input

it receives into an accurate representation of underlying sound sources. This decomposition,

termed auditory scene analysis (Bregman, 1994), is crucial for survival and communication,

particularly in noisy settings. Failures of scene analysis, which increase with age (e.g. Alain and

McDonald, 2007; Ross et al., 2007, 2010), are not entirely accounted for by limitations of the

auditory periphery, and at least some failures are thought to arise from an information-processing

bottleneck in the central auditory system (Overath et al., 2007; Gutschalk et al., 2008; Zylberberg

et al., 2010). Failures of this nature have been termed informational masking (Pollack, 1975).

A common paradigm used to study informational masking from psychophysical (Neff and

Green, 1987; Kidd et al., 1994, 2003, 2008) and neural (Gutschalk et al., 2008) perspectives

involves presenting a target stream of tones amidst a random background. The target tones are

surrounded by a protected frequency region to prevent "energetic masking" (Neff et al., 1993)

occurring at the auditory periphery. Such randomly varying masker sequences, combined with a

lack of a priori knowledge of the nature of the target, decrease the detectability of the target

tones by as much as 40dB relative to fixed stimulus conditions (Kidd et al., 2008) and are

thought to more closely approximate real-world environments.

Recent neurophysiological studies have highlighted the importance of the secondary

auditory cortex in detecting (Gutschalk et al., 2008) and selectively attending to (Elhilali et al.,

2009) a target stream amidst complex maskers. What role other brain areas might play in

overcoming informational masking remains an open question. The present study combined

direct electrical recordings from the cortical surface of neurosurgical patients with an auditory

target detection task in order to further characterize the neural correlates of auditory perceptual
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awareness under informational masking. We were particularly interested in extending the neural

correlates of auditory perceptual awareness into (i) brain areas outside the auditory cortex and

(ii) frequency regions less observable with non-invasive methods. (e.g. gamma-band activity).

Three patients with epilepsy undergoing invasive monitoring for identification of the

seizure focus listened to stimulus sequences of random masker tones that sometimes contained

regularly-repeating targets (Fig. 1). Participants were instructed to press a button the moment at

which they began to hear out the target stream. Evoked responses and high-gamma activity time

locked to individual target tones were compared between conditions in which the targets were

perceived or unperceived. Targets and maskers alone served as control conditions and were

compared to responses for detected and undetected targets. Detected targets elicited early (50-

250 msec) activity that was either diminished or absent for undetected targets in posterior aspects

of the auditory cortex as well as a late (300-600 msec) widespread response over large parts of

frontal and temporal cortex. The results suggest a widespread cortical network involved in

overcoming adverse listening situations.
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6.2 Materials and Methods

6.2.1 Ethics Statement

All procedures were approved by the Institutional Review Boards at Partners Healthcare

(Massachusetts General Hospital and Brigham and Women's Hospital) and the Massachusetts

Institute of Technology (MIT) in accordance with NIH guidelines. Written informed consent

was obtained from all patients prior to their participation.

6.2.2 Listeners

Five patients with intractable epilepsy underwent invasive monitoring in order to localize

the epileptogenic zone prior to its surgical removal. However, two patients exhibited behavioral

curves during training which indicated either a lack of understanding of or inability to perform

the task and were thus excluded from further study. Each patient was implanted with an array of

sub-dural platinum-iridium electrodes embedded in silastic sheets (2.3mm exposed diameter,

10mm center-to-center spacing; Ad-tech Medical, Racine, WI) placed directly on the cortical

surface. Prior to implantation, each patient underwent high-resolution Ti-weighted MRI.

Subsequent to implantation, each patient underwent postoperative computerized tomography

(CT). Electrode coordinates obtained from postoperative scans were co-registered with

preoperative MRI and overlaid onto the patient's reconstructed cortical surface using Freesurfer

(Dale et al., 1999; Fischl et al., 1999a) and custom MATLAB (The Mathworks, Framingham,

MA) scripts (A. Dykstra et al., under review). Electrode coordinates were then projected onto the

Freesurfer average brain using a spherical registration between the individual's cortical surface

and that of the Freesurfer average (Fischl et al., 1999b).
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6.2.3 Stimuli and procedure

Stimuli were 7.2-second sequences of tones comprised of a masker and on some trials, a

target stream (Fig. 1) (Kidd et al., 1994, 2003; Micheyl et al., 2007; Gutschalk et al., 2008).

Every tone in the sequence was 100 ms in duration including 1 0-ms raised cosine on and off

ramps, and was chosen from frequency bands with the following set of center frequencies: 0.239,

0.286, 0.343, 0.409, 0.489, 0.585, 0.699, 0.836, 1, 1.196, 1.430, 1.710, 2.045, 2.445, 2.924,

3.497, 4.181, or 5.000 kHz. The masker was comprised of tones placed randomly in time and

frequency within each band with an average within-band stimulus-onset asynchrony (SOA) of

800 ms (range: 100 - 1,500 ms). Within each band, the exact frequency of any given tone was

within an estimated equivalent rectangular bandwidth (ERB), where ERB = 24.7*(4.37*fc + 1),

where fc is the center frequency of a given band, in kHz. When present, the target stream was

comprised of eight identical tones (chosen from the following subset of six frequencies: 0.489,

0.699, 1, 1,430, 2,045, or 2.924 kHz) with an SOA of 800 ms that always began 800 ms after the

onset of the masker. Note that - given the random nature of the masker - this does not indicate

that the onset of the first target, when present, was always exactly 800 ms after the onset of the

first tone in the masker, but rather 800 ms after the possibility of the first occurrence of a tone in

the masker sequence. In order to mitigate the occurrence of energetic masking of the target

stream, two bands on each side of the target stream were omitted from the masker such that the

masker was comprised of the remaining 13 frequency bands, for trials both with and without the

target stream being present. The target stream was presented on 2/3 of the total number of trials

presented to each participant.
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Figure 6.1. Schematic of an example stimulus sequence and behavioral results.

(a) Spectrogram of the jittered multi-tone masker stimulus used in the present
study with regularly-repeating target tones at 1 kHz. (b) Same stimulus as in (a)
with the targets absent. (c) Behavioral results averaged across the three
patients. The false alarm rate across time since sequence onset is shown in red;
hit rate is shown in black. Error bars denote ±1 s.e. of the mean (*, p < 0.05; **, p
< 0.01; ***, p < 0.005). It can be seen that although the target tones are easily
segregated visually (c.f. panels a and b), they were not as easy to detect in our
acoustic stimulus sequences.

All sound stimuli were generated in MATLAB (The Mathworks Inc., Framingham, MA),

stored as .wav files, and converted to analog waveforms by the on-board sound card of a laptop

computer equipped with Presentation software (Neurobehavioral Systems, Albany, CA). Stimuli

were delivered to participants via Etymotic ER-2 insert earphones (Etymotic Research, Inc., Elk

Grove Village, IL) diotically at a comfortable listening level. Participants were instructed to

attend to the sound stimuli and to indicate via button box (Cedrus Corporation, San Pedro, CA)

the moment at which they began to hear the repeating target stream, and to press the button again

if they no longer heard the target stream. Participants were informed of the fact that the target

stream would not be present on every trial but were not told the probability of its occurrence.

The start of a new sequence began, on average, 1,600 ms after the preceding sequence's

termination.

Each experiment was divided into three blocks. In each block, 36 target+masker (T+M;
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Fig. 1 a) stimuli and 18 masker-only (M; Fig. Ib) stimuli were presented, followed by 18

presentations of control stimuli which were comprised solely of target streams (T). Per block,

this yielded 6 repetitions of a T+M condition for each target frequency, where the exact

configuration of the masker stream varied for each T+M trial, 3 repetitions of each masker-only

condition (where each condition was defined by the frequency of the target stream had it been

present), and 3 repetitions of each T condition. The target-to-masker level ratio was initially set

to 0 dB (i.e., targets were the same level as individual masker tones) and, if necessary, was

lowered to -6 dB in subsequent blocks in an attempt to maintain approximately the same

behavioral performance across blocks.

6.2.4 Data acquisition

Intracranial EEG (iEEG) data at MGH and BWH were acquired with standard clinical

EEG monitoring equipment (XL TEK, Natus Medical Inc., San Carlos, CA) at a sampling rate of

500 Hz. All data were referenced to an inverted intracranial electrode (i.e. facing the inner skull

table) remote from the electrodes of interest. For each patient, clinically-indicated, high-

resolution Ti-weighted structural MRI scans were acquired prior to surgery. High-resolution CT

scans were acquired subsequent to surgery for the purpose of electrode localization.

6.2.5 Data pre-processing

Intracranial EEG data were bandpass filtered offline between 1 and 190 Hz and notch

filtered at 60 Hz and its harmonics using zero-phase shift IIR filters. Independent component

analysis using the runica algorithm (Bell and Sejnowski, 1995) in EEGLAB (Delorme and

Makeig, 2004) was performed on the "raw" data. Components dominated by large artifacts were

identified by inspection and projected out of the data.

The iEEG was epoched relative to the onset of individual tones within the target stream
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(for T+M conditions) and, as a control condition, to the onset of individual target-tone positions

had they been present (for M conditions). For comparison, we also epoched the iEEG relative to

the onset of individual tones in the target-only (T) condition. Epoched waveforms were baseline

corrected to the 100 ms preceding tone onset (in T+M and T conditions) and to the 100 ms

preceding virtual target tone onset (in M conditions). Because the epochs in the masker-only

condition are time-locked relative to a non-existent tone onset (virtual targets), the evoked

response should average to zero (Gutschalk et al., 2008). Epochs containing large epileptoform

artifacts were rejected were rejected by visual inspection. Epochs in the T+M condition were

binned according to whether or not the target tones were detected by the listener. An individual

target tone was defined as "detected" if it fell after the participant indicated by button press that

they perceived the target stream. Because the task of each listener was to detect a repeating

target tone, the two individual target tones that preceded a button press were also placed in the

"detected" bin. All remaining tones were placed in the "undetected" bin.

6.2.6 Statistical analysis

A modified version of the cluster-based, non-parametric statistical procedure outlined by

Maris and Oostenveld (Maris and Oostenveld, 2007) was used to test for effects of target

detection on target locked EP amplitude. Unpaired t-tests were used as the sample-level (i.e.

individual time points within a single channel) statistic. Contiguous, statistically-significant

samples (defined as p<0.05) within a single electrode were used to define the cluster-level

statistic, which was computed by summing the sample-level statistics within a cluster. Statistical

significance at the cluster level was determined by computing a Monte Carlo estimate of the

permutation distribution of cluster statistics using 1000 re-samples of the original data (Ernst,

2004). Within a single electrode, a cluster was taken to be significant if it fell outside the 95%
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confidence interval of the permutation distribution for that electrode. The determination of

significant clusters was performed independently for each electrode. This method controls the

overall false alarm rate within an electrode across time points; no correction for multiple

comparisons was performed across electrodes. In order to control for possible confounds of

target-tone frequency in the "detected" vs. "undetected" comparison, some target tones at each

target-tone frequency were thrown out, making the number of tones in the "detected" and

"undetected" bins equal at each frequency.

6.2.7 High-gamma power
Waveforms of high-gamma power were constructed using Hilbert transform-based methods.

Each epoch was first band-pass filtered between 70 and 190 Hz using zero-phase shift IIR filters. Power

waveforms were computed by squaring the absolute value of the Hilbert transform of the band-pass

filtered waveforms. This yielded high-gamma power waveforms with the same temporal resolution as the

evoked potentials (2 ms). These waveforms were then baseline-corrected in the same manner as the

evoked potentials, namely by subtracting the mean power in each trial computed across the 100 ins

preceding target-tone onset. Finally, the gamma-power waveforms were low-pass filtered at 20 Hz. The

same statistical procedures described above for evoked potentials were applied to the high-gamma

waveforms.
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6.3 Results

6.3.1 Behavior

Fig. 1 shows schematics of the stimuli used in our study (panels a and b) as well as the

behavioral results averaged across the three participants (c). As can be seen from Fig. I c, hit

rates for detecting regularly-repeating target tones increased throughout the presentation of the

stimulus sequence and plateaued near 50%. Though false-alarm rates also increased with time

since stimulus onset, they remained low overall and never exceeded 15%. A two-way anova

confirmed main effects of hit vs. false-alarm rates (F=74.4, p<0.0001) and time since stimulus

onset (F=9. 1, p<O.0001) as well as a hit-vs-false-alarm-rate by time-since-onset interaction

(F=2.9, p<0.0l). Subsequent paired t-tests indicated that hit and false alarm rates began to differ

significantly three target tones into the sequence (Fig. Ic).

6.3.2 Evoked potentials

Evoked responses were binned and averaged for each of four stimulus/perceptual

conditions: (i) target tones presented in isolation, (ii) masker tones presented in isolation, time-

locked to the onset of virtual target tones, (iii) detected and (iv) undetected target tones in T+M

sequences. The responses to target tones alone and masker tones alone served as templates with

which to compare the responses to detected and undetected target tones presented during T+M

conditions.

Fig. 2 shows averaged evoked responses from electrode sites over the pSTG in each of

the three patients. Panels a, c, and e show the 3D cortical reconstruction from each patient; black

dots denote electrode sites from which the responses shown in b, d, and f, were obtained,

respectively. The left panels of b, d, and f show the responses to the target tones (yellow) and

masker tones (blue) alone. As expected since the masker-only epochs were time-locked to
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virtual tone onsets (see Methods), the averaged response for these epochs (shown in blue) is

nearly flat. In contrast, the averaged evoked responses to targets presented in isolation (shown in

yellow) were robust and
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Figure 6.2. Evoked responses from electrode sites over the pSTG in each of the
three patients.

Panels a, c, and e show each patient's 3D cortical reconstruction with a black dot
indicating the site of the electrode for responses shown in b, d and f. The left
panels of b, d, and f show the responses to the targets alone (yellow) and
masker alone (blue), where the masker responses were created by time-locking
to virtual target tones; the right panels show the responses to detected (yellow)
and undetected (blue) targets. Gray shading indicates statistically-significant
differences between yellow and blue waveforms in each of the six panels.

showed a stereotypical pattern across all three patients in sites over the pSTG characterized first

by a large negative response in the NI, Nic, or P2 latency range (peaking at 152, 162, and 174

msec in patients 1, 2, and 3, respectively) followed by a broad long-latency response peaking

between 300 and 600 msec in all three patients.
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In 2/3 patients (Fig. 2a and 2c), this same long-latency response also differentiated

between detected (yellow) and undetected (blue) targets (right-hand panels in Fig. 2b and 2d)

between approximately 200 and 600 msec, with slight latency differences between patients. In

the remaining patient (Fig. 2e), there was no significant difference in evoked-potential amplitude

between the detected and undetected target conditions (Fig. 2f, right-hand panel). In all three

patients, the response to the undetected targets (blue) was relatively flat, similar to the response

to the masker-alone condition.

Fig. 3 shows topographical maps of average potential from patient 3 (the only patient in

which we had broad frontal lobe coverage and there was a difference in detected-vs-undetected

responses over posterior auditory cortex) for two latency ranges, 100-200 msec (two left-most

columns) and 300-600 msec (two right-most columns) and each of the four behavioral conditions

100-200 msec 300-600 msec
a Masker b Undetected targets C Masker d Undetected targets

Targets Detected targets Targets Detected targets

Targets - Masker Detected - Undetected targets Targets - Masker Detected - Undetected targets

-27pV 27pV -7pV 7pV -14pV 14pV -9pV 9pV

Figure 6.3. Topographies of evoked responses for patient 3.

The left six panels show the average of the evoked responses between 100 and
200 msec for targets alone and masker alone (a), detected and undetected
targets (b), and their respective subtraction waveforms. The right six panels (c
and d) show the average of the evoked responses between 300 and 600 msec
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for the same conditions.

(top two rows) in addition to their subtraction (bottom row). All panels in the bottom row were

thresholded to show only the activity from electrode sites which showed statistically-significant

differences between conditions in the corresponding latency range. The primary differentiation

of detected vs. undetected targets in the NI -latency range is over the posterior auditory cortex

(lower panel of b). This was similar to the differentiation seen between targets-alone and

masker-alone (lower panel of a). In contrast, the longer-latency response differentiated between

detected and undetected targets in much more widespread brain areas than for targets-alone vs.

masker-alone in the same latency range (compare lower panels of c and d), particularly

ventrolateral prefrontal cortex.

6.3.3 High-gamma activity

High-gamma power waveforms were constructed using Hilbert-transform methods

(squared analytic amplitude of band-pass filtered raw data - see Methods). Resultant waveforms

were
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Figure 6.4. High-gamma activity for patient 3.

Topographies of high-gamma activity between 50 and 250 msec for targets alone
and masker alone (a), detected and undetected targets (b), and their respective
subtraction waveforms (lower panels of a and b). (c) High-gamma responses for
each condition (left: yellow - targets alone, blue - masker alone; right: yellow -
detected targets, blue - undetected targets) from the two sites showing the
largest response.

binned and averaged according to the same procedures as for evoked responses. Figs. 4a and 4b

show topographical plots of average high-gamma activity between 50 and 250 msec in patient 3

for targets and masker-alone, undetected and detected targets, and their respective subtractions

after thresholding for statistical significance. As is shown by Fig. 4, high-gamma activity was

much more focal than evoked responses, confined almost entirely to the posterior auditory cortex
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near the sites which showed maximal evoked responses in the NI-latency range (c.f. Fig. 3a and

Fig. 3b). Fig. 4c shows the full time courses of the two electrodes which showed by far the

largest response in the high-gamma band for both targets vs. masker alone (two left-most panels)

and detected vs. undetected targets (two right-most panels). As in the evoked responses, the

responses to masker-alone and undetected-target conditions were relatively flat, more so in the

masker-alone condition. In contrast, targets-alone and detected-target conditions elicited robust

responses peaking between 50 and 250 msec. The onset of the high-gamma response was early

than any of the evoked responses, beginning as early as 35 msec and 60 msec in the targets-alone

and detected-target conditions. The site shown in Figs. 2a and 2b (patient 2) also showed robust

high-gamma responses in the same 50-250 msec latency range, mainly to the targets-alone and

detected-target conditions, but did not reach statistical significance for detected-vs-undetected

targets (data not shown), perhaps due to a lower signal-to-noise ratio in the high-gamma band for

that patient.
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6.4 Discussion
Utilizing intracranial recordings in neurosurgical patients, the present study demonstrated

robust effects of auditory perceptual awareness in (i) early (50-200 ms) evoked responses and

high-gamma activity in posterolateral portions of auditory cortex and (ii) a widespread long-

latency (300-600 ms) response that spread to ventrolateral prefrontal and anterolateral temporal

cortex. To our knowledge, this is the first demonstration of differences in either high-gamma

activity or activity outside the auditory cortex covarying with listeners' perceptual awareness of

an acoustic stimulus. High-gamma activity to both isolated targets and detected targets was

confined to the posterior regions of the STG [the posterolateral superior temporal (PLST) area

described previously (Howard et al., 2000; Brugge et al., 2008)]. The long-latency activity

observed in supramodal areas during the detection task was not seen to target tones presented in

isolation, suggesting that the activity in these areas was behaviorally gated (Fritz et al. 2010) and

that it reflected the imposition of a perceptual template of the to-be-detected target stream onto

earlier processing stages located in auditory cortex.

6.4.1 Early responses in auditory cortex

Only one previous study used stimuli similar to those used here to examine the neural

correlates of auditory perceptual awareness (Gutschalk et al., 2008). That study reported a broad

long-latency (50-250 msec) response to detected targets - unmeasurable for undetected targets -

localized to the posterior superior temporal plane (pSTP) near Heschl's gyrus, approximately 1.5

cm from the lateral surface. Given that (i) we did not observe polarity reversals across the lateral

fissure (c.f. Fig. 3a) and (ii) the locus of response we measured was more posterior than the

dipole sources reported in that study, it is unlikely that we measured activity from the same

region. Rather, the early (100-200 msec) responses we measured were likely generated by the
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region of the pSTGjust underneath the electrode with radial dipole orientations, similar to what

has been shown for the NIc by non-invasive EEG experiments (Picton et al., 1999; Snyder et al.,

2006). Gutschalk et al. (2008) may not have measured activity from this region due to MEG's

insensitivity to radial sources (Himalainen, 1992). Thus, the activity we measured in sites over

the pSTG constitute novel responses during this task, and could possibly be confirmed by non-

invasive studies utilizing a technique sensitive to radially-oriented sources such as EEG.

Although this response significantly differentiated between detected and undetected targets in

patient 3 (c.f. Fig. 3b), the difference was not as robust as that reported by Gutschalk et al. (2008)

and was not present in the other two patients.

Another novel finding of the present study were the early high-gamma responses in some

of the same sites that showed robust early evoked potentials. This early high-gamma activity

strongly covaried with the listener's perceptual awareness of the target tones and, unlike the

evoked responses from the same gross brain areas, were highly focal. Interestingly, the high-

gamma activity measured here did not extend into other brain areas and longer latencies as the

evoked responses did. The focal nature of intracranial high-gamma activity, especially when

compared with evoked potentials measured intracranially (Edwards et al., 2009; Dykstra et al.,

2011),.is a consistent finding across several labs and auditory paradigms, and may reflect active

neural processes in the immediate vicinity of the electrode. Furthermore, the early gamma

activity found in the present study may reflect neural processes necessary in order for an acoustic

stimulus to reach conscious awareness, antecedent to the long-latency responses observed in the

auditory cortex and supramodal areas.

6.4.2 Widespread long-latency responses
A consistent finding across all three patients was the presence of a broad, long-latency
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response over the STG in response to targets presented in isolation (Fig. 2 and Fig. 3 c). In two

of the three patients, a similar but much more widespread response strongly different covaried

with listeners' perceptual awareness of the targets when presented amongst the random multi-

tone masker (Fig. 3d). This is the first evidence of such a broad, long-latency, and widespread

response to detected targets during this task, and could reflect either (i) brain areas downstream

from the pSTP sites thought to be initially involved in the detection of the target tones (Gutschalk

et al., 2008). or (ii) that there is an ongoing interaction between bottom-up and top-down

detection processes when a listener is searching for a target stimulus in noise. Gutschalk et al.

(2008) may have failed to detect this long-latency response based on the methods used,

specifically that single-dipole models were used to examine activity arising from the auditory

cortex and the fact that MEG could be insensitive to the long-latency activity we measured from

the pSTG.

The difference in the extent of the response between targets in isolation and targets

amongst the random masker stimulus could be due to the active nature of the task during T+M

conditions (Fritz et al., 2007, 2010). Specifically, when our listeners were actively engaged in

detecting target tones which were difficult to perceive (Fig. 1 c), the same target tones as

presented in isolation in the targets-alone condition elicited robust activity in ventrolateral

prefrontal cortex and anterolateral temporal areas. These responses are reminiscent of the P3b in

that they were long-latency, broad, widespread, prominent in ventrolateral prefrontal and

anterolateral temporal cortex, and only present when the subjects were engaged in an active task

which required sustained overt attention to the stimuli (Halgren et al., 1998).

Lastly, the fact that patient 1 showed robust responses to the targets presented in isolation

but virtually no response to the detected targets in the T+M condition is strange but may be
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related to attentional factors. Of the three patients, patient 1 demonstrated the lowest overall

sensitivity for detecting target tones and, qualitative observations during the experimental session

indicated that the patient may have suffered momentary attentional lapses including falling

asleep intermittently. If the patient payed sufficient initial attention to detect the target tones but

subsequently ignored the remainder of each sequence, this might explain the null result obtained

in this case.
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Chapter 7: General Discussion

This thesis described the results from two experiments in which electrical recordings

were made directly from the cortical surface neurosurgical patients with epilepsy. Each

experiment was designed to measure neural correlates of subjective auditory perceptual

organization without confounding changes in physical stimuli. By using intracranial recordings

in awake behaving humans, the experiments in this thesis circumvented limitations inherent in

previous work. Specifically, active behavioral paradigms were combined with neural recordings

yielding high spatiotemporal resolution and broad coverage.

The first experiment used a classic behavioral streaming paradigm and compared

neuronal activity between conditions in which physical stimuli were held constant but perceptual

organization changed dramatically (Chapter 4). Three main conclusions were made from the

results of this experiment: (i) the brain areas that are engaged during the behavioral streaming

paradigm are much more widespread than previously shown, (ii) the activity within a given

macroscopic brain area is not uniform and (iii) the neural correlates of auditory perceptual

organization during the streaming task are likely to be diffuse in nature, found on a finer spatial

scale or in a brain area not sampled by the recordings made for this thesis. A separate analysis of

the same data set revealed that the timescale on which a brain area responded varied widely

between sites showing a sustained and/or steady-state response persisting throughout the

duration of each stimulus sequence and those showing responses only at the onset or offset of

each sequence (Chapter 5).

The second experiment used ajittered version of the multi-tone masking stimuli and

compared neuronal activity between conditions in which regularly-repeating target tones were
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detected vs. Undetected (Chapter 6). In addition to relatively early responses in sites over the

pSTG showing differences between detected and undetected targets, a broad, widespread, long-

latency response was also found to differ greatly between detected and undetected targets,

including involvement of lateral temporal and frontal areas not seen to easily-detected targets in

the targets-alone stimuli. In contrast, differences between detected and undetected targets in

high-gamma activity were highly focal (confined to the pSTG) and comparatively early.

A third part of this thesis described an ad hoc procedure for localizing intracranial

electrodes with respect to individual neuroanatomy and coregistering electrode ensembles across

multiple patients into a common space (Chapter 3). The method accounts for the brain shift

known to be caused by implantation of intracranial electrodes by constructing a smoothed

version of the three-dimensional pial surface and making minimal assumptions about the nature

of the parenchymal shift. Electrode ensembles from individual patients were coregistered using

spherical registration methods known to produce better alignment of structural and functional

brain areas.

7.1 Widespread brain areas engaged during classical ASA tasks
Several previous authors have hypothesized involvement of supra-and multimodal areas

in ASA (Bidet-Caulet and Bertrand, 2009). The present series of experiments are the first to

demonstrate engagement of brain areas outside the auditory cortex during ASA paradigms with

high temporal resolution. In particular, both paradigms, elicited activity in frontal cortex and

multi- or supra-modal lateral temporal areas not seen in any previous studies using the streaming

or multi-tone masking paradigm. Superficially, this demonstrates that the cortical networks that

are engaged during these paradigms are much more widespread than previously shown and,

speculatively, that these areas may be involved in accomplishing these tasks as well as in
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overcoming naturally-occurring adverse listening conditions.

7.2 Variability in the responses
The neural activity we measured in response to relatively simple stimuli often varied

tremendously from one patient to the next and even from one electrode to the next within a

patient. Such intra- and inter-subject variability is a common finding in peri-cortical EP studies

(Halgren et al., 1995a, 1995b; Baudena et al., 1995; Steinschneider et al., 1999, 2011; Crone et

al., 2001; Edwards et al., 2005, 2009; Korzyukov et al., 2007; Rosburg et al., 2009) and,

although the fact that these recordings are made in abnormal brains cannot be ruled out as a

possible explanation, such -variability has also been found in recordings from tumor patients for

whom broad neural reorganization is not thought to occur (Edwards et al., 2009). This highlights

the fact that non-invasive methods such as EEG and MEG provide a highly smeared version of

true cortical source configurations that may contain much higher spatial frequencies, with the

caveat that there have been few studies that have compared extracranially-measured evoked

fields/potentials with intracranial potentials in the same subject or set of subjects [but see (Dalal

et al., 2009; Krusienski and Shih, 2010)]. More studies of this nature would help elucidate the

relationship, in individuals, between commonly-obtained extracranial data and rarely-obtained

intracranial data. Until then, researchers using extracranial techniques should proceed with

caution when interpreting the spatial configuration and extent of cortical sources that produce the

fields/potentials observed extracranially.

7.3 The role of the auditory cortex
The experiments described in this thesis were only capable of recording activity from

what are thought to be secondary or tertiary auditory areas, i.e. lateral STG and lateral HG, and

not from what is thought to be core auditory cortex, i.e. medial HG (Kaas et al., 1999; Kaas and
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Hackett, 2000; Sigalovsky et al., 2006; Woods et al., 2009, 2010; Hackett, 2011). Previous

M/EEG studies of either streaming (Gutschalk et al., 2005, 2007; Snyder et al., 2006, 2009;

Snyder and Alain, 2007; Schadwinkel and Gutschalk, 2010) or multi-tone masking (Gutschalk et

al., 2008) have consistently localized dipoles to mainly the superior temporal plane between 1

and 2 cm from the lateral surface of the temporal lobe. The present results showed AF-correlated

responses in electrodes placed over the lateral STG which likely arose locally and not from

patches of tissue to which previous dipoles were located (c.f. Chapters 4 and 6). Thus, with

regard to streaming, our results are probably more related to previous fMRI work demonstrating

BOLD activity in more lateral portions of the superior temporal plane (Deike et al., 2004, 2010;

Wilson et al., 2007; Gutschalk et al., 2007; Schadwinkel and Gutschalk, 2010). Already, those

results hinted at possible sub-areal organization of streaming-related responses in that the

statistical parametric maps were patchy rather than a single circumscribed region, although this

could also be due to variability in the foci of activity across individuals. The present results also

showed sub-areal differentiation of responses in that waveform morphology was not necessarily

similar across adjacent sites over the STG. Taken together, the present data as well as the

previous fMRI studies [and one EEG study - (Snyder et al., 2006)] suggest multiple sub-

functions of the cortical tissue within a given macroscopic brain area, in this case the posterior

lateral superior temporal area described previously (Howard et al., 2000; Brugge et al., 2008).

We also measured activity arising from this region in the informational-masking experiment,

something that has not been shown previously. Both early and late evoked responses as well as

early gamma activity from this region strongly covaried with perceptual awareness, adding to the

early responses shown to covary with percept that presumably arose from more medial aspects of

the STP (Gutschalk et al., 2008).
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7.4 The role of extra auditory cortical areas
In addition to the activity we observed over the PLST, we also observed much more

widespread responses, particularly in frontal cortex. Such involvement of frontal areas in the

two tasks we used has not been previously shown, and is likely only when the subjects were

engaged in an active task, which they always were during the streaming experiments but only

sometimes were during the informational masking experiments. In the latter, frontal and other

supra-modal areas (i.e. anterolateral temporal cortex) were only active during the conditions in

which the subject was actively searching for the target stream. Given that we did not examine

any passive-listening conditions during the streaming task, we cannot say for sure whether the

involvement of the frontal areas seen there is due to active engagement with the stimuli, but

recent studies suggest that this is a reasonable hypothesis (Fritz et al., 2007, 2010).

7.5 Correlates of bistability in one task but not the other?
While target tones in the informational masking paradigm elicited very different neural

responses depending on whether or not they were perceived, ABA- triplets did not elicit different

neural responses depending on whether the subject was hearing one or two streams. The reasons

for this are unclear, but could possibly be due to the nature of each task. In the streaming

paradigm, listeners are asked to differentiate between two possible perceptual organizations

while in the informational-masking paradigm, listeners are asked to simply indicate the presence

of a target stream. These two tasks - generating a percept or not vs. distinguishing between two

generated percepts - could be supported by different neuroanatomical networks and mechanisms.

Qualitatively speaking, the experience during the informational-masking paradigm is one where

each target tone - when detected - is processed individually, although they do bind together
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across time due to the constant SOA between successive target tones. In contrast, the difference

between 1- and 2-stream percepts in the streaming paradigm is experienced more on longer times

scales rather than on the individual triplet level. Speculatively, the fact that most of our analysis

of the responses generated during the streaming paradigm focused on triplet-level timescales

may be one reason why we did not observe robust effects of perceptual organization and those

that have been reported were small and variable (Cusack, 2005; Gutschalk et al., 2005). The text

below speculates further about how one might approach identifying correlates of perceptual

organization in the streaming paradigm.

As mentioned above, the difference between the experience of 1- and 2-stream percepts

during the streaming paradigm subjectively occurs on longer time scales. The mean duration

between switches from 1- to 2-stream percepts, and vice versa, is approximately 10 seconds

(Pressnitzer and Hup6, 2006). These perceptual states must be accompanied by brain attractor

states associated with 1- vs. 2-stream percepts acting on a similar time scale. The nature of these

states (i.e. their dimensionality and state variables) is unknown, but it is conceivable that they

wouldn't reveal themselves in time-locked analysis and possibly even that they are hidden from

the common measurement techniques used to record human brain activity (MEG, EEG, fMRI).

Transitions from 1-stream to 2-stream perceptual states (or vice versa) could be engendered by at

least two factors in the underlying neural states: (i) noise in the stimulus encoding process, which

begins at least as early as the cochlear nucleus or (ii) stochastic noise in the state variables. If the

noise engendering bistable perception occurs primarily at the level of the state variables, it might

produce a dissociation between how stimuli are processed on a triplet-level time-scale and the

state transitions which lead to bistable perception, rendering neural correlates of bistable

perception in the streaming paradigm difficult to measure using such time-locked analyses.
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However, transitions between states produces a perceptual change of scene which may evoke

large transient neural activity to which common recording techniques become sensitive (Kondo

and Kashino, 2009; Schadwinkel and Gutschalk, 2010). Giving a "go" cue during ongoing

streaming stimuli could engender an endogenous sensory-perceptual-motor transformation that

would differ based on how the scene is perceptually organized at that instant in time. It may be

possible to dissociate motor activity from that due only to perceptual organization by applying

different time-locking procedures, specifically one to the motor response which could be

subtracted from each individual trial time-locked to the go cue. However, it is my view that in

order to directly access the underlying brain states accounting for bistable perception in the

streaming task, detailed microphysiological recordings, perhaps in many areas of the brain, may

be necessary. Such experiments could be done with either humans implanted with

microelectrodes while undergoing neurosurgical planning (Howard et al., 1996; Mukamel et al.,

2005, 2010; Bitterman et al., 2008; Brugge et al., 2009; Nourski et al., 2009; Griffiths et al.,

2010) or with experimental animals trained to report their subjective auditory experience, similar

to what has become commonplace in visual studies (Logothetis, 1998; Leopold and Logothetis,

1999).

7.6 Conclusions
The present results substantially extend and constrain theories about where and how ASA

takes place in the brain. Specifically, we identified widespread neural networks engaged during

both streaming and release from informational masking, and demonstrated that the neural

correlates of perceptual bistability may be unique to each task used to study them. The neural

correlates of perceptual bistability during the streaming paradigm are likely to be found on a
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finer spatial scale than was assessed, and may require the use of trained experimental animals or

neurosurgical patients implanted with microelectrodes in the auditory cortex and probably

elsewhere, perhaps even simultaneously. Given that ours was the first study to demonstrate

widespread frontal involvement in streaming and informational-masking tasks, he precise role of

the frontal cortex in each of these tasks, as well as in ASA more generally, remains to be

understood; whole-brain fNMRI and M/EEG studies as well as microelectrode studies in

experimental animals and humans may prove useful in this effort.
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