
Composable Abstractions for Synchronization in

Dynamic Threading Platforms

by

Jim Sukha
S.B. (Mathematics), Massachusetts Institute of Technology (2004)

S.B. (Electrical Engineering and Computer Science), Massachusetts Institute of Technology (2004)
M.Eng. (Electrical Engineering and Computer Science), Massachusetts Institute of Technology (2005)

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2011

@ Massachusetts Institute of Technology 2011. All rights reserved.

ARCHIVES

OF TEC-NOLOGY

SEP 2 7 2011

LiBRARIES

A u th o r
Department of Electrical Engineering and Computer Science

August 26, 2011

Certified by............................. .-.
Charles E. Leiserson

Professor
Thesis Supervisor

Accepted by
Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

Composable Abstractions for Synchronization in
Dynamic Threading Platforms

by
Jim Sukha

Submitted to the Department of Electrical Engineering and Computer Science
on August 26, 2011, in partial fulfillment of the

requirements for the Degree of
Doctor of Philosophy

Abstract

High-level abstractions for parallel programming simplify the development of efficient par-
allel applications. In particular, composable abstractions allow programmers to construct
a complex parallel application out of multiple components, where each component itself
may be designed to exploit parallelism. This dissertation presents the design of three com-
posable abstractions for synchronization in dynamic-threading platforms, based on ideas of
task-graph execution, helper locks, and transactional memory. These designs demonstrate
provably efficient runtime scheduling for programs with synchronization.

For applications that use task-graph synchronization, I demonstrate provably efficient
execution of task graphs with arbitrary dependencies as a library in a fork-join platform.
Conventional wisdom suggests that a fork-join platform can execute an arbitrary task graph
only with special runtime support or by converting the graph into a series-parallel compu-
tation which has less parallelism. By implementing Nabbit, a Cilk++ library for arbi-
trary task-graph execution, I show that one can in fact avoid introducing runtime modifi-
cations or additional constraints on parallelism. Nabbit achieves an asymptotically optimal
completion-time bound for task graphs with constant degree.

For applications that use lock-based synchronization, I introduce helper locks, a new
synchronization abstraction that enables programmers to exploit asynchronous task paral-
lelism inside locked critical regions. When a processor fails to acquire a helper lock, it can
help complete the parallel critical region protected by the lock instead of simply waiting for
the lock to be released. I also present HELPER, a runtime for supporting helper locks, and
prove theoretical performance bounds which imply that HELPER achieves linear speedup
on programs with a small number of highly parallel critical regions.

For applications that use transaction-based synchronization, I present CWSTM, the first
design of a transactional memory (TM) system that supports transactions with nested paral-
lelism and nested parallel transactions of unbounded nesting depth. CWSTM demonstrates
that one can provide theoretical bounds on the overhead of transaction conflict detection
which are independent of nesting depth. I also introduce the concept of ownership-aware
TM, the idea of using information about which memory locations a software module owns
to provide provable guarantees of safety and correctness for open-nested transactions.

Thesis Supervisor: Charles E. Leiserson
Title: Professor

4

Acknowledgments

Over the past n years, I have spent a lot of time writing. Between papers, problem sets,
proposals, and this dissertation, I have spent more time writing than I ever would have
imagined when I first started my PhD. Of all the documents I have worked on, however,
these acknowledgments are perhaps the most difficult to compose. Words seem insufficient
to convey my gratitude to everyone who has contributed to the creation of this dissertation.
Due to the constraints of space and time, however, I'm afraid they will have to suffice.

Thanks to Charles Leiserson, my advisor, for his guidance and support during my time
at MIT. I am grateful to Charles for many things, but in particular, I'd like to thank Charles
for imparting upon me two significant lessons. First, having Charles as a mentor has im-
proved my writing and presentation skills. Second, working with Charles has taught me
the importance of time management and managing deadlines. I could spend several pages
going into detail about these points or trying to recount the myriad of other nuggets of wis-
dom I have learned from Charles or all the ways that he has helped me over the years. I
believe, however, that he would agree that this document is long enough as it is. It is hard
for me to believe that it has been over a decade since I first met Charles as a student in
6.046 and a summer UROP student. It has been a long journey but a wonderful experience.

This dissertation would not exist without the help of Kunal Agrawal, my friend and
collaborator. Kunal seems to have an uncanny ability to interpret and improve upon my
half-baked ideas and ramblings, even when I have trouble making sense of them myself. I
could not have asked for a better collaborator or coauthor. The days when we could bounce
ideas off each other at the whiteboard are long gone now. But I hope that there will still be
opportunities for us to work together in the future.

Thanks to Bradley Kuszmaul for introducing me to the MIT Cilk code. I remember
fondly one of my early summer UROP projects working with the source-to-source trans-
lator for the MIT Cilk compiler. That project was my first experience working with Cilk.
It seems that I've been a convert ever since. More generally, Bradley has always been a
source of both helpful advice and fun trivia. I am constantly amazed by the breadth and
depth of his knowledge. Every conversation with Bradley always teaches me something
new.

I would like to thank Saman Amarasinghe and Bradley Kuszmaul for serving on my
thesis committee and for giving me helpful comments on how to improve my thesis. I
apologize to the readers of my thesis - Saman, Bradley, and Charles - I'm afraid I didn't
have enough time to make my thesis shorter.

Thanks to all the members of the SuperTech research group, both past and present.
I'm sure I would have quit school long ago if I had not had such excellent colleagues and
amazing people to work with each day.

" Thanks to Angelina Lee for collaborations on ownership-aware TM and the work on
PR-Cilk. More generally, I owe Angelina a great thanks for all the helpful comments
she has provided on my work over the years. I have always been able to count on her
to provide constructive but critical feedback on my ideas.

" Thanks to Jeremy Fineman for collaborations on CWSTM. Jeremy's talk on race
detection in Cilk was one of the first technical talks I ever attended, and it provided
the inspiration for much of the design of CWSTM. Jeremy's expertise was crucial in

putting together the whole CWSTM design.
" Thanks to TB Schardl for collaborations on pedigrees and DPRNG. Although this

material didn't make the final draft, TB has my gratitude for doing all the heavy
lifting on this other work while I was writing my thesis.

" Thanks to all the administrative staff that have worked with SuperTech: Leigh Dea-
con, Alissa Cardone, Kyle Lagunas, and Marcia Davidson. A special thanks to
Marcia for helping me take care of all the many tasks required for graduation this
year. Also, thanks to Mary McDavitt, who although not officially affiliated with
SuperTech, has helped me on a number of occasions over the years.

" Thanks to all the other individuals who have been a part of SuperTech over the years,
either as students, staff, or visitors. In particular, I would like to thank Rezaul Chowd-
hury, Will Hasenplaugh, Edya Ladan-Mozes, Aamir Shafi, Yuan Tang, and Justin
Zhang, who have all been subjected to multiple versions of my jobtalk this year.

Thanks to David Ferry and Kunal Agrawal at Washington University in St. Louis for
their work on Nabbit's data-block interface and asynchronous Cholesky factorization. I
am also grateful to everyone who has worked on Cilk projects (Cilk, Cilk++, or Cilk Plus)
in the past or present. The Cilk project has provided me with an excellent platform for
research and experimentation for my PhD thesis.

Many other people have helped me along in the official process of receiving a PhD.
Thanks to Arvind and Albert Meyer for serving on my RQE committee. Thanks to Erik
Demaine, Madhu Sudan, and Charles Leiserson for giving me the opportunity to TA for
6.046. Thanks to everyone in the EECS Graduate Office; my time at MIT has run smoothly,
and I'm sure I'm unaware of all the ways they have helped me over the years.

Thanks to everyone I met during my internships at Intel, Google, and AMD, as well as
all the individuals in industry I met this year. I would also like to thank the various fund-
ing organizations and companies which have funded my research. These funding sources
include NSF Grants (ACI-0324974, CNS-0305606, CNS-0540248, CNS-0615215), Intel
Corporation, an Akamai/MIT Presidential Fellowship, and the Siebel Scholars program.
Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views of any of these organizations.

Many people have helped me in an official capacity, but it is equally important for me
to thank everyone who has supported me outside of work. Although research may have
taken up the majority of my time at MIT, it is the time I have spent with everyone outside
the lab that has been the most rewarding.

" A special thanks goes to Karen Lee, my good friend from Ashdown. Karen has
always been there to keep me sane and connected to the outside world, even despite
my best efforts to spend my life in the office. I would not have survived these years
without her.

" Thanks to Chung Chan, my friend from undergrad who has accompanied me on this
trek from undergrad through PhD at MIT.

" Thanks also to my friends Mark Harris and Katherine Yiu. Although they don't live
anywhere near MIT, their virtual presence has always been here to keep me motivated
through the years.

" Thanks to everyone I've met while living in Ashdown over the years. Between coffee

hour, brunch, and all the numerous social events, I will always remember my time
there fondly. A special thanks to Terry and Ann Orlando, the housemasters of both
old and new Ashdown, who have made Ashdown a wonderful place to call home.

o Thanks to everyone who has indulged me in my foosball obsession these past few
years. In particular, I am grateful to Matt, TL, Bryan and Andy for helping field an
IM foosball team these past two years. Thanks also to the many others I have had the
pleasure of playing against - Alan, Fanny, Justin, and even Charles. This list should
be much longer, but I'm afraid I've played too many games these past two years to
remember...

Many other individuals should also be thanked for their friendship and help. A par-
tial list includes Alfred, Alice, Chih-yu, Dave, Jelani, Jennifer, John, Lawson, Pei-Lan,
Stephen, Tin, Wentao, Winnie, Yang, and Yun. Unfortunately, time and space constraints
prevent me from making this list complete or thanking everyone individually. I wish I
could say that n years ago, I was organized enough to create a list of people I should thank,
and that I've been industrious enough to consistently maintain this list ever since. Unfor-
tunately, since I was not, I am constructing it a posteriori. Thus, I have most likely have
omitted someone who deserves to be thanked. To anyone who reads these acknowledg-
ments and believes their name should be included in this list - you are most likely correct
with high probability, and I offer my deepest apologies. @

Finally, above all, I would like to thank my family - my mother, father, and brother.
They have been infinitely patient with me throughout this entire PhD process. I would not
have made it this far without their love and support through all these years, and for that I
am eternally grateful.

8

Contents

1 Introduction
1.1 Dynamic Threading and Composable Parallelism
1.2
1.3
1.4
1.5

Task-Graph Synchronization
Helper Locks
Transactional Memory . . .
Outline

2 Task-Graph Synchronization Using Work-Stealing
2.1 Nabbit for Static Task Graphs
2.2
2.3
2.4
2.5
2.6
2.7
2.8

Analysis of Static Nabbit.......
Empirical Results for Static Nabbit
Data-Block Interface for Static Nabbit
Cholesky Factorization in Nabbit
Nabbit for Dynamic Task Graphs
Random Task-Graph Benchmark .

Conclusions

3 Helper Locks
3.1 Motivating Example.......
3.2 Parallel Regions and Helper Locks
3.3 HELPER Runtime
3.4 Completion-Time Bound.....
3.5 HELPER Execution Model . .

3.6 Proof of Completion-Time Bounds
3.7 Space Bounds
3.8 HELPER Implementation
3.9 Experimental Results.......
3.10 Conclusions

4 Parallel Regions for Legacy Callbacks
4.1 Difficulty of SP-Reciprocity . . .
4.2 PR-Cilk Design
4.3 Bounds for PR-Cilk
4.4 A Pessimal Example for Restricted Work-Stealing
4.5 Conclusions .

101
102
107
110
111
117

. .

.
.

.

5 Memory Models for Nested Transactions
5.1 Overview of Transactional Memory
5.2 Transactional Computations
5.3 Transactional Memory Models
5.4 Equivalence of Memory Models
5.5 The TCO Model
5.6 Serializability of the TCO Model

6 Nested Parallelism in TM
6.1 Semantics of Nested Parallel Transactions .

6.2 A Simple TM with Nested Parallel Transactions
6.3
6.4
6.5
6.6
6.7

Overview of CWSTM Design
Conflict Detection in CWSTM
CWSTM Data Structures
Theoretical Performance Bounds
Related Work

7 Ownership-Aware TM
7.1 Ownership-Aware Transactions .
7.2 Ownership Types for Xmodules
7.3 The OAT Model.........
7.4 Serializability by Modules
7.5 Deadlock Freedom
7.6 Related Work
7.7 Conclusions............

119
. 120
. 12 5
. 13 1
. 136
. 14 1
. 147

151
. 152
. 157
. 15 8
. 164
. 17 3
. 17 9
. 18 1

183
. 189
. 19 5
. 2 0 0
. 2 0 5
. 2 12
. 2 15
. 2 16

8 Conclusions 217

A Dynamic Threading in Cilk
A.1 Overview of Cilk.........
A.2 Computation DAG Model
A.3 Completion-Time Bound for Cilk.
A.4 Computation-Tree Framework . .
A.5 Stack-Space Usage in Cilk
A.6 Chapter Notes

219
. 2 19
. 2 2 3
. 2 2 5
. 2 2 8
. 2 4 0
. 2 4 1

B Summary of Notation

C Prefix-Race Freedom of TCO and OAT
C. 1 Invariants on Readsets and Writesets
C.2 Proof of Sequential Consistency . .
C.3 Proof for OAT Model

243

251
. 251
. 255
. 257

Chapter 1

Introduction

With the growing availability of multicore CPUs, parallel computing has emerged as a
mainstream topic relevant to all programmers who wish to fully exploit the capabilities
of modern computers. Unfortunately, realizing the performance benefits of multicores re-
quires programmers to write parallel programs, a job traditionally left only to experts be-
cause of the challenges faced when writing parallel code. For example, when tasks can
execute in parallel, programmers must sometimes consider the issue of scheduling - de-
ciding on which processor to execute each task. When two parallel tasks try to modify the
same piece of shared data, programmers must also consider the issue of synchronization
- coordination between processors to ensure that the tasks do not perform any concur-
rent modifications to shared data that interfere with each other. Managing the low-level
implementation details of scheduling and synchronization poses a significant challenge to
programmers who wish to write efficient parallel code.

To tackle these challenges and facilitate parallel programming, industry and academia
have been actively developing concurrency platforms - software platforms that provide
users with parallel-programming abstractions and runtime support for scheduling. In par-
ticular, many of these platforms provide the abstraction of dynamic threading, i.e., a par-
allel program creates many lightweight dynamic threads, with threads corresponding to
tasks that are allowed to execute in parallel. Programmers do not map dynamic threads
to processors; instead, the platform's runtime scheduler decides which threads to execute
on which processors dynamically, as the program is being executed. Many state-of-the-
art concurrency platforms, such as Cilk++ [93], Cilk Plus [73], Fortress [13], Haben-
ero [21], Hood [31], Java Fork/Join Framework [90], OpenMP 3.0 [106], Task Parallel
Library (TPL) [92], Threading Building Blocks (TBB) [110], and X10 [37, 44], support
dynamic threading because it frees programmers from the burden of explicit task schedul-
ing. Modern dynamic-threading platforms contain runtime schedulers which are modeled
after the provably efficient scheduler in MIT Cilk [51]. Cilk's scheduler, which is based on
randomized work-stealing, has both an efficient implementation and theoretical bounds on
time and space usage.

Existing dynamic-threading platforms however, generally lack equally high-level ab-
stractions for dealing with the challenge of synchronization. Typically, programmers use
locks for synchronization. When a critical section is protected by a lock L, a thread must
acquire L before it can execute the code in the critical section. The platform guarantees

Figure 1-1: A parallel function f that spawns two parallel functions, gl and g2. A plat-
form with composable parallelism can simultaneously exploit the parallelism in all three
functions.

that only one critical section can hold a given lock L at a time. Thus, critical sections pro-
tected by the same lock cannot execute concurrently. Unfortunately, the provable bounds
on time and space for Cilk do not hold for programs that utilize locks or other forms of
synchronization. An arbitrary use of locks imposes complex constraints for scheduling a
computation, making it difficult for a runtime to provide strong, provable guarantees on
performance.

Furthermore, existing dynamic-threading platforms typically require that all critical
sections execute sequentially, because the schedulers for these platforms are not designed
to interact with locks. Said differently, in these platforms, locking fails to exhibit the prop-
erty of composable parallelism. For instance, consider a function f that spawns calls to
two nested parallel functions gl and g2, as shown in Figure 1-1. We say that a dynamic-
threading platform exhibits composable parallelism if its scheduler is able to simultane-
ously and efficiently exploit parallelism in all functions, f, gl, and g2, even if they use
synchronization, e.g., even if gl acquires a lock to synchronize with some other code run-
ning in parallel with f. In most existing platforms, gi can execute in parallel with g2 if
these sections are protected by different locks, but the platform cannot exploit parallelism
inside gl or g2. Thus, these platforms fail to provide good performance even for compu-
tations which use a single lock, because calling a parallel function inside a critical section
must serialize the execution of the function.

The lack of composable abstractions for synchronization creates several obstacles for
programmers trying to write efficient parallel code. First, the lack of composable paral-
lelism prevents users from reusing existing library code that has already been parallelized
inside critical sections. Also, because platforms cannot exploit nested parallelism inside
critical sections, to achieve good performance in a program that requires synchronization,
programmers may be forced to use fine-grained locks - many locks that each protect
a small critical section. Unfortunately, fine-grained locking is often beyond the capabil-
ities of nonexpert programmers, since it requires programmers to correctly reason about
all the possible ways that the execution of tasks might interleave when run concurrently

on different processors. Allowing nested parallelism inside critical sections can simplify
the development of some parallel applications, because it facilitates the reuse of existing
library code and enables developers to improve program performance by using a few large
but parallel critical sections.

Contributions

In this dissertation, I demonstrate that dynamic-threading platforms can provide compos-
able abstractions for synchronization without sacrificing provable guarantees of perfor-
mance and correctness. More specifically, my dissertation describes the following contri-
butions:

e Task-graph synchronization in fork-join platforms. I present the first library in
a fork-join dynamic-threading platform for provably efficient parallel execution of
task graphs with arbitrary dependencies. Conventional wisdom suggests that exe-
cuting an arbitrary task graph in a fork-join platform requires either special runtime
support or conversion of the task graph into a series-parallel computation which has
less parallelism. I demonstrate, however, that provably efficient task-graph execution
using work-stealing is possible without introducing runtime modifications or addi-
tional constraints on parallelism. This work was done jointly with Kunal Agrawal
and Charles E. Leiserson and appears in [9].

* Helper locks. I present helper locks, the first abstraction for synchronization in a
dynamic-threading platform to effectively exploit asynchronous task parallelism in-
side locked critical sections. In particular, I describe a user-level runtime scheduler
for supporting helper locks and prove theoretical bounds on completion time for plat-
forms that use this scheduler. This work was done jointly with Kunal Agrawal and
Charles E. Leiserson and appears in [10].

" Nested Parallelism in Transactional Memory. I describe the first design of trans-
actional memory (TM) that supports transactions with nested parallelism and nested
parallel transactions of unbounded nesting depth. In particular, I provide a theoretical
performance bound on the overhead of conflict detection in TM which is indepen-
dent of the maximum nesting depth of transactions. This work was done jointly with
Kunal Agrawal and Jeremy T. Fineman and appears in [3].

* Ownership-aware Transactional Memory. I describe ownership-aware TM, the first
design of TM that supports open-nested transactions with provable correctness guar-
antees. This design uses information about which memory locations a software mod-
ule owns to constrain TM with open nesting, thereby making open-nested transac-
tions safer and more intuitive to use. This work was done jointly with Kunal Agrawal
and I-Ting Angelina Lee and appears in [5].

To demonstrate the utility of some of these designs, this dissertation also describes two
prototype implementations.

First, I present Nabbit, a Cilk++ library which demonstrates efficient execution of arbi-
trary task graphs using work-stealing. Nabbit supports parallel task-graph execution with-
out introducing runtime modifications to Cilk++ or introducing any additional edges to the
task graph. Nabbit provides composable parallelism, since it allows a Cilk function to ef-

ficiently run in parallel with task-graph execution. It also allows the computation of each
task-graph node to be a parallel Cilk function.

I also present HELPER, a prototype implementation of helper locks in MIT Cilk. To
provide runtime support for helper locks, HELPER adds a new "parallel region" construct
to Cilk. HELPER demonstrates that this construct can be implemented without introducing
additional overheads to ordinary Cilk programs without helper locks. I also demonstrate
that parallel regions can help improve the composability of Cilk with legacy code. More
specifically, I show how parallel regions can enable legacy-C functions to perform callbacks
to Cilk functions, a capability not permitted by MIT Cilk or Cilk++.

The remainder of this chapter briefly reviews some background material and provides a
high-level overview of each of the topics covered in this dissertation. Section 1.1 briefly re-
views the advantages of programming with dynamic threads as compared to static threads,
the traditional approach for writing multithreaded code. Section 1.2 presents a high-level
overview of task-graph execution in Cilk-like platforms. Section 1.3 discusses helper locks
and their runtime support. Section 1.4 covers synchronization using transactional memory,
namely CWSTM and ownership-aware TM. Finally, Section 1.5 outlines the remaining
chapters in this dissertation.

1.1 Dynamic Threading and Composable Parallelism
This section briefly reviews the programming model of dynamic threading and compares it
to static threading, the traditional approach to writing multithreaded programs. Programs
written using dynamic threads exhibit composable parallelism, a property that programs
written using static threads generally lack. As I discuss later in this dissertation, this lack
of composable parallelism turns out to complicate the design of composable synchroniza-
tion abstractions, since many synchronization primitives are designed for a static threading
programming model.

Dynamic threading provides a threading model with several advantages over static
threading - the traditional approach to writing multithreaded programs. Programming us-
ing static threading often requires developers to explicitly schedule and load-balance tasks
on multiple processors. Static threading can also expose developers to unnecessary nonde-
terminism due to scheduling, thereby complicating the development of multithreaded pro-
grams. In contrast, dynamic threading offers a "processor-oblivious" programming model
which frees developers from the burden of explicit task scheduling and enables libraries
written using dynamic threading to exhibit composable parallelism.

Traditionally, developers have written multithreaded programs using static threads,
which couple the specification of parallelism in an application and its scheduling. With
static threading, a programmer typically creates one static thread for each available (hard-
ware) processor on the target system, and then explicitly assign tasks to each static thread.
Static threads, which are also called persistent threads or pthreads, are exemplified by
POSIX threads [70], Windows API threads [60], and the threading model of the Java pro-
gramming language [53].1

1No confusion should arise with the conventional use of the term "Pthread" as meaning a POSIX thread,
since Pthreads are a type of pthread.

1 int fib (int n) {
2 if (n < 2) {
3 return n;
4 }
5 else {
6 int x, y;
7 x = spawn fib(n-1);
8 y = fib(n-2);
9 sync;

10 return (x+y);
11
12

Figure 1-2: The canonical Cilk example program of fib. This computation is tricky to
program using static threads, because the recursive calls to fib are of differing sizes and
it not obvious how to partition work equally across P processors. Although this recursive
exponential-time method is a highly inefficient way to calculate the Fibonacci numbers,
this code is useful for measuring runtime scheduling overheads in a dynamic-threading
platform.

Since using static threads often requires programmers to explicitly handle task schedul-
ing, it can be tricky in static-threaded programs to maintain adequate load balance, an even
distribution of work across processors. Achieving good load balance is especially difficult
for programs whose parallelism is difficult to partition statically. For example, it is difficult
to statically partition the computation of fib (n) shown in Figure 1-2 into P equal pieces,
since the two recursive calls in fib are of different sizes. It is straightforward, however,
to code and execute the fib computation efficiently using dynamic threading, because
dynamic threading frees programmers from the burden of explicitly scheduling tasks on
processors. A spawn does not create a new thread, but only indicates potential parallelism
in a program that the runtime may or may not exploit.

Code using dynamic threads is often more composable than code using static threads
because dynamic-threading languages offer a processor-oblivious model of computation,
where linguistic extensions to the serial base language expose the logical parallelism within
an application, without referring to the number of processors on which the application
runs. Thus, in a dthreaded program - a program that uses dynamic threads- a developer
coding a parallel function F can seamlessly call other dthreaded parallel functions Gi and
G2 in parallel with each other without needing to worry about how many processors GI
and G2 each need to execute. In contrast, if G1 and G2 were from a library parallelized
using static threads, the developer would need to control exactly how many threads G1 and
G2 create to avoid oversubscribing a system with more threads than hardware processors.
For example, the processor-oblivious model enables a simple but effective computation
of f ib (n) in Figure 1-2: the developer can recursively invoke fib (n-1) and f ib (n-2)
without needing to specify how many threads to use to execute each invocation.

As a more realistic example, consider a BLAS [89] library for linear algebra that pro-
vides a parallel matrix-multiplication method G coded with static threads. In libraries such

as GotoBLAS [54, 116] or Intel MKL [74], often G creates one thread for each hardware
processor, i.e., on a system with 16 processors, G creates 16 static threads. If a developer
wants to write a parallel program F that creates two static threads, and each thread exe-
cutes its own instance of parallel matrix multiplication G, then each instance of G creates
16 static threads, thereby creating a total of 32 static threads for a system with only 16 pro-
cessors. This oversubscription of threads on the system can drastically hurt performance,
since the operating system must context-switch between threads on each processor. Fur-
thermore, if the developer writing F wants to perform multiple calls to G in parallel but on
different size inputs, it is not obvious using static threads how the developer should allocate
processors across the multiple instances. On a dynamic-threading platform, however, the
developer leaves the scheduling to the runtime; the platform's runtime scheduler uses the
same 16 (static) worker threads to efficiently execute all instances of G within F, even if the
instances of G are different sizes. Thus, the platform provides composable parallelism.

As I discuss in this dissertation, however, synchronization primitives generally hurt the
composability of dynamic-threading platforms such as Cilk [51,73,93]. Primitives such
as locks or transactional memory are often designed for programs using static threads.
Furthermore, Cilk's runtime scheduler is not designed to permit nested parallelism inside
critical sections protected by locks or transactions. Thus, it can be difficult to effectively
compose a parallel function G inside a function F if F is part of a critical section that requires
some synchronization. This dissertation describes several approaches for providing com-
posable abstractions for synchronization in Cilk-like platforms which require extending the
programming model or runtime scheduler.

1.2 Task-Graph Synchronization

Chapter 2 demonstrates how to execute an arbitrary task graph in a fork-join platform in
a provably efficient way using traditional work-stealing. 2 Task-graph synchronization is
useful for applications whose parallel tasks have predictable but arbitrary dependencies,
namely that the computation of one task depends on the computation of another task. Con-
ventional wisdom suggests that task graphs with arbitrary dependency edges, such as the
graph in Figure 1-3(a), cannot be executed on a fork-join dynamic-threading platform with-
out executing a modified computation that has extra edges, e.g., the graph in Figure 1-3(b).
In general, adding edges can significantly limit the parallelism of a computation, espe-
cially if tasks vary in size. As Chapter 2 shows, however, it is possible to execute arbitrary
task graphs in a fork-join platform without introducing extra dependency edges and with-
out requiring special runtime support. Furthermore, this approach to task-graph execution
provides composable parallelism: one can easily and efficiently execute a fork-join com-
putation and a task-graph computation in parallel, as well as exploit parallelism inside
individual nodes in a task graph.

To demonstrate this approach in practice, I present Nabbit, a Cilk++ 3 library that en-
ables programmers to specify and execute task graphs with arbitrary dependencies, such as

2These results on task-graph execution represent joint work [9] with Kunal Agrawal and Charles E. Leis-
erson.

3Cilk++ [93], which has since evolved into Cilk Plus [73], is a C++ version inspired by MIT Cilk [51].

(b) Series-Parallel Task Graph.

Figure 1-3: A task-graph computation with arbitrary dependency edges and a series-parallel
conversion. Each numbered square represents a task. An edge from task i to j means j
must execute after i. The graph in 1-3(a) shows a task-graph computation with arbitrary
dependency edges, which is not easily expressed directly in Cilk. The graph in 1-3(b)
is a conversion of the graph from 1-3(a) into a "series-parallel" graph. This conversion
introduces additional dependency edges.

the graph in Figure 1-3(a). Nabbit requires minimal additional bookkeeping and requires
no runtime-system modifications. In Chapter 2, I illustrate the efficiency of Nabbit theo-
retically by proving efficient completion-time bounds for Nabbit. In particular, I show that
Nabbit achieves an asymptotically optimal completion-time bound for task graphs with
constant degree. I also demonstrate the effectiveness of Nabbit empirically on a dynamic
programming microbenchmark and on an asynchronous Cholesky factorization. 4

Cilk++ with Nabbit exhibits composable parallelism. First, Nabbit allows fork-join
Cilk++ code and task-graph execution to efficiently run together in parallel. Users of Nab-
bit can also write parallel Cilk++ code for the computation of each node in the task graph,
and Cilk++'s work-stealing scheduler can efficiently exploit both parallelism between dif-
ferent task-graph nodes and parallelism within a node itself. Thus, Nabbit demonstrates
composable task-graph synchronization with provably efficient runtime scheduling.

1.3 Helper Locks

Chapter 3 introduces helper locks, a new lock-based synchronization abstraction that en-
ables dynamic-threading platforms to exploit asynchronous task parallelism inside critical
sections. 5 A helper lock is similar to an ordinary lock, except that it may be connected to
a large critical section containing nested parallelism. When a processor fails to acquire a
helper lock L for a task gi, if L is connected to a large critical section g2, then the proces-
sor can help complete g2 instead of simply waiting for g2 to complete. For example, in a
program that uses a concurrent resizable hash table, gi might represent an insert into the

4These results on asynchronous Cholesky factorization represent joint work [46] with David Ferry and
Kunal Agrawal.

5The design of helper locks represents joint work [10] with Kunal Agrawal and Charles E. Leiserson.

(a) Arbitrary Task Graph.

table, and g2 might represent a resize operation that rebuilds the entire table. Typically,
to achieve good performance, programmers need to use fine-grained locks to make critical
sections as small as possible. Using helper locks, however, programmers can avoid some of
the complexities of fine-grained locking without paying the performance penalty of a large
critical section, provided that the critical section can be parallelized efficiently. Helper
locks provide lock-based synchronization that exhibits composable parallelism, since they
enable the composition of parallel functions inside critical sections.

I also demonstrate provably efficient runtime support for helper locks by presenting
HELPER, a prototype implementation of helper locks in MIT Cilk. HELPER relies on a
new parallel region construct, which conceptually creates data structures for scheduling a
nested code region R that are separate but connected to the data structures for R's parent
region. The construct also allows the scheduler to adaptively move processors in and out
of region R as R executes and the parallelism of R changes. One significant contribution
presented in Chapter 3 is the analysis of randomized work-stealing when programs have
parallel regions. For a computation where each parallel region contains sufficient paral-
lelism, this analysis proves that HELPER is asymptotically efficient. More specifically, in
a computation, let N be the number of parallel regions protected by helper locks, let T be
its work, and let T be its "aggregate span" - roughly, the sum of the spans (critical-path
lengths) of all its parallel regions. Then, HELPER can complete the computation in ex-
pected time O(Ti/P+ T + PN) on P processors. This bound indicates that programs with
a small number of highly parallel critical regions can attain linear speedup.

Finally, HELPER's parallel region construct also turns out to be useful for improving
the legacy compatibility of Cilk-like dynamic-threading platforms. Chapter 4 shows that
parallel regions can be used to implement "subtree-restricted work-stealing," a type of re-
stricted work-stealing. Dynamic-threading platforms such as Cilk and Intel TBB can use
restricted work-stealing to support legacy callbacks, that is, calls from a legacy-C function
(a C function compiled using an ordinary serial compiler) back to a parallel Cilk func-
tion. Chapter 4 also provides a theoretical analysis of restricted work-stealing, demonstrat-
ing that a dynamic-threading platform can provide theoretical performance guarantees for
legacy callbacks. 6

1.4 Transactional Memory

Chapters 5 through 7 discuss composable synchronization in dynamic-threading platforms
using nested transactions and transactional memory. This section briefly describes back-
ground material on transactional memory. It then gives an overview of the relevant topics
covered in this dissertation: the transactional computation framework for modeling series-
parallel computations with transactions, the CWSTM design for nested parallelism in trans-
actions, and ownership-aware transactional memory for open-nested transactions. Nested
transactions enhance the composability of transaction-based synchronization because they
enable programmers to compose a function that uses transactions inside another transac-
tion.

6This chapter covers joint work with Kunal Agrawal and I-Ting Angelina Lee [6], as well as work pre-
sented in [115].

Transactional memory, or TM for short, describes a collection of hardware and soft-
ware mechanisms that provide a transactional interface for accessing memory. A TM sys-
tem guarantees that any section of code that the programmer has specified as a transaction
either appears to execute atomically or appears not to happen at all, even though other
transactions may be running concurrently. Transactional memory was originally proposed
by Herlihy and Moss in 1993 as a hardware mechanism for ensuring the atomic execution
of critical sections [65]. More recently, however, there has been a renewed interest in TM,
with many researchers proposing numerous designs for TM in hardware (e.g. [14,59,99]),
in software (e.g., [2,64,97]), or in hybrids of hardware and software (e.g., [39,84]). For a
survey of these systems and other TM-related literature, see [88].

In the literature, researchers have argued that transactions and TM can provide the sim-
plicity of use of coarse-grain locking while still providing an efficiency close to that of
fine-grain locking. Normally, to guarantee that a code block executes atomically using a
lock L, the user must ensure that all other conflicting code blocks also acquire the same lock
L. The promise of TM is that a user can guarantee that a particular code block executes
atomically by simply specifying that block as a transaction. The TM system guarantees
atomicity by tracking all the memory locations accessed by transactions, detecting conflicts
with other parallel code, and then aborting and retrying transactions in case of a conflict.
lock. Because a TM runtime executes transactions optimistically, in programs where con-
flicts are rare, TM can potentially provide performance comparable to programs that use
hand-tuned fine-grain locking.

Researchers have also argued that using TM is more composable than using locks be-
cause TM systems can handle nested transactions. A transaction Y is said to be nested
inside transaction X if transaction Y is called from within transaction X. For example, Fig-
ure 1-4 shows a simple transaction X with a nested transaction Y. In early work on TM,
any nested transaction Y was assumed to be flat-nested inside the outer transaction X. A
flat-nested transaction Y is subsumed into the parent transaction X. For the example in Fig-
ure 1-4, the code effectively behaves as though the atomic block enclosed between lines 4
and 6 has been elided. More generally, with flat-nesting semantics, a nested transaction Y
that occurs within a function f called from within transaction X is also elided. This seman-
tics for flat-nested transactions appears to be composable. One can call a function inside
transaction X without needing to know whether the function will generate a nested trans-
action Y. In contrast, programming with locks is less composable, because programmers
must carefully reason about the order of lock acquisitions and nesting of locks in order to
avoid deadlock.

It turns out, however, that this argument for the composability of TM becomes more
complicated when one considers transactions that can contain nested parallelism. Most
proposed TM systems can detect conflicts between transactions correctly when a transac-
tion f calls a nested transaction gi, but they do not allow f to contain nested parallelism
or nested parallel transactions gi and g2. TM systems generally impose this restriction
because they are designed for programs that use static threads, where generating nested
parallelism inside a transaction is relatively expensive. Also, the semantics of transactions
with nested parallelism is more complicated to reason about than the semantics of serial
transactions.

This dissertation explores several of the issues of semantics and runtime support that

1 atomic { // Transaction X
2 x++;
3 y++;
4 atomic { // Transaction Y
5 i++;
6 }
7 z++;
8 }

Figure 1-4: A code example where transaction Y is nested inside X. The atomic block
delimits the beginning and end of a transaction. If Y is flat-nested inside X, then the code
behaves as though the atomic block for Y has been elided.

arise when transactions can contain nested parallelism and nested transactions.
First, Chapter 5 describes the transactional computation framework, a framework that

is useful for precisely defining the semantics of TM with nested parallelism and nested
transactions, and for proving the correctness of a TM runtime design.7 This framework is
used to describe nested transactions in CWSTM and ownership-aware TM.

Next, Chapter 6 presents CWSTM, the first design of a TM system that supports trans-
actions with nested parallelism and nested parallel transactions of unbounded nesting depth
in a dynamic-threading platform. 8 Nested parallelism turns out to complicate conflict de-
tection between transactions considerably, since there is no longer a one-to-one mapping
from a transaction to the processor executing the transaction. CWSTM shows, however,
that one can provide a theoretical performance bound on the overhead of conflict detec-
tion in TM which is independent of the maximum nesting depth of transactions. CWSTM
is a theoretical design of a software TM which integrates with a Cilk-style work-stealing
scheduler. Thus, CWSTM demonstrates transaction-based synchronization with compos-
able parallelism in a dynamic-threading platform.

Finally, Chapter 7 describes ownership-aware TM, a TM design that provides prov-
able semantic guarantees for the optimization of "open-nested" transactions. 9 Because
ordinary nested transactions can hurt performance by introducing unnecessary transaction
conflicts, researchers proposed open-nested transactions as an optimization for eliminat-
ing such conflicts [98, 102,103]. Unfortunately, by modeling open nesting more formally
using the transactional computation framework, one can show that this optimization has
semantic problems. In particular, its use can break the composability of transactions. This
dissertation shows how one can resolve these problems using an ownership-aware TM -

a TM that uses the information of which software module "owns" a particular memory lo-
cation to constrain the behavior of nested transactions. Ownership-aware TM demonstrates
that platforms can provide provable guarantees of correctness and safety for open-nested
transactions.

7The transactional computation framework is derived from the formal model described in [8], which is
joint work with Kunal Agrawal and Charles E. Leiserson.8CWSTM represents joint work [3] with Kunal Agrawal and Jeremy T. Fineman.

90wnership-aware TM represents joint work [5] with Kunal Agrawal and I-Ting Angelina Lee.

1.5 Outline

The remainder of this dissertation is organized into two major parts.
The first part - Chapters 2 through 4 - discusses extensions to the Cilk program-

ming model for supporting more sophisticated forms of synchronization. Chapter 2 de-
scribes task-graph synchronization using work-stealing, and presents the Nabbit library for
task-graph execution. Chapter 3 introduces helper locks and the HELPER runtime which
efficiently supports helper locks. Chapter 4 discusses another use for HELPER's parallel
region construct, namely for improving the compatibility of Cilk with legacy-C code.

The second part - Chapters 5 through 7 - discusses transaction-based approaches

to synchronization in parallel programs. Chapter 5 presents the transactional computation
framework, a formal model which is useful for understanding the behavior of TM systems
with nested transactions. Chapter 6 presents CWSTM, a design of a software TM system
that supports transactions with nested parallelism. Chapter 7 describes ownership-aware
TM, a TM design which makes open-nested transactions safer and more intuitive to use.

Chapter 8 concludes with a summary of the topics covered in this dissertation.
Finally, Appendices A through C contain supplemental material which may be useful

when reading this dissertation. For readers unfamiliar with Cilk, Appendix A reviews back-
ground material on Cilk's programming model, runtime scheduler, and theoretical time and
space bounds. Appendix B summarizes the notation used in this dissertation. Appendix C
includes the details of the correctness proof for operational models that are described in
Chapters 5 and 7.

22

Chapter 2

Task-Graph Synchronization Using
Work-Stealing

Many parallel programming problems can be expressed using a task graph: a directed
acyclic graph (DAG) D = (VD, ED), where every node A E VD represents some task with
computation COMPUTE (A), and a directed edge (A, B) E ED represents the constraint that
B's computation depends on results computed by A. Executing a task graph means assign-
ing every node A E VD to a processor to execute at a given time and executing COMPUTE (A)
at that time such that every predecessor of A has finished its computation beforehand. In
this chapter, I show that a dynamic-threading platform can provide arbitrary task-graph
synchronization which composes with ordinary fork-join programs. I also prove efficient
theoretical bounds on completion time for task-graph execution using an ordinary work-
stealing scheduler.1

Task graphs come in two flavors. A static task graph D is one where the structure of
D (the nodes VD and edges ED) are known before execution of a task graph begins. In a
dynamic task graph, the nodes and edges are created on the fly at runtime, with creation
and execution of task-graph nodes potentially happening concurrently.

Executing a task graph D in parallel requires constructing a schedule for D - a map-
ping of nodes of VD to processors and execution times. A scheduler for executing a task
graph D can be classified as either clairvoyant or nonclairvoyant. A clairvoyant task-graph
scheduler is a scheduler that is aware of the time required to execute COMPUTE (A) for each
A E VD, and may construct a schedule offline.2 In contrast, a nonclairvoyant task-graph
scheduler does not know the compute times of nodes in advance, and must make schedul-
ing decisions online at runtime to effectively load-balance execution across processors.

Many efficient approximation algorithms and heuristics exist for clairvoyant scheduling
of task graphs. As summarized by Kwok and Ahmad in their survey [86], the problem of
scheduling a task graph when the compute times of task nodes are known has been stud-

1These results on task-graph execution represent joint work [9] with Kunal Agrawal and Charles E. Leis-
erson.

2Existing literature on task-graph scheduling sometimes uses the term "static" to refer to a task graph
where both the structure of nodes and edges and the compute times of task nodes are known a priori. This
stronger definition corresponds to a task graph that is static as defined in this chapter and which can be
executed using a clairvoyant scheduler.

ied extensively in a variety of computational models. 3 Unfortunately, as researchers have
noted (e.g., [104]), clairvoyant scheduling can be difficult to apply in practice; the complex-
ity of modem computer hardware and software systems greatly complicates the accurate
estimation of the compute times of task-graph nodes, and for some scheduling algorithms
or applications, the offline processing required to generate a clairvoyant schedule may be
prohibitively expensive.

Thus, this chapter considers only nonclairvoyant task-graph schedulers. Most nonclair-
voyant schedulers for generic task graphs rely on a task pool, a data structure that dynami-
cally maintains a collection of ready tasks whose predecessors have completed. Processors
remove and work on ready tasks, posting new tasks to the task pool as dependencies are
satisfied. Using task pools for scheduling avoids the need for accurate time estimates for
the computation of each task, but maintaining a task pool may introduce runtime overheads.

One way to reduce the runtime overhead of task pools is to impose additional structure
on the task graphs so that one can optimize the task-pool implementation. For example,
Hoffman, Korch, and Rauber [68,81] describe and empirically evaluate a variety of imple-
mentations of task pools in software and hardware. They focus on the case where tasks have
hierarchical dependencies, i.e., a parent task depends only on child tasks that it creates. In
their evaluation of software implementations of task pools, they observe that distributed
task pools based on dynamic "task stealing" perform well and provide the best scalability.

Dynamic task-stealing is closely related to the work-stealing scheduling strategy used
in dynamic-threading languages such as Cilk [28,51], Cilk++ [72,93], Fortress [13], X10
[37], and parallel runtime libraries such as Hood [31] and Intel Threading Building Blocks
[110]. A work-stealing scheduler maintains a distributed collection of ready queues where
processors can post work locally. Typically, a processor finds new work from its own
work queue, but if its work queue is empty, it steals work from the work queue of an-
other processor, typically chosen at random. Blumofe and Leiserson [30] provided the first
work-stealing scheduling algorithm coupled with an asymptotic analysis showing that their
algorithm performs near optimally.

Dynamic-threading languages support fork-join constructs for parallelism, which allow
programmer to easily express series-parallel [120, 121] task graphs. For example, Fig-
ure 2-1 shows a Cilk program for the task graph shown in Figure 1-3(b). Unfortunately,
these languages generally do not support task graphs with arbitrary dependencies however.
One cannot express a task-graph computation with arbitrary dependency edges using only
spawn and sync keywords, since one can show (e.g., as in [45]) that the execution of a Cilk
program conceptually generates only computation DAGs which are series-parallel. 4

Thus, conventional wisdom suggests that to execute a non-series-parallel task graph
such as Figure 1-3(a) in a fork-join platform, one should convert it into a series-parallel
DAG, such as the one in Figure 1-3(b). Converting an arbitrary task graph into a series-
parallel DAG often introduces superfluous dependencies, however, which can potentially

3Hu in [69] presents one of the earliest algorithms for clairvoyant task-graph scheduling, in the context of
parallel assembly-line scheduling. In general, the problem of finding a minimum-time clairvoyant schedule
on P processors for a static task graph 'D is known to be NP-complete [119].

4 Intuitively, a series-parallel DAG is one that can be recursively built using only series and parallel com-
positions. For more details, see Appendix A, which reviews how Cilk programs generate a series-parallel
computation DAG (Section A.2), or equivalently, a series-parallel computation tree (Section A.4).

1 void TaskGraphExecute () {
2 BlockCompute (1, 2, 5, 6);
3 spawn BlockCompute(3, 4, 7, 0);
4 BlockCompute(9, 0, 0, 14);
5 sync;
6 BlockCompute(11, 12, 15, 16);
7 }
8 void BlockCompute(int v1, int v2, mt v3, mt v4)
9 if (vi > 0) Compute(vl);

10 if (v2 > 0) spawn Compute(v2);
11 if (v3 > 0) Compute (v3);
12 sync;
13 if (v4 > 0) Compute(v4);
14 }

Figure 2-1: A Cilk program for executing the task graph in Figure 1-3(b). The Cilk
keywords of spawn and sync, which express potential parallelism, appear in bold. The
Compute method performs a computation for a task based on the task-node number passed
in as argument. The BlockCompute method calls Compute for a 2 x 2 grid subgraph of
Figure 1-3(b).

limit parallelism in the task-graph execution. For example, in Figure 1-3(a), the node 11
can execute after the set of nodes { 1,2,3,5,6,7, 9} completes, but after a series-parallel
conversion to Figure 1-3(b), node 11 also must wait for nodes 4 and 14 to complete.

Alternatively, to support execution of arbitrary task graphs, one might try to add special
runtime support to a fork-join platform. This approach can be tricky to design and imple-
ment, however, because one must carefully consider how new mechanisms interact with the
existing scheduler and programming model. Also, runtime modifications can potentially
invalidate the theorems that guarantee the theoretical efficiency of work-stealing.

Contributions

In this chapter, I demonstrate that efficient execution of arbitrary task graphs in a fork-join
dynamic-threading platform is possible without modifying the underlying work-stealing
scheduler or introducing extra dependency edges. Conventional wisdom suggests that in a
fork-join platform, executing a task graph with arbitrary dependency edges requires either
special runtime support or requires conversion of the task graph into a series-parallel task
graph which has less parallelism. I show, however, that both of these "requirements" can
be avoided. In particular, this chapter describes the following contributions:

* Nabbit, the first library in a fork-join platform for provably efficient parallel execu-
tion of task graphs with arbitrary dependencies.

" Efficient theoretical bounds on the time required to execute task graphs using a non-
clairvoyant scheduler. More precisely, using a work-stealing scheduler, one can guar-
antee asymptotically optimal completion-time bounds for task graphs whose nodes
have constant in-degree and out-degree.

e An extension of Nabbit and its theory to dynamic task graphs.

Nabbit demonstrates a composable programming interface for specifying task graphs in a
fork-join platform: it allows the computation of individual task-graph nodes to be parallel
functions, and it allows ordinary fork-join code to run efficiently in parallel with a task-
graph execution.

Chapter Outline

The remainder of this chapter is organized as follows.
First, this chapter presents results for static task graphs. Section 2.1 describes the

programming interface for static Nabbit, an interface which enables a fork-join dynamic-
threading platform to execute static task graphs. Section 2.2 determines theoretical bounds
on the time required for a Cilk-like work-stealing scheduler to execute static task graphs
specified using static Nabbit, and shows that these bounds are asymptotically optimal for
task graphs with constant degree. Section 2.3 evaluates static Nabbit empirically on a ir-
regular dynamic-programming benchmark, which demonstrates that Nabbit is competitive
with and in some cases can even outperform traditional series-parallel algorithms for the
same benchmark.

Next, this chapter discusses alternative programming interfaces for specifying static
task graphs in Nabbit. Section 2.4 describes the "data-block interface" for Nabbit, an in-
terface which is designed to simplify the process of creating static task graphs for com-
putations which fit into a "data-block access" programming pattern. Section 2.5 presents
empirical results from an asynchronous Cholesky factorization benchmark, which demon-
strates the effectiveness of Nabbit and the data-block interface.

Finally, this chapter extends the theory and implementation of Nabbit to dynamic task
graphs. Section 2.6 presents the interface and theoretical analysis of dynamic Nabbit, which
executes dynamic task graphs. Section 2.7 evaluates the performance of static and dynamic
Nabbit on a random-graph microbenchmark. Section 2.8 discusses related work and poten-
tial future work on task-graph execution in fork-join platforms.

2.1 Nabbit for Static Task Graphs

This section introduces Nabbit by describing the interface and implementation of static
Nabbit, a version of Nabbit optimized to execute static task graphs. This interface and
implementation demonstrate that arbitrary static task graphs can be easily specified and
executed in a fork-join dynamic-threading platform.

Interface

In static Nabbit, programmers specify task graphs by creating nodes that extend from a base
DAGNODE object, specifying the dependencies of each node, and providing a COMPUTE
method for each node.

As a concrete example, consider a dynamic program on an n x n grid which takes an
n x n input matrix s and computes the value M(n, n) based on the following recurrence:

M(,)) maxM(i - 1,1 j)+ s(i - 1,1 j) .f>lnj
M {,j){=M(ij-lj)+s(i,j-) (2.1)

0 ifi< lorj< 1

One can formulate this problem as a task graph with a task node for every cell M(i, j) and
dependencies on the cells M(i - 1, j) and M(i, j - 1). This dynamic program generates a
task graph which is a 2d n x n grid graph, a graph with structure, but nevertheless non-
series-parallel.

Figure 2-2 formulates this problem as a task graph. The code constructs a node for
every cell M(ij), with the node's class extending from a base DAGNODE class. The
programmer uses two methods of this base class: ADDDEP specifies a predecessor node
on which the current node depends, and EXECUTE tells Nabbit to execute a task graph
using the current node (with no predecessors) as a source node.

In the example from Figure 2-2, the COMPUTE method for each task-graph node is a
short, serial section of code. More generally, however, Nabbit allows programmers to use
spawn and cilk-for to expose additional parallelism within a node's COMPUTE method.
This capability arises naturally because Nabbit is implemented directly in Cilk++, without
requiring any modifications to the Cilk++ runtime. Also, programmers can easily use Nab-
bit as part of a larger Cilk++ program, since the scheduler can efficiently run a task-graph
execution using Nabbit in parallel with ordinary fork-join code written in Cilk++.

Implementation

To perform bookkeeping for a task-graph execution, static Nabbit maintains the following
fields for each task-graph node A:

" Successor array: An array of pointers to A's immediate successors in the task graph.
* Join counter: A variable whose value tracks the number of A's immediate predeces-

sors that have not completed their COMPUTE method.
" Predecessor array: An array of pointers to A's immediate predecessors in the task

graph, i.e., the nodes on which A depends. 5

The EXECUTE method for a node A is implemented as a call to the COMPUTEANDNOTIFY
method for A. The code for this method is shown in Figure 2-3.

2.2 Analysis of Static Nabbit

This section provides a theoretical analysis of the performance of the Nabbit library when
executing a static task graph on multiple processors, which shows that Nabbit executes

5Maintaining this array is not always necessary. Nabbit maintains this array so that A's COMPUTE method
can conveniently access its immediate predecessors. In examples such as Figure 2-2, one can also find a
node's predecessors through pointer and index calculations.

1 class DynProgDag {
2 int n; int* s; MNode* g;
3 DynProgDag(int n_, int* s_): n(n_), s(s_)
4 g = new MNode [(n+1)* (n+1)];
5 for (int i = 0; i <= n; ++i)
6 for (int j = 0; j <= n; ++j) {
7 int k = (n+1)*i+j;
8 g[kl.pos = k; g[kl.dag = (void*) this;

9 if (i > 0) {g[k] .AddDep(&MNode[k-(n+1)]) };
10 if (j > 0) {g[k].AddDep(&MNode[k-1]) };
11 }
12
13
14 int Execute ()
15 g[01->Execute();
16
17 };
18 class MNode: public DAGNode
19 int res;
20 void Compute() {
21 this->res = 0;
22 for (int i = 0; i < predecessors.size(; i++) {
23 MNode* pred = predecessors.get(i);
24 int predval = pred->res + s[pred->pos];
25 this->res = MAX(pred_val, res);
26
27
28 };

Figure 2-2: Cilk++ code using Nabbit to solve the dynamic program in Equation (2.1). The
identifiers in bold correspond to classes or methods specific to Nabbit. The code constructs
a task-graph node for every cell M(i, j). The array g of nodes is stored in row-major layout.
This example code executes the task graph by calling EXECUTE on g [0] , the source of the
graph.

COMPUTEAND NOTIFY (A)

1 COMPUTE (A)
2 parallel for all B C A. successors
3 val = ATOMDEcANDFETCH (B.join)
4 if val ==0
5 COMPUTEAND NOTIFY (B)

Figure 2-3: Static task-graph execution in Nabbit. COMPUTEANDNOTIFY computes a
node A and then greedily spawns the computation for any immediate successors of A which
are enabled by A's computation. The parallel for in line 2 indicates that the loop iterations
are spawned in binary-tree fashion, and all can potentially run in parallel.

static task graphs with constant degree in time which is asymptotically optimal. To ana-
lyze the runtime of Nabbit, we employ a work/span analysis (e.g., as in [38, Chapter 27])
and calculate upper bounds on the work and span6 of the executions of the code in Fig-
ure 2-3. Then, we translate these bounds into completion-time bounds for Nabbit using
known theoretical bounds on the completion time of fork-join parallel programs scheduled
with randomized work-stealing [16,30]. For a review of the computation DAG model used
in this analysis, see Section A.2.

Definitions

To analyze the performance of Nabbit, we require some definitions. Consider a task
graph D = (VD,ED). For each node A E VD, let ipred(A) denote the set of imme-
diate predecessors of A, and let isucc(A) denote the immediate successors of A. Let
outDeg(A) = lisucc(A)| and inDeg(A) = lipred(A)| be the out-degree and in-degree of
A, respectively. For simplicity in stating the results, we assume that for a task graph D,
every node is a successor of a unique source node sD with no incoming edges, and a pre-
decessor of a unique sink node tD with no outgoing edges. Let path s(A,B) be the set of
all paths in D from node A to node B.

Every execution of a task graph invokes COMPUTEANDNOTIFY (A) exactly once for
each A C VD. For many task graphs, such as the one in Figure 2-4, the execution of
COMPUTEAND NOTIFY can be nondeterministic, since COMPUTE (A) may be invoked by a
different immediate predecessor depending on how the runtime schedules the computation
on multiple processors. Each possible execution can be represented as a computation DAG

G, which should not be confused with the task graph D itself. The nodes of the computa-
tion DAG are serial chains of executed instructions, and the edges represent dependencies
between them.

We shall define several notations for subgraphs of a computation DAG. For a particular
computation DAG g and a task-graph node A, let CNG(A) be the subgraph corresponding
to the call COMPUTEAND NOTIFY (A), and let comG (A) be the subgraph corresponding to

6 "Span" is sometimes called "critical-path length" or "computation depth" in the literature.

Figure 2-4: A task graph for computing M(2, 3) using Equation (2.1). The exe-
cution of COMPUTEANDNOTIFY (A) is nondeterministic - it recursively calls both
COMPUTEANDNOTIFY (B) and COMPUTEANDNOTIFY (C), but in a particular execution,
only one, but not both of these methods recursively calls COMPUTEANDNOTIFY (D).

COMPUTE (A). For any subgraph G' of a computation DAG, define the work of G', denoted
by Ti (G'), to be the sum of the execution times of all the nodes in G'. Similarly, define the
span of G', denoted by T.(G'), to be the longest execution time along any path through G'.
We overload notation so that when the superscript G is omitted, we mean the maximum of
the quantity over all possible computation DAGs generated by executions of the task graph
D. For example, T1 (CN(A)) denotes the maximum work for COMPUTEAND NOTIFY (A)
over all possible executions of D.

To analyze Nabbit's running time on a task graph D with source SD, examine the exe-
cution of COMPUTEANDNOTIFY (SD). The total work done by a computation G of D is
Ti (CNG (s)), and the span is T. (CNG(sD)). Since the computation DAG is nondetermin-
istic, we consider the maximum of these values - namely, Ti (CN(sD)) and T-(CN(SD))
- and use these values as upper bounds in the analysis.

Work Analysis

The following lemma calculates the work required by Nabbit to execute a task graph D.

Lemma 2.1. Any execution of V using Nabbit has work

Ti(CN(sD)) < Ti(com(A)) + O(|ED)+ Vw,
AEV

where

Vw=0 (1 inDeg(B)-min{inDeg(B),P}
BEVV

Proof The first term arises from the work of the COMPUTE functions. The second term
O(|EDI) bounds the work of traversing D, assuming no contention.

The third term Vw covers the contention cost on the join counter. For each node B E VD,
we decrement the join counter of B inDeg(B) times. Assuming that processors can queue

when there is contention on the atomic decrement, in the worst case each decrement takes
O(min{inDeg(B), P}) time. El

Span Analysis

The nondeterministic nature of task-graph execution in Nabbit complicates the direct cal-
culation of T.(CN(sD)). Consequently, our strategy is to construct a new, deterministic
computation DAG Q whose span upper-bounds the span of COMPUTEANDNOTIFY (sD),
and then analyze the span of Q*. We define the method COMPUTEANDNOTIFY*(A) to be
the same as the original method, except that line 4 in Figure 2-3 is omitted. In other words,
the method COMPUTEANDNOTIFY*(A) always makes recursive calls on all of A's succes-
sors. Let CN* (A) be the computation DAG corresponding to this modified method, and let
Q* be the computation DAG for COMPUTEANDNOTIFY*(SD). Figure 2-5 shows Q* for
the task graph shown in Figure 2-4. Since any computation Q forms a subDAG of Q*, we
have T. (CN* (A)) ; T.(CNG(A)). Then, we bound T,(CN*(sD)) using Lemma 2.2.

Lemma 2.2. Any execution of D using Nabbit has span

T-(CN*(sD))< max sn(X)+ EVS(XY)}

where

n(X) T.(com(X))+ O(lg(outDeg(X))),

Vs(X,Y) O(min{inDeg(Y),P}) .

Proof For each node X, the method COMPUTEANDNOTIFY *(X) enables all of X's imme-
diate successors, with the recursive calls to COMPUTEANDNOTIFY* operating in parallel.
As Figure 2-5 illustrates, any path through the computation DAG CN* (X) contains the
COMPUTE of only those nodes along a corresponding path through D.

Along any path p, the term n(X) accounts for T.(com(X)), the span of X itself, plus the
additional span O(lg(outDeg(X))) required to spawn recursive calls along X's outgoing
edges using a parallel for loop. In Cilk++, a parallel for loop 7 spawns iterations in the
form of a balanced binary tree, and thus the depth of the tree is logarithmic.

The term Ws(X, Y) accounts for the contention cost of decrementing the join counter
for Y, where Y is a successor of X. In the worst case, this decrement might wait for
min { inDe g(Y), P} other decrements. El

Completion- Time Bounds

Lemmas 2.1 and 2.2 bound the work and span of the computation DAG using characteristics
of the task graph. Now, we relate these bounds back to the time it takes to execute a task

7The Cilk++ keyword for a parallel for loop is actually cilk-f or.

Figure 2-5: The computation DAG CN* (A) for the execution of the task graph from
Figure 2-4. Numbers correspond to line numbers from Figure 2-3. Hexagons cor-
respond to atomic decrements of join counters, which may require synchronization.
An execution of COMPUTEANDNOTIFY (A) generates a DAG which is a subDAG of
CN*(A). Each possible subDAG contains exactly one element drawn from the {D 1 ,D2},
and one from {F1 ,F2 ,F3}. Four subDAGs of CN*(A) are possible: (A,B,C,D 1,E,F1),
(A,B,C,D1,E,F 3), (A,B,C,D 2 ,E,F2), or (A,B,CD 2,E,F 3).

graph D = (VD, ED) on an ideal parallel computer. Let Ti (D) be the work of D - the
time it takes to execute D on a single processor. We have that

Ti (D) = ETi (com (A)) + O (1|EDl
A EVD

since any execution of D executes the COMPUTE method of every node once and must
traverse every edge. Similarly, let T.(D) be the span of D - the time it takes to execute
D on an ideal parallel computer with an infinite number of processors. Define V. as the
number of nodes on the longest path in D from the source sD to the sink tD. We have

T.(D) max Tc (+(V),
pEpaths(sD,tD) X o+

since nodes along any path through D cannot execute in parallel.
Let Tp(6) denote the time Nabbit requires to execute a task graph D on P processors.

By the work and span laws [38, p. 780], we have Tp(D) > max {Ti/P, T..

Using Lemmas 2.1 and 2.2 and the analysis of a Cilk-like work-stealing scheduler, we
obtain the following completion-time bound for Nabbit.

Theorem 2.3. Let D = (VD, EDp) be a task graph with maximum in-degree Ai and maximum

out-degree Ao. With probability at least 1 - E, Nabbit executes D on P processors in time

Tp(D)=0 + T.(D) +lg -P + V.lgAo +V(D)),
P F

where

V(D) = 0 (+V min{AiP})

Proof. Blumofe and Leiserson in [30] show that a Cilk-like work-stealing scheduler com-

pletes a computation with work Ti and span T. in time O(T1/P + T. + lg(P/E)) on P
processors with probability at least 1 - c. (This result is reviewed in Theorem A. 1 in Sec-

tion A.3.) To bound the completion time, we relate the work and span of the computation
DAG CN(sD) to Ti and T.. Bounding the contention term in Lemma 2.1 using Ai, we have

Ti (CN(sD)) = Ti (D)+ O(|EDl -min { AiP}) ,

since the sum of the in-degrees of the nodes in a graph is the cardinality of the edge set.

Similarly, one can use Ai and A0 in Lemma 2.2 to show that

T0 (CN(sD)) =T. (D)+0(VlgAO+V.-min{Ai,P}).

The theorem follows directly from the result in [30]. El

The V0, lg A0 term accounts for the additional span required to visit all the successors
of a node in parallel. Whereas Nabbit allows a programmer to specify task graphs whose

nodes have large degrees, fork-join languages such as Cilk++ produce computation DAGs
where every node has constant out-degree, in which case this term is absorbed in the T
term. Even when the out-degree is not constant, one would expect this term to be dominated
by the T. term if the task-graph nodes contain a reasonable amount of work.

The y(D) term in Theorem 2.3 is an upper bound on the contention due to synchroniza-
tion during the task-graph execution. The term IED I|/P + V- is a bound on the P-processor
execution time needed for a parallel traversal of D, including updating the join counters
on every edge. The extra factor of min {Ai, P} appears because we assume worst-case con-
tention, i.e., that processors wait as long as possible on every decrement of a join counter.
In the case where every node has constant degree, the term NJ(D) is absorbed by T1I/P+ T.,
and thus in this case the running time in Theorem 2.3 is asymptotically optimal. Even when
the degree is more than constant, worst-case contention is unlikely to occur in practice for
every decrement.

Although the contention term in Theorem 2.3 grows linearly with the maximum out-
degree, in principle, one can modify the scheduler to asymptotically eliminate the con-
tention term N(D) from the completion-time bound.

Corollary 2.4. There exists a work-stealing scheduler that can execute any static task
graph D with maximum degree A on P processors in time

Tp(D) =0 T,()+T.(D)+V.lgA+lg -P EP

with probability at least 1 -e.

Proof Given D = (VD, ED), the scheduler creates an equivalent task graph D' in which
every node has constant degree by adding dummy nodes to D. This construction adds
at most O(|El) dummy nodes and extends the longest path by O(V.lgA) nodes. By
Theorem 2.3, executing V with Nabbit gives us the desired bound.

This modification to Nabbit was not implemented, since in practice for relatively small
values of P, the overheads of this modification are likely to be more expensive than simply
suffering the contention.

2.3 Empirical Results for Static Nabbit

This section presents an empirical evaluation of the performance of static Nabbit on an
irregular dynamic-programming benchmark based on the Smith-Waterman [112] dynamic-
programming algorithm used in computational biology. This empirical study indicates that
Nabbit is competitive with and can often outperform other series-parallel implementations
of the same benchmark. These results demonstrate that the ability to execute a task graph
with arbitrary dependencies can improve overall performance and scalability, despite the
added overhead that Nabbit requires to track dependencies during work-stealing that are
not series-parallel.

An Irregular Dynamic Program

One common application for task-graph execution is dynamic-programming computations
with irregular structure. Consider an irregular dynamic program on a 2-dimensional grid
that computes a value M(i, j) based on the following set of recursive equations:

E(i, j) = max M(k, j) +(i - k);
kE{0,1,...,i-1}

F(i, j) = max M(i,k)+T(j-k);
kE{,1,...,j-l} (2.2)

M(i - 1, j - 1) +s(i, j)
M(ij) =max E(ij),

F(ij)

In Equation (2.2), the functions s(i, j) and y(z), and the base cases (not shown) can all be

computed in constant time. As described in [95], this particular dynamic program models
the computation used for the Smith-Waterman [112] algorithm with a general penalty gap
function y. This dynamic program is irregular because the work for computing the cells is
not the same for each cell. Specifically, 0(i + j) work must be done to compute cell M(i, j).
Therefore, in total, computing M(m, n) using Equation (2.2) requires 0(mn(m + n)) work,
or equivalently, 0(n 3), when m = n.

I consider three types of parallel algorithms for solving this dynamic program. The first
type of algorithm uses Nabbit to create and execute a task graph. The second type performs

a wavefront computation, and the third type uses a divide-and-conquer approach. These
latter two types are specific algorithms for solving this particular dynamic program, and
both algorithm types generate series-parallel computation DAGs that can be coded directly
in a fork-join language such as Cilk++. For each of the three algorithms, in order to improve
cache locality and to amortize overheads, the cells are grouped into B x B blocks, where
block (bi, bj) represents the block with upper-left corner at cell (biB, bjB).

The first algorithm expresses the dynamic program in Equation (2.2) by creating a task
graph 'D similar to the code in Figure 2-2, except that each node of the task graph computes
a B x B block of cells. The COMPUTE method for each node computes the values of M for
the entire block serially. Block (bi, bj) depends on (at most) two blocks (bi - 1, bj) and

(bi, bj - 1). Although block (bi, bj) depends on the entire block row bi to the left of (bi, bj)
and the entire block column bj above (bi,bj), it is sufficient to create a task graph with
dependencies only from (bi - 1, bj) and (bi, bj - 1) because transitivity ensures that the

other dependencies are satisfied.

The second algorithm performs a wavefront computation. The computation is divided

into Fn/B] phases, with phase i handling the ith block antidiagonal of the grid. Since blocks

within a single antidiagonal can be computed independently, in each phase the blocks along
the antidiagonal are executed using a parallel for loop (with grainsize of 1).

The third algorithm is a divide-and-conquer algorithm for the dynamic program that

divides the grid into 4 subgrids and then computes the cells in each subgrid recursively.
This algorithm computes the upper-left subgrid first, then the lower-left and upper-right
subgrids in parallel next, and then finally the lower-right subgrid. Figure 2-6 gives Cilk
pseudocode for implementing this divide-and-conquer algorithm.

1 ComputeM(n) { ComputeMHelper(0, 0, n);
2 ComputeMHelper(i, j, n) {
3 if (n <=B) { ComputeMBase(i, j, n);
4 else {
5 ComputeMHelper(i, j, n/2);
6 spawn ComputeMlelper(i+n/2, j, n/2);
7 ComputeMHelper(i, j+n/2, n/2);
8 sync;
9 ComputeMHelper(i+n/2 j+n/2, n/2);

10
11

Figure 2-6: Cilk pseudocode for a parallel divide-and-conquer algorithm to compute
M(n,n) as defined by Equation (2.2). The ComputeMHelper (i, j, n) method computes
M for an n x n grid with upper-left corner at cell (i, j). For simplicity, we only show code
for the case when m = n = 2k -B for some integer k.

One can show that asymptotically, if n > B, the parallelism (work divided by span) of
both the task-graph and the wavefront algorithms is 0(n/B), since both algorithms have
0(n 3) work and 0(n 2B) span. The span of D consists of O(n/B) blocks, with at least half
the blocks requiring ((nB 2) work.

One can also show that the divide-and-conquer algorithm has a span of 0(nlg6B3-1g6)
O(n2.585Bo.4 15). Thus, its theoretical parallelism is 0((n/B)1g6) 0 O((n/B)o.415), which is
lower than the parallelism of the task-graph or wavefront algorithms. This algorithm in-
curs lower synchronization overhead than the other two, however. One can asymptotically
increase the parallelism of a divide-and-conquer algorithm by dividing into more subprob-
lems (e.g., divide one n-by-n grid into K2 subgrids, each of size approximately n/K x n/K),
but the code becomes more complex. In the limit, the resulting algorithm is equivalent to
the wavefront computation.

Dynamic Program Implementations

I compared four parallel implementations of Equation (2.2), based on (1) a task graph
using Nabbit, (2) a wavefront algorithm, (3) a divide-and-conquer algorithm, dividing each
dimension of the matrix by K = 2, and (4) a divide-and-conquer algorithm, dividing each
dimension by K = 5. For a fair comparison, all implementations use the same memory
layout and reuse the same code for core methods, e.g., computing a single B x B block.
Each implementation looks up values for s and y from arrays in memory.

Since memory layout impacts performance significantly for large problem sizes, both
M(i, j) and s(i, j) are stored in a cache-oblivious [50] layout. Because the calculations of
E(i, j) and F(i, j) require scanning along a column and row, respectively, simply storing M
in a row-major or column-major layout would be suboptimal for one of these calculations.
To support efficient iteration over rows and columns, the code used dilated integers [126]
as indices into the grid and employed techniques for fast conversion between dilated and
normal integers from [108].

n = 2000, B=1 6, Speedup vs. P

1 2 3 4 5 6 7 8
P

n = 5000, B=16, Speedup vs. P

1 2 3 4 5 6 7 8
P

n = 15000, B=16, Speedup vs. P

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
P P

Figure 2-7: The performance of the dynamic program on an n x n grid. Speedups are
normalized against the fastest run with P = 1. For n = 1000, the baseline is 2.05 s for serial
execution. For n = 2000, the baseline is 16.6 s using divide-and-conquer with K = 2. For
n = 5000, the baseline is 263 s using divide-and-conquer with K = 2. For n = 15000, the
baseline is 8279 s using Nabbit.

n =1000, B=1 6, Speedup vs. P

Two different types of experiments were run for the dynamic program. The first exper-
iment measures the parallel speedups for the four different algorithms on various problem
sizes. The second measures the sensitivity of the algorithms to different choices in block
size. Both experiments were run on a multicore machine with 8 total cores. 8

The first experiment compared the speedup provided by the four algorithms, with a
fixed block size at B = 16. Each task-graph node was responsible for computing a 16 x 16
block of the original grid, and the wavefront and divide-and-conquer algorithms operated
on blocks of size 16 x 16 in the base case.

Figure 2-7 shows the speedup on P processors for n E {1000, 2000,5000, 15000}. Nab-
bit outperforms the other implementations in all these experiments. For example, at n =
1000, the divide-and-conquer algorithm achieves speedup of 5 on 8 processors, while the
Nabbit implementation exhibits a speedup of about 7. This result is not surprising, since the
task-graph execution has a higher asymptotic parallelism than the divide-and-conquer al-
gorithm. Even though the wavefront algorithm has the same asymptotic parallelism as the
task-graph execution, however, it performs worse than the divide-and-conquer algorithm
for K = 5, which is slightly worse than the Nabbit implementation. As n increases to 5000,
all the algorithms improve in scalability, and the gap between Nabbit and the other algo-
rithms narrows. As n increases even more to 15000, however, the speedup starts to level
off, and eventually decrease. I conjecture that this slowdown is due to a lack of memory
bandwidth and locality when computing the terms E(i, j) and F(i, j). In Equation (2.2), if
the y term is replaced with indices which are independent of k, then I observe a significant
improvement in speedup on n = 15000.

The second experiment studied the sensitivity of the algorithms to block size by fixing
n and varying B. Figure 2-8 shows the results for n = 4000. For small block sizes, the
task-graph algorithm using Nabbit performs worse than the divide-and-conquer algorithm
with K = 5. For example, for P = 1 and B = 1, both divide-and-conquer algorithms require
about 156 seconds, as opposed to 196 seconds for the task-graph algorithm. This result is
not surprising, since for small block sizes, each node does not do enough work to amortize
Nabbit's overhead for each node. In addition, Nabbit also has significant space overhead
for each node.

As B increases, however, at P = 1, the runtime using Nabbit approaches the runtime for
divide-and-conquer with K = 5, and Nabbit begins to slightly outperform the other algo-
rithms when B > 16. The wavefront algorithm at small B appears to have overhead which
is even higher than the task-graph algorithm. In particular, for P = 1 and B = 1, the wave-
front algorithm required about 241 seconds. Some of the wavefront algorithm's overhead
is likely due to the cost of spawning computations on small blocks on each antidiagonal.

In summary, these experiments indicate that while Nabbit may suffer from high over-
heads when each node does little work, for this dynamic program, Nabbit generally exhibits
relatively small overheads and is at least competitive with - and sometimes faster than -

both divide-and-conquer and wavefront implementations for blocks of reasonable sizes.

8The machine contained two chip sockets with each socket containing a quad-core 3.16 GHz Intel Xeon
X5460 processor. Each processor had 6 MB of cache shared among the four cores and a 1333 MHz FSB. The
machine had a total of 8 GB RAM and ran a version of Debian 4.0, modified for MIT CSAIL, with Linux
kernel version 2.6.18.8. All code was compiled using the Cilk++ compiler, which is based on GCC 4.2.4,
with optimization flag -02.

250

200 P=8

150
C)

(D
E

100

50

0
K=5 Nabbit Wave K=5 Nabbit Wave K=5 Nabbit Wave

B=1 B=2 B=4

Figure 2-8: Running time for dynamic program benchmark with n = 4000, varying block
size B for the base case.

2.4 Data-Block Interface for Static Nabbit

Static Nabbit can be used to support a convenient parallel-programming pattern - the data-
block access pattern. In this pattern, a programmer decomposes a computation into tasks
with "readsets" and "writesets" and then provides a sequential specification of tasks for
the program. From this information, a platform can extract a task-graph computation and
execute this task graph in parallel. For applications that can be decomposed into sufficiently
coarse-grained tasks that operate on blocks of memory, the data-block access pattern can
reduce the programming effort required to parallelize the application.9

In this section, we first explain how programmers can use the data-block access pattern
to specify task-graph computations. We then describe the data-block interface, an interface
for Nabbit that supports this pattern. Finally, we compare Nabbit's interface with other
platforms which can be used to implement the data-block access pattern - specifically
SMPSs [18] and Intel Concurrent Collections [80].

The Data-Block Access Pattern

A programmer using the data-block access pattern codes a computation according to the
following procedure.

1. Decompose a computation into a set of tasks X1, X2,..., Xiv, where each task oper-
ates on blocks of memory drawn from a universe M of all memory blocks.

2. Specify for each task Xi a readset r(Xi) ; M, which is the set of blocks that Xi reads

9This section describes joint work with David Ferry and Kunal Agrawal [46].

P=1 rm
P=2 m
P=4 -

from, and a writeset w(Xi) C M, which is the set of blocks that Xi writes to.
3. Provide any valid serial ordering for the execution of the tasks. Typically, this order-

ing comes from a sequential specification of the program.
A platform supporting the data-block access pattern then executes this computation in

two stages:
1. Analyze the dependencies between tasks to construct a task graph.
2. Schedule and execute this task graph in parallel.
As a concrete example, consider the dynamic program from Equation (2.1), which op-

erates on an n x n grid. For this computation, a programmer using the data-block access
pattern might write the code in Figure 2-9. Using this pattern, instead of computing the
values of M(i, j) directly, the loops in lines 5-8 construct tasks to compute the values using
the APPENDTASK method. A programmer uses the APPENDTASK method by specifying a
function instance to execute as a task (e.g., MTASK(i, j)) as well as the readset and write-
set of the task, as shown in line 8. Then, after specifying all tasks, the programmer can
execute the task graph in parallel, as in line 9. The core of the data-block access pattern
lies in a platform's implementation of the APPENDTASK method. When the programmer
calls this method to add a new task node, the underlying platform (e.g., Nabbit) analyzes
the dependencies in the computation and adds the appropriate edges into the task graph.

Figure 2-9 gives one sequential ordering of tasks that correctly computes the dynamic
program, i.e., for any task (i, j), all the tasks that (i, j) depends on are generated before
(i, j) itself is generated. In general, there may be many correct orderings of tasks that lead
to a correct execution of the program. For example, the order of the loop nests in Figure 2-9
could be exchanged without changing the program's output. The programmer might choose
to specify any one of these legal total orders.10 The platform's runtime scheduler is free
to reorder tasks and/or execute tasks in parallel as long as the dependencies implied by the
readsets and writesets are satisfied. Thus, the platform can extract a parallel specification
and execute it on multiple processors.

Of course, to achieve good performance using the data-block access pattern in practice,
one needs to have coarse-grained tasks. In particular, tasks need to be sufficiently coarse-
grained that two conditions are satisfied. First, the overhead of creating tasks should be
small compared to the time to compute tasks. Second, the time to construct the task graph
serially should be much smaller than the time to execute tasks in parallel.

Also, the data-block access pattern as described in this section does not allow the read-
set and writeset for each task Xi to depend on results computed from other tasks Xj. This
restriction translates to the requirement that the entire task graph be constructed before any
tasks execute. As discussed later in Section 2.6, it is possible to loosen this restriction in
Nabbit, at the cost of potentially complicating the programming model.

The Data-Block Interface

For programs written using the data-block access pattern, one can construct a task graph
automatically from the specification of tasks and their readsets and writesets. This section

101n principle, the programmer might even specify a partial order, but for simplicity, I do not consider the
possibility of parallel graph construction.

// Initialize base cases.
1 M(1, 1) <- 0
2 parallel for k = 2 to n
3 M(k,1)+-0
4 M(1, k) 0

// Build task graph D.
5 D <- 0
6 for i= 2 to n
7 for j= 2 to n
8 D.APPENDTASK[Task = MTASK(i,j),

ReadSet = {M(i- 1,j)}, WriteSet = {M(ij)}]
9 D. EXECUTE () // Execute task graph.

Figure 2-9: Pseudocode that uses the data-block access pattern. In this code, MTASK is
a task which computes M(i, j) using the recurrence in Equation (2.1). To achieve good
performance for this example in practice, one would also need to block the computation.

explains the theory behind this construction and then describes the data-block interface for

Nabbit, an interface for supporting the data-block access pattern.
To describe the algorithm for task-graph creation, we require some definitions. For any

task Xi and memory block f c M, define the last-writer function as Q(Xi, f) = Xj, where
j is the largest index j < i for which f E w(Xj). Intuitively, Q(Xi, f) is the last task before

Xi which writes to the specified block E. For convenience, we assume there exists a source
task X0 with w(Xo) = M, i.e., the source task writes to all of memory.

The last-writer function allows us to define a data-dependence graph for a given se-
quence of tasks.

Definition 2.1. Consider a sequence of tasks Xo,X 1, ... X y . The data-dependence task
graph is a graph where each task Xi has the following types of incoming edges:

1. Dependency Edge: For each memory block f E r(Xi), add an edge from task)(Xi,f)
to task Xi.

2. Antidependency Edge: For each memory block f E w(Xi), let Xk = 4(Xi, i). Then,

for any task Xj which satisfies i G r(Xj) and k < j < i, add an edge from Xj to Xi.

We assume that the writeset is a subset of the readset (w(Xi) c r(Xi)). This assumption
is not strictly necessary to produce a valid program, but it simplifies the formal statement

of Definition 2.1 without significantly affecting the expressiveness of the programming
model.

Intuitively, the data-dependence graph captures the data dependencies imposed by cre-
ating the tasks Xi,X 2,...,Xiy| in sequential order. Dependency edges arise when a new
task Xi wants to access a memory block f. The new task Xi must wait for the last task Xj

1 task* appendTask (void (*taskFunc) (void*),
2 void* params,
3 unsigned int paramSize,
4 void* writeAddresses,
5 void* readAddresses,
6 task* arbitraryDependency)

Figure 2-10: Signature for APPENDTASK method for Nabbit's data-block interface.

which previously wrote to f. Similarly, an antidependency edge captures the constraint that
a task Xi should not overwrite the value of f until all the tasks Xj wishing to read from
Xk (the last previous writer to i) have done so. One can show (e.g., as in [77], Chapter
2) that any reordering of the sequence of tasks which does not contradict the edges in the
data-dependence graph (i.e., any topological sort of the data-dependence graph) does not
change the subsequence of tasks which read from or write to any memory block f. Thus,
any execution of tasks which obeys the edges of the data-dependence graph produces the
same final state of memory.' 1

We support the data-block access pattern in Nabbit by creating a new data-block inter-
face. Using this interface, a programmer first creates an empty task graph by constructing
a taskGraph object using a single constructor that accepts no arguments. This construc-
tor creates a single task node which serves as the source node for the computation. All
other task nodes are then added through the taskGraph member function APPENDTASK.
Figure 2-10 shows the signature of the APPENDTASK method.

Programmers use the APPENDTASK method to create tasks Xi by specifying a function
which represents the computational work for the task and providing a list of individual
memory addresses 12 which represent the readset and writeset for each task. Parameters
are passed to taskFunc through a pthreads-style void* struct pointer. The APPENDTASK
method also returns a reference to the task node being created. Programmers can use this
reference and Nabbit's existing ADDDEP method to insert additional arbitrary dependen-
cies between task-graph nodes. The data-block interface for Nabbit assumes that each
memory block f must remain at a fixed memory address (because tasks Xi can access and
modify a block f through pointers), and assumes that data blocks cannot partially overlap.

Other Platforms for Task-Graph Execution

This section discusses two other platforms for parallel task-graph execution that can support
the data-block access pattern, namely SMP superscalar and Intel Concurrent Collections.
Static Nabbit provides a programming interface which is more constrained than these two

11The analysis described in Definition 2.1 can be considered as a simplified version of the dependence anal-
ysis used in modem optimizing compilers [77]. Unlike traditional compiler analysis, however, our analysis
happens at runtime and aims to extract parallelism dynamically. Much in the same way that modem proces-
sors can extract instruction-level parallelism from an instruction stream, a platform supporting the data-block
access pattern aims to extract parallelism from a sequential specification of tasks.

12This interface assumes that data blocks are disjoint, so each block may be uniquely identified by its
starting address.

platforms, but which is arguably simpler to understand and schedule efficiently.
SMP superscalar (SMPSs) [18] is a platform that enables programmers to specify and

execute task graphs using source-code annotations and compiler support. To create a task in
SMPSs, programmers label a function with input and output annotations, specifying which
data blocks the function reads from and writes to, respectively. Then, the SMPSs compiler
translates any call of the function into a call into the SMPSs runtime, which adds a task for
that function into a task graph. Thus, the user's original program provides the sequential
specification for creating a task graph. As in the data-block interface for Nabbit, SMPSs
infers the dependence edges in the task graph automatically, from an analysis of the data
blocks accessed by each task.

SMPSs provides a more complex programming model than static Nabbit because it
conceptually overlaps the creation of the task graph with execution of tasks. For example,
consider a function F which normally calls two functions serially - Gi and then G2. If
an SMPSs programmer annotates G1 and converts it into a task, but does not annotate G2,
then in F, to ensure that the task G1 completes before G2 begins executing, the programmer
needs to insert additional synchronization (using methods provided by SMPSs) between
Gi and G2. This mixture of task-graph creation and execution due to implicit task-graph
creation can potentially improve performance if creating the graph is expensive, but it can
also be more complicated for programmers to reason about.

In contrast, using static Nabbit with the data-block interface, the programmer must
finish creating all task-graph nodes before beginning execution of the task graph. This
explicit separation between phases has simpler semantics for the programmer to reason
about. For computations where the time to construct a task graph is small compared to the
time to execute the graph, having separate phases can also potentially be more efficient than
overlapping task-graph creation and execution. When the creation and execution phases
overlap, the runtime may need to incur additional synchronization overhead to add a task
to the graph, e.g., to add a task Y to the graph which depends on task X while X is being
executed. Section 2.6 describes a dynamic task-graph interface which extends Nabbit to
support this kind of overlap, but at the cost of requiring additional runtime data structures.

Finally, SMPSs supports one additional extension to the data-block access pattern that
Nabbit does not currently provide, which the authors of SMPSs refer to as parameter re-
naming. Parameter renaming, which is analogous to register renaming in modem computer
processors, is a technique for eliminating write-after-read and write-after-write dependen-
cies on data blocks by allocating temporary storage for these data blocks. Parameter re-
naming can expose additional parallelism, but at the cost of using additional memory.

Similarly, Nabbit could also support block renaming, i.e., copying blocks to eliminate
antidependency edges, but only if the COMPUTE of every task only accesses data blocks
as values which can be copied freely. Nabbit's interface assumes that each memory block
f must remain at a fixed memory address, which allows code to store pointers to data
in blocks. If programmers do not store pointers, however, then Nabbit could potentially
expose more parallelism through renaming. Supporting renaming also requires careful
runtime scheduling to avoid excessive space usage.

Intel's Concurrent Collections language (CnC) [80] also enables programmers to create
and execute dynamic task graphs. CnC programmers conceptually specify computations by
creating graphs with three different kinds of nodes: computational steps, data items, and

control tags. In terms of a task-graph execution, one can think of computational steps as
task nodes that can potentially execute, and control tags as keys which the programmer uses
to identify the tasks that a program should actually execute at runtime. Each computational
step can both consume (i.e., depend on) a set of input data items and/or control tags, and
produce a set of output data items and/or control tags.

CnC provides a more general programming model with richer semantics than Nabbit.
For example, using static Nabbit, one cannot easily specify a conditional branch at the
level of tasks, e.g., a programmer cannot easily specify a task graph where task X executes,
and then either task Y or Z runs depending on the result of X. To execute this kind of
computation using Nabbit, the programmer must create a single task node which represents
the combined task of either Y or Z. In contrast, this kind of control flow for tasks is easier
to specify using CnC, because CnC makes an explicit distinction between a step (a task
that may or may not get executed in a program), and its control tag, which governs if/when
steps can get executed.

Also, unlike Nabbit, the CnC programming model makes a semantic distinction be-
tween control tags (i.e., tasks) and data items that are consumed or produced by tasks.
Although theoretically one can simulate a data item in Nabbit as a task node with an empty
COMPUTE method, having a semantic distinction between a control dependency and a data
dependency can potentially enable additional runtime optimizations. On the other hand,
having two kinds of dependencies also adds complexity to both the programming model
and the runtime scheduler.

2.5 Cholesky Factorization in Nabbit

This section discusses how one can use task graphs to implement a parallel asynchronous
algorithm for Cholesky factorization. It also presents some empirical results for an imple-
mentation of this algorithm using Nabbit. The results demonstrate that task-graph execution
using Nabbit can achieve performance and scalability for Cholesky factorization which is
competitive with specialized systems designed for linear-algebra computations. 13

Dense Cholesky Factorization

First, we review the problem of dense Cholesky factorization and describe parallel but
synchronous algorithms for this problem.

For a symmetric positive-definite matrix M, the Cholesky factorization is defined to
be a lower-triangular matrix A such that M = AAT. LAPACK [15], the standard library
interface for linear-algebra routines, computes the Cholesky factorization using DPOTF2.
This routine accepts an input matrix M and computes the factorization in-place.

To achieve good performance, linear-algebra algorithms operate on blocked matrices.
A blocked n x n matrix M is divided into blocks of size B x B with each block appearing
contiguously in memory. Figure 2-11 shows a blocked Cholesky factorization algorithm,
as described by Buttari et al. [34]. More specifically, Figure 2-11 describes a right-looking

13 This section describes joint work with David Ferry and Kunal Agrawal [46].

CHOLESKY-SEQUENTIAL

1 for i = 1 to [n/B]
2 DPOTF2[i]
3 for j= i+1 to [n/B1
4 DTRSM[j, i]
5 fork= i+1 to [n/B]
6 for j =k to [n/B]
7 DGEMM[ij,k]

// factor M(i, i) in place

// M(j, i) <- M(i, i)-T. M(ji)

// M(j, k) +-M(j, k) - M(j, i) -M(k, i)T

Figure 2-11: Sequential code for a blocked Cholesky factorization [34]. For clarity in
description, we have parametrized the DPOTF2, DTRSM, and DGEMM calls in terms of i,
j, and k. The original code from [34] does not actually use this parameterization.

CHOLESKY-S YNCHRONOUS

1 for i = I to [n/B]
2 DPOTF2[i]
3 parallel for j = i + 1 to [n/B]
4 DTRSM[j, i]
5 parallel for k = i + 1 to [n/iB]
6 parallel for j= k to [n/B]

7 DGEMM[ijk]

// factor M(i, i) in place

/ M(j, i) -M(i, i) - M(j, i)

//M(j7 k) +-M(j, k) - M(j, i) -M (k, i)T

Figure 2-12: A synchronous blocked Cholesky factorization using fork-join parallelism.
This code is parallelizes the factorization in Figure 2-11 by executing the DTRSM and
DGEMM tasks in parallel.

algorithm which operates on a blocked matrix with blocks of size B x B. On each iteration,
the algorithm first factors a main-diagonal block with DPOTRF, the LAPACK [15] routine
for serial Cholesky factorization. It then updates the blocks below the diagonal block with
DTRSM, the routine for triangular system solve. Finally, it completes the iteration by up-
dating blocks below and to the right of the diagonal using DGEMM, the routine for matrix
multiplication.

The naive approach to parallelizing Figure 2-11 uses fork-join parallelism to convert
each inner for loop a parallel for loop, as shown in Figure 2-12. This algorithm computes
a Cholesky factor (i, i) by itself, then computes each block (j, i) in the column underneath
(i, i) in parallel, and then finally computes the trailing submatrix blocks below the diagonal
and to the right of (i, i) in parallel. This algorithm is synchronous, in the sense that exe-
cution of the iterations of the outermost loop cannot overlap. An implementation of this
synchronous algorithm in Cilk was described in [85].

Although the algorithm in Figure 2-12 exposes some parallelism, it overspecifies de-
pendencies in Cholesky factorization. For example, consider the case of Cholesky when

[n/B1 = 4. In this case, Figure 2-12 generates tasks as shown in Figure 2-13(a). This
algorithm enforces some extra dependencies, however, which are not required for correct-
ness. For example, DGEMM[2,2] only needs to wait for DTRSM[2, 1] to finish, but not for
DTRSM[3, 1]; in Figure 2-12 it must wait for both.

Alternatively, one can also implement a recursive divide-and-conquer algorithm for
Cholesky factorization in a fork-join language such as Cilk. This algorithm divides an
n x n matrix lower-triangular matrix into 3 submatrices of size n/2 x n/2: an upper left
triangular matrix L11 , a lower left square matrix L21, and then the lower right triangular
matrix L22. Conceptually, this algorithm can be thought of as an execution of Figure 2-12
on a block matrix with [n/B] = 2, except the algorithm operates recursively. First, the
algorithm recursively computes a Cholesky factorization on Li1 , then a triangular solve on
L21, and finally an update on L22. Although these three steps must execute sequentially, the
algorithm is parallel because it utilizes parallel subroutines (e.g., recursive matrix multipli-
cation). All recursive subroutines use standard BLAS routines in the base case - individ-
ual tiles of size B x B. Like Figure 2-12, however, this approach still enforces additional
dependencies that are unnecessary for correctness.

Asynchronous Algorithms for Cholesky

To exploit the additional parallelism in Cholesky factorization, researchers have proposed
asynchronous algorithms, which construct a task graph with only the necessary dependen-
cies (as shown in Figure 2-13(b)), and execute this task graph in parallel. Buttari et al. [34]
implemented such an asynchronous algorithm for Cholesky using an unnamed DAG sched-
uler and achieved parallel speedup of roughly 6 on an 8-core machine. More recently, re-
searchers in [36] implemented the same asynchronous Cholesky using Intel's Concurrent
Collections (CnC) and achieved a speedup of 11 on a 16-core machine.

Unfortunately, implementing an asynchronous algorithm can generally be tricky be-
cause the resulting task graph may have a complex set of dependences. For example, if one
begins with a serial algorithm such as Figure 2-11, it is not immediately obvious what the
dependencies between tasks should be in the parallel algorithm. Some dependencies are
clear from the original algorithm, while others are not. Within each iteration of the first
inner loop of Figure 2-12, it is clear that each DTRSM[j, i] task in iteration i is dependent
upon the preceding DPOTF2 [i] task. It is less obvious from Figure 2-12, however, that each
DTRSM[j, i] task also depends upon the DGEMM[i - 1, j, i] task which previously wrote to
the same block. Without the second dependency, it would be possible for the DTRSM[k, i]
task to race ahead of the preceding DGEMM[i - 1, j, i] task and execute out of order.

It turns out that the rules shown in Figure 2-14 describe a correct implementation
of Cholesky factorization. Given these rules, it is relatively straightforward to translate
these rules and implement an asynchronous Cholesky factorization using Intel Concurrent
Collections (CnC). Unfortunately, if a programmer starts with the sequential code in Fig-
ure 2-11, careful reasoning is required to derive a correct set of rules for constructing the
task graph.

Using Nabbit's data-block interface, however, one can more easily convert Figure 2-11
into a parallel task graph. The resulting pseudocode for this implementation is shown in
Figure 2-15. The structure of this code is identical to Figure 2-11, except that calls to the

(a) Synchronous Cholesky. (b) Asynchronous Cholesky.

Figure 2-13: Tasks generated for Cholesky factorization when Fn/B] = 4. The graph in
2-13(a) shows a synchronous algorithm (Figure 2-12), while the graph in 2-13(b) shows
the dependencies that are required for the correctness of Cholesky factorization.

Task
DPOTF2[i]

DTRSM[j, i]

DGEMM[i, j, k]

Input Data
Mpi - 1, i, i]

M[i, i, i] and

M[- 1,jc]

M[i, j, i], M[ij k, i]'
and M[i - 1, j, k]

| Output Data
M[i,i,i]

M[ij,i]

M[ij,k]

Tasks Produced
DTRSM[j, i] for all i < j [n/B]

DGEMM[i, j, k] for all i < k < j

DPOTF2[i+ 1] if j= k = (i+ 1)

Figure 2-14: Asynchronous Cholesky factorization algorithm using CnC. M[i, j, k] repre-
sents block (j, k) in the matrix after iteration i. In this CnC implementation, each task
has its own control tag. Each task performs a get for each input data item, and a put to
generate output data items and control tags. This implementation constructs the task graph
dynamically, i.e., it tries to avoid executing a put for a task X until at least one of the
dependences of X has been satisfied.

CHOLESKY-DATAB LOCK

1 D0-O
2 for i = I to Fn/B]
3 D. APPENDTASK [Task = DPOTF2[i],

ReadSet ={M(jj)}, WriteSet = {M(jj)}]
4 for j= i+1 to [n/B]
5 D. APPENDTASK[T ask = DTRSM[j, i],

ReadSet = {M(ii),M(j,i)}, WriteSet = {M(j,i)}]
6 for k= i+ 1 to [n/B]
7 for j= kto [n/B]
8 D. APPENDTASK [Task = DGEMM[i, j, k],

ReadSet = {M(j, i), M(k, i)},
WriteSet = {M(jk)}]

9 .EXECUTE()

Figure 2-15: Asynchronous Cholesky factorization using Nabbit's data-block interface.

LAPACK routines are replaced with methods to create a task-graph node with a specified
readset and writeset.

Empirical Results

This section presents empirical results for the Nabbit implementation of dense Cholesky
factorization. The Nabbit implementation achieved a speedup of about 30 on 48 cores. With
a large number of cores, the application appears to be constrained by memory bandwidth.
These results show that the Nabbit implementation of Cholesky factorization is competitive
with other implementations, including PLASMA [11], a library specifically designed for
asynchronous linear-algebra computations.

All experiments were conducted on a four-socket Opteron 6100 SMP server. Each
socket contained an AMD Opteron 6168 processor, which had 12 cores clocked at 1.9
GHz. The server contained 128 GB of DDR3 RAM and ran a CentOS distribution 5.5 with
kernel version 2.6.18-194.8.1.el5. In our benchmarks, Nabbit and Cilk++ timings were
collected using the Cilk++ Cilkview tool, while SMPSs, PLASMA, and CnC timings were
collected using GOMP and OMPGETWTIME.

The following implementations of a Cholesky factorization (DPOTRF) were evaluated:

1. Nabbit: an implementation of Cholesky factorization using the data-block access
pattern, as described in Figure 2-15. This factorization operates on matrices stored
in a tiled layout. Each tile was a block matrix of size B x B stored in column-major
layout, with the tiles themselves also arranged in a column-major layout in the overall
matrix.

2. PLASMA: a library designed specifically for asynchronous linear-algebra compu-
tations which implements its own optimized runtime scheduler. In PLASMA, the

method that accepts tiled matrices as input was used.

3. CnC: a factorization for tiled matrices, implemented using the algorithm described
in Figure 2-14.

4. SMPSs: a factorization for tiled matrices. This default factorization from the SMPSs
distribution was used, except modified to operate on double-precision instead of
single-precision floating-point values. This code was compiled and run using the
default SMPSs configuration, except for increasing the soft limit on tasks in the task
graph to 1500 and the hard limit to 2000.

5. Cilk++: a recursive divide-and-conquer implementation on a tiled matrix, with an
n x n matrix being divided into 4 submatrices, each of size n/2 x n/2.

6. ACML: the DPOTRF method from ACML, AMD's math library. This version is
parallelized using OpenMP and operates on matrices stored in a column-major lay-
out.

All implementations except the last one used the sequential BLAS implementation pro-
vided by ACML for the base cases. The ACML version utilizes its own parallel BLAS
implementation.

Figure 2-16 suggests an approximate ranking of performance of the various versions:
the PLASMA implementation generally achieves the best performance, followed by CnC
and Nabbit, then SMPSs, then the recursive Cilk++ implementation, and finally the ACML
implementation.

Good performance from PLASMA is expected, since PLASMA is a library with a
scheduler designed and optimized for asynchronous linear algebra computations. The CnC,
Nabbit, and SMPSs versions are all asynchronous algorithms based on task-graph execu-
tion, and thus achieve similar performance.

The performance of SMPSs appears to degrade when too many processors are used.
For example, for the smallest matrix size (n = 10000), the performance of SMPSs begins
to degrade after about P = 30 processors. By turning on SMPSs's tracing functionality
and profiling the Cholesky factorization, it was observed that many processors were idle,
waiting to find work to do. This observation suggests that the scheduler for the Cholesky
factorization, SMPSs may not be as efficient as Nabbit or CnC at scheduling tasks on the
critical path of the computation, particularly when the matrix size is smaller and parallelism
is more limited.

The Cilk++ divide-and-conquer implementation for the smaller matrix sizes does not
scale as well. For n = 20000, the Cilk++ implementation achieves a speedup of at most
10. This result is not surprising, since the divide-and-conquer algorithm corresponds to a
series-parallel task-graph execution, which enforces some unnecessary dependency edges
and limits the parallelism of the overall algorithm. Cilkview reports a parallelism of slightly
less than 42 for n = 20000, which highlights this limitation more concretely.

Finally, the ACML code has the worst performance, achieving almost no speedups or
even slowdown after about P = 12 processors (which requires using more than one socket).
This performance difference likely arises because all the other implementations operate on

Cholesky Factorization, n = 10000

0 6 12 18 24 30 36 42 48
of Worker Threads

Cholesky Factorization, n = 20000

0 6 12 18 24 30
of Worker Threads

36 42 48

Cholesky Factorization, n = 30000

0 6 12 18 24 30 36
of Worker Threads

42 48

0 6 12 18 24 30 36 42 48
of Worker Threads

Cholesky Factorization, n = 20000
250

200

0 6 12 18 24 30 36 42 48
of Worker Threads

Cholesky Factorization, n = 30000

0 6 12 18 24 30 36
of Worker Threads

42 48

Figure 2-16: Cholesky factorization of n x n matrices. For each implementation, we chose
the block size B that achieved the highest absolute performance. All times are normalized
against the time for the fastest serial implementation.

Cholesky Factorization, n = 10000

matrices stored in tiled layouts, whereas the ACML code accepts an input matrix stored in
a column-major layout.

Ideally, one would like to have perfect linear speedup out to all 48 cores. The lack
of perfect linear speedup is likely due to the machine's limited memory-bandwidth how-
ever, rather than a lack of parallelism in the algorithm. To assess memory-bandwidth in
a heuristic way, multiple small independent Cholesky computations were run in parallel
(such as four computations using twelve cores each, or eight computations using six cores
each). Individually these small computations exhibited near-linear speedup, but when run
together, their performance suffered. For example, when running 4 instances of Cholesky
factorization on 12 cores each, each instance had an average speedup of about 7.

In summary, these empirical results demonstrate that task-graph execution using Nab-
bit's data-block interface is effective on a practical benchmark, namely Cholesky factor-
ization. The Nabbit implementation achieved performance which was close to that of
PLASMA, a library specifically optimized to execute linear-algebra computations. In fact,
Nabbit often outperformed PLASMA when using about 30 or fewer cores. Nabbit is also
competitive with SMPSs and CnC, other platforms that provide more complex program-
ming interfaces for task-graph execution.

2.6 Nabbit for Dynamic Task Graphs

This section presents dynamic Nabbit, an extension of static Nabbit that supports the exe-
cution of dynamic task graphs - task graphs whose nodes and edges are created on the
fly at runtime. In particular, this section describes the interface and theoretical guarantees
provided by dynamic Nabbit. Compared to static Nabbit, dynamic Nabbit provides users a
more complex but flexible programming interface for task-graph execution.

Interface

Dynamic Nabbit provides an interface to programmers for executing a task graph D whose
nodes and edges are created on the fly at runtime. As in static Nabbit, for each node A
in D, programmers must specify a COMPUTE method, which performs A's computation
only after all of A's predecessors in D have been computed. Unlike static Nabbit, however,
dynamic Nabbit first "discovers" the nodes on which a node A depends before executing the
computation of A. This interface reflects the notion that in some task-graph applications,
a node A knows which nodes it requires values from, but A may not be aware of all nodes
that may use its value.

In dynamic Nabbit, the programmer refers to nodes using keys that can be hashed,
rather than to nodes directly, which allows the space of possible nodes to be much larger
than those that are actually created. A node with key k discovers its immediate predeces-
sors by executing a programmer-specified INIT method. In the INIT method, the program-
mer specifies the other keys k' on which k depends using the (library-provided) function
ADDDEP(k'). Although multiple keys may depend on the same key k, Nabbit creates only
one node object for each key, thus guaranteeing that INIT and COMPUTE execute exactly
once per key.

Nabbit implementation

Dynamic task graphs are more complicated to support than static task graphs because a
new node B that is a successor of A can be created at any time with respect to A's creation.
Specifically, B can be created (1) before A has been created, (2) after A has been created
but before A has completed its computation and notified its successors, or (3) after A has
completed its notification. Thus, dynamic Nabbit requires additional bookkeeping.

Dynamic Nabbit maintains the following fields for each task-graph node A:
" Key: A unique 64-bit integer identifier for A.
" Predecessor-key array: The keys of A's immediate predecessors.
" Status: A field which changes monotonically from UNVISITED to VISITED, then to

COMPUTED, and finally to COMPLETED.

" Notification array: An array of A's successor nodes that need to be notified when A
completes.

" Join counter: A counter for A that reaches 0 when the COMPUTE for A is ready to
be executed.

To compare dynamic Nabbit with the implementation of static Nabbit described in Sec-
tion 2.1, the predecessor-key array replaces the predecessor array in static Nabbit, and the
notification array replaces the successor array. In dynamic Nabbit, the notification array
for A need not contain all of A's successors, since some successors may be created after A
finishes its notifications.

Since dynamic Nabbit works with keys instead of pointers to node objects, Nabbit
maintains a hash table for task-graph nodes and guarantees that a node with a particular
key is never created more than once. Nabbit uses a hash-table implementation that supports
two functions: INSERTTASKIFABSENT (k) and GETTASK(k). The first atomically adds a
new node object for a specified key k to the hash table if none exists, and the second looks
up a node for a key k.14 The atomic insertion of a node into the hash table also changes the
node's status from UNVISITED to VISITED.

Dynamic Nabbit generally tries to execute a task graph in a depth-first fashion. Exe-
cution begins with a call to STARTEXECUTION (f) (shown in Figure 2-17), where f is the
key of 'D's sink node tD. Nabbit assumes that only a single call to STARTEXECUTION is
active at any time. As its first step, Nabbit attempts to create a new node A for key f and
atomically insert A into its hash table. Then, if this insertion is successful, Nabbit calls
INITANDCOMPUTE (A).' 5 The INITANDCOMPUTE method (shown in Figure 2-18) first
creates A by calling INIT (A) and then recursively creates any dependencies (i.e., predeces-
sors) of A. When this recursion reaches any node B with no dependencies, Nabbit calls
COMPUTEANDNOTIFY (B) to compute B and any successors of B that are subsequently
enabled. When Nabbit uses multiple processors, these methods still attempt to execute
in a depth-first fashion if possible, but the execution is not strictly depth-first because of
Cilk++'s work-stealing strategy.

14Nabbit could be easily modified to use any user-provided hash table that supports these two functions.
This functionality would allow programmers to optimize by using an application-specific hash table.

15If this insertion fails, then a task with key f has already been created and/or computed, and thus the
method does nothing.

STARTEXECUTION (f)
1 inserted = INSERTTASKIFABSENT (f)
2 A = GETTASK(f)
3 if inserted
4 INITANDCOMPUTE (A)

Figure 2-17: Subroutine for dynamic Nabbit for starting execution of a task graph at a node
with key f.

TRYINITCOMPUTE (A,pkey)

1 inserted = INSERTTASKIFABSENT(pkey)
2 B = GETTASK(pkey)
3 if inserted
4 spawn INITANDCOMPUTE (B)
5 finished = TRUE

6 lock(B)
7 if B.status < COMPUTED
8 add A to B.notifyArray
9 finished =FALSE

10 unlock(B)
11 if finished
12 val = ATOMDECANDFETCH(A.join)

13 if val = 0
14 COMPUTEANDNOTIFY (A)
15 sync

INITANDCOMPUTE(A)

1 assert(A.status == VISITED)
2 assert(A.join > 1)
3 INIT(A)
4 for pkey c A.predecessors
5 spawn TRYINITCOMPUTE(A,pkey)

6 val = AToMDECANDFETCH(A.join)
7 ifval==0
8 COMPUTEANDNOTIFY(A)
9 sync

DECCOMPUTENOTIFY (X)

1 val = ATOMDECANDFETCH(X.join)
2 ifval==0
3 COMPUTEANDNOTIFY(X)

COMPUTEANDNOTIFY(A)

1 COMPUTE(A)
2 A.status = COMPUTED
3 n = SIZEOF(A.notifyArray)
4 A.notified = 0
5 while A.notified < n
6 for i E [A.notified,n)
7 X = A.notifyArray[i]
8 spawn DECCOMPUTENOTIFY(X)
9 A.notified = n

10 lock(A)
11 n = SIZEOF(A.notifyArray)
12 if A.notified == n
13 A.status = COMPLETED
14 unlock(A)
15 sync

Figure 2-18: Pseudocode for executing dynamic task graphs using Nabbit. For a node A,

the TRYINITCOMPUTE (A) method attempts to create a predecessor (i.e., dependency) of A
with the key pkey. INITANDCOMPUTE (A) spawns calls to try to create all of A's predeces-
sors. Eventually, this method or one its spawned calls triggers COMPUTEANDNOTIFY (A),
which executes A and all successors of A enabled by the completion of A.

Synchronization in Nabbit

For static task graphs, synchronization occurs primarily through changes to join counters.
The dynamic protocol is slightly more complicated, however, because the number of other
nodes on which A depends is unknown before INIT is executed. Instead, A's join counter is
atomically incremented when the user calls ADDDEP (k) inside INIT (A). For every node A,
the join counter for A is initialized to 1 in order to prevent the join counter from reaching 0
before all the dependencies of node A have been created. Finally, the join counter for A is
atomically decremented after INIT (A) has completed.

During a task-graph execution, dynamic Nabbit decrements the join counter for a node
A once for every edge from some node Y to node A. If Nabbit tries to traverse an edge
(Y,A) after Y has been COMPUTED, then A's join counter is decremented in line 12 of
TRYINITCOMPUTE. If Nabbit tries to traverse an edge (Y,A) before Y has been COM-
PUTED, then A is added to Y. notifyArray, the list of nodes that Y notifies upon its comple-
tion. Eventually, A's join counter is decremented in line 1 of COMPUTEANDNOTIFY (Y).
To avoid race conditions, dynamic Nabbit performs the additions of nodes to the notifica-
tion array of a node A while holding A's lock. Similarly, it also changes the status of a
node A to COMPLETED (as shown in line 13 of the COMPUTEANDNOTIFY method) while
holding A's lock.

Discussion of Theory

One can prove a completion-time bound analogous to Theorem 2.3 for dynamic task graphs
executed using Nabbit. The proof requires some additional definitions. For a task graph
D= (VD, ED) and any node A E VD, consider the set

loops(A)= U paths(X,A) xpaths(X,A).
XEVV

Intuitively, loops(A) is the set of all pairs of paths (Pi, P2) in D from any node X to A. Con-
ceptually, (PI, P2) represents a loop that walks from A to X along edges in p1 backwards,
and then walks back from X to A along forward edges in P2. For a given computation DAG
G and a node A, let initG(A) be the subgraph corresponding to INIT(A), and let ICG (A)
be the subgraph corresponding to INITANDCOMPUTE (A). As before, let IC*(A) be the
computation DAG representing an execution where all potential recursive calls occur, i.e.,
where line 7 of INITANDCOMPUTE is omitted.

For a dynamic task graph D, the values of Ti and T. are greater than those for a static
version of D, since any execution must traverse D backwards from tD to discover the
dependencies of each node. More precisely, we have

T = (Ti (init(A)) + Ti(com(A)))+ O(JED|),
A EVD

T. = max T. (in it(Xi)) + E T. (com (X2)) + O (V,.) .
(P1,P2)E loops (totD) TooEcom(X 2))

Theorem 2.5 states the completion-time bound for dynamic task graphs, which matches
the bound in Theorem 2.3 except for an O(V.A) term instead of O(Vlg A). This dif-
ference arises since the successors of a node A might be created and added sequentially
to A.notifyArray, and thus may be notified one by one, instead of in parallel as in static
Nabbit.

Theorem 2.5. Let D = (VD, ED) be a dynamic task graph with maximum degree A. With
probability at least 1 - -, Nabbit executes D in time

o(+ T. +lg + V.A + C(D)

where C(D) = 0 ((JEDl /P+V-) min{A, P}).

Proof sketch. Nabbit's execution of D is modeled by the computation DAG IC(tO). As in
Theorem 2.3, we bound the completion time by calculating Ti (IC(tO)) and T.IC(tO)) and
then applying the analysis for Cilk.

We have T1 (IC(tO)) = Ti + O(|E®| -min{A, P}), since INIT and COMPUTE for each
node A happens exactly once, and 0(1) synchronization operations happen for every edge
(A, B) E ED, with each operation waiting at most O(min{A, P}) time due to contention.

We now argue the span T.(IC(tD)) is bounded by T.(IC*(tD)), and then we show
that T- (IC*(tD)) = T. + O(V.A). From Figures 2-19 and 2-20, we can see that any path
through IC*(tD) travels along a single loop (p1, P2) E loops(tD), which is to say that it
walks backward along pi calling INIT and then forward along P2 calling COMPUTE. Thus,
INIT and COMPUTE contribute at most T. to the span. For every edge (A,B) along this
loop, the added overhead due to bookkeeping and contention on synchronization is O(A):
in the worst case, A iterations of the loop in line 5 of COMPUTEANDNOTIFY occur, each
notifying one successor of A. Since each loop contains O(V.) edges, the total overhead
along the span is at most O(VA). E

Strongly Dynamic Task Graphs

Although dynamic Nabbit discovers the nodes and edges of a task graph at runtime, the
interface described thus far does not allow for the creation of a new task node based on the
result of the COMPUTE of an existing task node. One can extend Nabbit to handle this more
general class of strongly dynamic task graphs - task graphs for which the COMPUTE for
a node A can trigger the creation of new task nodes.

To support strongly dynamic task graphs, the Nabbit interface allows users to make mul-
tiple calls to a CREATEKEY method inside the COMPUTE of any task node B. Each call to
CREATEKEY takes as in input some key fi as input. After Nabbit executes COMPUTE (B),
but before computing any successors of B, it creates new task nodes for each key fi, and
then starts execution of a new task graph D; with sink node having key fi in parallel with
the original task graph execution. Said differently, Nabbit behaves as though a new call to
STARTEXECUTION for key fi was spawned. 16 The Nabbit implementation correctly sup-

16Intuitively, in dynamic Nabbit, a key f is analogous to a tag in CnC, and a call to STARTEXECUTION for
a key f is roughly equivalent to a put operation.

Figure 2-19: Example computation DAG generated by INITANDCOMPUTE (A). Nodes
are labeled with line numbers from Figure 2-18. Hexagons correspond to synchroniza-
tion operations that may experience contention. In INITANDCOMPUTE (A), two calls to
TRYINITCOMPUTE for A are shown, for two predecessors B1 and B2 . Potential calls to
COMPUTEANDNOTIFY have a dashed border. In any execution of INITANDCOMPUTE (A),
exactly one call to COMPUTEANDNOTIFY (A) occurs.

ports concurrent calls to STARTEXECUTION, even when the task graphs Di overlap (i.e.,
share nodes). In this case, Nabbit guarantees only that all D; are computed after the last
call to STARTEXECUTION finishes and the system reaches a quiescent state.

The creation of new task nodes complicates the theoretical analysis of runtime, how-
ever, because different task graphs may begin executing at different times. Theorem 2.5
does not hold for strongly dynamic task graphs in part because it does not handle the de-
pendencies and interactions between task graphs Di that overlap. An interesting direction
for future work is to extend the theory to handle strongly dynamic task graphs.

2.7 Random Task-Graph Benchmark

This section investigates the overheads associated with the static and dynamic versions of
Nabbit using a random task-graph microbenchmark. The empirical results presented in
this section indicate that although Nabbit exhibits significant overhead on dynamic task
graphs, this overhead can be amortized when each node does enough work. The results
also demonstrate that Nabbit can successfully exploit both the DAG-level parallelism and
the parallelism within each task.

To measure overhead in Nabbit, I constructed a microbenchmark that executes ran-
domly constructed task graphs. This benchmark generates a random task graph D based
on three parameters: Ai, the maximum in-degree of any node; U, the size of the universe
from which keys are chosen; and W, the work in the COMPUTE of each node. The task

Figure 2-20: An example computation DAG generated by COMPUTEANDNOTIFY (A).
Nodes are labeled with line numbers from Figure 2-18. Shaded hexagons corre-
spond to synchronization operations that may experience contention. Potential calls to
COMPUTEANDNOTIFY are represented by dashed hexagons.

57

graph D has a single sink node Ao with key 0. The graph is constructed by iterating over k
from 0 to U - 1 and repeating the following process:

" If D has a node Ak, choose an integer dk uniformly at random from the closed interval
[1,Ai].

" Create a multiset Sk of dk integers, with each element chosen uniformly at random
from [k + 1, U].

* Remove any duplicates from Sk, and for all k' E Sk, add an edge (Ak',Ak) to the task
graph (creating Ak' if it does not already exist).

In D, each task-graph node Ak performs W work to compute kw mod p using repeated
multiplication, where p is a fixed 32-bit prime number. The benchmark provides the option
of either performing this work serially, or in parallel (dividing the work in half, spawning
each half, and recursing down to a base case of W = 25).

Experiments

The random task-graph benchmark was used in three experiments: (1) to measure the over-
head of parallel execution, (2) to compare the overheads of the static and dynamic Nabbit,
and (3) to evaluate the benefits of allowing parallelism inside the computes of nodes. All
experiments use the same machine setup as described in Section 2.3.

For static Nabbit, the task-graph benchmarks allocated the memory for nodes and cre-
ated nodes with pointers to its dependencies before executing the task graph. For dynamic
Nabbit, the benchmarks constructed the same nodes as for the static benchmark, and then
inserted these nodes into a hash table before starting task-graph execution. The implemen-
tation of dynamic Nabbit then atomically "inserts" a node for a key by looking it up in a
hash table and marking it as VISITED.

To measure the approximate overhead for manipulating node objects and for parallel
bookkeeping, I constructed a medium-sized random task graph and varied W. I compared
static and dynamic Nabbit against corresponding serial algorithms. These serial algorithms
perform the same computation as Nabbit with P = 1, except that all lock acquires are
removed and all atomic decrements are changed to normal updates.

Figure 2-21 shows that when W =1 (each node does small work), the overhead of
bookkeeping for static Nabbit is about 20% more than the serial version of the same al-
gorithm. For dynamic Nabbit, the slowdown is about 16% over the serial algorithm. This
baseline overhead indicates that one would not want to use Nabbit for task graphs where
each node does little work, since the overheads of bookkeeping dominate. As each node
does more and more work and W increases to 1000, however, the difference becomes less
than 5%.

This data also suggests that the implementation of dynamic Nabbit exhibits a factor of
5 overhead over static Nabbit when W = 1. This difference is not surprising, since dynamic
Nabbit ends up traversing a DAG twice - from the final node to the root and then back -
while static Nabbit only traverses the DAG from root to final node. Also, in our benchmark,
dynamic Nabbit performs additional look-ups in a hash table that the static version avoids.
It was observed that each node generally requires W to be on the order of at least 1,000 to
10,000 before the dynamic Nabbit attains performance comparable to the static version.

Static
Nabbit Serial
0.010
0.010
0.022
0.137
1.267

0.008
0.009
0.022
0.134
1.265

Dynamic
Nabbit Serial
0.051
0.052
0.064
0.178
1.306

0.044
0.046
0.057
0.177
1.301

Figure 2-21: Serial overhead of Nabbit on a random task graph. Time in seconds for serial
execution of D with |VI = 14259, |ED| = 78434, and V. = 99 nodes. The task graph D
was randomly generated with Ai = 10, U = 100,000, and W = 1.

1 2 3 4 5 6 7 8

Figure 2-22: Comparison of static and dynamic Nabbit with and without parallelism in the
COMPUTE function. For the random DAG, |VDI = 127, |ED|= 614, V. = 29, and W - 106.
Speedup is normalized over the time (1.12 s) for the static serial execution.

1
10

100
1000

10,000

The next set of experiments compares the speedups of static and dynamic Nabbit. The
first experiment created a large random task graph with small work (W = 1) per node.
Even in the case when each node has small work and Nabbit has large overheads, Nabbit
provided a speedup of up to 4.5 on 8 processors (graph not shown). Dynamic Nabbit
scaled and achieved a speedup of about 3.7 on 6 processors over the serial dynamic Nabbit
execution. Compared to the static versions, however, dynamic Nabbit was overwhelmed
by overheads.

On the other hand, the second experiment demonstrated that when each node has a
large amount of work to do, the performances of static and dynamic Nabbit are nearly
identical, as shown in Figure 2-22. In this case, the task graph contains relatively few nodes
(only 127). Examining the version where each node is computed serially, the theoretical
parallelism was only about 127/29 = 4.4. The static and dynamic versions of Nabbit both
exploited most of this parallelism, providing a speedup of up to 4.2.

More importantly, however, Figure 2-22 demonstrates that to attain the best perfor-
mance on this graph, one needs to exploit parallelism both in the task graph and within the
COMPUTE functions. When only the DAG-level parallelism is exploited, Nabbit achieves
a speedup of 4.2. On the other hand, when Nabbit is not used and nodes are visited serially
- only exploiting parallelism within the compute function - the speedup is about 6. The
best case occurs by exploiting the parallelism both between nodes and within nodes, in
which case both static and dynamic versions of Nabbit provide a speedup of 7.

In summary, these experiments on random DAGs indicate that although Nabbit exhibits
significant overhead on dynamic task graphs, this overhead can be amortized when each
node does enough work. We also see that to get the best speedup, it pays to exploit both the
DAG-level parallelism and the parallelism within each task. Nabbit allows a programmer
to exploit both seamlessly.

2.8 Conclusions

This chapter has explored the problem of task-graph execution in dynamic-threading plat-
forms. I presented Nabbit, the first library in a fork-join platform for provably efficient
parallel execution of task graphs with arbitrary dependencies. Nabbit demonstrates that a
dynamic-threading platform can provide arbitrary task-graph synchronization which com-
poses with ordinary fork-join programs and provides efficient theoretical bounds on com-
pletion time. I conclude this chapter with a discussion of related work on task-graph syn-
chronization and potential directions for future research.

Other Approaches for Task-Graph Execution

Intel TBB [110] provides a low-level library interface for parallel tasks which can support
the execution of arbitrary task graphs. Using TBB's interface, a programmer can simulate
the execution of a fork-join platform, provided that the programmer codes the appropriate
continuations for functions. Nabbit provides a simpler high-level interface for task graphs
than TBB. For example, TBB requires programmers to explicitly code reference-counting
for tasks to determine when they are ready to execute.

Dynamic task graphs have often been studied in the context of linear algebra algorithms.
For example, Johnson et al. [76] describe an interface for a dynamic task graph which was
motivated by parallel algorithms for sparse LU factorization. SMPSs [18] was motivated
by the problem of parallelizing dense linear-algebra libraries. As discussed in Section 2.5,
both SMPSs and Concurrent Collections use asynchronous Cholesky factorization as a
benchmark for performance evaluation.

Parallel programming with arbitrary task-graph synchronization is closely related to the
model of parallel futures [57,58]. In this model, a programmer can declare an expression
as future to spawn the computation of the expression. A runtime may need to suspend
the current strand of execution when it encounters a touch of the future - a request for
the value of a future - if that future that has not been computed yet. A platform which
supports futures can be used to construct and execute arbitrary task graphs: each node in
the task graph can be declared as a future which touches all its predecessor futures that it
depends on. Similarly, one can also use I-structures [17] to specify and execute task graphs.

In principle, one can always simulate a computation with futures using an equivalent
strongly dynamic task graph in Nabbit. This transformation requires two types of task-
graph nodes in Nabbit: data nodes and control nodes. Data nodes correspond to futures -
the key for a data node is a pointer to a future,and COMPUTE for the node calculates the
value of the future. Control nodes correspond to the computation occurs between points in
the program where futures are created or touched. More precisely, consider a control node
A that represents the computation before the touch of a future. Then, the computation of A
generates two nodes, a node X for the touched future, and a node B for the continuation of
execution after the touch of X, with B also depending on X.

This simulation technique is of limited utility in practice, however, because it requires
programmers to manage function continuations explicitly. In a parallel language with fu-
tures, a function f usually stores local variables in frames on a stack. Also, parallel lan-
guages may implement a cactus-stack abstraction [61], which allows f to access stack
frames of its ancestor functions. To simulate such a program execution using Nabbit, one
must ensure that the COMPUTE of each control node has access to the same stack frames
that it would in a normal program execution. Also, programmers also need to inject the
appropriate cleanup code into the COMPUTE of control tasks, that is, code for reclaiming
memory for stack frames and task nodes which are no longer needed by the computation.

Theoretical Analysis of Work-Stealing

Arora et al. [16] explored the behavior of work-stealing schedulers for computation DAGs
with arbitrary dependencies. More specifically, they describe and analyze a work-stealing
scheduler for computation DAGs whose nodes have in-degree and out-degree of at most
2. This analysis can be applied to task graphs with arbitrary dependencies, assuming that
one inserts dummy task nodes (e.g., as in the proof of Corollary 2.4). This work-stealing
scheduler uses essentially the same algorithm as Cilk, which was analyzed by Blumofe and
Leiserson [30]. Since Nabbit is coded directly in Cilk++, it is able to provide guarantee
the same provably efficient bounds as in [16, 30]. The analysis for Nabbit extends these
results to more precisely account for contention in task graphs where nodes have arbitrary
degree. Although an arbitrary graph is theoretically equivalent to a graph with degree at

most 2, arbitrary graphs may occur more frequently in practice because of the overheads of
creating and managing dummy nodes.

Spoonhower et al. [113] analyze the behavior of the work-stealing scheduler of [16] for
computations that use parallel futures. Their analysis counts the number of "deviations" in
a parallel execution - roughly, the number of times a parallel execution of the computation
DAG differs from a serial execution order. These bounds on time and space can be applied
to Nabbit as well, since it uses the same scheduler.

Directions for Future Research

The exploration of task-graph execution using Nabbit suggests several opportunities for
future work.

One question to investigate is whether one can extend Nabbit to support pipeline com-
putations. As discussed in [26, 113], one use for parallel futures is to implement programs
with parallel pipelines. Intel TBB [1101 supports pipeline computations whose stages form
a linear chain, but conceptually, one might like to execute a pipeline with stages arranged
as an arbitrary DAG. In principle, one could replicate stages of a pipeline computation in
Nabbit and unroll it into a large task graph, similar to how compilers unroll multiple iter-
ations of a loop. This approach may waste space, however, as it does not efficiently reuse
task-graph nodes for different stages as items pass through the pipeline. One may be able
to extend Nabbit to overcome these difficulties.

It would also be interesting to explore how one might provide integrated runtime or
compiler support for task-graph execution in a dynamic-threading platform. One of the
benefits of Nabbit's design is that it requires no modifications to the Cilk runtime. Never-
theless, having integrated runtime support would likely improve the performance and ro-
bustness of Nabbit. For example, in the Cilk++ and Intel Cilk Plus platforms, the runtime
appears to impose a limit on the maximum spawn-depth of functions which constrains the
kind of task graphs that Nabbit can execute. To execute a static task graph with V. nodes
on its longest path, Nabbit uses at most O(VL) stack frames for each worker. The default
spawn-depth limit in Cilk++ and Intel Cilk Plus is relatively small however. More precisely,
these platforms appear to limit V. to be less than some value on the order of 1000. In fact,
if one considers the programming interface for Nabbit, one does not need to have a stack at
all, since the COMPUTE for each task node in Nabbit should only read values from the heap
anyway! Thus, with integrated runtime support for Nabbit in Cilk, one could eliminate this
stack issue altogether. Integrated runtime support would also likely decrease overheads
and make fine-grained task-graph synchronization more practical. Compiler support might
also enable platforms to provide a more convenient programming interface for specifying
task-graph synchronization.

Chapter 3

Helper Locks

Locks are a commonly used synchronization primitive in multithreaded programs. The
runtime scheduler for dynamic-threading platforms such as Cilk are generally not designed
with locks in mind, however. Thus, although programmers frequently write Cilk code
that utilizes nested parallelism, Cilk does not effectively support nested parallelism inside
critical sections that are protected by locks.

This chapter introduces the idea of a helper lock, a new kind of lock that can protect a
critical section with nested parallelism.' When a processor fails to acquire a helper lock L,
the processor can help complete the parallel critical section A which may be holding lock
L instead of simply waiting for the lock L to be released. Using helper locks, dynamic-
threading platforms can support the composition of parallel functions with locked-based
synchronization while still providing provable guarantees on performance.

I discuss three main contributions in this chapter:
1. Helper locks, a new synchronization abstraction that enables Cilk programmers to

exploit nested parallelism inside critical sections.
2. The design of HELPER, runtime support which enables a dynamic-threading plat-

form to execute computations with helper locks. To support helper locks, HELPER
introduces a new "parallel region" construct into Cilk.

3. Theoretical bounds on the completion time and stack-space usage for computations
executed using HELPER. These bounds apply even for computations with parallel
regions nested to an arbitrary depth.

This chapter also describes a prototype implementation of HELPER in MIT Cilk, which
demonstrates that platforms can provide this runtime support efficiently without hurting the
performance of existing programs that do not require helper locks.

Chapter Outline

The remainder of this chapter is organized as follows. Section 3.1 motivates the use of
helper locks through the example of a resizable hash table, and it explains why modifica-
tions to the existing Cilk runtime are needed to support helper locks. Section 3.2 describes
the "parallel region" construct, the language construct that HELPER adds to MIT Cilk to

1The design of helper locks represents joint work [10] with Kunal Agrawal and Charles E. Leiserson.

implement helper locks. Section 3.3 describes the runtime support for parallel regions.
Section 3.4 states the time bound for HELPER. Section 3.5 describes a formal execution
model, which is used in Section 3.6 to prove the time bound. Section 3.7 presents the space
bound for HELPER. Section 3.8 describes a prototype implementation of helper locks, and
Section 3.9 gives some empirical results on microbenchmarks and on a resizable hash table
benchmark. Finally, Section 3.10 concludes the chapter with a discussion of related work.

3.1 Motivating Example

This section motivates the utility of helper locks through the example of a resizable hash
table and discusses some of the challenges in supporting helper locks in Cilk. A simple
implementation of a resizable hash table using a reader-writer lock can exhibit poor perfor-
mance because the resize operation can generate a large critical section. Helper locks can
improve performance by allowing a programmer to exploit parallelism inside large critical
sections.

Cilk programmers can use ordinary locks to protect critical sections. For example, the
code in Figure 3-1 uses a reader-writer lock to implement a resizable concurrent hash table.
Every insert operation acquires the table's reader lock, and a resize operation acquires the
table's writer lock. Thus, insert operations (on different buckets) may run in parallel, but a
table resize cannot execute in parallel with any insertion.

Unfortunately, the resize operation in Figure 3-1 can be a performance bottleneck be-
cause it entails a large critical section. While a worker is executing a resize, it prevents
any other worker which might be trying to insert into the table from making progress. For
a function which can have many inserts into the hash table happening in parallel, e.g., the
function shown in Figure 3-2, this hash-table implementation exhibits poor performance.

When a large critical section introduces such a bottleneck, programmers typically try
to improve performance by reducing the size of the critical section. For example, since a
resizable hash table is an amortized data structure, one might try to deamortize the data
structure by performing the resize incrementally, as inserts occur. This approach often
requires programmers to use fine-grained locking however. Using fine-grained locks gen-
erally makes programs more difficult to implement and debug, since it increases the number
of interleavings of parallel strands of execution that the programmer must reason about.

Helper locks provide an alternative approach, improving program performance while
still retaining the simplicity of coding large critical sections. Instead of using fine-grained
locks to try to split a large critical section into many smaller critical sections, programmers
can use a helper lock to mitigate the effect of the large critical section by parallelizing the
section.

In many parallel programming environments, including Cilk, when a worker fails to
acquire a lock, it typically spins (i.e., waits) until the lock is released. Workers that spin on
a lock protecting a large critical section may waste a substantial number of processor cycles
waiting for the lock to be released however. Consequently, for large critical sections, many
lock implementations avoid tying up the blocked worker thread by yielding the scheduling
quantum after spinning for a short length of time. This altruistic strategy works well if
there are other jobs that can use the cycles in a multiprogrammed environment, but if the

1 void insert(HashTable* H, Key k, void* val)
2 int idx = hashcode(H, k);
3 List* L = H->buckets[idx];
4 listlock (L);
5 listinsert(L, k, val);
6 listunlock(L);
7 }

8 int try_insert (HashTable* H, Key k, void* val)
9 int success = try-readacquire(H->resizelock);

10 if (!success)
11 return FAILED;
12 insert(H, k, val);
13 release(H->resizelock);
14 return SUCCESS;
15 }

16 void resizetable(HashTable* H) {
17 List** newbuckets;
18 int newn = H->numbuckets*2;
19 newbuckets = createbuckets (newn);
20 for (int i = 0; i < H->numbuckets; i++) {
21 rehash list(H->buckets[i], newbuckets, newn);
22 }
23 freebuckets (H->buckets);
24 H->buckets = newbuckets;
25 H->numbuckets = new_n;

26 }

27 void resizetableifoverflow(HashTable* H) {
28 if (is t-ableoverf low (H)) {
29 write_acquire (H->resizelock);
30 resize table (H);
31 release(H->resizelock);
32
33

Figure 3-1: A resizable concurrent hash table implemented using a reader-writer lock. Each
bucket in the hash table is protected by its own separate lock (lines 4-6). Since each insert
(line 8) acquires the lock H->resize-lock as a reader, inserts can occur in parallel. The
resize operation (line 27) acquires H->resize-lock in writer mode, however, and so a
resize cannot run concurrently with inserts or another resize.

1 void randinserts (HashTable* H, int n) {
2 cilkfor(int i = 0; i < n; i++)
3 int res;
4 Key k = rand();

5 do {
6 res = tryinsert (H, k, k);
7 } while (res == FAILED);

8 resizetableifoverflow(H);
9

10

Figure 3-2: An example Cilk function which performs n hash-table insertions, potentially
in parallel. The cilk-for keyword (in bold) indicates that the iterations of the loop are
allowed to execute in parallel. After every insertion, the loop checks whether the insertion
triggered an overflow and resizes the table if necessary.

focus is on completing the current computation, one would like to be able to put blocked
workers to work on the computation itself, i.e., help to complete the critical section holding
the lock.

A naive strategy for putting a blocked worker to work on the computation itself is for
the worker to suspend the function that failed to acquire a lock and engage in work-stealing.
Unfortunately, this strategy can waste resources in dramatic fashion in a dynamic threading
platform such as Cilk. Turning back to the example of the hash table, imagine what would
happen if one worker p write-acquires the resize lock while another worker p' attempts an
insertion. Unable to read-acquire the resize lock, p' would suspend the insertion attempt
and steal work. What work is lying around and available to steal? Why another insertion, of
course! Indeed, while p is tooling away trying to resize, p' might attempt (and fail) to insert
most of the items in the hash table, one at a time. More precisely, p' might systematically
attempt an insertion, fail to read-acquire the resize lock, suspend the insertion, and then
proceed to the next insertion.

This strategy is not only wasteful of p"s efforts, it results in profligate space usage.
Each time a continuation is stolen, the runtime system requires an activation frame to store
local variables. Thus, for the hash table example, the rand-inserts function could gen-
erate as much as O(n) space in suspended insertions. In general, the space requirement
could grow as large as the total work in the computation. In contrast, Cilk's strategy of
simply spinning and yielding, though potentially wasteful of processor cycles, uses at most
O(Plgn) space on P processors in this example. This result follows from Cilk's provable
bounds on space usage [27] (also reviewed in Theorem A.4 of Appendix A), since each
worker requires only O(lgn) space to spawn n inserts in a divide-and-conquer fashion.

The idea of helper locks is to employ the blocked workers in productive work while
controlling space usage by enlisting them to help complete a large parallel critical section,
or critical region.2 For helper locks to be useful, however, the critical region must be par-
allelized and the runtime system must be able to migrate blocked workers to work on the

21n this chapter, I use the term "critical region" to refer to a critical section that may be parallel.

critical region. Ordinary Cilk-style work-stealing, as reviewed in Appendix A, is inade-
quate to this task, because stealing occurs at the top of the deque, and the critical region
may be deeply nested where workers cannot find it. For example, in Figure 3-1, when an
insertion triggers a resize, the parallel work of the resize (i.e., rehash-list in line 21)
is generated at the bottom of a deque, with work for rand-inserts above it. In fact, in
this example, by employing Cilk-style work-stealing, workers would more likely block on
another insertion than help complete the resize. Thus, to enable workers to efficiently help
within a critical region in Cilk, additional runtime support is necessary.

3.2 Parallel Regions and Helper Locks

This section introduces the "parallel region" construct, the additional language construct
that HELPER adds to Cilk to support helper locks. This section first presents the paral-
lel region construct provided by HELPER. Then, it shows how to use parallel regions to
implement helper locks and the resizable table example from Section 3.1.

Parallel Region Construct

To support helper locks in Cilk, HELPER adds two new constructs, start-region and
he lpregion, for supporting "parallel regions" and adds some runtime functions for man-
aging helper locks. Figure 3-3 gives a code example that illustrates these language and
runtime extensions.

The function f in Figure 3-3 illustrates the use of HELPER's start region construct.
The function f starts 10 instances of a parallel function f oo, each as a parallel region that
is protected by a randomly chosen lock from an array of helper locks.

Helper locks have the semantics of a mutex but with the additional behavior of a worker
helping in a parallel region when the mutex cannot be acquired. For example, if two regions
foo (0) and foo (1) are protected by the same lock L, then only one instance can execute
at a time. Because L is a helper lock, however, if worker pi tries to start foo (1) but
discovers that foo (0) already holds the helper lock L, then pi will try to help complete
f oo (0) instead of blocking and waiting on the lock L. For p1 to help in f oo (0) effectively,
f oo (0) must be a parallel-function instance, i.e., it must expose potential parallelism using
the spawn or parallelifor keywords. Otherwise, if foo (0) is a serial function, there is
no benefit to having more than one worker help to complete the region.

In general, while start _region for a parallel region A protected by a lock L is execut-
ing, we say that the parallel region A holds the helper lock L. Also, we say that L is held
because of a region acquire by the worker p that started the region. Unlike a normal lock
that protects a serial critical section, it is less useful to say that the worker p that started
a region "holds" the helper lock, because multiple workers can be concurrently executing
work from the same critical region.

Although helper locks are most useful for protecting parallel critical regions, it is still
sometimes useful to allow a worker p to hold a helper lock for a serial critical section.
Thus, HELPER provides calls for a serial acquire of a helper lock, i.e., a lock acquire
that protects a serial critical section. In Figure 3-3, lines 17-21 show the serial acquire

1 int f(HelperLock** L_array,
2 int ans [10];
3 cilkfor(int i = 0; i < 10
4 HelperLock* L = L_array[
5 ans[i] = start-region[L]

int R) {

++i)
and ()
fo o(i)

int sum = 0;
for (int i = 0; i < 10; ++i)

sum += ans [i];

}
helperlock array-destroy(L-array);
return sum;

}

int g(HelperLock* L)
int ans = 0;
help-region [L];
while (!helperserialiacquire(L)) {

helpregion [L];

ans = baro;

helper-serialrelease(L);
return ans;

24 int main(void) {
25 int x, y, z;
26 HelperLock** L-array;
27 L-array = helperlock-array_create (100);
28 x = spawn f(L-array, 100);
29 y = spawn g(L-array[0]);
30 z = g(Larray[1]);
31 sync;
32 printf(''Final answer: %d\n'', x+y+z);
33 helperjlockarray-destroy(L-array);
34 return 0;
35 }

Figure 3-3: Code demonstrating the use of HELPER's parallel region construct and other
runtime support for helper locks. The start region and help-region keywords in the
code appear in bold. Line 5 shows the start-region construct, which makes a call to
the (potentially parallel) function foo (i), protected by a helper lock L. Line 16 shows the
help-region construct, which indicates that the current worker should try to help com-
plete any region that is currently holding the helper lock L. Lines 17-21 show the serial
acquire and release of a helper lock. The function bar in line 20 cannot be a parallel
function because HELPER requires that all parallel critical sections use the start -region
construct.

and release of a helper lock L, which protects the call to a serial function bar. While an
instance of g is holding lock L because of a serial acquire, an instance of f cannot start a
region protected by L, i.e., no other worker can perform a region acquire of L. A helper
lock that is held because of serial acquire behaves as normal mutex: when a worker fails to
acquire the lock, it blocks and waits as with an ordinary lock. 3

HELPER also provides a help-region construct, which enables workers that might be
waiting for a serial acquire on a lock L to help complete any parallel region that might be
holding L because of a region acquire. For example, in lines 16 and 18 of Figure 3-3, a
worker p executing an instance of g tries to help in the parallel region holding the lock L
before it tries to acquire lock L serially. If an instance of f oo is currently holding L due
to a region acquire, then p tries to complete the region. If, however, another instance of g
is holding L, or L is not held, then the help-region call returns immediately without any
effect.

Finally, HELPER provides library functions for creating and destroying helper locks,
as shown in lines 27 and 33. Helper locks, like ordinary locks, are created and destroyed as
ordinary objects in memory.

Resizable Table Example

By using the parallel region construct, and by extending helper locks to support reader-
writer lock semantics on a serial acquire, one can improve the performance of the resizable
table example from Figure 3-1. Figure 3-4 gives an implementation of a resizable table
using helper locks.

In Figure 3-4, line 16, the res i ze-table method from Figure 3-1 is started as a parallel
region, protected by the helper lock H->resize-lock. The start-region construct in
line 30 enables parallelism inside the resize operation, i.e., the resize-table method can
now have a parallel loop in lines 20 through 22 instead of being required to execute serially.

Figure 3-4 also uses the help-region construct to provide the desired helping behav-
ior when a worker fails an insert because of an ongoing resize operation. In line 11 of
Figure 3-4, the try-insert method uses the help-region construct to direct a worker to
help in the region holding H->resi zelock when it fails to acquire this lock.

Finally, for this example, instead of using an ordinary serial acquire of the helper lock,
we use a serialread-acquire of H->res i ze-lock, which has reader-writer semantics. With
a serial read-acquire, the critical regions for inserts in lines 9-13 can run in parallel with
each other. Inserts cannot, however, run concurrently with the resize operation, since this
is protected by a region acquire of ->resizeilock. Said differently, as with a normal
reader-writer lock, a successful acquire in line 9 prevents any worker from starting a new
region for a resize in line 30.

More generally, one can imagine designing more complicated kinds of helper locks,
which have different semantics from mutexes or reader-writer locks. In programs that use

3Conceptually any serial acquire could be replaced with a region acquire without changing the meaning
of a program, since workers attempting to "help" in a serial region would end up waiting for the region to
complete. In practice, however, a region acquire is more restrictive linguistically, since the critical region
must correspond to a function call, whereas the critical section for a serial acquire need not be lexically
scoped.

8 int try insert (HashTable* H, Key k, void* val) {
9 int success =

helper-serialRacquire(H->resizelock);
0 if (!success)
1 { he1p_region[H->resize lock]; return FAILED; }
2 insert(H, k, val);
3 helper-serialRrelease(H->resizelock);
4 return SUCCESS;

void resizetable(HashTable* H) {
List** newbuckets;
int newn = H->numbuckets*2;
newbuckets = createbuckets (new-n);
cilkfor (int i=O; iCH->numbuckets; i++)

rehash-list(H->buckets[i], new-buckets,
{
new-n);

freebuckets (H->buckets);
H->buckets = newbuckets;
H->numbuckets = newn;

void resizetableifoverflow(HashTable*
if (is table_overflow(H)) {

H) {

startregion[H->resize_lock] resizetable (H);

Figure 3-4: Resizable hash table example using helper locks. This code example modifies
lines 16 through 33 from Figure 3-1 to parallelize the resize operation for the table, and
modifies lines 8 through 15 to enable inserts that block on the a resize to help complete the
resize operation.

multiple helper locks, one must also consider the issue of potential deadlocks. Section 3.3
discusses some of these issues after explaining the runtime support and execution model
for HELPER.

3.3 HELPER Runtime

This section describes the execution model for HELPER and the runtime data structures
HELPER utilizes for scheduling parallel regions. First, the computation DAG model for
Cilk (reviewed in Appendix A) is extended with two new constructs, start-region and
he lp-region. Then, this section describes "deque pools" and "deque chains," the state that
HELPER maintains to support parallel regions.

Computation DAGs

The execution of a Cilk computation C can be thought of as generating a computation
DAG g(C) =(V(C), E(C)).4 In this DAG, a function invocation F can be represented as
a subDAG of G(C) enclosed between a source node source(F) and a sink node sink(F).

It is useful to define some terminology concerning the computation DAG. For any node
u E V(C), let ipred(v) be the set of immediate predecessors of v in G, i.e., u E ipred(v) if
and only if there exists an edge (u, v) E E(C). When it is clear that ipred(v) has exactly one
element (e.g., ipred(v) = {u}), we abuse notation and say that ipred(v) = u. Similarly,
let isuc c (u) be the set of immediate successors of u, i.e., v E isuc c (u) if and only if there
exists an edge (u, v) E E(C). These definitions of ipred(u) and isucc(u) are valid only
because G has the canonical form described in Section A.2, i.e., G is equal to its transitive
reduction [12].

For HELPER, startregion represents a special function call. Thus, in a computa-
tion DAG G(C), a parallel region B corresponds to a subDAG of G(C) = (V(C), E(C)),
enclosed between a source node source(B) and a sink node sink(B). Let regions(C)
denote the set of all regions in a computation C.

A help-region call h is also a special function call with two nodes, source(h) and
sink(h), except with two extra conditions. First, sink(h) is always the immediate prede-
cessor of source(h) in the DAG. Second, when a worker executing a computation G(C)
encounters a node source(h), before it returns to execute sink(h), it may jump to work
on a different parallel region because of a helper lock. In an execution, we assume that a
startregion call that fails (because the corresponding helper lock is already held by a
different region) generates he lp-region calls in the computation DAG until it manages to
acquire the lock.

We can also define some terminology for parallel regions. We say that a region B
contains a node u in the computation DAG if u is along some path from source(B) to
sink(B). We say that region B owns u, denoted by rg-owner(u) = B, if B is the most deeply
nested parallel region containing u. This ownership is uniquely defined because parallel
regions are function calls, and function calls are always properly nested. Conversely, we
say that u belongs to B if rgowner(u) = B.

4For details, see Section A.2 of Appendix A.

Finally, we assume that computation DAGs exhibit a certain canonical structure when
starting regions, which allows us to define the "region predecessor" and "region succes-
sor" of certain nodes in the DAG. For a region A which starts a nested region B due to a
start-region call, let node u = ipred(source(B)) and let v = isucc(sink(B)). We as-
sume that u and v are uniquely defined, that both belong to A, and both have in-degree and
out-degree of 1. We say that v is the region successor of u, denoted by v = rg-succ(u).
Similarly, we say that u = rg-pred(v) is the region predecessor of v. For the case of a
help-region call h E helpCalls(C), we say that source(h) = rg-pred(sink(h)) and
sink(h) = rgsucc(source(h)), i.e., the source and sink of h form a pair of matching
region predecessor and successor nodes.

Figure 3-5 shows an example program with parallel regions, and Figure 3-6 shows
the computation DAG that might be generated by an execution of the program. The
help.region call hi in region C (line 7 in Figure 3-5) generates the two nodes xi =
source(hi) and yi = sink(hi) in the computation DAG (Figure 3-6). The region pre-
decessors and successors for each region have also been highlighted.

Deque Pools and Deque Chains

The HELPER runtime maintains a "deque pool" data structure for every parallel region A
to schedule the work of A and allow multiple workers to help complete A. Conceptually,
one can think of the ordinary Cilk runtime (as reviewed in Section A.2) as maintaining
a single deque pool of P deques for a computation C, with one deque for each worker
p. HELPER extends Cilk by maintaining a deque pool for every region A to handle the
scheduling of region A. At any point in time, each worker p has an "active deque" q which
it is operating on. When p runs out of work on q, it tries to steal work from within the
deque pool containing q. To allow for nesting of parallel regions, every worker organizes
its deques from different regions into a "deque chain."

To describe HELPER's runtime data structures more precisely, HELPER maintains a
deque pool for every parallel region A, which we denote by A.dqpool. Conceptually, a
deque pool is an object which stores P deques, a dedicated deque for every worker. A
deque pool contains the following fields:

" A. dqpool[p]: the memory allocated for the deque for p in the pool for A.

" A.valid[p]: flag that is TRUE when p has been assigned to the pool.

" A.psize: a size field tracking the number of workers that have been assigned to the
pool.

" A. done: a doneflag for signaling when region A has completed.

Although A.dqpool has space allocated for P deques, at any given time, not all workers may
be assigned to A. Let dq(p,A) be the pointer to A.dqpool[p] if A.valid[p] is TRUE (i.e., p has
been assigned to A) and NULL otherwise. For a dthreaded computation C, we let C. dqpool
denote the root deque pool, i.e., the top-level pool of P deques used by an ordinary Cilk
computation without parallel regions. Intuitively, HELPER uses the deque pool A.dqpool
for self-contained scheduling of region A on A's assigned workers. While p is assigned to
A, when p tries to steal work, it randomly steals only from deques q E A. dqpool.

void
void
void
void

A()
al
a2
a3

5 void B()

void
void
void

void
void
void

void
void
void

C ()
cl
c2

D ()
d1()l
d2 ()

E()
el()
e2 ()

{ spawn al(); spawn a2 (); a3
{ startregion[BLock] B(); I
{ startregion[DLock] D(; }
{ startregion[FLock] F(; I

{ startregion[CLock] CO; I

{ spawn cl(); c2(); sync;
help-region[DLock]; }
s1; s2; I

spawn d1(); d2(); sync; }
s3; s4; s5; }

{ startregion[ELock] E();

{ spawn el(); e2 (); sync; }
{ helpregion[FLock]; s6; I
{ s7; s8; }

void F()
void fl()
void f2 ()

3-5: A code

spawn fl(); f2 (); sync;
s9; slO; I
s1l; s12; s13; I

example in HELPER with parallel regions A through F. This code
assumes that each region is started using a distinct helper lock (ALock through FLock).

Figure 3-6: A computation DAG with parallel regions for Figure 3-5. The dashed arrows
represent help-region calls. Source and sink nodes corresponding to region predecessors
and successors have been shaded (e.g., source(al) and sink(al)).

() ; sync; }

15
16
17

Figure

Operaion Udate
INITPOOL (A):

Initialize deque pool
for region A.

ENTERPOOL (p, B):
Worker p enters
region B with
new deque q.

LEAVEPOOL (p, B):
Worker p leaves
region B

A.psize = 0
A.done FALSE

for all workers p:
A.valid[p] = FALSE
A. dqpool[p] -4 region = A

B.valid[p] = TRUE
B.psize B.psize + 1
qA = p - activeDQ

dq(p,B) - parent = qA

dq(p,B) -+child = NULL

p-+activeDQ = dq(p,B)

qA -+child = dq(p,B)

assert (B.done == TRUE)
assert (dq(p, B) == p -± activeDQ)
B.valid[p] = FALSE

B.psize = B.psize - 1
qA = dq(p,B) - parent

qA -+ child = NULL

p -> activeDQ = qA

Figure 3-7: Pseudocode for maintaining deque pools and deque chains in HELPER.

Every deque maintains several fields to support nesting of parallel regions. More specif-
ically, in addition to maintaining head and tail pointers for each deque, HELPER also main-
tains the following fields for each deque q = dq(p,A):

" q -+ region: a reverse pointer from q to its region A, i.e., q C A. dqpool.
" q - parent: the parent deque of q.
" q -- child: the child deque of q.

To allow nesting of helper locks and parallel regions to an arbitrary depth, each worker
pi organizes its deques into a deque chain, a linked list of deques using the parent and
child pointers. Each deque in the chain for a worker belongs to the deque pool of a distinct
region. For a computation C, the top deque in p's deque chain belongs to C. dqpool, the
top-level deque pool, while the bottom deque in the chain is the active deque of pi, i.e.,
the deque that pi is currently working on. Each worker pi maintains a pointer to its active
deque, which we denote by pi -+ activeDQ. All other deques in the deque chain pi are
inactive. When a worker p enters or leaves a region in HELPER, p changes deque pools
and deque chains in a straightforward fashion, preserving the invariant that p is always
currently working in the region at the bottom of its deque chain. Figure 3-7 summarizes
the actions taken by HELPER to maintain deque pools.

Normally, when there is work on pi -+ activeDQ (pi's active deque), pi only changes
the tail pointer of this deque. When pi runs out of work, however, it work-steals from

Operation Updates

deques within the deque pool of pi -+ activeDQ -+ region, that is, the region for pi's active
deque. While pi is executing normally, other workers pj may concurrently work-steal from
any deque q in pi's chain, changing the head of these deques.

HELPER allows a worker p to enter a region B (i.e., be assigned B.dqpool) in three
ways. First, p can enter B when p successfully starts region B by executing start-region.
Second, p can enter a region B because of a help-region call because of a helper lock L
while L is held by region B. This second case can occur because of an explicit help-region
call for lock L or because of an implicit call generated by a failed startregion call using
lock L. Finally, p can enter a region B due to random work-stealing.

This third case captures the key difference between work-stealing in HELPER as com-
pared to ordinary Cilk. Suppose p with p - activeDQ -- region = A tries to steal another
deque q in A. dqpool. If q is empty, but q -+ child exists and belongs to B. dqpool for some
other region B, then instead of simply failing to steal, then p enters region B. We call this
case an entering steal (from A into B) for p.

In HELPER, the case of workers leaving regions is simpler. Once HELPER assigns a
worker p to a region A, p does not leave region A until A completes, i.e., until some worker
has set A. done as true. We adopt this policy for simplicity of implementation and to guar-
antee good theoretical bounds. If a worker can leave a region before it completes, then in
theory, a worker might incur significant synchronization overhead by repeatedly reentering
and leaving the same region. Later in Section 3.4, we discuss some of the theoretical im-
plications and possible extensions to HELPER for allowing workers to leave regions early
when the region has no work to steal.

Example Execution

Figure 3-8 illustrates deque pools and deque chains for a simple computation DAG (Fig-
ure 3-6) executed using 4 workers. In this example, worker pi enters regions A through F.
All regions are assumed to acquire different helper locks. Initially, pi starts a region B, p4
randomly steals from pI in A. dqpool and starts region D, and P2 steals from p4 in A and
starts region F. Next, pi starts a region C nested inside B. Then, p3 randomly work-steals
from p1 in A and enters B and C. Afterward, pi inside C makes a help-region call on the
lock for D, enters D, and steals from p4 in D. Finally, pi makes a help-region call on the
lock for F and enters F.

Deadlock Freedom with Helper Locks

As with ordinary (nonhelper) locks, an arbitrary nesting of helper locks risks deadlock.
From the HELPER execution model, however, we can state restrictions on helper locks
which guarantee that helper locks do not introduce a deadlock.

For a computation C with parallel regions protected by helper locks, construct a re-
gion graph whose nodes are regions from regions(C) and which contains an edge (A,B)
if there is a start-region call from region A which creates a nested region B, or a
he lp-region call from a region A into region B. We say B is a child region of A if (A, B)
is an edge in the region graph. If a program has serial acquires of helper locks, one should

Figure 3-8: A snapshot of deque pools during execution of the DAG from Figure 3-6.
Numbers correspond to workers in the pool.

consider each serial acquire as a potential help-region call when constructing the region
graph.

If this region graph is acyclic, then HELPER guarantees that helper locks do not in-
troduce deadlock. Entering steals in HELPER do not introduce any additional deadlocks
because a worker can only enter a region B from a region A if there was already an edge
(A, B) in the region graph from a previous start-region or help-region call.

One way to guarantee the region graph is acyclic is to maintain a strict partial order
for acquiring helper locks - the same discipline which is often used to ensure deadlock
freedom for ordinary locks. To avoid deadlock, the programmer must also ensure that any
nested parallelism within critical sections is properly encapsulated using parallel regions.
Specifically, the keywords spawn and sync should not appear inside a critical section unless
both are enclosed within a parallel region initiated using start-region. This condition
essentially requires that programmers use only the mechanisms provided by HELPER to
generate nested parallelism in critical sections.

Implementing Deque Pools

The abstract description of deque pools described in this section can be implemented in
a variety of ways in practice. One simple implementation of deque pools is to maintain
an array of P deques with a dedicated slot for every worker. Each worker can add or
remove itself from the array without waiting on other workers. Synchronization is required,
however, to maintain the size field for a deque pool.

In fact, HELPER only needs to know whether a deque pool is empty or nonempty. Thus,
for the purposes of analyzing execution time, we assume that synchronization for entering
and leaving a region only requires O(lgP) time for a deque pool with P processors. One
way to satisfy this theoretical assumption is to use a protocol based on a binary-tree network
of size O(P) and depth 0(lgP) to track whether the pool is empty. With this scheme, each
worker waits at most 0(lgP) time to enter the region, and it takes at most 0(lgP) time

for all workers to leave the deque pool once the done flag of the region is set. In practice,
updating an atomic counter is likely to be more efficient for modest values of P.

3.4 Completion-Time Bound

This section states the completion-time bound provided by HELPER. Stating this bound
requires us to first generalize the definitions of work and span for computation DAGs to
account for parallel regions. Then, we consider HELPER's time bound and study it in the
context of the original bound for Cilk. Finally, we compare these theoretical bounds to the
bounds for other potential implementations of helper locks. The proof of the completion-
time bound is deferred until Section 3.6.

Definitions

To state the time bound, we use the computation DAG model described in Section 3.3 with
some additional definitions. 5 We represent the execution of a program as a computation
C with execution DAG G(C), where each node in G(C) represents a unit-time task, and
each edge represents a dependence between tasks. We assume the computation executes
on hardware with P processors with one worker assigned to each processor. The remainder
of this chapter considers only programs that generate acyclic region graphs. Thus, any
execution is guaranteed to be deadlock-free.

For any region A, define the work of A, denoted Ti (A), as the number of nodes in the
subDAG enclosed between source(A) and sink(A). Define the span of A, denoted T.(A),
as the number of nodes along a longest path from source(A) to sink(A). We also define
a "region" work and span for each region A, which considers only nodes belonging to A.
Define the region work of A as

Ti(A) = I{u EV(A) : rg-owner(u) -A}|

i.e., the number of nodes in the DAG belonging to A. For any path z through the graph G,
define the path length of z for region A, denoted by rg-path-length(z,A), as the number
of nodes u along path z with rg-owner(u) = A. Let paths (u, v) denote the set of all paths
from u to v in G(C). Define the region span of A as

T - p(A) = max rg-pathlength(z,A) ,
zEpaths(source (A),sink(A))

that is, the maximum path length forA over all paths z from source(A) to sink(A). Intu-
itively, the region span of A is the time to execute A on an infinite number of processors,
assuming that A's nested regions complete instantaneously. For example, in the computa-
tion DAG in Figure 3-6, region D has Ti (D) = 24, Ti (D) = 11, T. (D) = 15, and t,(D)= 9.

The completion-time bound for HELPER depends on the structure of the region graph,
i.e., the number of regions and how regions are nested and connected to each other. Let

5See Section A.2 for a complete description of this model.

N = |regions (C) denote the number of regions in the region graph, and let M denote the
number of edges in the region graph.

To model the contention due to serial acquires of helper locks, we define the bondage
of a computation C, denoted by b(C), as the total number of nodes contained within critical
regions for serial acquires of all helper locks.

Finally, we also define some quantities on the entire computation DAG G(C). For a
computation Q(C) with parallel regions, we define the aggregate region span as

E~ r. t(A) .
AEregions(C)

As an abuse of notation, we let Ti (without any arguments) denote the work of the entire
computation, i.e., T1 (C).

Statement of Completion-Time Bound

Let Tp(C) be the running time of a computation C running on P processors using HELPER.
We prove that a computation C with N regions, M edges between regions, work T1, aggre-
gate span T,, and bondage b runs in expected time

E[Tp(C)] =0 -(+T.+Mln 1 + +b(C)) . (3.1)
(P M

Moreover, for any E > 0, we prove that with probability at least 1 - E, the execution time is

TP(C)=(0 -- +i+M n l+ ')+b(C)+lg(-)). (3.2)
(P (ME

Interpretation and Discussion of Bounds

To understand what the completion-time bound in Equation (3.1) means, we can compare
it to the completion-time bound for a computation without regions. The ordinary bound
for randomized work stealing [30] says that the expected completion time is O(T1 /P + T.,).
The bound in Equation (3.1) exhibits three differences.

First, there is an additive term of Mln(1 +PN/M). We shall show that N- 1 < M < PN.
Therefore, in the best case, when M = N - 1, the term reduces to NlnP. This case occurs
when a computation has no contention on helper locks, i.e., when no helpregion calls are
made. In the worst case, when M = PN, this term is equal to PN. This worst case assumes
that each worker assigned to a region enters from a different region, whereas we expect in
practice that most regions would have a limited number of entry points.

Even in the worst case, when the additive term is PN, if the number of parallel regions
is small, then this term is insignificant compared to the other terms in the bound. Since
parallel regions are meant to represent large critical sections, we expect N to be small in
most programs. For example, in the hash-table example from Section 3.1, if we perform n
insertions, only O(lgn) resizes occur during the execution. Furthermore, even if there are
a large number of parallel regions, if each parallel region A is sufficiently large (t 1 (A) =

2(p2)) or long (t.(A) ;> 9(P)), then we have PN =O(Ti/P+ T.), and the PN term is
asymptotically absorbed by the other terms. These conditions seem reasonable, since we
expect programmers to use parallel regions only for large critical sections. Programmers
should generally use serial acquires to protect small critical regions.

Second, the bound on HELPER's completion time involves the term T. instead of T..
If the number of parallel regions is small, then the term T. is generally close to T.. Even
for programs with a large number of parallel regions, the T term does not slow down
the execution if regions are sufficiently parallel. To understand why, we can rewrite the
worst-case time bound from Equation (3.1) as follows:

E[T]=O +(T.+PN+b(C)
(P

0 (E (A)+. (A)+P +b(C))

AEregions(C)

If the b(C) term does not asymptotically dominate the parallel-work term, we can see that
HELPER provides linear speedup if for each region A, the region parallelism Ti (A)/T.(A)
is sufficiently large. More precisely, assuming b = O(T 1 /P), the program achieves linear
speedup if the region parallelism of each region is at least Q(P). In the hash-table example,
a region A that resizes a table of size k completely in parallel has span T. (A) = O(lgk), and
thus on most machines, the parallelism should greatly exceed the number of processors.

Third, we have the additive term b(C), term which accounts for contention on ordinary
(serial) lock acquires. In most programs, it is unlikely that the real completion time with
HELPER will include all of the bondage. It is difficult to prove a tighter bound, however,
since theoretically, there exist computations for which no runtime system could do any
better. For example, if all lock acquires (serial and region acquires) are for the same lock
L, then, ignoring the Mln(1 + PN/M) term, HELPER's bound is asymptotically optimal,
i.e., no runtime system can execute the computation asymptotically faster.

Comparison with Alternative Implementations

We now compare the bounds for parallel regions in HELPER with two other alternatives.
The first option does not allow helping. When a worker p blocks on a lock L, it just waits
until L to become available. Using this traditional implementation for locks, the comple-
tion time of a program with critical sections (either expressed as parallel regions or just
expressed sequentially) can be K2(Ti/P + EAeregions(C) ti (A) + b(C)). Notice that the
second term is the sum of region work over all regions, as compared to Equation (3.1),
which has the sum of region spans. Therefore, if the program has large (and highly par-
allel) critical sections (as in the hash-table example), then this implementation may run
significantly slower than with helper locks.

Second, we can compare against an implementation where a worker that blocks on a
lock suspends its current work and randomly work-steals. As the hash-table example from
Section 3.1 illustrates, this implementation may use K2(n) space for n inserts. In contrast,
as we argue later in Section 3.7, HELPER uses O(Plgn) space for this example, which is

typically much smaller than n in practice.

3.5 HELPER Execution Model

This section presents a formal execution model for HELPER based on the computation
DAG model for Cilk. First, this section incorporates parallel regions, deque pools, and
deque chains into the DAG model. Then, it describes the invariants on the computation
DAG satisfied by the model. Section 3.6, uses this execution model to prove completion-
time bounds for HELPER.

We extend the computation DAG model described in Section 3.3 (and Section A.2 of
Appendix A) to capture the dynamic execution of a computation C using HELPER. We
consider each deque q in HELPER as conceptually maintaining an assigned node, denoted
as q -+ assigned.6 Normally, the field pg -4 activeDQ -+ assigned stores the node in the
computation DAG that the worker pi is currently executing.

For inactive deques q, HELPER maintains the invariant that q -± assigned represents the
node where p will resume execution once q becomes active again. More precisely, when
a worker p with active deque qA in a region A starts a nested region B with deque qB =
qA -+>child, the node qA -± assigned is set to isucc(sink(B)) to preserve this invariant.
Similarly, when p enters B from A because of a help-region call h, qA -4 assigned is set
to sink(h). We refer to any such assigned node on an inactive deque as a blocked node,
since it cannot be executed until region below in the deque chain completes. If a worker
creates the child deque q -+ child because of work-stealing, an inactive deque q may have
q -* assigned = NULL.

In the computation DAG model, the assigned node of deques change on each step as
workers execute instructions. In a normal Cilk computation, a worker can execute one of
the following instructions: a primitive operation (primOp), a call of a function (call) or its
return (cReturn), a spawn of a function (spawn) or its return (s Ret urn), a sync instruction
(sync), or a steal (steal). See Figure A-3 for a more detailed description of how these
instructions change assigned nodes.

The behavior of most instructions remains the same after the addition of parallel re-
gions for HELPER. More precisely, for a worker p, the primOp, call, cReturn, spawn,
sync, and sReturn instructions operate on the active deque p -+ activeDQ in HELPER in
the same way that these instructions operate on the (only) deque of p in the original DAG
model. HELPER only modifies the behavior of the steal instruction, and adds new in-
structions for parallel regions, namely the startRegion, helpRegion, and finishRegion
instructions.

Consider a worker p with q = p -+ activeDQ, and q -4 assigned = U $ NULL. In other
words, p has active deque q with an assigned node u. Then, HELPER takes the following
actions depending on the instruction it issues.

1. startRegion: Suppose that isucc(u) = source(B), i.e., p is starting a nested
region B. First, HELPER updates deque pools by calling INITPOOL (B) and then

6 This definition differs slightly from the model in Section A.2, in which the assigned node is associated
with a worker p instead of a deque.

ENTERPOOL (p, B). Let qB = p -+ activeDQ after these calls. Then, this instruc-

tion changes q-* assigned from u to isucc(sink(B)) = rg-succ(u), and then sets

qB -4 assigned to source(B).

2. helpRegion: Suppose that u is a help-region call for a region B. Then, to up-
date deque pools, HELPER first calls ENTERPOOL (p, B). Let qB = p -4 activeDQ
after entering the pool. Then, this instruction changes q - assigned to rg-suc c (u)=
isucc(u), and sets qB -+ assigned to NULL.

3. f inishRegion: Suppose that u = sink(B), i.e., p is finishing region B. To update
deque pools, HELPER first sets B.done to TRUE, waits for every other worker p'
assigned to B to call LEAVEPOOL (p, B), and then calls LEAVEPOOL (p, B) itself. Let

qA = p -+ activeDQ after this process. Because qA -+ assigned was set correctly when

p entered region B, p resumes execution with the assigned node qA -+ assigned.7

Alternatively, suppose that p has q = p -+ activeDQ and q -+ assigned = NULL. Then

p tries to randomly work-steal within its current deque pool via a steal instruction.

4. steal: Let A = q -± region be the region for p's active deque. Then p chooses a

victim deque q, $ q uniformly at random from A.dqpool. The action of p depends
on the state of qv:

(a) Successful steal. If q, is not empty, then p takes the top node w from q, and
sets q -+ assigned to w.

(b) Unsuccessful steal. If q, is empty and qv -+ child = NULL, then the steal at-

tempt fails.

(c) Entering steal. If qv is empty but q, -4 child exists, then p enters the re-
gion B = q, -+ child -+ region, assuming that B. done has not yet been set to

TRUE. For an entering steal, worker p executes ENTERPOOL(pB) and then
sets p -4 activeDQ -+assigned to NULL.

(d) Leaving steal. If B= q, -4 child-+ region has B.done = TRUE, i.e., B is already

finished, then the steal attempt fails.

For the last two cases of a steal instruction, we refer to any deque q which is empty but
has a child q -+ child $ NULL as an exposed deque. Ordinary work-stealing in Cilk requires
only the first two cases, but HELPER adds the latter cases to handle parallel regions.

Finally, we can show that HELPER preserves the following invariants on computation
DAGs and deques.

Lemma 3.1. For a computation C with DAG G(C), consider a deque q = dq(p,A). Let

vo = q -4 assigned, and let v1, v2,. .. , Vk be the nodes on q arranged from bottom to top. Let

ut be any node ui C ipred(vi) if vi is an unblocked node, or rg-pred(vi) if vi is a blocked
node. The execution model maintains the following invariants:

1. For all i, we have rg-owner(vi) = A, i.e., node vi belongs to region A.

7Depending on the specific implementation, the last worker to leave B (i.e., the worker which sets B.psize

to 0) might also need to clean up B's deque pool.

2. For all i > 1, node ut is unique.
3. For all i > 1, vi is an unblocked node and ut is a spawn node.
4. The assigned node vo is blocked if and only if q 74 p -+ activeDQ, i.e., q is inactive.
5. For i = 2,3,..., k, node ut is a predecessor of node ui-1.
6. If q is active, then vo is a successor of u1.
7. If q is inactive, then uo is a successor of u1.

Proof The invariants can be proved by induction on the actions of the execution model.
Invariant 1 holds because HELPER only assigns a node u to q if q = p -+ activeDQ and
rg-owner(u) = q-+region, and because a spawn node u can only push nodes v with
rg-owner(u) = rgowner(v) (i.e., from the same region) onto q. Invariants 2 and 3 hold
because nodes v are added to a deque only when a worker p works on an assigned node
u which is a spawn node (i.e., a spawn instruction from Figure A-3). Invariant 4 holds
because only the startRegion and helpRegion instructions can create a blocked node v
and only on a deque q that has a child deque.

We can show Invariants 5 and 6 hold by checking the various instructions for HELPER.
For each instruction, consider a worker p with active deque q = p -+ activeDQ and assigned
node u = q -± assigned. If u is a spawn node, then q -+ assigned is changed to a node w and
its sibling v is pushed onto q. In this case, HELPER preserves Invariant 6 since w is a suc-
cessor of u. When p executes a steal instruction, p resets the assigned node q -+ assigned,
but the deque q is guaranteed to be empty, and thus the invariants are automatically pre-
served on a steal. For all other instructions, p always replaces its assigned node u with a
node v which is a successor of u.

Finally, for Invariant 7, we know that right before an active deque q becomes inac-
tive, vo = q -4 assigned is a successor of u1. When q becomes inactive, we know that
q -+ assigned is changed from vo to rg-suc c(vo), which is a successor of vo. Therefore, q
satisfies Invariant 7 after it becomes inactive.

3.6 Proof of Completion-Time Bounds

This section proves the bounds on completion time explained in Section 3.4. First, this
section gives an overview of the proof, classifying the types of steps each processor can
take on each time step. The main challenge of the proof is to account for the steps that
processors spend stealing. Next, it bounds the number of steal attempts that HELPER
performs in an execution by bounding the number of "contributing" steal attempts and then
the number of "entering" steal attempts. Finally, it combines these pieces together to prove
the completion-time bound.

Completion-Time Bound for HELPER

To prove the bound the completion time from Equation (3.1), we account for each possible
action that each processor (worker) p can take on each time step. Every processor step falls
into one of the following categories:

* Working: p executes its assigned node.

* Entering: p waits as it tries enter a region A. This category counts the time that
p spends executing ENTERPOOL(p,B) for some region B - in the startRegion
(Case 1), the helpRegion instruction (Case 2), or in an entering steal (Case 4c).

9 Leaving: p waits as it tries to leave a region A. This category counts the time workers
p spend in LEAVEPOOL (p, B) (Case 3).

9 Waiting: p spin-waits on a helper lock L which is currently held by a serial lock
acquire.

e Stealing: p attempts to steal work randomly in a region A.

For a computation C executed on P workers, let N be the number of regions, and let Ti
and L. be the work and aggregate span of G(C), respectively. Then, G(C) has exactly
Ti working steps. As described in Section 3.3, the entering cost is O(lgP) per worker,
and once a region A completes, each worker in A's deque pool leaves within O(lg P) time.
Therefore, the total number of entering and leaving steps is O(PNlgP). The number of
steps that workers spend waiting (on serial acquires of helper locks) is bounded by Pb(C):
in the worst case, P - 1 processors can be waiting on a particular lock L while one processor
executes a node in the critical region of L.

We bound the number of steal attempts by partitioning them into three types which we
bound individually.

" A contributing steal for region A is any steal attempt in A that occurs on a step when
A has no exposed deques.

" A leaving steal for region A is any steal attempt that occurs while A has an exposed
deque and while there exists a region B and a worker p satisfying three conditions: B
is a child of A, p -4 activeDQ -- region = B, and B.done = TRUE.

" A steal attempt in a region A which is neither a leaving nor contributing steal is
considered an entering steal.

We can extend the potential function argument of [16] (reviewed in Section A.3) to
show that every region A has O(PT.(A)) contributing steals in expectation. This result
implies that the expected total number of contributing steals is bounded by O(PT.). We
can bound the number of leaving steals by P times the number of time steps when any
leaving step occurs. Since any worker p in A's deque pool leaves within O(lgP) time of
A's completion, and no worker enters the same region twice, the total number of time steps
when any worker can be leaving a region is at most O(Nlg P). Therefore, the total number
of leaving steals is O(PNlgP). Finally, we can show that the total number of entering steals
is at most O(PMln(l +PN/M)).

Contributing Steals

To analyze the number of contributing steals, we first extend the potential functions from
Definition A. 1, Section A.3 to handle parallel regions. Then, we divide steal attempts for
a region A into "rounds," arguing that after a certain number of rounds, the potential of a
region A is likely to reduce to 0 with high probability.

Our definition of potential for nodes, deques, and regions requires some terminology.
For a node u c A, its depth d(u) is the maximum path length for region A over all paths
from source (A) to u. The weight of a region A is w(A) = t(A) - d(A).

Definition 3.1. Consider a node u G A. The potential of node u is

32w(u)-1 if u= q -+assigned for an active deque q,
<D(u) = 32w(u) if u is ready or blocked,

0 if u= NULL.

Similarly, let q be the deque belonging to a worker p, and let u be p's assigned node or
NULL ifp has no assigned node. The potential of deque q is

CD(q) = <D (u) + E CD (v).
vEq

Finally, the potential of region A is

<D (A) =) <(q) .
q EA. dqpool

In Definition 3.1, any inactive deque q has U = NULL, that is, q has no assigned node
that contributes potential.

As in [16], we can show that weights of nodes along any deque strictly decrease from
top to bottom (Lemma 3.2) and that the potential of a region never increases over time
(Lemma 3.3).

Lemma 3.2. Consider the execution of a computation C that generates an execution DAG
G(C). For any deque q owned by a worker p, let v1, V2, .. , vk be the nodes (from G(C)) in
q ordered from the bottom of the deque to the top. Then, we have

W(v1)< W(v2) <- -- <W(vk).

Also, let vo = q -4 assigned. If vo = NULL, then either

1. q is active and w(vo) < w(v1), or

2. q is inactive and w(vo) < w(vi).

Proof Define the ui's as in Lemma 3.1. First, we prove the lemma for nodes vi for i > 1.
Since G(C) is a series-parallel DAG, the depth of any spawn node u is always 1 less than
the depth of its two children. By Invariant 3, for all the unblocked nodes vi, v2, ... , vk in
the deque, we have d(ui) = d(vi) - 1. Invariant 5 implies that ut is a predecessor of ui_1 in
G(C) for all i > 2. Thus, we have d(vi-1) > d(vi) for all i = 2, 3,.. .,k. Converting from
depth to weight yields w(vi) < w(v2) < ... < w(vk).

Next, we prove the lemma for the assigned node vo in the case where vo $ NULL. In
this case, by Invariant 4, we know that either q is active or q is inactive and vo is blocked.

* If q is active, then by Invariant 6, we know vo is a successor of ui. Thus, d(vo) >
d(ui). We know d(ui) = d(vi) - 1 because u1 is a spawn node. Thus, we know
d(vo) > d(vi), since all depths are integers. Therefore, we have w(vo) < w(vi).

* If q is inactive, then by Invariant 6, we know uo is a successor of ui, or equivalently
d(uo) > d(ui). We know d(ui) = d(vi) - 1 because ui is a spawn node. We also have
d(uo)= d(vo) -1, because any inactive deque q must have an assigned node vo which
is blocked, and then we must have uo = rg-pred(vo). Thus, we get d(vo) > d(vi),
or equivalently, w(vo) < d(vi).

Lemma 3.3. During the execution of a computation C, the potential (D(A) of any region
A C regions(C) increases from 0 to 3 21(A) when source(A) becomes ready. At no

other time does <b(A) increase.

Proof To prove the lemma, one can check all the cases of the execution model. In general,
actions that execute or assigned nodes within a region A affect only CD(A), and by the proof
given in [16], these actions only decrease the potential.

The new cases that HELPER introduces are the start-region and help-region in-
structions. Consider a worker p with active deque q = p -+ activeDQ and A = q -+ region.

Also, let u = q -+ assigned.

" start-region: If u starts a nested region B, then q -+assigned changes to v =

rg-succ(u). By definition of the region successor, we have d(v) = d(u) + 1, and
hence, the potential decrease in region A is 3 2w(u)-1 - 3 2w(v) = 2- 3 2w(v). Also, since
p creates a new deque qB for the new region B, and sets qB -+ assigned to source(B),
CD(B) increases to 3

" help-region: If u corresponds to a help-region call, then as in the previous case,
q -+ assigned is set to rgsucc(u), and the potential of A decreases as in the case of
the startregion call. For the region B that p enters however, CD(B) is unchanged
because p creates an empty deque for B.

D

To bound the number of contributing steals in a region A, we divide steal attempts in
A into rounds. The first round Ri(A) for region A begins when source(A) is set as the
assigned node of some worker. A round Rk(A) ends after at least P contributing steals
in A have occurred in the round, or when A ends. Any round can have at most 2P - 1
contributing steals (if P steals occur in the last time step of the round). Therefore, a round
has O(P) contributing steal attempts in region A. We say Rk+1 (A) begins on the same time
step of the next contributing steal in A after Rk(A) has ended. A round for A may have
many entering steals and there may be gaps of time between rounds.

First, we bound the number of rounds for a region A. At the beginning of Rk(A), let
Dk(A) be the sum of potentials of all nonempty deques that are not exposed in A's deque
pool, and let Ek(A) be the sum of potentials due to empty or exposed deques. The potential
of A at the beginning of round k can then be expressed as bk(A) = Dk(A) + Ek(A).

Lemma 3.4. In a computation C, for any round Rk(A) of a region A G re gi ons(C), we
have

Pr {Ok (A) - (k+1I(A) >_ CDk (A)/41 > 1 /4.

Proof We shall show that each of Dk(A) and Ek(A) decrease by at least a factor of 1/4
with probability at least 1/4. The lemma holds trivially for the last round of A, since the
region completes.

Any deque that contributes potential to Dk(A) has, at the beginning of the round, at
least one node on top that can be stolen. By definition, every round except possibly the last
has at least P steal attempts. Thus, Lemma 8 from [16] allows us to conclude directly that
Dk(A) decreases by a factor of 1/4 with probability 1/4. Any entering steals that occur
only reduce the potential further.

To show that Ek(A) reduces by at least 1/4, we use the definition of rounds and con-
tributing steals, which imply that on the first time step of round k, region A has no exposed
deques. Thus, any deque q that contributes to Ek(A) must be empty. An empty deque q
without an assigned node contributes nothing to Ek(A). An empty deque q with an as-
signed node u reduces q's contribution to Ek(A) by more than 1/4, since u is executed in
the round's first time step. 0

Lemma 3.5. In a computation C, for any region A E re gi on s(C), the expected number
of rounds is O(T.(A)), and the number of rounds is O(tc.(A) +ln(1/ F,)) with probability at
least 1 - E.

Proof The proof is analogous to Theorem 9 in [16]. Call round k successful if 'Ik(A) -
GDk+1 (A) > Qk(A)/4, i.e., the potential decreases by at least a 1/4 fraction. Lemma 3.4
implies that Pr {Dk+1 (A) < 3Pk(A)/4} > 1/4, i.e., a round is successful with probability
at least 1/4. The potential for region A starts at 32 (A)-1, ends at 0, and is always an
integer. Thus, a region A can have at most 8t. (A) successful rounds. Consequently, the
expected number of rounds needed to finish A is at most 32r.(A).

For the high probability bound, we can use Chernoff bounds as in [16]. In general, using
Chernoff bounds, one can show that after (2R + 4ln(1F))/$P coin flips, where each coin
flip comes up heads with probability P, the probability of having fewer than R heads is less
than 1 - e. Since each round succeeds with probability at least P - 1/4 and we can have at
most R = 8,.(A) successful rounds, the probability of having more than 641. + 161n(1/E)
rounds is less than 1 - . El

Entering Steals

To bound the number of entering steals, we require some definitions. Intuitively, we divide
the entering steals for a particular region A into "intervals" and subdivide intervals into
"phases". For every region A, we divide the time steps when A is active into entering
intervals, which are separated by leaving steps for child regions B. More precisely, entering
interval 1 for A, denoted Ii (A), begins with the first entering steal in A and ends with the
next leaving step belonging to any region B such that (A, B) is an edge in the region graph
for G, or if A completes. Similarly, Ik(A) begins with the first entering steal in A after
Ik- (A) completes.

We also subdivide an interval Ik(A) into entering phases, separated by successful enter-
ing steals in A. In general, phase j of Ik(A), denoted Ik,j(A), begins with the first entering
steal of Ik(A) after phase j - 1 and ends with the next successful entering steal, or at the

end of Ik(A). 8 We say that a phase Ik,j(A) has rank j. Define an entering phase as complete
if it ends with a successful entering steal. Every interval has at most one incomplete phase
(the last).

Intuitively, entering intervals and phases are constructed so that during an interval for
A, the number of exposed deques only increases and the probability of a successful entering
steal increases with the rank of the current phase.

Lemma 3.6. For all regions A, the entering interval lIk (A) satisfies the following properties:

1. Interval Ik(A) has at most P - 1 phases.
2. During any phase of rank j, the probability that a given steal attempt succeeds is at

least j/P.

Proof. At the beginning of the interval, there is at least one exposed deque in A, and there-
fore, at least one worker has moved from A to some child region of A. Every complete
phase ends with a successful entering steal and a successful entering steal causes a worker
to move from A to some child region. Therefore, after j phases, at least j + 1 workers have
moved to some child region. Moreover, an interval Ik(A) ends with any leaving step for
any child region of A. Therefore, no worker reenters region A from its child region during
an interval. Due to these two facts, after P - 1 complete phases, no processors are working
in region A, and there can be no more entering steals. On the other hand, if the last phase
is incomplete, then the number of complete phases is less than P - 1. In either case, the
interval has at most P - 1 phases.

No exposed deque is eliminated during an interval since no processor reenters A, and
thus the number of exposed deques in A never decreases. At the beginning of Ik,i (A), the
first phase of every interval, region A has at least one exposed deque. Therefore, during
phase 1, the probability of any entering steal succeeding is at least 1/P. As we argued
above, after j - 1 phases complete, at least j workers have entered a child region and each
of these workers leave behind an exposed deque in region A (since their deque dq(p,A) is
empty). Hence in phase j, interval Ikj(A) has at least j exposed deques,9 and the probability
of hitting one of these exposed deques on any steal attempt is at least j/P.

Lemma 3.7. Let C be a computation executed on P processors whose region graph has
N regions and M edges, and let rm be the number of phases of rank m. The following
properties hold:

1. N- 1 < M < PN.
2. The number of entering intervals over all regions is at most M.
3. M > ri > r2 - -- > rp_1.

8The end of Ik(A) and the beginning of Ik+1 (A) occur on different time steps, but the end of phase j and
beginning of phase j + 1 within an interval can occur within the same time step. If multiple workers try to
steal from the same exposed deque in a time step, they all succeed, and multiple entering phases end in that
time step.

9 Phase j might have more than j such deques, since help-region calls into A or steals within A can
exposes new deques.

4. The total number of complete entering phases over all regions is at most N(P - 1),
and the total number of incomplete entering phases is at most M.

5. For any integer K r1, let a(K) = [_ rj/K]. Then, for any nonincreasing

function f, we have
P-1 a(K)

rff(j) < K Ef(j).
j=1 j=1

Proof (1) Since only P workers total can enter a region B, and in the worst case each
worker enters along a different edge, every region B can have in-degree at most P, and thus
we have M < PN. Moreover, every region except G also has in-degree at least 1, which
implies that N - 1 < M.

(2) For any region A, let dA be the out-degree of A in the region graph for G. Intervals
for region A end only when some child B completes and takes a leaving step. Also, the
time after the leaving step for the last child region B does not form an interval because
there can be no more entering steals in A. Thus, A has at most dA intervals. Summing over
all regions, we can have at most M intervals total.

(3) By construction, every interval can have at most one phase of a given rank m, and
thus we have M 2 ri. Also, an interval can have a phase of rank m +1 only if it has a phase
of rank m, which implies rm > rm+1.

(4) Every complete entering phase has a successful entering steal. We can have at most
P - 1 successful entering steals for each region A, since one worker enters the region when
A is started and at most P - 1 can enter through stealing. Every interval can have at most 1
incomplete phase.

(5) The quantity E_' rjf(j) can be viewed as the sum of entries in a M by P - 1 grid,
where row z contains phases for the zth interval and the jth column corresponds to phases
of rank j. Each entry (z, j) has a value that is f(j) if interval z has a phase of rank j, or 0
otherwise. This grid contains at most rj nonzero entries in each column and Ej rj entries
total. Since the function f(j) and r; are both nonincreasing and K > ri, conceptually, by
moving entries left into smaller columns, we can compress the nonzero entries of the grid
into a compact K by c(K) = [Xj ri/K] grid without decreasing the sum. The value of the
compact grid is an upper bound for the value of the original grid. The compact grid has at
most X(K) columns, with each column j having value at most Kf(j), giving the desired
bound. L

We can now bound the expected number of entering steals.

Theorem 3.8. Consider a computation C executed on P processors, and suppose that the
region graph of C has N regions and M edges. The expected number of entering steal
attempts is

OPMln 1 + .N)

Proof Suppose that Q requires rm phases of rank m. Number the intervals of G arbitrarily,
and let Q(z, j) be the random variable for the number of entering steals in phase j of the
zth interval, or 0 if the interval or phase does not exist. By Lemma 3.7, there can be at most
M intervals. Thus, the total number Q of entering steals is given by

M P-1

Q = ZZQ(z,j).
z=1 j=1

Lemma 3.6 implies that E[Q(z, j)] P/j, since each entering steal in the phase suc-
ceeds with probability at least j/P. Thus, linearity of expectation gives us

M P-1 M P-1 P-1

E[Q] = E E[Q(z,j)] = r . (3.3)
z=1 Z=1 z=1 j=1

We can apply Fact 5 of Lemma 3.7 with K = M and f(j) = 1/j, since M > ri. Then,

we have oc(K) = [zi rj/M] <_ 1 + [PN/M], since Ej rj is the total number of phases,

which is bounded by (P - 1)N + M. Thus, we have

a(K) 1
E[Q] PM Z- = PMHa(K)>

j=1

where H = En, 1/i = O(Inn) is the nth harmonic number, which completes the proof.

We can also bound the number of entering steals with high probability.

Theorem 3.9. Consider a computation C executed on P processors, and suppose that the
region graph for C has N regions and M edges. The number of entering steal attempts is

O PMln 1+ +Pln2P+Pln

with probability at least 1 - F.

Proof. Let rj be the number of phases of rank j in C. Conditioned on a particular com-
putation C with fixed values for rj, we want to bound the number of entering steals as a
function of the rj. Our argument involves dividing the entering steals into [lgP] "classes"
of entering steals, where each class counts only entering steals from phases of similar rank.
We then employ a union-bound over all classes to obtain the final bound.

Define a class-m entering steal as any entering steal that occurs in a phase of rank j
satisfying 2 m-1 < j < 2 m. Thus, class 1 contains entering steals in rank-1 phases, class 2
contains rank-2 and rank-3 steals, class 3 includes rank-4 through rank-7 phases, and so
forth. Let Rm = Ej=_,, rj be the number of phases in class m. A computation can have at
most Rm successful class-m steals, since each successful steal ends a phase. We shall show
that it is unlikely to have too many unsuccessful steals in a class.

As in Lemma 3.5, we can use Chernoff bounds to calculate the probability of having
more than Rm class-m steals. By Lemma 3.6, each class-m entering steal succeeds with
probability ; > 2M-1/P. Thus, after

PRm 4P |[g P]
2m-2 2m-1 In

class-m steals, the probability of having fewer than Rm successful steals is at most E/ [lg P.
Let Q be the total number of entering steals. Summing over all [lgP] classes and using

a union bound, we know that with probability at least 1 - E, we have

S t 5 f L 3 4P n (1
M= 2r--2 +2m-1 In E

<P-1 -j_+8n

\ 2[1g jj+1-2) 8l
j=1

Using Fact 5 from Lemma 3.7 and choosing K =M and f (j) =1/21819i yields

Q < 2PM lg 1 + +1 + 8Pln .IP
M E

Bounding Completion Time

We can now use the analysis of steal attempts in HELPER to bound the completion time of
a computation.

Theorem 3.10. Let C be a computation executed on P workers, let N be the number of
regions in G, and let M be the number of edges in G's region graph. If the computation
DAG G(C) has work T1 and aggregate span T., then HELPER completes C in expected
time

r(C)=0 , +T5.+b(C)+Min 1+ .)

Moreover, for any E > 0, the completion time satisfies

Tp(C) 0(T,±Too+b(C)+Mln 1+ N)+ln2P+ln
P M

with probability at least 1 - e.

Proof On every time step, each of the P processors is working, entering, leaving, waiting,
or stealing. Executing a computation requires exactly T work steps. The number of enter-
ing steps and leaving steps is at most 0(PNlgP), since every worker waits at most O(N)
times (at most once for entering and leaving every region A), and each worker spends only
O(lgP) steps waiting each time.

Also, for a computation C with bondage b(C) executed on P processors, we can show
that the total number of waiting steps (due to serial acquires) is at most Pb(C). When any
worker takes a waiting step, there exists a p holding a lock L and executing some node in
a critical region protected by a serial acquire. Therefore, the remaining bondage decreases
by at least 1 during that time step. In the worst case, all P - 1 other workers might be taking
waiting steps during that time step, all waiting on lock L.

To bound the number of steals in expectation, by Lemma 3.4, we expect O(PT.) con-
tributing steals, and by Theorem 3.8, we have O(Mln(1 +PN/M)) entering steals. Finally,
the number of leaving steals is bounded by P times the number of time steps that any worker
spends on a leaving step. Thus, we have only O(PNlg P) leaving steals. The PNlg P terms
are asymptotically absorbed into the Mln(1 + PN/M) term, since M > N - 1.

Since P workers are active on every step, adding up the bounds on all the steps and
dividing by P gives us the expectation bound. To obtain a high-probability bound, we
choose E' = E/2 for both Lemma 3.4 and Theorem 3.9 and then union-bound over the two
cases of contributing and entering steals.

3.7 Space Bounds

This section presents the space bound provided by HELPER. This section first extends the
computation tree model to account for the space used by each function, and then states
HELPER's space bound and sketches its proof.

Definitions

To state space bounds for HELPER, we extend some of the definitions from Section A.5.
For any function instance F, let f rameSi ze(F) be the stack space used by the function F.
On any step t, let rgVFunc() (A) denote the set of activefunctions within region A, i.e., the
active functions F which belong to region A. Then, let rgStackspacde') (A) be

rgStackSpace()(A) = E frameSize(F),

FErqVFunct(A)

the stack space used by A on step t. Define the region stack-space usage for A, denoted by
Sp(A), as the maximum over all steps t of rgStackSpace()(C), assuming that region A is
executed using P processors. Note that Si (A) is the serial stack-space usage of region A.
Finally, define the aggregate serial-space usage as

Si= E S 1(A) .
AEregions(C)

Space Bound

HELPER's space bound generalizes the space bound for Cilk given in [30].10

10The bound for Cilk is restated by Theorem A.4 in Appendix A, Section A.5.

Theorem 3.11. For a computation C, HELPER executes C on P processors using at most
PS1 stack space.

Proof For an arbitrary computation C executed using HELPER, we can generalize the
busy-leaves property from Theorem A.3 to apply to the subtree of the active tree that cor-
responds to a single region A. Thus, for a region A, using the same analysis as in the proof
of Theorem A.4, we can show that

rgStackSpaced (A) < Sp(A) < PS(A) .

The overall stack-space usage is at most the sum over all regions A of rgStackSpaced) (A).
Therefore, we have the bound on stack-space usage of PS1.

Intuitively, the stack space required for each worker p roughly corresponds to the func-
tion frames for regions along p's deque chain. In general, however, help-region calls
make it difficult to bound stack-space usage in terms of S1 for the entire computation C,
because a deque qB for a region B can be a child of deque qA even though B is not a region
nested inside A.

For some computations, a tighter bound than Theorem 3.11 is possible. Technically,
we only need to sum over all regions A which can be active on any given time step t. For
example, in the hash-table example from Section 3.1, HELPER requires only O(Plgn)
space, because at most two regions can be active at once, namely the outer region and the
resize region. Also, each region uses only O(lgn) space on a single worker.

On the other hand, there exist computations for which the bound in Theorem 3.11 is
tight. For example, suppose that the region graph is a chain of regions A1 ,A2,...AN, and
all P workers enter every region Ai (i.e., one worker starts region Ai+1 and has all other
workers make help-region calls to enter Ai+1).

3.8 HELPER Implementation

This section describes HELPER, a prototype implementation of helper locks and parallel
regions created by modifying MIT Cilk [51]. In this section, I first discuss how HELPER
implements deque chains and deque pools, the two major additions to the Cilk runtime.
Then, I describe how HELPER compiles parallel regions.

Deque Chains

To implement parallel regions, HELPER must conceptually maintain a chain of deques
for each worker p. In ordinary Cilk, each deque is represented by pointers into a shadow
stack, a per-worker stack which stores frames corresponding to Cilk functions. HELPER
maintains the entire deque chain for a worker on that worker's shadow stack.

Normally, Cilk uses the THE protocol [51] to manage deques. Each deque consists of
three pointers that point to slots in the shadow stack. The tailpointer T points to the first
empty slot in the stack. When a worker pushes and pops frames onto its own deque, it

modifies T. The head pointer H points to the frame at the top of the deque. When other
workers steal from this deque, they remove the frame pointed to by H and decrement H.
Finally, the exception pointer E represents the point in the deque above which the worker
should not pop. If a worker working on the tail end encounters E > T, some exceptional
condition has occurred, and control returns to the Cilk runtime system.

In order to avoid the overhead of allocating and deallocating shadow stacks at runtime,
HELPER maintains the entire chain of deques for a given worker p on the same shadow
stack, as shown in Figure 3-9. Each deque for a given worker p maintains its own THE
pointers, but all point into the same shadow stack. When a worker enters a region, it only
needs to create the T HE pointers for a new deque and set all these pointers equal to the tail
pointer for the parent deque in the shadow stack. The correctness of this implementation
relies on the property that two deques in the same shadow stack (for a worker p) can
not grow and interfere with each other. This property holds for two reasons. First, in
HELPER every worker p works locally only on its bottom active deque p -± activeDQ,
and thus, only the tail pointer T of the active deque at the bottom of the chain can grow
downward. Second, for any deque, the head H never grows upward, since H only changes
when steals remove frames. Figure 3-9 shows an example arrangement of a deque chain
on a worker p's stack. In this example, no worker has stolen any frames from region B,
whereas two frames have been stolen from region C. The deque dq(p, E) is empty, and we
have p -+ activeDQ = dq(p, F).x

Implementation of Deque Pools

HELPER implements a deque pool as a single array of deques (i.e., THE pointers). An
array of P slots is statically allocated when the user creates a helper lock. When a region
is active, one or more slots of this array are occupied by workers. Instead of dedicating a
slot for every worker p as described in Section 3.3, however, the implemented prototype
maintains a packed array. If k workers are assigned to a region, the first k slots of the deque-
pool array contains those workers. It also maintains a shared counter to track whether the
pool is empty.

Theoretically, with this packed array implementation, each worker p might spend 0(P)
time entering and leaving (as opposed to O(lgP) time with the sparse array described in
Section 3.3), if there is worst-case contention and p waits for all other workers. Thus,
in theory, the time bound could get slightly worse, while the space bound remains the
same. On the other hand, with this packed array implementation, workers might in principle
spend less time finding work if on average, the number of processors that enter each region
is significantly less than P. For example, in a region with only k processors, if work is
available to be stolen, each steal succeeds with probability at least 1/k, instead of 1/P.

In practice, we expect that the difference in contention between the two schemes not
likely to be significant, particularly for modest values of P. Moreover, even with worst-
case contention, using this scheme does not change the worst-case theoretical bounds for
the case when M = PN. In this case, from the proof of Theorem 3.10, we see that when
M = PN, the term due to entering steals becomes PN, which is asymptotically the same as
having P workers each take P steps to enter and leave every region.

dq(p,A) head
exc 1 A
tail2

base 3
dq(pB) head

exo 5Btail
base

dq(p,C) head

|exc C
tail

E
dq (p, E) base

head

exc-F

tail

base
dq(p,F) head

exc

tail

Figure 3-9: A chain of deques for a given worker p. Each deque dq(p,A) consists of T H E
pointers (tail, head, and exception) into p's stack of Cilk frames. For clarity, the figure
shows a pointer for the base of each deque q. In practice, q's base always equals the tail
pointer of q's parent deque.

The prototype HELPER implementation uses a simple locking protocol which asso-
ciates a lock with every deque. A worker must lock a deque before trying to steal from it.
When a worker p with active deque q = p -+ activeDQ tries enters another region B, it locks
q, creates a new deque qB with qB -+ region = B and q -4 child = qB, locks qB, releases the
lock on q, and finally releases the lock on qB. Similarly, when a worker p leaves a region
B, it locks q = p -4 activeDQ -+parent, then locks qB = p -4 activeDQ, deallocates qB, and
finally releases the lock on q.

Compiling Parallel Regions

I implemented a small amount of compiler support in HELPER to enable the calling or
spawning of an arbitrary function F as a parallel region protected by a helper lock.

The existing MIT Cilk compiler [51] uses source-to-source translation to convert every
Cilk function F into two C functions, a fast and a slow clone. In ordinary Cilk, the runtime
begins executing a spawned function F via its fast clone. The slow clone of F executes only
after a steal from F has occurred.

For HELPER, I modified the source-to-source translator to generate an additional clone,
the region clone of F, which takes in a helper lock object as an extra argument, and starts F
as a parallel region. In this prototype, the region clone of F is a wrapper function that wraps
the arguments of F into a generic "closure" object that the Cilk runtime can execute on
any processor. Then, the Cilk runtime executes this closure, which eventually calls the fast
clone for F. As in ordinary Cilk, all spawned functions inside F begin as calls to fast-clone
functions, with slow-clone functions executing only after steals have occurred.

3.9 Experimental Results

This section presents a small experimental study of HELPER. First, a simple resizable hash
table was implemented using HELPER, which demonstrates that HELPER enables users to
exploit parallelism inside a critical region. Although neither the hash-table implementation
nor the HELPER prototype were heavily optimized, these experimental results suggest that
HELPER is not merely a theoretical construct, and that a practical and efficient implemen-
tation of HELPER is feasible. Also, the overheads of parallel regions were measured to
estimate the impact of HELPER's runtime modifications on existing benchmarks in MIT
Cilk. The results indicate that starting each parallel region incurs somewhat significant
overhead, but that the modifications required for HELPER produce a negligible impact on
existing Cilk code that does not make use of parallel regions.

Resizable Hash Table

This section describes the implementation of a simple hash table microbenchmark, as mo-
tivated by the example in Section 3.1.

The resizable hash table maintains an array of hash buckets, with each bucket imple-
mented as a linked list plus a lock. Each element in the linked list stores a 64-bit integer key
and a 64-bit integer value. The hash table supports two functions, search and an atomic

in se rt _i f -absent. Both functions requiring locking the appropriate bucket in the table. If
concurrent table resizes are possible, then these functions also must hold the reader-writer
lock on the table in reader mode.

The resize operation must acquire the reader-writer lock in writer mode. The table

hashes an element x using hash functions of the form f(x) mod n, where f(x) is a pseudo-

random function of x and n is the current table size. Thus, rebuilding the table is done by
doubling the size of the table and splitting each bucket into two buckets.

The microbenchmark performs n inserts (of the keys 1 through n) into the table in

parallel. Inserts were performed in a divide-and-conquer fashion with a serial base case
of 1000 inserts. To reduce contention, the benchmark performs a batch of 250 inserts for
every acquisition of the reader-writer lock. Also, after every batch, it updates a global
counter which tracks the number of inserts into the table. A resize operation is triggered if

the number of elements in the table is 5% more than the number of buckets.11

Finally, for a reference comparison, an analogous benchmark of n parallel inserts was

implemented using the concurrent hash map and task scheduler in Intel TBB [71], version
3.0. Both the HELPER implementation and the TBB implementation use a hash function
f(x) that multiplies x by a large 64-bit integer.

Figure 3-10 shows results from performing insertions into the resizable hash table.
These results demonstrate that executing the resize operation serially creates a scalabil-

ity bottleneck. In contrast, HELPER is able to exploit parallelism in the resize operation
and increase throughput up to P = 6 cores. The HELPER implementation also exhibits
throughput for inserts comparable to the reference TBB implementation. This experiment
demonstrates that helper locks can improve performance by exploiting parallelism inside
critical regions.

Overheads of Parallel Regions

Next, I also compared the overhead of using parallel regions in HELPER to normal Cilk
code without regions. In particular, I performed two different experiments on the suite
of MIT Cilk benchmarks. First, to measure the overhead of starting parallel regions, I
compiled the MIT Cilk benchmarks in HELPER, converting every Cilk function into a

parallel region. Second, to determine the effect of HELPER's runtime modifications on
MIT Cilk code that does not use regions, I compiled and ran the MIT Cilk benchmarks
without modification, but using HELPER instead of MIT Cilk.

Figure 3-11 shows our overhead measurements for HELPER on the MIT Cilk bench-
marks. The first experiment, with all Cilk functions converted into parallel regions, shows

that there is somewhat significant overhead in our prototype for starting a region as com-
pared to a spawn of an ordinary Cilk function. From the f ib benchmark, which repeatedly
spawns function calls, we see that starting a region is about 26 times the cost of a spawn-
ing a function. This overhead is not unexpected, however, since in the current prototype,

"For a more realistic use of a hash table, batching inserts may not be possible. Also, in practice, many

applications that use a concurrent hash table spend a majority of time on searches, not inserts. This benchmark
is not intended to model a good hash-table implementation for a real application, but rather is designed to

trigger as many resize operations as possible to test whether HELPER can effectively exploit parallelism
within the resize operation.

Fraction of Resize Time, n= 1 Million

0 2 4 6
P

80

60

40

20

8 10 12

Hash Table Inserts, n= 5 Million

0 2 4 6
P

8 10 12

Hash Table Inserts, n= 20 Million

0 2 4 6
P

8 10 12

80

60

40

20

0 2 4 6 8 10 12
P

Fraction of Resize Time, n= 5 Million

U
0 2 4 6 8 10 12

P

Fraction of Resize Time, n= 20 Million
100

80

60 ,X

40

20

HELPER I
Serial Resize -----

0
0 2 4 6 8 10 12

Figure 3-10: Performance of n inserts into a concurrent resizable hash table using
HELPER. The plots on the left show the throughput of inserts. The plots on the right
show the fraction of time spent on resize operation. Each data point represents the average
of 25 runs with the same parameters. This experiment was run on a single-socket 12-core
AMD Opteron 6168 processor (clocked at 1.9 GHz) on a machine with 16 GB RAM.

HELPER
Serial Resize ----X----

X' -

HELPER -
Serial Resize -----

Hash Table Inserts, n= 1 Million

MIT Cilk HELPER, All Regions HELPER, No Regions
Application Description Time Time Overhead Time Overhead
fib 37 Fibonacci number calculation 2.63 69.3 26x 2.62 -0.4%
knapsack Knapsack combinatorial optimization 5.22 73.7 14x 5.29 1.3%
cholesky Sparse Cholesky matrix decomposition 2.97 19.2 6.6x 2.93 -1.3%
heat Jacobi-type stencil computation 2.50 3.34 33% 2.52 0.8%
f ft Fast Fourier transform 1.68 2.09 24% 1.60 -4.7%
lu -n 2048 LU matrix decomposition 7.87 8.59 9% 7.87 0%
matmul 1000 Cache-friendly matrix multiplication 2.84 3.06 8% 2.84 0%
queens 24 n-queens puzzle 4.60 4.97 8% 4.60 0.2%

Figure 3-11: Serial overhead of parallel regions in HELPER for MIT Cilk benchmarks.
The "All Regions" column corresponds to a modification of the MIT Cilk benchmarks
where every Cilk function is converted into a parallel region. The "No Regions" column
corresponds to unmodified benchmarks compiled with HELPER. All times are in seconds,
and represent the average of 10 runs. This experiment was run on a single-socket 12-core
AMD Opteron 6168 processor (clocked at 1.9 GHz), on a machine with 16 GB RAM.

starting a parallel region requires acquiring multiple locks, allocating memory, copying
arguments into temporary storage, and other initialization for deque pools.

The second experiment, which has no parallel regions, shows that there the modifica-
tions required by HELPER have no significant impact on code that does not require parallel
regions. In fact, HELPER was slightly faster than MIT Cilk on some of the benchmarks,
which suggests that the performance differences between the systems may be dominated by
measurement noise. This result is not surprising, since the only extra action that HELPER
requires over ordinary MIT Cilk on code without regions is an extra check on a (failed)
steal attempt of whether a deque has a child and a nested region to enter. This second
benchmark indicates that one can support parallel regions in Cilk with virtually no impact
on code that does not care about parallel regions - a significant advantage for a dynamic-
threading platform, since we do not want to sacrifice the performance of the common case
(programs without regions) for those programs that might want to utilize parallel regions.

3.10 Conclusions

I conclude by briefly reviewing some related work and discussing future research direc-
tions.

Related Work

OpenMP uses a parallel construct to support nested parallelism [106]. HELPER ex-
hibits some similarities to the implementation of this construct, although the design goals
differ. For convenience in implementation, in the HELPER prototype, as in OpenMP, ev-
ery parallel region has one (worker) thread which is the first to enter the region and which
is guaranteed to resume execution after the region completes. Also, unlike in OpenMP,
HELPER executes parallel regions asynchronously - the number of workers is not fixed
when a region begins, and additional workers can enter the region after it has started, either
through random work stealing or because they are blocked on the lock for the region. Also,

the critical construct in OpenMP, which provides mutual exclusion for critical sections,
is generally not designed to allow nested parallel constructs.

The idea of parallelism inside critical sections was explored by Kessler and Seidl in
Fork95 [79], a parallel language for PRAM machines. Like OpenMP, however, they adopt
a synchronous approach. To start a parallel region, programmers invoke an "join" construct
which waits a specified time (or until some other condition is satisfied) before starting
execution using however many threads have joined the region.

Microsoft TPL [92] provides a "replicable task" API which allows users to implement
their own parallel abstractions. In principle, a programmer could use this API to construct
parallel regions as in HELPER by creating a replicable task which behaves as a worker
thread for a region. Multiple threads executing the replicable task would correspond to
multiple workers executing in the parallel region. To exploit asynchronous task parallelism
within the region, however, the programmer would need to implement their own work-
stealing task scheduler.

Database systems often exploit nested parallelism inside critical sections protected by
transactions [56]. More recently, new dynamic-threading languages such as Fortress [13]
and X10 [37] also provide an atomic (or similar) construct which allows users to specify
blocks of code as transactions. Also, the specification for these languages allows users to
spawn and expose task parallelism inside transactions. Transactions with nested parallelism
are generally more complicated to support than locked critical sections because the runtime
needs to detection conflicts between transactions and rollback transactions when they abort.
In Chapter 6, I discuss support for transactions with nested parallelism in Cilk.

Cooperative techniques, where one thread helps another thread complete its work, have
previously been proposed in a variety of contexts. In the context of nonblocking algorithms,
researchers [22,75, 118] describe algorithms where threads cooperate to complete an op-
eration when they would otherwise block for synchronization. In the area of databases,
Lim, Ahn, and Kim [94] describe a concurrent Bli"nk tree algorithm which uses cooperative
locking to handle nodes with concurrent underflow.

Directions for Future Research

One interesting direction for future research is to try to develop more efficient runtime and
compiler support for helper locks. The HELPER prototype described in this chapter is not
heavily optimized. In particular, executing a region requires multiple lock acquisitions to
add and remove workers from the deque pool for each region, even in the case when no
other workers block or steal into the region. One way to improve performance would be to
try to optimize the runtime for the case when only a single worker executes the region. Also,
one might add compiler support to generate more efficient code for starting and finishing
each parallel region which is specialized to the region being executed.

Another avenue for future work is to implement a more sophisticated hash table using
helper locks for resizing and to compare it to other optimized concurrent hash-table im-
plementations. Most concurrent hash tables (e.g., hopscotch hashing [67]) are optimized
for the case when most operations are queries. It would be interesting to explore whether
one can efficiently parallelize resize operations using helper locks in phases of a program

where updates are frequent without affecting the performance in the phases where queries
dominate.

It would also be interesting to identify other applications which might benefit from
helper locks and benchmark these applications on an improved prototype of HELPER. For
example, one might conceivably use HELPER locks to support computations written using
futures [57,58].

Finally, one may be able to find other uses for HELPER's parallel region construct
besides helper locks. For example, one might use parallel regions to try to optimize for
locality in a region, i.e., by limiting the worker threads allowed to execute a region to the
set of workers which are executing on processors that share a cache. In Chapter 4, 1 describe
another use case for parallel regions, namely enabling legacy-C functions to call back to
parallel Cilk code.

100

Chapter 4

Parallel Regions for Legacy Callbacks

In dynamic-threading platforms such as MIT Cilk [51] and Cilk++ [93], it can be difficult
to efficiently compose parallel dthreaded code with legacy code that make use of callback
functions. For example, MIT Cilk prohibits a C function from calling back to a Cilk func-
tion, which prevents users from composing a parallel function inside a callback function
for a legacy library. More generally, MIT Cilk and Cilk++ compile parallel functions us-
ing a special linkage that is incompatible with the linkage for ordinary legacy-C code.
Thus, these platforms lack the property of serial-parallel reciprocity (or SP-reciprocity
for short) [91], the ability to support arbitrary calling between parallel and serial code,
including legacy serial binaries.

To address this issue, dynamic-threading platforms such as Intel TBB [110] often sup-
port SP-reciprocity by using a modified work-stealing scheduler that differs from traditional
Cilk-like work-stealing. More specifically, TBB uses a restricted work-stealing scheduler,
one that prevents a worker from stealing certain ready tasks, to avoid using excessive stack
space. Although these schedulers often work acceptably in practice, they generally are
unable to guarantee worst-case bounds on time or space usage which are as strong as the
bounds for Cilk. Moreover, the theoretical implications of restricted work-stealing have
generally not been analyzed and documented in the literature.

Contributions

In this chapter, I investigate the use of restricted work-stealing schedulers in dynamic-
threading platforms to support SP-reciprocity. In particular, I discuss the following contri-
butions:

" I show that a dynamic-threading platform that uses subtree-restricted work-stealing
can support SP-reciprocity, achieve the same theoretical space bound as Cilk, and
still guarantee a nontrivial upper bound on completion time.

" I describe a worst-case computation that provides a lower bound on completion time
for restricted work-stealing. For this worst-case computation, a scheduler using re-
stricted work-stealing can only achieve a constant factor speedup using P processors,
whereas a platform using ordinary (unrestricted) work-stealing can achieve linear
speedup. This lower bound applies to subtree-restricted work-stealing, as well as
depth-restricted work-stealing, the restricted work-stealing scheduler used by TBB.

101

To show the feasibility of subtree-restricted work-stealing, I describe PR-Cilk, a design
of a dynamic-threading platform that uses HELPER's parallel region construct (described
in Chapter 3) to enable legacy callbacks from C code back to MIT Cilk code.1 PR-Cilk
demonstrates that a platform can use a single mechanism to support both helper locks and
legacy callbacks.

PR-Cilk also offers theoretical bounds on space and time usage. PR-Cilk provides
the same guarantee on stack-space usage as MIT Cilk. It also guarantees a completion-
time bound which is analogous to the bound for HELPER when callbacks from C to Cilk
functions generate parallel regions. This bound is worse than the bound for MIT Cilk. If
the number of callbacks from C to Cilk is small, however, or if each of these Cilk functions
called by C functions has sufficient parallelism, PR-Cilk still guarantees linear speedup.

Chapter Outline

This chapter is organized as follows. Section 4.1 discusses the challenges in supporting
SP-reciprocity in Cilk-like dynamic-threading platforms. Section 4.2 describes PR-Cilk,
the design of a dynamic-threading platform that supports SP-reciprocity using subtree-
restricted work-stealing. Section 4.3 presents the provable bounds on stack space usage
and completion time guaranteed by PR-Cilk. Section 4.4 presents a worst-case lower-
bound computation for completion time using a subtree-restricted work-stealing or depth-
restricted work-stealing scheduler. Finally, Section 4.5 concludes with a discussion of ideas
for future work.

4.1 Difficulty of SP-Reciprocity

This section discusses the challenge of supporting SP-reciprocity in dynamic-threading
platforms and describes of the approaches adopted taken by various dynamic-threading
platforms to address this problem. In particular, this section focuses on the approach
adopted by TBB, which uses the heuristic of "depth-restricted work-stealing" to provide
SP-reciprocity while still bounding stack-space usage.

An Example of Legacy Callbacks

In a program written for a dynamic-threading platform supporting SP-reciprocity, an ordi-
nary serial function foo is able to seamlessly call a parallel function A, even though A is
written and compiled for the platform and foo is written and compiled expecting A to be
a serial function. Without SP-reciprocity, it can be hard to integrate a parallel library into
existing code.

As a concrete example, consider the parallelization of a stencil-computation visualiza-
tion using Cilk++ and OpenGL, a demo from a recent class at MIT on multicore comput-
ing [1]. This interactive demo repeatedly evaluates a stencil computation for a 2-d heat
equation on an n x n grid, updating a window displaying the grid periodically and captur-
ing mouse inputs from the user to introduce heat sources into the grid. In the original serial

iPR-Cilk represents joint work [6] with Kunal Agrawal and I-Ting Angelina Lee.

102

code for the visualization, a draw method calls a compute method to perform the stencil
computation, and then it displays the result using OpenGL. In the main program, this draw
method is registered as a callback method with OpenGL, which handles the visualization.

The lack of SP-reciprocity in Cilk++ complicates the parallelization of this demo. Ide-
ally one would like parallelize the compute method using Cilk++. Since draw is a callback,
and OpenGL is binary compiled using an traditional compiler (e.g., GCC), however, draw
must use a standard C linkage and cannot be a Cilk function - a function that can con-
tain spawn and sync statements. Thus, the draw method cannot directly call the compute
method, which must be compiled using special Cilk linkage. MIT Cilk [51] and Cilk++ [93]
require special linkage because they use "shadow frames" to support the "cactus-stack" ab-
straction. For more details, see Section A.1.

In some cases, one can work around the lack of SP-reciprocity in MIT Cilk and Cilk++
by creating and managing Cilk contexts whenever a C function needs to call back to Cilk.
The stencil demo was parallelized using a global Cilk context object, which contains some
number P of associated worker threads. Inside the draw method, the code uses the context
object to run the Cilk method compute using the P threads. This workaround was sufficient
because the stencil computation was the only section of code being parallelized, and P for
the context could be set to the number of cores on the target machine.

Explicit management of Cilk contexts is not composable, however. If one had other
code or other callbacks running in parallel with compute, then the programmer would need
to create separate contexts for each. If the programmer allocates P threads to each of many
parallel contexts, then he or she will oversubscribe the machine, thereby degrading perfor-
mance with respect to both time and space. Conceptually, each context can be thought of
as a separate instance of the dynamic-threading platform. Unfortunately, there can often be
significant overhead for creating new contexts. Also, a programmer must carefully manage
context sizes in order to obtain good performance. Thus, this solution is difficult to apply to
applications that have multiple callbacks from C back to Cilk that can execute in parallel.

Alternatively, one can use special operating- system support to implement a cactus-stack
abstraction, as in the Cilk-M system described by Lee et al. in [91]. Cilk-M system uses
operating-system support for thread-local memory mapping to allow each worker to have
its own local view for memory addresses that correspond to the ordinary linear stack. In
a function A that spawns a function B, when the continuation of B (in A) is stolen by a
thief worker p in Cilk-M, p maintains the illusion of building off the same stack for A by
memory-mapping an appropriate range of stack addresses to a new page in memory. Un-
fortunately, this memory map must be thread-local, whereas traditional memory-mapping
system calls only create process-local mappings. Thus, using the Cilk-M runtime system
also requires using a special patched kernel.

SP-Reciprocity Using Linear Stacks

Since neither explicit context management nor Cilk-M are ideal for large-scale commer-
cial applications, existing dynamic-threading platforms 2 often provide support for SP-

2 Platforms that execute in virtualized environments, such as Fortress [13], Java Fork/Join Framework [90],
X10 [37] and TPL [92], do not typically have issues with callbacks from legacy binaries.

103

reciprocity by using linear stacks to simulate the cactus-stack abstraction. When one im-
plements the cactus-stack abstraction using ordinary linear stacks however, one generally
faces a tradeoff between the number of stacks needed, the space that may be potentially be
wasted on each stack, and the time bound that the platform can guarantee. As a concrete
example, suppose that a worker p is executing a Cilk function A using a stack K, and sup-
pose that A has multiple extant children. The other workers executing these extant children
may share a single view of A's frame sitting on a linear stack of worker p. Once this frame
for A has been allocated, its location in virtual memory cannot be changed, because there
may be a pointer to a variable in the frame elsewhere in the system. 3 Thus, even if p has
finished its child of A, since A's frame is shared, p cannot free the stack K where A resides
until all of A's extant children return. Thus, after p finishes its child of A, it generally has
three options:

1. Steal another frame B, but execute B reusing space on K (by putting the frame for B
below the frame for A).4

2. Steal another frame B, and execute B using a new stack K'.
3. Limit the frames that p is allowed to steal until all of the extant children of A are

finished.

Each of these approaches faces several obstacles.
In the first option, each worker p tries to reuse space on its stack K when stalling at

a sync. This option can potentially waste stack space, because once A (and possibly its
ancestors on K) finish, their space on K cannot be reused if B is still active. If A is already
deep in the stack and the stolen frame B is close to the top of the invocation tree, i.e., the
tree of function calls and spawns, then the stack K can grow twice as deep as what it would
be in a serial execution.5 Furthermore, this scenario, which increases stack-space usage,
could occur repeatedly every time p steals. Thus, this option could theoretically waste
significant stack space.

The second option requires switching stacks whenever p returns and stalls at a sync.
With this option, the number of stack switches can generally be proportional to the number
of successful steal attempts in the computation. Also, the number of stacks that may be
"active" at a time in a worst-case computation is at least C(Pd) stacks, where d is the
spawn depth of the computation. In the worst case, two workers might keep stalling at a
sync and stealing from each other at progressively deeper levels in the tree, causing a stack
switch at every spawn depth. More precisely, if a worker p is working on a stack frame F,
then in the worst case, each function F' which is an ancestor of F might have required a
stack switch. Switching between multiple stacks can also waste space because the runtime
must reserve enough virtual-address space for each stack to grow without any overflow
when nested function calls occur.

Intel Cilk Plus [73] utilizes this second option, implementing the cactus-stack abstrac-
tion by using a pool of ordinary linear stacks. In this system, for a function A that spawns
a function B, when the continuation of B (in A) is stolen, the thief worker resumes A on a

3This constraint applies more generally to any strategy that allocates frames in shared virtual-address
space.

4 We assume that the stack grows downward.
5Using the notation described in Section A.5, the space required can increase to 2S1.

104

new stack, taken from the pool of stacks. When a worker p resumes the continuation of a
sync statement, it may also need to switch linear stacks if there was a successful steal in
that sync block.6

Finally, the third option, limiting the ability of p to steal, avoids the problem of ex-
cessive stack-space usage, but at the cost of sacrificing the provable bounds on comple-
tion time that randomized work-stealing provides. As reviewed in Section A.3, Cilk-like
work-stealing schedulers provide provable bounds on completion time (i.e., Theorem A. 1),
because whenever a worker p steals, p is likely to steal a task whose execution is likely to
reduce the span (critical path) of the computation. When p cannot steal arbitrarily, Theo-
rem A. 1 no longer holds true. In the remainder of this section, I discuss two approaches
to supporting SP-reciprocity which are based on this third option, namely depth-restricted
work-stealing as implemented by TBB, and subtree-restricted work-stealing, which is used
by the PR-Cilk design.

Depth-Restricted Work-Stealing in TBB

Intel Threading Building Blocks (TBB) [110] is a dynamic-threading platform that enables
programmers to exploit task-based parallelism as a library. Because TBB is designed as
a library rather than a language, programs written using TBB can be compiled with an
ordinary (serial) C++ compiler. Thus, TBB automatically provides programmers with SP-
reciprocity.

Unfortunately, because TBB has no special compiler support, it cannot automatically
generate function continuations. Continuations allow a function to begin execution on one
processor, but resume execution on another processor (e.g., after a steal occurs). A library
such as TBB typically can utilize continuations only when they are explicitly provided by
the programmer. Programming with explicit continuations can be tricky because the cactus-
stack abstraction is unavailable. Said differently, if a task wants to initialize a variable x
and pass the address of x down to a child subtask, because there is no stack to allocate x
from, x must be allocated from the heap.

Thus, libraries such as TBB usually support additional, more convenient interfaces
which do not require coding explicit continuations. For example, TBB allows program-
mers to write blocking-style code, as shown in Figure 4-1. In this code, BTask is a task
which computes two values, x and y (using two parallel subtasks, XTask and YTask), and
then computes the sum x + y. To understand the behavior of blocking-style code, suppose
that worker pi begins executing BTask. In line 9, pi spawns YTask for other workers to
potentially steal and then starts working on XTask in line 10. Suppose that another worker

P2 steals YTask from pi, and then p1 finishes XTask before P2 completes YTask. Then pi
stalls at line 10, and pi begins trying to randomly steal work. If BTask was coded by the
programmer using an explicit continuation, then pi could then clear the stack space used by
BTask, since P2 could resume the continuation of BTask after P2 completes YTask. With

6 Conceptually, one could think of MIT Cilk and Cilk++ as a degenerate case of using multiple linear
stacks, with each linear stack only containing a single frame. Because each stack contains only a single
frame, instead of storing that frame on a linear stack that can grow downward, the Cilk compiler optimizes
the linear stack into a shadow frame (which is allocated from heap memory), at the cost of requiring a special
calling convention.

105

1 class BTask: public task {
2 int* sum;
3 int x, y;
4 BTask(int* sum_) sum(sum_)
5 task* execute() {
6 XTask& tx; YTask& t-y;
7 tx = *new(allocatechild() XTask(&x);
8 ty = *new(allocatechild() YTask(&y);
9 spawn(ty);

10 spawnandwaitfor-all(tx);
11 *sum = x + y;

12
13 }

Figure 4-1: A blocking-style computation using TBB pseudocode. Code for reference
counting tasks has been omitted.

blocking-style code, however, pi cannot clear this stack space, since pi must eventually
resume BTask at line 11.

Blocking-style code is convenient because it can support the cactus-stack abstraction.
In blocking-style code, the programmer can allocate local variables on the stack of the
execute method and pass pointers to these variables to XTask and YTask. Using explicit
continuations, however, the programmer must declare these variables elsewhere (e.g., as
member variables of BTask), because control can return from the execute function before
both children complete.

To avoid a significant growth in stack space due to a worker repeatedly blocking and
stealing, TBB uses depth-restricted work-stealing [115], that is, TBB constrains a worker
to only steal tasks which are deeper than the worker's deepest blocked task. As the TBB
documentation states, this restriction on work-stealing may limit the available parallelism
and impact performance [110].

How restrictive is depth-restricted work-stealing, as compared to unrestricted work-
stealing? Unfortunately, it seems difficult to prove a nontrivial upper bound for depth-
restricted work-stealing. The fact that a thief can steal from arbitrary part of the invocation
tree (as long as the depth restriction is not violated) greatly complicates a theoretical anal-
ysis. More precisely, with depth-restricted work-stealing, even if a frame B is below A in a
worker's stack, A need not be an ancestor of B in the invocation tree. Thus, unlike in Cilk
or HELPER, it is not obvious how to count a steal as making progress on any "span" of the
computation.

The PR-Cilk design explores the notion of "subtree-restricted work-stealing," a stronger
version of depth-restricted work-stealing that is more amenable to a worst-case theoretical
analysis. As I discuss in Sections 4.2 and 4.3, HELPER's parallel region construct can be
used to implement callbacks from C to Cilk, thereby providing support for SP-reciprocity.

Section 4.4 also explores the limits of restricted work-stealing. In particular, I con-
struct a computation which, when executed using depth-restricted work-stealing or subtree-
restricted work-stealing on P processors, runs n(P) times slower than when executed us-

106

ing unrestricted work-stealing. Thus, there exists a computation which could exhibit linear
speedup when run on P processors, but which is asymptotically serialized by restricted
work-stealing.

4.2 PR-Cilk Design

PR-Cilk supports SP-reciprocity and provable space and time bounds by using a strategy
called subtree-restricted work-stealing. Instead of exclusively using shadow frames or ac-
tivation frames, PR-Cilk uses shadow frames of Cilk functions and the regular C activation
frames for C functions. At the high-level, PR-Cilk must add three functionalities to Cilk.
First, it must implement subtree-restricted work-stealing. Second, it must modify the run-
time system to implement the call semantics for invoking a Cilk function, which differs
from the spawn semantics. Finally, it must modify the compiler to perform a linkage tran-
sition automatically when a C function calls a Cilk function. This section describes the
design of these functionalities.

Subtree-Restricted Work-Stealing Using Parallel Regions

Like depth-restricted work-stealing, subtree-restricted work-stealing maintains the same
space bound as Cilk by restricting the frames that some processors can steal. Restricted
work-stealing is closely related to the idea of leapfrogging, a technique for implement-
ing futures described in [123]. Subtree-restricted work-stealing is in fact more restrictive
than TBB's depth-restricted work-stealing, but the stronger restriction enables us to prove a
stronger completion-time bound, because a stronger restriction eliminates some bad sched-
ules that the weaker restriction can allow.

To recall the problem, suppose that a worker p executes a C function foo which calls a
Cilk function B. Since the C function uses the activation frame, the stack space associated
with foo cannot be removed from the p's stack until all the descendants of B in the invo-
cation tree are completed. If p runs out of the work before all children of B finish, then, as
mentioned earlier, it must either block and wait for its extant children to complete, thereby
sacrificing the time bound, or steal, potentially consuming excessive space if it steals a
frame close to the top of the invocation tree.

Subtree-restricted work-stealing solves the problem by forcing p to steal from only
within B's subtree in the invocation tree. Conceptually, we refer to B's subtree as a callback
region, i.e., it is a subcomputation (potentially with nested parallelism) whose root is a Cilk
function called by a C function. In any serial execution, the stack depth of any frame within
B's subtree is greater than the stack depth of B, where p is stalled. Therefore, with subtree-
restricted work-stealing, no processor can use more stack space than the serial execution,
and we maintain the Cilk stack-space bound. Furthermore, any work p steals is work that
must be completed in order for B to return, and p is (in some sense) helping to complete its
own work.

PR-Cilk implements subtree-restricted work-stealing for callback regions using the par-
allel region construct described earlier in Chapter 3. Normally, a worker in Cilk is only al-
lowed to steal from the top of a deque. The parallel region construct in HELPER provides,

107

however, a mechanism for limiting work-stealing to a particular region, namely a subtree
of the invocation tree.

PR-Cilk implements each callback region as a parallel region, and thus automatically
uses subtree-restricted work-stealing. When worker p calls a Cilk function B from a C
function foo, it implicitly invokes start region (the compiler and the runtime support
for this is described later). The start-region call causes p to start a new region, which
involves p creating a new deque pool B.dqpool and creating a new deque q for itself in
B. dqpool. After creating the region, p continues to execute B, which may spawn more
functions under region B, and the frames associated with these functions are added to the q.
Other workers may later be assigned to this region and steal from q. Any additional work
created by these workers within B is added to some deque in B. dqpool as well. If p later
stalls on a sync in B, it can now steal work from any deque in the pool B.dqpool, since
such work belongs to the subtree rooted at B. Since PR-Cilk regions are not associated with
locks, PR-Cilk does not need to use the help-region construct from HELPER.

Compiler and Runtime Support for SP-Reciprocity

SP-reciprocity requires support for four kinds of invocations involving Cilk functions: (1)
a Cilk function can spawn another Cilk function, (2) a Cilk function can call a C function,
(3) a Cilk function can call another Cilk function, and (4) a C function can call a Cilk
function. MIT Cilk supports the first and the second functionality but not the third and
fourth. In order to support the third type of invocation, allowing one Cilk function to call
another, one can modify Cilk runtime system to store stacklets, i.e., sequences of frames
in a deque, corresponding to Cilk functions connected by call relations, instead of single
frames in deques. This approach resembles the technique used in both the Cilk++ and the
Cilk-M runtime systems (for details, see the description in [49]).

The most interesting case for PR-Cilk is the fourth kind of invocation, allowing a C
function to call a Cilk function. PR-Cilk must modify Cilk to handle two issues. First, since
all Cilk functions still use the Cilk linkage (and shadow frames), the runtime must transition
between two different kinds of linkages when a C function calls a Cilk function. Second,
the compiler must generate code for automatically creating a parallel region whenever a C
function calls a Cilk function.

The PR-Cilk compiler generates a special "callable clone" and a "parallel clone" for
each Cilk function B, where the callable clone is a C function and the parallel clone is the
Cilk function. Conceptually, the callable clone is a wrapper function for B that invokes
the parallel clone of B as a region. Since the callable clone uses the ordinary C linkage
(i.e., uses a linear stack), an ordinary C function foo can call the callable clone without
recompilation, as long as the callable clone has the same function header expected by f oo.
In the callable clone, a startregion call is made to create a parallel region. The parallel
clone, on the other hand, is essentially equivalent to the user-defined Cilk function B that
can be spawned, but is renamed to avoid a naming conflict. The compiler can perform
this renaming for the parallel clone because the parallel clone is always spawned and the
Cilk compiler compiles all the spawn statements. A parallel region is not created when
another Cilk function A spawns B. In a chain of nested calls, the number of regions created
is exactly the number of times a C function calls a Cilk function.

108

1 cilk void A () {
2 foo (1, 2);
3 spawn E();
4 sync;
5 }

6 cilk void B (int* x, int* y)
7 spawn C(x);
8 spawn D(y);
9 sync;

10 }

11 void foo(int x, int y) {
12 B (&x, &y);
13 }

Figure 4-2: Cilk code illustrating the example where A calls f oo and then a C function f oo
calls back to a Cilk function B. In this example, Cilk functions are explicitly labeled with
the cilk keyword as a type qualifier.

1 void B(int* x, int* y)
2 startregion B-par(x, y);
3 }

4 cilk void B-par(int* x, int* y) {
5 spawn C-par(x);
6 spawn Dpar(y);
7 sync;
8 }

Figure 4-3: The callable and parallel clones for B conceptually generated by PR-Cilk. This
figure shows valid Cilk code for each clone. In practice, the compiler also translates this
Cilk code (along with the rest of the program) into C code with calls into the Cilk runtime.

To illustrate the use of the callable and parallel clones more concretely, consider the
Cilk function B from user code shown in Figure 4-2. Figure 4-3 shows the corresponding
clones that PR-Cilk conceptually generates for B. The callable clone, which is shown in
lines 1-3 of Figure 4-3, has the same header that f oo uses to call B. The parallel clone,
which is shown in lines 4-8, is essentially the original Cilk function B, except that it has
been renamed to B-par. The spawn statements are also compiled accordingly, as shown in
lines 5-6 of Figure 4-3. In the callable clone B, the parallel clone B-par is invoked as a
parallel region in line 2.

PR-Cilk uses the Cilk linkage for all Cilk functions that are spawned, but it uses the
C linkage for C functions. The transition between different linkages occurs in the callable
clone. That means, however, that a worker p which executes a callable clone must be the
worker that finishes the region and resumes back to f oo. PR-Cilk imposes this restriction
on foo because the activation frame for foo is still sitting on p's linear stack, and the

109

activation frame is the only way to resume foo since f oo has no shadow frame.

4.3 Bounds for PR-Cilk

Since PR-Cilk uses the same parallel region mechanism as HELPER [10], the stack-space
and completion-time bounds for HELPER in Section 3.6 can be simplified and applied
directly to PR-Cilk. This section presents the stack-space and completion-time bounds
for PR-Cilk. PR-Cilk guarantees the same stack-space bound as ordinary Cilk, namely
that an execution on P processors uses only P times as much space as a serial execution.
It also guarantees linear speedup for programs where each callback region has sufficient
parallelism.

Space Bounds

PR-Cilk's bound on stack-space usage is an extension of the Cilk's space bound [30].

Theorem 4.1. For a computation C, let S1 be the stack space requiredfor a serial execution
of C. PR-Cilk executes C on P workers using at most O(PS 1) stack space.

Proof In a sequential execution, the stack space used while executing a particular function
A is the space occupied by the frames corresponding to all of A's ancestors in the invocation
tree. Therefore, the total stack space S1 the maximum over all the root to leaf paths, the
sum of the stack space used by all the frames on the path. PR-Cilk, like ordinary Cilk,
follows the busy leaves property, which states that all the frames on a processors stack fall
on a single root to leaf path in the invocation tree. Since there are P processors, the total
space used by PR-Cilk is at most PS1. Note that in ordinary Cilk, consecutive frames on
a worker's stack have a parent-child relation, but in PR-Cilk, frames may have only an
ancestor-descendant relation. Intuitively, skipping over ancestors when walking up a single
worker's stack only helps the worst-case bound, and thus in PR-Cilk the frames on a single
worker's stack uses less than S1 space. El

Theorem 4.1 provides a stronger bound on stack space than directly applying Theo-
rem 3.11 for HELPER. HELPER has a weaker bound than PR-Cilk because in HELPER,
a worker in region A can make an explicit call to help into a region B which is not nested
in A. Thus, in the worst case for HELPER, a single worker could have stack frames from
every region.

Completion-Time Bounds

To bound completion time, we apply the existing time bound for HELPER (Theorem 3.10
in Chapter 3) directly. We assume that the computation executes on hardware with P pro-
cessors, with one worker assigned to each processor.

Theorem 4.2. Let Tp be the running time of a computation C using PR-Cilk running on
P processors. A computation C with N callback regions, work T1, and aggregate span

110

T. runs in expected time E [Tp] = 0 (T1 /P + T. + N InP). Moreover; for any E > 0, with

probability at least 1 - E, the execution time is Tp = O(T1 |/P + T.+NInP +lg(1 /E)).

Proof An execution of a PR-Cilk computation is equivalent to a HELPER computation
with no help-region calls, assuming PR-Cilk uses the same entering policy as HELPER.
Thus, we can apply Theorem 3.10 with M = N - 1.

In general, Theorem 4.2 is worse than the bound for Cilk, because T. can potentially
be larger than T.. Section 4.4 presents a pessimal computation for both depth-restricted
work-stealing and subtree-restricted work-stealing that illustrates the adverse effect that re-
stricting work-stealing might have. On this example, PR-Cilk can asymptotically serialize
a program while Cilk achieves linear speedup.

Using Theorem 4.2, however, one can derive Corollary 4.3, which gives a sufficient
condition for PR-Cilk to execute a program with linear speedup.

Corollary 4.3. Let Tp be the running time of a computation C using PR-Cilk running on P
processors. Suppose that every region A E regi ons(C) satisfies t 1 (A)/(t.(A) + lnP) >
P. Then E [Tp] = O(T1 /P), i.e., PR-Cilk achieves linear speedup.

Proof One can rewrite the completion-time bound in Theorem 4.2 in an alternative form,
i.e.,

E[TP= 0 (A) +T.(A)+1nP) (4.1)
AEregions(C)

If for each region A, we have t1 (A)/(t. (A) + InP) > P, then the quantity t.(A) + InP is
asymptotically dominated by t 1(A)/P term. E

Corollary 4.3 applies roughly when every region A has sufficient parallelism. This
condition is, of course, not a necessary one for achieving linear speedup. One can derive
stronger conditions by considering combinations of regions instead of considering each
region separately. For example, one may be able to amortize the time spent in small regions
with insufficient parallelism against the time spent in a large region A which does have
sufficient parallelism.

4.4 A Pessimal Example for Restricted Work-Stealing

In this section, I present a parallel computation which exhibits linear speedup on P pro-
cessors when executed by a runtime with an ordinary, unrestricted work-stealing sched-
uler, but which achieves only constant speedup when the runtime uses depth-restricted
work-stealing. This computation can also be modified to apply to subtree-restricted work-
stealing and PR-Cilk. First, I outline the general structure of the lower-bound computation.
Then, I analyze the runtime of the computation using both depth-restricted and unrestricted
work-stealing. This lower-bound computation demonstrates an asymptotic difference in
performance between restricted and unrestricted work-stealing and suggests that restricting
work-stealing can adversely impact application performance in practice.

111

F (k, z)

Figure 4-4: A series-parallel parse tree for the F, a lower-bound computation for restricted
work-stealing. Squares represent serial tasks, labeled with the work of each task.

The pessimal example is generated by a method F (k, z), which conceptually chains
together k instances of F(1,z). I describe this example using a series-parallel tree [45]
representation, as reviewed in Section A.4. Figure 4-4 shows the a series-parallel parse tree
representation of F. A parallel traversal of a series-parallel parse tree models an execution of
a computation on multiple processors. The child subtrees of an S-node must be traversed
serially, from left to right, while the child subtrees of a P-node can be traversed in any
order. In this tree, a P-node corresponds to a blocking spawn. When a processor reaches
a P-node, it begins work on the left child subtree. If the right subtree is stolen and the
processor finishes the left subtree, then the processor is blocked on the (S-node) root of the
right subtree. I assume that the depth of a task is measured as the depth of P-nodes (i.e.,
nesting depth of spawns) in the tree.

The subroutine F (1, z) forms the core of the example. When executed on P processors
using depth-restricted work-stealing, F(1,z) runs for at least z time, but completes only
about 2z work. Intuitively, F spawns two tasks: one task G contains z potentially paral-
lel work (subtask zp), and the other task DepthTrap contains z serial work (subtask zs).
Ideally, P - 1 processors should work on G and one should work on DepthTrap. Instead,
DepthTrap begins with enough parallel work (P - 2 tasks with serial work x), and G be-
gins with enough serial work (y) so that P - 1 processors steal work from DepthTrap and
only one works on G. Once P - 1 processors steal from DepthT rap, P -2 processors block
waiting for one processor to complete z serial work. Furthermore, since DepthTrap traps
these P - 2 processors at a depth greater than the depth of any work in zP, the processors

112

void F(int k, int z) {
spawn(DepthTrap(lg(z), z));
spawnandwaitforall(G(k, z));

}
void G(int k,

H(z); if (k
int z)
> 1) { F(k-1, z); }

void H(int z) {
spawn (ParallelWork(z));
spawnandwaitforall(Seria lWork (y));

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

z); }

rk (1));

void TrapProcessors(int i, int z) {
if (i <= 1) { SerialWork(z); }
else {

spawn(TrapProcessors(i-1, z));
spawn-andwaitforall(SerialWork(x));

}

void ParallelWork(int n) {
if (n <= 1) { doUnitWork(; }
else {

spawn(ParallelWork(n - n/2));
spawn-andwaitforall(ParallelWork(n/2));

void SerialWork(int
for (int i = 0; i

}

n) {
< n; i++) { doUnitWork(; }

Figure 4-5: TBB pseudocode for the pessimal example F(k,z) from Figure 4-4. Code for
reference-counting of tasks has been omitted.

113

void DepthTrap(int d, int z) {
if (d == 0) { TrapProcessors (P-1,
else {

spawn (DepthTrap(d-1, z));
spawn-andwaitforall(SerialWo

remain idle, even after G creates additional parallel work.
To form the complete example, chain k repetitions of F (1, z), arranged so that repetition

j can begin only after the zp task of repetition j - 1 is complete. F is designed so that with
depth-restricted work-stealing, DepthTrap finishes before G enables the next repetition of
F. Then the k instances of DepthTrap occur sequentially, and F(k,z) requires at least kz
time to execute. Set the values of x and y in F to "sufficiently large" values. More precisely,
x should be large enough to guarantee that P - 1 processors complete P - 1 successful
steals with high probability, and y > x should be large enough to ensure that H (z) does not
complete before DepthTrap(z).

This example can be applied to other definitions of depth or other forms of restricted
work-stealing as long as one can construct a DepthTrap method which prevents processors
from stealing the work in zP once they enter DepthTrap. For subtree-restricted work-
stealing using parallel regions, this restriction appears automatically if DepthTrap is de-
clared as a parallel region, since workers do not leave the region until it is completed. Even
if one modifies parallel regions to allow processors that steal into the region to leave early,
one can still construct an appropriate trap for processors, since the processor that starts
the region is still not allowed to leave the region until it completes. An appropriate chain
of P - 1 nested regions can force all but one processor to be idle waiting for one other
processor to complete.

Theoretical Analysis

The properties of F can be stated and proved more formally. The next definition and lemma
tell us appropriate values for setting x and y. In particular, the values x > X(E) and y >
Y (E, z) in Definition 4.1 are chosen to be sufficiently large to make the behavior of random
work-stealing predictable, i.e., to satisfy Lemma 4.4.

Definition 4.1. Let c, be the maximum time for any steal attempt (successful or unsuccess-
ful). Define two functions:

X(E)=cs(P±PlnP)ln -
E

Y(E,z) =X(E)+cs(l+lgz)+P 2+Plgz.

Lemma 4.4. Consider an execution of F(1, z) using a depth-restricted work-stealing sched-
uler. If x > X (s), and y > Y (c, z), then, with probability at least 1 - E, P - 1 processors are
stuck in Dept h Trap(z) for at least z time.

Proof For i E { 1,2,... P - 1}, let ti be the time step when some processor begins working
on node Si in Figure 4-4. Similarly, let td be the time when some processor begins work
on node Sd, i.e., a processor has reached the bottom of the chain of length d = 1 + lgz in
Dept hT rap. Intuitively, we prove the lemma by showing that tp_1, the time that a processor
starts working zs, is likely to satisfy tp-1 < X(e) + csd. Then, since y > Y(E, z) > X (E) +
csd, the subcomputation H(z) does not generate any parallel work before time tp-1, and

114

processors must steal only from DepthTrap. Furthermore, if we have tp_1 - td < X(E) < x,
then it is impossible for a processor to finish a serial block of work x before tp_1. Thus,
each of the P - 2 tasks with x serial work and the task z, must be executed by one of P - 1
distinct processors. Finally, once P - 1 processors have stolen from DepthT rap, they are

trapped waiting on z, at a depth larger than the depth of any parallel work generated by
H(z).

More precisely, to bound tp_1 , we construct events Ai which capture the notion that the

ti's are meeting their "likely" deadlines. Let A 1 be the event that

td < csd +cSP (.P/1)

Similarly, for j c {2,3, ... P - 1}, let Aj be the event that

(ln(P/E))
tj < csd + csP

i=1

We can show by induction that Pr(f 1 _ Ai) > (1 - E/P)j. Substituting j= P - 1 and sim-
plifying the sum gives us tp_1 < X() + csd with probability at least 1 - E.

In the base case for induction, we compute Pr(A1). Initially, one processor begins work
on G, and P - 1 other processors attempt to steal S1. Since processors steal randomly, the

probability that Si has not been stolen after n steal attempts is at most (1 - l1/P) < e-n.
Thus, with P - 1 processors stealing, S1 is stolen before time csPln(P/E)/(P- 1) with
probability at least 1 - E/P. Once work begins at node Si, we know some processor must
reach Sd in at most csd = cs(1+ g z) time (i.e., td - ti < csd) since in the worst case, steals
happen for every right S-node on the chain of length d in DepthTrap. Thus, we have

Pr(Ai) 1 - E/P.
To bound Pr(Ai n A2), we first condition on Ai occurring. Once a processor reaches

Sd, it then quickly spawns S2 and begins working on a block with serial work x. For any
time t in the range td < t < t2 , at least P - 2 processors must be idle and trying to steal

S2. Thus, using the same analysis as for ti, we know that t2 - td < csPln(P/E)/(P - 2)

with probability at least 1 - E/P. Thus, we have Pr(A2 |A1) > 1 - E/P, and Pr(Ai nA2)
Pr(A2 |A1) -Pr(A1) > (1 - c/P)2

We complete the induction by repeating this analysis for the remaining Aj. Conditioned

on the event that flii- Ai, we know for times t such that tj_ i < t < tj, at least P - j proces-

sors are trying to steal Sj. Thus, we have tj - tj-i < cSP (P/f) with probability at least

1 - c/P, and hence Pr (n' A.) > (1 - E/P)j.

Finally, to show tp 1 - td < X (e) with probability at least 1 - E, note that if we ignore

Si and compute deadlines for ti - td instead of ti, the same inductive proof used to bound

tp_1 applies. l

By using Lemma 4.4, we can bound the completion time of H(z) and DepthTrap(z).

Theorem 4.5. For an execution of F(1, z) using depth-restricted work-stealing, let TH and

115

TD be the completion times of H(z) and DepthTrap(z), respectively. If x > X(E) and
y Y(E,z), then TH - TD > 0, i.e., H(z) does not finish before Depth Trap.

Proof By Lemma 4.4, since DepthTrap begins executing zs at time tp__ and DepthTrap
requires at most z + P + gz additional time to finish, we have TD < tp 1 A z -+ gz + P.
Also from Lemma 4.4, with probability at least 1 - e, we know DepthT rap keeps P - 1
processors occupied and H(z) executes serially for at least tp_ 1 +z time. Since H has at
least y + z work, it cannot finish before time TH > tp_ 1 + z + (y - tp- 1)/P. Then, we know
TH - TD (y - tp_1)/P - lg (z) - P. By substituting tp_1 5 X(c)+ cs(+lg z), we get that
TH - TD _ 0-

Corollary 4.6. Let x = X (e/k) and y =Y (e/k). With probability at least 1 - E, a depth-
restricted work-stealing scheduler using P processors requires at least 92(kz) time to exe-
cute F(k,z).

Proof By Theorem 4.5, the execution of F (1, z), H (z) does not finish before DepthTrap(z)
with probability at least 1 - e/k. At least z time is required to execute DepthTrap(z). Thus,
using a union bound over k repetitions of F, we conclude that F(k, z) requires at least Q(kz)
time with probability at least 1 - c. D

A runtime using unrestricted work-stealing can complete F(k,z) quickly, however, be-
cause it can complete each zp quickly (i.e., in O(z/P) time) and overlap the executions of
the serial zs tasks from the k repetitions of F. Lemma 4.7 states this result more formally,
and Theorem 4.8 compares depth-restricted work-stealing and unrestricted work-stealing
for F (k, z).

Lemma 4.7. Let x = X (E/k) and y = Y (c/k). With probability at least 1 - E, an unre-
stricted work-stealing scheduler using P processors can execute F(k, z) in 0 (kz/P + z)
time, assuming that z = o(kP2 lg(kP/e)).

Proof The proof follows from the analysis of Cilk [30], which has an unrestricted work-
stealing scheduler. For a Cilk computation with work Ti and span T., the running time on
P processors is 0 (Ti /P + T. + 1g(P/E)), with probability at least 1 - E.

The span of F is T. < k(y + lgz) + z. From our choices of x and y, we know that
x = O(P 2lg(kP/E)) and y = x-+ O(P 2 +Plgz). If we have z - o(kP 2 1g(kP/E)), then one
can show that ky = o(z) and klg(z) = o(z). Thus, we have T. = O(z). Similarly, the
work of F is Ti = k((P-2)x+y+2z) + (k(P+1gz)). Since the 2kz term asymptotically
dominates the other terms, we have Ti = O(kz). l

Theorem 4.8. There exists a computation for which the ratio of the runtime using a depth-
restricted work-stealing scheduler compared to the runtime using an unrestricted work-
stealing scheduler is Q(P).

Proof Choose k = n(P) and z - o(kP 2 1g(kP/E)). Then the computation F(k, z) satisfies
Corollary 4.6 and Lemma 4.7, producing a competitive ratio of 92(P). l

116

4.5 Conclusions

In this chapter, I have described PR-Cilk, a runtime system design that uses parallel re-

gions to support SP-reciprocity using subtree-restricted work-stealing. The PR-Cilk design
demonstrates that a dynamic-threading platform can support the composition of parallel
functions inside legacy callbacks and still providing provable guarantees on performance. I
conclude this chapter by describing some potential extensions to PR-Cilk and some avenues
for future research.

I describe a design of PR-Cilk that uses the parallel regions from HELPER without
much modification. HELPER already provides a correct implementation for PR-Cilk as
well the completion-time bounds stated in Section 4.3. Since SP-reciprocity has slightly
different semantics than helper locks, however, one may change some of the policies in
HELPER for moving workers between regions. Using different policies may improve PR-

Cilk's performance for some classes of programs. In this section, I discuss these potential
optimizations. First, I consider adaptive callback regions, regions in which helper workers
that enter a region A can potentially leave before A completes. Second, I consider capacity-
limited regions, regions A which allow only a limited number of workers P(A) to enter,
where P(A) can be less than P, the total number of worker threads.

The default implementation of HELPER described in [10] uses what we call an ab-
sorbing transition policy - namely, (1) a worker p in region A enters a nested region
B immediately if p ever encounters an empty deque in A. dqpool with a child deque q in
B. dqpool, even if q is empty,7 and (2) workers never leave a region A until A completes.

Alternatively, one might consider modifying this policy to support lazy entering and/or

eager exits. In lazy entering scheme, a worker p only enters a nested region A through
random work-stealing if the deque that p encounters is nonempty. If A is a serial region,
then this policy prevents workers from unnecessarily entering A. Similarly, in an eager exit
scheme, workers assigned to a region can leave a region before it completes. In order to

maintain good space bounds, the worker which starts a particular parallel region A must
remain in A until A finishes, but any other worker p (which enters A due to random steal-
ing) can leave whenever p's deque in A. dqpool is empty. This strategy might provide better
performance for programs with mostly sequential regions, since workers can leave the re-
gion and work on something else. On the other hand, this strategy might cause workers

to repeatedly enter and leave a region, thereby incurring higher overhead. These modifica-
tions do not change the space bound guaranteed by PR-Cilk and are unlikely to improve the
worst-case time bound, since the lower-bound computation from Section 4.4 still applies.
These changes may, however, improve the performance of PR-Cilk in practice.

Another modification to the PR-Cilk scheme would be to allow programmers to specify
a capacity limitation on callback regions. For example, if the programmer knows that a par-
ticular callback region has a parallelism of 4, they can specify it, and the runtime system

would then allow only 4 workers to enter the region. This scheme may improve perfor-
mance for programs with callback regions that have limited but predictable parallelism.

Although parallel regions were originally designed for supporting helper locks, with

7 With an absorbing transition policy, it is sufficient for a worker p to look only one level deep in the

victim's deque chain, because if p finds an empty deque q, it enters the region for q and is then able to steal

from q's child deque.

117

minimal change, PR-Cilk can use regions to support SP-reciprocity. An interesting re-
search question is whether parallel regions have other use cases, and how these uses interact
with the existing scheduler. For example, in the stencil computation demo, the program-
mer might wish to execute the visualization as a parallel "1/0 region" which has a static
number of worker of threads dedicated to it. One natural question is whether one can adapt
a Cilk-style scheduler and programming model to handle this type of interaction between
static and dynamic threading. Conceivably, one might be able to use techniques of provid-
ing adaptive parallelism feedback as described in [7] to achieve provable completion-time
bounds for such a system.

118

Chapter 5

Memory Models for Nested Transactions

Transactional memory (TM) is a term that describes a collection of hardware and software
mechanisms that provide a transactional interface for accessing memory. Atomic transac-
tions are a well-known and useful abstraction for programmers writing parallel code which
have been utilized in database systems [56] for decades. More recently, however, transac-
tional memory [65] has become an active area of study as researchers have observed that
transactions might be used as a general-purpose mechanism for synchronizing access to
shared memory in parallel programs. TM systems often provide programmers with a sim-
ple interface for specifying a block of code as a transaction. Conceptually, a TM system
enforces atomicity by tracking the memory locations that each transaction accesses, finding
"conflicts" between active transactions, and aborting and retrying transactions that conflict.

Researchers have argued that using TM for synchronization is more composable than
using locks. As discussed in Section 1.4, programming with transactions is composable
because TM systems can support nested transactions. Unfortunately, it turns out that non-
trivial nesting of transactions can introduce significant complications into TM, particularly
when transactions are allowed to contain nested transactions with nested parallelism, or

when programmers uses the optimization of "open-nested" transactions. To provide com-
posable synchronization using transactions in a dynamic-threading platform, it is helpful
to have a precise specification of the semantic guarantees provided by TM with nested
transactions.

Contributions

In this chapter, I present the transactional-computation framework, a formal model for
understanding the semantics of TM systems with nested transactions.1 Using this frame-
work, one can formally describe "serializability," the classical correctness condition for
transactions, and then generalize this condition to handle transactions with nested parallel
transactions. Chapter 6 uses this transactional computation framework to describe how a
TM runtime can support nested parallel transactions, and Chapter 7 uses the framework to
explore the semantics of "open-nested" transactions.

1The transactional computation framework is derived from the formal model described in [8], which is

joint work with Kunal Agrawal and Charles E. Leiserson.

119

Chapter Outline

The remainder of this chapter is organized as follows. Section 5.1 reviews the basic con-
cepts of transactional memory (TM) from the literature and discusses some of the se-
mantic complexities that nested parallelism introduces into TM. Section 5.2 presents the
transactional-computation framework. Section 5.3 uses this framework to define several
memory models for transactional memory - the model of serializability, as well as the
model of "prefix-race freedom," a model which is seemingly weaker, but which more
closely matches the behavior of a TM runtime system. In fact, Section 5.4 shows, the mem-
ory models of prefix-race freedom and serializability are equivalent for programs without
open-nested transactions. Section 5.5 uses these memory models to define transaction con-
flict for TM with nested parallel transactions, and then it presents an operational model for
TM based on this conflict definition. Finally, Section 5.6 shows that this operational model
guarantees that transactions are serializable.

5.1 Overview of Transactional Memory

This section reviews the notions of serializability and conflict detection in transactional
memory (TM) and discusses the complications that nested parallel transactions add to TM.
In particular, this section presents example code illustrating why a TM system requires
additional runtime mechanisms to support nested parallel transactions.

Serializability and Conflict Detection

TM systems typically guarantee that transactions are serializable [107], that is, transactions
affect global memory as if they were executed one at a time in some order, even if in reality,
several transactions executed concurrently.

As a concrete example, consider the transactions shown in Figure 5-1. This code as-
sumes that programmers specify transactions using atomic blocks, i.e., the code enclosed
inside a block labeled with the atomic keyword represents a transaction. The transaction
X reads two values from an array A at indices a and b and stores their sum into A at index c.
X also inserts the values from A at indices a and b into their corresponding slots in array B.
The transaction Y performs an analogous computation to X, except using indices d, e, and
f. A TM system guarantees that a concurrent execution of X and Y is serializable, i.e., it
appears as though either X executed serially before Y (as in Schedule 1), or vice versa, i.e.,
Y executes serially before X. In reality, the system may interleave memory accesses from
X and Y, as in Schedules 2 or 3, but the TM system is responsible for guaranteeing that
these schedules are equivalent to a serial schedule (e.g., Schedule 1).

To guarantee that transactions are serializable, a TM system tracks the memory loca-
tions accessed by each transaction, aborting transactions that might generate a conflict. For
the example in Figure 5-1, if the sets {a, b, c } and {d, e, f} do not intersect, then a TM sys-
tem will not detect any conflicts for X and Y since they access disjoint sets of memory. If
the sets intersect, however, then the transactions X and Y may conflict if both transactions
try to change the same location in the array B (e.g., a = e), or if one transaction tries to read

120

// Transaction X // Transaction Y

1 atomic { 9 atomic {
2 int vi, v2; 10 int vi, v2;
3 v1 = A[a]; // Xi 11 v1 = A[d]; // Yi

4 Insert(a, vi); // X2 12 Insert(d, v1); // Y2

5 v2 = A[b]; // X3 13 v2 = A[e]; // Y3

6 Insert(b, v2); // X4 14 Insert(e, v2); // Y4

7 A[c] = vi+v2; // X5 15 A[f] = vl+v2; // Y5

8 } 16

17 void Insert(int k,
int v) { Schedule 1: XiX 2,X3,X4,X5,YiY 2,Y3,Y4,Y5

18 B[k] = v; Schedule2: Yi,Xi,X 2 ,X3,X4 ,Y2,Y3,Y4 ,X5 ,Y5

19 } Schedule 3: Y1, X1,X2 , Y2 , X3 ,X4, Y3, Y4 ,X5 , Y5

Figure 5-1: Two concurrent transactions X and Y. We assume X can be subdivided into

fragments, namely Xi,X2 ,...,X5 , and similarly for Y. The fragments X2 ,X4 , Y2 and Y4

represent inserts into a shared global table. Schedule 1 represents a serial execution order.
If the indices a through f are all distinct, then Schedules 2 and 3 are interleaved execution
orders which are equivalent to Schedule 1.

a location to which the other is writing (e.g., if c = d).
More formally, consider a TM system that operates on a set M of memory locations.

For each transaction X, a TM system conceptually maintains a readset (denoted by R(X)),
and a writeset (denoted by W(X)), which represent the set of memory locations (i.e., the

subsets of M) that the transaction X has read from and written to, respectively. Define a

flat TM system as a TM without any nested transactions. In this dissertation, we consider
TM systems with eager conflict detection, that is, a TM that checks for "conflicts" on the
first access to every memory location. More precisely, we consider TM with the following
definition of conflict:

Definition 5.1. A flat TM system with eager conflict detection reports a conflict between

two active (i.e., currently executing) transactions X and Y if

{w(X)n(R(Y)U w(Y))}U{W(Y)fn(R(X)UW(X))} 0,

that is, X and Y have conflicting readsets and writesets.

According to Definition 5.1, a conflict occurs when transaction X tries to write to a
memory location f that transaction Y has read from or written to, or vice versa.

With eager conflict detection, if the end of a transaction X is reached without detecting
any conflicts, then assuming no other memory accesses from (other) transactions occur,
then the TM runtime is free to commit the transaction X, i.e., make X's changes to memory

locations permanent. Otherwise, if the runtime detects a conflict, then it may abort X, i.e.,
rollback any changes to memory performed by X. Thus, transaction X appears either to
execute atomically if it commits, or not at all if it aborts.

Instead of eager conflict detection, some TM systems implement lazy conflict detection,
where in order to commit a transaction X, the TM runtime must first validate X - scan over

121

the readset and writeset of X to determine whether X can commit. For a more extensive
classification of conflict detection in TM, see [88, Section 2.3] or [111].

Eager conflict detection according to Definition 5.1 is "conservative" in the sense that
a TM system with eager conflict detection may report a conflict between two transactions
even though a more generic TM could theoretically finish both transactions without report-
ing a conflict. For example, consider Schedule 2 from Figure 5-1 for a generic TM, with
all a through f distinct except b = e. In Schedule 2, after X4 completes, the TM system
has A [b] in W(X). Thus, when Y3 executes, in theory, transaction Y could read the value
of A [e] = A [b I written by transaction X. Then, both X and Y could both complete and
commit at the same time. It can be difficult to implement this more generic TM system,
however, because it must support cascading aborts of transactions - if Y reads a value
written by X, but then later X needs to abort, then the abort of X would also force Y to
abort.

More generally, it is not feasible to implement an ideal TM system, i.e. a system that
permits every serializable schedule without aborting transactions. Papadimitriou [107]
demonstrates that detecting whether a given schedule of reads and writes is serializable
is NP-complete. Thus, a TM system must be somewhat conservative in conflict detection
to be able to operate efficiently online.

Nested Transactions

As mentioned in Section 1.4, researchers have argued that using TM is composable be-
cause TM systems can handle nested transactions. TM systems can implementflat nesting
of transactions, which conceptually merges any nested transaction Z into its outer transac-
tion X. Flat-nested transactions can allow users to call a function inside a transaction X
without needing to know whether it will generate a nested transaction Z. For example, in
the Insert method from Figure 5-1, suppose that we enclose line 18 within an atomic
block. In this example, flat nesting does not change the correctness of the transactions call-
ing the Insert because any transaction that would conflict with transaction Z must also
conflict with transaction X.

To enhance the composability of TM, however, we would like to have support for nested
parallel transactions. For example, consider the code in Figure 5-2, where the function F
(line 11) is a transaction which executes two calls to update2 (line 4) in parallel. Let X1
and X2 denote the transactions invoked in lines 13 and 14, respectively. With nested parallel
transactions, a TM system guarantees that Xi and X2 execute atomically and thus do not
interfere with each other, even though they are both nested transactions.

We would also like to have transactions nested to arbitrary depth. For example, in X1 ,
the update2 function itself performs a spawn (line 6), creating two parallel transaction
instances of the atmUpdate (line 1). Let Yi and Y2 denote the instances of atmUpdate
created by Xi in lines 6 and 7, respectively.

When transactions can contain nested parallelism and nested transactions, it turns out
that TM using only flat-nested transactions no longer guarantees that transactions are serial-
izable. Flat nesting, which would elide all but the outermost transaction, does not guarantee
a correct execution of this code. Normally, a call to update2 has no visible effect when x
and y point to the same variable, since the variable is incremented and then decremented.

122

1 void atmUpdate(int* x, int v)
2 atomic { *x = *x + v;
3 }
4 void update2(int* x, int* y) {
5 atomic {
6 spawn atmUpdate (x, 1);
7 atmUpdate (y, -1);
8 sync;
9

10
11 void F(int* X, int a, int b, int c, int d) {
12 atomic {
13 spawn update2(&X[a], &X[b]);
14 update2 (&X[c], &X[d));
15 sync;
16
17

Figure 5-2: A code example which requires closed nesting. The update2 increments the
integer pointed to by x and decrements the integer pointed to by y using parallel transac-
tions. The function F invokes two instances of update2 in parallel, which modify the array
X at the positions specified by the indices a through d.

With flat nesting, however, the transactions inside update2 would be eliminated. Then, if
x and y were equal, the transaction instances Y1 and Y2 could potentially interfere with each
other, changing the variable's value.

Instead, to correctly support transactions with nested parallelism, a TM system must use
what are referred to in the literature as closed-nested transactions [101]. One can define
closed nesting operationally. Every transaction Y maintains its own readset and writeset,
even if Y is nested inside another transaction X. When a transaction Y is closed-nested
inside X and commits, it merges all memory locations in R(Y) into R(X), and similarly it
merges w(Y) into W(X), thereby effectively committing Y with respect to X.

To consider closed nesting for the previous example, suppose that the input to X1 has
both x and y equal and pointing to some memory location f. Then, while Yi is executing,
f will be added to R(Yi) and w(Y1). Thus, while Y is active, the TM runtime would detect
a conflict if Y2 tries to concurrently to modify f. If Y2 tries to modify f after Y1 commits,
however, P would have been merged into the R(X1) and w(X1), and then Y2 would not
generate a conflict. Nevertheless, the transaction X2 (line 14) running in parallel with X1
can still cause a conflict if X2 accesses e.

It can be tricky to reason about the correctness of closed nesting using an operational
definition, that is, a description of how TM maintains transaction readsets and writesets.
With an operational definition, one needs to consider both how the TM runtime performs
conflict detection and how it schedules code on different processors. To pose the problem
more concretely, consider the function X shown in Figure 5-3, which performs parallel
increments to a shared variable, and its corresponding computation DAG in Figure 5-4.
The function X exhibits several race conditions on the variable x, as the function contains

123

1 void update(int* x, int v) {
2 *x = *X + V;

3 }
4 void Y(int* x)
5 spawn update(x, 100);
6 update (x, 1000);
7 sync;
8 }
9 void X ()

10 int x = 0;
11 spawn update (&x, 1);
12 update (&x, 10);
13 Y(&x);
14 sync;
15 printf("x = %d", x);
16 }

Figure 5-3: A Cilk function X that updates a shared variable x in parallel, without synchro-
nization. This program contains several data races. Assuming sequential consistency, the
possible valid outputs for x are 1, 11, 101, 110, 111, 1001, 1010, 1011, 1101, 1110, or
1111.

several concurrent updates to x which are not guaranteed to execute atomically. Since every
update to x can be broken up into two memory operations, namely a read from x and a
write of the updated value to x, some updates might be lost, depending on how instructions
interleave in a parallel execution.

Suppose that we wrap segments of the code from Figure 5-3 inside atomic blocks, as
shown in Figure 5-5. How does a TM system execute this code, and what final values of
x are possible in an execution? Fewer interleavings of the updates are possible because
some updates occur inside transactions. Races still exist, however, because an update to

x outside a transaction (e.g., line 10 in Figure 5-5) can run in parallel with an update to
x inside a transaction (line 11). Unfortunately, the behavior of having "nontransactional"

Figure 5-4: The series-parallel DAG for the sample program given in Figure 5-3.

124

void update (int* x, int v)
*x = *x + v;

void atmUpdate(int* x, int
atomic {

*x = *x + v;

{

V){

void Y (int* x) {
spawn update (x, 100);
atmUpdate (x, 1000);
sync;

}
void X()

int x = 0;
atomic {

spawn atmUpdate (&x, 1);
atomic {

update (&x, 10);
Y (&x)

}
sync;

printf("x = %d", x);

Figure 5-5: The code from Figure 5-3 with transactions added.

code in parallel with a transaction is often dependent on the particular TM implementation.
Figures 5-2 and 5-5 illustrate some of the subtleties involved in understanding the cor-

rectness of a TM implementation. Although the notion of serializability [107] is intuitive
in a static-threading programming model, where transactions execute serially on different
threads, in an environment with dynamic threading, where transactions can have nested
parallelism, we need a more precise model for understanding TM. Thus, the remainder of
this chapter describes a framework for transactional computations, which can be used to
understand the correctness guarantees provided by TM.

5.2 Transactional Computations

This section defines transactional computations, a framework for modeling the properties
of TM systems that support nested transactions. Our framework is inspired by a com-
bination of the computation-tree framework for Cilk (reviewed in Section A.4), as well
as the computation-centric memory models of Frigo and Luchangco in [48,52,96]. The
transactional-computation framework uses computation trees to model both the parallel
structure of a computation and the nesting structure of transactions. It also uses the notion
of an "observer function" from [52] to model the behavior of read and write memory op-

125

Figure 5-6: The computation DAG for the sample code given in Figure 5-5. Transactions
are enclosed in rectangles.

erations. Section 5.3 uses this framework to define memory models for TM and explore
serializability for TM systems with nested parallel transactions.

The computation-centric model focuses on an a posteriori analysis of a program ex-
ecution. After a program completes, we assume that the execution has generated a trace
which is abstractly modeled as a pair (C, (P), where C is a computation tree (as defined in
Section A.4), describing the memory operations performed and transactions executed, and
<D is an "observer function" describing the behavior of read and write operations. We shall
define C and <D more precisely below. We define U to be the set of all possible traces.

Within this framework, we define a memory model as follows:

Definition 5.2. A memory model is a subset A C U.

That is, A represents all executions that "obey" the memory model.

Computation Trees

This section reviews the computation tree framework for programs without transactions.
This framework is described in more detail in Section A.4.

A computation tree C has two types of nodes: primitive operation nodes primops(C),
and control nodes spNodes(C). In transactional computations, a control node can either be
an S-node or a P-node. For an S-node X, all the child subtrees of X must be executed in
series, from left to right, but the child subtrees of a P-node are allowed to execute in parallel
with each other in an arbitrary order. We assume that computation trees have a canonical
form; more specifically, the set sNodes(C) of S-nodes can be partitioned into task nodes
tasks(C) and function nodes functions(C), and every P-node X E pNodes(C) has only
two task nodes as children. Define nodes(C) = primops(C) U spNodes(C).

This chapter uses many of the structural notations for computation trees defined in
Section A.4. Denote the root of the tree C as root(C). For any node B E nodes(C),
let parent(B) denote the parent of B in C, or NULL if B = root(C). Similarly, let

126

children(B) denote the ordered set of B's children, or NULL if B is a leaf. For any tree
node B C no des(C), let ances(B) denote the set of all ancestors of B in C, and let des c(B)
denote the set of all B's descendants. Denote the set of proper ancestors (and proper de-

scendants) of B by pAnce s(B) (and pDe s c (B)). Denote the least common ancestor of two
nodes B1, B2 c C by LCA(BI, B2).

For any set of computation tree nodes J C nodes (C), it is also useful to define the leaf
set of J as

leafSet (J)={X E J : pDesc(X)nJ=} .

Conceptually, leaf Set (J) is the subset of J which form the "leaves" of J. All other nodes
Y c J are on the path from some X E J to root(C). For sets J which are guaranteed to
have IleafSet (J)| = 1 (e.g., leaf Set (ances(X)) for some X), we define leaf (J) as the
unique element in lea f Set (J).

Since subtrees of C are themselves valid computation trees, we shall sometimes over-
load notation and use a subtree and its root interchangeably. For example, if X = root (C),
then pr imops(X) refers to all the primitive operation nodes in primops (C) n des c(X).

As reviewed in Section A.4, there is a direct correspondence between a computation tree

C and its computation DAG g =(V(C),E(C)). Intuitively, every node X E spNodes(C)
maps to two vertices source(X) and sink(X) in the computation DAG G, which enclose

the subDAG corresponding to the subtree rooted at X. For any two vertices u, v E V(C), we
say u - G v if there is a path from u to v in G.

Finally, we consider topological sorts of computation DAGs. For a DAG G, define

tsorts(G) as the set of all topological sorts of G. Any sort S E tsorts(g) defines a

precedence relation <s: for any two vertices u, v E V(C), we say u <S v if u comes before
v in the sort order S.

Computations with Transactions

We can extend the computation tree model to add transactions. Unless otherwise specified,
in this chapter, we consider a closed TM system - a TM system that supports only closed-
nested transactions.

Since TM is concerned with accesses to memory, we require additional definitions

for memory operations. We define a special subset of primitive operations - memory-
operation nodes, which we denote by memops (C). Also, we define M to be the set of all

memory locations. Each leaf node u E memops (C) represents a single memory operation
on a memory location f c M. We say that node u satisfies the read predicate R(u, f) if u
reads from location f. Similarly, u satisfies the write predicate W(u,f) if u writes to t.

For transactional computations, we also specify that particular function nodes X E

functions(C) are transactions. Let xactions(C) C functions(C) denote the set of

transactions in the computation C. Conceptually, a node X c xactions(C) corresponds
to defining a transaction X that contains the subDAG starting at source(X) and ending

at sink(X). The nesting structure of transactions is specified by the computation tree

C. Define a transaction Y as nested inside a transaction X if X E ances(Y). We say
that two transactions Xi and X2 are independent if neither is nested inside the other, i.e.,
LCA(Xi,X 2) 0 {X 1,X2}.

127

Since we are only concerned with memory operations and transactions, without loss
of generality, in the remainder of our discussion of TM, we assume that primops(C) =
memops(C) and functions(C) = xactions(C), i.e., all primitive operations are mem-
ory operations, and all functions are transactions. Equivalently, we could treat every non-
memory operation as a read from its own private memory location, since such an oper-
ation does not contribute to transaction conflicts. Similarly, since every function node
F E functions(C) must have an S-node as a parent, we can conceptually elide any F
which is not a transaction by setting the parent of F's children to parent (F).

To illustrate these definitions more concretely, Figure 5-7 shows a computation tree C.
Figure 5-8 shows the corresponding computation DAG.

We also define notation that expresses the relationship of a node B to transactions in the
computation tree. For any node B E nodes(C), we define the transactional parent of B,
denoted by xParent (B), as

xParent(B) =(parent(B) if parent(B) E xactions(C)
xParent(parent(B)) if parent(B) V xactions(C)

Define the transactional ancestors of B as xAnces (B) = ances (B) f xactions(C). Sim-
ilarly, define the transactional descendants of B as xDesc(B) = desc(B) n xactions(C).
Finally, define the least common ancestor transaction, denoted by xLCA(B 1, B2), as Z =
LCA(B 1,B2) if Z C xactions(C), and as xParent(Z) otherwise.

For every transaction X E xact ions(C), the model distinguishes transactions as either
committed or aborted.2 Let committed(C) C xactions(C) denote the set of committed
transactions. Similarly, let aborted(C) = xactions(C) - committed(C) be the set of
aborted transactions. These sets are useful for the following definition:

Definition 5.3. For any transaction X E xact i on s(C), define the content of X as

content(X) =V(X) - J V(Z).
ZE aborted(X)-{X}

That is, the content of X is the set of all operations that belong to X but not to any of
X's aborted subtransactions. We always have content(X) C V(X), with equality holding
when X's subtree contains no aborted transactions.

We can also define the inverse mapping for content.

Definition 5.4. For any node B E V (C), define the holders of B as

holders(B) = {Y c xactions(C) : B G content(Y)}.

That is, the holders of a node B is the set of all transactions that contain B.
Although conceptually, aborted transactions have no effect, the framework of transac-

tional computations explicitly models them to aid in reasoning about transactions that abort
2For now, we consider only an a posteriori analysis. We do not model transactions that are in progress

until Section 5.5.

128

Figure 5-7: A computation tree C with transactions. More specifically, in this compu-
tation tree C, we have the sets of transactions xactions(C) ={xo,x 1,...,X 7}, P-nodes
pNodes(C) = {P 1, P2 ,... , P5}, task nodes tasks(C) = {SI,S 2 ,. -,Sio}, and memory op-
erations memOps(C) = {ui, u2,vi,v2,w,xl,x 2,yiy2, zZ2}.

Figure 5-8: The computation DAG for the transactional computation from Figure 5-7.
Transactions are enclosed in rectangles.

129

in an actual implementation. Also, modeling aborted transactions is useful in Chapter 7
for considering "open-nested" transactions, since open-nested transactions enable aborted
transactions to have visible effects on memory.

Basic transactional semantics dictate that committed transactions should not "see" val-
ues written by vertices belonging to the content of an aborted transaction. One may argue
whether one aborted transaction should be able to see values written by another aborted
transaction. This dissertation takes the position that a transaction should be "well behaved"
up to the point that it aborts. Thus, one aborted transaction should not see values written
by other aborted transactions, although the values written by a vertex within an aborted
transaction may be seen by other vertices within the same transaction.

The following definition describes which vertices are hidden from which other vertices
according to these semantics.

Definition 5.5. For any two vertices u, v E V(C), let X = LCA(u, v). We say that u is hidden
from v, denoted uHv, if

u G U content(Y).
YEaborted(X)-{X}

In Figure 5-7, we have v2Hz2 if and only if one of X1 or X4 belongs to aborted(C).
The hidden relation H is not symmetric. For example, if we have X, E committed(C) and
X6 E aborted(C), then we have y1Hvi, but not v1Hyi.

Observer Functions

Instead of specifying the value that a vertex v E memOp s (C) reads from or writes to a mem-
ory location f E M, we adopt the approach of the computation-centric framework of Frigo
and Luchangco [48,52], which abstracts away the values entirely. An observer function3

CP(v) : memops(C) -+ memops(C) U {source(C)} tells us which vertex u E memops(C)
writes the value of f that v sees. For a given computation tree C, if v E memOps(C) ac-
cesses location f E M, then a well-formed observer function must satisfy -,(v < G(c) (D(v))
and W(cD(v), f). In other words, v cannot observe a value from a vertex that comes after
v in the computation DAG, and v can only observe a vertex if it actually writes to loca-
tion f. To define (D on all vertices that access memory locations, we assume that the vertex
s our ce(C) writes initial values to all of memory. When cD(v) = sour ce(C) for a memory
operation v, sometimes for shorthand we write F(v) =1.

Traces and Memory Models

Recall that Definition 5.2 states that a memory model A is a subset of 'U, the universe
of all possible traces. Later, when we consider some basic memory models, it is conve-
nient to restrict our attention to computations without transactions, or with only committed

3This definition of <D(v) is similar to Frigo's definition in [48, 52], but with a salient difference, namely,
Frigo's observer function defines <b(v) for all memory locations, not just for the location f that v accesses.
Moreover, if W(v, f), Frigo defines <b(v) = v, whereas we define CD(v) = u for some u 6 v.

130

transactions. Thus, we define the following subsets of U:

Uo = {(C,<D)E U : xactions(C)= } ,
'kom = {(C,<D) E U : abo rt ed(C) = 0}

In other words, U% contains traces (whose computations) include no transactions, and Zcom
contains traces that include only conmmitted transactions.

Open-Nested Transactions

One can extend this framework of transactional computations to model open TM systems
- TM systems that allow both closed-nested and open-nested transactions, as described
in [98, 102, 103].

Conceptually, to model open nesting, one can partition the set xactions(C) into two
sets, closedX(C) and openx(C). When a transaction X E closedX(C) commits, its read-
set and writeset are merged into xParent(X), as before. For an open-nested transaction
Y E openX(C), however, the commit of Y commits the values Y's readset and writeset
to memory immediately (i.e., to the root of C). Thus, with open nesting, Definition 5.3
changes to also exclude operations from open-nested transactions.

Definition 5.6. Consider a computation C on an open TM system. For any transaction
X E xacti ons(C), define the content of X as

content(X)=V(X)- J V(Z)U- V(Z).
ZEaborted(X)-{X} Z~openX(X)-{X}

Although the hidden relation in Definition 5.5 is for a closed TM system, one can also
use this definition for an open TM system by using the new definition of content(X)
in Definition 5.6. For example, in Figure 5-7, if X2 E openx(C) is an open transaction
and X2 ,X3 E committed(C), then we do not have uiHz2 , even if X1 G aborted(C). As
described in [8], one can use these definitions and generalize the memory models defined
in Section 5.3 to TM with open-nested transactions.

5.3 Transactional Memory Models

Using this framework of transactional computations, we can define various memory models
for TM. We begin by using the framework to study a simple memory model for programs
without transactions, namely Lamport's classic memory model of sequential consistency
[87]. We then extend this model to consider more complex memory models, including the
models of serializability" [107] and a model we call "prefix-race freedom."

131

Sequential Consistency

To define Lamport's model of sequential consistency [87] in this transactional computation
framework, we first mimic the definition in [48] to define a memory model for sequen-
tial consistency for computations without transactions. We then extend this definition to
include transactions as well.

We now define a "last writer" observer function as in [48].

Definition 5.7. Consider a trace (C,D) G Eb and a topological sort S G t s ort s(G(C)).
For all v E memops(C) such that R(v,f) V W (v,f), the last writer of v according to S,
denoted Ls(v), is the unique u C mernops(C) U { s ource(C)} that satisfies three condi-
tions:

1. W(u,IC),
2. u <S v, and
3. {wEV(C) : (u<Sw<s)AW(w,f)}=0.

In other words, if vertex v accesses (reads or writes) location f, the last writer of v is the
last vertex u before v in the order S that writes to location f.

We can use the last-writer function to define sequential consistency for computations
containing no transactions.

Definition 5.8. Sequential consistency for computations without transactions is the mem-
ory model

SC= {(C,<D) C T: 3I3 tsorts(G(C)) such that D = LS}

By this definition, a trace (C, CD) E % is sequentially consistent if there exists a topo-
logical sort S of G(C) such that the observer function <D satisfies <D(v) = Ls(v) for all
memory operations v E memops(C). Definition 5.8 captures Lamport's notion [87] of se-
quential consistency: there exists a single order on all operations that explains the execution
of program.

Figure 5-9 shows a sample computation DAG 9(C) and two possible observer func-
tions, CPi and (D2. The trace (C, D1) is sequentially consistent, but (C, <D2) is not because
there is no topological sort that makes <D2 into a last-writer function. For the observer
function 01 with 0i (ul) =1, DI(u 2) = ul, Pi(vi) =JL, <Di (v2) =1, and Ci(U3) = U2,
the trace (C,<P) is sequentially consistent, since Di is consistent with the order S =

(ui, u2,v, v2,u 3). On the other hand, the trace (C,D 2) with <D2 (ui) =1, (D2(u 2) = u1 ,
D2(vi) =1, D2 (v2) -=I, and D2 (u3) = ui is not sequentially consistent. Suppose for con-
tradiction that there existed an order S such that D2 = Ls. Then, because <D2 (u3) = ui, we
must have either U2 <s ui or u3 <s u2. The first case is ruled out because <D2 (u2) = ui.
Then, since u3 <S u2, we must have v2 <<s vi. But then we have <D2(vi) =1, whereas
LS (Vi) = v2, contradicting the fact that <D2 = LS.

We can extend this definition of sequential consistency to account for transactions.
First, we consider a memory model that does not require atomicity of transactions, but
only accounts for the fact that a transaction X in parallel with an aborted transaction Y
should not "see" values written by Y. Moreover, this definition makes the assumption that
an aborted computation is consistent up to the point that it aborts.

132

Figure 5-9: Example of sequential consistency for a computation C without transactions.
Memory operations u1 and u2 both write to a memory location f1, while U3 reads from f£.
Operation vi reads from location £2, and V2 writes to £2-

We first redefine the last-writer function to take aborted transactions into account. Intu-
itively, another transaction should not be able to "see" the values of an aborted transaction.

Definition 5.9. Consider a trace (C,<b) E U and a topological sort S G t sorts(q(C)).
For all v G memops(C) such that R(v, f) V W(v, f), the transactional last writer of v ac-
cording to S, denoted Xs(v), is the unique u E memops(C) U { source(C)} that satisfies
four conditions:

1. W(u, f),
2. u <S v,
3. -,(uHv), and
4. {w E V(C) : (u <s w<s)AW(w,£)A(-wHv)} =0.

The first two conditions for the transactional last-writer function XS are the same as for
the last-writer function Ls. The third and fourth conditions of Definition 5.9 parallel the
third condition of Definition 5.7, except that now v ignores vertices u or w that write to f
but which are hidden from v.

Sequential consistency can now be defined for computations that include transactions.
The definition is exactly like Definition 5.8, except that the last-writer function Ls is re-
placed by the transactional last-writer function XS.

Definition 5.10. Transactional sequential consistency is the memory model

TSC={(C,<b) G U : 3S E tsorts((C)) s.t. b)= Xs}.

Serializability

We can also use the transactional computation framework to define serializability, the stan-
dard correctness condition for transactional systems. The intuition behind this memory
model is that we want to find a single linear order S on all operations that both "explains"
all memory operations and guarantees that every transaction appears to execute atomically,
i.e., all transactions appear as contiguous in S.

133

Definition 5.11. The serializability transactional memory model ST is the set of all traces
(C,cb) E U for which there exists a topological sort S E t sorts((C)) that satisfies two
conditions:

1. <b = Xs, and
2. VX E xactions(C) and Vv E V(C), we have source(X) S v S sink(X)
implies v c V (X).

Informally, an execution belongs to ST if there exists an ordering on all operations S
such that the observer function 4 is the transactional last writer XS, and for every transac-
tion X, the vertices in V(X) appear contiguous in S.

Prefix-Race Freedom

Although programmers would like to reason about TM systems that guarantee a strong
(more restrictive) memory model such as serializability, from the perspective of implemen-
tation, it is more efficient to design a TM system that executes operations in an order S'
which itself is not serializable, but which is "equivalent" to an order S which is serial-
izable. We can describe two seemingly weaker memory models - "race freedom" and
"prefix-race freedom" which are designed to model more closely the properties of order-
ings S' generated by actual TM implementations. Race freedom weakens serializability
by allowing transactions that do not "conflict" to interleave their memory operations in S.
Prefix-race freedom weakens race freedom by only prohibiting conflicts with the prefix of
a transaction. Prefix-race freedom corresponds more closely to the guarantees provided by
traditional TM systems. Sections 5.5 and 5.6 presents an operational model for TM which
generates execution orders S' that can be shown to be prefix-race-free.

The definition of race freedom is motivated by the observation that actual TM imple-
mentations allow independent transactions to interleave their executions, as long as one
transaction does not try to write to a memory location accessed by the other transaction.
With only closed-nested transactions and ignoring operations from aborted transactions, as
will be shown in Section 5.4, one can rearrange any interleaved execution order allowed by
race freedom into an equivalent serializable order.

To define race freedom, we first consider what it means to have a transactional race
between a memory operation and a transaction with respect to a topological sort of the
computation DAG.

Definition 5.12. Let C be a computation tree, and suppose that S G t sort s(G(C)) is a
topological sort of (C). A (transactional) race with respect to S occurs between v E V (C)
and X E xacti ons(C), denoted by the predicate RACES(v,X), if v V V(X) and there
exists a w C con t ent(X) satisfying the following conditions:

1. ,(vHw),
2. 3f c M s.t. (R(vli) AW(w, f)) V (W(v, f) AR(wj)) V (W(v,f) AW(wt?)), and
3. source(X) <S v < 5 sink(X) .

The notion of a race is easier to understand when all transactions are committed, in
which case no vertices are hidden from each other. Intuitively, a race occurs between

134

transaction X and a vertex v V V(X) appearing between source(X) and sink(X) in S if v
conflicts with some vertex w E content (X) as defined in Definition 5.1.

We can use Definition 5.12 to define race freedom.

Definition 5.13. The race-free transactional memory model RFT is the set of all traces
(C,) E eU for which there exists a topological sort S E tsorts((C)) satisfying two
conditions:

1. 4 = XS, and
2. Vv E V(C) andVX C xactions(C), -iRACES(vX)

The first condition of race freedom is the same as for serializability, that the observer
function is the transactional last writer. The second condition allows an operation v to
appear between sour ce (X) and sink(X) in S, but only provided no race between v and X
exists.

The notion of a prefix race is motivated by the operational semantics of TM systems.
As two transactions X and X' execute, if X' discovers a memory-access conflict between
a vertex v C V(X') and X, then the conflict must be with a vertex in X that has already
executed, that is, with the prefix of X that executes before v. For prefix-race freedom, no
such conflicts may occur.

Definition 5.14. Let C be a computation tree, and let S e tsorts(G(C)) be a topological
sort of G (C). A (transactional) prefix race with respect to S occurs between v E V (C) and
X E xa ct i on s(C), denoted by the predicate PRACES (v, X), if v V V (X) and there exists
a w G content(X) satisfying the following conditions:

1. -,(vHw)
2. -3 E M s.t. (R(v, f) A W(w, e)) V (W(v, f) A R(w,tf)) V (W(v, e) A W(w,f)).
3. source(X) <S w <S v <S sink(X) .

Thus, this definition is identical to Definition 5.12, except that the potential conflicting
vertex w must occur before v in S. In an actual execution, a TM runtime cannot detect all
the races that involve v at the time v happens, because v may be in a race because of an
operation w that happens after v. A TM runtime can, however, detect all prefix races that
involve v.

The notion of a prefix race gives rise to an corresponding memory model in which
prefix races are absent.

Definition 5.15. The prefix-race free transactional memory model PRFT is the set of all
traces (C, <b) e U for which there exists a topological sort S E t sorts(Q(C)) satisfying
two conditions:

1. 4D = Xs, and
2. Vv C V(C) andVX E xactions(C), -PRACES(v,X)

Thus, prefix-race freedom describes a weaker model than race freedom, where a vertex
v is only guaranteed to not to conflict with the vertices of transaction X that appear before
v in S. If a "nontransactional" leaf node v E memops (C) runs in parallel with a transaction
X, all of Definitions 5.11, 5.13, and 5.15 check whether v interleaves within X's execution.

135

Thus, these models can be thought of as guaranteeing "strong atomicity" in the parlance of
Blundell, Lewis, and Martin [32]. In Scott's model [111], RACES(v,X) and PRACES(VX)
can be viewed as particular "conflict functions."

Relationships among the Models

The following theorem states that the three memory models as presented are progressively
weaker.

Theorem 5.1. ST C RFT C PRFT .

Proof Follows directly from Definitions 5.11, 5.13, and 5.15. E

Section 5.4 shows that for a TM system which generates computations with only closed-
nested and committed transactions, prefix-race freedom and serializability are equivalent.
These memory models turn out to be distinct, however, for an open TM system, as de-
scribed in [8]. Chapter 7 discusses in greater detail some of the issues associated with open
nesting.

5.4 Equivalence of Memory Models

This section studies the memory models of serializability, prefix-race freedom, and race
freedom. Specifically, this section shows that for computations containing only committed
and closed-nested transactions, all three models are equivalent.

Dependency graphs

Before addressing the issue of comparing the memory models, we first present an alter-
native characterization of sequential consistency for the special case of computations with
only committed transactions. The idea of a "dependency" graph is to add edges to the
computation DAG to reflect the dependencies imposed by the observer function.

Definition 5.16. The set of dependency edges of a trace (C, D) E 'Ucom is

Ya(C,D) = { (u,v) E V(C) X V(C) : U=<D((v)}

and the set of antidependency edges is

WTa(C,<D) = (u, v)CEV(C) xV(C) : ((5(u)-= D(v)) AW(v,f)}

The dependency graph of (C,<D) is the graph 'D G(C,(D) = (V, E), where V = V (C) and
E = E(C) U qd(C,<D) U Wa(C, D).

The sets "'d and Pa capture the usual notions of dependency and antidependency edges
from the study of compilers [83]. A dependency edge (u,v) indicates that v observed the
value written by u. An antidependency edge (u, v) means that if both u and v observe the
same write to a location f, and if v performs a write, then u must "come before" v.

136

The following lemma shows that in the universe of all traces with only committed
transactions, a trace (C, 4)) is sequentially consistent if and only if the dependency graph
DG(C,(D) is acyclic. 4

Lemma 5.2. Suppose that (C, (D) C zlcom. Then we have (C, (D) C SC if and only if the
dependency graph D G (C, () is acyclic. El

Proof First, suppose that (C, (D) E SC. Then there exists a topological sort S of G (C) such
that D = L . From the definition of Yd and Pa, since 4) is a last-writer function according
to S, any dependency or antidependency edge (u, v) that is added to DG(C, () satisfies
u <S v. Thus, S is a valid topological sort of DG (C,), and DqG(C, () is acyclic.

Next, suppose that DG(C,5i) is acyclic. Then there exists a topological sort S of
DG(C,ci). Since G(C) has the same vertices but fewer edges than DG(C,ci), S is also a

topological sort of G (C). Thus, all that remains to show that (C, ci) E SC is to demonstrate
that ci= Ls.

Suppose for contradiction that i) 5 Ls. Then let u C memOps(C) be the first memory
operation in the order S for which i) (u) f Ls(u), and let f be the memory location accessed
by u. We know that W(ci(u),f) and that there must exist a memory operation w such
that (1(u) <S w <s u and W(wti). Let v be the first node in the order S that satisfies
W(vti) and ci(u) <S v <s w, i.e., v is the first write to f that happens after (D(u). Since
w <S u and u is the first operation in S for which ci contradicts the last writer property,
it follows that Ci(v) = LS(v) = u. Thus, we have (D (v) = D(u), and D G(C,) must have
an antidependency edge (u, v). This edge creates a contradiction, since it implies that the
order S is not a valid topological sort of ODg(C, c). Therefore, we must have) = Ls. E

Figure 5-10 shows the dependency graphs for the example traces from Figure 5-9.
The trace (C, ci 1) is sequentially consistent, but the trace (C,4 2) is not. Equivalently
by Lemma 5.2, the dependency graph D4G(C,(1) is acyclic, but the graph DG(C, (D 2) is
not.

We can now prove the equivalence of serializability, race freedom, and prefix-race free-
dom when we consider only computations with committed and closed-nested transactions.

Theorem 5.3. ST n 0m = RFTn Zlcom = PRFTn ikom.

Proof. Since Theorem 5.1 shows that ST C RFT C PRFT, it suffices to prove that

PRFTn om C STn Ucom.

We start by defining some terminology. For all u E V (C), define the holder count of u
as X(u) = lholders(u) . For u, v c V(C), define the alternation count of u and v as

alt(u, v) = 2(u) + X(v) - 2X(LCA(u, v)) .

Thus, alt(u, v) counts the number of transactions X E xactions(C) that contain either u
or v, but not both. For any topological sort S of G(C), define the alternation count of 5,

4One must extend the definition of an antidependency edge to prove an analogous result when the com-
putation C has aborted transactions. Lemma 5.2 requires the assumption that every write to a location also
performs a read.

137

(a) (b)

Control Edge --- +-- - Dependency Edge - Antidependency Edge

Figure 5-10: Dependency graphs for the traces from Figure 5-9. (a) Since the graph
Q(C,(D1) is acyclic, we have (C,0 1) E SC. (b) Since DQ(C,(D 2) has a cycle, we have

(C,ciD2) $ SC.

denoted alt(S), as the sum of all alt(u, v) for consecutive u and v in S. Intuitively, alt(S)
counts the number of times we "switch" between transactions as we run through S.

We prove by contradiction that for any trace (C, cD) E 'Ziom, we have that (C, (D) E
PRFT implies (C, (D) E ST. Suppose that there exists a trace (C, (D) E 'Ucom that is prefix-
race-free but not serializable. Consider a topological sort S E tsort s(DQ(C, i)) that is
both prefix-race-free, and has a minimum alternation count alt(S) over all prefix-race-free
sorts in tsorts(g(C,i)). By Lemma 5.2, S satisfies the condition cD= XS (the first
condition for all three transactional models).

Since (C, cD) V ST, some transaction X exists that is not contiguous in S (and therefore
violates the second condition in Definition 5.11). Let vi be the first vertex in S such that
there exists a transaction X with vi 0 V(X) and source(X) <S v <s sink(X). We can
find three consecutive intervals in the sort S, namely A1 = [u1, u2], A2 = [Vi, v2], and A 3

[wi, W2], satisfying the following properties:

* ui = source(X),
" A1 C V(X),
" A2 n V(X) = 0, and
" A3 C V(X).

In other words, A1 and A3 contain only nodes from V(X), and A2 contains only nodes
outside V(X). Thus, A2 is an interval in S interleaved between contiguous fragments of X.
Figure 5-11(a) shows these three intervals in the topological sort S. Let t be the node that
immediately precedes source(X) in S.

From S, we construct the new order S' shown in Figure 5-11(b) in which the intervals
A1 and A2 are interchanged. We shall show that

1. S' E t sort s(DGW(C,)) (and therefore ci= Xs,),
2. S' is still a prefix-race-free topological sort of DG(C, (D), and
3. alt(S') < alt(S).

The last condition leads to the contradiction that S is not a prefix-race-free topological sort
with minimum alternation count.

138

(a) A A A3

t 11 U2 V1 V2 W1 W2
sourcesoc(

(b) A2 A1 A

t V1 V2 U1 U2 W1 W2
source (X)

Figure 5-11: Two topological sorts of a computation graph g(C) for a hypothetical trace
(C, (D) which is prefix-race-free, but not serializable. Transaction X is not contiguous in
the topological sort S in (a). One can convert S into the topological sort S' in (b). Doing
so reduces the alternation count.

More specifically, we prove each fact as follows:

1. To establish that S' E t sort s(DG(C,)), we show that no edge (y, z) where y E A1
and z E A2 belongs to the graph D 9 (C, (D). Suppose for contradiction that (y, z) is
an edge in DG(C, 4)). Consider the possibilities for the edge (y, z):

(a) If we have (y, z) E 'd (C, 4)) U Ta (C, 4)), then y and z access the same mem-
ory location f and one of those accesses is a write. We have y E V(X) =
cont ent(X), since we are only considering traces with committed transactions.
But then we would have PRACES(zX), since y E content(X), z V V(X), and
source(X) <S y <s z <s sink(X). This prefix-race contradicts the assumption
that (C,4)) E PRFT.

(b) Alternatively, if we have (y, z) E E(C), then LCA(y, z) must be an S-node with y
to the left of z. Since z V V(X), we have LCA(y,z) = LCA(X,z). Therefore, we
must have s ink(X) < G(C) z. Thus, S was not a valid sort of DG(C,4().

2. Next, we establish that S' is prefix-race-free by showing that swapping A1 and A2
cannot introduce any prefix races that weren't already in S.

Suppose that S' contains a prefix-race PRACES(v,Z), i.e., there exists a transaction
Z E xactions(C) and a vertex v E V(C) - V(Z) satisfying all three conditions of
Definition 5.14 for S'. Let w E content(Z) be the candidate vertex that satisfies
the three conditions. In particular, the third condition gives us source(Z) <S/ w <g
v <gi s ink(Z). We consider two cases, each of which leads to a contradiction.

(a) In the first case, suppose that v <S w. Since v and w swap in the two orders, we
must have v E A1 and w E A2, which implies that v E V(X) and w V V(X). We
also have source(X) <s v <S w <s sink(X). But then in S, we would have
PRACES(vX), which is a contradiction since there were no prefix races in the
original ordering.

139

(b) In the second case, suppose that w <S v. Since w comes before v in both sorts
S and S' and there was no prefix race in S, the only way a new prefix race
in S' can be created is if there exists a transaction Y such that source(Y) <S
w <S sink(Y) <S v, but source(Y) <si w <Si v <g/ sink(Y). In other words,
v swaps with s ink(Y) to create a new prefix race in S'.
If sink(Y) and v swap, then we must have sink(Y) C A1 and v E A2. Then
since A1 C content(X), it follows that sink(Y) c content(X), and thus Y
must be nested within X. Thus, we have source(X) <s source(Y) <S w <S
sink(Y) <S u2, or equivalently w C Al C content (X). But then w must create
a prefix race PRACES(v,X) in the original sort S, leading to a contradiction.

3. Finally, to establish that alt(S') < alt(S), let us examine the difference 6 = alt(S) -
alt(S') in the alternation counts of S and S'. The only terms that contribute to 6 are
at the boundaries of A1 and A2. We have that

8 = alt(t,ui) +alt(u2,vl) +alt(v2 ,wi) -alt(t,v 1) -alt(v2,ul) -alt(u2,wl)
-2(LCA(t, ui)) - 2X(LCA(u 2, vi)) - 2X(LCA(v 2, wl))
+ 2X(LCA(t, vi)) + 2X(LCA(v 2, u)) + 2X(LCA(u 2 , w1))

By construction, we know that {u1, u2, wi, W2} C V(X), whereas none of t, vi, and
v2 have X as an ancestor. For any y C V(X) and z (V(X), we know LCA(y,z) =
LCA(X,z), which implies that LCA(v 2 ,ul) = LCA(v 2 ,W1) = LCA(v 2 ,X), LCA(t,ui) =
LCA(t,X), and LCA(u 2 ,vi) = LCA(X,vi). Simplifying the expression for 6, we get

6= -2X(LCA(t,X)) -2X(LCA(X,vi)) +2X(LCA(t,vi)) +2A(LCA(u 2, w)) -

To show that 6 > 0, let Y = LCA(t,vi), and consider the two cases for Y, which are
illustrated in Figure 5-12.

(a) Suppose that Y is not an ancestor of X. Then, as shown in Figure 5-12(a), we
have

6= -h -h+(g+h)+(c+d +h)

= c~d-Ig.

We know c + d > 0 since it contains the transaction X, and hence 6 > 0.
(b) Suppose that Y is an ancestor of X, and suppose without loss of generality that

LCA(t,X) is a descendant of Y. (The other case, where t and vi are swapped, is
symmetric.) In this case, as shown in Figure 5-12(b), we have

6= -f -0+0+(c+d+f)

-c+d

>0 .

140

(a) Q(b)
h f

d
g9

xc

9d
X

c X e
Y C

a b a b

Figure 5-12: Two cases for alternation count in proof of Theorem 5.3. Let Y = LCA(t, Vi).
(a) Y is not an ancestor of X, and we have 6 = c + d + g. (b) Y is an ancestor of X, and we
have 6= c+d.

5.5 The TCO Model

This section describes the transactional-computation operational model or (TCO model
for short), an operational semantics for a TM system with nested parallelism. The TCO
model extends the framework described in Section 5.2 to construct computation trees dy-
namically as a program executes.

Conceptually, the TCO model is a nondeterministic state machine with two compo-
nents: a program and a runtime system. The runtime system dynamically constructs and
traverses a computation tree C as it executes instructions generated by the program. The
TCO runtime maintains a set of ready nodes, denoted by ready(') (C) C nodes(t) (C), and
at every step t, the TCO model nondeterministically chooses one of these ready nodes
X E ready(t) (C) to issue the next instruction. The program then issues an instruction on
X's behalf. For shorthand, we sometimes say that X issues an instruction.

The TCO model extends the definitions and notation for a computation tree C to al-
low the tree C to change as steps execute. Generalizing the definition of computation-tree
nodes nodes(C), define the set nodesWt)(C) as the dynamic set of tree nodes in C after
taking step t. Conceptually, as a program executes, nodes are added but never deleted
from a computation tree C. Similarly, for each of the subsets of nodes(C) defined ear-
lier (e.g., sNodes(C), xactions(C), etc.), define a step-dependent set (i.e., sNodes(t)(C),
xactions(') (C), etc.) representing a subset of computation-tree nodes after taking a par-
ticular step t. Usually, these sets monotonically increase as the step count increases, i.e. for
all t, nodes(t)(C) C nodes(t+1)(C).

The TCO model also maintains a status field for each X E nodes (t) (C) at each step t,
denoted by status(t) (X), which stores runtime information about X. Nodes that are not
transactions have a status which is either RUNNING or DONE. A RUNNING node X is a node

141

that is either currently executing or an ancestor of a currently executing node. A node X is
DONE if the program has finished executing X. For a transaction node X E xactions(C),
instead of having a status of RUNNING, we say that a transaction that is currently in progress
has status(X) that is either PENDING, or PENDINGABORT, depending on whether that
transaction should eventually be committed or aborted. Similarly, instead of X having a
status of DONE, we have that status(X) is either COMMITTED or ABORTED, depending on
whether X completes successfully or not.

From these status fields, we can define several sets: 5

RUNNING(t)(C) {XEnodes()(C) status(t)(X) =RUNNING

DONE(t)(C) = {XEnodes()(C) : status(t)(X) =DONE}

PENDING(t)(C) {XExactions()(C) : status(t)(X) =PENDING

PENDINGABORT(t)(C) {X E xactions()(C) : status(t)(X) = PENDINGABORT

COMMITTED()(C) {X E nodes(t)(C) : status(t)(X) =COMMITTED

ABORTED(t)(C) {X E nodes(t)(C) : status(t)(X) =ABORTED}

vTree(')(C) RUNNING(t)(C) UPENDING(t)(C) UPEND INGABORT(t)(C)

On a step t, the set vTree(t) (C) corresponds to the active tree, the portion of C which is
active.

We can organize the instructions of the TCO model into three main groups. The
control-flow instructions - spawn (spawn of a function), sync (sync in a function), and
sReturn (return of a spawned function) - describe fork-join parallelism. The memory
operations - read and write- model accesses to memory. Finally, the transaction-
control instructions - xbegin (begin a transaction), xend (commit the current transac-
tion), xabort (abort the current transaction), and sigabort (signal a transaction abort) -

model the beginning and end of transactions.
The TCO model describes only a sequential semantics, that is, it assumes at every step

t, a program issues a single instruction. The parallelism in this model arises from the fact
that on a particular step, several nodes can be ready, and the runtime nondeterministically
chooses which node to issue an instruction. Thus, the TCO model can simulate the ex-
ecution of the computation on any number of processors. In practice, an actual runtime
system would need some synchronization to ensure that the work performed by individual
instructions in the TCO model appear to happen atomically.

Transaction Readsets and Writesets

To model conflict detection and transaction commits in a TM system, the TCO model
maintains readsets and writesets for transactions. More precisely, on a step t, for all X E
xactions(t)(C) n vTree(')(C) (i.e., for every active transaction X), let R(t)(X) denote the

50n the last step t, we have COMMITTED(t)(C) =committed(C) and ABORTED(t)(C) =aborted(C).

142

readset of X. The readset R() (X) is a set of pairs (f, v), where e E M is a memory location
and v E memOps(C) is a memory operation that reads from f, i.e., R(v,e). Similarly, let
w(t)(X) denote the writeset of X, i.e., a set of pairs (e, v) such that W(v, f).

The TCO model maintains two invariants on transaction readsets and writesets. First,
W(')(X) C R(t)(X) for every transaction X c xactions(t)(C), i.e., a write also counts as a
read. Second, R() (X) and W(t) (X) each contain at most one pair (f, v) for any location f. We
use the shorthand f E R(t) (X) to mean that there exists a node u such that (f, u) R(t) (X),
and similarly for W(t) (X).

We also overload the union operator: at some step t, an operation

R(X) +- R(X) U {(,u)}

means we construct R(t+1) (X) by

R(t+1)(X) <- {(e, u)} U (R(t)(X) - (fu') C R(t)(X)}.

In other words, we add (f , u) to R(X), replacing any (f, u') E R(t) (X) that might have existed
previously.

The TCO model initializes readsets and writesets at the beginning of transactions,
merges them on the commit of transactions, and (conceptually) discards them on the abort
of transactions. When the TCO model begins a transaction X, X begins with an empty
readset and writeset, i.e., R(X) = W(X) = 0. If transaction X commits, since we are consid-
ering closed-nested transactions X, R(X) and W(X) are merged into the R(xParent(X)) and
W(xParent(X)), respectively. If X aborts, however, R(X) and W(X) are implicitly emptied
when X is finished, since readsets and writesets are only defined for active transactions.

For convenience, we assume that root(C) E xactions(C), i.e., the root of the com-
putation tree is a transaction. Conceptually, this transaction is a PENDING transaction that
never conflicts with any other transaction, and thus conceptually "commits" when pro-
gram execution ends. We also represent main memory as the readset/writeset of the root
root(C). At step t = 0, we assume R(0)(root(C)) and W(0)(root(C)) initially contain a
pair (1, _L) for all locations f E M, that is, it has an initial value for all of memory.

Finally, to precisely define transaction conflicts, it is useful to consider on any given
step t, the set of active transactions that have a particular memory location f in their readset
or writeset. Define the readers of f as

readers(t)(f) = {X E xactions(t)(C) :]v E memOps(C) s.t. (f,v) C R(t)(X)}

Similarly, define the writers of f as

writers(t)(e) = {X E xactions(t)(C) :]v E memOps(C) s.t. (f,v) c W(t)(X)

The TCO model uses transaction readsets and writesets to check for conflicts between
transactions. In this model, a ready node Z can try to issue a read or write instruction
to attempt to perform a memory operation v, which may create v as a child of Z in the
computation tree C. Before successfully completing v and creating a node in C, however,

143

the TM runtime checks for conflicts according to the rules given in the following definition.

Definition 5.17. Suppose that on a step t, the TCO model issues a read or wri t e in-
struction that attempts to create a memory operation v. We say that v generates a memory
conflict if there exists a location f c M and an active transaction X E vTree(t) (C) such
that X V ances(v), and either

1. R(vC) andX E writers()(e), or
2. W(v,f) andX C readers()(f).

A memory operation v that generates a conflict triggers the abort of one or more trans-
actions until the conflict with v is resolved. To resolve a conflict, the TCO model can
nondeterministically choose between either aborting xP arent (v) (the transaction that con-
tains v), or the transaction X (ances (v) from Definition 5.17 that is causing a conflict (and
any descendants of X).

A memory operation v that does not generate a conflict updates the readset and/or
writeset of its enclosing transaction, xParent(v). To set <D(v), the observer function for
v, the TCO model takes the value (f, u) from the readset of the closest ancestor transac-
tion of v that contains f. More formally, we choose (f, u) from the readset R(Y), where
Y = leaf(readers()(e) n ances(v)).

The TCO Model

The TCO model dynamically constructs a computation tree C by nondeterministically
choosing some ready S-node Z E ready(t)(C) on each step t, and having Z execute an
instruction on that step.6

We can organize the instructions of the TCO model into three main groups: (1) control
flow instructions (spawn, sync, sReturn) to describe control flow, (2) memory operations
(read, write), (3) transaction control (xbeqin, xend, sigabort, and xabort).

The spawn and sync instructions in the TCO model are analogous to spawn and sync
statements in a fork-join parallel language. For simplicity, we assume there are no called
functions in the TCO model, i.e., all called functions are inlined.

1. spawn: A spawn of a function F creates a new P-node Y as a child of X with Y
having two task nodes as children, namely a left child Zi and a right child Z2. The left
child Z1 also creates a single function node child F E functions (C) corresponding

6The TCO model is similar to the CCT model described in Section A.4, except that it incorporates transac-
tions. First, the TCO model replaces the primitive operation (primop) instruction with one of two instructions
- a read or write - corresponding to memory operations. Next, instead of generic call/cReturn instruc-
tions for the call/return of a function F, the TCO model has xbegin and xend instructions which correspond
to the begin and end, respectively, of a transaction. Finally, the TCO model eliminates the notion of a task
node with status of QUEUED, as well as deques or producer nodes for a worker. The CCT model maintains these
quantities because it assumes a specific runtime scheduler with P worker threads and a Cilk-like work-stealing
algorithm. In contrast, instead of changing producer nodes and having QUEUED nodes, the TCO model changes
ready() (C), the set of ready nodes. While the CCT model has producerNodes (t) (C) U QUEUED(t) (C) being
the set of leaves of vTree() (C), the TCO model has ready(')(C) as the leaves of vTree(') (C).

144

to the spawned function. All the nodes (Y,Zi, Z2, and F) are created with status
RUNNING, and F and Z2 are added to ready(C), i.e.,

ready(t+1)(C) = (ready(t)(C) -X) U{F,Z2 }.

2. sync: A task node X C tasks(C) executes a sync instruction to finish a task X by
setting status(X) to DONE and then removing X from ready(C). Let Q be the sync
block that contains X, i.e., the set containing all tasks which wait on a particular sync
statement, plus their parent P-nodes.7 Let root (Q) denote the root of Q. Then, the
sync behaves differently depending on whether X's sync block is now complete.

(a) If status(Z) = DONE for all tasks Z E Q, then the sync instruction sets the
status of all remaining nodes Y E Q to DONE, and adds parent(root (Q)) back
into ready(C).

(b) Otherwise, some task Z E Q is still executing, and the instruction does not
change ready(C).

3. sReturn: If X is a spawned function, then X can execute a return instruction, which
sets status(X) to DONE. The return from a spawn removes X from ready(C), con-
ceptually adds parent (X) (which is a task node) to ready (C). Finally, the comple-
tion of the sReturn instruction immediately triggers a sync for the task parent (X).

The read and write instructions in the TCO model perform memory operations.

4. read: A ready node Z can issue this instruction to attempt a read of a memory
location f. If this read does not generate a conflict (as described in Definition 5.17),
then it creates a memory operation v with R(v, f) and makes the following changes:

(a) adds v to the computation tree, i.e., adds v to memOps(C) with parent(v) = Z,

(b) sets CD(v) = u, where u is the unique operation such that

(e,u) E R(leaf (readers(t)(t) fances(v)))

(c) updates R(xParent(v)), i.e., R(xParent(v)) <- R(xParent(v)) U {(f,v)}.

5. write: A ready node Z can issue this instruction to attempt a write of a memory lo-
cation f. If this write does not generate a conflict, then it creates a memory operation
v with W (v, f) and makes the following changes:

(a) adds v to the computation tree, i.e., adds v to memops(C) with parent (v) = Z,

(b) sets <D(v) = u, where u is the unique operation such that

(f,u) E R(leaf(readers(,) () fances(v)))

7For a more formal definition of a sync block, see Definition A.2 in Section A.4.

145

(c) updates R(xParent(v)) and W(xParent(v)), i.e.,

R(xParent (v)) +- R(xParent(v)) U {(f, v)}

W(xParent(v)) +- W(xParent(v))U{(e,v)}.

The final group of instructions handles the beginning and end of transactions.

6. xbegin: A ready node Z executes this instruction to begin a new transaction X. In
the computation tree, we replace Z with X in ready(C), that is,

ready(t')(C) = (ready(' (C) - {Z}) U{X}.

The new transaction X begins with an empty readset and writeset, i.e.,

R(t+1) (X) - 0 W(t+) (X) _ 0.

7. xend: Anode X E ready(C) nxactions(C) with status(X) = PENDING can issue
this instruction to connit the transaction X. A commit of X merges the readset and
writeset of X into that of its transactional parent, i.e.,

R(xParent(X)) +- R(xParent(X))UR(X)

W(xParent(X)) +- W(xParent(X))UW(X)

8. sigabort: A read or write that causes a conflict will trigger a sigabort of
one or more transactions X. This instruction changes status (X) from PENDING to
PENDINGABORT. If X C ready(C), then after the sigabort of X, X can be immedi-
ately issue an xabort.

9. xabort: A node X C ready(C) Oxact ions(C) (a ready node which is a transac-
tion) with status(X) = PENDINGABORT can issue this instruction, which changes
status(X) to ABORTED, removes X from ready(C), and then adds parent(X) to
ready(C).

For a TM system with ordinary, closed-nested transactions, a transaction conflict on a
transaction X conceptually issues sigabort instructions for all transactions in xDesc(X),
which in turn triggers xabort, sync, and sReturn instructions in desc(X) to finish up
the subtree for X. Assuming that this abort process could happen atomically, it would
be possible to eliminate the sigabort instruction, instead modeling a transaction abort
as a series of xabort calls from the leaves of desc(X) back up to X itself. We choose
to have separate sigabort and xabort instructions in the TCO model, however, because
the sigabort instruction is useful for modeling more complex TM systems in which the
abort of a transaction Y nested inside X is not instantaneous. For example, if we have TM
with open-nested transactions, as we consider in Chapter 7, the abort of a transaction X
may require the TM system to execute a "compensating transaction" to compensate for the
effects of a transaction Y open-nested in X which has already committed.

146

5.6 Serializability of the TCO Model

In this section, we show that the TCO model presented in Section 5.5 generates compu-
tation traces (C, CD) which are prefix-race-free, as defined by Definition 5.15. Thus, by
Theorem 5.3, we know that the TCO model guarantees the serializability of transactions
when the effects of aborted transactions can be safely ignored.

Properties of the TCO Model

This section first presents some structural invariants and definitions for the TCO model that
will be useful later for showing that the TCO model generates prefix-race-free traces.

First, because the TCO model relies on Definition 5.17 for conflict detection, the next
theorem shows that it preserves key invariants on readers and writers of a location f.

Theorem 5.4. On any step t, for all memory locations f E M, the TCO model maintains
the following invariants on the sets rea ders(() and wri t er s(t):

1. For all f G M, leafSet (writers(')() = 1, i.e., leaf(writers(')()) ex-

ists.

2. For any X E readers(') (f), either
(a) X E ances(leaf(writers()(l))), or
(b) X C desc(leaf(writers(t)())).

Proof The proof is by induction on the instructions of the TCO model.
In the base case, for all locations f C M, we begin with readers(0)(f) = {root (C)},

writers(0)(£) = {root(C)}, and no other nodes in C except root (C). Thus, Invariants 1
and 2 are satisfied.

In the inductive step, suppose at the beginning of step t that Invariants 1 and 2 are
satisfied. A read or write instruction on step t cannot break the invariants without caus-
ing a conflict according to Definition 5.17. Therefore, successful read and write opera-
tions preserve the invariant. An unsuccessful read or write operation can only trigger the
sigabort of transactions, which does not affect either invariant.

An xend that commits a transaction X can only add the transaction xParent(X) to
readers(f) or writers(f). Since xParent(X) is an ancestor of X, it cannot break either
of the two invariants.

The remaining instructions preserve Invariants 1 and 2 trivially. A spawn, sync, or
sReturn on step t preserves the invariants because they do not change the set active trans-
actions or any transaction readsets or writesets. An xbegin preserves the invariants because
it creates new transactions X with empty readsets and writesets. The xabort instruction
preserves the invariants because it can only remove transactions from readers(t)(f) or
writers(t)(f). El

The next definition generalizes the notion of the content set (content(X) from Sec-
tion 5.2) to construct a step-dependent classification of all the nodes v E V(X).

147

Definition 5.18. On any step t, for any X G xa ct i on s(') (C) and a memory operation u C
memOps(')(C), define the sets cContent(t)(X), aContent(t)(X), and vContent(t)(X)
according the Cont ent T ype(t, u, X) procedure:

Content Type(t,u,X) // For any u e memOps(t) (t)
1 Z = xParent(u)
2 while (Z $ X)
3 if Z E vTree()(C), return u C vContent(t)(X)
4 if Z G ABORTED(t)(C), return u G aContent(t)(X)
5 Z <- xParent(Z)
6 return u G cContent()(X)

Conceptually, Definition 5.18 partitions the node u c V(X) into one of three sets -

the active content vcontent(X), the aborted content acontent(X), or the closed con-
tent cContent(X). When a transaction X completes on step t, the closed content is equal
to the memory operations in the static content set defined earlier, i.e., cContent(t)(X) -

cont ent(X) nmemops(t)(C).

Prefix-Race Freedom

Using the structural invariants in Theorem 5.4, as well as some other invariants on transac-
tion readsets and writesets given in Appendix C, we can show that the TCO model generates
traces (C, <)) which are prefix-race-free.

First, the following theorem shows that once a memory operation u that reads from
(writes to) a location f is added to cContent(t)(Y) for some transaction Y, the location f
remains in the readset (writeset) of some active transaction Z which is a descendant of Y
up until the time when Y ends.

Theorem 5.5. Suppose that the TCO model generates a trace (C, <b) with an execution
order S. For any transaction Y, let tf be the step on which xend or xabort of Y occurs.
Consider a memory operation u C cContent(tf) (Y) which accesses memory location t on
step tu. On any step t such thattu < t < t$, there exists some Z G xDesc(Y) n vTree(t)(C)
(i.e., Z is an active transactional descendant of Y) satisfying the following conditions:

1. If R(u,f), then e C R(t)Z)
2. IfW (u,f), then f G WW'(Z)

Proof Let Xi,X 2,.. .X be the chain of transactions from xParent(u) up to but not in-
cluding Y, i.e., Xi = xParent(u), Xj = xParent(Xj_i), and xParent(Xk) = Y. Since we
assume that u E cContent (tf) (Y) and since Y completes at step tf for every j in the range
1 < j < k, there exists a unique step tj (satisfying tu < tj < tf) when an xend changes
status(Xj) from PENDING to COMMITTED. Otherwise, if any of the X aborted, we would
have u E aContent(tf)(Y).

First, suppose that R(u,). On step tu, when the memory operation u happens, (f, u) is
added to R(Xi). In general, on step tj, the xend will propagate f from R(Xj) to R(Xj+1)-
Therefore, for any step t in the interval [tj_1, tj), we know f C R(t) (Xj), i.e., for Theorem 5.5,

148

Z = Xi. Similarly, for any step t in the interval [tk, tf), we have f C R(t)(Y), i.e., we choose
Z =Y.

The case where W(u, £) is completely analogous to the case of R(u,f), except we have
both f E R(t) (Z) and f E Wt) (Z).

If the TCO model generates a trace (C, D) according to an execution order 3, the next
theorem shows that the observer function D is a transactional-last-writer as defined in Def-
inition 5.9.

Theorem 5.6. Suppose that the TCO model generates a trace (C,Q1) and an execution
order S. Then, we have (D = Xs.

Proof. This result can be proved by induction on the instructions of the TCO model using
some invariants on the properties of readsets and writesets. See Appendix C, page 255 for
details. El

Finally, we can put together Theorems 5.5 and 5.6 to prove that the TCO model gener-
ates traces which are prefix-race-free.

Theorem 5.7. Suppose that the TCO model generates a trace (C, QD) with an execution
order S. Then S is a prefix-race-free sort of (C, D).

Proof For the first condition of Definition 5.15, we know by Theorem 5.6 that the TCO
model generates an order S for which D = XS.

To check the second condition, assume for contradiction that we have an order S gen-
erated by the TCO model, but there exists a prefix race between a transaction X and a
memory operation v V memops(X). Let w be the memory operation from Definition 5.14,
i.e., w E cCont ent (X), w <s v <S sink(X), -i(vHw), and w and v access the same location
f, with one of the accesses being a write. Let tw and ty be the steps when operations w and v
occurred, respectively, and let tf be the step when sink(X) occurs (either xend or xabort
of X). We argue that on step ty, the memory operation v should not have succeeded because
it generated a conflict.

There are three cases for v and w. First suppose that W(vf) and R(we). Since tw <
ty < tf, by Theorem 5.5, on step ty, t e W(tv)(Z) for some active transaction Z E desc(X).
Since v (memops(X), we know X V ances(v). Thus, since Z is a descendant of X, we have
Z ances(v). Since Z V ances(v), by Definition 5.17, on step ty, v generates a conflict with
Z. The other two cases, where R(v, f) A W (w, f) or W (v, f) A W (w, f), are analogous. L

149

150

Chapter 6

Nested Parallelism in TM

This chapter investigates the challenge of designing a transactional memory (TM) sys-
tem for a dynamic-threading platform which supports transactions with nested parallelism.
Chapter 5 formally described semantics for such a TM system, but it did not discuss how
these semantics might be implemented. Implementing transactions with nested parallelism
efficiently can be tricky. Conflict detection in a dynamic-threading platform is compli-
cated, and when transactions have large nesting depth, straightforward implementations
can incur significant performance penalties for conflict detection and committing transac-
tions. This chapter presents CWSTM,' the design of a software TM system that supports
transactions with nested parallelism and nested transactions. CWSTM provides a theoret-
ical performance bound on the overhead of conflict detection which is independent of the
maximum nesting depth of transactions. CWSTM demonstrates that a dynamic-threading
platform can support composable synchronization using transactions and still provide prov-
able guarantees on performance.

Most work on TM focuses on supporting nested transactions that execute serially. This
restriction arises naturally because most TM systems are designed for programs using static
threads, and the overhead of creating or destroying a static thread naturally discourages
programmers from having nested parallelism inside a transaction. Furthermore, the special
case of serial transactions greatly simplifies conflict detection for TM. To detect a conflict,
the runtime can easily determine whether two transactions X and Y are executing in parallel
by simply comparing the ids of the threads executing X and Y. If the thread ids for X and Y
match, then because transactions are serial, one must be nested inside the other. Otherwise,
the thread ids are different, and X and Y are executing in parallel. A TM runtime also only
needs to track relatively few thread ids, since programs with static threads typically try to
avoid creating many more than P threads, where P is the number of available processors.

If one writes a program using a dynamic-threading language such as Cilk, however, then
transactions with nested parallelism seem to be easy to express linguistically but difficult to
implement efficiently. Because of Cilk's work-stealing scheduler, multiple worker threads
may participate in executing a transaction X that has nested spawn statements. Thus, for
conflict detection, comparing ids of worker threads is insufficient to determine whether
two memory accesses by different transactions are executing in parallel or not. Instead,

ICWSTM represents joint work [3] with Kunal Agrawal and Jeremy T. Fineman.

151

one would like to label individual strands of serial execution in a program. Unfortunately,
the number of parallel strands in a dthreaded program can in general be quite large. In a
parallel_for loop, for example, the number of strands is proportional to the number of
iterations in the loop, which is often related to the input size n of a problem, rather than
P, the number of available processors. Thus, a natural question arises: how can we add
transactions to a dynamic-threading language such as Cilk?

Contributions

In this chapter, I describe CWSTM, the first design of a TM system that supports transac-
tions with nested parallelism and nested parallel transactions of unbounded nesting depth
in a dynamic-threading platform. CWSTM demonstrates that one can provide a theoretical
performance bound on the overhead of conflict detection in TM which is independent of
the maximum nesting depth of transactions.

More specifically, CWSTM achieves this performance bound by using the XConflict
data structure, a new data structure for Cilk-like dynamic-threading platforms which can
answer concurrent conflict queries in 0(1) time and can be maintained efficiently. Using
XConflict, for the restricted case when no transactions abort and there are no concurrent
readers, CWSTM executes a transactional computation with work Ti and span T on P
processors in time O(T1 /P + PT.). This bound for TM supporting transactions with nested
parallelism requires rather optimistic assumptions. To my knowledge, however, this result
represents the first theoretical performance bound on such a TM system which is indepen-
dent of the maximum nesting depth of transactions.

Outline

The remainder of this chapter is organized as follows. Section 6.1 explains the semantics
of a generic TM system that supports transactions with nested parallel transactions using
the transactional-computation framework from Chapter 5. Section 6.2 describes a naive
conflict-detection algorithm that correctly implements these semantics, but has poor worst-
case performance when the nesting depth of transactions is large. Section 6.3 describes the
high-level design of CWSTM and its use of XConflict for conflict detection. Section 6.4
gives an overview of the XConflict algorithm. Section 6.5 provide details on data structures
used by XConflict. Section 6.6 shows that XConflict, and hence CWSTM, is efficient for
programs that experience no conflicts or contention. Finally, Section 6.7 concludes this
chapter by discussing related work on nested parallelism in TM.

6.1 Semantics of Nested Parallel Transactions

This section reviews some of the key concepts from Chapter 5 that are useful for describing
CWSTM. More specifically, this section uses the computation-tree framework and TCO
model from Chapter 5 to describes the semantics of a generic TM system that supports
transactions with nested parallelism and nested parallel transactions.

152

Conflict Detection

As described in Chapter 5, in the TCO model, every transaction X maintains a readset R(X)
and a writeset W(X), which contains pairs (f, v), where f is a memory location (or object),
and v is a memory operation that either reads from or writes to f.2 On any step, t, the sets
reader s()() and writ ers(t)(f) represent the set of active transactions that currently have

f in their readset or writeset, respectively.
This chapter considers TM systems that performs eager conflict detection, where the

TM system must test for conflict before performing each read or write instruction. An ac-
cess is unsuccessful if it generates a transactional conflict. TM systems with serial, closed-
nested transactions report conflicts when two active transactions on different threads are
accessing the same object f, and one of those accesses is a write. Thus, only a single thread
at a time can have f in its writeset. When transactions can have nested parallelism, one can
generalize this definition of conflict in a straightforward manner, as given in Definition 5.17
from Section 5.5.

Equivalently, we can think of the TM system as maintaining the invariants described in
Theorem 5.4. Intuitively, Theorem 5.4 states that for any memory location f, at any time t,
the set writers (f) must fall along a single spine - a chain through the computation tree

C that has a single transaction leaf(writers(E)) which is a descendant of all transactions
in writers(f). Theorem 5.4 also states that for all transactions Y c readers(E), Y must
either be an ancestor or descendant of leaf (writer s(f)).

Theorem 5.4 suggests that one can check for conflicts for a memory operation u that
accesses a location f by looking at only one writer and only a small number of readers.
Since all the transactions writing to f fall along a single spine by Theorem 5.4, Invari-
ant 1, the transaction leaf(writers(f)) belongs to writers(f) and is a descendant of all
transactions in writers(E). Define the set lastReaders(E) as

lastReaders(E) = readers(E) n desc(leaf(writers(f)))

By Invariant 2 of Theorem 5.4, for all transactions Y C readers(f), we either have Y C
ances(leaf (writers(E))) or Y C lastReaders(f). Thus, we can check forconflicts with

a memory operation u as follows:

1. If u tries to read from f, then there is no conflict if and only if leaf (writers(f)) is
an ancestor of u.

2. If u tries to write to f, there is no conflict if and only if for all Z c lastReaders(E),
Z is an ancestor of u.

Transaction Commit and Abort

Recall that in the TCO model, each active transaction X maintains a status field st atus (X)
to indicate whether it can eventually commit or abort. Normally, a transaction X begins with
an empty readset and writeset, and status(X) = PENDING. If a transaction X completes

2In this chapter, I use the terms "memory location" and "object" interchangeably. For a TM system that
works with objects, for simplicity, I assume that objects do not overlap, and that accessing any part of an
object is equivalent to accessing the entire object.

153

without any conflicts, then the TM system can commit X by changing status (X) from
PENDING to COMMITTED, and merging X's readset and writeset into the corresponding sets
of xParent(X).

If a memory operation v would cause a conflict between X = xParent (v) and another
transaction Y, then v triggers an abort of either X or Y (or both). Say X is aborted. An abort
of a transaction X changes status (X) from PENDING to PENDINGABORT, and also changes
the status of any PENDING (nested) transaction Y in the subtree of X to PENDINGABORT. In
general, a PENDINGABORT transaction X that is also ready can only complete by changing
its status to ABORTED. Conceptually, whenever a transaction X is ABORTED, the TM system
discards the readset and writeset of X. Since X is no longer active after this action occurs,
this abort also conceptually removes X from readers(e) and writers (f) for all objects t.
If v causes a conflict and the runtime chooses to abort Y $ xParent (v), then the conflict is
not fully resolved until st atus (Y) has changed to ABORTED.

Code Example

To understand the semantics of TM with nested parallel transactions concretely, we con-
sider an example program shown in Figure 6-1 and investigate how a TM system imple-
menting conflict detection according to Definition 5.17 constrains the possible program
outputs. First, this section describes the parallel construct used by Figure 6-1. Then it
illustrates the semantics of conflict detection for this code using the TCO model.

Instead of using Cilk syntax, with the spawn and sync keywords, Figure 6-1 uses a par-
allel construct similar to Dijkstra's "cobegin," which allows the two following code blocks
(each contained in {.}) to run in parallel. In other words, parallel{A1}{A 2} is conceptually
equivalent to spawn Ai, a call to A2 , and then a sync. Figure 6-1 presents pseudocode for
the same transactional computation as shown in Figure 5-5 and the DAG in Figure 5-6. The
parallel construct is slightly less general than Cilk code, since it allows only two strands
of execution to join at a sync instead of having multiple parallel functions in the same sync
block. It has the advantages of using more compact notation and generating slightly sim-
pler computation trees. Thus, in the remainder of this chapter, we only consider parallel
computations generated using the parallel construct for CWSTM. Figure 6-2 shows a com-
putation tree C which represents a complete execution of the computation in Figure 6-1.

The scoping of atomicity in constrains the possible outputs of the computation in Fig-
ure 6-1 as compared to the original code in Figure 5-3. The increment in line 4 and the
code block in lines 6-9 must appear as though one executes entirely before the other. If the
atomic statements in lines 4 and 5 were removed, then these two blocks could interleave
arbitrarily, even though the entire procedure is protected by an atomic statement in line 1.
Basically, the atomicity applies only when comparing two blocks of code belonging to dif-
ferent transactions (protected by different atomic statements), not parallel blocks within the
same transaction (protected by the same atomic statement).

Conflict as stated in Definition 5.17 naturally enforces what is sometimes referred to
in TM literature as strong atomicity [32]. Intuitively, strong atomicity states that a TM
system still detects a conflict when a memory operation v accessing a location f outside
any transaction runs in parallel with a transaction X that has f in its readset or writeset.
Strong atomicity implies that although line 8 itself is not atomic, it cannot perform its

154

XPARALLELINCREMENT 0
1 atomic {
2 X+--0
3 parallel
4 { atomic{x<-x+1}
5 { atomic {
6 x+-x+10
7 parallel
8 { x<-x+100
9 { atomic {x - x+ 1000}

10 }
11 }
12 print x

// Transaction Xi

/X2

//X3

//X4

Figure 6-1: The computation from Figure 5-5, expressed using the parallel construct in-
stead of Cilk keywords (spawn and sync). Since atomic blocks are not placed around all
increments, this program still permits multiple outputs-valid outputs are 111 and 1111.
The (symmetric) 1011 is excluded due to strong atomicity.

Figure 6-2: A computation tree representing a complete execution of the code from Fig-
ure 6-1. Each update of x is decomposed into a read ui and a write vi.

155

Figure 6-3: A computation tree representing an ongoing execution of the computation from
Figure 6-1. The transaction X4 is active, with (x, v4) E W(X4) and (x, v4) E R(X4). Thus, an
attempt to execute memory operation v3 causes a conflict with X4.

write between line 9's read and write.
To understand strong atomicity more precisely, consider the computation tree shown in

Figure 6-3. After U4 performs a read of x, it adds x to the readset of X4 . After U4 occurs
but before V4 occurs or X4 commits, if V3 tries to write to x, it causes a conflict with X4.
We can, however, have line 8 read x (u3), line 9 read and write x and commit (transaction
X4), and then line 8 write x (v3). This interleaving can occur because when U3 happens, it
adds x to the readset of X1, and U4 and V4 can subsequently happen because they are both
descendants of X1 in the computation tree. This behavior means that for the execution of X3,
the increment of 1000 can be "lost" (by being overwritten) but the increment of 100 cannot.
Another way of describing strong atomicity is that each memory operation is viewed as its
own transaction that does not abort.

For the execution shown in Figure 6-3, the first transaction instance which attempts to
execute line 4, X' is ABORTED. One way this abort X' could occur is if x was already in the
readset or writeset of X3 (e.g., because of u2) when v' tries to write to x. In general, the
computation tree framework and the TCO model captures the instances of transactions that
abort as well as those that commit.

In summary, the only possible outputs for the final value of x in Figure 6-1 are 111 and
1111. The only update in Figure 6-1 that can get lost is the one performed by X4, because
it is the only update that occurs in parallel with an update to x which is not synchronized
with respect to X4 .

156

Node Type Status

U Transaction (closed-nested) COMMITTED

0 P-node
ABORTED

0 Task node PENDING

o Memory operation E PENDINGABORT

O RUNNING
c. QUEUED

O DONE

6.2 A Simple TM with Nested Parallel Transactions

The CWSTM semantics described in Section 6.1 suggest a design for a TM system that sup-
ports transactions with nested parallelism. In particular, Theorem 5.4 suggests that for con-
flict detection, a TM system can maintain an active writing transaction leaf(writers())
and some active reading transactions lastReaders(E) for each object (or memory loca-

tion) f. This section focuses on a straightforward data structure, called an "access stack,"
used to maintain these values. One can show, however, that an access stack yields a TM
with poor worst-case performance, even assuming the rest of the TM system incurs no

overhead. Later, Section 6.3 describes the CWSTM design, which uses a lazy variant of
the access stack and has better worst-case performance.

The access stack for an object f is a stack where every element is either a transaction
that has written to E or a list of transactions that have read from f. The order of transactions
on the stack is consistent with the ancestry of transactions in the computation tree. The writ-
ing transaction leaf(writers (f)) is either on top (first item to pop) of the stack or is the
next element on the stack. If the writer is not on the top of the stack, then lastReaders(t)
is. No two consecutive elements are sets of readers.

To maintain access stacks, we can perform the following operations on an access to
an object f, locking the stack for f to guarantee atomicity. Consider (a memory operation
whose transactional parent is) a transaction X that successfully reads f. If the top of the
stack contains a set of readers, then X is added to that set, assuming it is not already there.
If the top of the stack is a writer other than X, then {X} is added to the top of the stack.
Similarly, if X successfully writes f, then X is pushed onto the top of the stack if it not
already there.

Whenever a transaction X commits, for each i in X's readset, X is removed from the
top of V's access stack and replaced with xParent(X) (in a fashion that ensures there are no
duplicated transactions). This action mimics the commit semantics from Section 6.1: when

a transaction X commits, the objects in its readset and writeset are moved to xParent(X)'s
readset and writeset, respectively. If instead X aborts, then X is popped from each relevant

object's access stack. To facilitate rollback on aborts, every access-stack entry correspond-
ing to a write stores the old value before the write. 3

Maintaining the access stack has poor worst-case performance because the work re-
quired on the commit of transaction X is proportional to the size X's readset. If the original
program (without transactions) had work T1, then this implementation might require work

Q(dT1), where d is the maximum nesting depth of transactions. In particular, consider the

function f shown in Figure 6-4. A call of f (d) generates a serial chain of nested transac-

tions, each incrementing a different place in the array x. When the transaction at nesting

depth j commits, it updates d - j access stacks for a total of 0(d 2) access-stack updates.
The work of the original program (without transactions), however, is only 0(d).

In general, this asymptotic blowup can occur if a TM system with nested transactions
must perform work proportional to the size of a transaction's readset or writeset on every
commit. For example, a TM system that validates every transaction due to lazy conflict de-
tection for reads exhibits this problem. Similarly, a TM system that copies data on commit

3This value can either be stored in the stack itself or in a log per transaction.

157

1 void f (int i) {
2 if (i >= 1) { atomic { x[i]++; f(i-1); } }
3 }

Figure 6-4: A computation which generates deeply nested transactions. The call f (d)
generates nested transactions d levels deep. If the transactions in f are elided, this call
performs 0(d) work. Using a TM system that needs to update multiple access stacks on
every transaction commit, however, 92(d 2) work might be required to commit transactions,
even if no transaction conflicts or aborts are possible.

due to lazy object updates also has this issue.

6.3 Overview of CWSTM Design

This section describes the CWSTM design for a transactional-memory system with nested
parallel transactions. It first describes how CWSTM updates the status of computation-tree
nodes on commits and aborts. It then gives an overview of the conflict-detection mecha-
nism, which includes a "lazy access stack," improving on the shortcoming of the access
stack from Section 6.2. Finally, this section describes properties of the Cilk-like work-
stealing scheduler used by CWSTM. The XConflict data structure requires such a sched-
uler for its performance and correctness. The details of the XConflict data structure are
deferred until later, in Sections 6.4 and 6.5.

CWSTM explicitly builds the internal nodes of the computation tree (i.e., leaf nodes
for memory operations are omitted). Each node maintains a field which explicitly repre-
sents the node's status (PENDINGABORT, PENDING, COMMITTED, or ABORTED) and updates
these fields as described in the TCO model (from Chapter 5, Section 5.5). For example,
when a transaction X commits, CWSTM atomically changes status(X) from PENDING to
COMMITTED.

Since a transaction may signal an abort of a transaction running on a (possibly differ-
ent) processor whose descendants have not yet completed, aborting transactions is more
involved. When an active transaction X aborts itself (possibly because of a conflict) it
simply atomically updates status (X) to ABORTED. This type of update corresponds to an
xabort instruction from the TCO model.

Alternatively, if a worker p wishes to abort X even though p is not currently executing
X, then p performs an sigabort instruction. First, p atomically changes status(X) from
PENDING to PENDINGABORT. Then p walks X's active subtree, changing status(Y) to
PENDINGABORT atomically for each active Y E desc(X). Notice that p does not change
any status to ABORTED-only the worker p' which finishes executing the transaction Y is
allowed to perform this update. More precisely, a worker p' only "discovers" that the status
of a transaction Y is PENDINGABORT when Y becomes ready (i.e., and thus has no active
descendants). When it does, then p' performs an xabort for Y.

During an abort of a transaction X, CWSTM may also change the status field of some
of X's COMMITTED descendants Y to ABORTED. These changes enable CWSTM to more

158

quickly determine that Y has an ABORTED ancestor X, and thus a memory operation should
not conflict with Y. Section 6.5 describes these updates in greater detail.

In CWSTM, the rollback of objects on abort occurs lazily, and thus is decoupled from
an xabort operation. Once the status of a transaction X changes to ABORTED, other trans-
actions that try to access an object modified by X help with cleanup for that object.

Conflict Detection and the Lazy Access Stack

We now discuss conflict detection. Recall that to commit a transaction X, the TM imple-
mentation described in Section 6.2 performs work proportional to the size of the readset of
X, since it explicitly maintains the list of active transactions accessing a given location f.
CWSTM is able to avoid this overhead by utilizing Definition 6.1, an alternate characteri-
zation of transaction conflicts.

Definition 6.1. Consider a memory operation v that accesses a memory location f on
step ty, and a (possibly inactive) transaction X c xacti ons('v)(C). Then we say that v

conflicts with X if three conditions are satisfied:

1. There exists a u G cCont ent(v) (X) such that

{(R(u,e) V W(u,f)) A W(v,)} V{W(u,) A (R(v,) VW(v,t))}

2. For all D G xAnces(X), stat us(D) # ABOR TED, and

3. lea f(xAnces(X)fn vTree(tv)(C)) $ ances(v).

Intuitively, Definition 6.1 reports a conflict whenever Definition 5.17 reports a conflict.
The key property of Definition 6.1 is that it enables conflict detection for a memory opera-
tion v by checking against transactions X that have already completed, whereas the original
definition can only check for conflicts against active transactions Y.

Lemma 6.1. Consider a memory operation v that occurs on a step t,. For any transaction
X E xactions(tv)(C), let Y = leaf(xAnces(X) n vTree(tv)(C)). Then we have the

following:

1. If v conflicts with X according to Definition 6.1, then v conflicts with Y according to
Definition 5.17, and

2. If v does not conflict with X according to Definition 6.1, and X C xa c t i on s(tv)(C) n
v Tree(tv) (C), then v does not conflict with Y according to Definition 5.17.

Proof This characterization of conflict can be derived from Definition 5.17 and using the
structural invariants of the TCO model described in Section 5.6. Consider each statement
in Lemma 6.1.

1. For the first statement, consider two cases for X, depending on whether X is active.

159

(a) Suppose that X C xactions() (C) nvTree(tv)(C), i.e., X is an active transac-
tion. Since X is active, in Lemma 6.1, we have Y = X. Suppose that v conflicts
with X according to Definition 6.1. Then there exists a u E cContent(v)(X)
that is causing a conflict according to Definition 6.1.
First, assume that (R(u,f) V W(u,e)) A W(v,e). By Theorem 5.5 from Sec-
tion 5.6, there exists some transaction Z E xDesc(X) n vTree(v)(C) with f E
R(tv)(Z), or equivalently, with Z E readers(v)(e). Also, we know Y = X E
ances(Z). Thus, we have Z 0 ances(v), since Z is a descendant of Y, and by
Condition 3 of Definition 6.1, we have Y 0 ances(v). Since Z V ances(v),
Z E readers(v)(f), and W(v,f), it follows that v generates a conflict with Z
according to Definition 5.17.
The other case, when W(u,e) A (R(v,f) V W(v,l)), is analogous. By the same
logic, there exists a transaction Z such that Z V ances (v), Z E writ ers('v)(f)
and R(v, f). Thus, v generates a conflict with Z according to Definition 5.17.

(b) Suppose that X V xactions(v)(C) n vTreev)(C), i.e., X is no longer active,
and v conflicts with X according to Definition 6.1. We can reduce this case to
the previous one.
More precisely, by the first two conditions of Definition 6.1, there exists a
u E cContent(tv)(X), and X has no ABORTED ancestors D. Since X is inac-
tive and all transactions D on the path from X up to but not including Y must
be COMMITTED, we must have u E cContent(tv)(D). Thus, u E cContent(t)(Y).
In this case, we have leaf (xAnces(X) n vTree(tv)(C)) = leaf(xAnces(Y)) n
vTree('v)(C) ances(v). Thus, a conflict of v with X also implies a conflict
of v with Y according to Definition 6.1. By the previous case, since Y is an
active transaction, a conflict for Y according to Definition 6.1 implies a conflict
according to Definition 5.17.

2. For the second statement of Lemma 6.1, consider the contrapositive. We can show
that if v conflicts with Y according to Definition 5.17, then, v conflicts with Y = X
according to Definition 6.1.

If v creates a conflict with X = Y according to Definition 5.17, then Y V ances(v) and
either R(v,f) A (Y E writers(t)(f)) or W(v, f) A (Y E readers(tv)(f)). The second
and third conditions of Definition 6.1 are satisfied since X = Y. To check the first
condition, consider the two options of whether Y is a writer or a reader of f. If
Y c writ ers (tv) (f), then there exists a memory operation u such that (f, u) E W(t)(Y).
One can then show (by Theorem C.2 in Appendix C) that u E cContent(v)(f) and
W(u,f), thereby satisfying the first condition of Definition 6.1. Similarly, if Y E
readers(v)(f), one can show that there exists a u E cContent(t)(f) with R(u,C).

Intuitively, Lemma 6.1 is true because for any inactive transaction X that has no aborted
ancestors, if X wrote to a memory location f, then Y, the nearest active transactional ances-
tor of X (as in Definition 6.1), logically belongs to writers (f), since the commit of all the
nested transactions on the path from X to Y propagates f into the writeset of Y.

160

XCONFLICT-ORACLE (X, u)

// For any node X and active memory operation u
1 if E3D E ances(X) such that status(D) = ABORTED
2 return "no conflict: X aborted"

3 Y +- closest active transactional ancestor of X
4 if Y E ances(u)
5 return "no conflict: X committed to u's ancestor"
6 else pick a transaction B in (ances (Y) - ances(LCA(Y, u)))
7 return "conflict with B"

Figure 6-5: Pseudocode for a conflict-detection query suggested by Lemma 6.1. The details
of subroutines (e.g., line 3) are omitted. In fact, many of these subroutines do not have
0(1)-time implementations.

Thus, Lemma 6.1 suggests a conflict-detection algorithm that does not require main-
taining leaf(writers(f)) and updating an access stack eagerly, i.e., on every memory
access. Let X be the last transaction that has successfully written to f. When u accesses
f, test for conflict by finding X's nearest active transactional ancestor Y and determining
whether Y is an ancestor of u. Figure 6-5 gives pseudocode for this test. CWSTM does not
actually implement this query as given-instead, it uses an equivalent, but more efficient
query, which is described in Section 6.4.

CWSTM facilitates the necessary conflict queries by using a lazy access stack to main-
tain the most recent successful write (and reads). The structure of the lazy access stack is
somewhat different from the simple access stack given in Section 6.2. An object 's lazy
access stack stores (possibly inactive) transactions that have written to f and sets of trans-
actions that have read from f with the stack entries ordered chronologically by access. The
top of the stack holds either the last writer (leaf (writers(f))) or the set of last readers
(lastReaders(f)). CWSTM maintains the invariant that if a transaction X on the stack
has aborted, then all transactions located above X on the stack (later chronologically) also
have aborted ancestors, and thus they represent values that should be rolled back. Unlike
a normal access stack, the lazy access stack is not updated on a transaction commit, i.e.,
the stack need not be updated to conceptually merge a transaction's readset or writeset into
its parent's readset or writeset. On memory operations, new transactions are added to the
access stack in the same way as described in Section 6.2.

Figure 6-6 gives pseudocode for an instrumentation of each memory access, assum-
ing for simplicity that all memory accesses behave as write instructions. 4 Incorporating
readers into the access stacks is more complicated, but conceptually similar. If a memory
access u does not belong to an aborting transaction (checked in line 2), then it is allowed to
proceed. Lines 4-5 test for conflict with the last writer to E.

If the last writer has aborted or has an aborted ancestor, then lines 6-9 fix the access

4 1t is possible to reduce locking on the access stack, but Figure 6-6 does not describe these optimizations.

161

ACCESS (u,t)

1 Z<-xParent(u)
2 if status(Z) = PENDINGABORT return XABORT

// Otherwise Z is active
3 accessStack(f).LOCKO

// Set X to be the last writer of t.
X +- accessStack().TOP()
result <- XCONFLICT-ORACLE (X, u)

6 if result is "no conflict: X aborted"
7 accessStack(f).UNLOCK()
8 CLEANUP (i) // Rollback some values
9 return RETRY // The access should be retried

10 if result indicates a conflict with transaction B
11 if choose to abort self
12 accessStack().UNLOCK()
13 return XABORT
14 else accessStack().UNLOCK()
15 signal an abort of B
16 return RETRY

// Otherwise, there is no conflict: X is an ancestor of Z
17 if Z # X //Z's first access to f
18 // Log the access
19 LOGVALUE(Z,e)
20 accessStack(f).PUSH(Z)

// Actually perform the write operation
21 Perform the write
22 accessStack().UNLOCK()
23 return SUCCESS

Figure 6-6: Pseudocode for a memory operation u which accesses an object f, assuming
that all accesses are writes. ACCESS (u,e) returns XABORT if Z should abort, RETRY if the
access should be retried, or SUCCESS if the memory operation succeeded.

162

CLEANUP(f)

1 accessStack(E).LOCK()
2 X +- accessStack().TOP()
3 if -]D E ances(X) such that status(D) = ABORTED
4 RESTOREVALUE (X, f) // Restore f from X's log

5 accessStack(f).PoP()
6 accessStack(E).UNLOCK()

Figure 6-7: Code for removing an aborted transaction from the top of an access stack for
location f, assuming all accesses are writes. To completely update an access stack, this
method should be called repeatedly until the top transaction has no ABORTED ancestor.

stack by calling CLEANUP. This auxiliary procedure, given in Figure 6-7, rolls back the
value of the topmost aborted transaction on i's access stack. Since CLEANUP cannot intro-
duce new conflicts, the access is retried in line 9.

If, on the other hand, there is a conflict between u and an active transaction (lines 10-
16), then either xParent (u) must abort or a conflicting transaction (B) must abort.

Finally, if there are no conflicts, then the access is successful. Lines 18-20 update the
access stack as necessary, before the actual access occurs.

While u is running the ACCESS method, concurrent transactions (that access f) can
continue to commit or abort. The commit or abort of such a transaction can eliminate a
conflict with u, but it never creates a new conflict with u. Thus, concurrent changes may
introduce spurious aborts, but they do not affect correctness.

Scheduling for CWSTM

CWSTM relies on the properties of a "Cilk-like" work-stealing scheduler for efficiency and
correctness. Conceptually, the CWSTM runtime dynamically generates a computation tree
C as it executes. 5 As in Cilk, CWSTM executes a computation C on P worker threads,
each maintaining a deque to store tasks that can be stolen. Conceptually, on each step,
each worker thread maintains a producer node X, a node in the computation tree C that
can execute instructions. A computation begins with root (C), the root of the computation
tree, as the producer node for a single worker, with the deques of all other workers empty.
When a worker pi executes a spawn instruction, it creates a P-node with two S-nodes as
children, pushes the right S-node onto the bottom of its deque, and begins working on the
left S-node. When pi runs out of S-nodes on its deque, it can steal an S-node Y from the top
of the deque of a victim worker, set Y as its producer node, and begin executing instructions
and the subtree of C rooted at Y.

5The execution model for CWSTM represents a combination of the TCO model from Section 5.5 and the
CCT model from Section A.4. CWSTM transactions conceptually behave as they do in the TCO model, but
instead of assuming a generic scheduler that nondeterministically chooses any ready node to execute the next
instruction, CWSTM assumes the specific scheduler described by the CCT model.

163

More precisely, we say that a scheduler is Cilk-like if it satisfies two properties. First,
each worker thread executes subtrees of the computation tree in a left-to-right fashion, i.e.,
it starts executing the left child of a P-node before the right. Second, workers use deques
for load balancing. In particular, each worker stores tasks on a deque, pushes and pops
tasks from the bottom of its deque in the common case, and tries to steal tasks from the top
of a victim's deque only when its own deque is empty. In terms of a computation tree, this
second condition implies that whenever a worker pi steals from a victim worker P2, then
pi steals the right subtree from the highest P-node in P2's subtree that has work available.

6.4 Conflict Detection in CWSTM

This section describes the high-level XConflict algorithm for conflict detection in CWSTM.
As the computation tree dynamically unfolds during an execution, XConflict dynamically
partitions the computation tree into "traces," where each trace consists of memory opera-
tions (and internal nodes) that can only be executed by one worker at a time. The XConflict
algorithm uses several data structures that organize either traces, or nodes and transactions
contained in a single trace. This section describes traces and gives a high-level algorithm
for conflict detection. The description of the data structures used by XConflict is deferred
until Section 6.5.

By dividing the computation tree into traces, the XConflict algorithm reduces the cost
of locking on shared data structures. In XConflict, updates and queries on a data structure
whose elements belong to a single trace can be performed without locks because these
updates are performed by a single worker. Also, data structures whose elements are traces
also support queries in constant time without locks. These data structures are, however,
shared among all processors, and therefore require a global lock on updates. Since the
XConflict algorithm creates traces only on steals, however, the number of traces is with high
probability at most O(PT.) - the number of steals performed by a Cilk-like randomized
work-stealing scheduler when executing a computation using P worker threads/processors.
Therefore, one can similarly bound the number of updates for XConflict's data structures.

The technique of splitting the computation into traces and having two types of data
structures - "global" data structures whose elements are traces and "local" data structures
whose elements belong to a single trace- appears in the SP-hybrid algorithm for series-
parallel maintenance, which was described by Bender et al. [25], and was later in improved
by Fineman [47]. Compared to SP-hybrid, the traces for CWSTM differ slightly, and the
data structures are a little more complicated, but the analysis technique is similar.

Trace Definition and Properties

XConflict assigns computation-tree nodes to traces in the essentially the same fashion as
the SP-hybrid data structure described in [25,47]. This section briefly describes the struc-
ture of traces here. Since the computation tree for CWSTM has a slightly different canon-
ical form from the canonical Cilk parse tree use for SP-hybrid, XConflict simplifies the
trace structure slightly by merging some traces together.

164

Figure 6-8: Traces of a computation tree (a) before and (b) after a steal instruction. Before
the steal, only one worker is executing the subtree, but S2 and S6 are ready. After the
steal, the subtree rooted at the highest ready S-node (S2) is executed by the thief. The
subtree rooted at Si, on the other hand, is still being executed by the victim worker.

Formally, each trace U is a disjoint subset of nodes of the computation tree. Let Y
denote the set of all traces. Y partitions the nodes of the computation tree C. For any trace
U E Y and any computation-tree node B C nodes(C), if B belongs to trace U, we say that
B E U, or trace(B) = U.

In CWSTM, only one worker at a time can be executing nodes from a given trace U.
Initially, the entire computation belongs to a single trace, and normally a worker executes
nodes from a trace in a depth-first manner. As the program executes, however, traces
dynamically split into multiple traces when steals occur.

More specifically, when a steal occurs and a processor steals the right subtree of a P-
node P E U, the trace U splits into three traces Uo, U1, and U2 (i.e.,] = Y U {Uo, U1, U2} -

{U}). Each of the left and right subtrees of P become traces U1 and U2 , respectively.
The trace Uo consists of those nodes remaining after P's subtrees are removed from U.
Although the worker performing the steal begins work on only the right subtree of P, both
subtrees become new traces. Figure 6-8 gives an example of traces resulting from a steal.
The left and right children of the highest uncompleted P-node Pi are task nodes which are
the roots of two new traces, U1 and U2 .

Traces in CWSTM satisfy the following properties.

Property 1. Every trace U E Y has a well-defined head task S-node S = head[U] E U
such that for all nodes B E U, we have S E ances(B).

165

Property 2. The computation-tree nodes of a trace U c Y form a tree rooted at S =
head[U].

Property 3. Trace boundaries occur at P-nodes. Either both children of the P-node and
the node itself belong to different traces, or all three nodes belong to the same trace. All
children of an S-node, however belong to the same trace.

Property 4. Trace boundaries occur at "highest" P-nodes. That is, suppose that a P-node
P has a stolen child (i.e., P and its children belong to different traces). Consider any node
P' C an ces(P) npNodes(C) (i.e., P' isan ancestor P-node of P). If P is in the left subtree
of P', then P' must have a stolen child (and therefore, P and P, belong to different traces).

Property 5. On any step t, consider a trace U which is active, i.e., U n vTree()(C) # 0.
Then, we have

head[U] = root(U n vTree()(C)),

that is, all active nodes in U fall along a single chain rooted at head[U].

These properties can be proved by a straightforward induction on the actions of the TCO
model and on the rules for how CWSTM generates traces. Property 4 follows from the use
of Cilk-like work-stealing, in which workers steal from the top of deques. Property 5 holds
because vTree(C), the tree of active nodes in the computation tree, only branches at the
children of P-nodes where steals occur, and these steals cause traces to split. Properties 1
and 5 imply that a trace U is active if and only if head[U] is active in C.

It is useful to define some notation on traces. For a trace U E], we use xparent [U] as
a shorthand for xParent(head[U]). It is also useful to define the task parent of nodes and
traces. For any node B E node s (C), define the task parent tParent(B) as

tParent(B) =(parent(B) if B E tasks(C) U {root(C)},
tParent(B) otherwise .

Similarly, define the task parent of a trace U as tparent [U] = tParent(head[U]).
From the partition] of nodes in the computation tree C, we can define a trace tree

Y(C) as follows. For any traces U, U' E _, there is an edge (U, U') E Y(C) if and only if
parent(head[U']) E U. 6 The properties of traces and the fact that traces partition C into
disjoint subtrees together imply that 1(C) is also a tree.

These properties imply that if an active trace U' is a descendant of a trace U, then
head[U'] is a descendant of all active nodes in U, as the following lemma shows.

Lemma 6.2. Consider active traces U, U' G C, with U # U'. Let D C U' be an active node,
and suppose that D E des c(head[U]) (i.e., U' is a descendant trace of U). Then for any
active node B E U, we have B E an ces(D).

Proof Intuitively, since all active nodes in trace U fall along a single chain, and since the
descendant trace U' is active, head[U'] must be the descendant of some node in the active

6The function parent () refers to the parent in the computation tree C, not in the trace tree Y (C).

166

chain of U. In fact, head[U'] must be a descendant of the bottom of the active chain of U,
for otherwise, we would have a branch in the set of active nodes of U.

More formally, first we can show that head[U] E pAnces(head[U']). Since D E U',
we know D E desc(head[U']) by Property 1. By our original assumption, we have also
D C desc(head[U]) and thus, one of head[U'] and head[U] must be a proper ancestor of
the other. Suppose for contradiction that head[U'] E pAnces (head[U]). Then along the
path from D up to the root of the tree, we would have head[U] c U in between two nodes
from U' (D and head[U']), which would contradict Property 2 for U'.

Thus, since head[U] E pAnces(head[Ul) and head[U'] itself is active, we can show
that all nodes B E (U nvTree(C)) must satisfy B E ances(head[U']) C ances(D). By
Property 5, only a single head-to-leaf path of U can be active: let Y = lea f (UfnvTree(C)),
i.e., Y is the bottom node in this path. Since B E U is active, we also know that B E
ances(Y). Thus, if we can show that Y E ances(head[U']), we have that B E ances(D).

Suppose for contradiction that Y an ce s (head[U']). Let X = LCA(head[U'], Y). Then
X is also an active node in U with X f Y, because both head[U'] and Y are descendants
of head[U]. The node X must be an active P-node, since vTree(C) can only branch at
P-nodes. But then by Property 3, the children of X should belong to different traces than X,
contradicting the fact that both X and Y belong to U. Thus we have Y C ances(head[U']),
yielding B C ances(D), as desired. 1:1

From Lemma 6.2, we can show that to perform an ancestor query between a memory
operation u and an active node Y in the computation tree, it suffices to perform an ancestor
query of their respective traces.

Theorem 6.3. On any step t that is executing a memory operation v, consider any active
node Y C vTree(')(C). Then Y c ances(v) if and only if trace(Y) is an ancestor of
trace(v) in I (C).

Proof. Consider both directions.

" Suppose that Y C ances(v). In C, the path starting from v and ending at Y corre-
sponds to a path of traces in (C), starting at trace(v) and ending at trace(Y). Since

Y(C) is a valid tree, trace(Y) must be an ancestor of trace(v).

" Let U = trace(Y) and U' = trace(v), and suppose that U is an ancestor of U'. Con-
sider the two cases for U and U'.

First, suppose that U = U'. Since v is a currently executing memory operation, we
know D = parent(v) C U is active and a leaf in vTree(t)(C). By Property 5, all
active nodes in U must fall along a single chain. Thus, D must be the bottom node in
this active chain. Since Y is also active, we must have Y C ances(D) C ances(v).

Otherwise, consider U $ U'. Since U is an ancestor of U', we have head[U'] C
desc(head[U]). Since D = parent(v) C U', we know that D C desc(head[U]).
Also, by our original assumption, Y C U is also active. Therefore, by Lemma 6.2, we
have Y C ances (D), which implies Y C ances (v).

Dj

167

The XConflict Algorithm

Recall that CWSTM instruments memory accesses and tests for transaction conflicts on
each memory access by querying the XConflict data structure. This section sketches the
high-level algorithm for XConflict, the data structure that CWSTM uses to check for trans-
action conflicts.

Section 6.3 described a conceptual algorithm (in Figure 6-5) for conflict detection ac-
cording to Definition 5.17 that can be translated into a simple, but potentially inefficient
implementation. In particular, one can perform the steps in Figure 6-5 by walking up and
down the computation tree. To check for a conflict between X and a memory operation u,
one can first walk up the tree to check that X has no ABORTED ancestors, as well as find Y,
the nearest active transactional ancestor of X. Then by walking up the tree from u, we can
determine whether Y is an ancestor of u. Definition 5.17 states that a conflict between X
and u occurs only if X has no ABORTED ancestors and Y is not an ancestor of u. Unfortu-
nately, this query may be inefficient for computations with deep nesting of parallelism or
transactions, since it requires walking up and down the computation tree.

Instead, XConflict performs a more asymptotically efficient query that takes advantage
of traces. As before, let Y be the nearest active transactional ancestor of X. Intuitively,
XConflict determines whether Y is an ancestor of u without explicitly finding Y. More
specifically, XConflict manages to find Uy, the trace that contains Y. As described later
in Theorem 6.4, it turns out that testing whether Uy is an ancestor of u is sufficient to
determine whether Y is an ancestor of u. XConflict does not lock on any queries, because
many of the subroutines only need to perform simple ABA tests [66] to see if anything
changed between the start and end of the query.

The pseudocode in Figure 6-9 gives a high-level description of the XConflict algorithm.
First, the code in lines 1-4 handle the simple cases of the query. The code in lines 1-2
covers the case where X and an active node u belong to the same trace. In this case, a
conflict between X and u is impossible. The code in lines 3-4 handles the case where X
has an ABORTED ancestor. By Definition 6.1, Property 2, there is no conflict between X and
any memory operation u.

Otherwise, the remainder of the code handles the more complex case, where X has
no ABORTED ancestor and X and u belong to different traces. In line 5, XConflict finds
B, the nearest transactional ancestor of X that belongs to an active trace. Figure 6-11
illustrates three cases, representing the possible locations of B in the computation tree. Let
UB = trace(B). Although UB is active, B may be active or inactive. For cases (a) or (b), we
find B with a simple lookup of xParent(X). Case (c) involves first finding U, the highest
completed ancestor trace of trace(X) and then performing a simple lookup of xparent [U].
Section 6.5 describes how to find the highest completed ancestor trace. If B happens to
be the root of the computation tree (as checked in line 6), then X is part of the outermost
transaction, and there is no conflict.

Otherwise, execution proceeds to the final cases in Figure 6-9. In line 9, XConflict finds
Z, the highest active transaction in UB, the trace containing B. There are two subcases to
consider, depending on the relationship between Z and B.

e If Z exists and is an ancestor of B, as shown in the left of Figure 6-12, then XConflict
is in the case given by lines 11-13. If UB is an ancestor of u, we conclude that X has

168

XCONFLICT (X, u)

// For any computation-tree node X and any active memory-operation u

// Test for simple base cases
1 if trace(X) = trace(u)
2 return "no conflict"
3 if some ancestor transaction of X is aborted
4 return "no conflict: X aborted"

5 Let B be the nearest transactional ancestor of X
belonging to an active trace.

6 if B = root(C) /committed at top level
7 return "no conflict: X committed to root"
8 UB <- trace(B)

9 Let Z be the highest active transaction in UB

10 if Z f null and Z is an ancestor of B
11 if UB is an ancestor of u
12 return "no conflict: X committed to u's ancestor"
13 else return "conflict with Z"
14 else Y - xparent[UB
15 if Y = null or trace(Y) is an ancestor of u
16 return "no conflict: X committed to u's ancestor"
17 else return "conflict with Y"

Figure 6-9: Pseudocode for the XConflict algorithm.

committed to an ancestor of u. Figure 6-12 (a) and (b) show the possible scenarios
where UB is an ancestor of u: either B is an ancestor u, or B has committed to some
transaction Y that is an ancestor of u.

Suppose that Z is not an ancestor of B (or that Z does not exist), as shown in the
left of Figure 6-13. Then XConflict follows the case given in lines 15-17. Let Y be
the transactional parent of UB. Since B has no active transactional ancestor in UB, it
follows that B has committed to Y. Thus, if trace(Y) is an ancestor of u, we conclude
that X has committed to an ancestor of u, as shown in Figure 6-13.

We now prove the correctness of the XConflict algorithm more formally.

Theorem 6.4. Let X be any node in the computation tree, and let u be a currently executing

memory access. Then XCONFLICT (X,u) (in Figure 6-9) reports a conflict if and only if

XCONFLICT-ORACLE (X, u) (from Figure 6-5) reports a conflict.

169

Figure 6-10: The definition
and 6-13.

(a)

U9

x

of arrows used to represent paths in Figures 6-11, 6-12

(b) (c)

Figure 6-11: The three possible scenarios in which B is the nearest transactional ancestor of
X that belongs to an active trace. Arrows represent paths between nodes (i.e., many nodes
are omitted): see Figure 6-10 for definitions. (a) X and xParent(X) both belong to the
same active trace. (b) X belongs to an active trace and xParent(X) belongs to an ancestor
trace of trace(X). (c) X belongs to a complete trace, U is the highest completed ancestor
trace of X, and B is the xparent [U].

170

Arrow Shape Arrow Style Status Type

No active transactions No traces on path Active trace
*on path

Active traces only Completed trace
V0

Possible active 1 - -g Active ortransactions on path 4 Complete traces only I
&.J complete node

Figure 6-12: The possible scenarios in which the highest active transaction Z in UB is
an ancestor of B, and UB is an ancestor of u (i.e., line 11 of Figure 6-9 returns TRUE).
Arrows represent paths between nodes (i.e., many nodes are omitted): see Figure 6-10 for
definitions. The block arrow shows implication from the left side to either (a) or (b).

Y Y

iti
I I \

UB UB

Z Z

Figure 6-13: The scenario in which the highest active transaction Z in UB is not an ancestor
of B, and Y = xparent[UB] is an ancestor of u (i.e., line 15 of Figure 6-9 returns TRUE).
The block arrow shows implication from the left side to the situation on the right. The
case when no active transaction in UB exists (i.e., Z = null) looks similar, except with Z
removed from the diagram.

171

Proof If X has an ABORTED ancestor, then both XCONFLICT and XCONFLICT-ORACLE
both report no conflict. Thus, we focus on the remaining case, where all the ancestors of X
are either COMMITTED or PENDING.

First, consider the case in lines 1-2, where trace(X) = trace(u). Assume for contradic-
tion that XCONFLICT-ORACLE (X, u) reports a conflict, but XCONFLICT (X, u) does not.
For a conflict to occur, there must be a parallel relationship between X and u (i.e., LCA(X, u)
is a P-node), with both subtrees of LCA(X, u) active simultaneously. To have both subtrees
active simultaneously, however, the right child of LCA(X, u) must have been stolen, and
thus the traces for X and u must be different, contradicting the assumption that the traces
were the same.

Otherwise, we can compare the remaining cases of Figure 6-9 to the oracle method
from Figure 6-5. Let Y' be the nearest active transactional ancestor of X, which is utilized
by the query XCONFLICT-ORACLE (X, u). Let Uyl be the trace containing Y'. Because Y' is
active, Uyi is active. By Theorem 6.3, we know Uy' is an ancestor of u if and only if Y' is an
ancestor of u. Thus, to show the equivalence of XCONFLICT-ORACLE and XCONFLICT,
we show that in all cases, XCONFLICT finds Uyl and performs an ancestor query between
Uy and trace(u).

In line 5, XConflict first finds B, the nearest transactional ancestor of X belonging to
an active trace. If B = root(C), then lines 6-7 and XCONFLICT-ORACLE report the same
answer, since X is a top-level transaction.

Otherwise, let UB be the trace containing B, and let Z be the highest active transaction
in UB, if one exists. Consider the two cases for Z:

" Suppose that Z exists and is an ancestor of B. If Z exists, then Y', the closest active
transactional ancestor of X, must satisfy Y' E UB. We also have Y' E desc(Z), be-
cause all active nodes in UB fall along a chain and there is at least one transaction Z
along that chain.

As shown in Figure 6-12, there are two possible configurations for UB, depending on
whether B is active (PEND ING) or inactive (COMMITTED). For both configurations, we
can show that UB = Uyi. If B is active, then by construction, we must have B = Y', and
thus UB = Uy1. If B is inactive, then Y' is also the closest active ancestor transaction
of B, and we still have UB = Uy.

Since UB = Uyl for both configurations, line 11 performs the correct ancestor query.
In line 11, if Uy is not an ancestor of trace(u), then since Y' and Z both belong to
Uy', aborting either Y' or Z resolves the conflict between u and Y'. Thus, line 13
correctly returns a valid transaction to abort.

* Suppose instead that Z, the highest active transaction in UB, is not an ancestor of
B, or Z does not exist. Then no active transaction in UB is an ancestor of B. Let
Y = xParent(UB). Since UB is active, Y must be active. Thus, we know Y = Y', i.e.,
Y is the nearest active transactional ancestor of X. Consequently, XConflict performs
the correct test in lines 15-17. Figure 6-13 illustrates this case when there is no
conflict.

In this proof thus far, we have assumed that the XConflict data structure does not change
concurrently while a query XCONFLICT executes. One can show, however, that the query

172

does not miss reporting any conflicts when concurrent updates are allowed. The only
changes to the data structure that could affect correctness are the splitting of traces, and
the commit or abort of transactions. Neither of these actions can introduce a new conflict
where one did not exist before, however. Since the query itself is read-only, one can retry
the query to detect whether any traces or transactions change.7 El

To execute the steps in Figure 6-9 efficiently, the XConflict algorithm maintains a data
structure which supports several operations.

Definition 6.2. The XConflict data structure supports following operations:

1. Find xParent (X), the transactional parent of a given node X in the computation
tree.

2. Compute trace(X) for any node X in the computation tree (e.g., lines 1, 8, and 15 in
Figure 6-9).

3. Find the highest active transaction within a trace (line 9).
4. Find an aborted ancestor trace (line 3).
5. Perform an ancestor query within a trace (line 10).
6. Perform an ancestor queries between traces (lines 11 and 15).

Operation 1 is straightforward to maintain by having each node in the computation tree
maintain a pointer to its transactional parent. The other operations, however, require some
more sophisticated data structures (discussed in Section 6.5) to guarantee that they run
efficiently, i.e., asymptotically in 0(1) time.

6.5 CWSTM Data Structures

This section describes the XConflict data structure, which enables a TM runtime using a
Cilk-like scheduler to support the conflict query presented in Figure 6-9. In particular, it
describes the four main components of XConflict which are used to support the operations
in Definition 6.2. First, to support Operation 2, XConflict maintains trace objects. Next, to
find the highest active transaction within a trace (Operation 3), XConflict augments each
trace object with a transaction stack. To facilitate Operation 4, XConflict groups traces
together into "supertraces." Finally, XConflict maintains state within a trace to answer
local ancestor queries (Operation 5), and global data structures to answer global ancestor
queries (Operation 6).

Trace Maintenance

The XConflict data structure maintains traces to enable efficient trace membership queries,
i.e., to perform operation 2, which computes trace(X) for any computation tree node X E
nodes(C), in 0(1) time in the worst case. We give only a high-level overview of the

7Technically, since the commit or abort of a transaction during a query can only eliminate a conflict, it is
safe to let transactions change status during the query.

173

scheme for trace maintenance in this section. Readers interested in additional details should
see [25,47], since these traces are similar to the local-tier of the SP-hybrid data structure
described.

To support trace membership queries, XConflict organizes computation-tree nodes be-
longing to a single trace as follows. Within a single trace U, each node D E U is associated
with tParent(D), its closest task-node ancestor. The task nodes in U are grouped into sets,
called "trace bags." Each bag b maintains a pointer to a trace, denoted by traceField[b].
Since a trace may contain many trace bags, most of the complexity of traces lies in main-
taining traceField[b] efficiently.

Bags are merged dynamically in a way similar to SP-bags [45] in the local tier of SP-
hybrid [25,47] using a disjoint-sets data structure [38, Chapter 21]. Since each trace can
be executed by only a single worker at a time, we do not need to lock the data structure on
update (UNION) operations. The difference in our setting is that XConflict uses only one
kind of bag (instead of two in SP-bags).

When steals occur, a global steal lock is acquired, and then a trace is split into multiple
traces, as in the global tier of SP-hybrid [25,47]. The difference for XConflict is that a
trace splits into three traces (instead of five in SP-hybrid). 8 It turns out that trace splits can
be done in 0(1) worst-case time by simply moving a constant number of bags. When the
trace constant-time split completes, the steal lock is released.

To compute trace(X), i.e., to query which trace a node X belongs to, XConflict performs
the operation

trace(X) = traceField [FIND-BAG (tParent (X))] .

These queries (in particular, FIND-BAG) take 0(1) worst-case time as in SP-hybrid [25,47].
Merging bags uses a UNION operation and takes 0(1) amortized time, but an optimiza-
tion [47] gives a technique that improves UNIONS to worst-case 0(1) time whenever the
amortization might adversely increase the program's critical path.

Highest Active Transaction

XConflict also augments the trace objects with additional data to support finding the highest
active transaction within a trace (operation 3) in 0(1) time.

For each task node S, XConflict maintains a field nextx[S] that stores a pointer to the
nearest active descendant transaction of S. Maintaining this field for all S-nodes is expen-
sive, and so instead, XConflict maintains it only for some S-nodes as follows. Let S C U
be an active task S-node such that either S = head[U] or S is the left child of a P-node
and xParent(S) = parent(parent(S)). Then nextx[S] is defined to be the nearest, active
descendant transaction of S in U. Otherwise, nextx[S] = null.

Finding the highest active transaction simply entails a call to nextx[head[U]], which
takes 0(1) time. The complication is maintaining the nextx values, especially subject to
dynamic trace splits.

8Traces in CWSTM also differ from those in SP-hybrid in that a single trace U can be executed by multiple
workers. In CWSTM, one worker p can begin executing a function F in a trace U, and then a different worker
p' can resume the execution of F after a sync as part of the same trace U. For SP-hybrid, the continuation of
the sync would begin a different trace.

174

To maintain nextx, XConflict keeps a stack of S-nodes in U for which nextx is defined.
Initially, push head[U] onto the stack. For each of the following scenarios, let S be the
S-node on the top of the stack. Whenever encountering a transactional S-node X, check
nextx[S]. If nextx[S] = null, then set nextx[S] = X. Otherwise, do nothing. Whenever
completing a transaction X, check nextx[S]. If nextx[S] = X, then set nextx[S] = null.
Otherwise, do nothing. Whenever encountering a task S-node S'. If nextx[S] = null, do
nothing. Otherwise, push S' onto the stack. Whenever completing a task S-node S', pop S'
from the stack if it is on top of the stack.

Finally, XConflict maintains these nextx values even subject to trace splits. Consider a
split of trace U into three traces U1, U2, and U3, rooted at S, Si, and S2, respectively. Since
CWSTM steals from the highest P-node in the computation tree, Si must be the highest,
active, task-node descendant of S that is the left child of a P-node. Thus, either Si is the
second S-node on U's stack, or Si is not on U's stack.

If Si is on U's stack, then nextx[S] is defined to be an ancestor of S, and XConflict leaves
it as such. Moreover, since Si is on the stack, nextx[Si] is defined appropriately. Simply
split the stack into two just below S to adjust the data structure to the new traces. Suppose
instead that Si is not on U's stack. Then the nextx[S] may be a descendant of Si (or it is
undefined). Set nextx[Si] = nextx[S] and nextx[S] = null. Then split the stack below S,
and prepend Si at the top of its stack. The necessary stack splitting takes O(1) worst-case
time. This stack splitting occurs while holding the steal lock and traces are being split.

Supertraces

This section describes XConflict's data structure to find the highest completed ancestor
trace of a given trace, which is used as a subprocedure for Operation 4. To facilitate this
type of query, XConflict groups traces together into "supertraces." Grouping traces into
supertraces also facilitates faster aborts: when aborting a transaction in a trace U, we need
only mark some of the supertrace children of U as ABORTED, not the entire subtree in C.
This section also describes how XConflict performs the abort of a transaction.

To explain the properties of supertraces, we first require some definitions on 1(C), the
tree of traces. Recall that a trace U is active if status(head[U]) is active (PENDING or
PENDINGABORT); otherwise, U is completed. For a completed trace U, we say that U is
ABORTED if head[U] has been marked by CWSTM as ABORTED; otherwise, we say that U is

COMMITTED. (Note that head[U] is a task node, not a transaction.) CWSTM can mark some
task nodes as ABORTED to speed up the abort of an enclosing transaction. Finally, we define
a "representative trace" of a completed trace U.

Definition 6.3. On a step t, for any complete trace U C 1(C), define the representa-
tive trace of U, denoted by strRep(U), as closest ancestor trace of U which is either
ABOR TED, or whose parent trace is active.9

At any point during program execution, the completed traces U E Y (C) are partitioned
into supertraces. For each complete trace U, let strace[U] denote the supertrace for U.
Each supertrace object K = strace[U] is conceptually a set of traces, i.e., K C 1 (C). Also,

9Ancestors include U itself, and so strRep(U) = U if U itself is ABORTED or has an active parent trace.

175

each supertrace maintains a high trace, denoted by high[K], which stores the highest com-
pleted ancestor trace within K.

First, we investigate the supertrace algorithm, i.e., the algorithm XConflict uses to
maintain supertraces. Supertraces are implemented using a disjoint-sets data structure [38,
Chapter 21]. In particular, XConflict uses the data structure of Gabow and Tarjan that
supports MAKE-SET, FIND (implementing strace[U]), and UNION operations, all in O(1)
amortized time when unions are restricted to a tree structure (as they are in our case). The
supertrace algorithm operates as follows:

* When a trace U is created, create an empty supertrace for U (i.e., strace[U] = 0).

* When the trace U completes (i.e., at a sync instruction, which finishes head[U]), do
the following:

1. Acquire the (global) steal lock.

2. Add U to its own supertrace. In other words, create a supertrace K - {U}, and
set strace[U] - K.

3. Merge the supertrace set of U with the supertrace set of the traces U' which are
children of U, if U' is part of a COMMITTED supertrace. 10 More formally, for
each child U' of U, let K' = strace[Ul.
(a) If high[strace[U']] is COMMITTED, merge the two supertraces, i.e., execute

UNION (strace[U], K').

(b) Otherwise, high[strace[U']] is ABORTED, and strace[U'] is left unchanged.

4. Set the high trace of strace[U] to U, i.e., high [strace[U]] <- U.

5. Release the steal lock.

Although a trace U may complete on a step t, the supertrace of U will not be merged into
its parent supertrace until some later step t' > t when the parent supertrace completes.

XConflict is able to exploit the structure of supertraces to optimize on transaction
aborts. A naive algorithm to abort a transaction X must walk the entire computation sub-
tree rooted at X, changing all of X's COMMITTED descendants to ABORTED. This walk can be
potentially expensive, since large portions of the subtree of X may be completed.

XConflict, however, only walks the active portions of the subtree rooted at X in U =

trace(X), not C. When it hits a boundary between an active trace U and a completed trace
U' (i.e., a node B E U, D E U', with parent(D) = B), it sets D to be ABORTED, and does
not walk the descendants of D.

The following theorem shows that XConflict preserves desired invariants for super-
traces.

Theorem 6.5. XConflict's supertrace algorithm maintains the following invariants on su-
pertraces. On any given step, consider the tree of traces Y(C). Consider any two (possibly
equal) complete traces U,V E 1(C) with V = strRep(U). Then, we have strace[U] =
strace[V], and one of two cases holds:

10Maintaining a list of all child traces is not difficult. We keep a linked list for each node in the trace tree
and add to it whenever a trace splits.

176

1. If V is COMMITTED, then high[strace[U]] =V.

2. If V is ABORTED, then high[strace[U]] is also ABORTED.

Proof We can prove this result by induction, on the actions taken to maintain the compu-
tation tree, traces, and supertraces.

In the base case, we begin with a single trace Uo which is active. Since strace[U] = 0
for any active trace U, the theorem holds vacuously.

For the inductive step, we consider the actions which can change supertraces- the
sync and xabort instructions.

* Consider a sync which completes a trace U. First, suppose that U is a leaf if 1(C).
Then the supertrace algorithm creates a supertrace K = {U}, set strace[U] = K, and
set high [K] = U. Then both conditions of the theorem hold for U trivially (whether
head[U] is COMMITTED or ABORTED).

Otherwise, suppose that U is not a leaf in Y (C) but has children traces. For any trace
W in the subtree of Y(C) rooted at U, consider what happens to W and strace[W]
before and after the update of supertraces performed by the supertrace algorithm.
If W = U, then the theorem holds as in the base case. If W # U', then W must
belong to the subtree of some trace U', where U' is a child trace of U. Since U
is already completed, we know that both U' and W must also be completed, and
thus the theorem holds inductively for both U' and W. Let Kw = strace[W], let
V = st rRep(W), and consider the various cases:

1. high[Kw] is COMMITTED.

First, we can show that V = st rRep(W) = U' for the trace U' which is a child of

U. Suppose for contradiction that V # U' for all children U'. By the definition
of V = strRep(W), we know V must be the closest ancestor trace along the

path from W to U' in 9(C) such that either V is ABORTED, or the parent of V is
an active trace. We can derive a contradiction for each of these two cases:

- Suppose that V is ABORTED. By Case 2 of the inductive hypothesis on W and

V we know that strace[W] = strace[V] and high[strace[W]] is ABORTED. But

these facts contradict our original assumption that high [Kw] is COMMITTED.

- Suppose that the parent of V is an active trace. Since U is the only active
trace in its subtree, we must have V = U' for some child U' of U, contra-
dicting our original assumption that V f U'.

Now that we know V = U', consider what happens after the supertrace update
operation. XConflict sets strace[W] = strace[V] = strace[U], and we also have
high[strace[U]] = U. Because U' is COMMITTED, and the parent trace of U is
active, we also have that strRep(W) = U after the update. Thus, the conditions

of Case 1 are satisfied for W.

2. high[Kw] is ABORTED.

In this case, the operations on supertraces leave Kw = strace[W] unchanged,
because this trace is not involved in any of the UNION operations.

177

We can also show that the completion of U cannot change st rRep(W). Con-
sider V = st rRep(W) before the update. We must have V being ABORTED. Oth-
erwise, if V were COMMITTED, then by Case 1 of the inductive hypothesis, we
would have high[strace[W]] = V being COMMITTED, contradicting the assump-
tion that high[Kw] is ABORTED. Since V is ABORTED, after the completion of U,
we still have V as the closest ancestor trace of W which is either ABORTED or
whose parent is active, i.e., we still have V = strRep(W).

Thus, since strace[W) and strRep(W) both remain unchanged, the conditions
of Case 2 remain satisfied for W.

e Consider an xabort of a transaction X. This xabort may need to abort transactions
Y nested inside X which belong to an active trace U = trace(Y). The xabort marks
any trace V which is a child of U as ABORTED.

Marking V as ABORTED cannot break the invariants for V or any of its descendant
traces, however. To be more precise, because V has an active parent, for any complete
trace W which is a descendant of V, strRep(W) remains the same. Also, for any W
with strRep(W) = V, changing V to ABORTED only shifts us from Case 1 to Case 2
of Theorem 6.5.

D

All update operations on supertraces take place while holding the steal lock. Unlike the
updates for trace or stack splitting, however, these updates on supertraces do not coincide
with steals. As Section 6.6 argues, however, one can still bound the number of supertrace-
update operations. In particular, the number of updates is asymptotically identical to the
number of steals. This amortization is similar to the "global tier" of SP-hybrid [25].

Ancestor Queries

This section describes how XConflict performs ancestor queries. First, it describes how
XConflict performs "local" ancestor queries (operation 5), i.e., queries between nodes be-
longing to the same trace. Then, it discusses how XConflict performs "global" ancestor
queries (operation 6) - queries between nodes belonging to different traces. Both of these
queries can be performed in 0(1) worst-case time.

CWSTM executes a trace using a single worker at a time, with each trace being executed
in depth-first (e.g.., left-to-right) order. We thus view a trace execution as a depth-first
execution of a computation (sub)tree (or a depth-first tree walk). To perform ancestor
queries on a depth-first walk of a tree, we can associate with each tree node u the discovery
time d[u], indicating when u is first visited (i.e., before visiting any of u's children), and
thefinish time f[u], indicating when u is last visited (i.e., when all of u's descendants have
finished). (This same labeling appears in depth-first search in [38, Section 22.3].) These
timestamps are sufficient to perform ancestor queries in constant time.

In the context of XConflict, we simply need to associate a "time" counter with each
trace. Whenever a trace splits, this counter's value is copied to the new traces.

178

To handle global ancestor queries, XConflict requires a more complicated data struc-
ture. Since the computation tree does not execute in a depth-first manner, the same dis-
covery/finish time approach does not work for ancestor queries between traces. Instead,
XConflict keeps two total orders on the traces dynamically using order-maintenance data
structures [24,42]. These two orders provide enough information to determine the ancestor-
descendant relationship between two nodes in the tree of traces. These total orders are
updated while holding the global steal lock. Since our global ancestor-query data struc-
ture resembles the global series-parallel-maintenance data structure in SP-hybrid, I refer
the reader to [25] for the details of the data structure. As in SP-hybrid, each query has a
worst-case cost of 0(1), and trace splits have an amortized cost of 0(1).

Correctness of the global ancestor queries relies on Property 4 of traces- the property
that a thief processor steals a subtree from the highest available P-node owned by the victim.

6.6 Theoretical Performance Bounds

The section bounds the running time of an CWSTM program in the absence of conflicts.
The bound covers the cost to maintain the XConflict data structure and the time to check
for conflicts assuming that all accesses are writes. Checking for conflicts with multiple
readers or transaction aborts both add more work to the computation, and these slowdowns
are not included in the analysis. First, we can argue that each query to the XConflict data
structure requires 0(1) time in the worst case. Then we can bound the time required to
maintain the XConflict data structure during a program's execution.

The next theorem bounds the time for each XConflict query.

Theorem 6.6. Each query XCONFLICT (X, u) requires 0(1) time.

Proof We shall prove this result by showing that each line of code in Figure 6-9 requires
0(1) time to execute.

In line 1, looking up the trace for a node in the computation tree (Operation 2) requires
finding the representative trace bag in a disjoint-sets data structure. Using the disjoint-sets
data structure of Gabow and Tarjan, this operation requires 0(1) time.

In line 3, there are two cases, depending on whether X has an aborted ancestor.

1. If trace(X) is active, XConflict simply checks whether status (X) = ABORTED."1

2. If trace(X) is completed, then we find the supertrace of trace(X) and use the prop-
erties of supertraces in Theorem 6.5. More precisely, XConflict checks whether
V = high[strace[trace(X)]] is ABORTED. If not, then we know any potential ABORTED

ancestor of X must be within an active trace U which is a proper ancestor trace of V.

Thus, XConflict checks for an aborted ancestor of xParent (V), as in the first case.

In line 5, to find the B, the nearest transactional ancestor of X that belongs to an active
trace, XConflict first finds the node X' that is the nearest transactional ancestor of X (either
X'= X if X is a transaction, or X'= xParent(X) otherwise). If trace(X') is active, then
B = X'. Otherwise, trace(X') is complete, and XConflict finds the closest ancestor trace of

11Recall that the xabort instruction of a transaction Y in an active trace U is responsible for walking Y's
subtree within U and changing the status field of any X E xDesc(Y) n U to ABORTED.

179

trace(X') which has an active parent trace, i.e., it looks up V = high[strace[trace(X')]]. 12

Then we can find B = xParent(head[V]).
Lines 6-8 require constant time, since they involve only comparison of computation-

tree nodes and a trace lookup.
In line 9, finding the highest active transaction within a trace UB (Operation 3) requires

looking at the top of the S-node stack within UB and can be done in 0(1) time.
In line 10, since B and Z are both within UB, XConflict performs a local ancestor query

(Operation 5). This local query requires a comparison of node timestamps, which occurs
in constant time.

Finally, in lines 11 and 15, XConflict performs a global ancestor query by comparing
two traces in two order-maintenance data structures. These data structures, as described
in [24,42] and used for SP-hybrid in [25], support queries in 0(1) time.

LI

The key insight in this analysis is to amortize the cost of updates that hold the steal lock
against the number of steals, similar to the proof of performance of SP-hybrid in [47]. One
important feature of XConflict's "global" data structures is that they have 0(If (C)|) total
update cost, where |1(C) represents the total number of traces in the computation. The
analysis makes the pessimistic assumption that while the steal lock is held, only the worker
holding the steal lock makes any progress.

The following theorem states the running time of an CWSTM program under nice con-
ditions, giving bounds for both Cilk's normal randomized work-stealing scheduler and for
a round-robin work-stealing scheduler (as in [47]).

Theorem 6.7. Consider an CWSTM program with work T1 and span (critical-path length)
T. in which all memory accesses are writes. Suppose that the program, augmented with
XConflict, is executed on P processors and has no transaction conflicts.

1. When using a randomized work-stealing scheduler, the program runs in 0(T /P +
P(T.+1 g (1 /-))) time with probability at least 1 - F.

2. When using a round-robin work-stealing scheduler, the program runs in 0(T1|P +
PT.) worst-case time.

Intuitively, Theorem 6.7 bounds the overhead of XConflict algorithm itself. These
bounds nearly match those of a Cilk program without XConflict's conflict detection. The
only difference is that the T. term is multiplied by a factor of P. In most cases, since we
expect PT. < T1 /P, these bound represents only constant-factor overheads beyond opti-
mal.

These XConflict bounds translate to bounds on completion time of an CWSTM pro-
gram under optimistic conditions. For illustration, consider a program where all concurrent
paths access disjoint sets of memory as writes. The overhead of maintaining the XConflict
data structures is O(T1/P+PT.). Each memory access queries the XConflict data struc-
ture at most once. Since each query requires only 0(1) time, the entire program runs in
0(T/P+PT.) time.

12The trace V should have an active parent trace, rather than being ABORTED, since XConflict determined
in line 3 that X does not have an ABORTED ancestor.

180

The CWSTM design described in this section does not provide any reasonable per-
formance guarantees when multiple readers are allowed. There are two reasons for this
problem. First, concurrent reads to an object may contend on the access stack to that ob-
ject. Second, even in the case where concurrent read operations never wait to acquire an
access stack lock, it appears that write operation may need to check for conflicts against
potentially many readers in a reader list (some of which may have already committed).
Therefore, a write operation is no longer a constant time operation, and it seems the work
of the computation might increase proportionally to the number of parallel readers to an
object. It is an interesting open question whether one can extend the CWSTM design to
achieve stronger bounds when concurrent reads are permitted.

6.7 Related Work

I conclude this chapter by describing other work related to nested parallelism in TM.
Transactions with nested parallelism have been extensively studied in the context of

database systems [56]. Wing et al. [125] proposed a design of a system that supports trans-
actions with nested parallelism in the context ML, a persistent programming language. To
my knowledge, CWSTM [3] represents the first design of a system supporting transactions
with nested parallelism in the context of transactional memory.

Since the original work on CWSTM [3] was published, other designs for TM that sup-
port transactions with nested parallelism have been proposed in the literature. Barreto et
al. [23] describe an STM design for transactions with nested parallelism which is similar in
design to CWSTM, but which uses a simplified algorithm for conflict detection. This de-
sign uses bitvectors to represent sets of transactions, which enables a TM system to answer
conflict queries using only a few bit operations. The algorithm has the limitation, however,
that only a constant number of transaction ids can be active at once (e.g., 64) before the ids
must be reclaimed. Although the design of [23] is likely to be more efficient in practice, it
uses a scheme for reclaiming transaction ids that seems tricky to analyze theoretically. It
would be interesting to explore whether one can provide worst-case theoretical bounds for
this design.

Others have also proposed and implemented prototype designs of TM that support
transactions with nested parallelism. Volos et al. in [122] describe NePalTM, a design
and implementation of a TM system that integrates atomic blocks with OpenMP. Baek et
al. [19] describe NesTM, a STM design that supports transactions with nested parallelism.
The NesTM design focuses on having low overhead for a single level of nesting of transac-
tions. In their system the commit of nested transactions requires work proportional to the
size of the transaction readset and writeset. In another paper [20], the authors also discuss
hardware support for transactions with nested parallelism. These designs may be more
practical to implement, but it is an open question how well they work on programs with
large nesting depths.

181

182

Chapter 7

Ownership-Aware TM

This chapter explores the challenge of designing transactional memory (TM) that provides
strong semantic guarantees for "open-nested" transactions. Chapters 5 and 6 described
semantics and runtime support for TM with nested parallelism and "closed-nested" trans-
actions. TM with closed-nesting semantics has the potential problem, however, that it does

not provide any mechanism for programmers to eliminate conflicts between transactions
that they deem to be "unnecessary." Thus, researchers have proposed the idea of open-
nested transactions [98, 103], a special type of nested transaction that allows programmers
to eliminate some kinds of transaction conflicts. Unfortunately, as I discuss in this chap-
ter, open-nested transactions significantly complicate the semantics of TM because their
use breaks the traditional guarantees of serializability. Without this guarantee, it can be
difficult for programmers to reason about programs that use open-nested transactions.

In this chapter, I describe ownership-aware TM,1 a design for TM that uses information
about which memory locations a software module owns to make open-nested transactions
safer and more intuitive to use. Ownership-aware TM supports open-nesting of transac-
tions, but still provides clean memory-level semantics and provable guarantees of "ab-
stract serializability" to programmers. Ownership-aware TM demonstrates that a parallel-
programming platform can support composable synchronization using open-nested trans-
actions and still provide provable guarantees of safety and correctness to programmers.

This section reviews the concept of open-nested transactions through a series of code
examples, using these examples to motivate the utility of ownership-aware TM. First, I
present a code example which shows that existing TM mechanisms for open nesting can
improve the performance of code using TM. Unfortunately, as I show using additional
examples, an unconstrained use of these mechanisms can also lead to anomalous program
behavior. I then give a brief overview of ownership-aware TM, a TM design which allows
open nesting but is able to eliminate some of these anomalies. Finally, I conclude this
section by giving an outline of the rest of this chapter.

Motivation for Open-Nesting in TM

A simple code example illustrates the benefits of open-nested transactions.

1Ownership-aware TM represents joint work [5] with Kunal Agrawal and I-Ting Angelina Lee.

183

1 void Insert2(int k, int v) {
2 B[k] = v;
3 numinserts++;
4 }

Figure 7-1: A modification of the Insert method from Figure 5-1. The Insert2 method
performs the same computation as Insert, but also updates a global counter num-inserts
that counts the number of inserts performed.

In a closed TM system, consider a modification to the code from Figure 5-1, where
every call to Insert is replaced with a call to Insert2 from Figure 7-1. In the Insert2
method, each insert also updates a global counter counting the number of inserts. With this
modification, Schedule 3 from Figure 5-1 is no longer serializable, even when variables
a through f are all distinct, because the inserts happen in the order X2, Y2 ,X4 , Y4 , and thus
neither X or Y sees consecutive values of the counter num-inserts. Because transactions
X and Y both update the same counter, they will likely conflict when run concurrently, even
if the counter updates are a tiny fraction of the execution time of X and Y.

An application developer may find this kind of transaction conflict between X and Y
undesirable for several reasons. First, since neither X or Y read the value of this counter,
the increments to num-inserts conceptually commute with each other, and Schedule 3
still appears "abstractly serializable" at the level of program semantics, even though it is
not technically serializable when viewed at the level of memory reads and writes.

Second, a small change to the Insert method which does not affect the correctness of
the insert now has a significant impact on the performance of X and Y, because it controls
whether X and Y conflict or not. Closed-nested transactions in TM have the benefit of
being composable: the programmer who writes X and Y can still write correct code without
knowing the implementation details of a library Insert method. Closed-nesting semantics
also have the downside, however, that a library writer coding the Insert method cannot
isolate a library user from the performance implications of code changes such as the one in
Figure 7-1.

To improve the performance of TM in such examples, researchers have proposed mech-
anisms for an open-nested commit of a transaction [98, 103]. Conceptually, a transaction
A which is "open-nested" inside X can commit state to global memory even before the
outer transaction X completes. For example, consider an open TM system that executes
the code shown in Figure 7-2. When AI completes, its changes to B and num-insert s are
committed immediately, even though X has not completed yet and may later abort. In this
example, all insert calls occur inside open-nested transactions. The TM system ignores any
conflicts between transactions X and Y due to any memory accesses inside the open-nested
transactions Ai, A2, B1, and B2 . Open nesting provides a loophole in the strict guaran-
tee of transaction serializability by allowing an outer transaction to "ignore" the memory
operations of its open-nested subtrans actions.

As Moss [102] argues, the use of open-nested transactions requires reasoning about TM
programs at multiple levels of abstraction. Using the open-nesting methodology, whenever
a transaction X has an open-nested transaction Z, X should not care about the memory
operations inside Z when checking for conflicts. Instead, X may need to acquire an abstract

184

// Transaction X // Transaction Y
1 atomic { 1 atomic {
2 int rl, r2; 2 int rl, r2;
3 r1 = A[a]; // X1 3 r = A[d];/ Yl

4 open_.atomic { /I Al 4 open_atomic { // B1
5 Insert2(a, ri); 5 Insert2(d, rl);
6 } 6 }
7 r2 = A[b]; // X2 7 r2 = A[e]; // Y2

8 openatomic { // A2 8 openatomic { / B2
9 Insert2(b, r2); 9 Insert2(e, r2);

10 } 10 }
11 A[c] = rl+r2; // X3 11 A[f] = rl+r2; // Y3

12 } 12 }

Figure 7-2: Two concurrent transactions X and Y, each with open-nested transactions (in-
dicated by the blocks labeled with the open-at omic keyword). The transaction X performs
each call to Insert2 inside open-nested transactions, A1 and A2. Similarly, Y has open-
nested transactions B1 and B2.

lock based on the high-level operation that Z represents so that the TM system can check
for transaction conflicts for X using this abstract lock. Also, if X aborts, then, the TM

system may need to execute a compensating action to undo the effect of an open-nested
subtransaction Z which has already committed. Moss [102] illustrates use of open nesting

with an application that uses a B-tree. Ni et al. [105] describe a software TM system that
supports the open-nesting methodology.

Anomalous Behavior Using Open-Nested Commits

Unfortunately, a significant gap exists between the high-level programming methodology
of open nesting of [102,105] and the memory-level mechanism of an open-nested commit
described in [98, 103]. Ideally, a programmer would like to reason about only the high-
level methodology. Since a TM system only provides guarantees about transactions only at
the level of reads and writes to memory, however, a programmer also needs to understand
the memory-level semantics of open-nested commits to correctly apply the methodology.
By using open-nested commits, a TM system can permit some nonserializable schedules
which a programmer considers desirable, but understanding exactly which schedules are
allowed requires careful reasoning about memory-level semantics.

Unfortunately, once a TM system with open nesting admits some desirable nonserial-
izable schedules, the proverbial cat is out of the bag. As far as the memory semantics are
concerned, it seems difficult to prohibit additional program behaviors that might arguably
be undesirable. For example, Figure 7-3 shows a program execution allowed by the open-

nested commit mechanisms described in [98, 103]. In this example, it is possible for all
transactions X, Z, Y1, and Y2 to commit, even though X does not appear to execute atom-

ically. Transaction X reads inconsistent data, since Y2 writes to A [b] between X's reads
of A [a] and A [b]. Thus, the "snapshot" of memory seen by X when it begins is different
from its snapshot part way through its computation.

185

// Transaction X
atomic {

int rl, r2;
r1 = A[a];

// Transaction Z
openatomic {

A[i] ++;

1
2
3

4
5
6

7
8
9

// Transaction Y1
atomic {
A[i]++;

// Transaction Y2
atomic {

A[b] = A[i];
A[b]++;

Figure 7-3: A nonserializable program execution permitted by TM that uses an open-nested
commit mechanism. Suppose X with an open-nested transaction Z runs concurrently with
Yi and Y2 . In an execution order given by the lines 1-6, 10-16, and then 7-9, transaction X
can read an "inconsistent" value for A [b], because Yi and Y2 can appear to interleave after
the open-nested transaction Z completes, but before X commits.

bool Contains(int i)
bool empty;
openatomic {

if (tbl.size>0)
empty = false;

}
}
if (!empty) {

return (tbl.A[i]>0);

void Insert(int k, int v)

atomic {
tbl.A[k] =v;

tbl.size++;

return false;

7-4: A flawed implementation of a table data structure using an open-nested trans-
In this implementation, tbl .A [iI being 0 indicates that element i is not in the

// Transaction X
1 atomic {
2 if (!Contains(5))
3 Insert(5, 15);
4
5 }

// Transaction Y
6 atomic {
7 if (!Contains(5))
8 Insert(5, 10);
9

10

Figure 7-5: Two transactions X and Y which no longer appear atomic because of open-
nested transactions. Because both X and Y use the flawed table data structure implemented
in Figure 7-4, and the Contains method uses an open-nested transaction incorrectly, trans-
actions X and Y no longer appear to execute atomically. In particular, the following execu-
tion order is possible: lines 1-2, lines 6-10, and then lines 3-5.

186

r2 = A[b);
A[c] = (rl+r2);

12 1

Figure
action.
table.

}

The code in Figure 7-4 illustrates how the open-nested commit mechanism can admit

subtle program behaviors that affect the composability of transactions. This code describes
an implementation of a simple table which supports the Contains (x) and Insert (x, y)
methods, but which contains a subtle flaw. Since the size field is the primary source of
transaction conflicts between table operations, the Contains method "optimizes" its search
method by checking size within an open-nested transaction.

Using TM with open nesting, in any sequence of Contains or Insert operations, each
individual operation still appears atomic. Thus, in transaction X in Figure 7-5, we might
expect that if the Contains operation returns false, then the key can be safely inserted into
the hash table without adding duplicates.

Unfortunately, one cannot correctly call both Contains and Insert inside a transaction
X and still have X appear to be atomic. A TM that uses open-nested commits allows the
entire transaction Yi to execute between line 2 and line 3 of transaction X, since the open-
nested commit does not add the read of t bi. size (in line 4 of Figure 7-4) to the readset of
X. Thus, in this example, that composability of transactions is not preserved. When using

open nesting, simply ensuring the atomicity of individual transactions is not sufficient to
guarantee composability.

Of course, the programs in Figures 7-3 and 7-4 are clearly contrived examples. In par-
ticular, in Figure 7-4, transactions cannot be partitioned into clear abstraction levels, with

each level accessing disjoint memory locations, as Moss [102] suggests may be necessary
in the open-nesting methodology. These examples demonstrate, however, that for open-

nested transactions, the distinction between the abstract program model and the low-level
memory model is much more significant than for closed or flat nesting.

These examples also suggest that to avoid anomalous program behavior that can be
tricky to reason about, that one should constrain the behavior of open-nested transactions,
possibly by limiting the memory locations that transactions are allowed to access. The
programs in Figures 7-3 and 7-4 are "obviously" pathological, and one might argue that a
"reasonable" program should not exhibit such behavior. Unfortunately, it is not as obvious

what exactly what constitutes a reasonable program. Furthermore, because the TM runtime
is unaware of the different levels of memory, it is not clear that a TM runtime can easily
guarantee or even check whether a program is reasonable.

One potential reason for the apparent complexity of open nesting is that the mechanism
and the methodology make different assumptions about memory. Consider a transaction
Y that is open nested inside transaction X. The open-nesting methodology requires that X

ignore the "lower-level" memory conflicts generated by Y, while the open-nested commit
mechanism ignores all the memory operations inside Y. Say Y accesses two memory loca-

tions fi and f2, and suppose that X does not care about changes made to £2, but does care

about fi. The TM system cannot distinguish between these two accesses and commits both

in an open-nested manner, leading to anomalous behavior.
On the other hand, researchers have presented specific program examples [35,102,105]

that safely use an open-nested commit mechanism. Moss [102] illustrates the use of open
nesting with an application that uses a B-tree. Ni et al. [105] describe a software TM sys-

tem that supports the open-nesting methodology. Carlstrom et al. [35] describe the Trans-

actional Collection Classes, a set of transactional data structures that use an open-nested
commit mechanism. These examples work primarily because the inner (open-nested) trans-

187

actions never write to any data that is accessed by the outer transactions. Unfortunately,
these examples offer relatively little in the way of formal programming guidelines which
one can follow to have provable guarantees of safety when using open-nested commits for
other applications. Moreover, since these examples require only two levels of nesting, it is
not obvious how one can correctly use open-nested commits in a program with more than
two levels of abstraction.

Contributions

This chapter describes ownership-aware transactional memory, which associates memory
locations and nested transactions with particular "transactional modules." By providing a
TM runtime with information about which module "owns" a particular memory location,
the runtime can take into account the "abstraction level" of modules and memory when
detecting conflicts.

Ownership-aware TM is designed to bridge the gap between memory-level mechanisms
for open nesting and the high-level methodology by explicitly integrating the notions of
transactional modules (Xmodules) and ownership into a TM system. The structure im-
posed by ownership allows a language and runtime to enforce properties needed to provide
provable guarantees of "safety" to the programmer. More specifically, this chapter de-
scribes the primary features of ownership-aware TM, namely:

1. A concrete set of guidelines for sharing of data and interactions between Xmodules.
2. A description of how Xmodules and ownership can be specified in a Java-like lan-

guage using ownership types.
3. The OAT model, an operational model for ownership-aware TM, which uses a new

ownership-aware commit mechanism.
4. A proof that if a program follows the proposed guidelines for Xmodules, then the

OAT model guarantees serializability by modules, which is a generalization of "seri-
alizability by levels" used in database transactions.

5. A proof that if all transactions in the process of aborting obey certain restrictions on
their memory footprint, then a computation executing under the OAT model cannot
enter a semantic deadlock.

The ownership-aware commit mechanism is a compromise between an open-nested and
a closed-nested commit. When a transaction X commits, a change to memory location f
is either committed globally if f belongs to the module of X or propagated to X's parent
transaction if £ does not belong to the module of X. Unlike an ordinary open-nested com-
mit, the ownership-aware commit treats memory locations differently depending on which
Xmodule owns the location. 2 An ownership-aware commit is the same as an open-nested
commit if no Xmodule ever accesses data belonging to other Xmodules. Thus, one can still
guarantee serializability by modules using open-nested commits when Xmodules do not
share data. This observation explains why researchers [35,105] have found it natural to use
open-nested transactions, in spite of the apparent semantic pitfalls.

2The ownership-aware commit is still just a mechanism. Programmers must still use it in combination
with abstract locks and compensating actions to implement the full methodology.

188

In this chapter, we distinguish between the variations of nested transactions as fol-

lows. We say that a transaction Y is vanilla open-nested (inside its parent transaction)
when referring to a TM system which performs the open-nested commit of Y. We say
that Y is safe-nested when referring to the ownership-aware TM system which performs
the ownership-aware commit of Y. Finally, we say that a transaction Y is an open-nested
transaction when we are referring to the abstract methodology, rather than a particular im-
plementation with a specific commit mechanism.

Chapter Outline

The remainder of this chapter is organized as follows. Section 7.1 presents an overview of
ownership-aware TM and highlights key features using an example application. Section 7.2
describes language constructs for specifying Xmodules and ownership. Section 7.3 extends
the transactional-computation framework and the TCO operational model from Chapter 5
to create the OAT model, an operational model for a TM runtime that incorporates Xmod-
ules and ownership. Section 7.4 gives a formal definition of serializability by modules,
and a proof that the OAT model guarantees this definition. Section 7.5 provides conditions
under which the OAT model does not exhibit semantic deadlocks. Section 7.6 discusses
related work, and Section 7.7 concludes this chapter.

7.1 Ownership-Aware Transactions

This section gives an overview of ownership-aware TM. First, this section motivates the

need for the concept of ownership in TM by describing an example application which can

benefit from open nesting. Next, it introduces the notion of an Xmodule and informally
explain the programming guidelines when using Xmodules. Finally, it highlights some of
the key differences between ownership-aware TM and a TM that uses ordinary open-nested
commits. This section presents the intuitive descriptions of the concepts in ownership-
aware TM, deferring formal definitions until later sections.

The Book Application

We now investigate the book application, an example application for which one might use

open-nested transactions. This example is similar to the one in [102], but it includes data

sharing between nested transactions and their parents, and has more than two levels of

nesting.
Since the open-nesting methodology is designed for programs with multiple levels of

abstraction, the book application is a modular application. Suppose that this application
concurrently accesses a database of many individuals' book collections. The database
stores records in a binary search tree, keyed by name. Each node in the binary search

tree corresponds to a person and stores a list of books in his/her collection. The database
supports queries by name, as well as updates that add a new person or a new book to a
person's collection. The database also maintains a private hash table, keyed by book title,
to support a reverse query: given a book title, it returns a list of people who own the book.

189

Finally, the application also wants the database to log changes on disk for recoverability.
Whenever the database is updated, it inserts metadata into the buffer of a logger to record
the change that just took place. Periodically, the application is able to request a checkpoint
operation which flushes the buffer to disk.

The book application can be decomposed into five natural modules - the user applica-
tion (UserApp), the database (DB), the binary search tree (BST), the hash table (HashTable),
and the logger (Logger). The UserApp module calls methods from the DB module when
it wants to insert into the database, or query the database. The database in turn maintains
internal metadata and calls the BST module and the HashTable module to answer queries
and insert data. Both user application and the database may call methods from the Logger
module.

If the modules use open-nested transactions, a TM system with vanilla open-nested
commits can result in nonintuitive outcomes. Consider the example where a transactional
method A from the UserApp module tries to insert a book b into the database and the insert
is an open-nested transaction. The method A (which corresponds to transaction X) calls
an insert method in the DB module and passes b (the Book object) to be inserted. This
insert method generates an open-nested transaction Y. Suppose that Y writes to some field
of the book b (memory location fl), and it also writes some internal database metadata
(location £2). After a vanilla open-nested commit of Y, the modifications to both fi and f2
become visible globally. Assuming that the UserApp does not care about the internal state
of the database, committing the internal state of the DB (V2) is a desirable effect of open
nesting, because this commit increases concurrency, since other transactions can potentially
modify the database in parallel with X without generating a conflict. The UserApp does,
however, care about changes to the book b. Thus, the commit of fi breaks the atomicity
of transaction X. A transaction Z in parallel with transaction X can access this location
£i after Y commits, before the outer transaction X commits. 3 To increase concurrency, we
want the method from DB to commit changes to its own internal data; we do not, however,
want it to commit the data that UserApp cares about.

To enforce this kind of restriction, we need some notion of ownership of data: if the
TM system is aware of the fact that the book object "belongs" to the UserApp, then it can
decide not to commit DB's change to the book object globally. For this purpose, we intro-
duce the notion of transactional modules, or Xmodules. When a programmer explicitly
defines Xmodules and specifies the ownership of data, the TM system can make the correct
judgement about which data to commit globally.

Xmodules and the Ownership-Aware Commit Mechanism

The ownership-aware TM system requires that programs be organized into Xmodules. In-
tuitively, an Xmodule M is as a stand-alone entity that contains data and transactional
methods. An Xmodule owns data that it privately manages, and it uses its methods to
provide public services to other modules. During program execution, a call to a method

3Abstract locks [102] do not address this problem. Abstract locks are meant to disallow other transactions
from noticing the fact that the book was inserted into the DB. They do not usually protect the individual fields
of the book object itself.

190

from Xmodule M generates a transaction instance (e.g., X). If this method in turn calls
another method from an Xmodule N, an additional transaction Y, safe nested inside X, is
created only if M -$ N. Therefore, defining an Xmodule automatically specifies safe-nested
transactions.

In the ownership-aware TM system, every memory location is owned by exactly one
Xmodule. If a memory location f belongs to the readset or writeset of a transaction X, the
ownership-aware commit of X commits this access globally only if X is generated by the
same Xmodule that owns f. In this case, we say that X is "responsible" for that access to
e. Otherwise, the read or write to f is propagated up to the readset or writeset of X's parent
transaction. That is, the TM system behaves as though X was a closed-nested transaction
with respect to location f.

For ownership-aware TM to behave "nicely," we must restrict interactions between
Xmodules. For example, in the TM system, some transaction must be "responsible" for
committing every memory access. Similarly, the TM system should guarantee some form
of serializability. If Xmodules could arbitrarily call methods from or access memory owned
by other Xmodules, then these two properties might not be satisfied.

One way to restrict Xmodules would be to allow a transaction to access only objects that
belongs to its own Xmodule. This condition might severely restrict the expressiveness of
the program, however, since it does not allow an Xmodule to pass an object that it owns as
a parameter to a method that belongs a different Xmodule. Ownership-aware TM is able to
impose weaker restrictions on the interactions between Xmodules, while still guaranteeing
desirable properties.

Rules for Xmodules

Ownership-aware TM uses Xmodules to control both the structure of nested transactions
and the sharing of data between Xmodules (i.e., to limit which memory locations a trans-
action instance can access). Xmodules are arranged as a module tree, denoted as D. An
Xmodule N E D is a child of M if N is "encapsulated by" M. The root of D is a special
Xmodule called world. Each Xmodule is assigned an xid by visiting the nodes of D in
a left-to-right depth-first search order and assigning ids in increasing order, starting with
xid(world) = 0. Therefore, world has the minimum xid, and "lower-level" Xmodules
have larger xid numbers.

Definition 7.1. Ownership-aware TM imposes two rules on Xmodules based on the module

tree:

1. Rule 1: A method of an Xmodule M can access a memory location f directly only if
f is either owned by M or an ancestor of M in the module tree. This rule means that
an ancestor Xmodule N of M may pass data down to a method belonging to M, but a
transaction from module M cannot directly access any "lower-level" memory.

2. Rule 2: A method from M can call a method from N only if N is the child of some
ancestor of M and xi d(N) > xi d(M) (i.e., if N is "to the right" of M in the module

191

tree). This rule means that an Xmodule can call methods of some (but not all) lower-
level Xmodules.4

The intuition behind these rules is as follows. Xmodules have methods to provide
services to other higher-level Xmodules, and Xmodules maintain their own data in order
to provide these services. Therefore, a higher-level Xmodule can pass its data to a lower-
level Xmodule and ask for services. A higher-level Xmodule should not directly access the
internal data belonging to a lower-level Xmodule.

If Xmodules satisfy Rules 1 and 2, TM can have a well-defined ownership-aware com-
mit mechanism in which some transaction is always "responsible" for every memory access
(proved in Section 7.3). In addition, these rules and the ownership-aware commit mecha-
nism guarantee that transactions satisfy the property of "serializability by modules" (proved
in Section 7.4).

One potential limitation of ownership-aware TM is that some "cyclic dependencies"
between Xmodules are prohibited. The ability to define one module as being at a lower
level than another is fundamental to the open-nesting methodology. Thus, this formalism
requires that Xmodules be partially ordered: if an Xmodule M can call Xmodule N, then
conceptually M is at a higher level than N (i.e., xid(M) < xid(N)), and thus N cannot call
M. If two components of the program call each other, then, conceptually, neither of these
components is at a higher-level than the other, and ownership-aware TM would require that
these two components be combined into the same Xmodule.

Xmodules in the Book Application

Consider a Java implementation of the book application. It may have the following classes:
UserApp as the top-level application that manages the book collections, Person and Book
as the abstractions representing book owners and books, DB for the database, BST and
HashTable for the binary search tree and hash table maintained by the database, and
Logger for logging the metadata to disk. In addition, there are some other auxiliary classes:
tree node BSTNode for the BST, Bucket in the HashTable, and Buf f er used by the Logger.

For ownership-aware TM, not all of a program's classes are meant to be Xmodules.
Some classes only wrap data. In this example, we can identify five Xmodules- UserApp,
DB, BST, HashTable, and Logger- which are stand-alone entities with encapsulated data
and methods. Classes such as Book and Person, on the other hand, are data types used
by UserApp. Similarly, classes like BSTNode and Bucket are data types used by BST and
HashTable to maintain their internal state.

We can organize the Xmodules of the book application into the module tree shown in
Figure 7-6. UserApp is encapsulated by world, DB and Logger are encapsulated under
UserApp, and both BST and HashTable are encapsulated under DB. By organizing Xmod-
ules this way, the ownership of data falls out naturally, i.e., an Xmodule owns certain pieces
of data if the data is encapsulated under the Xmodule. For example, the instances of Per son
or Book are owned by UserApp because they should only be accessed by either UserApp
or its descendants.

4An Xmodule can, in fact, call methods within its own Xmodule or from its ancestor Xmodules, but
ownership-aware TM models these calls differently. These cases are explained at the end of this section.

192

Figure 7-6: A module tree 'D for the book application described in Section 7.1. The xid's
are assigned according to a left-to-right depth-first tree walk, numbering Xmodules in in-
creasing order, starting with xid(world) = 0.

Let us consider the implications of Definition 7.1 for the example. Due to Rule 1, all
of DB, BST, HashTable, and Logger can directly access data owned by UserApp, but the
Use rApp cannot directly access data owned by any of the other Xmodules. This rule cor-
responds to standard software-engineering rules for abstraction: the "high-level" Xmodule
UserApp should be able to pass its data down, allowing lower-level Xmodules to access
that data directly, but UserApp itself should not be able to directly access data owned by
lower-level Xmodules. Due to Rule 2, the UserApp may invoke methods from DB, DB may
invoke methods from BST and HashTable, and every other Xmodule may invoke methods
from Logger. Thus, Rule 2 allows all the operations required by the example application.
As expected, the UserApp can call the insert and search methods from the DB and can
even pass its data to the DB for insertion. More importantly, notice the relationship between
BST and Logger. The BST Xmodule can call methods from Logger, but the BST cannot pass
data it owns directly into the Logger. It can, however, pass data owned by the UserApp to
the logger, which is all this application requires.

Advantage of Ownership-Aware Transactions

One of the major problems with vanilla open-nesting is that some transactions can see
inconsistent data. Say a transaction Z is open-nested inside transaction X. Let vo be the
initial value of location t, and suppose that Z writes value vi to location f and then commits.
Now, a transaction Y in parallel with X can read this location t, write value v2 to t, and
commit, all before X commits. Therefore, X can now read this location f and see the value
v2, which is neither the initial value vo (the value of f when X started), nor vi which was
written by X's inner transaction Z.5 This behavior might seem counterintuitive.

5This example is similar to the code in Figure 7-3 except with Y and Y2 merged together into a single
transaction Y and both accessing the same location = A [i] A [b].

193

Now, consider the same example for ownership-aware transactions. Say X is generated
by a method of Xmodule M and Z is generated by a method of Xmodule N. There are two
cases to consider:

1. If N owns f, X cannot access f, since xid(M) < xid(N) (by Definition 7.1, Rule 2),
and no transaction from a higher-level module can access data owned by a lower-level
module (by Definition 7.1, Rule 1). Thus, the problem does not arise.

2. If N does not own f, the ownership-aware commit of Z does not commit the changes
to f globally and f will be propagated to X's writeset. Therefore, if Y tries to ac-
cess f before X commits, the TM system detects a conflict. Thus X cannot see an
inconsistent value for f.6

Callbacks

At first glance, ownership-aware TM makes assumptions about Xmodules which seem
somewhat restrictive. For example, an Xmodule M is prohibited from making a callback -

calling another transactional method from M or a proper ancestor of M. In fact, ownership-
aware TM can be extended to permit some callbacks.

More precisely, if a method X from Xmodule M calls another method Y from an an-
cestor Xmodule N, this new call does not generate a new safe-nested transaction instance.
Instead, Y is subsumed in X using flat (or closed) nesting. Recall that Rule 1 in Defini-
tion 7.1 allows X to access data belonging to N or any of its ancestors directly. Therefore,
we can treat any data access by a flat (or closed) nested transaction Y as being accessed
by X directly, provided that Y and its nested transactions access only memory belonging
to N or N's ancestors. We say that Y is a proper callback method for Xmodule N if its
nested calls are all proper callback methods belonging to Xmodules which are ancestors of
N. The formal model for ownership-aware TM described in Section 7.3 assumes a system
with only proper callbacks. It models these callbacks as direct memory accesses, allowing
us to ignore callbacks in the formal definitions.

Closed-Nested Transactions

In ownership-aware TM, every method call that crosses an Xmodule boundary automati-
cally generates a safe-nested transaction. Ownership-aware TM can also provide closed-
nested transactions, however, with appropriate specifications of ownership. If an Xmodule
M owns no memory, but only operates on memory belonging to its proper ancestors, then
transactions of M are effectively closed nested. In the extreme case, if the programmer
specifies that all memory is owned by the world Xmodule, then all changes in any trans-
action's readset or writeset are propagated upwards. Thus, all ownership-aware commits
behave exactly as closed-nested commits.

6For simplicity, I have described the case where Z is directly nested inside X. The case where Z is more
deeply open nested inside X behaves in a similar fashion.

194

7.2 Ownership Types for Xmodules

When using ownership-aware transactions, the Xmodules and data ownership in a program
must be specified for two reasons. First, the ownership-aware commit mechanism depends
on these concepts. Second, a TM runtime can guarantee some notion of serializability only
if a program has Xmodules which conform to the rules in Definition 7.1. This section
describes language constructs and the OAT type system - a type system that can be used
to specify Xmodules and ownership in a Java-like language. By extending the ownership
types in the BLS type system, the type system of Boyapati, Liskov, and Shrira [33], the
OAT type system statically enforces some of the restrictions described in Definition 7.1.

This section first reviews the BLS type system [33] and then describes how the OAT
type system extends this system to enforce some of the restrictions in Definition 7.1. Next,
it presents code for parts of the book application described in Section 7.1. Finally, this
section gives a more formal description of the guarantees provided by the OAT type system.

The BLS Ownership Type System

The BLS type system provides a mechanism for specifying ownership of objects. This type
system enforces the properties stated in the following lemma.

Lemma 7.1. The BLS type system enforces the following properties:

1. Every object has a unique owner.
2. The owner can be either another object, or worl d.
3. The ownership relation forms an ownership tree (of objects) rooted at world.
4. The owner of an object does not change over time.
5. An object a can access another object b directly only if b's owner is either a, or one

of a's proper ancestors in the ownership tree.

The BLS type system requires ownership annotations to class definitions and type dec-
larations to guarantee Lemma 7.1. Every class type Ti has a set of associated ownership
tags, denoted T1 (fi, f2, ... fn). The first formal fi denotes the owner of the current instance
of the object (i.e., this object). The remaining formals f2,f3,.. .f, are additional tags
which can be used to instantiate and declare other objects within the class definition. The
formals get assigned with actual owners 01,02, - - -on when an object a of type T1 is instan-

tiated. By parameterizing class and method declarations with ownership tags, BLS permits
owner polymorphism. Thus, one can define a class type (e.g., a generic hash table) once,
but instantiate multiple instances of that class with different owners in different parts of the
program.

BLS enforces the properties in Lemma 7.1 by performing the following checks:

1. Within the class definition of type T1, only the tags {fi, f2, . . fn} U {this, world}
are visible. The this ownership tag represents the object itself.

2. Within a class definition, a variable c2 with type T2 (f2,...) can be assigned to a
variable ci with type T1(fi,...) if and only if T 2 is a subtype of T1 and fi = f2.

195

3. If an object a's tags are instantiated to be 01,02,.. o, when a is created, then in
the ownership tree, oi must be a descendant of og for all i in the range {2, 3,... n}
(denoted by oi j oi henceforth).

It is shown in [33] that these type checks guarantee the properties of Lemma 7.1.
In some cases, to enable the type system to perform check 3 locally, the programmer

may need to specify a where clause in a class declaration. For example, suppose that the
class declaration of type Ti has formal tags (fi,f2,f3), and inside T1's definition, some
object of type T2 is instantiated with ownership tags (f2,f3). The type system cannot
determine whether or not f2 -d f3. To resolve this ambiguity, the programmer must specify
where (f2 <= f3) at the class declaration of type T1. When an instance of type T2 object
is instantiated, the type system then checks that the where clause is satisfied.

The OAT Type System

Although the ownership tree described in [33] exhibits some of the same properties as the
module tree described in Section 7.1, the BLS the type system and ownership scheme does
not enforce two major requirements of ownership-aware TM:

* In BLS, any object can own other objects. In contrast, ownership-aware TM requires
that only Xmodules can own other objects.

" In BLS, an object can call any of its ancestor's siblings. Definition 7.1 dictates that
an Xmodule M can only call its ancestor's siblings to the right in the module tree.

With these requirements in mind, we can extend the BLS type system to create the OAT
type system.

The extensions to handle the first requirement are straightforward. The OAT type sys-
tem explicitly distinguishes objects and Xmodules by requiring that Xmodules extend from
a special Xmodule class. The OAT type system only allows classes that extend Xmodule
to use this as an ownership tag. In the context of the BLS ownership tree, this restriction
creates a tree where all the internal nodes are Xmodules and all leaves are non-Xmodule
objects. If we ignore any order imposed on the children of an Xmodule, for ownership-
aware TM, the module tree (as described in Section 7.1) is essentially the ownership tree
with all non-Xmodule objects removed.

The second requirement is more complicated to enforce. First, the OAT type system
extends each owner instance o to have two fields: name, represented by o.name; and index,
represented by o.index. The name field is conceptually the same as an ownership instance
in the BLS type system. The index field is added to help the compiler to infer ordering
between children of the same Xmodule in the module tree. The OAT type system allows
the programmer to pass this[i] as the ownership tag (i.e., with an index i) instead of this.
Similarly, one can use world [i) as an ownership tag. Indices enable the type system to
infer an ordering between two sibling Xmodules M and N. For instance, if an Xmodule L
instantiates M and N with owners this [i] and this [i+1], respectively, then M appears
to the left of N in the module tree.

Finally, for technical reasons, the OAT system prohibits all Xmodules M from declaring
primitive fields. If M had primitive fields, then in BLS, these fields are owned by the M's

196

parent. Since this property seems counterintuitive, the OAT system disallows primitive
fields for Xmodules.

In summary, the OAT type system performs these checks:

1. Within the class definition of type T1, only the tags {fif2,- . . fn} U {this, world}
are visible.

2. In a class declaration, a variable c2 with type T2(f2,...) can be assigned to a variable
ci with type T1 (f,...) if and only if T2 and Ti have the same type and all the formals
match in name. In addition, if the indices are specified for the tags, then they must
match.

3. For a type T(oi,o2,...on), we must have for all i E {2,...n}, either oi.name -

oi.name or oi.name = oi.name and oi.index < og.index (if both indices are known). 7

4. The ownership tag this can only be used within the definition of a class that extends
Xmodule.

5. Xmodule objects cannot have primitive-type fields.

The first three checks are analogous to the checks in BLS. The last two checks are added
to enforce the additional requirements of Xmodules.

The OAT type system supports where clauses of the form where (fi < fj). When fi
and fj are instantiated with oi and oj, the type system ensures that either og.name -< of.name
or og.name = oj.name and og.index < oj.index. The detailed type rules for the OAT type
system are described in [4].

The Book Application Using the OAT Type System

Figure 7-7 illustrates how one can specify Xmodules and ownership using ownership types.
The programmer specifies an Xmodule by creating a class which extends from a special
Xmodule class. The DB class has three formal owner tags: dbO which is the owner of the

DB Xmodule instance, logo which is the owner of the Logger Xmodule instance that the
DB Xmodule will use, and datao which is the owner of the user data being stored in the
database. When an instance of UserApp initializes Xmodules in lines 5-6, it declares itself
as the owner of the Logger, the DB, and the user data being passed into DB. The indices on

this are declaring the ordering of Xmodules in the module tree, i.e., the user data is lower-
level than the Logger, and the Logger is lower level than the DB. Lines 11-13 illustrate how
the DB class can initialize its Xmodules and propagate the formal owner tags (i.e., logo and

datao) down.
In order for this code to type check, the DB class must declare logo < datao using the

where clause in line 10. Otherwise the type check would fail at line 11 due to ambiguity
of their relation in the module tree. The where clause in line 10 is checked whenever an
instance of DB is created, e.g. at line 6.

7 In the ownership tree, for any Xmodule M, the OAT type system implicitly assigns non-Xmodule chil-
dren of M higher indices than the Xmodule children of M, unless the user specifies otherwise.

197

1 public class UserApp <appO> extends Xmodule
2 private Logger<this[l], this[2]> logger;
3 private DB<this[0], this[l], this[2]> db;

4 public UserApp () {
5 logger = new Logger<this[1], this[2]>();
6 db = new DB<this[0], this[l], this[2]>(logger);
7
8

9 public class DB<dbO, logO, dataC>
10 extends Xmodule where (logo < dataC) {
11 private Logger<logO, dataG> logger;
12 private BST <this[0], logO, dataG> bst;
13 private HashTable <this[l], logO, dataC> hashtbl;
14 public DB(Logger<logo, dataC> logger) {
15 this.logger = logger;

16
17

Figure 7-7: Example code that specifies Xmodules and ownership for the book application
described in Section 7.1.

The OAT Type System's Guarantees

The following lemma about the OAT type system can be proved in a straightforward manner
using Lemma 7.1.

Lemma 7.2. The OAT type system guarantees the following properties.

1. An Xmodule M can access a (non-Xmodule) object b with ownership tag ob only if
M -< ob.name.

2. An Xmodule M can call a method in another Xmodule N with owner oN only if one
of the following is true:

(a) M = oN.name (i.e., M owns N);
(b) The least common ancestor of M and N in the module tree is oN.name.
(c) N >- M (i.e., N is an ancestor of M).

Lemma 7.2 does not, however, guarantee all the properties we want from Xmodules
(i.e., Definition 7.1). In particular, Lemma 7.2 does not consider any ordering of sibling
Xmodules. The OAT type system can, however, provide stronger guarantees for a program
which satisfies what we call the unique-owner-indices assumption: for all Xmodules M,
all children of M in the module tree are instantiated with ownership tags with unique in-
dices that can be statically determined. For such a program, the type system can order the

198

children of every Xmodule M from smallest to largest index and assign the xid to each
Xmodule as described in Section 7.1. Then the following result holds:

Theorem 7.3. In the execution of a program with unique owner indices, consider any two
Xmodules M and N. Let L be the least common ancestor Xmodule of M and N and let ON
be the ownership tag that N is instantiated with. If L = oN.name, then M can call a method
in N only if xid(M) < xid(N).

Proof We prove by contradiction that if we have L = oN.name and xid(M) > xid(N),

then M cannot have a formal tag with value oN- Therefore, M cannot declare a type with
owner tag oN and cannot access N.

Since L = oN.name, we know that L is N's parent. Let Q be the ancestor of M which
is N's sibling, and let og be Q's ownership tag (i.e., the tag with which Q is instanti-
ated). Since N and Q have the same parent (i.e. L) in the module tree, we have oN.name =
oQ.name = L. Since xid(M) > xid(N), M is to the right of N in the ownership tree. There-
fore, Q, which is an ancestor of M, is to the right of N in the ownership tree. Therefore, we
have oQ.index > oN.index, since the program has unique owner indices. If M has ON as one
of its tags, we have a contradiction, namely that oQ.index < oN.index.

Assume for contradiction that M does have ON as one of its tags. Using Lemma 7.1,
one can show that the only way for M to receive tag ON is if Q also has a formal tag with
value oN- Thus, Q's first formal owner tag has value og and another one of its formals has
value oN-

Let Po = Q, and consider the chain of Xmodule instantiations where Xmodule Pi instan-
tiated Pi_ 1 . Let (fi, fb,,...) be the formal ownership tags that Pi is instantiated with. When
Pi instantiates Q = Po, we know f, has value og and f has value oN- The first formal of
Po must be fl since og is the owner of Q, and without loss of generality, we assume that
fj is the second formal since the type system does not care about the ordering of tags after
the first one.

Since oN.name = oQ.name = L, this chain of instantiations must lead back to L, since
L is the only Xmodule that can create ownership tags with values ON and og in its class
definition (using the keyword this).8 Let Pk = L. For the class declaration of each of the
Xmodules Pi for 1 < i < k, the following must hold:

" Pi must have formals fa and fb, with values og and ON, respectively, and Pi must pass
these formals into the instantiation of Pi_1.

" In the type definition of Pi's class, Pi must have the constraint fa < f, on its formal
tags, either because fa is the owner tag, or through a where clause that enforces

fa < f.
The first condition must hold for us to be able to pass both ON and og down to Po = Q.

The second condition is true for the Xmodules by induction. In the base case, P1 must
know that f1 <ft, since otherwise, the type system will throw an error when it tries to
instantiate Po = Q with owner fa. Then inductively, P must know fa < fl to be able to
instantiate Pi_ 1 .

8Note that L could be the world Xmodule, in which case both oN and oQ were created in the main
function using the world keyword.

199

Finally, Pk-1 is instantiated in the class file corresponding to Pk = L. In this declaration,
the formal fk with value og is instantiated with this [x], where x = oQ.index. Similarly,
f1k with value ON is instantiated with this [y] with y = oN.index. Since the class definition
of Pk type checks, we have ff <ff, which implies oQ.index < oN.index since the program
has unique owner indices. But this fact contradicts the earlier conclusion that oQ.index >
oN.index.

Thus, M cannot have an owner tag oN, and therefore M cannot call a method in N. EL

Lemma 7.2 along with Theorem 7.3 imposes restrictions on every Xmodule M which
are only slightly weaker than the restrictions required by Definition 7.1. Condition 1 in
Lemma 7.2 corresponds to Rule 1 of Definition 7.1. Conditions 2a and 2b are the cases
permitted by Rule 2. Condition 2c, however, corresponds to the special case of callbacks
or calling a method from the same Xmodule, which is not permitted by Definition 7.1. This
case is modeled differently, as explained in Section 7.1.

The OAT type system is a best-effort type system that checks for the restrictions re-
quired by Definition 7.1. The OAT type system cannot fully guarantee, however, that a
type-checked program does not violate Definition 7.1. Specifically, the OAT type system
cannot always detect the following violations statically. First, if the program does not have
unique owner indices, then L may instantiate both M and N with the same index. By
Lemma 7.2, M can call methods from N and vice versa, creating cyclic dependencies be-
tween Xmodules.9 Second, the program may perform improper callbacks. Say a method
from M calls back to method B from L. An improper callback B can call a method of N,
even though the type system knows that M is to the right of N. In both cases, the type sys-
tem allows a program with cyclic dependency between Xmodules to pass the type checks,
which is not allowed by Definition 7.1.

To have an ownership-aware TM which guarantees exactly Definition 7.1, one needs
to impose additional dynamic checks. The runtime system can use the ownership tags to
build a module tree during runtime and use it to perform dynamic checks to verify that
every Xmodule has unique owner indices and contains only proper callbacks. The runtime
system can do so by dynamically inferring indices according to which Xmodule calls which
other Xmodule, reporting an error if there is any circular calling.10

7.3 The OAT Model

This section presents the OAT model, an abstract operational model for a TM runtime
that utilizes Xmodules and ownership. The OAT model is derived from the transactional
computation framework and the TCO operational model from Chapter 5. The OAT model
makes three major changes to the TCO model: it incorporates the module tree into the
framework, it defines special "module readsets" and "module writesets" to support an

9 Since all non-Xmodule objects are implicitly assigned higher indices than their Xmodule siblings, these
non-Xmodule objects cannot introduce cyclic dependencies between Xmodules.

10It is possible to statically check for unique owner indices by imposing additional restrictions on the
program. OAT, however, is a more flexible programming model with weaker static guarantees.

200

ownership-aware commit of transactions, and it allows transactions to execute "abort ac-
tions" while a transaction is in the process of aborting. In this section, we use the transac-
tional computation framework to formally describe each of these elements.

Xmodules and Computation Trees

We shall incorporate Xmodules into the transactional-computation framework described in
Chapter 5. Formally, we consider traces (C, () generated by a program that is organized
into a set N of Xmodules. Each Xmodule M E N has some number of methods and owns
a set of memory locations.

Partition the set M of all memory locations into sets of memory owned by each Xmod-
ule. Let modMemory(M) C M denote the set of memory locations owned by M. For a
location f E modMemory(M), we say that owner(E) = M. When a method of Xmodule M is

called by a method from a different Xmodule, a safe-nested transaction T is generated.'1

We use the notation xMod(T) = M to associate the instance T with the Xmodule M. We
also define the instances associated with M as

modXactions(M) = {T E xactions(C) : xMod(T) =M}.

As mentioned in Section 7.1, the Xmodules of a program are arranged as a module tree,
denoted by D. Each Xmodule is assigned an xid according to a left-to-right depth-first tree

walk, with the root of D being world with xi d = 0. Denote the parent of Xmodule M in D
as modParent (M) and the ancestors of M as modAnces (M) (including M itself). Similarly,
let modDesc(M) be the set of M's descendants. We say that xMod(root(C)) = world, i.e.,
the root of the computation tree is a transaction associated with the world Xmodule.

We can use the module tree D to restrict the sharing of data between Xmodules and
to limit the visibility of Xmodule methods according to the rules given in the following

definition.

Definition 7.2 (Formal Restatement of Definition 7.1). A program with a module tree D
generates traces (C, <) which satisfy the following rules:

1. For any memory operation v which accesses a location , let T = xP a rent (v). Then
owner(f) E modAnces(xMod(T)).

2. Let X,Y C xactions(C) be transaction instances such that xMod(X) = M and

xMod(Y) =N. Then X = xParent(Y) only if modParent (N) G modAnces(M),
and xid(M) < xid(N).

By Rule 1, a method from Xmodule M can only directly access memory that it owns or
that an ancestor Xmodule N owns. By Rule 2, a method from M can call a method from N
only if N is the child of some ancestor of M and if N is "to the right" of M in the module
tree. Thus, an Xmodule can only call methods of some (but not all) lower-level Xmodules.

1 As explained in Section 7.1, callbacks are handled differently.

201

The OAT Model

The OAT model, which is derived from the TCO model presented in Section 5.5, models
the behavior of a TM runtime as it executes a program with transactions. Conceptually,
the OAT model operates in the same fashion as the TCO model: OAT maintains a set of
ready nodes, and on each time step, the model nondeterministically chooses a ready node
to execute an instruction. The OAT model issues the same set of instructions as the TCO
model and dynamically builds a computation tree C in the same way. The primary differ-
ence between the OAT and TCO models is that the OAT model uses Xmodules to make
some minor modifications to the transaction control instructions (xbegin, xend, xabort,
sigabort), and to memory operations (read and write instructions).

In addition to basic readsets and writesets, the OAT model also defines a module readset
and module writeset for all transactions X E xact ions(')(C) n vTree()(C). The module
readset is defined as

modR(')(X) - { (,v) E R(t)(X) : owner(e) = xMod(X)}.

In other words, modR(C)(X) is the subset of R(t)(X) that accesses memory owned by X's
Xmodule xMod(X). Similarly, define the module writeset as

modW(t)(X) = {(C,v) E W(t)(X) : owner(f) = xMod(X)}.

The OAT model maintains the same invariants on readsets and writesets (both basic and
module) as the TCO model. First, for every transaction X C xactions(t)(C), W(t)(X) C
R(')(X), i.e., a writ e also counts as a read. Second, R(t)(X), and W()(X) each contain at
most one pair (f, v) for any location f. Thus, we use the shorthand e R(t) (X) to mean
that there exists a node u such that (f, u) E R(t)(X), and similarly for the other readsets
and writesets. We also overload the union operator: at some step t, an operation R(X) =
R(X) U {(f, u)} means we construct R(t+1)(X) by

R(t+1)(X) = {(, u)}I U (R')(X) - (f, u') E R(t)(X)})

In other words, we add (f, u) to R(X), replacing any (, u') R(t) (X) that existed previously.

Ownership-Aware Transaction Commit

The OAT model employs the ownership-aware commit mechanism, which contains ele-
ments of both closed-nested and open-nested commits. A PEND ING transaction Y issues an
xend instruction to commit Y into X = xParent (Y). This xend commits locations from its
readset and writeset that are owned by xM od(Y) in an open-nested fashion to the root of the
tree, whereas it commits locations owned by other Xmodules in a closed-nested fashion,
merging those reads and writes into X's readset and writeset.

The OAT model's commit mechanism can be described more formally in terms of mod-
ule readsets and writesets. Suppose that at time t, a transaction Y C xactions(t)(C) with
status (Y) = PENDING issues an xend. This xend instruction changes readsets and write-

202

sets as follows:

R(root(C)) = R(root(C))UmodR(Y) ,
R(xParent(Y)) = R(xParent(Y)) U (R(Y) - modR(Y))

W(root(C)) = W(root(C))UmodW(Y),

W(xParent(Y)) W(xParent(Y)) U (W(Y) -modW(Y))

Definition 7.2 guarantees certain properties of the computation tree which are essential
to the ownership-aware commit mechanism, namely the unique committer property. The-
orem 7.5 proves this property, namely that every memory operation has one and only one
transaction that is responsible for committing the memory operation. Before proving this
result however, we require the following lemma.

Lemma 7.4. Given a computation tree C, for any T C xa c t i on s(C), we have

modAnces(xMod(T)) C {xMod(T') : T' e xAnces(T)} .

Proof We prove this fact by induction on the nesting depth of transactions T in the compu-
tation tree. In the base case, the top-level transaction T = root (C), and xMod(root (C)) =

world. Thus, the fact holds trivially.
For the inductive step, define OT as the set {xMod(T') : T' e xAnces(T)} and assume

that modAnces(xMod(T)) G (Yr holds for any transaction T at depth d. We show that this
inductive hypothesis holds for any T* C xact ions(C) at depth d +1.

For any such T*, we know T = xParent(T*) is at depth d. By Rule 2 of Defini-
tion 7.2, we have modParent(xMod(T*)) C modAnces(xMod(T)). Thus, we know that
modAnces(xMod(T*)) C modAnces(xMod(T)) U {xMod(T*)}. By construction of the set

OT, we have GT* = OT U {xMod(T*)}. Therefore, using the inductive hypothesis, we have
modAnces(xMod(T*)) C YT*. El

Lemma 7.4 allows us to prove the unique-committer property.

Theorem 7.5. If a memory operation v accesses a memory location f, then there exists a
unique transaction T* E xAnces(v) such that

1. owner(e) = xMod(T*), and
2. for all transactions X E pAnces(T*) f xactions(C), X cannot directly access

location f.

This transaction T* is the committer of memory operation v, denoted commit t er(v).

Proof This result follows from the properties of the module tree and computation tree
stated in Definition 7.2. Let T = xParent (v). From Rule 1 of Definition 7.2, we have that

owner(e) E modAnces(xMod(T)). We know by Lemma 7.4 that modAnces(xMod(T)) C
{xMod(T') : T' C xAnces(T)}. Thus, there exists some transaction T* E xAnces(T) such
that owner(f) = xMod(T*). We can use Rule 2 to show that T* is unique. Let Xi be
the chain of ancestor transactions of T, i.e., let X0 = T, and let Xi = xParent(Xi-i) up

203

until Xk = root(C). By Rule 2, we know xid(xMod(Xi)) < xid(xMod(Xi- 1)), that is, the
xids strictly decrease walking up the tree from T. Thus, there can only be one ancestor
transaction T* of T with xid(xMod(T*)) = xid(owner(e)).

To check the second condition, consider any X E pAnces(T*) n xactions(C). By
Rule 1, X can access f directly only if owner(e) C modAnces(xMod(X)), or equivalently,
only if xid(owner(f)) < xid(xMod(X)). But we know that owner(E) = xMod(T*) and
xid(xMod(T*)) > xid(xMod(X)). Thus, X cannot directly access f. []

Intuitively, T* = committer(v) is the transaction which "belongs" to the same Xmod-
ule as the location f which v accesses, and is "responsible" for committing v to memory
and making it visible to the world. The second condition of Theorem 7.5 states that no
ancestor transaction of T* in the call stack can ever directly access f, and hence it is "safe"
for T* to commit f.

Transaction Conflicts and Aborts

The OAT model performs eager conflict detection in the same way as the TCO model. The
only difference in the OAT model is that a transaction with a status of PEND INGABORT is
still allowed to continue issuing instructions because it may need to compensate for the
commit of its open-nested transactions.

More formally, the OAT model uses same definition of conflict (Definition 5.17) for
determining when transactions should abort. As in the TCO model, if a read or write
generates a potential memory operation v that would cause a conflict according to Defi-
nition 5.17, then the runtime does not perform v but instead triggers the sigabort of a
transaction.12 Otherwise, a successful memory operation adds v to the appropriate readset
and/or writeset.

Because a PEND INGABORT transaction can still issue instructions, it is useful to define
its "abort actions."

Definition 7.3. Define abort acti ons(X) as the set of operations issued by a trans-
action X or descendants of X after stat us(X) changes to PENDINGABORT. We call
abortactions(X) the abort actions of X.

The PENDINGABORT status allows X to compensate for the safe-nested transactions
that may have committed. If transaction Y is nested inside X, then the abort actions of X
contain the compensating action of Y. Eventually a PENDINGABORT transaction issues an
xend instruction, which changes its status from PEND INGABORT to ABORTED.

If a potential memory operation v generates a conflict with a transaction X, and the
status of X is PEND ING, then the OAT model can nondeterministically choose to abort either
xParent (v), or X. In the latter case, v waits for X to finish aborting (i.e., change its status
to ABORTED) before continuing. If X's status is PENDING_ABORT, then v just waits for X to
finish aborting before trying to issue read or write again. As described later in Section 7.5,
some restrictions on the abort actions of a transaction may be necessary to avoid deadlock.

12The readsets and writesets are defined for transactions X even if the status of X is PENDINGABORT. Thus,
the sets readers(0 () and writers(')(i) in Definition 5.17 automatically include these transactions X that
might be in the process of aborting.

204

7.4 Serializability by Modules

This section defines serializability by modules, a definition inspired by the database notion
of multilevel serializability (e.g., as described in [124]). First, we consider the definition
of serializability in transactional computations from Section 5.3 to incorporate Xmodules
and the ownership-aware commit mechanism. Because this definition is too restrictive to
allow the kind of program interleavings that we want with open-nested transactions, we
then investigate a less restrictive correctness condition, called "serializability by modules."
Next, we prove that the OAT model guarantees this serializability by modules. Finally, we
explore the relationship between the definition of serializability by modules and the notion
of abstract serializability for the methodology of open nesting.

Xmodules and Content Sets

To generalize the definition of serializability from Section 5.3 (Definition 5.11), we need
to modify the notion of the "content" of a transaction X (Definition 5.3) and the hidden
relation (Definition 5.5) to account for Xmodules and the ownership-aware commit mech-
anism.

We define "content" sets for every transaction X by partitioning memops (X) - all
the memory operations enclosed inside X including those belonging to its nested trans-
actions - into three sets: ccontent(X), ocontent(X) and acontent(X). For any u c
memOps (X), the content set that contains u is defined based on the final status of transac-
tions in C that one visits when walking up the tree from u to X.

Definition 7.4. For any transaction X and memory operation u E memOps(C), define
the sets cContent(X), oContent(X), and aContent(X) according to the following

Content Type(u,X) procedure:

Content T ype(u,X) //For any u c memOps(X)

1 Z +- xParent(u)
2 while (Z $ X)
3 if (Z is ABOR TED) return u G aCont ent(X)
4 if (Z = commi t t er(u)) return u E oCont ent (X)
5 Z +- xParent(Z)
6 return u E cContent(X)

Recall that in the OAT model, the safe-nested commit of X commits some memory
operations in an open-nested fashion to root(C) and some operations in a closed-nested
fashion to xParent(X). Intuitively, Definition 7.4 generalizes Definition 5.3 by adding
the set oContent(X) - the set of memory operations enclosed by transaction X which

are committed by open-nested transactions inside X. 13 Before, in Section 5.2, when all
transactions were closed-nested, we had oContent(X) = 0 for all transactions X.

13 Definition 7.4 considers only an a posteriori analysis of a computation, and does not include the set

vContent (X) from Definition 5.18. In fact, one can generalize Definition 7.4 to model dynamic executions,
as discussed in Section C.3. Definition 7.4 is also similar to Definition 5.6, but Definition 7.4 is intended for
TM with an ownership-aware commit instead of an open-nested commit mechanism.

205

Using this definition of content sets in Definition 7.4, we can modify the hidden relation
from Definition 5.5.

Definition 7.5. Consider a computation C executed by an ownership-aware TM system.
For u G memops(C) and v C V(C), let X = xLCA(u,v). We say that u is hidden from v,
denoted uHv, if u E aCont ent(X).

By Definition 7.5, a memory operation u E V(X) may not be hidden from a memory
operation v running in parallel with X if u c cContent (Z) for some transaction Z which
is an open-nested transaction. For example, consider the case where Z is open-nested
inside Y and Y is closed-nested inside X. If Z commits and Z = committer(u), then
u E cContent(Z) can be visible to a v outside X even if Y aborts, since u E oContent(X).

With the new hidden relation from Definition 7.5, we can keep the same definition of
transactional last writer from Definition 5.9. The transactional last writer in turn allows us
to define a memory model of serializability, as in Definition 5.11.

Unfortunately, serializability from Definition 5.11 is too restrictive for executions that
we want to permit using open-nested transactions. For example, in Figure 7-2, suppose
that the outer transactions X and Y belong to an Xmodule M, but the Insert2 methods
belong to a lower-level Xmodule N. From the perspective of M, we would like to permit a
schedule which executes the fragments in the order

Xi,A1, X2, Yi,B1, Y2,A2, B2, X3,Y3,

because M should not care about the memory locations accessed inside the open-nested
transactions A1, B1, A2 and B2. Serializability, according to Definition 5.11, would en-
force the dependencies from the chain of writes to the global counter inside the Insert 2
method, i.e., B2 depends on A2, which depends on B1, which depends on A1 . Thus, by Def-
inition 5.11, this schedule is not serializable, since there is no way to reorder the execution
of X completely before Y, or vice versa.

More generally, redefining the hidden relation also automatically generalizes the mem-
ory models of serializability, race freedom, and prefix-race freedom defined in Section 5.3.
It turns out that the OAT model guarantees that executions are prefix-race-free according
to this generalized definition. One can easily show, however, that with open nesting (us-
ing either an open-nested commit mechanism or an ownership-aware commit mechanism),
prefix-race freedom is no longer equivalent to serializability. For example, see [8] for a
simple execution trace that demonstrates the distinctness of the models. Thus, one would
like to define a correctness condition weaker than serializability that is satisfied by prefix-
race-free executions.

Defining Serializability by Modules

To allow a TM system to ignore memory accesses from transactions performed by lower-
level Xmodules when detecting conflicts in higher-level Xmodules, we can define "serial-
izability by modules," a memory model which checks for serializability one Xmodule at a
time.

206

For this new definition, given a trace (C, qD), for each Xmodule M, transform the tree
C into a new tree mTree(C,M), called the projection of Cfor Xmodule M. This projected
tree mT r ee (C, M) is constructed in such a way as to ignore memory operations of Xmodules
which are lower-level than M and also all operations which are hidden from transactions
of M. For each Xmodule M, this definition checks that the transactions of M in the trace
(mT ree (C, M), <D) are serializable. If the check holds for all Xmodules, then trace (C, <D)
is said to be serializable by modules.

Definition 7.6 formalizes the construction of mT ree (C, M).

Definition 7.6. For any computation tree C, define the projection of C for M, denoted
m Tre e(C, M), as the result of modifying C according to the following steps:

1. For all memory operations u G memOps(C) with u accessing f, if owner(e) = Nfor
some xi d(N) > xi d(M), convert u into a nop.

2. For all transactions X E modXactions(M), convert all u G aContent(X) into
nops.

The intuition behind Definition 7.6 is the following. When looking at Xmodule M, in
Step 1 we throw away memory operations belonging to a lower-level Xmodule N, since
by Theorem 7.5, transactions of M can never directly access the same memory as those
operations anyway. In Step 2, we ignore the content of any aborted transactions nested
inside transactions of M. Those transactions might access the same memory locations as
operations which we did not turn into nops, but those operations are aborted with respect
to transactions of M.

The next lemma argues that if a trace (C, <) is sequentially consistent (i.e., it satisfies
Definition 5.10 using the hidden relation in Definition 7.5), then (mTree(C,M),<D) is a
valid trace. More precisely, any operation u that remains in the trace never attempts to
observe a value from a CD(u) which was turned into a nop due to Definition 7.6. In addition,
the transformed trace is also sequentially consistent.

Lemma 7.6. Let (C, D) be any trace and let S be any topological sort of G(C) such that
qD = Xs. Then for any Xmodule M, we have the following:

1. If u c memOps(mTree(C,M)), then <D(u) E memOps(mTree(C,M)), and
2. S is a valid topological sort of Q(mTree(C, M)), with <b = Xs.

In other words, (mTree(C,M), D) is a valid trace.

Proof First, we verify Condition 1. In mTree(C,M), pick any u E memops(mTree(C,M))
which remains. Assume for contradiction that v = CD(u) was turned into a nop in one of
Steps 1 and 2.

If v was turned into a nop in Step 1 of Definition 7.6, then we know that v accessed a
memory location f with xid(owner(C)) > xid(M). Since u must access the same location
f, u must also be converted into a nop.

If v was turned into a nop in Step 2 of Definition 7.6, then v E aContent(T) for some
xMod(T) = M. Then we can show that either vHu or u should have also been turned into
a nop. Let X = xLCA(v, u). Since X and T are both ancestors of v, either T is a proper
ancestor of X, or X is an ancestor of T.

207

1. First, suppose that T is a proper ancestor of X. Let Yo, Yi, ... Yk be the path of transac-
tions from v to T, i.e., Yo = xParent (v), xParent (Yi) = Y+1, and xP arent (Yk) = T.
Since v C aContent(T), for some Yj for 0 < j < k must have status(Y) = ABORTED.
Since T is a proper ancestor of X, we have X = Y, for some x satisfying 0 < x < k.

(a) If status(Yj) = ABORTED for any j satisfying 0 < j < x, then we know that
v E aContent(X), and thus vHu. Since we assumed that (C,<D) is sequentially
consistent and <D(v) = u, by Definition 5.9 we know -(vHu), leading to a con-
tradiction.

(b) If Yj is ABORTED for any j satisfying x < j < k, then status(Y) = ABORTED
implies that u E aContent(T), and thus, u should have been turned into a nop,
contradicting the original setup of the statement.

2. Next, consider the case where X is an ancestor of T. Since v E aContent(T), we
have v C aCont ent (X). Therefore, this case is analogous to Case la above.

To check Condition 2 of the lemma, since the construction in Definition 7.6 does not
remove any nodes from C, G(mTree(C,M)) still has the same nodes and edges as G(C),
and thus S is still a valid topological sort. Since <D is the transactional last writer according
to S for (C,<D), it is still the transactional last writer for (mTree(C,M),<D), because the
memory operations which are not turned into nops remain in the same relative order. Thus,
Condition 2 is satisfied. 11

Lemma 7.6 depends on the restrictions on Xmodules described in Definition 7.2. With-
out this structure of modules and ownership, the construction of Definition 7.6 is not guar-
anteed to generate a valid trace.

Also, the set of memory operations turned into nops for mT ree(C,M) strictly increases
as we decrease xid(M). If L is the lowest-level Xmodule, then Definition 7.6 keeps all
memory operations for L, i.e., mT re e (C, L) = C. Once a memory operation u is turned into
a nop for Xmodule M, it is turned into a nop for all Xmodules N with xid(N) < xid(M).

Finally, we can define serializability by modules.

Definition 7.7. A trace (C, 4b) is serializable by modules if

1. There exists a topological sort S of G(C) such that <D = Xs, and

2. For all Xmodules M in 'D, there exists a topological sort SM of Cm = m Tree(C, M)
such that:

(a) S is a topological sort of G(CM) and 4) = Xsm,

(b) For all transactions T E modXactions(M) and for all v G V(CM), if we have
source(T) SM v SM sink(T), then v E V(T).

Informally, Condition 1 of Definition 7.7 requires that a trace (C, 4D) be sequentially
consistent (as in Definition 5.10). Condition 2 requires that mTree(C,M) is serializable
(as in Definition 5.11) for every module M when we consider only transactions of M, i.e.,
that there exists a sequentially-consistent order SM that has all transactions of M appearing
contiguous.

208

OAT Model Guarantees Serializability by Modules

We can show that the OAT model described in Section 7.3 generates traces (C, 5) that are
serializable by modules, i.e., that satisfy Definition 7.7. The proof of this fact consists of
three steps. First, we show that the OAT model generates traces which are prefix-race-free
using a generalized version of Definition 5.15. Then, we show that any trace which is free
from prefix races is also serializable by modules.

To define prefix-race freedom, we utilize the same definition of prefix races from Def-
inition 5.14, except using the hidden relation from Definition 7.5. The following theorem
states that the OAT model generates prefix-race-free traces.

Theorem 7.7. Suppose that the OAT model generates a trace (C, (D) with an execution
order S. Then S is a prefix-race-free sort of (C,4).

Proof This proof, which is an induction on the steps of the OAT model, is essentially the
same as the proof of Theorem 5.7. The technical details of both proofs are presented in

Appendix C. E

The next theorem shows that a trace (C, (1) which is prefix-race free is also serializable
by modules.

Theorem 7.8. Any trace (C, (D) which is prefix-race free is also serializable by modules.

Proof. First, Definition 7.6 and Lemma 7.6 imply that any prefix-race-free sort S of a trace
(C, ') is also prefix-race-free sort of the trace (mT ree(C, M), 1) for any Xmodule M, since
converting operations into nops does not introduce any prefix races. We shall argue that for
any Xmodule M, we can transform S into Sm such that all transactions in xactions(M)
appear contiguous in SM-

Consider a prefix-race-free sort S of (mTree(C,M), P) which has k > 0 nodes that
violate the second condition of Definition 7.7. We can construct a new order S' which is
still a prefix-race-free sort of (mT ree (C, M), 4), but which has only k - 1 violations.

We reduce the number of violations according to the following procedure:

1. For a computation C and sort S, define the set of transactions Q(C,S) as

{Y E xactions(C) :]v E V(C) -V(Y) such that source(Y) S v S sink(Y)}.

For the prefix-race-free sort S of (mTree(C,M),5), choose the T C Q(C,S) such
that for all Y E Q(C,S), sink(Y) <s sink(T). Intuitively, T is the transaction in

Q(C, S) with the sink node that occurs latest in the order S.

2. In T, pick the first v C V(C) - V(T) which causes a violation, i.e., for all v' E V (C) -
V(T) such that source(T) <s v' <s sink(T), we have v <S v'.

3. Create a new sort S' by moving v to be immediately before source(T).

In order to argue that S' is still a prefix-race-free sort of (mT r ee (C, M), (D), we need to
show that moving v does not generate any new prefix races or create a sort S' which is no

209

longer sequentially consistent with respect to CD (i.e., that <D is still the transactional last
writer according to S'). There are three cases: v can be a memory operation, source(T')
for some transaction T', or sink(T') for some transaction T'.

1. Suppose that v is a memory operation which accesses location e. For all operations
w such that source(T) <S w <s v, we argue that w cannot access the same location
e unless both w and v read from E. Since we chose v to be the first memory operation
with source(T) <S v <s sink(T) and v V V(T), we know that w E V(T). We
know by construction of mTree(C,M) that w C cContent(T), since if we had w C
oContent(T) or w C aCont ent (T), then steps 1 or 2, respectively, in Definition 7.6
would turn w into a nop. Therefore, by Definition 5.14, unless w and v both read
from i, v has a prefix race with T, contradicting the fact that 3 is a prefix-race-free
sort of the trace. Thus, moving v to be before source(T) cannot generate any new
prefix races.

Also, after moving v, we cannot have v <g <D(v). This situation would require
source(T) <S <D(v), which is impossible because <D(v) writes to f, and we would
have a memory operation w = <D(v) with source(T) <S v <S v.

Thus, S' is a prefix-race-free sort of the trace (mTree(C,M), D).

2. Next, suppose that v = source(T'). Moving source(T') cannot generate any new
prefix races with T', because the only operations u which satisfy source (T) <s u <S
source(T') also satisfy u C V(T) and V(T) n cContent(T') = 0. Also, moving
source(T') does not change the transactional last writer for any node v because the
move preserves the relative order of all memory operations. Therefore, S' is still a
prefix-race-free sort.

3. Finally, suppose that v = sink(T'). By moving sink(T') to be before source(T),
we can only lose prefix races with T' that already existed in S because we are mov-
ing nodes out of the interval [source(T'), sink(T')]. As with source(T'), moving
sink(T') does not change any transaction last writers. Therefore, S' is still a prefix-
race-free sort of the trace.

Since we can eliminate violations of the second condition of Definition 7.7 one at a
time, we can construct a sort SM which satisfies serializability by modules by eliminating
all violations.

Finally, the following theorem combines the previous results to prove that the OAT
model guarantees serializability by modules.

Theorem 7.9. Any trace (C, <b) generated by the OAT model is serializable by modules.

Proof By Theorem 7.7, the OAT model generates only trace (C, D) which are prefix-
race free. By Theorem 7.8, any trace (C, D) which is prefix-race free is serializable by
modules. LI

210

Abstract Serializability

By Theorem 7.9, the OAT model guarantees serializability by modules. This definition is
related to the notion of "abstract serializability" used in multilevel database systems [124].

As discussed at the beginning of this chapter, the ownership-aware commit mechanism is

a part of a methodology which includes abstract locks and compensating actions. This

section argues that OAT model provides enough flexibility to accommodate abstract locks

and compensating actions. In addition, if a program is "properly locked and compensated,"
then serializability by modules guarantees abstract serializability.

The definition of abstract serializability in [124] assumes that a program is divided
into levels, where a transaction at level i can only call a transaction at level i + 1.14 In

addition, transactions at a particular level have predefined commutativity rules, i.e., some

transactions of the same Xmodule can commute with each other and some cannot. The

transactions at the lowest level (say k) are naturally serializable. Call this schedule Zk.

Given a serializable schedule Zi+1 of level-(i + 1) transactions, the schedule is said to be

serializable at level i if all transactions in Zi+1 can be reordered, obeying all commutativity
rules, to obtain a serializable order Zi for level-i transactions. The original schedule is said

to be abstractly serializable if it is serializable for all levels.
These commutativity rules might be specified using abstract locks [105]: if two trans-

actions cannot commute, then they grab the same abstract lock in a conflicting manner. In

the book application described in Section 7.1, for instance, transactions calling insert and

remove on the BST using the same key do not commute and should grab the same write
lock. Although abstract locks are not explicitly modeled in the OAT model, we can model
transactions acquiring the same abstract lock as transactions writing to a common mem-

ory location L.15 Locks associated with an Xmodule M are owned by modParent(M). A
module M is said to be properly locked if the following condition holds for all transactions

T1, T2 with xMod(Ti) = xMod(T2) = M: if T1 and T2 do not commute, then they access some
memory location f C modMemoryr(modParent(M)) in a conflicting manner.

If all transactions are properly locked, then serializability by modules implies abstract

serializability (as defined above) in the special case when the module tree is a chain (i.e.,
each nonleaf module has exactly one child). Let Si be the sort S in Definition 7.7 for

Xmodule M with xid(M) = i. This Si corresponds to Zi in the definition of abstract serial-

izability.
In the general case for ownership-aware TM, however, by Rule 2 of Definition 7.1,

we know that a transaction at level i might call transactions from multiple levels x > i,

not just x = i + 1. Thus, we must change the definition of abstract serializability slightly.

Instead of reordering just Zi+1 while serializing transactions at level-i, we must potentially

reorder Z, for all x where transactions at level i can call transactions at level x. Even in this

case, if every module is properly locked (by the same definition as above), one can show

serializability by modules guarantees abstract serializability.
The methodology of open nesting often requires the notion of compensating actions or

inverse actions. For instance, in a BST, the inverse of insert is remove with the same

14This work assumes that level number increases going from a higher level to a lower-level to be consistent

with the numbering of xid. In the literature (e.g. [124]), levels typically go in the opposite direction.
15More complicated locks can be modeled by generalizing the definition of conflict.

211

key. When a transaction T aborts, all the changes made by its subtransactions must be
inverted. Again, although the OAT model does not explicitly model compensating actions,
it allows an aborting transaction with status PENDINGABORT to perform an arbitrary but
finite number of operations before changing the status to ABORTED. Therefore, an aborting
transaction can compensate for all its aborted subtransactions.

7.5 Deadlock Freedom

This section argues that the OAT model described in Section 7.3 can never enter a "semantic
deadlock" if suitable restrictions are imposed on the memory accessed by a transaction's
abort actions. More precisely, an abort action generated by a transaction T from xMod(T)
should read from a memory location e belonging to modAnces(xMod(T)) only if t is already
in R(T), and similarly it should write to an f belonging to modAnces(xMod(T)) only if
f c W(T). Under these conditions, one can show that the OAT model can always "finish"
reasonable computations.

An ordinary TM without open nesting and with eager conflict detection never enters a
semantic deadlock because it is always possible to finish aborting a transaction T without
generating additional conflicts. In particular, a scheduler in the TM runtime can abort
all transactions and then complete the computation by running the remaining transactions
serially.

Using the OAT model, however, a TM system can enter a semantic deadlock because
it can enter a state in which it is impossible to finish aborting two parallel transactions Ti
and T2 which both have status PENDING-ABORT. If Ti's abort action generates a memory
operation u which conflicts with T2, then u will wait for T2 to finish aborting (i.e., wait for
the status of T2 to become ABORTED). Similarly, T2's abort action can generate an operation
v which conflicts with T and waits for Ti to finish aborting. Thus Ti and T2 can both wait
on each other, and neither transaction will ever finish aborting.

Defining Semantic Deadlock

Intuitively, we say that the OAT model exhibits a semantic deadlock if it causes the TM
system to enter a state in which it is impossible to finish a computation because of transac-
tion conflicts. A computation might not finish for other reasons, such as an infinite loop or
livelock. This section defines semantic deadlock precisely and distinguishes it from these
other reasons that a computation might fail to complete.

Conceptually, the execution of a computation can be modeled using two entities: the
program, and a generic operational model F representing the runtime system. At any time
t, given a ready node X E ready(C), the program chooses an instruction, and has X issue
the instruction. If the program issues an infinite number of instructions, then F cannot
complete the program no matter what it does. To eliminate programs which have infinite
loops, we only consider bounded programs.

Definition 7.8. A program is bounded for an operational model F if any computation tree
that F generates for that program has a finite depth and there exists a finite number K

212

such that at any time t, every node B C nodes(') (C) has at most K children with status
PENDING or COMMITTED.

Even if the program is bounded, it might run forever if it livelocks. We use the notion
of a schedule to distinguish livelocks from semantic deadlocks.

Definition 7.9. A schedule l' on some time interval [to,t 1] is the sequence of nondetermin-

istic choices made by an operational model in the interval.

An operational model F makes two types of nondeterministic choices. First, at any
step t, f nondeterministically chooses which ready node X E ready(C) executes an in-
struction. This choice models nondeterminism in the program due to interleaving of the
parallel executions. Second, while performing a memory operation u which generates a
conflict with transaction T, F nondeterministically chooses to abort either xParent (u) or
T. This nondeterministic choice models the contention manager of the TM runtime. A
program may livelock if F repeatedly makes "bad" scheduling choices.

Intuitively, an operational model deadlocks if it allows a bounded computation to reach
a state where no schedule can complete the computation after this point.

Definition 7.10. Consider an operational model F executing a bounded computation. We
say that F exhibits a semantic deadlock if there exists a finite sequence of to instructions
that F can issue to generate an intermediate computation C such that no finite schedule
of instructions F on [to, t1] can bring the computation tree from C0 into a rest state C1, i.e.,
ready(C) = {root(C1)}.

This definition is sufficient, since once the computation tree has only the root node as
ready, F can complete the computation by executing each transaction serially.

Restrictions to Avoid Semantic Deadlock

The general OAT model described in Section 7.3 exhibits semantic deadlock because it

may enter a state where two parallel aborting transactions Ti and T2 keep each other from
completing their aborts. For a restricted set of programs however, where a PEND INGABORT
transaction T never accesses new memory belonging to Xmodules at xMod(T)'s level or
higher, we show that the OAT model is free of semantic deadlock.

More formally, for all transactions T, consider the following restriction on the memory
footprint of abortactions(T).

Definition 7.11. A computation C has abort actions with limited footprint iffor all trans-
actions T E aborted(C), whenever a memory operation v E abortactions(T) ac-

cesses location f on a step t and owner(t) E modAnces(xMod(T)), then we have the

following:
1. If v is a read, then t C R(t) (T).
2. If v is a write then f G WW (T).

Intuitively, Definition 7.11 requires that once the status of a transaction T changes to
PENDINGABORT, any memory operation v which T or a nested transaction inside T per-
forms to finish aborting T cannot read from (or write to) any location f which is owned

213

by any Xmodules which are ancestors of xMod(T) (including xMod(T) itself), unless f was
already in the readset (or writeset) of T.

First, we can show that the properties of Xmodules from Theorem 7.5 in combination
with the ownership-aware commit mechanism imply that transaction readsets and writesets
exhibit nice properties. In particular, the following corollary states that a location f can
appear in the readset of a transaction T only if T's Xmodule is a descendant of owner(f)
in the module tree D.

Corollary 7.10. In an ownership-aware TM, consider any transaction T . If f E R(T), then
we have xMod(T) e modDesc(owner(i)).

Proof The proof follows from Definition 7.1 and Theorem 7.5 and induction on how a
location i can propagate into readsets and writesets using the ownership-aware commit
mechanism. 0

If all abort actions have a limited footprint, the following lemma implies that the oper-
ations of an abort action of an Xmodule M can only generate conflicts with a "lower-level"
Xmodule.

Lemma 7.11. Suppose that the OAT model generates an computation whose abort actions
have limited footprint. For any transaction T, consider a potential memory operation v E
abort a ct i on s(T). If v conflicts with transaction T' according to Definition 5.17, then
xid(xMod(T')) > xid(xMod(T)).

Proof Suppose that v E abortactions(T) accesses a memory location f with owner(f) =
M. Since we have abortactions(T) C memops(T), by the properties of Xmodules in
Definition 7.2, we know that eitherM e modAnces (xMod(T)), or xid(M) > xid(xMod(T)).
If M E modAnces(xMod(T)), then by Definition 7.11, T already had i in its readset or
writeset. Therefore, using Definition 5.17, v cannot generate a conflict with T' because
then T would already have had a conflict with T' before v occurred, contradicting the eager
conflict detection of the OAT model.

Thus, we have xid(M) > xid(xMod(T)). If v conflicts with some other transaction
T', then T' has f in its readset or writeset. Therefore, from Corollary 7.10, xMod(T') E
modDesc(M). Thus, we have xid(xMod(T')) > xid(M) > xid(xMod(T)). El

Theorem 7.12. The OAT model is free from semantic deadlock for computations whose
abort actions have limited footprint.

Proof Let Cj be the computation tree after any finite sequence of to instructions. We de-
scribe a schedule F which finishes aborting all transactions in the computation by executing
abort actions and transactions serially.

Without loss of generality, assume that at time to, status(T) = PENDING.ABORT for all
active transactions T. Otherwise, the first phase of the schedule F is to make this status
change for all active transactions T.

For a module tree D with k = I-DI Xmodules (including the world), we construct a
schedule F with k phases, numbered k - 1, k - 2,... 1,0. The invariant we maintain is
that immediately before phase i, we bring the computation tree into a state C(i) which

214

has no active transaction instance T with xid(xMod(T)) > i, i.e., no instance T from an
Xmodule with xid larger than i. During phase i, we finish aborting every active transaction
instance T with xid(xMod(T)) = i. By Lemma 7.11, for any transaction instance T with
xi d(xMod(T)) = i, any abort action for such a T can conflict with a transaction instance T'

only from a lower-level Xmodule, i.e., xi d(xMo d(T')) > i. Since the schedule F executes
serially, and by the invariant on C) we have already finished all active transaction instances
from lower levels, phase i can finish without generating any conflicts. EO

Restrictions on Compensating Actions

If transactions Y1, Y2 ... j are nested inside a transaction X that aborts, the abort actions

of X typically consist of the compensating actions for Y1, Y2,... Yj. Thus, restrictions on
abort actions translate in a straightforward manner to restrictions on compensating actions:
a compensating action for a transaction Y (which is part of the abort action of X) should not

read (write) any memory owned by xMod(X) or its ancestor Xmodules unless the memory
location is already in X's readset (writeset). Assuming that abstract locks are modeled as
accesses to memory locations, a similar restriction applies: a compensating action cannot

acquire new locks that were not already acquired by the transaction it is compensating for.

7.6 Related Work

This section describes other work in the literature on open-nested transactions. In particu-

lar, this section focuses on two related approaches for improving open-nested transactions
and distinguishes them from ownership-aware transactions.

The database community has produced an extensive literature on nested transactions.
Moss [100] credits Davies [41] with inventing nested transactions, and he credits Reed

[109] as providing the first implementation of what we now call closed transactions. Gray
[55] describes what we now call open transactions. The terms "open" and "closed" nesting
were coined by Traiger [117] in 1983.

Ni et al. [105] propose using an open-atomic class to specify open-nested transactions
in a Java-like language with transactions. Since the private fields of an object with an

open-atomic class type cannot be directly accessed outside of that class, one can think
of the open-atomic class as defining an Xmodule. This mapping is not exact, however,
because neither the language or TM system restrict exactly what memory can be passed
into a method of an open-at omic class, and the TM system performs a vanilla open-nested

commit for a nested transaction, not a safe-nested commit. Thus, it is unclear what exact
guarantees are provided with respect to serializability and/or deadlock freedom.

Herlihy and Koskinen [62,63] describe a technique of transactional boosting which al-

lows transactions to call methods from a nontransactional module M. Roughly, as long
as M is linearizable and its methods have well-defined inverses, the authors show that the

execution appears to be "abstractly serializable." Boosting does not, however, address the

cases when the lower-level module M writes to memory owned by the enclosing higher-

level module or when programs have more than two levels of modules. The theoretical
results for ownership-aware TM do not directly apply to transactional boosting because M

215

can use module-specific mechanisms for synchronization. It seems difficult to provide any
provable guarantees for an arbitrary nontransactional module M without requiring addi-
tional structure, e.g., limiting M to accessing only memory that it owns.

7.7 Conclusions

In this chapter, I have described ownership-aware TM, which enables a TM system to pro-
vide support for open-nested transactions, but still provide clean memory-level semantics
and guarantees of abstract serializability for transactions. Ownership-aware TM bridges
the gap between the intent and the execution of open-nested transactions. Open-nested
transactions enable a TM runtime to ignore low-level memory conflicts while checking for
conflicts between high-level transactions. Ownership-aware TM incorporates the notions
of Xmodules and ownership into a TM system, thereby enabling the system to make the
right decisions about which memory conflicts should be ignored.

In particular, this chapter described precise restrictions that a programming platform
should impose on the interactions between Xmodules. If a program obeys these restric-
tions and a TM system uses an ownership-aware commit mechanism, then the TM system
guarantees the correctness condition of serializability by modules. Thus, ownership-aware
TM demonstrates that a parallel-programing platform can support composable transaction-
based synchronization using open-nested transactions while still providing provable guar-
antees of safety and correctness.

216

Chapter 8

Conclusions

In this dissertation, I have described the design of composable abstractions for synchro-
nization in dynamic-threading platforms based on the ideas of task-graph execution, helper

locks, and transactional memory. I have also presented provably efficient runtime sched-
ulers for supporting these abstractions.

Chapter 2 presented Nabbit, the first library in a fork-join dynamic-threading platform
for provably efficient parallel execution of task graphs with arbitrary dependencies. Be-
cause Nabbit can be implemented without making any modifications to the runtime system
for a fork-join platform, it enhances the composability of such platforms by enabling pro-

grammers to exploit both fork-join parallelism and task-graph parallelism simultaneously
in the same program. Using Nabbit, programmers are able to compose code that utilizes
these different forms of parallelism, i.e., a programmer can exploit parallelism within the

COMPUTE of a task graph node using the spawn and sync constructs, or build and execute
a task graph as a subcomputation of a fork-join program.

Chapter 3 presented helper locks, the first synchronization abstraction in a dynamic-
threading platform to effectively exploit asynchronous task parallelism inside locked crit-
ical sections. Helper locks enhance the composability of dynamic-threading platforms by
allowing programmers to invoke parallel functions from inside a locked critical section

without forcing these functions to execute serially. Chapter 4 also showed that the parallel
region construct used to provide runtime support for helper locks can also enhance com-
patibility with legacy code in Cilk-like platforms. In particular, I demonstrated that parallel

regions can be used to implement a form of restricted work-stealing, which in turn enables
a legacy-C function to call back to a parallel function in MIT Cilk. Thus, the parallel region

construct allows programmers to compose legacy library functions and Cilk functions more

effectively.
Chapters 5 through 7 explored synchronization based on transactional memory, study-

ing the semantics and behavior of nested transactions. Chapter 5 presented the framework
of transactional computations, which is useful for understanding the semantics and behav-

ior of nested transactions in a dynamic-threading platform. Chapter 6 presented CWSTM,
the first design of TM that supports closed-nested transactions with nested parallelism and

nested parallel transactions of unbounded nesting depth. Chapter 7 described ownership-
aware TM, the first design of TM that supports open-nested transactions with provable cor-

rectness guarantees. Support for both closed-nested and open-nested transactions enhances

217

the composability of TM systems, as it enables a programmer to invoke library functions
which have been parallelized using transactions from a transaction within their own code.

In summary, in this dissertation I have described designs for synchronization abstrac-
tions that demonstrate that dynamic-threading platforms can support composable synchro-
nization without sacrificing provable guarantees of performance and correctness.

218

Appendix A

Dynamic Threading in Cilk

This appendix presents background material on Cilk [51], a dynamic-threading language
for parallel programming. Section A. 1 gives an overview of the Cilk programming model.

Section A.2 reviews the "computation DAG" model for Cilk, an abstract model which is
useful for analyzing the execution of programs using Cilk's scheduler. Section A.3 uses
this computation DAG model to state the provable bounds on program completion time
guaranteed by Cilk's randomized work-stealing scheduler. Section A.4 presents the "com-
putation tree" model, another abstract model for Cilk. Section A.5 uses this alternative
model to understand the bounds on stack space usage provided by Cilk. Section A.6 briefly
discusses other work related to Cilk.

This dissertation uses the computation DAG and tree models to explore extensions to
Cilk. Chapters 2 and 3 uses the computation DAG model to prove completion-time bounds
for the Nabbit and HELPER systems, respectively. Chapter 4 uses computation trees to
describe a lower-bound example computation. Chapters 5 through 7 use computation trees

to understand the semantics of transactional memory in a Cilk-like dynamic-threading plat-
form. For convenience, Appendix B summarizes the notation defined in this dissertation.

A.1 Overview of Cilk

This section reviews the programming model provided by Cilk, a dynamic-threading lan-
guage for parallel programming. This section first summarizes the key language constructs
in Cilk and briefly reviews the algorithm and data structures used in Cilk's runtime sched-
uler. It then describes how Cilk supports the "cactus stack" abstraction, a generalization of
the usual stack abstraction from serial programs to parallel programs.

The Cilk Language

Cilk programmers write parallel code in the various dialects [51,73, 93] by writing Cilk
functions - functions that can use the spawn and sync keywords.1 Within a Cilk function

iThis dissertation uses the term "Cilk" to refer to three primary dialects: MIT Cilk (also called Cilk-

5) [51], Cilk++ [93], and Intel Cilk Plus [73]. Although Cilk++ and Intel Cilk Plus have minor syntactic

differences compared to MIT Cilk, they exhibit mostly the same fundamental characteristics in terms of the

219

A, a spawn of a function instance F indicates that the instance of F can potentially run
in parallel with the code within A after the spawn, until a sync within A is reached. For
example, for the Cilk function A shown in Figure A-1, the spawn in line 3 indicates that the
instance of F can potentially run in parallel with lines 4 through 7. Control cannot continue
past the sync in line 8 however, until all previously spawned functions (lines 3 and 5) have
completed. In contrast, for a function G that is called from A (e.g., line 11), G must complete
before the code after the call (e.g., line 12) can be executed.

For each sync statement in a Cilk function, we define its sync block as the code be-
tween the first spawn statement associated with the sync and the sync statement itself.
For example, the function A in Figure A- 1 has two sync blocks, lines 3-8 and lines 10-13.
Figure A-2 captures the parallel structure of A as a directed acyclic graph, or DAG.

Cilk is an example of a dynamic-threading platform - a platform for parallel pro-
gramming that utilizes an integrated dynamic runtime scheduler. 2 In a platform that sup-
ports dynamic threading, or dthreading for short, programmers only expose potential par-
allelism in a program, e.g., using spawn and sync. To execute program, users specify at
runtime a value for P, the number of worker threads the scheduler should use to execute the
program. During execution, the platform dynamically schedules the program on these P
worker threads, i.e., it determines how different tasks in a program are split between worker
threads. Dynamic threading platforms have proliferated as multicore technology has taken
hold. Examples of such platforms include Cilk-1 [29],3 Cilk-5 [51], Cilk++ [93], Cilk
Plus [73], Fortress [13], Hood [31], Java Fork/Join Framework [90], JCilk [40], OpenMP
3.0 [106], Task Parallel Library (TPL) [92], Threading Building Blocks (TBB) [110], and
X10 [37].

To schedule computations efficiently, Cilk's scheduler maintains a double-ended queue,
or deque, for each worker thread, and utilizes randomized work-stealing to load-balance
work between worker threads. In Cilk, a worker thread p normally pushes and pops work
from the tail (bottom) of its deque. When worker p finds its own deque empty, however, it
chooses a victim worker p' uniformly at random from one of the P - 1 other workers, and
tries to steal work from the head (top) of the deque of p'. As discussed in greater detail in
Section A.2, this scheduler provides strong provable guarantees on performance.

More precisely, normally in Cilk, workers push and pop "continuations" of functions
to and from deques. Whenever a worker p encounters a spawn of a function F within a
function A, p begins executing F, and pushes the continuation of F (in A) onto the bottom
of its deque. For example, in the code in Figure A-1, a worker p executing the spawn in
line 3 starts executing F (0) and pushes the continuation (i.e., execution of A beginning at
line 4) onto its deque. Usually, when worker p returns from F (0), it discovers that this
continuation has not been stolen, and p then pops the continuation off the bottom of its

language and runtime scheduling. Cilk++ [93] uses the keywords cilk-spawn and cilk-sync (instead of
spawn and sync). Cilk++ also provides a cilk-for keyword for coding parallel loops. A cilk-for loop can
be implemented using cilk-spawn and cilk-sync. Intel Cilk Plus [73] uses similar keywords to Cilk++.
MIT Cilk also requires programmers to use the cilk keyword as a type qualifier in front of Cilk functions.
Cilk++ [93] and Intel Cilk Plus [73] eliminate the cilk keyword through additional compiler support.

21n the literature, Cilk's programming model is also sometimes classified as fork-join parallelism or
(lightweight) task parallelism. By this definition, these models are specific instances of dynamic threading.

3Called "Cilk" in [29], but renamed "Cilk-1" in [51] and other MIT documentation.

220

1 int A () {
2 int x = 0;
3 spawn F(x); // F(0)
4 x+=1; // x == 1
5 spawn F(x); // F(1)
6 x+=2;// x == 3
7 G/(x) G(3)
8 sync;
9 x+=3; / x == 6

10 spawn F(x); // F(6)
11 G(x); // G(6)
12 x+=4; // x == 10
13 sync;
14 x+=5; // x == 15
15 return x;
16 }

Figure A-1: A simple program demonstrating the spawn and sync keywords in Cilk. Com-
ments in the program track the value of x as A () executes; all updates to x in A () are totally
ordered.

int
x=0; x+=1; x+=2; . . . x+=3; . . . x+=4; x+=5;

2 4 . (3) , 8 9 . G(6).

re turn

x;
F (1) F (6)

Figure A-2: The computation DAG for the Cilk function A () from Figure A-1. The labels
for circles correspond to line numbers in Figure A-I. Functions which are spawned (F) have
a solid border, while functions that are called (G) have a dashed border. Filled trapezoids
and diamonds correspond to spawn and sync statements, respectively.

221

deque and resume execution of A at line 4.
On the other hand, worker p may discover that the continuation has been stolen when it

returns from a spawned function F. In this case, p conceptually jumps to the corresponding
sync for the sync block, and then proceeds according to one of two cases: p can either
finish a sync block, or it can stall and begin work-stealing. In the first case, if all the work
in the sync block of the sync statement has completed, then p resumes execution after
the sync. Otherwise, in the second case, p stalls at the sync, and then p tries to steal a
continuation via randomized work-stealing. 4

The Cactus-Stack Abstraction

Cilk supports the "cactus stack" abstraction, a generalization of the ordinary stack used in
serial programs to parallel code.

An execution of a serial Algol-like language, such as C [78] or C++ [114], can be
viewed as a "walk" of a dynamically unfolding invocation tree, a tree that relates function
instances by the "calls" relation. More precisely, if function instance A calls function in-
stance B, then A is aparent of the child B in the invocation tree. Such serial languages use a
linear-stack representation - a simple array-based stack for allocating function activation
frames, where frames for caller and callee are allocated in contiguous space. With a linear
stack, the stack pointer is advanced as a function is invoked and restored as the function
returns. This scheme is space-efficient, because all the children of a given function can
use and reuse the same region of the stack. This reuse depends critically, however, on the
property of a serial language that a function has at most one extant child function at any
time.

In a dynamic-threading language such as Cilk, a parent function can also spawn a child,
thereby creating parallelism. The notion of an invocation tree can be extended to include
spawns as well as calls. Unlike the serial walk of an invocation tree, however, a parallel
execution unfolds the invocation tree more haphazardly and in parallel. Since multiple
children of a function may be extant simultaneously, a linear-stack data structure no longer
suffices for storing activation frames. Instead, the tree of extant activation frames forms
a cactus stack [61]. In a cactus stack, a function F can access the stack variables in its
frame and in any frames which are ancestors (in the invocation tree) of F's frame. The
stack frame for a given function F might be shared among multiple workers if more than
one descendant frame of F is active at the same time.

MIT Cilk [51] and Cilk++ [93] support the cactus stack abstraction by allocating frames
for Cilk functions in noncontiguous space, where each frame is linked to its parent frame.
These frames in the noncontiguous memory are referred as shadowframes, to differentiate
them from the activation frames in the linear stacks. During program execution, each
worker pushes on and pops off shadow frames from the bottom of its own deque. The
shadow frames in the deque mirror the activation frames in the worker's linear stack for the
corresponding Cilk functions.

The call / return linkage for a Cilk function (henceforth referred to as the Cilk linkage)
4 In Cilk, this second case occurs only if p has an empty deque, since once p reaches a sync in a function

F, F must be at the bottom of p's deque.

222

differs from the ordinary C linkage. Cilk passes parameters and returns values via shadow
frames instead of activation frames. Thus, if a parent passes a pointer of its local variable to
its child, the pointer refers to the location in the shadow frame. When a worker's deque is
empty, its corresponding linear stack is empty as well, i.e., the worker can freely pop off the
suspended activation frames in its linear stack. With this strategy, multiple extant children
can share a single view of their parent frame simultaneously, as required by the cactus stack
abstraction. As discussed later in Section A.5, this implementation allows MIT Cilk and
Cilk++ to guarantee a good stack space bound. Intuitively, since a worker only steals when
its deque is empty, each worker uses no more stack space than the space used by the serial
execution of the program.

Unfortunately, because MIT Cilk and Cilk++ use shadow frames, they also use an in-
terprocedural calling convention to spawn a function that is incompatible with the normal
stack-based calling convention of serial languages. Therefore, MIT Cilk and Cilk++ do not
exhibit the property of "SP-reciprocity", as defined by Lee et al. in [91]. As discussed in
Chapter 4, a lack of SP-reciprocity can make it difficult to compose Cilk code with legacy
(and third-party) serial binaries that are compiled assuming an ordinary C linkage.

A.2 Computation DAG Model

This section reviews the computation DAG model, an abstract model which is useful for
modeling the execution and analyzing the running time of Cilk programs. First, we review
how one can construct an a posteriori model of a Cilk program execution as an "execution
DAG." Then, we consider an abstract execution model that explains how a computation
DAG is conceptually generated by the execution of a Cilk program. Chapter 3 extends this
computation DAG model for Cilk to apply to the HELPER system.

Definitions

For the purposes of theoretical analysis, one can conceptually consider the execution of
a Cilk program as generating an execution DAG Q with nodes V(G) and edges E(G)
[38, p. 777]. This execution DAG is not given a priori (e.g., from a static analysis of the

program), but is an a posteriori representation of the program after it executes.
To describe the structure of execution DAGs, it is convenient to define some notation.

For any node u in V(Q), let inDeg(u) and outDeg(u) denote the in-degree and out-degree
of u, respectively. For any node u E V(G), let ipred(v) be the set of immediate predeces-
sors of v in Q, i.e., u E ipred(v) if and only if there is an edge (u,v) C E(G). When it is
clear that ipred(v) has exactly one element (e.g., ipred(v) = {u}), we abuse notation and
say that ipred(v) = u. Similarly, let isucc(u) be the set of immediate successors of u,
i.e., v E isuc c(u) if and only if there is an edge (u, v) E E(G).

We assume that the execution of a Cilk program generates a canonical execution DAG

Q that satisfies three types of constraints. First, we assume that every node u in V(Q) falls
into one of three categories: u is either a spawn node, a sync node, or a serial node. A
spawn node u is a node with inDeg(u) = 1 and outDeg(u) = 2. A sync node v is a node
with inDeg(v) > 1 and outDeg(v) = 1. All other nodes w are serial nodes-nodes with

223

inDeg(w) = outDeg(w) = 1. In a Cilk program, the spawn and sync statements correspond
to spawn and sync nodes in G, respectively. We assume in G that there are no edges (u,v)
directly from a spawn node u to another spawn or sync node v, i.e., there is always at least
one serial node in the continuation of any spawn or sync statement.

Because Cilk computation DAGs have this canonical form, one can show that G is
always a minimal DAG representation, i.e., G is equal to its transitive reduction [12]. Since

G has a minimal number of edges representing dependencies in the computation, the sets
ipred(u) and isucc(u) for a node u are well-defined.

Second, we assume that invocations of functions are enclosed between special source
and sink nodes in the execution DAG G. For each function invocation F, the subDAG

of G corresponding to F is enclosed between a source node source(F) and a sink node
sink(F). For every F, source(F) and sink(F) are serial nodes. For every function F
which is spawned, ipred(source(F)) is a spawn node and isucc(sink(F)) is its corre-
sponding sync node. Thus, for any sync node v, all but one of the nodes u C ipred(v) are
sink nodes of spawned functions.

Finally, because functions in Cilk are properly nested, one can associate every node
u C V (G) with a unique function F that "owns" u, and many functions that "contain"
u. More formally, we say that a function F contains all nodes u that are along any path
between source(F) and sink(F). We say that F owns u, or that u belongs to F, if F is the
most deeply nested function that contains u.

Execution Model

To analyze the properties of the Cilk platform, we shall utilize the Cilk computation model,
an abstract execution model that explains how a computation DAG G is conceptually gen-
erated by an execution of a Cilk program. This model is based off the abstract model of
Arora et al. described in [16].

The Cilk computation model models the execution of a Cilk program on P processors
as a parallel traversal of an execution DAG 9. In this model, each processor is mapped
to a single worker thread p. On each time step, each worker p can either be executing
a node from V(G) which is "ready," or be looking for work through randomized work-
stealing. More formally, a node v is ready if all of v's predecessors have already been
executed. Each worker p maintains a deque of ready nodes, denoted by p. dq, and an
assigned node, denoted by p. assigned. In any time step for which a worker p has work
available, p. assigned represents the node p executes on that step. Otherwise, we say that
p.assigned is NULL.

In the Cilk computation model, each p can execute one the instructions described in
Figure A-3 on each time step. Instructions 1 through 3 are the instructions that are required
for serial programs. Instructions 4 through 7 represent instructions that Cilk introduces for
parallel execution. A worker can steal (Instruction 7) only if p.assigned = NULL, i.e., only
on steps when p has no work.

The actions taken by the instructions in the Cilk computation model are mostly straight-
forward, with the most complicated instructions being the sReturn and the sync instruc-
tions. The sReturn (instruction 6) can perform one of three actions, depending on how the
computation is scheduled:

224

(a) Finish: If executing the assigned node u makes v = isuc c (u) ready, i.e., all the work
in the sync block is completed, then p. assigned is set to v.

(b) Stall: If executing the assigned node u does not make isucc(u) ready, and p.dq is
empty, then p.assigned is set to NULL and p begins work-stealing in the next step.

(c) Continue: Otherwise, p.dq is not empty, and p.assigned is set to the node x popped
from the bottom of p. dq.

The sync instruction for p behaves similarly to the sReturn instruction, except without
the continue action. More precisely, if a worker p reaches a sync statement in a function
F, but stalls because the sync block is not yet complete, Cilk guarantees that p. dq must be
empty.

A.3 Completion-Time Bound for Cilk

This section states the completion-time bounds [30] for Cilk computations using the com-
putation DAG model described in Section A.2. This section also summarizes one technique
for proving these bounds [16]. Chapters 2, 3, and 6 generalize this completion-time bound
for extensions of Cilk.

To state the completion-time bound, we require some definitions. In an execution DAG

G, we assume all operations have been expanded so that each node G represents a unit
amount of work. This assumption allows us to bound the running time of a Cilk program
in terms of properties of its DAG q. More formally, for an execution DAG G, define the
work of G, denoted by Ti(g), as the number of nodes in G, i.e., Ti(G) = |V(G)|. Define

the span (or critical path length) of G, denoted by T.(), as the number of nodes along
a critical (longest) path through G from source(G) to sink(G). More generally, we can
define work and span for any subDAG of G. For example, in Figure A-4, if F corresponds
to the subDAG for F (0), then Ti(F) = 6 and T.(F) = 5. As an abuse of notation, we

sometimes omit the argument from the functions when referring to the work and span of
the entire execution DAG, i.e., Ti = Ti (G) and T. = T.(G).

Work and span are useful quantities for bounding completion time. In the Cilk com-
putation model, T1 (G) is the time required for a single processor to execute G. Similarly,
T(g) is the time required to execute G using an infinite number of processors, assuming
there is no synchronization or communication overhead between processors. Any sched-
uler requires at least max{Ti(g)/P, T(G) } time to execute G on P processors: the first
term is a lower bound on the number of steps needed to execute all the nodes in G, and the
second term is a lower bound on the time to execute nodes along a critical path in Q.

Blumofe and Leiserson show in [30] that a Cilk-like randomized work-stealing sched-
uler can execute computations efficiently, i.e., they prove the result in Theorem A. 1.

Theorem A.1. Let G be a computation executed on P processors with work T1 = T1 (G)
and span T. = T.(G). Then Cilk's randomized work-stealing scheduler can execute G in
time

0 + T. + lgP+lg(l/E)

with probability at least 1 - E.

225

Instuctin Peconitin Upate
primop:

Primitive operation,
e.g., an arithmetic
or memory operation.

call
Call of a function F.

cReturn
Return from a
function F.

spawn
Spawn

called

of a function F.

sync
Control reaches a sync
inside a function F.

sReturn
Return from a spawned
function F.

steal
Worker p attempts to
steal from a randomly
chosen victim p' $ p

p.assigned = u
u is a serial node

p.assigned = u
u = source (F)
u is a serial node

p.assigned = u
u = sink(F)

u is a serial node

p.assigned = u
isucc(u) = {v, w}
w = source(F)

p.assigned = u
V = isucc(u)

v is a sync node
S = {ipred(v)}

p.assigned = u
u = sink(F)

V = isucc(u)

v is a sync node
S = {ipred(v)}

p.assigned = NULL

p.assigned = isucc(u)

p.assigned = isucc(u)

p.assigned = isucc(u)

p.assigned = w
push v onto p. dq

if all w E S have executed:
p.assigned = v

else:
p.assigned = NULL

if all w c S have executed:
p.assigned = v

else:
if p.dq is empty:

p.assigned = NULL
else:

pop x from p.dq
p.assigned = x

if p'.dq is not empty:
x is top node in p'.dq
p. assigned = x

else:
p.assigned = NULL

Figure A-3: Instructions for the Cilk computation model. On each time step, a worker p
executes one of these instructions whose precondition is satisfied.

226

Instruction Precondition Updates

20 21 22

Figure A-4: An execution DAG illustrating work Ti and span T.. This DAG corresponds
to the code in Figure A-2, except with nested functions expanded. In this DAG, we have
T1(A) = 38 and T. (A) = 23.

Theorem A. 1 implies that Cilk computations which have sufficient "parallelism" will
speed up linearly as more processors are added. More precisely, define the parallelism of

Gas T (g)/T-(g). If the parallelism is sufficiently large, i.e., T1/,T. > P, then (ignoring
the lgP + lg(1 /E) terms) the completion time in Theorem A. 1 is dominated by the work
term, and the running time is 0(T1 /P). In this situation, we say that Cilk achieves linear
speedup on G. In practice, the constant on the work term T1/P in Theorem A. 1 is nearly 1
for Cilk, with most of the scheduling overheads appearing in the constant on the T. term.

Analysis of Randomized Work-Stealing

To prove the time bound in Theorem A. 1, we utilize the Cilk computation model described
in Section A.2 and the potential-function argument presented by Arora et al. in [16]. Chap-
ter 3 extends this model to analyze the performance of HELPER, which allows programs
to have parallel critical regions protected by locks.

In the Cilk computation model, each instruction except the s te al instruction works on
an assigned node u and replaces it with either a successor of u or NULL. Since each node u
can be assigned for at most one step, there can be at most T1 processor-steps spent on these
instructions. Thus, the key challenge for a theoretical analysis is bounding the time spent
stealing.

To bound the number of steal attempts, Arora et al. [16] use a potential function b(DG)
that accounts for the nodes in G that are ready or currently executing. In particular, they
show that CD(G) only decreases with time and that with probability at least 1 - E, at most
O(PT. + Plg(1/E)) steal attempts can occur before the potential reduces to 0. Thus, steal
attempts add only the terms O(T. + lg(1/E)) to the time bound in Theorem A. 1.

To define <D(G), we require two auxiliary definitions. For every node u E V(G), define
the depth d(u) in g as the length of the longest path in g from source(g) to u. Define the

227

2 3 4 5 6 7 8 9 10 11 12 13 14

G (3)

F (1)

weight of a node u as w(u) = T(G) -d(u). 5

Definition A.1. Define the potential of node u as

32w(u)I if u is assigned,

((u) 32w(u) if u is ready,

0 if u= NULL.

Similarly, let q = p. dq and let u p. assigned. Define the deque potential as

5(q) = (u) + E D(v).
v~q

Finally, define the potential of an execution DAG G, denoted by 4(G), as the sum of the
deque potentials (D(q) for the deques of all P processors.

The remainder of this section gives a brief sketch of Arora et al.'s potential-function
argument. Chapter 3 describes more details of the analysis in [16] and generalizes it to
apply to HELPER.

For Cilk-like schedulers, where each processor pushes and pops from the bottom of
its deque but steals from the top of a deque, we have the property that the top node on
every deque q contains a constant fraction of the total potential cP(q). Intuitively, as shown
in [16] using a weighted balls-and-bins argument, after a "round" of P steal attempts have
occurred, the potential of the computation reduces by a constant fraction with at least a
constant probability. Since the initial potential begins at 32r-, only decreases over time, and
is always an integer, we can conclude that the potential reduces to 0 after O(T.) rounds of
steal attempts in expectation. Thus, we have at most O(PT.) steal attempts in expectation
when executing G.

A.4 Computation-Tree Framework

This section describes the computation-tree model, an alternative model for representing
Cilk computations which is based on the notion of a "series-parallel parse tree." Chap-
ters 5 through 7 use computation trees to investigate transaction-based synchronization in
dynamic-threading platforms such as Cilk.

Series-Parallel Parse Trees

Feng and Leiserson [45] demonstrate that the execution of a Cilk computation can be mod-
eled as a series-parallel parse tree - a tree C whose internal nodes model the parallel
control structure of a series-parallel computation and whose leaves represent instructions
or strands of serial execution. 6 Intuitively, each internal node X in a tree C is either an

5This definition is slightly simpler than the one given in [16] because G is guaranteed to be a "series-
parallel" DAG.

6Conceptually, a series-parallel parse tree can also be used to model not only Cilk computations, but
generic fork-join computations.

228

Figure A-5: A series-parallel parse tree C for the Cilk function in Figure A-1.

S-node or a P-node. For an S-node X, all the child subtrees of X must be executed in series,
from left to right, but the child subtrees of a P-node are allowed to execute in parallel. For
example, Figure A-5 shows a Cilk computation tree C corresponding to the computation
DAG in Figure A-2.

To define these concepts more formally, a series-parallel parse tree C (or SP-tree for
short) is an ordered tree with two types of nodes: primitive-operation nodes primops(C)
at the leaves and controlnodes spNodes(C) as internal nodes. Let node s(C) denote the set
of all nodes in C, i.e., nodes(C) = primops(C) U spNodes(C). Conceptually, we assume
that each primitive operation u E prim0ps(C) represents a basic unit of work in the origi-
nal computation. The control nodes spNode s (C) can be partitioned into two sets: S-nodes,
denoted by sNodes(C), and P-nodes, denoted by pNodes(C). A control node represents a
control construct from the original Cilk computation. Roughly, a spawn operation corre-
sponds to a P-node, whereas an ordinary function call corresponds to an S-node.

It is useful to define several structure notations on an SP-tree. Denote the root of the
tree C as root(C). For any node B E nodes(C), let parent(B) denote the parent of B
in C, or NULL if B = root(C). Similarly, let children(B) denote the ordered set of B's
children, or NULL if B is a leaf. For any tree node B E nodes(C), let ances(B) denote the
set of all ancestors of B in C, and let de s c(B) denote the set of all B's descendants. Denote
the set of proper ancestors (and proper descendants) of B by pAnces(B) (and pDesc(B)).
Denote the least common ancestor of two nodes B1, B2 E node s(C) by LCA(B1 IB 2).

229

For any set of computation-tree nodes J C nodes (C), it is useful to define the leaf set
of J as

leafSet (J)={X E J : pDesc(X)nJ=0}.

Conceptually, le a f Se t (J) is the subset of J which forms the "leaves" of J. All other nodes
Y E J- leaf Set (Y) are on thepathfromX to root(C) forsomeX E leaf Set (J). For sets
J that have |leaf Set (J)| = 1, we define leaf(J) as the unique element in leaf Set (J).
For example, leaf Set (ances(X)) has a single element, leaf (ances(X)) = X. Similarly,
we can define a root set of J which considers ancestors instead of descendants, that is,

rootSet(J)={X E J : pAnces(X)nJ=0} .

For sets J with IrootSet(J) = 1, define r oot(J) as the unique element in r oot Set(J).
Since every subtree of an SP-tree is itself an SP-tree, we shall sometimes overload

notation and use a subtree and its root interchangeably. For example, if X = root (C), then
primOps(X) refers to all nodes in primops(C) n des c(X).

Given any SP-tree C, we can formally construct a computation DAG Q = (V (C), E (C))
using the following procedure.

1. First, construct the vertices V(C) of G. For every internal node X E spNodes(C),
create and place two corresponding vertices, source(X) and sink(X) in V(C). For
every leaf node u E primOps (C), place the single node u in V(C). For convenience
in defining the edges of the computation DAG, for each u E primops(C), we define
source(u) = sink(u) = u.

More formally, the vertices of the graph V(C) are defined as follows:

V(C) = primops(C) U U {source(X),sink(X))

\XEspNodes(C)

2. Next, construct the edges E(X) for each node X in the SP-tree C recursively. For the
base case, if X C pr imOps (C), then define E(X) = 0. For the inductive case, consider
an X E spNodes(C) with children(X) = {Y1, Y2,..., Yk}. If X is an S-node, then

E(X)= E(Yi) U {(source(X), source(Yi)), (sink(Yk), sink(X))}

k-1
U U f(sink(Yi,source(Yi+1>>)

i=1

If X is a P-node, then

k k
E(X)=- U E(Y) U U f (source (X>, source(Yi>>, (s ink(Yi>, sink (X>>)

230

(A ()

Figure A-6: The computation DAG G constructed from the series-parallel parse tree C in
Figure A-5. To construct a canonical Cilk DAG (Figure A-2), the nodes between the first
sync node (8) and sink(PI) must be contracted into a single node for the first sync block,
and the nodes between the second sync node (13) and sink(P 3) must be contracted into a
single node for the second sync block.

Since there is a direct mapping from a computation tree C to its DAG G(C), we can also
apply all the definitions from Section A.2 to computation trees.

To illustrate this conversion more concretely, Figure A-6 shows the equivalent com-
putation DAG for the tree in Figure A-5. This DAG is equivalent to the canonical Cilk
computation DAG Figure A-2, except with some extra source and sink nodes. Figure A-6
can be converted into Figure A-2 by contracting nodes after each sync.

Computation Trees

In this dissertation, we are primarily interested in working with a computation tree - a
special kind of series-parallel parse tree that has a canonical structure which corresponds
to the execution of a Cilk program.

In a computation tree C, we partition sNodes(C) into two disjoint sets - function
nodes, denoted by functions(C), and task nodes, denoted by t asks(C). Afunction node
X E functions(C) corresponds to a function invocation in the original Cilk program. A
task node Y E tasks(C) represents a task associated with a spawn or the continuation of
a spawned function. A task node Y is always either root(C) or the child of a P-node. We
assume that root(C) E functions(C), i.e., the root of C is a function node.

For any B E nodes (C), define the function parent of B as

fParent(B) = parent(B) if B E functions(C) U {root(C)}
fParent(parent(B)) if B ' functions(C) U {root(C)}

Conceptually, fParent (B) is the closest proper ancestor of B in the tree which is a function
node, or equivalently, the enclosing function that B is executed from. We can also define

231

source(P3) sink (P3)

Figure A-7: Summary of the types of nodes in a computation tree C. The children of a set
S (C) in the tree connected by solid edges correspond to a partition of the S (C), whereas a
child connected by a dashed edge is only a subset. For example, node s(C) is partitioned
into primops(C) and spNodes(C), but we have only syncNodes(C) C primops(C).

the function children of a node Z as

fChildren(Z) = {B E nodes(C) : fParent(B) =Z}.

Finally, for any node B, define thefunction depth of B as

fDepth(B) = functions(C)npAnces(B)|.

Similarly, we define the task parent tParent(X) and the task children tChildren(Z)
in an analogous fashion.

tParent(B) =(parent(B) if B E tasks(C) U {root(C)}
tParent(parent(B)) if B V tasks(C) U {root(C)}

tChildren(Z) = {B E nodes(C) : tParent(B) =Z} .

It is sometimes useful to refer apply a parent function repeatedly. For example, define
f Parentk(B) as k applications of the fParento function, i.e.,

fParentk(B) - { fParent(fParentk- (B)) ifk>O
B ifkz=OorB=NULL

The set of function nodes can be partitioned into two sets based on whether a function
is invoked via a spawn or a call. More precisely, the set functions(C) can be partitioned
into two sets - spawnedfunctions spawnedF(C) and calledfunctions calledF(C). Fig-
ure A-7 summarizes the different sets of nodes defined in a canonical computation tree.

In a canonical Cilk computation tree C, nodes in pNodes(C) U t asks(C) can be also

232

organized into sync blocks - groups of P-nodes and task nodes that are related by a sync
within some function F E functions(C). Each sync block Q is terminated by a special
kind of primitive operation - a sync node y E syncNodes(C), where syncNodes(C) C
pr imops(C) denotes the set of all sync nodes in a computation C. More formally, functions
and sync blocks satisfy the properties in Definition A.2.

Definition A.2. For any function node F C funct i ons(C), define the sync blocks of F
as the set syncBl ocks(F) = fChil dren(F) n (pNodes(C) U t asks(C)). For every

function F in a canonical Cilk computation tree, syn cBl ocks(F) can be partitioned into
n disjoint sets Q1, Q2,-- -, Qn, which satisfy the following properties:

1. Each set Qi forms a sync block with 3k(i) elements, denoted as

Qi = {P1, S1,S2, P2,S3, S4, .. , Pk(i), S2k(i)-1, S2k(i)}.

Let root (Qi) = P1 denote the root of the spine Qi.

2. Each set Qi has the following structure:

(a) Pj G pNodes(C),

(b) {S2j-1, S2J} C tasks(C),
(c) Pj has exactly two children: S2j-1 as a left child and S21 as a right child.

(d) parent(PI)=F.

(e) For all j in the range 2 < j < k(i), we have parent (Pj) = S2j-1 and Pj is the
rightmost (last) child of S2j-1.

(f) For all i in the range 1 < j < k(i), we have chi 1 dren(S2j-1) = {Fj} for some

function node Fj E spa wnedF(C), i.e., each task node S2j-1 is the spawn of a
function Fj.

3. For all 1 < i < n, root (Qi) is a child of F which is to the left of root (Qi+ 1), i.e.,
the sync block spine Qi executes serially before the spine Qi+1.

4. The rightmost child of S2k(i) is a special sync node, denoted by syncNode(Q),
satisfying syncNode(Q) E syncNodes(C).

Figure A-8 gives a simple Cilk function F and its corresponding computation tree for

F, highlighting the structure of the two sync blocks of F. By Definition A.2, every P-node
Pi in a canonical computation tree C has exactly two task nodes S2i-1 and S2i as children
and all the spawn statements within a given sync block fall along a single spine.

Finally, it is useful to define the notion of a "frame size" for each function node F.
Relating the computation tree C back to the execution of a Cilk program, each function
node F C functions(C) corresponds to a stack frame which is active while that function
F is executing, and which consumes some amount of space in the system. Thus, for all

functions F E functions(C), define the frame size of F, denoted as frameSize(F), as
the size of this stack frame for F in the execution of the computation C. We use this
definition later in Section A.5 when we discuss the stack-space usage of Cilk.

233

1 int F () {
2 int x = 0; F
3 int y = 0;
4 spawn G1(); 2 3
5 x += 1;
6 spawn G2 (); s s
7 x += 2;
8 G3(); ' ' P H 1 P
9 sync;

10 y += 1; s s s
11 spawn H1(); ' p
12 y += 2; ? G H2
13 spawn H2(); : ss
14 spawn H3 ;G2 , G3
15 sync;
16 return x + y; , 3
17 }

Figure A-8: A Cilk function F with two sync blocks (left), and its corresponding canon-
ical computation tree C (right). The root of C is a function node F, which has two
sync blocks. The first block is Q1 = {P1, Si, S2, P2, S3, S4}, and the second block is
Q2 = P3, S5 , 6, P4, S7, S8, P5, 9, S101-

Dynamic Traversal of Computation Trees

To understand the properties of a Cilk program while it is executing, it is useful to model
the program's execution as generating a computation tree C online, or equivalently, as a
dynamic traversal of a computation tree C whose structure is known ahead of time. This
section presents the Cilk computation-tree execution model, or CCT model for short. In
a fashion similar to the computation DAG execution model described in Section A.2, the
CCT model dynamically generates a computation tree C by taking a series of "steps," with
each step executing an "instruction" that potentially changes the computation tree C.

To describe the CCT model more precisely, we first extend the definitions and notation
for a computation tree C to allow C to change as steps execute. Generalizing the definition
of computation-tree nodes nodes(C), we define a dynamic set nodes(')(C) as the set of
tree nodes in C after taking step t. Conceptually, as a program executes, nodes are added,
but never deleted from a computation tree C.

Similarly, for each of the subsets of nodes(C) we defined earlier (e.g., sNodes(C),
functions(C), etc.), we define a step-dependent set (i.e., sNodes(')(C), functions(t) ,
etc.) representing a subset of computation-tree nodes after taking a particular step t. In
general, these sets are monotonically increasing as the step count increases, i.e. for all t,
nodes(t)(C) C nodes(t+1)(C).

The CCT model also conceptually maintains a statusfield for each X E nodes(t)(C)
at each step t, denoted by status()(X), which stores runtime information about X. The
exact value of this status field varies, depending on the kind of system we are attempting to
model with a computation-tree traversal. For the execution of a normal Cilk program, the
status of a tree node X will normally be one of RUNNING, QUEUED , or DONE. An node X is

234

RUNNING if X is currently executing or an ancestor of X is: currently executing. A node X is

QUEUED if X is a task node that is sitting in the deque of some processor, waiting to be stolen
and/or executed. Finally, a node X is DONE if the program has finished executing X (e.g.,
returned from a function or completed a task). Chapter 5, which considers transactional
memory systems, also uses status(t)(X) to represent the status of function nodes X E
functions(') (C) which are transactions.

We also define sets tracking which nodes have a given status on a particular time step.
Define these sets as:

RUNNING(')(C) = {XEnodes()(C) : status(t)(X) =RUNNING

QUEUED()(C) = {X E nodes(I)(C) : status(t)(X) = QUEUED

DONE(t)(C) = {XCnodes()(C) : status(t)(X)=DONE}

The sets RUNNING(t)(C) and QUEUED(t)(C) are not monotonically increasing, since nodes
can be removed from these sets as their status switches to DONE.

To model a program execution, at the beginning of each step t, the CCT model maps
each processor p to an producer S-node, denoted by producer) (p). Producer nodes
must be RUNNING S-nodes, i.e., for any producer node X = producer(')(p), we must have
X E sNodes(C) with status(X) = RUNNING. It is also convenient to define the set of

producer nodes over all workers p as

producerNodes(t)(C) = producer(t)p).

All p

In the CCT model, a producer node X on step t may execute an instruction. In particular,
a processor p with producer node X E sNodes(C) can execute one of the instructions de-
scribed in Figure A-9. Conceptually, the CCT model is analogous to the Cilk computation
model described in Figure A-3, with the same set of instructions. The main difference is
that for every worker, the CCT model maintains a producer node from the computation tree
instead of an assigned node from the computation DAG.

From the definition of these instructions, one can show that after every step t, the CCT
model generates a computation tree with the following structural properties.

Theorem A.2. After every step t, the CCT model maintains the following invariants on a
computation tree C:

1. The set R UNNING(t)(C) U Q UEUEDW()(C) corresponds to a connected subgraph of C,
which we refer to as the active tree of C, denoted by vTree() (C).

2. We have producerNodes(t)(C) C leafSet (vTree(t)(C)), i.e., the producer

nodes are leaves in the active tree.

3. We have QUEUED(t)(C) C leafSet (vTree(t)(C)), i.e., the queued nodes are

leaves in the active tree.

235

1. primop X= producer(p) NEWNODE(u,memOps(C),X, DONE)
Primitive op. u

2. call X = producer(p) NEWNODE(F, calledF(C),X, RUNNING)
Call of F producer(p) +- F

3. cReturn F =producer(p) status(F) +- DONE
Return from F F E functions (C) producer (p) <- parent (F)

4. spawn X = producer(p) NEWNODE(P, pNodes (C),X, RUNNING)
Spawn of F p has deque q NEWNODE(Si, tasks(C), P, RUNNING)

NEWNODE(S 2 ,tasks (C), P, QUEUED)
NEWNODE(F, spawnedF (C), S1, RUNNING)
producer(p) +- F

push S2 onto q
5. sync X = producer (p)

Sync in F X E Q C syncBlocks(F) NEwNODE(y, syncNodes (C),X, DONE)
F = parent (root (Q))
K= leafSet (Q)

(a) Finish Q VZ E K -{X}: for all Y E Q: status (Y) 4- DONE
status (Z)= DONE producer(p) +- F

(b) Stall]Z E K -{X}: st atus (X) +- DONE
st atus (Z) # DONE producer(p) +- NULL

6. sReturn F = producer (p)
Return from F to F' F E spawnedF(C)

S1 = parent (F) sau()-DN
children(P) = S1 tatus (F) +- DONE

Si E Q C syncBlocks(F')
K= leafSet (Q)

(a) Finish Q VZ E K - {S1 }: for all Y E Q: status (Y) +- DONE
status (Z) = DONE producer(p) +- F'

(b) Stall 3Z E K -{S1}: status (S1) 4- DONE
st atus (Z) : DONE producer(p) +- NULL

status (S2) $ QUEUED

(c) Continue status(S2)= QUEUED status (Si) +- DONE
p has deque q pop S2 from q
S2 on bottom of q status (S2) - RUNNING

producer(p) +- S 2

7. steal
Steal from p' p' has deque q'

(a) Successful q' is not empty remove S from q'
S on top of q' status (S) +- RUNNING
status(S)=QUEUED producer(p)- S

(b) Unsuccessful q' is empty producer(p) -NULL

Figure A-9: Instructions for the CCT model. On each step, a worker p executes the
instruction whose precondition is satsified. The method NEWNODE(B,S(C),X,STAT)
adds a new computation-tree node B into the set S(C), with parent X and initial status
status(B) = STAT. The sync, sReturn, and steal instructions can perform different
updates, depending on which precondition is satisfied.

236

|PreconditionInstruction Updates

Figure A-10: A dynamic computation tree C on a step t in the CCT model. The tree

C is being executed on 3 workers P1,P2, and p3. The workers have producer nodes
producer(t)(pi) = S7 , producer(')(P2) = S10 , and producer(')(p3) = S13. Worker p1

has two QUEUED task nodes on its deque: S6 at the head, and S8 at the tail.

4. S C QUEUED(t) (C) if and only if S is in the deque of some worker p on step t.

5. Let Y1, Y2 ,..., Y, be the QUEUED nodes in the deque of worker p, from the head of

the deque down to the tail, and let Pi = paren t (Y). Then Pi is an ancestor of Pi+1.

6. {parent(S) : S C QUEUED(t)(C)} C RUNNING(t)(C) npNodes(C), i.e.,for any

node S that is QUEUED, parent(S) is a P-node with status of RUNNING.

Proof This result follows by induction on the different kinds of instructions that the CCT
model can execute. D

Figure A- 10 gives an example of a computation tree C generated by the CCT model. It
is not difficult to verify that this tree C satisfies the invariants given in Theorem A.2.

Finally, scheduling in Cilk satisfies what is known as the "busy-leaves property" [27].
Roughly, this property states that at most P RUNNING functions can be leaves in the active
tree. As discussed in Section A.5, this property enables Cilk to provide good theoretical
bounds on space usage.

Theorem A.3. The CCT model satisfies the busy-leaves property. More formally, consider
a computation C executing on P workers. For all nodes B G spNode s(t) (C), define the

node bl Own er(t) (B) as

B if B E functi ons')(C)

blOwner(t)(B) =B if B l 1ea fSet (Q(t)) for sync block Q(')

fParent (B) if B C Q(t) - 1ea fSet (Q(t)) for sync block Q(t)

237

Node Type Status

o P-node 0 DONE

0 Task node O RUNNING

0 Function node 0 QUEUED

o Primitive Operation

Then, for all nodes B G vTree(')(C), blOwnerdt)(B) C ances(producer()(p)) for
some worker p.

Proof Blumofe [27] proves this result for Cilk satisfies the busy-leaves property. We can
prove this result for the CCT model by induction on the instructions the model can issue.

In the base case, the statement holds because we begin with root (C) as the only mem-
ber of vTree(C) and the producer node for some worker p. For the inductive step, as-
sume that on step t - 1, for all nodes B c vTree(t-1)(C), there exists a worker p such that
B E ances(producer(- 1)(C)). Then, we can verify that each instruction preserves the
inductive hypothesis for step t.

1. A primop instruction maintains the inductive hypothesis because it does not modify
the sets vTree(C) or producerNodes(C).

2. A call of a function F on a worker p changes the producer node of p from X =
producer(t- 1)(p) to F = producer()(p). The inductive hypothesis is maintained
for all existing nodes in the active tree, i.e., for all B E vTree(-1)(C), because
ances(X) C ances(F). The inductive hypothesis is also maintained for the func-
tion F, the only node added to vTree(C), because F = producer(') (p) and we have
F = blOwner(t)(F).

3. A cReturn from a function F on a worker p on step t changes the producer node from
producer(t-1)(p) = F to producer(t)(p) = parent(F). To violate the inductive
hypothesis, there must exist a B E vT ree(t)(C) such that blowner(t)(B) E ances (F),
but blowner(')(B) ances(parent(F)). We have ances(F) - ances(parent(F))
equal to {F} however. Also, F V vTree(t) (C) since the cReturn removes F from the
active tree. Thus, no such node B can exist and the inductive hypothesis is preserved.

4. A spawn of a function F on a worker p creates three nodes with status RUNNING- a
new node P as a child of X = producer(t-1)(p), Si as a child of P, and F as a child
of S1, and then sets producer()(p) to F.

This case is analogous to the call instruction. The inductive hypothesis is main-
tained for all existing nodes B c vTree(-1)(C) since ances(X) C ances(F). The
inductive hypothesis is also satisfied for all new nodes B added to vTree(C), since
we have blOwner()(P) = blowner()(X), blowner()(Si) = S1 , blowner()(F) = F,

and {blOwner(')(X),Si,F I ances(F).

5. Consider a sync instruction at a task node X = producer(')(p), in a sync block Q in
a function F. Two cases are possible:

(a) If the sync finishes the sync block Q, then producer(p) is set to F. Then, as
with a cReturn, we can violate the inductive hypothesis only if there exists a
node B E vTree(t)(C) such that blowner(B) c ances(X) - ances(F). But we
know that after the sync completes, all nodes B C spNodes(t)(F) - {F} have
status DONE, and thus are removed from the active tree. Thus, the inductive
hypothesis is preserved.

238

(b) If worker p stalls at the sync instruction, then producer(p) is changed from X
to NULL, and we know there exists some active task node Z in Q on step t, i.e.,

Z E vTree(t)(C) and Z E leafSet (Q(t) . By the inductive hypothesis, there

exists some worker p' such that blowner(Z) E ances(producer(t- 1)(p')). Fur-

thermore, since Z is a leaf in the sync block Q, we know that blowner(Z) = Z.

To show the inductive hypothesis is preserved, it suffices to show that for any
node B E vTree(t-1) (C) such that blowner(t-1)(B) E ances(X), we eitherhave

B vTree(')(C) or blowner(t) (B) E ances(producer(t)(p')). In other words,
we need to show that for any B which is an ancestor of X, either B is removed
from the active tree in step t, or that worker p' preserves the invariant for B.

For any node B E vTree(- 1)(C), let YB = blOwner(t-)(B), and suppose that

YB E ances(X). We know F = fParent(X) = parent(root(Q)). There are

two possibilities for YB: either YB E ances (F) or YB E ances (X) - ances(F).

i. Suppose that YB C ances(F). We know F E ances(Z) since Z is in the sync
block Q. As we argued earlier, we also have Z C ances(producer(t)(p')).
Thus, we can conclude that YB C ances(producer(t)(p)), and hence the
inductive hypothesis holds.

ii. If YB 6 ances(X) - ances(F), then by the canonical structure of sync

blocks, either YB leaf Set (Q(t)) or YB = X E leafSet (Q(t) . The

first case is impossible, since YB = blOwner(t-) (B) and by definition, we

should have had blOwner(- 1) (B) = F. In the second case, we have YB = B,

and we know that the sync instruction sets st atus (B) to DONE. Thus, since
B vTree(t) (C), the inductive hypothesis holds.

6. For an sReturn of a function F to F', there are three cases to consider.

(a) If the sReturn instruction finishes the sync block Q, then this case is similar to
case (a) for the sync instruction; the inductive hypothesis is preserved because
producer(p) is set to F', and all other nodes in the subtree of F' are removed
from the active tree.

(b) If the sReturn instruction stalls in the sync block Q, then as in case (b) of
the sync instruction, producer(p) is changed from F to NULL, and there ex-
ists some active task node Z in Q on step t, i.e., Z C vTree(')(C) and Z C

leafSet (Q(t))

The proof is also analogous to the proof for case (b) of the sync. For any node
B E vTree('-')(C), let YB = blOwner(t-'1)(B) and suppose that YB C ances(F).

Let F' = fParent(F) = parent(root(Q)). There are two possibilities for YB:

either YB C ances(F'), or YB C ances (F) - ances (F').

i. Suppose that YB C ances(F'). This case is the same as for the sync, and
thus we conclude that YB E ances(producer(tW(p')).

ii. If YB E ances(F) - ances(F'), then by the canonical structure of sync

blocks, either YB leafSet (Q(t)), YB = parent(F) C leafSet Q(t

239

or YB = F. The first case is impossible, since YB = blOwner(t- 1)(B) and
by definition, we should have had blOwner(t-1) (B) = F'. In the second
and third cases, we know that YB = B and that the sReturn instruction sets
status(B) to DONE. Since B vTree(t)(C), the inductive hypothesis holds.

(c) If the sReturn continues execution in the sync block, then the producer node
changes from produce r(t-1)(p) = F to produce r(t)(p) = S2. Also, we know
parent (S 2) = parent (parent (F)) = P is a common P-node. The only nodes
B for which the inductive hypothesis could be violated are B c (ances(S2) -
ances (F)). Only two nodes fall into this category however, namely B = F or
B = parent (F). The inductive hypothesis is preserved because both of these
nodes are removed from vTree(C) by the sReturn instruction.

7. The steal only changes producer(p) from NULL to a task node S which is not
NULL. Adding a node to producerNodes() (C) cannot violate the inductive hypoth-
esis.

A.5 Stack-Space Usage in Cilk
This section uses the computation tree model from Section A.4 to state the stack-space
bounds guaranteed by MIT Cilk [51] and Cilk++ [93].

To analyze stack-space usage in a computation, we require some additional definitions.
On any step t, let vFunc(t)(C) = vTree(t)(C) f functions(C) denote the set of active
functions in the CCT model. Let stackSpace(t)(C) be

stackSpace(t)(C) = E frameSize(F),
FEvFunc(t)(C)

that is, the stack space in C in use on step t. Finally, define the stack-space usage for C,
denoted by Sp(C), as the maximum over all steps t of stackSpace(t)(C) assuming that C
is executed using P processors. Note that Si is the serial stack-space usage, i.e., the stack
space used by a serial execution of the computation C.

Theorem A.4. For any computation C executed by the CCT model on P processors, we
have Sp(C) < PS1(C).

Proof This result is proved by Blumofe [27] for Cilk. By Theorem A.3, we know that
every function F E vFunct) (C) is an ancestor of a producer node producer(t)(p) for some
worker p. More formally, let AF(t, p) be the set

AF(t,p) = ances (producer(')(p)) n vFunc(t)(C)

Then using Theorem A.3, we have

vFunc(t)(C) - U AF (t, p) .
all workers p

240

Since some of the sets AF(t, p) can overlap, we have

frameSize(F)< frameSize(F))
FEvFunc(t)(C) all workers p FEAF(t,p)

The term on the left is stackspace(t)(C), the stack-space usage on any step t. Choosing
the step t* where this quantity is a maximum, the left side becomes Sp(C). We know,
however, for any worker and on any step, the sum of f r ameS i ze(F) for all F E AF (t, p) is
at most S(C). Thus, summing over all workers p gives Sp(C) <; PSI(C). E

A.6 Chapter Notes

This section briefly discusses other work related to Cilk.
Cilk follows the "lazy task creation" strategy of Kranz, Halstead, and Mohr [82], where

the worker suspends the parent when a child is spawned and begins work on the child. An
alternative strategy is for the worker to continued working on the parent, and have thieves
steal spawned children. Cilk-1 [28], TBB [110], and TPL [92] employ this strategy, in

large part because creating function continuations requires compiler support. This strategy
can require unbounded bookkeeping space to execute a dthreaded program, however, even
when the program executes on a single processor.

The computation DAG model described in Section A.2 resembles model described in

[38, Chapter 27]. The bound on completion time stated in Theorem A.1 was originally

proved by Blumofe and Leiserson [30] using a delay-sequence argument. The analysis by
Arora, Blumofe, and Plaxton [16] is a variant of the original analysis in [30] which instead
uses a potential-function argument. Arora et al. [16] apply their analysis to a nonblocking
work-stealing algorithm, and thus the model does not consider contention on locks on

deques when stealing. To model this contention, one can apply the recycling-game analysis
as described in [30], which contributes the additional lg P term in Theorem A. 1.

The computation tree model described in Section A.4 is adapted from the work of Feng
and Leiserson [45], which represents Cilk program executions using series-parallel trees in
order to perform efficient race detection. The notion of a series-parallel graph commonly

appears in the literature in the context of electrical networks (e.g., [43]). Algorithms for

recognizing series-parallel DAGs were described by Valdes in [120], and subsequently in

[121]. The series-parallel tree notation used in Section A.4 dates back to at least [120,121]:
the authors refer a tree with S-nodes and P-nodes as the binary decomposition tree for a
series-parallel DAG.

241

242

Appendix B

Summary of Notation

This appendix summarizes the notation used in this dissertation.

Notation Description Page #
A maximum degree, i.e., maxAEV, (inDeg(A) + outDeg(A)) 34
Ai maximum indegree, i.e., maxAEV, inDeg(A) 33

AO maximum outdegree, i.e., maxAey, outDeg(A) 33
<D(u) observer function 130

<D(u) potential of a node u in g 84, 228

Ww (A) processor-steps spent in COMPUTEANDNOTIFY (A) for 30
atomic decrements for notifying successors of A

Vfs(A, B) processor-steps spent in COMPUTEANDNOTIFY (A) for 31
atomic decrement for edge (AB)

t1 (A) the region work of region A 77
r.(A) the region span of region A 77

Table B.1: Summary of Notation (Greek Alphabet).

243

C series-parallel parse tree, computation tree 126, 228
d(u) depth of a node u in 9 83,227
D a task graph D = (VD, ED) 29
D module tree 191
ED set of task graph edges 29
E(G) edges of DAG G 223
G computation DAG 29, 223
9 a computation DAG for execution of D 29
Y set of all traces for CWSTM 165
9(C) trace tree 166

[set of all memory locations 127
M number of edges in region graph 78
N set of all Xmodules 201
N number of regions, i.e., {regions(C)}| 78
R(u, f) read predicate (u reads from f) 127
Sp(A) stack space used by region A in a P-processor execution 91
Sp(C) maximum stack space for a execution of C 240

on P processors

Si aggregate serial space usage (EAEregions(c) S1 (A)) 91
SD source node of task graph D 29
Tp(S) time to execute D on P processors 33
Ti (A) work of subDAG for region A 77
T1 (D) work to execute task graph D 33
Ti (G) work of DAG 9, |V(G)| 225
T.(A) span of subDAG for region A 77
T. (D) span of task graph D 33
T. (G) span (or critical path) of DAG G 225
T. aggregate region span (EAeregions(C) t(A)) 78

tD sink node of task graph D 29
V set of task graph nodes 29
V. number of nodes on longest path in D from SD to tD 33

V(G) nodes of DAG G 223
W(u, £) write predicate (u writes to f) 127
w(u) weight of a node u in 9 83,228

Table B.2: Summary of Notation (English Alphabet)

244

Notation Description Page #

Notation Description Page #
abortact ions(X)
abort e d(C)
ABORTED(')(C)
aContent (X)
ances(B)
calledF(C)
ccontent (X)
children(B)

committed(C)

COMMITTEDWt)(C)
content(X)
desc(B)

DONE(t)(C)

fChildren(F)

fDepth(B)

fParent(B)
fParentk(B)
frameSize(F)
functions(C)
head[U]

holders(B)
inDeg(A)
inDeg(u)
ipred(A)
ipred(v)
ipred(v)
isuc c(A)
isucc(u)
isucc(u)
lastReaders(f)
LCA(B 1, B2)
leaf (B)
leaf Set (B)
loops(A)

abort actions of a transaction X
aborted transactions
nodes with status ABORTED on step t
aborted content of transaction X
ancestors of B in C
called functions in C
closed content of transaction X
ordered set of children of B
committed transactions
nodes with status COMMITTED on step t
content of a transaction X
descendants of B in C
nodes with status DONE on step t
function children of a function F c funct ions(C)
function depth of a node B
function parent of a node B
k applications of fParent (B)
frame size of function F E functions(C)
function nodes of C
head of a trace U
holders of a node B
lipred(A) , i.e., in-degree of task node A c VD
in-degree of node u E V(G)
immediate predecessors of task A E VDp
immediate predecessors of v
immediate predecessor of v if inDeg(v) = 1
immediate successors of task A E VD
immediate successors of u
immediate successor of u if outDeg(u) = 1
readers (t) f desc(leaf(writers(f)))
least common ancestor of Bi and B2 in C
the leaf of a set B when Ileaf Set (B)| = 1
the leaf set of a set B C nodes(C)
set of all pairs of paths in 'D from any node X to A

Table B.3: Notation in typewriter font, A through L.

245

DescriptionNotation
204
128
142
205

127, 229
232
205

127, 229
128
142
128

127, 229
142,235

232
232
231
232
233
231
165
128
29

223
29

71,223
71,223

29
71,223
71,223

153
127, 229

230
230

54

Page #

Notaton Dscripion age
memOps(C)
modAnces(M)

modDesc(M)
modMemory(M)
modParent(M)
modR(X)
modW(X)
modXact ions(M)
mTree(CM)
nodes (C)
oContent (X)
outDeg(A)
outDeg(u)
owner(f)
pAnces(B)
parent (B)
paths(A,B)
paths (u, v)
pDesc(B)
PENDING(t)(C)

PENDINGABORT(t) (C)
pNodes (C)
prim0ps(C)

produce r((p)
producerNodes(t)(C)

QUEUED(t)(C)

memory operation nodes in C
ancestors of M in D
descendants of M in D
memory locations owned by Xmodule M
parent of M in D
module readset for X
module writeset for X
transactions corresponding to Xmodule M
the projection of C onto Xmodule M
primOps(C) U spNodes(C)
open content of transaction X
lisucc(A)|, i.e., out-degree of task node A E VD
out-degree of node u E V(G)
Xmodule owning location i
proper ancestors of B in C
parent of B in C
set of paths in D from A to B
set of all paths from u to v in G(C)
proper descendants B in C
nodes with status PEND ING on step t
nodes with status PENDINGABORT on step t
P-nodes of C
primitive operation nodes of C
producer node for worker p
set of producer nodes for all workers
nodes with status QUEUED

Table B.4: Notation in typewriter font, M through Q.

246

127
201
201
201
201
202
202
201
207

126, 229
205

29
223
201

127, 229
126, 229

29
77

127, 229
142
142

126, 229
126, 229

235

235
235

Notation Description Page #

NoatI DecitonPg
R(X)
R(t) (X)

readers(t)(f)
regions(C)
rgStackSpace(t)(C)
rgVFunc(t) (A)
rg-pathilength(z,A)
rg-owner (X)
rg-owner (u)
rg-pred(v)
rg-succ(u)
root(B)
root(C)
root(Q)
rootSet(B)

RUNNING(t) (C)
sink(F)
sNodes(C)
source(F)
spawnedF(C)

spNodes (C)
stackSpace(t) (C)
st atus(t)(X)

syncBlocks(F)

syncNode(Q)

syncNodes(C)
tasks(C)
tChildren(X)

tParent (B)
tParent (U)

readset of transaction X
readset of X on step t
readers of t on step t
set of all parallel regions in a computation C
stack space used by A on step t
active functions within a region A on step t
length of path z counting nodes belonging to A
region owner of a node X C nodes (C)
region owner of a DAG node u C V(nodes (C))
region predecessor of a node v in G (C)
region successor of a node u in G(C)
the root of a set B when |rootSet (B)|= 1
root of C
root of a sync block Q
the root set of a set B C nodes(C)
nodes with status RUNNING on step t
sink node of F
S-nodes of C
source node of F
spawned functions in C
control nodes of C
stack space used by C on step t
status of node X C nodes(t)(C)
f Children(F) n (pNodes(C) U tasks(C))

for a function F
sync node for a sync block Q
sync nodes in C
task nodes of C
task children of a task X E t asks(C)
task parent of a node B
tParent (head[U]) for a trace U

Table B.5: Notation in typewriter font, R through U.

247

121
143

143
71
91
91
77
71
71
72
72

230
126,229

233
230

142,235
127,224
126,229
127, 224

232
126, 229

240
141,234

233

233
233

126,231
232

166, 232
166

Page #Notation Description

Notaion Descipton PgeI
vFunc(t)(C)

vTree(')(C)

W(X)
W(') (X)
world

write rs(')(f)
xactions(C)
xAnces(B)
xDesc(B)
xid(M)
xMod(X)
xParent(B)

xLCA(B1 , B2)

active functions, i.e.,
vTree(t)(C) n functions(t)(C)

active tree on a step t, i.e.,
RUNNING(t)(C) U QUEUED(t)(C)

writeset of transaction X
writeset of X on step t
world Xmodule, root of DP
writers of f on step t
set of transactions
ances(B) nxactions(C)
desc(B) nxactions(C)
id of an Xmodule M
Xmodule for transaction X
transactional parent of B
least-common ancestor transaction

Table B.6: Notation in typewriter font, V through Z.

subgraph of computation DAG G
for COMPUTEANDNOTIFY (A)

maximum of CNG(A) over all possible DAGs G
computation DAG for COMPUTEANDNOTIFY*(A), a

modification of COMPUTEAND NOTIFY (A) that always
makes all recursive calls

subgraph of G for COMPUTE (A)
subgraph of computation DAG G

for INITANDCOMPUTE (A)
maximum of ICG(A) over all possible DAGs G
subgraph of G for INIT (A)

Table B.7: Miscellaneous definitions for Nabbit from Chapter 2.

248

240

142,235

121
143
191
143
127
128
128
191
201
128
128

Notation I Description Page #
29

CN(A)
CN*(A)

com (A)
IC G(A)

IC(A)
initG (A)

Notation Description Page #

Notation Description Page #
A.done
A.dqpool
A.psize
A. valid[p]
dq(p,A)
p -+ activeDQ

q -4 assigned
q -+ child
q -+parent
q - region
u belongs to F
F contains u
F owns u
parallelism of G
serial node u
spawn node u
sync node u

flag for signaling completion of region A
deque pool for a parallel region A
number of workers assigned to pool A. dqpool
TRUE when p is assigned to A's pool
deque for worker p in region A
the active deque of p (bottom of deque chain)
assigned node of deque q
child deque of q in deque chain
parent deque of q in deque chain
parallel region for a deque q
F owns u
u along some path between sour ce(F) and sink(F)
F is the most deeply nested function containing u

Ti() T nG)
inDeg(u) = 1 and outDeg(u) = 1
inDeg(u) = 1 and outDeg(u) = 2
inDeg(u) > 1 and outDeg(u) = 1

Table B.8: Miscellaneous definitions for HELPER (Chapter 3) and computation DAGs.

Notation Description Page #

A(t) (C) a set A(C) after completing step t 141, 234

A can be any generic set
uHv hidden relation (u is hidden from v) 130
R(X) - R(X) U {(f,u)} Overloaded union operator for R(X) and w(X) 143

Table B.9: Miscellaneous definitions for transactional computations.

249

72
72
72
72
72
74
80
74
74
74

224
224
224
227
223
223
223

,

IPage #I DescriptionNotation

250

Appendix C

Prefix-Race Freedom of TCO and OAT

This appendix presents the details of the proofs for the TCO model from Section 5.6 and

the OAT model from Section 7.4. To prove these results, we first argue that the TCO oper-

ational model preserves several structural invariants on transaction readsets and writesets.

Next, we use these invariants to prove Theorem 5.6, that the execution order S generated

by the TCO model is "sequentially consistent" according to Definition 5.10. Finally, we
extend these results for the TCO model to the OAT model and prove Theorem 7.7, that

the OAT model generates traces (C, D) which are prefix-race-free as according to Defini-
tion 5.15.

C.1 Invariants on Readsets and Writesets

For the TCO model, we can characterize when a transaction X has a pair (f, u) in its readset
or writeset. These invariants on readsets and writesets for the TCO model also apply to the

OAT model. In the proof, for any particular memory location f, we can effectively reduce

the OAT model to the TCO model by ignoring all transactions for Xmodules that can never

have E in their readset or writeset because of ownership requirements.
First, we show that the readsets of transactions act as caches for pairs (f, u) stored in

writesets.

Theorem C.1. On any step t,for any transaction Y G readers(') (f), suppose that (f, u) G

R(t)(Y). Let X = 1ea f(xAnces(Y) n wri t ers(')()). Then we have (f,u) G TWc(X).

Proof. The proof is by induction on the instructions issued by the TCO model.
In the base case, at the initial step t = 0, for all memory locations f G M, we start with

readers(0)(f) = writers(0)(f) = {root(C)} and R(root(C)) = W(root (C)). Since we

have X = Y = root (C), Theorem C.1 is satisfied in the base case.
For the inductive step, consider the operation of the various instructions.

* The spawn, sync, and sReturn instructions preserve the invariant because they do
not change transaction readsets or writesets.

* Consider a successful read instruction v, and let Z = xParent(v). The only trans-
action whose readset changes is Z; v adds a pair (f, u) into R(t+ 1)(Z). This value

251

comes from the readset of a transaction Y = leaf(readers()(f) n ances(v)), or
equivalently, Y = le a f (re ader s(t)(E) n ances (Z)). By induction, we know that the
invariant is satisfied for Y, i.e., (f, u) E W(') (X), where

X = leaf (xAnces(Y) nwriters(t)(e))

Using these facts, we can show that the transaction

X'= leaf(xAnces(Z) nwriters()e))

must satisfy X' = X, i.e., the invariant is satisfied for Z.

First, since X' E writers(t)(f) C readers(t)(f), we know that X' (pDes c(Y), since
that would contradict our definition of Y as the closest ancestor of Z that contains f in
its readset. Thus, we must have X' E xAnce s(Y). Also, we must have X' (pDes c(X)
to avoid contradicting our definition of X as the closest ancestor of Y that contains f
in its writeset. Therefore, that leaves X' C xAnces(X). But since X E writers (t)()
by definition of X', we must also have X' c des c (X). Thus, we have X' = X, and the
invariant must be satisfied.

* Consider a successful write instruction v, and let Z = xParent(v). We can show
that v cannot break the invariant without generating a conflict. Suppose for contra-
diction that Theorem C.I is violated for some transaction Y with (f, u) E R(t+1) (Y). In
other words, if X = leaf(xAnces(Y) nwriters(+1)(f)), then suppose that (Vu) 0
W(t+)(X). We must also have (f, u) E R(')(Y). Otherwise, if we had (f,u) 51 R(t)(Y),
then X = Y = Z, since Z is the only transaction whose readset changes by a write
instruction.

To cause a violation, the writeset of X must have changed between during step t;
either (f, u) c WW (X), or f W()(X) but (f, u) was in the writeset of some ancestor
transaction of X. Thus, we must have X = Z, since Z is the only transaction whose
readset or writeset changes on step t. Furthermore, we must have X E pAnces(Y),
since otherwise, if X = Y, then the write instruction would have replaced (f, u) with
(f, v) in R(t+1)(Y). We know v 0 ances(Y) since xParent (v) = Z = X. Therefore,
on step t, we should have a conflict between v and Y, since W (v, f), (£, u) E R(t)(Y)
and v 0 ances(Y).

* An xbegin instruction creates a new transaction X with R(X) = 0 and W(X) = 0.
Thus the invariant is trivially satisfied.

* Suppose that on step t, a transaction Y issues an xend and commits. The only trans-
action X which has its readset or writeset change after the xend (i.e., for which we
could have R(t)(X) $ R(t-')(X) or W(t)(X) # W(-1)(X)) is X = xParent(Y). The
xend merges R(Y) and w(Y) into R(X) and W(X), respectively. Using Theorem 5.4, it
is straightforward to show that the invariant is preserved for X.

For X, consider the cases for memory operations:

252

1. If (f, v) E W(Y), then (i, v) is added to both R(X) and W(X), and thus the invariant
for f on X is trivially satisfied.

2. If (f, v) E R(Y), but f 0 W(Y), then if f C R(X), then we must have already had

(f, v) E R(X), since by the inductive hypothesis, both Y and X would have the
same pair in their readsets.

3. If f 0 R(Y), then any values for in R(X) or W(X) are unaffected, and thus the
invariant is preserved.

For all other transactions Z E readers(t) (f) and Z # X, consider two cases, namely

Z E pAn ces(X) and Z c pDe s c(X). If Z C pAn ce s(X), then the invariant is preserved
for Z because the writesets of all transactions in xAnces(Z) remain the same. Sim-
ilarly, if Z E pDes c(X), then we can also argue that no writeset for any transaction
in xAnces(Z) changes. The xend can only change the writeset of X, and only if

(f, v) e w(Y). But in this case, since Y is neither an ancestor or a descendant of Z, we
would have had a conflict between Y and Z.

e Consider an xabort by a transaction Z E xactions(')(C). The only way an xabort
of a transaction Z can affect the invariant is by removing Z from readers(f) and

writers(f), since the readsets and writesets of all other transactions remain the

same. Clearing W(Z) cannot break the invariant for any other transaction X because

Z must be a leaf of vTree(t) (C), i.e., to abort Z, all X E pDesc(Z) must already have
been finished.

Theorem C.2 characterizes when a transaction X can have a location f in its writeset.

Theorem C.2. On any step t, consider any X G vTree()(C) fl xacti ons(t)(C) and any

memory location f E M. Let Sj(t) = {u e memops(')(C) : W(u,e) }. Exactly one of the

following cases holds:

1. We have f I W(')(X) and cContent()(X) nSe(t) = 0.

2. There exists an (f, u) WO) (X), with u happening on step tu, and two conditions are

satisfied:

(a) u E cCon ten t ()n s,(t)
(b) For any operation v E Sj(t) that happens on step ty, with tu < ty <; t, we have

v e aCont ent(t)(X) U vContent(t)(X).

3. X = root (C), (f, -) G WW)(X) and two conditions are satisfied:

(a) cContent()(X)nS=0.
(b) For all v C Se(t), we have v E aCont ent'W (X) U vCont ent(t)(X).

Proof This theorem can be proved by induction on the steps of the TCO model.

In the base case, at step t = 0, we begin with a computation tree C that has a single trans-

action root (C) with (f, _) C W(root (C)) for all f E M. Thus, on this step, all transactions

X C xactions(C) fall into Case 3.

253

For the inductive step, consider each instruction that the TCO model can issue, as de-
scribed in Section 5.5.

The control-flow instructions (spawn, sync, sReturn) do not create or finish any trans-
actions, nor do they change any transaction writesets. Thus, they do not affect the invariants
in Theorem C.2. Similarly, a successful read does not affect the invariants because it only
adds a new element (f, u) into a readset of a transaction, but does not change any writesets.

Consider a successful write on step t that creates a memory operation u satisfying
W(u,e). Let X = xParent(u). Then the write adds (e,u) to W(X). For all transactions
Z E xactions(')(C), examine how u affects the invariants for Z.

1. Suppose that Z = X. Then, since write adds (e,u) to W(r)(X), we need to check
that Case 2 holds for X on step t. To check the first condition, we know that u E
cContent(r)(X) because X = xParent(u). The second condition also holds trivially,
because u happens on the current step t, and there are no other operations v such that
tv > tu.

2. For any transaction Z = X with f (W(') (Z), we know by the inductive hypothesis and
Case 1 that cContent()(Z) n Se(t) = 0. After the step, we still have e 0 W(+1)(Z)
and cContent(t+1)(Z) n Se(t + 1) = 0, since u only changes the closed content set
cContent(X).

3. For any transaction Z / X which has (E, w) E W(t)(Z), we know that Z E ances(u).
Otherwise, u would have caused a conflict with Z according to Definition 5.17.

There are two subcases to consider: either w $1 or w =1 (which also implies Z =
root (C)).

" If w $1, then for Condition 2a, we know w C cContent(Z) nfSj before and
after the step. Also, since X is issuing a write instruction, we must have X c
vTree(t)(C). Thus, u is added to vcontent(t+1)(Z), and Condition 2b still
holds.

" If w =1, we have a similar subcase, except Z falls into Case 3 of Theorem C.2
instead of Case 2. Condition 3a is preserved because Z $ X and the write in-
struction does not change the set cCont ent(Z). Also, Condition 3b is preserved
because u is added to vContent(t+1)(Z).

Consider an xbegin that creates a transaction Z. Since Z begins with R(Z) = W(Z) = 0,
Z falls into Case 1, which is trivially satisfied because cCont ent (+'1)(Z) = 0.

Consider an xend that successfully commits a transaction Z. Let Y = xParent(Z)
be Z's parent transaction. Then, since the xend change status(Z) from PENDING to
COMMITTED, we know that

cContent(t+1)(Y) = cContent(t)(Y) U cCont ent(t)(Z)

that is, the commit of Z merges its closed content into the closed content of its parent.
The writesets and content sets for all other transactions besides Y and Z are unchanged

by the xend, and the commit conceptually clears writeset of Z since it is no longer active.

254

Thus, we only need to check that the xend preserves Theorem C.2 for Y. For any memory
location E, consider the possible cases for how the commit of Z can change W(Y).

1. Suppose that W (')(Z). By induction (Case 1), we know cContent(')(Z) n Sf(t)=
0. We also know that the set cContent(Y) nSe is the same before and after the step.
Thus, for Y, the step preserves either Case 1 or the first condition in Case 2 or Case 3.

Since econtent(Y) n Sj remains the same, the second condition of Case 2 or Case 3
is also preserved. The only way the xend instruction can contradict Condition 2b or
Condition 3b is to remove a memory operation v from aCont ent(Y) Uvcontent (Y).
But any memory operation removed from aContent(Y) Uvcontent(Y) would be
added to the set cContent(Y) n Si, which can not happen because this set remains
the same.

2. Suppose that (f, u) E W(t) (Z). After the commit of Z, we have (f, u) E W(t+1) (Y), and
we need to check Case 2 for Y.

First, we can verify Condition 2a. By the inductive hypothesis (Case 2), we have
u E cContent (')(Z), and thus after the xend, we have u E cContent(t+1)(Y).

Next, we can verify Condition 2b. By the inductive hypothesis, for all v E Sf(t) such
that ty > tu, we have v C aContent(t)(Z) U vContent(t)(Z). When Z commits on

step t, however, we must have vContent(t)(Z) = 0, since Z can only commit if all

its nested transactions have completed. Thus any such v must be in aContent(t) (Z).
But then, since aContent()(Z) C acontent(t)(Y) = acontent(t+1)(Y), v satisfies
Condition 2b for Y.

Finally, the sigabort or xabort instructions preserve the invariants in Theorem C.2.
The abort of a transaction Z conceptually invalidates the readset and writeset of Z and
eliminates the need to check the invariants for Z in Theorem C.2. Also, an abort of a

transaction Z only moves operations v from vcontent(X) to acontent(X) for ancestor
transactions X E pAnc es (Z) nxactions(C). D

The intuition for Theorem C.2 lies mostly in Case 2. If at time t a pair (f, u) is the
writeset of a transaction X, then u is the last write to f in X's subtree which is "com-
mitted with respect to" X. Any v which writes to f after t, (the step when u occurs)
must belong to X's subtree, since otherwise, there will be a conflict. Furthermore, any

v which happens after tu must still be aborted or pending with respect to X (i.e., v E
acontent(t)(X) U vcontent(')(X)); otherwise, v should replace u in X's write set.

Case 1 states that the writeset of X does not contain a location f if no memory operation
in X's subtree commits f to X. Case 3 of Theorem C.2 handles the special case of the root.

C.2 Proof of Sequential Consistency

Using the invariants in Section C. 1, we can show that traces generated by the TCO model
are sequentially consistent, i.e., (C, CD) satisfies Definition 5.10. Said differently, we can
show that the observer function <D is the transactional last writer function Xs according to
the sort order S generated by the TCO model.

255

Proof of Theorem 5.6. The first condition and second conditions of Definition 5.9 are true
by construction, since the TCO model can only set <D(v) = u if u <S v, W(u, f), and R(v, f) V
W(v,f).

To check the third condition, we require some setup. Suppose that at time ty, v hap-
pens and the TCO model sets <D(v) = u. Let A = lea f (readers(tv)(f) n ances(v)). Since
<D(v) = u, we have (e,u) E R(ty)(A). Let Z = leaf(xAnces(A) n writers()(f)). By The-
orem C.1, we know (f, u) C W(t)(Z). By Theorem C.2, since (f, u) C W(tv)(Z), we know
u E cContent(tv)(Z). Let X = xLCA(u, v). We must have Z c ances(X), since otherwise,
we could not have {u,v} G memops(tv)(Z). Since u C cContent(tv)(Z), we have -I(uHv),
satisfying the third condition.

To check the fourth condition, suppose that at time tv, the TCO model sets CD(v) =
u. Assume for contradiction that there exists a w such that W (w, f), and u <s w <s v.
Then, since C1(v) = u, we know that u c W(tv) (X) for some transaction X. Therefore, by
Theorem C.2 we have w C memOps(tv)(X), since w C aContent(tv)(X) U vContent(tv)(X).
Let Y = xLCA(w, v). Since v, w E memops(tv) (X), we know that X E ances(Y). Consider the
two cases for w:

1. Suppose that w E aContent(tv)(X). Then w C cContent(t)(Y) U aContent(t)(Y),
since we know X E ances(Y). In fact, we can show that w E aContent(tv)(Y). Con-
sider the two cases for X and Y:

(a) Suppose that Y = X. Since we know w C aContent(tv)(X) U vContent(t)(X)
and w c cContent(tv)(Y) U aContent(tv)(Y), we have w c aContent(t)(Y).

(b) Suppose that X E pAnces(Y). Assume for contradiction that we have w E
cContent(v)(Y). Then by Theorem C.2, then there exists a y E memOps(t)(Y)
such that (f, y) E W(tv) (Y) C R(t) (Y). This statement contradicts the fact that
TCO model found (f, u) from transaction X and set <D(v) = u, since a closer
transaction Y had (f,y) in its readset. Thus, we have w C aContent(t)(Y).

But then, since w E aContent('v) (Y), we have wHv, which contradicts Condition 4
of Definition 5.9.

2. Suppose that w c vContent(ty)(X). Then w E cContent(t)(Y) UvContent(t)(Y).
By the same logic as in the previous case, we can show w V cContent(tv)(Y). Thus,
w c vContent(tv)(Y).

If w E vCont ent(tv)(Y), then by Definition 5.18, there must exist a transaction Y' E
(xDesc(Y) - {Y}) with w E cContent(t)(YI). Then, by Theorem 5.5, there exists
some transaction Z C xDesc(Y') n vTree(tv)(C) such that f C W(t)(Z). In summary,
since W(w, f) and w C vContent(tv)(Y), we can find a transaction Z which is a proper
descendant transaction of Y which has f in its writeset at step ty.

There are two possibilities for Z: either Z C ances(v) or Z V ances(v). If Z E
ances(v), then since Y C pAnces(Z), we have a contradiction because the TCO
model set CD(v) = u, getting u from Y, but Z had f in its writeset and Z is a closer
ancestor of v. If Z V ances(v), then we have a conflict between v and Z on step ty,
contradicting the fact that v was a successful memory operation.

256

In both cases, we reach a contradiction. Thus, no such w can exist, and Condition 4 of
Definition 5.9 must be satisfied.

C.3 Proof for OAT Model

We can adapt the proof of sequential consistency for the TCO model and apply it to the
OAT model. It turns out that all the necessary invariants for the TCO model (Theorems 5.5,
C.1 and C.2) also hold for the OAT model if we modify the definition of content sets in
Definitions 5.18 and 7.4 to account for memory locations that an open-nested transaction
X commits directly to the root transaction.

Definition C.1. On any step t, for any X E xa ct i on s(') (C) and a memory operation u C

memOps(')(C), define the sets cContent()(X), aContent(')(X), oContent(')(X),

and vCont ent ((X) according the Cont en t Type(t , u, X) procedure:

Content Type(t,u,X) /For any u G memOps(') (t)

1 Z = xParent(u)
2 while (Z # X)
3 if Z G vTree(')(C) return u G vContent()(X)
4 if Z GABOR TED(t)(C) return u G aContent(t)(X)

5 if (X = committer(u)) return u E oContent()(X)

6 Z +- xParent(Z)
7 return u C cContent()(X)

In addition to the closed content, aborted content, and active content sets, Definition C. 1
adds an open content set oContent(X) for a transaction X.

With this generalized definition of content sets, we can prove Theorem 7.7.

Proof of Theorem 7.7. Intuitively, for a computation C and the execution order 3, when
we are considering prefix races for a particular location e, we can ignore all transactions
X which can never have f in R(X) or w(X). Then, the OAT model behaves exactly like
the TCO model for all remaining transactions, and thus prefix-race freedom for the TCO
model also implies the prefix-race freedom for the OAT model.

More formally, for a transaction X and any operation u E oContent(X), u reads or
writes a memory location f that is committed to the root transaction by the ownership-
aware commit mechanism before reaching X. By the ownership properties of OAT, we
know that location f can never be in the readset or writeset of X. Thus, the invariants on
readsets and writesets from Theorems 5.5, C.1 and C.2 that we proved for the TCO model
hold without any change for OAT. Thus, Theorem 5.6 also holds for OAT, and we can apply
the same logic from the proof of Theorem 5.7 to prove Theorem 7.7. 11

257

258

Bibliography

[1] 6.884. Lab 3: Stencil computing. Available from http: //courses. csail.mit.
edu/6.884/springlO/labs/lab3.pdf,2010.

[2] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Murphy, Bratin
Saha, and Tatiana Shpeisman. Compiler and runtime support for efficient software
transactional memory. In Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), pages 26-37, June 2006.

[3] Kunal Agrawal, Jeremy T. Fineman, and Jim Sukha. Nested parallelism in transac-
tional memory. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), Salt Lake City, UT, USA, February
2008.

[4] Kunal Agrawal, I-Ting Angelina Lee, and Jim Sukha. Safe open-nested transactions
through ownership. Technical Report MIT-CSAIL-TR-2008-038, Laboratory of
Computer Science and Artificial Intelligence, Massachusetts Institute of Technology,
June 2008. Available online at http: //supertech.csail.mit.edu/~angelee/
safeTech. pdf.

[5] Kunal Agrawal, I-Ting Angelina Lee, and Jim Sukha. Safe open-nested transactions
through ownership. In Proceedings of the 14th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP), Raleigh, NC, USA, February
2009.

[6] Kunal Agrawal, I-Ting Angelina Lee, and Jim Sukha. Brief announcement: Serial-
parallel reciprocity in dynamic multithreaded languages. In Proceedings of the 22nd
Annual ACM Symposium on Parallel Algorithms and Architectures, pages 186-188,
June 2010.

[7] Kunal Agrawal, Charles E. Leiserson, Yuxiong He, and Wen Jing Hsu. Adaptive
work-stealing with parallelism feedback. ACM Transactions on Computer Systems,
26:7:1-7:32, September 2008.

[8] Kunal Agrawal, Charles E. Leiserson, and Jim Sukha. Memory models for open-
nested transactions. In Proceedings of the ACM SIGPLAN Workshop on Memory
Systems Performance and Correctness (MSPC), October 2006. In conjunction with
International Conference on Architectutal Support for Programming Languages and
Operating Systems.

259

[9] Kunal Agrawal, Charles E. Leiserson, and Jim Sukha. Executing task graphs using
work-stealing. In Proceedings of the 24th IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), April 2010.

[10] Kunal Agrawal, Charles E. Leiserson, and Jim Sukha. Helper locks for fork-join
parallel programming. In Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), January 2010.

[11] Emmanuel Agullo, Jack Dongarra, Bilel Hadri, Jakub Kurzak, Julie Langou, Julien
Langou, Hatem Ltaief, Piotr Luszczek, and Asim YarKhan. PLASMA Users'
Guide. Version 2.0 edition, 2009. Available from http://icl.cs.utk.edu/
projectsfiles/plasma/pdf/users-guide.pdf.

[12] Alfred V. Aho, Michael R. Garey, and Jeffrey D. Ullman. The transitive reduction
of a directed graph. SIAM Journal on Computing, 1(2):131-137, 1972.

[13] Eric Allen, David Chase, Joe Hallett, Victor Luchango, Jan-Willem Maessen, Suky-
oung Ryu, Guy L. Steele Jr., and Sam Tobin-Hochstadt. The Fortress Language
Specification, Version 1.0. @Sun Microsystems, Inc., March 2008. http: / /
research.sun.com/projects/plrg/Publications/fortress.1.O.pdf.

[14] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson, and
Sean Lie. Unbounded transactional memory. IEEE Micro, 26(1):59-69, January
2006.

[15] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users'
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third edi-
tion, 1999.

[16] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for
multiprogrammed multiprocessors. In Proceedings of the Tenth Annual ACM Sym-
posium on Parallel Algorithms and Architectures, pages 119-129, Puerto Vallarta,
Mexico, June 1998.

[17] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-structures: Data structures for
parallel computing. ACM TOPLAS, 11(4):598-632, October 1989.

[18] Rosa M. Badia, Jos6 R. Herrero, Jesus Labarta, Josep M. P6rez, Enrique S. Quintana-
Orti, and Gregorio Quintana-Orti. Parallelizing dense and banded linear algebra
libraries using SMPSs. Concurrency and Computation: Practice and Experience,
21:2438-2456, December 2009.

[19] Woongki Baek, Nathan Bronson, Christos Kozyrakis, and Kunle Olukotun. Imple-
menting and evaluating nested parallel transactions in software transactional mem-
ory. In Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 253-262, New York, NY, USA, 2010. ACM.

260

[20] Woongki Baek, Nathan Bronson, Christos Kozyrakis, and Kunle Olukotun. Mak-
ing nested parallel transactions practical using lightweight hardware support. In
Proceedings of the 24th ACM International Conference on Supercomputing (ICS),
pages 61-71, New York, NY, USA, 2010. ACM.

[21] Rajkishore Barik, Zoran Budimlic, Vincent Cave, Sanjay Chatterjee, Yi Guo, David
Peixotto, Raghavan Raman, Jun Shirako, Sagnak Tagirlar, Yonghong Yan, Yisheng
Zhao, and Vivek Sarkar. The Habanero multicore software research project. In Pro-
ceeding of the 24th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 735-736, New York, NY,
USA, 2009. ACM.

[22] Greg Barnes. A method for implementing lock-free shared data structures. In Pro-
ceedings of the 5th Annual ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA), pages 261-270. ACM Press, June 1993.

[23] Joio Barreto, Aleksandar Dragojevid, Paulo Ferreira, Rachid Guerraoui, and Michal
Kapalka. Leveraging parallel nesting in transactional memory. In Proceedings of the
15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP), pages 91-100, New York, NY, USA, 2010. ACM.

[24] M. A. Bender, R. Cole, E. Demaine, M. Farach-Colton, and J. Zito. Two simplified
algorithms for maintaining order in a list. In Proceedings of the European Sympo-
sium on Algorithms (ESA), pages 152-164, 2002.

[25] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Charles E. Leiserson. On-
the-fly maintenance of series-parallel relationships in fork-join multithreaded pro-
grams. In Proceedings of the ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA), pages 133-144, Barcelona, Spain, June 2004.

[26] Guy E. Blelloch and Margaret Reid-Miller. Pipelining with futures. In Proceed-
ings of the Ninth Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pages 249-259, New York, NY, USA, 1997. ACM.

[27] Robert D. Blumofe. Executing Multithreaded Programs Efficiently. PhD thesis,
Department of Electrical Engineering and Computer Science, Massachusetts Insti-
tute of Technology, Cambridge, Massachusetts, September 1995. Available as MIT
Laboratory for Computer Science Technical Report MIT/LCS/TR-677.

[28] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-
erson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime
system. In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 207-216, Santa Barbara, Califor-
nia, July 1995.

[29] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-
erson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime
system. Journal of Parallel and Distributed Computing, 37(1):55-69, August 1996.

261

[30] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computa-
tions by work stealing. Journal of the ACM, 46(5):720-748, September 1999.

[31] Robert D. Blumofe and Dionisios Papadopoulos. Hood: A user-level threads library
for multiprogrammed multiprocessors. Technical Report, University of Texas at
Austin, 1999.

[32] Colin Blundell, E Christopher Lewis, and Milo M. K. Martin. Subtleties of transac-
tional memory atomicity semantics. Computer Architecture Letters, 5(2), November
2006.

[33] Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership types for
object encapsulation. In Proceedings of the ACM Symposium on Principles of Pro-
gramming Languages (POPL), New Orleans, Louisiana, January 2003.

[34] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack J. Dongarra. A class of
parallel tiled linear algebra algorithms for multicore architectures. Technical Report
191, LAPACK Working Note, September 2007.

[35] Brian D. Carlstrom, Austen McDonald, Michael Carbin, Christos Kozyrakis, and
Kunle Olukotun. Transactional collection classes. In Proceedings of the ACM SIG-
PLAN Symposium on Principles and Practices of Parallel Programming (PPoPP),
pages 56-67, New York, NY, USA, 2007. ACM Press.

[36] Aparna Chandramowlishwaran, Kathleen Knobe, and Richard Vuduc. Performance
evaluation of Concurrent Collections on high-performance multicore computing sys-
tems. In Proceedings of the 24th IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), Atlanta, GA, USA, April 2010.

[37] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: An object-
oriented approach to non-uniform cluster computing. In Proceedings of the 20th An-
nual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), pages 519-538, 2005.

[38] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, third edition, 2009.

[39] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark Moir, and
Daniel Nussbaum. Hybrid transactional memory. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), October 2006.

[40] John S. Danaher, I-Ting Angelina Lee, and Charles E. Leiserson. Programming
with exceptions in JCilk. Science of Computer Programming (SCP), 63(2):147-17 1,
December 2006.

[41] C.T. Davies. Recovery semantics for a DB/DC system. In ACM National Confer-
ence, pages 136-141, 1973.

262

[42] P. Dietz and D. Sleator. Two algorithms for maintaining order in a list. In Proceed-
ings of the Symposium on Theory of Computing, pages 365-372, New York City,
May 1987.

[43] R. J. Duffin. Topology of series-parallel networks. Journal of MathematicalAnalysis
and Applications, 10:303-318, 1965.

[44] Kemal Ebcioglu, Vijay Saraswat, and Vivek Sarkar. X10: an experimental language
for high productivity programming of scalable systems. In Proceedings of the Sec-
ond Workshop on Productivity and Performance in High-End Computing (PPHEC-
05), February 2005. Held in conjunction with the Eleventh Symposium on High
Performance Computer Architecture.

[45] Mingdong Feng and Charles E. Leiserson. Efficient detection of determinacy races
in Cilk programs. In Proceedings of the Symposium on Parallel Algorithms and
Architectures (SPAA), pages 1-11, Newport, Rhode Island, June 1997.

[46] David Ferry, Kunal Agrawal, and Jim Sukha. Implementing a data access centered
design pattern. In Workshop on Parallel Programming Patterns (ParaPLoP), May
2011.

[47] Jeremy T. Fineman. Provably good race detection that runs in parallel. Master's
thesis, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA, August 2005.

[48] Matteo Frigo. The weakest reasonable memory model. Master's thesis, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, January 1998.

[49] Matteo Frigo, Pablo Halpern, Charles E. Leiserson, and Stephen Lewin-Berlin. Re-
ducers and other Cilk++ hyperobjects. In Proceedings of the Twenty-First Annual
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), Calgary,
Canada, August 2009.

[50] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. In 40th Annual Symposium on Foundations of Com-
puter Science, pages 285-297, New York, New York, October 17-19 1999.

[51] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of
the Cilk-5 multithreaded language. In Proceedings of the ACM SIGPLAN '98 Con-
ference on Programming Language Design and Implementation, pages 212-223,
Montreal, Quebec, Canada, June 1998. Proceedings published ACM SIGPLAN No-
tices, Vol. 33, No. 5, May, 1998.

[52] Matteo Frigo and Victor Luchangco. Computation-centric memory models. In Pro-
ceedings of the ACM Symposium on Parallel Algorithms and Architectures (SPAA),
pages 240-249, 1998.

263

[53] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specifi-
cation. Addison Wesley, second edition, 2000.

[54] Kazushige Goto and Robert A. van de Geijn. Anatomy of high-performance matrix
multiplication. ACM Transactions on Mathematical Software, 34:12:1-12:25, May
2008.

[55] Jim Gray. The transaction concept: Virtues and limitations. In Seventh International
Conference of Very Large Data Bases, pages 144-154, September 1981.

[56] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

[57] Robert H. Halstead, Jr. Implementation of Multilisp: Lisp on a multiprocessor. In
Conference Record of the 1984 ACM Symposium on Lisp and Functional Program-
ming, pages 9-17, Austin, Texas, August 1984.

[58] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation.
ACM TOPLAS, 7(4):501-538, October 1985.

[59] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis,
Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle
Olukotun. Transactional memory coherence and consistency. In Proceedings of the
International Symposium on Computer Architecture (ISCA), page 102, Washington,
DC, USA, 2004. IEEE Computer Society.

[60] Johnson M. Hart. Windows System Programming. Addison-Wesley, third edition,
2004.

[61] E. A. Hauck and B. A. Dent. Burroughs' B6500/B7500 stack mechanism. Proceed-
ings of the AFIPS Spring Joint Computer Conference, pages 245-251, 1968.

[62] Maurice Herlihy and Eric Koskinen. Transactional boosting: A methodology
for highly-concurrent transactional objects. Technical report, Brown Univer-
sity, July 2007. Also available at http://www.cs.brown.edu/publications/
techreports/reports/CS-07-08.html.

[63] Maurice Herlihy and Eric Koskinen. Transactional boosting: a methodology for
highly-concurrent transactional objects. In Proceedings of ACM SIGPLAN Sympo-
sium on Principles and Practices of Parallel Programming (PPoPP), pages 207-216,
New York, NY, USA, Feb 2008. ACM.

[64] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III. Soft-
ware transactional memory for dynamic-sized data structures. In Proceedings of
the 22nd Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC), pages 92-101, New York, NY, USA, 2003. ACM Press.

264

[65] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural sup-
port for lock-free data structures. In Proceedings of the 20th Annual International
Symposium on Computer Architecture, pages 289-300, New York, NY, USA, 1993.
ACM.

[66] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann, 2008.

[67] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hopscotch hashing. In DISC '08:
Proceedings of the 22nd International Symposium on Distributed Computing, pages
350-364, Berlin, Heidelberg, 2008. Springer-Verlag.

[68] Ralf Hoffmann, Matthias Korch, and Thomas Rauber. Performance evaluation
of task pools based on hardware synchronization. In Proceedings of the 2004
ACM/IEEE Conference on Supercomputing, page 44, Washington, DC, 2004. IEEE
Computer Society.

[69] T.C. Hu. Parallel sequencing and assembly line problems. Operations Research,
9(6):841-848, 1961.

[70] Institute of Electrical and Electronic Engineers. Information technology - Portable
Operating System Interface (POSIX) - Part 1: System application program inter-
face (API) [C language]. IEEE Standard 1003.1, 1996 Edition.

[71] Intel Corporation. Intel@ Threading Building Blocks, March 2008. Available at
http://www.threadingbuildingblocks.org.

[72] Intel Corporation. Intel® Cilk++ SDK Programmer's Guide, October 2009. Docu-
ment Number: 322581-001US.

[73] Intel Corporation. Intel® Cilk Plus Language Specification, 2010. Document
Number: 324396-001US. Available from http: //software. intel.com/sites/
products/cilk-plus/cilk-pluslanguage-specification .pdf.

[74] Intel Corporation. Intel@ Math Kernel Library Reference Manual, 2011. Document
Number: 630813-041US. Available from http: //software. intel.com/sites/
products/documentation/hpc/mkl/mklman/index.htm.

[75] Amos Israeli and Lihu Rappoport. Disjoint-access-parallel implementations of
strong shared memory primitives. In Proceedings of the Thirteenth Annual ACM
Symposium on Principles of Distributed Computing (PODC), pages 151-160, New
York, NY, USA, 1994. ACM.

[76] Theodore Johnson, Timothy A. Davis, and Steven M. Hadfield. A concurrent dy-
namic task graph. Parallel Computing, 22(2):327-333, 1996.

[77] Ken Kennedy and John R. Allen. Optimizing Compilers for Modern Architectures:
A Dependence-Based Approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2002.

265

[78] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice
Hall, Inc., second edition, 1988.

[79] C.W. Kessler and H. Seidl. Language support for synchronous parallel critical sec-
tions. In Advances in Parallel and Distributed Computing, 1997. Proceedings, pages
92 -99, March 1997.

[80] Kathleen Knobe. Ease of use with Concurrent Collections (CnC). In Proceedings of
the First USENIX Conference on Hot Topics in Parallelism (HotPar), pages 17-17,
Berkeley, CA, USA, 2009. USENIX Association.

[81] Matthias Korch and Thomas Rauber. A comparison of task pools for dynamic load
balancing of irregular algorithms. Concurrency and Computation: Practice & Ex-
perience, 16(l):1-47, 2003.

[82] David A. Kranz, Robert H. Halstead, Jr., and Eric Mohr. Mul-T: A high-performance
parallel Lisp. In Proceedings of the SIGPLAN '89 Conference on Programming
Language Design and Implementation, pages 81-90, Portland, Oregon, June 1989.

[83] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. Dependence
graphs and compiler optimizations. In POPL'81: Proceedings of the 8th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
207-218, New York, NY, USA, 1981. ACM Press.

[84] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu, and Anthony
Nguyen. Hybrid transactional memory. In Proceedings of the ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP), March 2006.

[85] Jakub Kurzak, Hatem Ltaief, Jack Dongarra, and Rosa M. Badia. Scheduling lin-
ear algebra operations on multicore processors. Technical Report 213, LAPACK
Working Note, February 2009.

[86] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating
directed task graphs to multiprocessors. ACM Comput. Surv., 31(4):406-471, 1999.

[87] Leslie Lamport. How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Transactions on Computers, C-28(9):690-691,
September 1979.

[88] James R. Larus and Ravi Rajwar. Transactional Memory. Morgan & Claypool,
2006.

[89] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear alge-
bra subprograms for Fortran usage. ACM Transactions on Mathematical Software,
5:308-323, September 1979.

[90] Doug Lea. A Java fork/join framework. In Proceedings of the ACM 2000 Conference
on Java Grande, pages 36-43. ACM Press, 2000.

266

[91] I-Ting Angelina Lee, Silas Boyd-Wickizer, Zhiyi Huang, and Charles E. Leiserson.
Using memory mapping to support cactus stacks in work-stealing runtime systems.
In Proceedings of the 19th International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2010.

[92] Daan Leijen and Judd Hall. Optimize managed code for multi-core machines. MSDN
Magazine, 2007. Available from http: //msdn.microsoft.com/magazine/.

[93] Charles E. Leiserson. The Cilk++ concurrency platform. Journal of Supercomput-
ing, 51(3):244-257, March 2010.

[94] Sung-Chae Lim, Joonseon Ahn, and Myoung Ho Kim. A concurrent Blink-tree algo-
rithm using a cooperative locking protocol. In Lecture Notes in Computer Science,
volume 2712, pages 253-260. Springer Berlin / Heidelberg, 2003.

[95] Malcolm Yoke Hean Low, Weiguo Liu, and Bertil Schmidt. A parallel BSP al-
gorithm for irregular dynamic programming. In 7th International Symposium on
Advanced Parallel Processing Technologies, pages 151-160. Springer, 2007.

[96] Victor Luchangco. Memory Consistency Models for High Performance Distributed
Computing. PhD thesis, MIT, 2001.

[97] Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya, David
Eisenstat, William N. Scherer IlI, and Michael L. Scott. Lowering the overhead of
nonblocking software transactional memory. In Proceedings of the Workshop of Lan-
guages, Compilers, and Hardware Support for Transactional Computing (TRANS-
ACT), June 2006.

[98] Austen McDonald, JaeWoong Chung, Brian D. Carlstrom, Chi Cao Minh, Hassan
Chafi, Christos Kozyrakis, and Kunle Olukotun. Architectural semantics for practi-
cal transactional memory. In Proceedings of the International Symposium on Com-
puter Architecture (ISCA), June 2006.

[99] K.E. Moore, J. Bobba, M.J. Moravan, M.D. Hill, and D.A. Wood. LogTM: Log-
based transactional memory. In Proceedings of the International Symposium on
High-Performance Computer Architecture (HPCA), Feb 2006.

[100] J. Eliot B. Moss. Nested transactions and reliable distributed computing. In SRDS,
pages 33-39, Pittsburgh, PA, July 1982.

[101] J. Eliot B. Moss. Nested Transactions: An Approach to Reliable Distributed Com-
puting. MIT Press, Cambridge, MA, USA, 1985.

[102] J. Eliot B Moss. Open nested transactions : Semantics and support. In Proceedings
of the Workshop on Memory Performance Issues (WMPI), Austin, Texas, Feb 2006.

[103] J. Eliot B. Moss and Antony L. Hosking. Nested transactional memory: Model and
architecture sketches. Science of Computer Programming, 63(2):186 - 201, 2006.
Special issue on synchronization and concurrency in object-oriented languages.

267

[104] Rajeev Motwani, Steven Phillips, and Eric Torng. Non-clairvoyant scheduling. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages 422-431,
1993.

[105] Yang Ni, Vijay Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosking, Richard L.
Hudson, J. Eliot B. Moss, Bratin Saha, and Tatiana Shpeisman. Open nesting in
software transactional memory. In Proceedings of ACM SIGPLAN Symposium on
Principles and Practices of Parallel Programming (PPoPP), March 2007.

[106] OpenMP application program interface, version 3.0. Available from http: //www.
openmp.org/mp-documents/spec30 .pdf, May 2008.

[107] Christos H. Papadimitriou. The serializability of concurrent database updates. Jour-
nal of the ACM, 26(4):631-653, 1979.

[108] R. Raman and D.S. Wise. Converting to and from dilated integers. IEEE Transac-
tions on Computers, 57(4):567-573, April 2008.

[109] David P. Reed. Naming and Synchronization in a Decentralized Computer System.
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1978.

[110] James Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-core
Processor Parallelism. O'Reilly Media, Inc., 2007.

[111] Michael L. Scott. Sequential specification of transactional memory semantics. In
First ACM SIGPLAN Workshop on Languages, Compilers, and Hardware Support
for Transactional Computing (TRANSACT), June 2006.

[112] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology, 147:195-197, 1981.

[113] Daniel Spoonhower, Guy E. Blelloch, Phillip B. Gibbons, and Robert Harper. Be-
yond nested parallelism: tight bounds on work-stealing overheads for parallel fu-
tures. In Proceedings of the 21st ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 91-100, New York, NY, USA, August 2009. ACM.

[114] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Boston,
MA, third edition, 2000.

[115] Jim Sukha. Brief announcement: A lower bound for depth-restricted work steal-
ing. In Proceedings of the 21st ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), August 2009.

[116] Texas Advanced Computing Center. GotoBLAS2, 2011. Available from http: //
www.tacc.utexas.edu/tacc-projects/gotoblas2/.

[117] I.L. Traiger. Trends in systems aspects of database management. In International
Conference on Databases, pages 1-21. Wiley Heyden Ltd, 1983.

268

[118] John Turek, Dennis Shasha, and Sundeep Prakash. Locking without blocking:
making lock based concurrent data structure algorithms nonblocking. In Proceed-
ings of the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS), pages 212-222, New York, NY, USA, 1992. ACM.

[119] Jeffrey D. Ullman. NP-complete scheduling problems. Journal of Computer and
System Sciences, 10:384-393, 1975.

[120] Jacobo Valdes. Parsing Flowcharts and Series-Parallel Graphs. PhD thesis, Stan-
ford University, December 1978. STAN-CS-78-682.

[121] Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler. The recognition of series

parallel digraphs. In Proceedings of the Eleventh Annual ACM Symposium on Theory

of Computing (STOC), pages 1-12, New York, NY, USA, 1979. ACM.

[122] Haris Volos, Adam Welc, Ali-Reza Adl-Tabatabai, Tatiana Shpeisman, Xinmin Tian,
and Ravi Narayanaswamy. NePalTM: design and implementation of nested paral-
lelism for transactional memory systems. In Proceedings of the 14th ACM SIGPLAN
symposium on Principles and practice of parallel programming, PPoPP '09, pages
291-292, New York, NY, USA, 2009. ACM.

[123] David B. Wagner and Bradley G. Calder. Leapfrogging: a portable technique for
implementing efficient futures. SIGPLAN Notices, 28(7):208-217, 1993.

[124] Gerhard Weikum. A theoretical foundation of multi-level concurrency control. In
Proceedings of the ACM SIGACT-SIGMOD symposium on Principles of Database
systems (PODS), pages 31-43, New York, NY, USA, 1986. ACM Press.

[125] Jeannette M. Wing, Manuel Faehndrich, J. Gregory Morrisett, and Scott Nettles.
Extensions to standard ML to support transactions. Technical Report CMU-CS-92-
132, Carnegie Mellon, 1992.

[126] David S. Wise and Jeremy D. Frens. Morton-order matrices deserve compilers'
support. Technical Report TR533, Indiana University, 1999.

269

