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Abstract 

 

Current imaging technique such as micro X-ray CT can provide us detailed 3D micro-structures of porous 

rocks that can be used in numerical simulation so as to predict elastic properties of rocks saturated with 

different fluids.  However, limited by the resolution the imaging process can provide, we usually lose the 

small features of rocks such as cracks and micro-pores, consequences of which can cause over-predicted 

effective elastic properties of porous rocks.   In this paper, we present an inversion scheme to estimate the 

lost cracks during imaging process with Monte-Carlo algorithm.  This method combines numerical 

simulation with theoretical models – the differential effective media model and Kuster-Toksöz model.  

Compared to the traditional inversion algorithms solely based on theoretical models, the algorithm 

presented in this paper utilizes the micro-structures of porous rocks resolved and takes the advantages of 

computational results from the digitized rocks, which in fact provides us much information of rocks and 

limits our inversion space for cracks.  At end, we demonstrate the capability of this method on predicting 

the elastic properties of Berea sandstones measured in laboratory.  

 

 

1. Introduction 

 
In seismic data interpretation, understanding the relations between elastic properties of rocks, pore spaces 

and fluids is critical, expressions of which form the bases for reservoir characterization and monitoring. 

Effective properties of porous rocks highly depend on pore spaces, solid phases and interactions between 

these two. To accurately predict the properties of rocks requires highly precise information of its complex 

micro-structure and the ability of computationally solving the large 3D problems.  

 

Traditionally, people formulate empirical relationships statistically from laboratory experiments to help 

predict properties of rocks (e.g., Wyllie et al., 1956; Wyllie et al., 1958; Han, 1986). However, such 

relationships are too simple to be predictive for a wide range of rocks, and lacks detailed description of 

micro-structure of rocks. Recently, the emergence of computational rock physics fills this gap and 

improves the research on rock physics (e.g., Roberts and Garboczi, 2000; Arns et al., 2002; Grechka and 

Kachanov, 2006; Saenger, 2008).  
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With current advanced imaging techniques such as micro-computed tomography (µ-CT), micro X-ray CT 

(Flannery et al., 1987; Spanne et al., 1994), focused ion beam scanning electron microscopy (FIBSEM), 

laser confocal microscopy (Fredrich et al., 1995), and magnetic resonance imaging (MRI), we now are able 

to generate 3D images of rocks in high resolution, the usual voxel resolution of which is about 2-10µm. 

Such high resolution images provide direct measurements of the complex morphology of porous rocks. 

Combining with computational techniques, we can calculate the material properties such as diffusivity, 

elasticity, permeability and conductivity. The ultimate goal of the development of these computational 

experiments and methods is to replace experiments having been traditionally carried out inside laboratories, 

which are time consuming and costly.  

 

Two fundamental classes of numerical methods have been developed and used for studying rock properties. 

One consists of static methods, the other is dynamic method. Roberts and Garboczi (2000), Arns et al. 

(2002); Arns et al. (2007), Grechka and Kachanov (2006) and Madadi et al. (2009) used finite element 

method (FEM) to study the static effective elastic properties of porous media and rocks, while Saenger and 

Shapiro (2002); Saenger et al. (2004a); Saenger et al. (2004b); Saenger et al. (2005); Saenger et al. (2006); 

Saenger et al. (2007) and Saenger (2008) used finite difference method (FDM) to study the dynamic 

effective properties of porous and cracked rocks. Arns et al. (2002) carried out an extensive numerical 

computation on 3D digitized rocks of several Fontainebleau sandstones with variable porosities, and 

compared their numerical predictions to Gassmann's model and experimental measurements. They 

concluded that for such type of clean sandstone as Fontainebleau sandstone, elastic property-porosity 

relationships can be derived from microtomographic images. Arns et al. (2007) applied the same numerical 

method on the less well-cemented granular rocks, and studied the effects of contact moduli on linear 

effective elastic properties of such rocks. Saenger et al. (2000) developed a finite difference solver using 

rotated-staggered-grid scheme (RSG) and studied the dynamic responses of cracked rocks (Saenger and 

Shapiro, 2002; Saenger et al., 2004), in which he compared the numerical results to different effective 

medium theories. Saenger et al. (2005) extended the RSG scheme to incorporate the viscous effect of fluid 

into it and studied the Biot's effects of synthetic porous rocks. With the same solver, Saenger et al. (2006) 

and Saenger (2008) presented a new technique for static computations of effective elastic properties and 

explained discrepancies between some numerical studies in terms of static and dynamic numerical 

experiments. In all of these computations, they claimed the numerical predictions can verify some 

theoretical models, and even explain some experimental measurements, which is a good aspect of the 

computational experiment.  

 

Though having the X-ray CT imaging technique nowadays, we are unable to obtain images of rocks with 

high enough resolution such that every single crack or micro-pore between and within grains for sandstones 

or carbonates can be illuminated. Even though we were able to do this, current computational resources 

should limit our ability to solve such huge 3D problems in a realistic scale since the resolution required has 

to be down to nanometer scale. Therefore, we generally lose small features of rocks during imaging process 

such as phase separation. Arns et al. (2007) realized this drawback of our current technique and tried to 

remedy it by introducing contact porosity for less well-cemented sandstones. In their approach, they 

utilized microtomographic images and grain-partitioning techniques to assign grain moduli, then used 

effective medium theories locally to calculate contact moduli between grains for phases such as clay.  

 

However, we found that the loss of small features of rocks due to imaging process not only affects less 

well-cemented sandstones as Arns et al. (2007) discussed, but also for well-cemented sandstones such as 

Fontainebleau sandstones and Berea sandstones. For example, in the paper by Arns et al. (2002), though the 

numerical predictions with 3D digitized rocks of Fontainebleau sandstones using FEM can match 

Gassmann's equations and experimental measurements well, we found that (1) the computed velocities for 

both dry and water/oil saturated cases are generally higher than experimental measurements; (2) velocities 
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of P-wave for dry cases are higher than those for water/oil saturated cases, which contradicts the intuitions 

and laboratory observations for sandstones. We also found the same contradicting phenomena in our own 

computations on digitized 3D Berea sandstones. One explanation Arns (2002) gave to such observations is 

due to the periodical boundary condition used in the FEM solver. However, we do not think this is the real 

reason behind these observations. In this paper, we will discuss this problem and give an explanation to it 

first. Then we will propose a method to resolve this issue and finally calculate the effective elastic 

properties of rocks and compare these numerical predictions to laboratory measurements. 

 

2.  Overestimates of the Numerical Predictions 

 

 
2.1 3D X-ray CT images of Berea sandstone 

 

A 3D X-ray CT image for a cylindrical plug of Berea sandstone was obtained. The images have a total size 

of 1840×1840×1940 with resolution of 2.8µm per voxel. Gray scale images from X-ray CT have been 

thresholded so as to separate them into two main phases: solid grain and pore space, respectively. From the 

original cylindrical plug, we extracted a cubic subset in the center with the size of 250×250×250 for 

analysis. In Figure 1, we show the gray scale CT images of the 250
3
 cubic subset, and in Figure 2 we show 

the corresponding segmented images for this same subset, in which grains are represented in red and pores 

are in blue. The porosity (�) of this sample is about 19.23%. As concluded by Arns et al. (2002), the 

representative image volume for well-cemented Fontainebleau sandstone should be 120
3
 cubic subset at 

resolution of 5.7µm, which exactly corresponds to our sample with size of 250
3
 at 2.8µm. 

 

2.2 Properties predictions 

 

We focus on the static effective properties of porous rocks as Arns et al. (2002) did on digitized 3D rock 

with finite element method (FEM). We use the finite element solver from NIST (National Institute of 

Standards and Technology) (Garboczi and Day, 1995; Garboczi, 1998) to estimate the effective elastic 

properties of Berea sandstone represented by the 250
3 

cubic subset.  FEM solves the weak form of the 

linear elastic equations and utilizes iterative solvers such as conjugate-gradient method to find the solutions. 

In FEM, each voxel is taken to be a trilinear finite element, and constant strain boundary conditions are 

applied. The effective elastic properties are obtained from average stresses and strains.  

 

In the computation, we first assume the grains are occupied by pure quartz with bulk modulus K=37 GPa, 

shear modulus µ=44 GPa and mineral density ρ=2650 kg/m
3
 (Mavko et al., 1998). We model dry and 

water-saturated cases at 40 MPa pressure where Kwater=2.2 GPa, µwater=0 GPa and ρwater=1000 kg/m
3
 (Han, 

1986). The numerically predicted results for effective bulk <K>  and shear <µ>  moduli and velocities of P- 

and S-wave are listed in Table 1. In Table 2, we list some laboratory measurements on Berea sandstones 

with similar porosities at 40 MPa as the one we used in this study for comparison where pulse-echo 

technique was employed to measure the velocities (Winkler, 1985; Han, 1986). At 40 MPa pressure, 

Winkler (1985) and Han (1986) both concluded that velocity dispersion due to fluids was so small as to be 

able to be ignored. Though the numerical predictions for dry, water-saturated cases satisfy Gassmann's 
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equation as Arns et al. (2002) demonstrated, we can see that the numerical predictions from FEM generally 

overestimate the effective elastic properties resulting in predicting large velocities in general, and also P-

wave velocity predicted in water-saturated case is less than that for dry case, which usually happens only 

for well-sintered glass beads pack. This indicates that in our numerical computations, the bulk modulus of 

water contributes less to final effective properties but the effect of density takes over in the computation. 

 

3. Issues with Imaging Process 

 

The reason for overestimates of the numerical prediction is the loss of micro-structures of rocks in X-ray 

CT scanning and the image segmentation afterwards. As we know, small features like cracks or micro-

pores in rocks are most in nanometer scale (Murphy et al., 1986).  Though X-ray CT technique can provide 

us high resolution images in micrometer scale, compared to small features in nanometer scale, its resolution 

is still too low such that we can lose most information about these micro-structures when we digitize rocks 

into CT images and separate phases afterwards. Realizing these issues with imaging process, Arns et al. 

(2007) introduced the concept of contact porosity to estimate the contact moduli between grains with 

effective medium theories, and Knackstedt et al. (2009) utilized SEM images which have much higher 

resolution than CT images to recover micro-pores lost. For the samples of Berea sandstone we used in our 

study, we are facing the same issues as others do. Shown in Figure 3a is a 2D slice of X-ray CT image cut 

from the 3D volume of the digitized Berea sandstone. The arrows in Figure 3a indicate cracks between 

grain contacts that are lost during imaging process. As shown in Figure 3b, after segmentation, we obtain a 

rock with continuous matrix where no micro-structures between grains are resolved. As expected, the 

continuous matrix without cracks resulting from segmentation strengthens the rock frame and contributes to 

the over predicted effective elastic properties of digitized rocks. Though there should have other micro-

structures as cracks lost in the imaging process, we only focus on cracks in our study since we believe they 

have the most impact on the effective elastic properties of rocks as discussed by many researchers already 

(e.g., Walsh, 1965; Kuster and Toksöz, 1974; O'Connell and Budiansky, 1977; Hudson, 1980). 

 

4. Effects of Cracks on Digitized Rock Matrix 

 

As discussed in the previous section, we believe that the loss of cracks between grains during imaging 

process is the main reason causing higher predicted effective elastic properties of rocks. Therefore, we have 

to modify the continuous matrix of digitized rocks so as to take the cracks into account. To accomplish this, 

effective medium theories are used along with computational approach. In section 2.2, we have calculated 

the velocities of P- and S-wave of Berea sandstone for dry and water-saturated cases based on the 

continuous rock matrix, which are much higher than the laboratory measurements. In order to recover 

cracks in the continuous matrix, we carry out a Monte-Carlo inversion on numerical predictions list in 

Table  1. 
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4.1 Effective medium theories 

 

Note that instead of working on the continuous matrix directly to invert crack distribution, we start with the 

numerically predicted effective moduli of rocks first. According to differential effective medium theory 

(DEM), for a composite consisting of two phases, by choosing a preferred host material, we can 

incrementally add another phases or inclusions into the host. For the composite host medium at some 

porosity �, the effective moduli ���� � ���  and 	��� � ���  after a small portion of the composite host 

has been replaced by inclusions of the other phase can be obtained by 

 

�1 � ��
�

��
����� � ���  
 � ��� � ����� 

�1 � ��
�

��
�	��� � ���  
 � �	� � 	���� 

 

where ����� and 	���� are the effective moduli to be estimated after adding small portion of the second 

phase, �� and 	�  are moduli of the second phase, and �� and �� are geometric factors for inclusions of the 

second phase that depend on the shapes of inclusions (Berryman, 1992; Mavko et al., 1998).  

 

Back to our cases, at beginning we treat pure quartz as the host that occupies the whole cubic domain 

without pores and cracks, and inclusions occupying the pore spaces resolved and cracks lost in the imaging 

process as the second phase to be added into the host of quartz. There are two ways of adding pores and 

cracks into host according to DEM. We can first add inclusions in pore spaces followed by those in cracks, 

or vice verse. Theoretically, the final effective elastic properties from such two sequences of adding the 

second phase can be quite different for some cases. The numerical predictions in Table 1 can be taken as 

the intermediate effective properties of rocks after only adding inclusions in pore spaces resolved. 

Therefore, starting with these results, we can invert distribution of cracks that should have existed in 

continuous matrix by using the Kuster-Toksöz model (Kuster and Toksöz, 1974). 

 

4.2 Monte-Carlo inversion with the Kuster-Toksöz model 

 

According to the DEM model, the numerical predictions listed in Table 1 can be thought of as the 

intermediate effective moduli of the Berea sandstone by only taking into account pores resolved from 

imaging process. Cracks lost in this process can be added into the continuous matrix as the rest portion of 

the second phase defined in the DEM model. Taking the saturated Berea sandstone in the intermediate 

stage of DEM model as an isotropic and homogeneous elastic block, and using the Kuster-Toksöz model 

(Kuster and Toksöz, 1974), we can study the effects of cracks on final effective moduli of this porous 

Berea sandstone.  
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Combing the Kuster-Toksöz model with the Monte-Carlo inversion, we can invert distributions of 

spheroidal cracks assumed in the Kuster-Toksöz model by fitting laboratory measurements. For the 

laboratory data, we choose only those for dry and water-saturated cases in Table 2 measured by Han (1986). 

Since the laboratory data were measured at 40 MPa pressure, we believe most cracks with smaller aspect 

ratio (<10
-5

) are closed by pressure (Toksöz et al., 1976). Therefore, in the Monte-Carlo inversion, we 

choose 4 sets of cracks with initial aspect ratios �� and maximum concentrations cmax, respectively. 

 

�� � ��5 � 2.5� � 10��, �1 � 0.5� � 10��, �5 � 2.5� � 10�� , �1 � 0.5� � 10��
 

�max � �5 � 10��, 5 � 10��, 1 � 10�" ,1 � 10�#
 

 

Note that we allow the values of aspect ratio corresponding to each set of crack to vary within some 

specific range as defined above. We totally ran 100 Monte-Carlo inversions, in each of which 100000 trials 

were computed. We use L2-norm to measure the error between computed P- and S-wave velocities for dry 

and water-saturated cases and laboratory measurements. The best set of cracks with minimum error was 

chosen out of these 100 best solutions as the final inverted result. Listed in Table 3 are the best solutions for 

aspect ratio and concentration of cracks and their mean and standard deviation after inversion. We can see 

that adding small amount of cracks, especially those with small aspect ratios, can affect the elastic 

properties of rocks significantly.  

 

Adding the inverted set of cracks into Berea sandstone in the intermediate stage according to the DEM and 

Kuster-Toksöz models, we can obtain the final P- and S-wave velocities for dry: Vp=3957.3 m/s, 

Vs=2646.5 m/s; water: Vp=4118.8 m/s, Vs=2600.0 m/s, which are close to laboratory measurements by Han 

(1986). 

 

4.3 Numerical predictions for cracked digitized matrix 

 

So far we have discussed the effects of cracks lost on the effective properties of porous medium from 

computational approach, and inverted a set of cracks with laboratory measurements based on the DEM and 

Kuster-Toksöz models. To carry out computations on digitized rocks by taking cracks lost into account, 

alternatively we have to first add cracks into quartz to obtain a continuous matrix but being softened by 

cracks and inclusions. Then we saturate pore spaces resolved in imaging process and compute the total 

effective elastic properties at end. This sequence of adding inclusions or second phase is opposite to what 

we did in section 4.2. According to the DEM model, the effective properties of composite are generally 

different depending on the sequence of adding different inclusions, but in some cases they can be quite 

close.  

 

Saturating the cracks inverted in previous section 4.2 with dry, water, brine and oil, and adding them into 

quartz by using Kuster-Toksöz models, we can obtain the effective elastic properties of new continuous 

matrix as listed in Table 4. Here we choose properties for brine: Kbrine=2.51 GPa, µbrine=0 GPa and 
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ρbrine=1040 kg/m
3
; oil: Koil=2.16 GPa, µoil=0 GPa and ρoil=890 kg/m

3
 (Winkler, 1985). Since Berea 

sandstone is not as clear as Fontainebleau sandstone, saturating brine can change micro-structures of pore 

spaces in term of changes in clay. So we reduce 5% of the shear modulus of quartz when saturating brine so 

as to take into account the effect of clay (Toksöz et al., 1976). 

 

Assigning the values of effective elastic properties in Table 4 to solid grains of the 3D digitized Berea 

sandstone shown in red in Figure 2, and using the FEM solver to compute the final effective properties for 

cases saturated with corresponding inclusions, we can obtain the final results listed in Table 5 where we put 

the computed results side by side with laboratory measurements of Winkler (1985) and Han (1986) for 

comparison. The values in percentage below each laboratory data are errors between computed velocities 

and corresponding laboratory measurements. We can see from these small errors that (1) our newly 

predicted effective properties match laboratory measurements quite well for all four cases; (2) since we 

inverted the distribution of cracks only with laboratory measurements by Han (1986) for dry and water-

saturated cases, the good match between computed results for these two cases and measurements should be 

within expectation, which also indicates that the different sequences of adding inclusions defined by DEM 

model does not lead to much discrepancy of results in our cases; (3) importantly, by adding cracks inverted 

from dry and water-saturated cases based on measurements by Han (1986), we can predict the effective 

properties of brine and oil-saturated rocks well enough to match measurements in laboratory (Winkler, 

1985). In Figure 4, we conclude the procedure employed here to invert cracks and then predict effective 

elastic properties of rocks by taking these cracks into account.  Note that the rock we use here has porosity 

of 19.23%, and we think the inverted results can only apply to rocks with such similar porosity. 

 

5. Conclusions 

 

In this paper, we present an inversion scheme to estimate the lost cracks in micro X-ray CT imaging 

process, which combines numerical simulation and theoretical models - the differential effective media 

model and Kuster-Toksöz model. By including the cracks into the original matrix, we can 

numerically predict the elastic properties of Berea sandstones quite well compared to laboratory 

measurements.  This algorithm utilizes the micro-structures of porous rocks resolved in imaging 

process and takes the advantages of computational results from such digitized rocks, which is an 

improvement compared to the traditional inversion algorithms solely based on theoretical models.   
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Table 1:  Numerical predictions from finite element method for the digitized Berea sandstone. 

 

 

  

 <K> (GPa) <µ> (GPa) Vp (m/s) Vs (m/s) 

Dry 20.598 20.268 4717.4 3677.6 

Water 22.974 20.556 4640.0 2963.8 



12 

 

Table 2: Laboratory measurements of velocities on Berea sandstones with similar porosities at 40 MPa 

(Winkler, 1985; Han, 1986). (unit: m/s) 

 

 
porosity 

(�� 

Dry Water Brine Oil 

Vp Vs Vp Vs Vp Vs Vp Vs 

Han 

(1986) 
20.3 4040 2620 4150 2510     

Winkler 

(1985) 
19.03 3963 2527   4044 2417 4189 2521 
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Table 3: The set of cracks from Monte-Carlo inversion at 40 MPa. 

 

 Aspect Ratio (�) 

Best Solution �6.62 � 10��, 1.36 � 10��, 3.13 � 10��, 9.09 � 10�"
 

Mean �7.20 � 10��, 1.34 � 10��, 5.51 � 10��, 1.05 � 10��
 

Standard Derivation �2.39 � 10��, 1.59 � 10��, 1.35 � 10��, 2.84 � 10�"
 

 Concentration ��� 

Best Solution �4.50 � 10��, 1.30 � 10��, 3.26 � 10�#, 5.01 � 10�*
 

Mean �4.98 � 10��, 8.08 � 10�", 3.93 � 10�#, 2.92 � 10�*
 

Standard Derivation �1.83 � 10�", 3.13 � 10�", 2.83 � 10�#, 2.02 � 10�*
 

 

  



14 

 

Table 4: Effective elastic properties of continuous matrix with cracks included at 40 MPa. 

 

 <K> (GPa) <µ> (GPa) 

Dry 24.086 30.265 

Water 28.608 31.627 

Brine 28.868 30.268 

Oil 28.556 31.612 
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Table 5: Final effective properties of the 3D digitized Berea sandstone for cases saturated with different 

inclusions at 40 MPa. (unit: m/s) 

 

 
<K> 

(GPa) 

<µ> 

(GPa) 

Computed Han (1986) Winkler (1985) 

Vp Vs Vp Vs Vp Vs 

Dry 13.578 13.883 3988.6 2623.5 
4040 2620 3963 2527 

-1.27% 0.13% 0.65% 3.81% 

Water 17.796 14.889 4085.1 2569.0 
4150 2521   

-1.56% 1.9%   

Brine 18.075 14.338 4051.8 2515.7 
  4044 2417 

  0.19% 4.08% 

Oil 17.736 14.877 4105.0 2583.1 
  4189 2521 

  -2.01% 2.46% 
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Figure 1: Gray scale X-ray CT images for the 250
3
 cubic subset of a Berea sandstone. 
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Figure 2: Segmented images for the 250
3
 cubic subset of a Berea sandstone.  Grains are 

presented in red and pores are in blue. 
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Figure 3: 2D slices of digitized Berea sandstone. (a) X-ray CT image in gray scale; (b) 

segmented image.  We can clearly see the loss of cracks between grain contacts due to 

imaging process, as indicated by arrows in (a).   



 

 

 

Figure 4: Flow chart for procedures to predict effective elastic properties of 3D digitized 

porous rock with cracked matrix. 
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Flow chart for procedures to predict effective elastic properties of 3D digitized 

porous rock with cracked matrix.  
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