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Abstract

Automated assembly of mechanical devices is studied by researching methods of
operating assembly equipment in a variable manner; that is, systems which may be
configured to perform many different assembly operations are studied. The general
parts assembly operation involves the removal of alignment errors within some
tolerance and without damaging the parts. Two methods for eliminating alignment w
errors are discussed: a priori suppression and measurement and removal. Both
methods are studied with the more novel measurement and removal technique being
studied in greater detail. During the study of this technique, a fast and accurate
six degree-of-freedom position sensor based on a light-stripe vision technique was
developed. Specifications for the sensor were derived from an assembly-system
error analysis. Studies on extracting accurate information from the sensor by
optimally reducing redundant information, filtering quantization noise, and careful
calibration procedures were performed.

Prototype assembly systems for both error elimination techniques were imple-
mented and used to assemble several products. The assembly system based on the
a priori suppression technique uses a number of mechanical assembly tools and
software systems which extend the capabilities of industrial robots. The need for
the tools was determined thrqugh an assembly task’ analysrs of several c0nsumerv
and automotive products. - The assembly system based on the measurement and
removal technique used the six degree—of-freedom posmon sensor to measure part_
misalignments. Robot commands for. allgnmg the parts were automatrcally calcu-
lated based on the sensor data and executed )

Thesis Supervisor: Warren P. Seermg

Title: Associate’ Professor of Mechanlcal Engmeermg




Acknowledgments

First I would like to thank my thesis advisor Warren Seering. Professor Seering
puts his students first and was always willing to listen to my ideas and help direct
my thoughts. He is perhaps the most energetic and optimistic person I have ever
met and I have a great deal of respect for him. In addition to his time commit-
ment he has taught me much about dealing with people and being a professional
researcher.

I was fortunate enough to have selected an excellent thesis committee who
took a strong interest in my problem. The members included Warren Seering,
Dave Gossard, Tomas Lozano-Perez, and Dan Whitney. I believe their advice and
comments were instrumental in making my thesis a worthy contribution. I would
especially like to thank Dan Whitney for his thoughts on how the work should be
organized.

I owe a lot to my family and friends who gave me support and the freedom to
be somewhat reclusive for the past four or so years. My parents are responsible for
shaping me into the person I am today; I will never be able to thank them enough.

My office mates and other AI lab members played an essential role in my re-
search and social life during my stay at MIT. Al Ward and Neil Singer were part
of the brainstorming team during the initial assembly cell design and are as much
responsible for the basic concepts as I. In addition, Al designed the base plates and
the interchangeable fingers and Neil designed the flexible pallets. Steve Eppinger
helped me debug the cell and get it running. I would like to thank John Canny for
his expert help with quaternions and feature detection and Steve Buckley for his

authoritative AML advice. Thanks go to Mike Caine for his adjustable peg-in-hole.




Ken Pasch was always available to both bounce ideas off of and generate new ones.
He is extremely sharp and almost always has good new ideas. I would also like
to thank Beth, Dunbar, Karl, Eric, Mike, Rob, Marc, Terry and many others who
gave me support.

Patrick Winston and the many others who make the Al lab a top notch re-
search facility deserve recognition. This thesis describes research done at the De-
partment of Mechanical Engineering and Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the laboratory’s artificial intel-
ligence research is provided in part by the System Development Foundation and in
part by the Advanced Research Projects Agency of the Department of Defense un-
der Office of Naval Research contract N00014-85-K-0124. Support for this research
project is also provided in part by IBM.




Contents

Abstract
Acknowledgments
1 Introduction
1.1 Background and Motivation . . . . .. ... ... .. ... ... ...
1.1.1 Purpose of the Research . . . . . . . ... ... ........
1.1.2  Flexible Assembly Systems and Batch Manufacturing
1.1.3 The Rigid-Parts Assembly Process . . . . .. ... ... ...
1.1.4 Methods for Eliminating Positioning Errors . . . . ... ...
1.1.5 Comparison of the Two Methods of Error Removal . . . . . .
1.2 Overview of the Thesis . . . . . ... ... ... ... ... ......
2 Programmable Assembly Systems
2.1 Literature Review of Research in Programmable Assembly . . . . . .
2.2 Classification of Assembly Operations . . . ... .. ... ......
2.2.1 Assembly Task Analysis . . . ... .. ... ... .......

2.3 Peg-in-Hole Assembly Failure Modes . . . . . .. .. ... ... ...
2.4 Manipulator Repeatability, Accuracy and Local Accuracy . . . ...

2.5 Assembly Procedure Using the A Priori Error Suppression Method .

2.6 Assembly Procedure Using the Measurement and Removal Method .

2.6.1

Assembly Procedures for Systems Using One and Two Sen-

SOTS .« v v v v e e s e e e e e e e e e e e e e e e,

19
19
19
20
20
22
23
25

27
27
44
45
47
50
52
53



CONTENTS

2.6.2 Coordinate Frame Definitions . . . . . . . . ... .. ... .. 56
2.6.3 Correcting Sensed Misalignments . . . . . .. .. ... .... 57
2.7 Classification and Analysis of Errors . . . . . .. . ... ... .... 59
2.7.1 Assumptions . . . . .. .. L e 59
2.7.2 Representation of Rigid Transformations . . . . . .. .. ... 59
2.7.3 Representationof Errors . . . . . . ... ... ... ... ... 61
2.7.4 Combining Errors From Independent Sources . . . . . .. .. 61
2.7.5 Random Transformations . .. ... ... ... ........ 64
2.7.6 Relative Random Transformations . . . ... ... ... ... 64
2.7.7 Identification of Sources of Error . . . . . .. ... ... ... 66
2.8 Errors in the A Priori Error Suppression Method . . . . .. . .. .. 71
2.9 Errors in the Measurement and Removal Method . . . . ... .. .. 73
2.9.1 ErrorSources . . . . . . ... e e e e 73
2.10 Errors in a Typical Assembly Task . . .. .. ... ... ... .... 73
Part Position Sensing for Assembly 81
3.1 Literature Review on Vision Based Part Sensing . . . ... ... .. 81
3.1.1 Ranging Systems . . . . . . . . . e e e e 81
3.1.2 Model Based Object Recognition and Position Determination 83
3.1.3 Vision-Sensor-Driven Assembly . . . . . . ... ... ..... 85
3.2 Locating Objects from Range Data . . . . . . ... ... ....... 86
3.2.1 Imtroduction . .. ... ... ... 86
3.2.2 Method of Evaluation . . ... .. ... ... ......... 86
3.2.3 Studies . .. ... e e e e e e 88
3.2.4 Conclusions . . . . . . . . . e e e e e 95
3.3 Assembly Systems Which Use a Part Position Sensor . . . . . .. .. 97
3.4 Sensor Design Requirements . . . . . . . ... ... ... ....... 100
3.5 Choosing a Part Position Sensing Technique . . . . . .. ... . ... 101
3.5.1 Predicted Sensor Performance. . . . . . .. ... ....... 101
Feature Localization Using a Light Stripe Vision System 105
4.1 Literature Review of Feature Extraction Techniques . . .. ... .. 105
4.2 Light Stripe Part Position Sensor Fundamentals. . . . . .. ... .. 108
4.2.1 Review of Elementary Optics . . . . . . .. ... ....... 110

4.2.2 Determining World Coordinates from Sensor Data . . . . . . 111




CONTENTS 7

4.3 Locating Straight Line Features in Quantized Images . . . . . . . .. 114
4.3.1 Introduction . ... ... ... .. ... ... 114
4.3.2 Errors in Fitting Linear Parameters to Discretized Data . . . 114
4.3.3 Conclusions . . . . . ... e 128

4.4 Single Row Subpixel Localization of Light Stripe Features . . . . . . 128
4.4.1 Intensity Profile of the Light Stripe . . . . . . ... ... ... 128
4.4.2 Minimum Sampling Frequency . .. ... .. ......... 132
4.4.3 Adjusting the Width of the Light Stripe . . . . .. ... ... 134
4.4.4 Thresholding Technique . . . .. ... ... .......... 135
4.4.5 Center of Area Technique . . . . ... ... ... ....... 136
4.4.6 Match Filtering and Peak Detection . ... ... ... .... 141

4.5 Using Redundant Sensed Information. . . . ... ... ... ..... 142
4.5.1 Optimal Estimation Theory . . . . . . ... ... .. ..... 143

4.6 Processing Light StripeImages . . . . . . . ... .. .. ... .... 145
4.6.1 Sensing and Image Processing Hardware . . . . . ... .. .. 145
4.6.2 Image Processing Steps . . . . .. .. .. ... ... ..... 146

4.7 Measuring the Location of Features with a Single Light Stripe . . . . 150
4.7.1 Locating General Polyhedral Features . . . . ... ... ... 151
4.7.2 Locating Right Corner Features. . . . .. . ... ... .... 154
4.7.3 Locating Other Features . . . . .. .. .. .. ... ...... 156

4.8 Using Multiple Light Planes to Locate Polyhedral Features . . . .. 157
4.8.1 Non-Optimal Orientation Estimation for Polyhedral Features 157
4.8.2 Optimal Estimation of Orientation for a Polyhedral Feature . 158

5 Assembly Using the A Priori Error Suppression Technique 161

5.1 Introduction. . . . . . . .. .. ... ... 161

5.2 Versatile Tools for Programmable Assembly Systems . . . . . .. .. 162
5.2.1 Prototype Assembly Cell Hardware . . . . . . ... ... ... 162

5.3 A Hybrid On/Off-Line Programming System . ... ... ... ... 173
5.3.1 Position Definition System . . . ... ... ... ... .... 173
5.3.2 Generation of Robot Paths in an Assembly Cell . . . . . . .. 176
5.3.3 Path Definition . . . . . ... ... .. ... ... ... ... 177
5.3.4 Path Transforms . . . ... .. ... ... .. ... ...... 177

5.3.5 Automatic Pallet Indexing . . . . .. ... .. ... .. .... 180




_CONTENTS
5.3.6 Error Recovery . . . . .. . . . . .. .. ... ..., 181
5.4 Assembly System Implementation. . . . . ... ... .. ....... 182
5.4.1 Assembly Cell Setup Procedure . . . . . ... ... e e e 183
5.4.2 Workspace Calibration Procedure. . . . . . . ... ... ... 186
5.4.3 Power Drill Assembly Procedure . .. .. ... ... ..... 191
5.5 Conclusions and Discussion . . . . . . .. .. .. .. 199
Prototype Position-Sensor-Driven Assembly System 203
6.1 Components of the Prototype Sensor . . . . . . .. ... ... .... 203
6.2 Construction of the Test Bed . . . .. .. ... ... ......... 205
6.3 Calibration of the Camera-Light Stripe System . . . .. .. ... .. 206
6.3.1 Camera Calibration Procedure . . ... ... .. ... .... 206
6.3.2 Calibration of Laser Parameters . ... .. ... ... .... 212
6.4 Performance Evaluation of the Prototype Sensor . . . . .. .. ... 213
6.4.1 Test Procedure . . . .. .. ... ... .. ... ... . ..., 213
6.4.2 Single Light Plane Test Results . . . . . .. ... ... .... 215
6.4.3 Multiple Light Plane Test Results . . . ... .. ... .... 217
6.5 Repeatability and Accuracy of the Unimation PUMA Robot. . . . . 218
6.5.1 Repeatability Test . . .. ... ... ... ... .. ...... 218
6.5.2 Local Accuracy Test . . .. ... .. e e e e e e e e 221
6.6 Prototype Sensor-Driven Assembly System . . ... .. .. .. ... 222
6.6.1 Sensor-Driven Assembly Demonstration Tasks. . . . . .. .. 224
6.6.2 Square Peg-in-hole Analysis and Tests . . . . ... ... ... 227
Discussion, Applications, and Conclusions 233
7.1 Discussion . . . . . . . . e e e e 233
7.1.1 Development of Computer Integrated Manufacturing Sys-
tems . . . . . e e e e e e e e e e e 233
7.1.2 Development of the Sensor . . . . ... ... .. ....... 234
7.1.3 Development of Position-Sensor-Based Assembly Systems . . 235
7.2 Applications of the Sensing Technology . .. . ... ... ...... 236
7.3 Technical Contributions and Conclusions . . . . . .. .. ... .... 238
Path System Definitions 241

A.1 Paths . . . . . e e 241




CONTENTS 9

A.2 Path Transforms . ... ... ... ... ... ... ... .. .. ... 242
A.2.1 Spatial Path Transforms . . . . ... ... ... ........ 242

A.2.2 Cylindrical Path Transforms . ... ... .. ......... 244

B 7565 Workspace Waviness 247
C Flexible Fixture Design Calculations 251
D Errors Generated with a Spherical Wrist 255
E Product of Two Normally Distributed Random Variables 259

Bibliography 262




10

CONTENTS




List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

2.9

3.1
3.2

3.3

3.4

3.5

Summary of frequency of assembly operations for products studied.. 46

Failure modes for the peg in hole assembly. . . . . ... ... .. .. 48
Parameters for the two-dimensional peg in hole assembly . . . . . . . 49
Sensor-driven assembly system. . . . . . . .. ... ... ... ... 54
Calculation of the robot to part transformation.. . . . .. ... ... 58
Graphical representation of a rigid transformation. . . . ... . ... 60
Three dimensional probability density function. . . . . . . ... ... 62

Result of convolving two two-dimensional probability density func-
tons. . . . L e e e e e e 63
Errors in part positions due to manipulator errors may be equiva-

lently represented by errors in the location of the world frame. . . . 68

Two dimensional model of a ranging sensor and object . . . . . . .. 87
Dependency of the fitted boundary interpolation technique on table
density for the pan image oriented between 5 and 10 degrees. . . . . 88
Two dimensional images used to test the accuracy of the part locat-
ing algorithms. . . . . . . . .. . ... 89
Dependence of the fitted boundary interpolation algorithm on the
length of an image of a pan whose orientation is between 5 and 10
degrees . . . . ... e e 90
Dependency of the fitted boundary interpolation technique with im-

age orientation for an imageofapan. . . . . . . ... ... ... .. 91

11




12

LIST OF FIGURES

3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15

4.1

4.2
4.3
4.4

4.5
4.6
4.7

4.8
4.9

4.10

4.11

4.12
4.13

Dependency of the fitted boundary interpolation technique with im-
age orientation for an image of a rectangle . . . . . . ... ... ... 91
Dependence of the fitted boundary interpolation technique on the
aspect ratio of a rectangular image . . . . . . ... .. ... ... .. 93
Dependence of the fitted boundary interpolation technique on the
aspect ratio of an elliptical image . . . . . . . . ... ... ... ... 93

Pan image table entries for the fitted boundary interpolation tech-

NIQUE . v v v e e e e e e e e e e e e e e e e e e e e e e e 94
Tables for rectangles of various aspect ratios . . . . . . ... .. ... 94
Tables for ellipses of various aspect ratios . . . ... ... ... ... 95
Shift of fitted line due to small rotation of a discretized ellipse. . . . 96
An assembly system which uses a part position sensor. . . . . . . .. 98
Degree of rotational freedom for simulated block tests. . . . . .. .. 102
Results of the simulated corner localization tests. . . . . ... . ... 103

Three line segments generated by the intersection of a plane of light

and the surfaces of a polyhedral feature may be sensed by a video

camera and used to locate apart.. . . . ... ... ... ... 108
Light stripe sensor configuration. . . . . . ... ... ... ...... 109
Parameters for modeling a thick lens.. . . . . . .. .. ... ..... 111

Parameters for a line in the image plane and vectors specifying the

light stripe. . . . . . . . . . e 113
Parameters for the image of a line (infinitely thin). . . . .. ... .. 116
Probabilistic location of pointsonaline. . . . . ... ... ...... 118

Standard deviations for orientation and y intercept estimates as a
function of the number of illuminated pixels. . . ... ... ... .. 121
Probability distributions of line parameters. . . . . . . ... .. ... 121
Target and camera arrangement for computer simulation and exper-
imental tests. . . . . . . ... o 123

Accuracy of the least squares fitting routine for discretized lines as

a function of their orientation. . . . . . ... ... ... ....... 123
Range of motions of lines before change in state of sensor occurs. . . 124
Experimental test rig for line fitting tests. . . . . .. .. ... .. .. 125

Dependence of the least squares algorithm on the length of an image

of a line segment at orientations is between 5 and 10 degrees. . . . . 127




LIST OF FIGURES 13

4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30

4.31
4.32
5.1

5.2
5.3

Intensity profile of a light stripe. . . . . .. .. ... ... ...... 129
Fourier transform of a sampled, smoothed sin(z)/z? function. . .. 130
Intensity profile of a light stripe as measured by a CCD camera. . . 131
Gaussian approximation of a smoothed sinc*(z) function. . . . . .. 132
Fourier transform of a sampled Gaussian. . . ... ... ... .. .. 33
Fraction of energy lost in the frequency domain due to undersam-

pling a Gaussian. . . . . . . . . . .. e e e 134
Determining the location of an image of a light stripe by threshold-
INE. . e e e e e e e e e e e e 135
Errors in center of area estimate due to noise in intensity levels for
a Gaussian intensity profile. . . . . . . .. ... ... oL oL 138

Offsets in sample position from the position of the peak of the in-

tensity profile produces errors in center of area estimates. . . . . . . 138
Errors in center of area estimate as a function of relative sampling
position. . . . . . . . e e e e e e 139

Standard deviation of errors due to sample offsets of a sinc?(z)
shaped intensity profile as a function of the number of samples. . . . 140

The match-filter and peak detection procedure for determining the

location of the peak of an intensity profile. . . . . ... ... .... 143
Sensing and image processing system components. . . . ... .. .. 145
Recursive split-and-merge segmentation algorithm. . . . . .. .. .. 148
Coordinates used for the line fitting algorithm. . . . ... ... ... 149

Some features which may be located in five or six degrees of freedom
from data generated by the intersection of a single light plane. . . . 150
Light plane intersecting a polyhedral feature and a corresponding
model of the feature. . . . . . . .. ... o oL s 151
A right corner feature and reference frames used to determine its
orientation. . . . . . . . . L e e e 154

Euler angles used in the least squares estimate for the orientation of

a polyhedral feature. . . . . . . . .. ... ... Lo 158
Reference base plates . . . . . . . . . ... ... o oL 163
Assembly vise. . . . . L L e e e 164

Different combinations of vise fixturing systems which may be used

to constrain the base part in an assembly. . . . . .. .. ... .... 165




14 LIST OF FIGURES
5.4 Flexible fixture. . . . . . . . .. . ... L 167
5.5 Flexible pallets. . . . . . . . . . . . .. e 169
5.6 Flexible pallets fixturing drill parts. . . . . . . ... ... ... ... 170
5.7 IBM 7565 gripper finger interface. . . . . ... ... ... ... ... 171
5.8 Shaft/hole and setup grippers. . . .. .. ... ... ... ... ... 172
5.9 Position definition system. . . . . . ... ... oL 0oL 173
5.10 Task execution system. . . . . . . . .. .. .. ... .. ... 176
5.11 Spatial, planar and cylindrically transformed paths . . . . . . . ... 178
5.12 Assembly cell setup procedure. . . .. .. ... ... ... ...... 184
5.13 Yaw and pitch calibration fixtures. . . . . . .. ... ... ... ... 187
5.14 Robot repeatability vs. timeplots . . . . . ... ... ... .. ... 190
5.15 Consumer hand drill parts . . . . . .. . . ... ... ... ...... 192
5.16 Hand drill assembly cell. . . . . . . .. .. .. ... L. 193
5.17 Example top level assembly program.. . . . .. . ... ... .. ... 194
5.18 Drill assembly procedure. . . . . . .. . ... oo Lo, 195
5.19 Chuck threading operation. . . . . ... ... ... ... ....... 197
5.20 Washer assembly operation. . . . . . . . ... .. ... ... ... 198
6.1 The prototype sensor system. . . . . . . . . . . ... 204
6.2 Test bed used for sensor accuracy studies. . . . . .. ... ... ... 205
6.3 Target for camera calibration. . . . . . . . ... ... ... .. ..., 207
6.4 Camera and object plane used to define the center-of-expansion. . . 209
6.5 Method for determining the disparity angle, tilt angle, and light

plane to camera distance. . . . .. . . ... ... . 0oL 213
6.6 Test cube mounted on rotational stages. . . . . ... ... ... ... 214
6.7 Errors in locating the cornerof a cube. . . . . . . .. ... L. 216
6.8 The intersection of two independent light planes with a cube. . . . . 217
6.9 Maximum likelihood estimates of rotation angles of the test cube. . . 219
6.10 Maximum likelihood estimates of rotation angles of test cube from

pairsof angles. . . . . . . . . .. e 220
6.11 PUMA manipulator and prismatic target used for repeatability and

accuracy studies. . . . . ... ... Lo e e e 221
6.12 Results from the PUMA local accuracy tests. . . ... ... .. ... 222
6.13 The prototype position-sensor-based assembly system. . . . . . . .. 223
6.14 Connector assembly and vice fixture. . . . ... ... o L. 224




LIST OF FIGURES 15

6.15
6.16
6.17
6.18
6.19

Al
A2
A3

B.1
B.2

C.1
C.2
C.3

D.1
D.2

E1l
E.2

Die-cast box assembly. . . . . . .. .. ... L Lo 225
Square peg and hole assembly. . . . . . ... ... ... ... .. .. 226
Procedure for the sensor-driven assembly demonstration . . . . . . . 228
Camera frame of peg and light stripe intersection. . . . . ... ... 230
Sensed peg location superimposed on the frame from which the po-

sitional information was calculated. . . . . . . .. .. ..., 230
Path coordinate system. . . . . ... .. ... ... e e e e 242
The spatial path transform. . . .. . ... .. ... ... ....... 243
The cylindrical path transform. . . . . .. ... ... ... ...... 244
Technique used for measuring the height of the robot base. . . . .. 248
Two views of 7565 surface plate height variation. . . .. . ... . .. 249
Structure of the flexible fixture arm. . . . . . . ... ... ...... 252
Free body diagram of a single ball in the fixture arm.. . . .. . . .. 252
Flexible fixture resisting-moment plot . . . . .. .. ... ...... 254
Spherical Wrist Joint . . . . . . . . . . . . ..o 256
Spherical wrist errors in the three coordinate directions and the

cartesian sum. . . . ... .. e e e e e e e e e e e 257
Sample space for random variable z =zy. . . . ... ... ... ... 260

Derived distribution for the product of two normally distributed

independent random variables. . . .. . ... ... ... 000 261




16

LIST OF FIGURES




List of Tables

2.1

2.2
2.3

2.4

4.1
4.2

5.1

6.1
6.2

Assembly procedure for the a priori suppression method of error

elimination. . . . . . . . .. e e e 52

Assembly procedures for a typical sensor-driven assembly tasks. . . . 56

Vectors corresponding to transformation errors which occur during

the calibration and teaching phase. . . . . . . . ... ... ...... 74
Vectors corresponding to transformation errors which occur during

the task execution phase. . . .. . ... ... .. ... ..., 74
Nomenclature for line parameter error analysis. . . . . .. ... ... 115
Experimental error sources for measuring straight-line features. . . . 127
Hand drill parts in order of assembly.. . . . ... .. ... ...... 196
Results of the part position sensor accuracy tests. . . . . . ... ... 216

Acceptable volumes to obtain accurate sensor readings for three test
Parts. . . e e e e e e e e e e e e e e e e e e 226

17




18

LIST OF TABLES




Introduction

Chapter 1

1.1 Background and Motivation

The current capabilities of mechanical manipulators are inadequate to solve many
industrial assembly problems. Although there has been some success with force
and compliance controlled assembly machines (see [202] for an overview) and much
success with passive compliant devices, notably the RCC or Remote Center of
Compliance [104,133,204], most industrial systems depend upon precision assembly
techniques (assembly is performed with no feedback other than precise position-
ing) to accomplish assembly operations. “Hard” automated assembly machines,
machines specially designed for a single function, have been used very success-
fully, but they are capable of assembling only a single product and are inflexible
to changes in product or part style. Because the flexible assembly problem is not
well understood, the approach used in automating the problem has been to emulate
humans by using some vision and force feedback. The approach taken in this thesis
has been to solve the assembly problem by analyzing the task directly. Many of
the techniques developed are fundamentally different from those used by humans.

1.1.1 Purpose of the Research

In order to develop technologically and economically viable flexible assembly sys-
tems the capabilities of present day systems must be extended so that they are able
to handle a wide variety of part shapes, sizes, tolerances, and assembly operations

without using excessively costly means. We address this need through theoretical

19




20 Chapter 1: Introduction

and experimental investigations of programmable tools and sensors, and investigate
feasibility through the development of a number of prototypes.

1.1.2 Flexible Assembly Systems and Batch Manufacturing

Flexibility is defined to be the ability to handle different parts and perform different
assembly operations. It is one of the key issues in increasing productivity through
automation in certain industries (see Section 2.1). Flexible assembly systems are
electronically controlled mechanical systems which are capable of the production
(primarily assembly) of morphologically different products. Theoretically, such a
system is capable of producing sequential runs of many different products with
relatively short setup times between runs. The size of the subset of products which
a system can handle depends upon the size and weight of the elements as well as
the operations necessary for the products’ assembly.

Many of the process and mass production industries have been highly auto-
mated for some time. In contrast, processes used in batch manufacturing are al-
most entirely manual. The batch manufacturing system (a limited set of resources
which is reconfigured to produce a number of different products) presents a num-
ber of unique problems to automation. Productive operation of the system requires
sophisticated scheduling with almost all aspects of the system having some degree
of flexibility.

1.1.83 The Rigid-Parts Assembly Process

An assembly task may be defined as follows

Two or more parts are moved to a desired relative position within some
tolerance. The process which juxtaposes the parts should not physically
alter them unless it is a requirement of the task.

Thus, assembly is a positioning problem. According to Simunovié [176]

The assembly process s strictly a positioning problem. Complete knowledge
of the parts and ideal positioning devices would, at least in principle, make
the assembly task a trivial matter. The imperfections of the real world are
materialized as position errors in the physical assembly systems; these errors

translate into an error in the relative position between the parts at mating;
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the resulting error in the relative positions between the parts at mating will
cause interference between the geometry of the parts, and therefore not allow

the parts to be assembled.

In general, parts comprising an assembly are manufactured in batches of identi-
cal parts and are delivered to the assembly system in groups. In order to eliminate
the relative positioning errors, the parts must be separated, grossly positioned,

then mated.

The Three Phases of Rigid-Parts Assembly

Rigid-parts assembly may be broken down into three main phases independent of

the type of system which performs the assembly.
1. Part acquisition
2. Part alignment
3. Part mating

The part acquisition phase entails part identification and gross orientation through
conventional feeding mechanisms, machine vision or other sensing systems, or
through manual techniques. The part alignment phase is typically performed by a
manipulator and might also involve fixtures, sensors and search procedures. Part
mating is the first phase where parts may touch one another. In this phase, ei-
ther force or compliance control, passive compliance, or sufficient precision to allow
non-contact mating is required. The performance of an assembly system in each of
the latter phases is affected by the system performance in previous phases. This
research attempts to increase the system performance in the part alignment phase

and relax the requirements for the part mating phase.

Relationship Between Part Alignment and Part Mating

During the part mating phase, a direct position measurement of one part relative
to the other is not generally available. Any necessary repositioning is driven by
the forces generated between the mating parts. Techniques which have been used
to eliminate positioning errors from force information include force and compli-

ance control, logic branching, and passive compliance (see Reference [202] for an
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overview of these techniques). Passive compliance techniques are generally the
simplest to implement for error correction during the mating phase. Relaxation of
requirements for the passive compliance system is possible if the parts are aligned
precisely enough during the part alignment phase.

Relaxation of the passive compliance requirements means that the assembly
can successfully occur with a larger tolerance on the location of the center of
rotational compliance and a larger tolerance on the magnitudes of the translational
and rotational compliances. A successful assembly is one in which the parts are

completely assembled without damage.

1.1.4 Methods for Eliminating Posttioning Errors

Errors in part positions may be eliminated by one of two ways [176]
A Priori Suppression: Eliminate errors at their sources.

Measurement and Removal: Eliminate errors during or just before the mating

process.

Hard automated assembly systems and some robotic assembly systems (such as
the one described in Chapter 5) take the a priori suppression approach. These
systems rely on accurate jigs and fixtures and precise actuator positioning. Humans
and some advanced robotic assembly systems rely heavily on the measurement
and removal approach to assembly. These systems use tactile (force) and visual
(position) information to sufficiently align the parts. The sensor-driven assembly

system described in Chapter 6 takes this approach.

A Priort Error Suppression

Elimination of errors by the a priori suppression method entails controlling error
propagation. In general, when components are originally manufactured, their po-
sition is well known. For example, the location of features of parts machined in
a milling machine are referenced to the cutting tool up until the point where the
vice is released. If the location of a part were precisely maintained from the point
of manufacture to the point of assembly, only small errors would need to be elimi-

nated for the mating phase. The a priori suppression method also includes systems
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which do not constrain the location of parts from their point of manufacture, but
which orient parts at some later time then fixture them in pallets or jigs prior to
their assembly.

Sources of position errors include
e Loss of location information after machining or molding operations.

e Loss of location information after finishing operations such as plating, polishing,

tumbling and cleaning.
e Finite precision orienting techniques (e.g. bowl feeding).
e Finite precision pallet, assembly jig, or gripper fixturing.
e Finite precision manipulator positioning.
e Significant part tolerances.

In order for the a priori suppression method to be successful, errors from all

pertinent sources must be controlled.

Error Measurement and Removal

In the measurement and removal method for eliminating errors, the relative position
of mating part features are measured either directly from position measurements
or indirectly from force measurements. After the measurements are made, the
manipulator reorients the parts nullifying measured misalignments. In an ideal
system using this approach, sensor accuracy and manipulator motion resolution
are precise enough to mate the parts without interference between surfaces. A
more practical system would rely on the forces generated between mating surfaces

to correct any remaining errors with the aid of the passive compliance of the system.

1.1.5 Comparison of the Two Methods of Error Remowval

Advantages and Disadvantages of Each Method

A system which uses the measurement and removal method of eliminating position
errors is more flexible than a system based on the a priori suppression method;

that is, less specialized tooling is required to perform a large variety of tasks. The
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system which uses the measurement and removal method is relatively insensitive to
the accuracy and wear of jigs, grippers, and pallets which locate the parts and the
assembly. Since measurements of the mating features are made, the system is also
relatively insensitive to large non-mating feature part tolerances and imperfections
(such as burrs). The jigs which locate the parts need to locate them to within the
acceptable range of the sensor. This may be as large as an order of magnitude bigger
than the range allowable in the a priori suppression method (see Section 6.6.1). In
some cases it may be desirable for the part jigs (including grippers and pallets) to
only firmly hold the parts and not accurately locate them. Thus the measurement

and removal method supports the use of universal grippers and pallets.

Using the measuring method allows assembly operations to be performed more
reliably. Because the part features are sensed, there is additional assurance that
the part is in the proper position prior to mating. It may also be possible to
more accurately align parts. In addition, successful assembly operations may be
performed without calibrating the robot to all of the pallets and jigs in the cell.
The system operates somewhat uncoupled from the absolute positioning of the
manipulator; that is, all commanded motions are relative to sensed positions with
respect to the world frame. Because of this, offline programming of assembly tasks
is easier and requires less absolute position references and online teaching and

calibration.

There are, however, a number of disadvantages to the measurement and remowval
method. First, a finite time is required to perform the sensing. Depending on the
type of sensor and the stage of the assembly process in which the measurement
is made, the assembly procedure might be slowed. For a vision sensor with the
camera mounted offboard of the manipulator, the system must allow sufficient
time for the manipulator to come to rest (let all vibrations settle). Time is also
required to grab a frame (61—0 sec.) and process the image. The system also has
finite measurement accuracy which might not be appropriate for all tasks. A vision
based system is also sensitive to the surface reflectance properties of objects and

surface orientations with respect to the sensor.

A limiting consideration in using a vision based measurement and removal
method is that not all features are easily sensed. It is likely that features com-
prised of relatively simple primitives (e.g. quadric surfaces) may be sensed with a

technique similar to the one presented in Chapter 4, but more complicated features
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may create problems. One study has showed that about 85 percent of “all man-
ufactured parts” may be accurately modeled by planar, cylindrical, and spherical
patches [81]. Although the accuracy of this estimate is questionable, the estimate
is at least promising. Even if features of any shape could be located with the sen-
sor, it is likely that the system would not be able to locate features with large size
differences. It might, however, be possible to design a system with an adjustable

field of view to accurately locate different sized features.

Which Method vs Better?

Both the a priori error suppression and the measurement and removal methods of
error elimination may be successfully used for robotic assembly tasks. The best
method to use depends upon the requirements of the task. The a prior: error
suppression method is relatively insensitive to the shape of the parts being mated;
however, it is relatively inflexible. A particular set of hardware must be used to
accurately fixture to parts. The measurement and remowval is highly flexible since
almost no specialized mechanical fixtures are used, but the types of part shapes
which may be sensed and assembled is limited.

With further development of the sensing system proposed in this thesis (or
other sensing techniques), the sensor-driven assembly technique will be capable of
handling a larger number of part shapes. As compared to the a prior: suppression
method it will be much more flexible and cost effective for industrial assembly

systems operating in a batch production mode.

1.2 Overview of the Thesis

This thesis discusses issues in programmable mechanical assembly systems. In this
chapter we have introduces the problem and suggested approaches to its solution.
Two methods were proposed to eliminate the errors in part alignment: a priort
elimination, and measurement and removal.

Chapter 2 gives the background on the assembly problem and an elaboration
of the two solution techniques. A literature review of research in programmable
assembly systems is followed by a survey of operations involved in certain mechani-
cal assemblies. Assembly operations are classified with respect to the magnitude of

difficulty for a single chain manipulator. A review of failure modes for the canonical
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peg-in-hole assembly operation is presented. Errors in robotic assembly systems
are analyzed and applied to both the a priori suppression and the measurement and
removal methods. Accuracy specifications for a part position sensor are calculated.

Requirements for an industrial sensing system for measuring part alignment
errors are discussed in Chapter 3. A literature review of ranging techniques is
given and two techniques are analytically explored. Arguments for using a light-
stripe vision system for the part-position-sensing function are presented.

Chapter 4 discusses the details of the development of a light-stripe based part
position sensor. First literature dealing with research in extracting accurate infor-
mation from noisy images is reviewed. Both optical and geometric fundamentals of
the light-stripe technique are then presented. Methods for extracting and quantify-
ing the accuracy of information from light-stripe images are then explored. These
include an error analysis of finding straight line features corrupted by quantization
noise, methods for determining the accuracy in finding the center of a light-stripe
using three different techniques, and a technique to combine redundant informa-
tion from multiple light plane illumination of a part feature. The hardware and
algorithms necessary to extract six degree-of-freedom measurements from a single
light-stripe image are also presented.

Chapters 5 and 6 describe prototype assembly systems using the two methods
of error elimination presented in this chapter. The system in Chapter 5 uses a
number of flexibly designed tools and an industrial robot to control the propagation
of position errors during the assembly process. The assembly system in Chapter 6
is vision sensor based. The accuracy of a prototype light-stripe vision system used
for part position measurements is investigated in a specially constructed test bed.
Details of the sensor calibration are also given.

Chapter 7 contains a discussion of what additional research is necessary to
develop the prototype systems into industrial systems which may be used in man-
ufacturing facilities. Uses for the sensing technology in addition to part position
sensing for assembly operations are also presented. Finally conclusions and tech-

nical contributions of the work are enumerated.




PrOgrammable Assembly Systems

Chapter 2

2.1 Literature Review of Research in Programmable

Assembly

Worker productivity has increased steadily throughout recent history. Within the
last decade, application of automated manufacturing technology has resulted in
dramatic changes in rates of productivity growth within those industrialized nations
choosing to invest the necessary capital and human resources. Tesar rated a number
of elements which produce increased productivity [192]. He found that technology
produces 38.1 percent, capital - 25.4 percent, labor quality - 14.3 percent, economics
of scale - 12.7 percent and resource allocation - 9.5 percent. He also notes that all

western trading partners had higher productivity growths than the United States.

The Labor Force

The work force in the United States has recently undergone a major shift in worker
qualifications which could result in a growing demand for manually skilled labor.
According to Merchant [126], 60 percent of the current U.S. workforce hold degrees
from a secondary school, while 50 percent of those entering the workforce have a
college or university education. According to Catalano [42] there will be a shortage
of manual labor by the year 1990 assuming a moderate GNP growth and limited
productivity increases from automation. Merchant and Catalano suggest that since
there are fewer people who will be entering into the manual labor force, manufac-

turing industries must either automate a number of their operations or drastically

27




28 ' Chapter 2: Programmable Assembly Systems

improve the efficiency of the operations. Catalano gives estimates of manual labor
shortages in the US, but these are probably not accurate since an increased foreign
labor market is not taken into account and the sources of the GNP will shift other

industries.

Manufacturing’s Economic Contribution

Merchant notes that although manufacturing industries account for 33 percent of
the international gross national product (24 percent of the U.S. GNP) while ser-
vice industries make up 50 percent (63 percent in U.S.), it produces 66 percent
of the wealth (65 percent in the U.S.). Many of the process and mass production
manufacturing industries have been highly automated for some time. In contrast,
processes used in batch manufacturing are almost entirely manual. The batch man-
ufacturing environment presents a number of unique problems to automation. A
single system (a set of tools and resources) is frequently reconfigured to produce
a number of different products. Productive operation of the system requires so-
phisticated scheduling with almost all aspects of the system having some degree of
flexibility. Anderson [10] notes that since 75 percent (by value) of all U.S. discreet
engineered products are produced in the batch mode, national productivity can be

significantly increased by making the batch manufacturing process more efficient.

Automation in Manufacturing

One method of improving batch production efficiency is to automate with comput-
ers and computer controlled machinery. Anderson [10] demonstrates that machine
shops have reduced both direct labor cost and manufacturing time by 75 per-
_cent with the use of numerically controlled and computer numerically controlled
machines. Increased computerization in the batch production industry will likely
increase the utilization of capital equipment as well as increase the quality and uni-
formity of the products produced. Presently, parts being processed in the job shop
environment are idle about 90 percent of the time [10]; whereas, in an automated
job shop environment, in-process inventory is substantially reduced. In addition
to the economic benefits of automation, the worker wiﬂ be relieved from boring
trivial tasks which may be readily accomplished by ma,cl;lines and is more likely to

have more interesting skilled work. Yonemoto of the Japénese Industrial Robot As-
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sociation (JIRA) [207,208] shows that some improvements associated with robots
are increased productivity, humanization of working life, increased labor safety,
improved product quality and early return on investment. Many US managers
would probably disagree with Yonemoto’s last “improvement” since low return on
investment has been one of the major factors retarding factory automation through

robot installations.

Economics of Assembly

Anderson estimates that assembly accounts for about 35 percent of the production
cost for discreetly engineered products. Nevins and Whitney of the Charles Stark
Draper Labs [132,133] have studied the science of assembly and have classified
the 3 modes of assembly. Manual assembly is appropriate for products with low
production volume. Low fixed costs are also associated with this mode so there
is no economy of scale. The manual assembler has the characteristics of being
very flexible and easy to train. He has excellent sensory capabilities, but may
tend to lack reproducibility and get bored. Assembly via fixed automation is
appropriate for products with high volume constraints. Fixed automation typically
has high fixed costs and high efficiencies. These systems are not very flexible
and tend to fail due to part jams while there is usually little sensory capability.
Programmable automatic assembly has medium fixed costs and is appropriate for
medium production volumes. It has medium efficiency and is capable of responding
to sensory inputs and learning new tasks. Nevins and Whitney have also studied
the amount which is invested in assembly in a number of different industries. Motor
vehicle and radio and television industries have about 30 percent of direct labor
attributable to assembly. They note that a better indication of savings which
comes from automating the assembly process is percent value of shipments due to
assembler’s pay. These figures are 4.7 percent for the motor vehicle industry and
3.8 percent for the radio and TV industries. Nevins and Whitney fail to take into
account additional savings from automation due to increased organization, lower
in-process inventory, lower personnel and paper work overhead costs, and hggher
efficiency. Boothroyd [33] has also studied the amount of labor and manufacturing
costs attributable to assembly based on a 1967 census of manufacturers. He found
that motor vehicle and telephone industries have about 50 percent of all production

workers involved with assembly. Other industries such as motorcycle, aircraft, farm
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machinery, and refrigerator and freezer have from 20 to 40 percent of labor involved
in assembly. Boothroyd postulates that assembly accounts for about 50 percent
of the total manufacturing cost for a product. The apparent large discrepancies
between costs estimates of Boothroyd, Anderson, and Nevins and Whitney are
most likely due to inaccuracies in estimation, comparison of just wages to all costs

and other factors previously stated.

The Assembly Process

The most frequent assembly operations and part orientations during assembly were
studied by Nevins and Whitney by examining ten products. They found that 33
percent of the assembly operations are peg in hole insertions, 27 percent are screw
insertions and 12 percent are push and twist operations. Most other operations
include multiple peg in hole, force fits, insert peg and retainer (all less than 10
percent), flip part, provide temporary support, remove temporary support, remove
locating pin, weld or solder, and crimp sheet metal (all less than 3 percent). Most
of the operations were unidirectional (e.g. 80 percent of all peg in hole insertions
were from the same direction). Nevins and Whitney also cite surveys from General
Motors and John Deere which deal with the average mass of a part which is handled
during vehicle assembly. General Motors found that 90 percent of the parts in
an average automobile are less than 2 kilograms (4.4 pounds) while John Deere
reported that 80 percent of the parts in their farm equipment weighed less than 4

kilograms (8.8 pounds).

The Canonical Assembly Operation: Peg-in-Hole

~Since it was found that peg in hole insertion dominated assembly tasks, researchers
at the Draper Labs extensively researched the subject [104,132,133] They studied
clearance ratios (clearance/diameter) of close fits and found that similar types of
parts had similar clearance ratios. Bearings had the smallest clearance ratios of the
parts which were considered. Contact forces were analyzed and criterion for wedg-
ing and jamming of parts were formulated. The forces during the three stages of
insertion namely chamfer crossing, one point contact and two point contact could
be calculated as a function of offset of centers and insertion depth. Whitney and

Nevins made a major breakthrough in the science of assembly with the develop-
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ment of the remote center of compliance (RCC) [204]. This is a passive device
which is capable of providing a large degree of translational and rotational com-
pliance in directions orthogonal to the direction of insertion while remaining stiff
in the direction of insertion. In addition, the device locates the system’s center
of compliance at the bottom center of the peg being inserted. Thus the RCC is
capable of apparently “pulling” the peg into the hole from the bottom. An instru-
mented RCC has been developed which can be used as a teaching aid for a robot
by automatically finding the exact location of a hole or as a sensor for an active
control system for the robot. Whitney and Nevins have also done a number of
studies on chamferless and compliant part insertion. Takeyasu, Goto and Inoyama
[187] report on the Hitachi Hi-T-Hand which is also able to do close tolerance peg
in hole insertions using active feedback. However, this manipulator performs the
task somewhat slower than the RCC.

Design and Classtification of Robots

Because of their intrinsic flexibility, robots are often envisioned or utilized in pro-
grammable automatic assembly stations. The literature contains a large range of
opinions as to the optimal design for an assembly robot [66,131,159,187,194|. Since
Japan possessed 69 percent of the industrial robots in operation in 1979 while the
United States possessed only 16 percent (using similar definitions of robots) [66],
many of the studies on robots were done in Japan. McPherson [124]] discusses the
history of robots in Japan as well as some current data on robots. He reports on
JIRA’s survey on reasons for the introduction of robots which showed labor sav-
ings as being the most frequenly given response (44.5 percent). Other responses
included improvement of working conditions (24.9 percent), versatility of produc-
tion systems (13.5 percent), facilitation of management (8 percent), and 9.1 percent
due to other reasons. JIRA also predicts that assembly robots will move from 10
percent of the robot market in 1980 to 17 percent in 1985 and 22 percent in 1990.
JIRA’s identifies 6 classifications of robots:

Manual Manipulator - A machine directly operated by a human.

Fixed Sequence - A machine which may be programmed for a particular task but whose repro-

gramming ability is minimal.

Variable Sequence - Same as the fixed sequence robot but the machine’s program is easily
changed.

Playback Robot - This machine is only able to memorize sequences directly taught by a human.
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Numerical Control - A machine which performs according to digital information on sequence,

position, etc.

Intelligent Robot - This machine uses vision, sensors, etc. to determine position, action, rate,

etc.

Gevarter reviewed a number of other Japanese studies of robots in his report
to NBS and NASA [66]. A 1981 survey of the uses of robots in Japan showed
unloading and loading the most frequent at 40 percent. 21 percent of the robots
in Japan were used for transfer and sorting, 9 percent for palletizing, 6 percent
for welding, 4 percent for work maintenance, 3 percent for assembly, 2 percent
for spraying, and other uses such as pouring, screwing, and riveting comprised 15
percent of the robots. The distribution of types of robots produced in Japan are:
manual manipulators - 10 percent, fixed sequence - 67 percent, variable sequence
- 7 percent, playback robots - 10 percent, NC robots - 5 percent and intelligent -
1 percent. The results of a 1980 JIRA users survey of necessary research areas (in
order of preference) is:

1. More degrees of freedom
2. More compact robots
o 3. Higher speed robots
4. A larger assortment of attachments
5. Easier reprogramming
6. Greater reliability
7. Increased working volume
8. Increased payload
9. Increased accuracy
10. Tactile sensing
11. Vision
12. Pattern recognition
13. Increased memory
14. Higher mobility
15. Coordinated control of multiple robots

A 1980 JIRA survey of current research areas of Japanese robot manufacturers

shows .1 percent involved with increasing robot speed, .7 percent involved with

making robots more compact, 8.6 percent with computer control, 8 percent with
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lighter weight robots, .7 percent with modular interchangeability, 5 percent with
object recognition, 4.6 percent with increased payload, 3.8 percent with improved
actuators, 3.8 percent with self diagnosis, and 3.8 involved with adaptive control.
Still another JIRA study as reported by Yonemoto [207] of the distribution of
robot sales to different industries reveals electric machine industry - 36 percent,
automobile industry - 30 percent, plastics molding - 10 percent, metal working
industries - 5 percent, and metal working machinery industries - 4 percent.
Seering [168] contends that robots are presently designed to emulate humans
and not designed to perform important assembly tasks. Mechanical manipulators
should not be constrained to move at human speeds, carry human compatable
payloads, work with the same precision, and have the same sensing capabilities of

humans. This philosophy was adhered to in many aspects of this thesis.

Costs in Assembly Systems

In order for programmable assembly systems to be implemented in the industrial
environment, they must prove to be more economic than conventional modes of
assembly. According to Elbracht and Schaler [57], the economics of programmable
assembly may be compared to the economics of manual assembly by comparing
the costs of necessary capital equipment versus the cost of labor. They note that
an acceptable cost for automated equipment depends on both the number of shifts
being considered as well as the country where the installation will occur. A num-
ber of authors discuss methods for predicting the economic feasibility of flexible
assembly systems. Boothroyd [31,33] and Dewhurst and Boothroyd [50] calculate
per part costs versus volume per shift-year for a number of assembly systems.
Systems which were considered are totally manual systems, manual systems with
feeders, indexing type fixed automatic machines (all workpieces indexed simulta-
neously), free transfer machines (buffers between each workhead), programmable
workheads (robots), two arm programmable stations, and a universal assembly
station consisting of two or more arms with programmable end effectors and pro-
grammable feeders. He found that manual types of assembly are economic below
about 35,000 units /shift-year, fixed automation assembly is economic above about
850,000 units/shift-year, and programmable assembly is economic between these
production volumes. Boothroyd demonstrates that the volumes where the various

modes of assembly become economic vary strongly as a function of number of prod-
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uct design changes per year, number of product styles to be produced, and number
of different products to be produced. Nevins and Whitney predicted similar levels
of production volume where the various modes of assembly become economic using
somewhat different models [132,133]. Their models for cost per assembly (finished
unit) were based on payback period methods and are as follows:

Manual:
Cost/Assy = AssyTime/Part x LaborCost x Parts/Assy

Fixed automation:

Parts/Assy x MachCost/Part
Payback Period x Volume

Cost/Assy =

Programmable assembly:

Cost/Assy = Parts/Assy (StationPrice x Time/Part N ToolingCost/Part)

PaybackPeriod

Seconds/Y ear Volume

Depending on the payback period and labor costs, the results of analysis on 10
part units are: manual assembly is economic up to 100,000 units, programmable
assembly is economic from 100,000 units to 2 million units and fixed automation
is economic above 2 million units.

Benedetti discusses another method of calculating the most economic mode of
assembly by optimizing a profitability condition with respect to some volume of
production [21]. This condition compares the costs involved with the purely manual
operations to the costs of automated machine operation, automation machinery
capital costs and the costs of manual intervention. Benedetti notes that this method
is not based on discounted cash flow techniques and performs other analyses which
are. From these models, he calculates the best method of assembly based on both
cycle time and annual production volume assuming some rate of return and some
utilization period. He also determines the amount of investments available for
automation as a function of operator reduction.

To accurately predict the actual costs involved with the implementation of
a flexible manufacturing system, any model used should be based on discounted
cash flow techniques. The Boothroyd, and Nevins and Whitney models could be
made more precise by taking into account the time value of money. None of the

above economic models take into account the loss of business if automation is not
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pursued. In other words, companies which do decide to automate may attract
a larger market share due to their increased flexibility and shorter delivery time.
Companies which do not automate may find their share of business taken over
by a more productive company using flexible automation. Another concern when
considering the economic feasibility for a newly automated system as cited by
Elbracht and Schaler [57] is the fact that automated equipment costs are presently

rising at a slower rate than labor costs.

Design for Assembly

Assembly research involving the programmable automatic assembly of parts which
were designed to be manually assembled without redesign have shown that system
implementation is both uneconomic and difficult [84,119,132,181]. These findings
imply that design or redesign of parts for programmable assembly is extremely
important if a newly designed system is to succeed economically. Boothroyd has

documented methods to improve designs for ease of assembly [31,33]. He suggests:

1. Reduce number of parts. 2. Unidirectional assembly.
3. Chamfer insertion interfaces. 4. Make parts locatable.

5. Use a base part. 6. Layered assembly.

7. Simple fastening operations.

Other authors [51,109,123| suggest additional methods for improving designs for
assembly such as good interfacing between base part and fixtures, logical assembly
order, designing for facilitation of inspection, keeping tight part tolerances or using
a passive remote center of compliance, designing parts with a low center of gravity
for stability, protecting fragile surfaces, providing a suitable gripper and feed track
surface, and avoiding or not using separate fasteners.

Boothroyd et al. [32,33] and others [11,51,109] also suggest improvements of de-
signs to facilitate automatic feeding including designs which decrease the likelihood
of part tangling and hooking, maximize part symmetry or exaggerate asymmetry,
have smooth surface finishes for feeding, use special orienting faces, use high qual-
ity components, have part geometries which fit into magazines, and designs which
use preoriented parts on tapes. Lewis also suggests a clean assembly environment
to avoid feeder jams [109].

A number of authors make a point of looking at each part and making sure that
it is necessary in the total product [11,31,33]. Boothroyd rates the efficiency of a
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given design with respect to the minimum number of parts and minimum handling

and assembly time. Design efficiency is defined as:

_ Theor.Min# Parts x (Nom.HandleTime + Nom.AssembleTime)
B Actual AssembleTime

n

Boothroyd has designed a system which will help the designer increase the
efficiency of a design and predict the costs and the amount of time necessary
for assembly. The system classifies each part in an assembly with two digits the
first of which quantifies the amount of symmetry and ease of grasp. The second
digit is based on the mode of insertion or fastening. The technique was designed
with manual assembly in mind but may also be used for programmable automated
assembly.

Andreasen [11] classifies the different types of assembly structures as being
frame, staked (some components hold others), composite product (different mate-
rials), base componenf (base for transport and assembly), modules, and building
block. Djupmark [51] rates a number of fastening techniques with respect to ease

of implementation in an automatic assembly workhead (from simplest to most dif-
ficult):

1. Pressing 2. Snap joints

3. Lap joints 4. Baking in

5. Welding 6. Riveting

7. Screws 8. Pins and Rings
9. Crimping  10. Soldering

11. Gluing

The above list is machine dependent and is most likely not accurate for new machine

designs.

Techniques which may reduce the cost of programmable assembly automation
as cited by Redford [159] include increasing the speed of robots (although it is
likely that less than an order of magnitude increase is possible), use of limited
capability and inexpensive robots, versatile, inexpensive grippers (using more than
one gripper on a robot arm, designing a programmable gripper, designing parts
to minimize gripper change or assembling a number of assemblies at a time to
minimize gripper changes), identification of assembly families, and lower feeding

costs.
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Parts Feeding

Redford analyzes a number of different types of feeders with respect to cost of
implementation in a programmable assembly center [159,160]. The types of feeders

considered were:

1. Dedicated (bowl feeders).

2. Multi-part (5 parts, 1 drive, different orienting tracks).
3. Programmable.

4. Dedicated feeders serving more than 1 robot.

5. Feeders with vision.

6. Magazine systems (better utilization of feeders, secondary inspection before assy).

(a). Manually Loaded.  (b). dedicated feeders.
(c). Multi-part feeders. (d). programmable feeders.
(e). Loaded by prior manufacturing operation.

7. Manually loaded feed tracks.

Feeding costs depend on:

1. Material handling cost. 2. System tending cost.
3. Fault correction cost. 4. Change over cost.

5. Equipment depreciation cost. 6. Tooling depreciation cost.

The results of Redford’s feeder cost analysis were based on a study of two
product families with volumes of 200,000 units per year. One family consisted of
66 product types and the other consisted of 20 part types. Variable batch sizes
were considered from 50 to 4350 units. Results showed that all systems except
magazines loaded from prior manufacturing operations exhibited dramatic cost
increases at batch sizes below 450 units. All cost versus batch size curves were
parallel at higher volumes (independent of batch size). Multi-part feeders, feeders
with vision, and magazines loaded at prior manufacturing operations were the most
economic feeding techniques. Manual loading of robots was more economic than
programmable or dedicated feeding. It was suggested that a mix of different feeder
types is probably best.

Conventional bowl feeders were examined by Boothroyd [32,33] who determined
the variables responsible for feed rate. Feed rate is a function of orienting efficiency

(dependent upon the number of natural resting states of a part) and track conveying
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velocity. Conveying velocity is a function of ramp angle, vibration angle, frequency
of vibration, coefficient of friction, and load sensitivity (change of part velocity due
to the amount of material in the bowl). A number of non-conventional feeders are
also discussed by Boothroyd such as non-vibratory feeders for parts with simple
geometries such as discs and cylinders. Out of phase feeders are also described
whose main attribute is an increase in feeding efficiency due to a decoupling of the
two principal directions of vibration. Boothroyd is also involved with the design of
belt feeders some of which are programmable with simple optical sensing capability.
In addition, he has derived a part feeding and orienting coding system which can
help designers to design parts for ease of feeding. The code is based on the shape
of the part (relative dimensions), the amount of part symmetry, and protruding or
other orientable features. The system points out difficult to feed parts as well as

serving as a guide for the designer.

A number of researchers have developed “smart” feeders to increase the flexi-
bility of automated assembly systems. Hill and Sword [89] use vision to check part
orientation. If reorientation is necessary, parts are turned over by being pushed
off a ledge and rotated on a rotary table. The cycle time including visual pro-
cessing time is 15 seconds. Suzuki and Kohno of Hitachi [185] report the use of
a multi-level bowl feeder with no orientation tracks which uses adjustable wipers
and dish-outs to partially orient parts. After being partially oriented, the part is
pressed up against datum planes and visually scanned. The part’s orientation is
then determined and either the feeder flips it into the proper position or the robot
reorients it before insertion in the assembly. This type of feeder is very flexible
and can accommodate a wide variety of part shapes and sizes. The Swedish In-
stitute for Production Engineering uses a simple linear array camera with a belt
conveyer equipped with wiper blades to flexibly feed parts [51]. Another flexible
feeder which uses vision is reported by Heginbotham [85]. The system consists of a
bowl feeder feeding onto a belt. From the belt, the part is pushed past fiberoptics
along two perpendicular walls. The fiberoptics terminate at a linear scan camera
which send the visual data to a computer. The robot which reorients the part
before it is assembled is also capable of rejecting parts which do not pass the visual

inspection.
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Selective Assembly

A system with fairly sophisticated inspection facilities is discussed by Camera and
Migliardi [39]. It uses the DEA PRAGMA robot and automatic inspection equip-
ment to dimensionally and functionally inspect precision parts such as automobile
crankshafts or injectors. They note that instrumented grippers may also be used
for some gross dimensional inspection. After being inspected, the parts are placed
in tolerance groups for later insertion into other parts belonging to appropriately
matched groups.

Time Motion Studies

A major concern when considering the costs of a manual system versus a robotic
system is the reduction of thoughput time. Rogers of Unimation demonstrates
how robot time and motion studies may be used to compare robotic manufac-
turing with other modes of manufacturing [161]. These studies are similar to
manual Methods-Time Measurement studies (MTM) and may be used to help find
optimal manufacturing sequences, balance a prodution line and compare robots
from different manufacturers on an individual task basis. He notes, as do oth-
ers [21,33,50,57,66,85,112,137,138,139,140,141,148,159], that asembly costs are very
sensitive to the speed of a robot (much more than to the price of the robot). Since
robots are very consistent, robot time motion standard times can be much more
accurate than MTM standard times. Rogers discusses three techniques for deter-
mining a standard time for robot tasks. The first and simplest technique is just
to calculate the average time needed to perform a number of typical tasks with a
typical number of tool changes. The second technique takes into account the type
of task being performed and the third technique takes the robot control scheme
into account (accounting for ramped and different maximum velocities). Nof et al
(137,138,139,140,141,148] take a similar approach to arrive at standard times for
robot tasks. They compare Robot Time Motion (RTM) times directly to MTM
times for a number of tasks. They find that humans are not capable of performing
all of the tasks that robots can perform. Of course the converse is also true. A
comparison of times necessary for the assembly of a fuel pump for both manual and
robotic systems demonstrated that the human was capable of doing the task about
8 times faster than the robot. Other studies such as the Draper Lab alternator
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assembly have yielded similar assembly time ratios [132,133].

Integrated Factory Control

Anderson has suggested that maximum impact of computers on manufacturing
systems will be the complete, real-time computer cognizance and control of all
processes and resources allowing precise scheduling and allocation [10]. He also
states that a system like IBM’s COPICS system (Communications Oriented Pro-
duction Information and Control System) which is a factory data collection system
is necessary for such computer control. Fisher et al [62] cite authors who attempt
to model the facility and planning of a computer controlled manufacturing system
using a number of different techniques many of which are based on closed queuing
networks. A number of simulation models are also cited. Fisher et al.construct a
model based on probabilistic analysis of part recirculation where a part is circu-
lated through inspection and rework until it is within specification. Gershwin [65]
and Kimemia and Gershwin [101, consider the control of a computerized manufac-
turing system with buffer storages between each work station. They calculate line
efficiencies based on mean time between failure and mean time to repair for each
machine. The analysis, which is based on optimal stochastic control models, be-
comes extremely complex for more than 2 or 3 work stations and thus has practical
limitations.

Schréder [167] discusses how machines and humans may be optimally inte-
grated in an assembly environment. System configurations are discussed which
make manual assembly independent of machine cycle time. It is suggested that
lines be put together in a modular fashion so that they may be easily changed.

Grouping manual stations close to one another yet separate from automatic sta-

- tions will promote worker communication and avoid worker dislocation. He gives

configurations for grouping manual stations together even when automatic oper-
ations are interspersed. Schroder notes that if manual and automatic operations

are not mixed in this manner, even work distribution is not always possible.

Worker Acceptance of Automation

The implementation and employee acceptance of a computer controlled planning

system is presented in a case study by Shaiken [170]. TOPS (Total Operation
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and Planning System) was implemented in a large tool and die shop of a large
automobile manufacturer. Its function was to control the complex scheduling of
operations involved with producing a die. The system was despised by the workers
after it was implemented. They thought that the system took the skill out of their
job and that the time they spent working was constantly being monitored. Part of
the problem with the computerized planning system was that it tried to quantify
a highly skilled job which takes over a decade for a good toolmaker to master.
The computer was not able to make “seat of the pants” type decisions which are
sometimes essential in die manufacture.

Although labor unions are concerned with the short term consequences of in-
creased automation, they know that robots will benefit society by increasing pro-
ductivity and relieving people from dangerous and undesirable jobs [83]. According
to the UAW, after a new piece of automation has been installed, it is still important

that the worker have a sense of security and obligation.

Programmable Assembly System Implementations

To date, just more than a handful of flexible manufacturing systems are in operation
with only a few involving assembly. Many of the systems are experimental with the
exception of some Japanese systems which are involved in a significant part of the
manufacturing process. Over 5 years ago Westinghouse undertook its Adaptable
Programmable Assembly System (APAS) project with the intent of developing a
state of the art system [1,119,181]. One of the firsts tasks Westinghouse studied was
choice of a product line which was suitable for programmable assembly. Abraham
[1] points out that over 60 product lines were considered and after an intricate
process of elimination, 3 were chosen as possible APAS candidates. Each line was

rated on (In order of importance):

1. Use of APAS technology 2. Degree of transfer

3. Social desirability 4. Inspection and recognition
5. Fixturing tooling 6. Economics

7.

Product redesign

Four system configurations were considered and evaluated separately for each
product line. The first configuration involved separate subassembly and final as-

sembly stations. Another configuration used a single arm robot with off-line parts
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feeding. The third system utilized lower degree of freedom arms in a line with off-
line parts feeding and the fourth configuration used many assembly stations with
off line parts feeding. It was found that the system configuration utilizing lower
degree of freedom manipulators is best for short cycle time products with limited
style variations. The most significant costs were equipment and cycle time with
cycle time being the most significant. The use of 1 to 2 second cycle times was
suggested for cost reduction. From the initial study, fractional horsepower elec-
tric motors were chosen for system implementation. To date, the system has been
implemented for the end bell assembly of the motors. The system incorporates a
number of fairly new technologies such as programmable belt feeders, multi-part
handling end effectors, and visual inspection. Although one of the original goals of
the system was that it should be capable of assembling existing parts, it was found
that these resrictions on part redesign made implementation extremely difficult
and expensive.

Nippondenso Corporation in Japan uses flexible assembly lines for manufac-
turing automobile instruments [131]. They have developed their own simple non-
sensing robots to do the assembly because fast, inexpensive, limited degree of
freedom robots were unavailable. They made the following evaluations of humans

and a number of robots:

TECHNIQUE CYCLE TIME (SEC) TEACH TIME (MIN)

Humans 1.4 1
Nippondenso
robot 1.9 100
SCARA
robot 2.7 120
PUMA
robot 3.1 40

Nippondenso is capable of producing a number of different automobile instru-
ments on short notice with almost no inventory due to their highly flexible lines.
Another Japanese manufacturer which has developed its own robots for production
is Yamaha Motor Corporation [131]. They have developed the CAME (Computer-
Aided Manufacturing Equipment for assembly operation) robot with the following
specifications:

e Capable of handling material
o Capable of feeding parts

e Capable of assembling parts




§2.1: Literature Review of Research in Programmable Assembly 43

o Has set up times less than 1 cycle long (20 - 60 sec)
e Operates at speeds as fast as humans

e Positional accuracy of < .1 mm

Weighs about the same as a man

e Same cost as yearly salary of an operator

Yamaha has used these robots with multi-level vibratory bowl feeders predom-
inantly for motorcycle engine assembly. v

Ranky describes a project which is sponsored for the most part by the Hungarian
government and is implemented at the Cspel Machine Tool company [158]. The
system uses a direct access part handling robot versus an in line system. The robot
can choose from a number of different process sequences and has direct access to
any machining or inspection station. A fairly sophisticated flexible manufacturing
system is currently being operated at the Fujitsu-Fanuc plant in Japan [131]. The
plant produces robots and small machine tools using unmanned machining. Robots
load the machine tools and machined parts and raw materials are carried from
station to station by wire guided carts. Presently, all assembly at the plant is
being done manually.

Sony has developed the FX-1 assembly system which assembles 50 percent of
the parts in the drive mechanism for the Walkman II [131]. The system consists
of X-Y tables which position pallets containing parts and assembly areas for four
Walkman II assemblies. Unidirectional insertion is performed by single degree of
freedom actuators which may be fitted with any number of end effectors. The pal-
lets which are molded plastic trays are manually loaded before entering the system.
Conveyers move pallets in and out of the assembly stations. The system can easily
tolerate changes in both model design (by remolding the part trays) and produc-
tion quantity. Other attributes of the system are 2 second cycle time, 0.015mm
accuracy, an average reprogramming time of one minute, and a production rate of
500 sets an hour (48 pieces / set). The Daini Seikosha Co., Ltd. (manufacturer of
Seiko watches) have been producing watches with almost no manual intervention
for about 10 years [131]. They use rotary and in line machining and assembly
centers for the production of mechanical and IC quartz watches. There are 6 lines
utilized for the production of 10 models. 5 people fix jams during the second shift,
which is the production shift, and 80 people maintain 300 machines during the first
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shift. There is no central monitoring or diagnostics and the machines are capa-
ble of positional accuracies smaller than .0004 inches (10 microns) and production
quantities of 200,000 watch baseplates per month.

Automated Factories of the Future

Continuing investment in automated manufacturing equipment will result in con-
tinuing improvements in productivity. There will be a corresponding change in the
nature of many existing jobs on the manufacturing floor. Possibly more signifi-
cantly, as more tasks are automated, manufacturing plants will run in more struc-
tured ways. This will result in a reduction in the need for support personel. As
a factory’s performance more closely resembles performance of a computer model
of the factory, more of the jobs involving flow of information will be performed
by computer. The long term result will be a restructuring of the manufacturing

environment.

2.2 Classification of Assembly Operations

Successful flexible assembly systems will come about through new developments
in robots, versatile peripheral hardware, and more efficient cell programming tech-
niques. In order to design useful systems, it is first instructive to study common
mechanical assembly operations. A study at the Charles Stark Draper Laboratory
[104,133] lists the twelve most common assembly operations in ten products. Re-
searchers at the Draper Labs found that about 33 percent of the operations studied
are peg-in-hole operations, 27 percent are screw insertions, and 12 percent are push
and twist operations. It was also found that most of the operations occurred from
the same direction of the assembly (e.g. 80 percent of all peg in hole operations
were from the same direction).

When considering the set of capabilities which automatic assembly machines
should exhibit, one needs to consider that the operations cited in the Draper study
as well as the present study were from products which were designed for human
assembly. Integration of the process and product design may produce products with
a relatively small set of required assembly operations which are capable of being
assembled with present state of the art machines. Extension of the capability of

these machines will generate more permissible assembly operations for the product
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designer’s consideration. Thus, the compatibility between product and flexible
assembly system is dynamic and is extendable through an iterative design process

between the two elements.

2.2.1 Assembly Task Analysis

The operations necessary to perform the assembly of 7 consumer and automotive

products were studied. The investigation was carried out to

e investigate which mechanical assembly operations are prevalent in certain

types of products,

o determine which operations can and cannot be accomplished by an unaided

six degree-of-freedom manipulator,

o investigate the difficulty of the different operations.

None of the products were machine assembled, nor was their design optimized for
ease of assembly (i.e. they were not designed for automated assembly [31,33]). Ten
of the most prevalent mechanical assembly operations were identified:

1 - Unstable Assembly: Any operation where a part will not maintain its proper position
under just the force of gravity. A plate without fasteners covering a long, thin

compression spring is an example.

2 - Required Orientation of Another Part Prior to Assembly: Stabilizing (fixing the posi-

tion) of an already assembled part prior to insertion of a new part.

8 - Retaining Clip Insertion: includes assembly of internal and external snap rings and
"E” clips.

4 - Spring Insertion/Compression: Operations which require insertion of parts which must

be mechanically stressed prior to their installation.

5 - Plastic Heading: Heading of rivets and other fastening techniques requiring plastic de-

formation of material.

6 - Unstable Inversion: Requires that a part or assembly of parts be reoriented prior to

assembly such that without constraint, they would become unstable and fall apart.

7 - Non-screw Twisting: Includes all helical insertions which are not performed with stan-

dard screws.
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10)  Unidirectional Insertion

Figure 2.1: Summary of frequency of assembly operations for products studied.

8 - Press Fit: Similar to unidirectional insertions except there is an interference fit rather

than a clearance.

9 - Screw Insertion: Driving of standard shaped screws only. Specially designed parts

which are screwed into an assembly are not included in this classification.

10 - Unidirectional Insertion: Any unidirectional insertion with a clearance fit. There is
no restriction on the geometric form of the parts so long as the parts are rigid and

the insertion direction is a straight line.

The frequency of occurrence of these operations for a number of automotive
parts and consumer electromechanical products is summarized in Figure 2.1. No
electrical component assembly operations (wiring, switch connection, printer cir-
cuit board component assembly, etc.) were included in this classification. The
operations are listed along the abscissa in order of increasing ease of task com-
pletion for a single armed robot using only very simple tools. A subjective rating
system was used for comparisons.

The simplest operation for a single manipulator is the unidirectional insertion
operation where parts may be assembled in a straight line fashion and no sensing

other than manipulator position feedback is required. This operation is the most
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prevalent comprising about 36 percent of all assembly operations in the assemblies
studied. The unidirectional insertion operation is similar but slightly more com-
prehensive than the Draper peg-in-hole classification. The 36 percent frequency of
occurrence seems to be in agreement with the 33 percent frequency reported for
peg-in-hole operation in the Draper study. Screwing and Non-standard Screwing
operations cémprised about 18 percent of the operations studied. This is a bit less
than the 27 percent reported by the Draper Labs. A significance test showed that
not enough data was taken and too few assemblies were analyzed in either of the
studies to allow meaningful comparisons to be made.

Operations 7 and 10 in Figure 2.1 may usually be accomplished with an unaided
six degree of freedom manipulator. Fewer degrees of freedom may often be sufficient
(e.g. a SCARA robot successfully performs many assembly operations with three
or four degrees of freedom). A robot with a limited rotation wrist can usually
perform screwing operations successfully, but laboriously [153]. Operations 3, 4,
5, 8, and 9 are best performed by a manipulator with the assistance of a special
tool. Although operations 1, 2, and 6 may be accomplished with two or more
manipulators, in many cases they may be performed with less complexity using a

single manipulator and a relatively simple auxiliary device.

2.3 Peg-in-Hole Assembly Failure Modes

The most frequent assembly operation according to the Draper Lab study is the
peg in hole insertion. Both two-dimensional [201] and three-dimensional [38,80]
peg-in-hole tasks have been studied in detail. The results from some of the two
dimensional studies are included here. The two-dimensional results approximate
the results for the three-dimensional cylindrical peg-in-hole with small clearances.
The two-dimensional analysis is also accurate for the rectangular peg-in-hole case
when the rotation errors are about one of the bottom edges of the peg. More
complicated interactions between rectangular peg and hole occur with arbitrary
misalignments 138].

Three modes of failure for a peg-in-hole assembly are considered (see Figure 2.2).

Chamfer crossing failure: Initial translational alignment of parts is not within
the range defined by the chamfers.
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Tligure 2.2: Failure modes for the peg in hole assembly. a. Initial translational

alignment is not within chamfer limits. b. Jamming occurs. ¢. Wedging occurs.

Jamming failure: The insertion force is not in the proper direction to overcome

the friction during two point contact.

Wedging failure: The initial misalignments and/or coeflicient of friction are large
enough such that the forces generated during two point contact will always
equal the applied insertion force. When wedging occurs, often the only way
to proceed with the assembly without damaging the parts is to reverse the

direction of the insertion.

Failure modes involving jamming during one point contact and friction induced
reaction forces during chamfer crossing are not considered here.

The chamfer crossing failure mode may be overcome by increasing the accu-
racy of the part alignment or by increasing the chamfer size of the parts, although
such a part design change may not always be possible. The jamming failure mode
may be overcome by applying a larger insertion force along the hole axis without
proportionally increasing forces in the perpendicular directions. Many mechani-

cal manipulators can apply forces which are much greater than those needed to
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Figure 2.3: Parameters for the two-dimensional peg in hole assembly (from [201]).
overcome jamming. The chamfer crossing and wedging failure modes are often the
most constraining and will be used to quantitatively evaluate the performance of
assembly systems.
The criterion for avoiding the above failure modes are derived in [201]. The
criterion for chamfer crossing and wedging are included here (refer to Figure 2.3).
e To cross the chamfer we need
!eﬂl < Lchamfnr (21)
e To avoid wedging we must have
c
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i is the coefficient of friction and ¢ is the clearance ratio

R—r
7

Cc =

Equations (2.1) and (2.2) give an analytical technique for determining the limits
of the assembly tasks which can be performed by an assembly system based upon

the translational and orientation errors of the system.

2.4 Manipulator Repeatability, Accuracy and Local

Accuracy

In this section, definitions of terms related to the accuracy of a manipulator are

reviewed.

What Should be Measured?

Repeatability and accuracy are each often specified by a single number in the
literature; presumably the maximum value. Since the location of the manipulator
near some specified position can be described as a random vector (see Section 2.7.3),
the specification for these errors should be given as moments (actually sample
statistics) of the probability density of the components of the vector. Since it is
often reasonable to assume that the distribution is approximately Gaussian shaped
and that it is symmetric in all directions, it is sufficient to give just the second
moment to describe the stochastic behavior about the mean. The sample standard
deviation [53] is the metric used in this thesis.

Repeatability and accuracy should be specified for all degrees of freedom. Often

robot specifications from the manufacturer only include translational repeatability.

Robot Repeatability

Robot repeatability is defined to be the capability of the robot to return to a pre-
viously visited location; that is, a particular location where the joint angles were
recorded. The robot may return to this position using any path in the workspace.
Some other definitions of repeatability assume that the manipulator always ap-

proaches from the same direction.
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Repeatability is usually measured by making a number of readings the location
of the manipulator after it has moved to a particular position. An accurate measur-
ing device such as a theodolite [117,203], a set of dial gages [186] or a part position
sensor such as the one described in Chapter 4 is used to take the measurement.
In between measurements, the manipulator should move each of its joints through
a significant fraction of their full range. During an assembly procedure, the robot
might approach a previously specified position using a different path from that
used during the teaching process. It might also execute a different path to contend
with certain part misalignments. Thus, for an accurate repeatability measure, the

test should entail approaches through different paths.

Robot Accuracy

Accuracy is the ability of a manipulator to move to a specified position in its
world coordinate frame. This is a difficult quantity to measure because the actual
location of the world coordinate frame with respect to observable robot frames is
usually not known precisely. A good approximation to the accuracy measurement
may be obtained using a sensing system which can measure the position of the
end effector of the robot with respect to an arbitrary coordinate frame throughout
the workspace. A “best fit” world frame may then be found from data taken over
the entire workspace [182]. An absolute error may then be calculated from this

approximate world frame.

Local Accuracy

Local accuracy is the accuracy of the manipulator within a limited volume with
respect to an arbitrary base coordinate frame. This base frame is often the center of
the specified volume of interest. This specification is more appropriate in a position-
sensor-based assembly system since measurements and corrections are always made
within a small volume about a nominal position. Relatively large inaccuracies
which might occur near the bounds of the workspace do not affect a measurement

of the local accuracy near the center of the workspace.
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Step  Task
0. Teach task, calibrate system.

Feed and precisely orient part.
Acquire part.

Move to mating approach position.
Mate part.

B W N e

Table 2.1: Assembly procedure for the a priori suppression method of error elimi-

nation.

2.5 Assembly Procedure Using the A Prior: Error
Suppression Method

As an assembly system which relies solely on the precise location of the parts and
the precise motion of the manipulator, the assembly procedure for the a prior:
suppression method is deterministic; that is, it is not altered by the state of the
system. Since all of the part locations are precisely known, the job of the manipula-
tor is to go to one of these positions, grasp the part, reposition it over the assembly
and mate it. Table 2.1 gives the assembly procedure for the a priori suppression
technique. The method used to teach the task to the manipulator is usually the
“teach by showing” method. In this teaching method, the operator digitizes robot
positions by positioning the manipulator with a teach box.

Alternatively, an offline programming technique may be used to teach the task
to the robot (see References [29,114] for overviews). In this teaching method,
a model of the workspace is stored in the computer. The assembly sequence is
input by the user and the task is either automatically or manually generated.
A manually generated task usually involves a user interacting with a computer
aided design and graphics system, planning manipulator motions and checking for
interference. Present offline programming systems do not model certain physical
phenomena and do not offer the programmer much assistance with some of the more
important issues in planning the assembly. Since forces between parts, friction, and
dimensional tolerances are not usually modeled, assembly failure modes cannot be

predicted.

Some experimental offline programming systems attempt to model some impor-
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tant physical interactions. Part clearances and tolerances are taken into account
in [34,189] and planning of fine motion with friction is dealt with in [36,115]. Some
authors have dealt with the grasp planning issue [142,164].

In order that the actual assembly environment conform closely to the model,
the elements of the assembly system must be referenced to the world coordinate
frame. This may either be done by accurately jigging the components or by having

the manipulator calibrate their location.

2.6 Assembly Procedure Using the Measurement and
Removal Method

A sensor-driven assembly system relies on a sensing device to determine the location
of certain part features with a precision sufficient for required assembly tasks. A
sketch of such a system is shown in Figure 2.4. The feature sensing occurs just prior
to the part being mated to the assembly. In order to avoid specialized fixturing,
reduce the amount of uncertainty in the position of the mating part, and reduce
user introduced teaching errors, it may be desirable to equip a system with two
part position sensors; one sensor to measure the location of the part in the assembly
and one to measure to position of the part in the robot end effector (in some cases
it may be possible to use a single sensor for both functions).

Manipulator mounted vision sensors have previously been used in an attempt
to locate parts prior to grasping them [4,23]. Because significant part positioning
errors may occur during part grasping, part sensing should occur after the part has
been firmly grasped. A stationary sensor mounting was chosen over a manipulator

mounting for the following reasons.

o The best features to sense are the mating features of parts. If the sensor
were mounted on the manipulator, the mating feature may be difficult to
sense since it will most likely face away from the upper part of the robot
arm.

e With a manipulator mounted sensor there is limited flexibility in part orien-
tation during sensing. Only the joints between the sensor mount and the end

effector are available for reorientation prior to sensing. Additional degrees
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Figure 2.4: Sensor-driven assembly system.
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of freedom would be required for arbitrary part positioning relative to the

sensor.

e If the measurement is made relative to the world frame rather than to the
robot frame, the positioning of the part in the assembly is less dependent on
the calibration between the sensor and the manipulator. This means that the
manipulator may be moved slightly or substituted with an entirely different

manipulator without having to reteach the assembly task.

2.6.1 Assembly Procedures for Systems Using One and Two

Sensors

The basic assembly system consists of one or two part position sensors, a six degree-
of-freedom mechanical manipulator, an end effector which can firmly grasp all
required parts, and a part orientation and delivery system. It is not required that
the end effector fixture the position of a part, merely secure it so there is no relative
motion between it and the last link of the manipulator. Only approximate part
orientation is required at the feeder. The precision of the feeding-orientation device
depends upon the size of the sensing volume of the part position sensor. If only a
single part position sensor is used, an assembly jig which locates the base part of
the device being assembled is also required.

Table 2.2a lists the steps involved in a typical sensor-driven assembly task with a
single sensor and Table 2.2b describes the procedure for a system with two sensors.
A calibration procedure must first be performed to find the transformation between
each sensor coordinate system and the robot coordinate system.

For the single sensor system, the actual assembly procedure is also preceded
by a teaching session where the user digitizes two nominal manipulator positions:
a position which aligns the part with the assembly and a position in the vicinity
of the active sensor volume. Alignment to the assembly is performed by either
“eyeballing,” using gaging instruments, or by guiding the manipulator through
trial-and-error insertions. During teaching, the sensor system records a nominal
feature location with the part positioned at a sensing location. This sensor reading
is used as a baseline reading for subsequent measurements. The baseline reading is
the “correct” sensor reading for the system to assemble the part using the nominal

program learned during teaching. During an assembly task, commanded robot
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Step Task Step Task

0. Teach task, calibrate system. 0. Calibrate both sensors to robot.

1. Feed and grossly orient part. 1. Sense part feature in assembly.

2. Acquire part. 2. Feed and grossly orient part.

3. Position to nominal sensor position. 3. Acquire part.

4. Sense part feature. 4. Position to nominal sensor position.

5. Move to corrected approach position. 5. Sense part feature in end effector.

6. Mate part using corrected path. 6. Move to corrected approach position.
7. Mate part using corrected path.

b.

Table 2.2: Assembly procedures for a typical sensor-driven assembly tasks. a.

Procedure for a single sensor system, b. Procedure for a dual sensor system,

positions are calculated based on differences between a current reading and the
baseline reading. The calculated robot positions create small alterations to the
nominal robot program which cause part misalignments to be nullified.

In the dual sensor system, the task need never be directly taught to the manip-
ulator. When the mating features are sensed by the two sensors, the necessary part
reorientation may be directly calculated from the sensor data and the sensor-robot
calibration.

For a system with a single part position sensor, the assembly procedure starts
with the robot acquiring the part and bringing it to the sensing position. The sensor
takes a reading and while the computer is processing the image, the manipulator is
free to transfer the part to the vicinity of the assembly. After processing the sensed
information, the computer calculates the transformation from the sensed feature
position to the previously recorded feature position. The robot is then instructed
‘to execute the transformation which reorients the part for assembly.

In a system with two part position sensors, the part in the assembly is sensed
in the first step. Depending upon the cycle time and the processing time, it may

be possible to use a single set of image processing hardware for both images.

2.6.2 Coordinate Frame Definitions

The following are abbreviations used to specify the location of a particular coor-

dinate frame of the assembly system (Figure 2.4 shows the approximate location
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of these frames). The convention for representing rigid transformations is given in
Section 2.7.2.

W: The world frame. This is the world coordinate frame of the robot.
WA This is the apparent world frame as defined by the robot’s axes near the assembly position.
R: The robot coordinate frame. This is the frame associated with the robot grippers.

A: The assembly frame. This is the frame associated with the mating part in the assembly. It is

assumed to be fixed with respect to the world frame.

A A: The assembly approach frame. This is the frame associated with the position just above the
mating part. It is typically associated with the position of the robot when it is holding the

part just over the assembly.

S: The sensor frame. This frame is associated with the image plane of the sensor camera. It is
fixed with respect to the world frame. It also refers to the robot location in the vicinity of

the active sensor volume.

P: The part frame. This is fixed to the part and is located at the feature to be sensed.

2.6.3 Correcting Sensed Misalignments

The system’s knowledge of the required task is derived from the teaching phase.
Deviations in part position from those defined during the teaching phase must be
compensated by altering the robot’s path. In this section, the transformation which
aligns the part to the mating part is calculated.
The position of the sensed part feature with respect to the gripper frame is (see
Figure 2.5)
Frp = TR ST 1 5T, (2.3)
where T2 is the calibrated transformation from the sensor frame to the world
frame, STp, is the part feature position with respect to the sensor and Tg, is the

robot position while sensing is taking place. The robot position which will move

the part back to the nominal sensing position, STﬁjf‘Ch is

Srpvealib =1 Srpteach Repn—1
Ty Tp" "Tp

— ST;{}lib -1 TP ST;;,libTRN (24)

wet toack
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Sensor

Figure 2.5: Calculation of the robot to part transformation.

where

— Srpteach Srp 1
P(u‘!,lr,ru‘h o T’)o, I‘PS
and 'QT%Z“h is the nominal feature position with respect to the sensor during teach-
ing.
When the robot “shows” the part to the sensor during the execution of a task,
. . o, 1 . .
it moves to the same sensing position as the one during the teaching phase (T, ==

Ti,‘{g“'h). Thus, the corrected robot position near the assembly approach position is

— teach 1

TRAA - TRS,A A TRS ,corr
_ teach Srpealib - 1S Srpcealid rptcach &
- Tfl’,,-,",\A TW’ Tl)url,teuch TW T s (2'0)

where T'I;‘:C: . is the command transform from the sensing position to the assembly
approach position during the teaching session. Iiquation (2.5) gives the corrected
assembly approach position as a function of the deviation of the location of the

part from the taught position.
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2.7 Classification and Analysis of Errors

In this section methods for predicting the errors in an assembly system are pre-
sented in order to determine the specifications for a part position sensor. First a
calculus for manipulating position errors is discussed, then errors from propagation
of uncertainties in initial part positioning, robot motion commands, internal kine-
matic models, sensor readings, and sensor-frame to manipulator-frame calibration

are explored.

2.7.1 Assumptions

In order to simplify the analysis we make the following assumptions.

e Robot position is specified to (not read from) joint encoders whenever possi-

ble. This avoids doubling the robot repeatability error.
o All errors are small and Gaussian (where applicable).

e Inaccuracies in the robot’s internal kinematic model (differences between
commanded and actual motion) may be accurately modeled by a transfor-
mation error (small rigid rotation and displacement) in its world coordinate

frame and a finite robot repeatability.

A robot independent representation is used and exact kinematics are not modeled;
thus, only approximate dependencies may be examined with this error model. The
magnitudes of position errors as a function of the position of the three joints of a

spherical wrist are analyzed in Appendix D.

2.7.2 Representation of Rigid Transformations

Homogeneous transformation matrices (4 X 4 matrices — see [147]) are used to
represent rigid transformations and are denoted by the boldface letter T. The
subscript denotes the object that the transform refers to. The second level of
subscript signifies the start and end region specified by the transform. The optional
left superscript denotes the reference frame in which the transform is defined. This

superscript defaults to the world frame (W). For example, the transformation of a
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Frame B

Framc A <=

Wo_ﬂd Frame

Figure 2.6: Graphical representation of a rigid transformation. The transformation
shown, T4 p, is from frame A (six coordinates) to frame . The extra line from
the world frame to the transformation indicates that the transformation is specified

with respect to this frame.

part from the sensing position to the assembly approach position with respect to
the sensor frame is Tp , .

A rigid transformation may also be thought of as a vector in six space start-
ing at a set of initial coordinates (3 translations and 3 rotations) and ending at a
set of final coordinates. We may graphically represent a rigid transformation in a
three-dimensjonal subspace (say the space defined by the translation coordimates
z, y, and z) projected into two-dimensions. This is a transformation graph. In
order to differentiate between a transformation and a 3-vector, the transformation
is drawn as a double arrow (sce Figure 2.6). An extra line extends from some point
in the subspace to the transformation which indicates the frame from which the
transformation is specified. If the transformation is defined in the frame associ-
ated with the starting coordinates, the extra line need not be drawn. A certain
transformation may be found from a transformation graph by tracing through the
graph. Tracing backwards over a transformation means that the inverse of the
transformation should be used; thus, the transformation from B to A in the graph

in IMigure 2.6 is T',;,’B.
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2.7.8 Representation of Errors

Errors in a transformation are composed of a displacement error and a rotation
error, each having a magnitude and a direction; thus, we can represent each of

them them as a random vector!

62 az
€= € (, =1 o
€2 a;

An element of the displacement error vector, ¢, is just the cartesian error (distance
from the origin) times the appropriate direction cosine of the unit vector pointing
in the direction of the error. An element of the rotation error vector, &, is the
total rotation error angle times the appropriate direction cosine of the unit vector
pointing in the direction of the axis of rotation.

We now define a random transformation matrix, AT, as the homogeneous trans-
formation matrix which is associated with a random displacement error, €, and a
random rotation error, &. This transformation is a function of a vector of six

variables

M2

6T =
&
The statistics of the random transformation matrix are governed by the six dimen-
sional joint probability density function (PDF) p57(6~T0). This density function
gives the distribution of probability for the components of the rotation and dis-
placement error vectors. A sample joint three-dimensional PDF is sketched in
Figure 2.7. The density of the “cloud” represents the probability density. In gen-
eral the joint PDF’s for transformation errors have a zero mean (the expected value

for the error vector is E[6T =[000000]7).

2.7.4 Combining Errors From Independent Sources

The PDF of a random transformation error which is the sum of N independent

random transformation errors

6T = 6T, + 6Ty + -+ 6Tn

1A random vector is a one dimensional matrix of random variables. It is denoted by a ~ over a

symbol.
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Figure 2.7: Three dimensional probability density function.

may be found by convolving the component PDF’s [53]
Per(8T0) = Py (6T10) ® Py, (6T20) ® -+ ® Py, (6T 0) (2.6)

where ® is the convolution operator. Figure 2.8 shows a sketch of the result of

convolving two independent planar displacement error PDF’s.

Simplifications for Azisymetric Probability Density Functions

If the component PDF’s are symmetric in ¢, €,, and €, and also symmetric in
oz, oy and o, then rigidly transformed PDF’s are identical to the untransformed
PDF’s (see Section 2.7.7).

Transformation of Errors in Different Reference Frames

In order to combine their PDF’s, all transformation errors must be specified in the
same coordinate system. If the errors are specified in different coordinate systems,
the PDF’s must undergo a coordinate transformation to bring them to a base
coordinate system. For the case of N error transformations each specified in a

different frame, #,..., Fy
ATy, 78Ty, ..., "M6TxN
we must first transform them to the same frame to obtain

§T = 6T, + 76Ty + - 1 6T (2.7
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Figure 2.8: Result of convolving two two-dimensional probability density functions.

before convolving their PDF’s. If, however, the PDF’s are symmetric, the errors

may be combined without transforming to the same coordinate system

6T = T6T, + 76Ty + -+ + "™6Ty. (2.8)

Gaussian Distributed Errors

If the PDF’s of components of a sum of transformation error matrices are Gaussian;
that is, of the form

!

~ 1

1 ~ 71 ~
p{T(éTo) = € p[-i 5T0 PCléTQ],

—— _ex

(27)* [Pz

where P is the covariance matrix (diagonal for symmetric PDF’s) defined by
C o s T

E[6To6T, ],

where E is the expectation operator, then the result of the convolution of N PDF’s
is a PDF which is also Gaussian. The width (standard deviation) of each dimen-

sion of the resulting Gaussian is the square root of the corresponding diagonal
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component of P or

where the index 7 is taken over the six dimensions of 6T and o is the width in

the 7** dimension of the PDF of the 7** transform error.

2.7.5 Random Transformations

A random transformation, AT, is a homogeneous 4 x 4 matrix whose rotation
and translation components are random variables (Section 4.1). It describes the

difference between a coordinate frame with uncertainty, T 4, and its mean, T 4,
Ta=ATTa (2.9)

Aside from having random variable components, this description is slightly
different from the differential transformation, A, described in Paul [147]. The
relationship between a random transformation, AT, and Paul’s differential trans-
formation, A, is

A=AT-1

where I is the identity transform. The two representations have similar proper-
ties and many of the relationships derived in [147] are used here. The random
transformation representation was chosen over the differential transformation rep-
resentation because random transformations are homogeneous matrices and may

be manipulated in the same manner as deterministic transformations.

2.7.6 Relative Random Transformations

A random transformation may describe the difference between a transformation

and its mean in the global coordinate system as well as in a local coordinate system
Ta=Ts“AT (2.10)

where “AT is relative to frame T 4.
The relationship between the relative random transformation and the global

random transformation may be found by equating Equations (2.9) and (2.10)

AT = T, (AT)T 4. (2.11)
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This is a coordinate transformation of the random transformation from the world
frame to the frame A. If we assume the mean transformation is of the form
_ Ao a d
TA - 3
0 0 0 1

where 7, 0, and a are unit vectors in the respective local z, y, and 2 directions and
d is the vector from the origin of the world frame to the origin of the frame T4,
then the vector components of the relative random transformation with respect to

the global components are (follows from Paul’s derivation [147])

3>
o

(2.12)

joli
I

[}
Q

0
joi

>
®

5
Il
>
=
Q
X X X

) +8) ¢ (2.13)

f=}]
—~~
—
A

Alternatively, if we describe the transformation, T 4, as a rotation by an angle,
f, about an axis, fc, then a translation by a vector d then the rotation vector

corresponding to the relative random matrix, AT is
A = (k- &) + sin(8) (k x &) + cos(8)|& — k(k - &)] (2.14)

Thus the magnitude of the rotation error is the same but the direction of the
original rotation error axis, |T§"|’ has been rotated about the k axis by an angle 6.

The displacement component of AT in vector form is
Y = k(k-€) +sin(0)k x & + cos(0)[¢ — k(k - )] + (2.15)
(&-k)(d x k) + sin(8)[k(d - &) — &(d - k)] + cos(0)[d x (& — (&~ k)k)].
The first line of the above expression is the contribution of displacement error
vector, €, after being rotated. The second line is the displacement due to the
rotational uncertainty, &, of the commanded coordinate frame.

Unlike the rotation error, the magnitude of the displacement error is a function
of the direction of the frame T 4. The contribution from “¢ is a displacement of the
same magnitude as ¢ but rotated about axis k by the angle —#. The contribution
from & depends upon the relative directions between &, k, and d. Thus, the
magnitude of the displacement error of the relative transformation is function of

the location of the original frame, Ta4.
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2.7.7 Identification of Sources of Error

Position errors in assembly systems are usually generated from sources in differ-
ent locations in the workspace. The following sections analyze some manipulator

dependent errors.

Errors due to Transformations of Frames with Uncertainty

Assume that a coordinate frame, T 4 has an error associated with it
Ta = Ts*AT,, (2.16)

where T 4 is the mean (deterministic) frame and “AT 4 is the homogeneous trans-
formation matrix (probabilistic) describing the transformation of the actual with
respect to the mean frame. “AT 4 has a zero rotation and displacement mean (the
expected value of the associated vector is [0 0 0 0 0 0]7). Post multiplication
implies that the transformation is carried out with respect to the mean frame, T 4.

We are interested in investigating the positional error after the frame T4 has
undergone the commanded transformation T¢ (deterministic). The final position

is

Tr = TcTa
= TcTA"AT,. (2.17)
The final mean position is
Tr = TcTa. (2.18)

The error in the final position with respect to the mean final position is |[from
Equations (2.17) and (2.18)]

AT, = T 'Tr
= “AT,. (2.19)

Thus, the magnitude of the relative error is insensitive to rigid transformations;
however, the direction of the error vectors change with respect to the world frame
(since each of the probabilistic error matrices are relative to the nominal transfor-

mation). Symmetric PDF’s remain invariant through rigid transformations.
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Errors Due to Moving Through Transformations with Uncertainty
Here we assume that the commanded transformation, T, is in error
Te = TeATe, (2.20)

where T¢ is the mean (deterministic) transformation and “AT¢ is the relative
homogeneous transformation matrix (probabilistic) describing the transformation
of the actual with respect to the mean commanded transformation. The final

position of frame T 4 after undergoing transformation T is

Tr = TcTa
= T¢ATcTa. (2.21)

The error in the final position with respect to the mean final position is

ATy = T;'Tk
= T,'AT:Ta. (2.22)

This is just a coordinate transformation through the transformation T4. This
makes sense since Equation (2.20) may be thought of as an error defined in the

world frame, AT 4 = “AT¢, which is associated with the initial frame T 4.

Errors Due to Moving in a World Frame with Uncertainty

In this case we assume the world coordinate frame is in error. Errors in robot
motion due to the robot’s internal kinematic model may be modeled by errors in

the world frame (see Figure 2.9).
Tw: = Tw"ATw,

or
YATw = Ty Tw: (2.23)

where Ty is base world frame and Ty is frame about which commands are exe-
cuted and WATy is the relative transformation between the two. We have assumed
that errors in the robot’s internal kinematic model may be modeled as errors in
the world frame. The desired final position, T, of a frame, T 4, after undergoing
transformation T¢ is

Tr =TcTa (2.24)
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Figure 2.9: Errors in part positions due to manipulator errors may be equivalentl
£

represented by errors in the location of the world frame.

t
We are interested in errors due to the commanded transtformation, T, being exe-
cuted in frame Ty, rather than in frame Ty . First we find the location of frame

T 4 with respect to the W' coordinate frame as

Wi =WAT T 4 L (2.25)

I
The final position after undergoing transformation T in the W' coordinate frame
is

Wipe = TV'Ty

= T"ATwTa
(2.26)
The final position in the W coordinate frame is
Tp="ATyTcAT, T 4. (2.27)

The error in the final position with respect to the W frame is

ATF = TF}ITF
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= T T"ATwTe"AT, Ta. (2.28)

This equation is essentially a nested form of Equation (2.22). The expression in the
square brackets is of the same form of Equation (2.22) and generates a relatively
small®? transformation matrix when WATy is small. Postmultiplying this matrix

by WAT;,1 gives another small transformation matrix
YATw = [TWATw Tc)VAT,

The equation then takes the form TZIWAT’*WTA which is of the same form as
Equation (2.22).

We now investigate errors which are deviations of a final position from a taught
position rather than from an absolute position. In a position-sensor-driven as-
sembly system, T4 might be the position of the manipulator during the sensing
phase and T¢ might be the commanded transformation which brings the parts into
alignment. Thus, T¢ would vary depending on the part position in the grippers.

Still assuming a world coordinate frame with uncertainty, the final position

during the teaching phase is [from Equation (2.27)]
Th*h = VAT TE*P AT, T 4. (2.29)

The final position during an assembly operation after sensing and calculating the
corrected command transform is identically Equation (2.27) where T¢ is now the
commanded transformation based on the sensed data. The difference between the

taught final position and the actual final position is

ATr = ATE T
= T)"ATwTc,,, AT T, (2.30)

where

TC — Ttéach -ITC.

diff

The deviations from the taught positions are a function of errors in the world

frame only if the commanded transformation, T¢, is different from the commanded

ZA small transformation matrix is the identity transformation rotated by a small angle and

shifted by a small displacement.
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transformation during teaching, T%%". The effect of Equation (2.30) is to rotate
the errors in WATy by the correction angle contained in Tcy;,,> and depending
upon the magnitude of the correction, the resulting error may be quite small.
In other words, if the part misalignments between the teaching phase and the
measurement phase is relatively small, the accuracy in part positioning is insensitive
to errors in the robot kinematic model.

If we assume that both the world frame uncertainty, YATy, and the difference
on commands, T¢,,,,, are random transformation matrices, we may obtain a PDF
for the vector associated with the resulting final position error, ATp.

The difference in the commanded transformation, T¢,,,,, in an assembly system
(such as the one described in Section 6.6) is due to the part being in a different
position in the gripper than the original position during teaching. We assume that
this change in position is small (small angle approximations are valid) and the
rotation associated with Tc,,,, is described by a vector (3; that is, the angle of
rotation is |#| and the axis of rotation is i*' For |0] small, the difference between
a vector Z and the rotation of ¥ by g is approximately 0 x 7. We assume the
displacement errors in ATy are described by a random vector, £, the rotation by
a random vector, &, and the displacement component of T, is d (deterministic).
We also assume that the PDF’s for é, &, and € are symmetric Gaussians with
characteristic widths o4, 0,, and o, respectively. It is helpful to note that the
one dimensional marginal PDF for any component of a multi-variate Gaussian is
Gaussian as well.

We are presently interested only in the errors from the uncertainty in the world
frame, "ATw. In Equation (2.30), the start frame, T4, is rotated by the negative
(the inverse rotation) of the rotation error vector, —é&, then by the difference in
part orientation, é, then by the rotation error, & When all rotations are small,
the resultant rotation error is

& =0 x & (2.31)
or
0203 — O30
oap = § bz — O a3 (2.32)

Or0p — 00

where 0;, ¢; and «; correspond to the ¢! component of é, € and & respectively. The
total displacement from the last two matrices in Equation (2.30) is ¢ + d + (& x d).




§2.8: Errors in the A Priori Error Suppression Method 71

The final displacement error in Equation (2.30) due to the contributions of ATy

(terms with & and € only) is

-,

ir=0x i+ (&xd). (2.33)

or
0y(€3 + a1dy — azdy) — 03(¢; + asdy — oy ds)

€r = 93(61 + azds — asdz) - 91(63 + aydy — Cdel) (2-34)
01(62 + O[3d1 - aldg) - 02(61 -+ O(gdg - agdz)

The PDF’s of the components of Z), & and ¢ are the marginal PDF’s of uncoupled
multivariate Gaussians which are independent Gaussian distributions. A number
of terms in Equations (2.32) and (2.34) are products of two random variables. The
PDF of the product of two Gaussian distributed independent random variables is a
modified Bessel function of the second kind, order 0 (see Appendix E). Convolving
a number of these Bessel functions gives a distribution which may be approximated
by a Gaussian (central limit theorem [53]). We make the assumption that the re-
sulting distributions of Equations (2.32) and (2.34) are Gaussians with covariance
matrices E(&rak) and E(érpék) respectively. Since we have assumed all of the orig-
inal distributions are symmetric and independent, the vectors of diagonal elements

of the covariance matrices are

2020%
Gl =4 20%0? (2.35)
20%0%

and
020! + (2d] + df + df)ol]
Gl =1{ 0?20+ (d? + 2d} + d3)o?] ;. (2.36)
0%[20% + (d} + di + 2d%)o?)

2.8 Errors in the A Priori Error Suppression Method
The sources of error which contribute to the misalignment of the parts include
e Positioning accuracy of the assembly jig.

¢ Inaccuracies in gripper constraint. These may be due to clearances between

the gripper interface and the part, slop in the gripper mechanism, etc.
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e Tolerance and clearance buildup in the parts already assembled.
e Robot repeatability.
e Teaching errors.

In an assembly system based on the a priori suppression method of error re-
moval, parts are initially constrained in jigs. The locations of the jigs, and therefore
the parts themselves, are referenced to some global frame in the assembly system.
The positional uncertainty for parts constrained in jigs depends on the geometry
of the parts and the method of constraint used by the jigs. To properly constrain
parts with varying dimensions, the clearance between the parts and the jigs must
be greater than the tolerances between the interfacing surfaces of the part. The
clearances must also be large enough so that the parts do not jam during removal.
Whether or not a part jams depends on the manner in which it is gripped as well
as the jig clearances.

The function of the manipulator is to reposition the parts to an assembled
position. In so doing it must retain the accurate position information provided
by the part constraint system while altering the part positions. Part grasping
is a critical phase where relatively large uncertainties in part location may be
introduced. Uncertainties may be minimized by either fixturing parts in specially
formed grippers or by maintaining the positional accuracy provided by the part
jigs.

Experiments with the system described in Chapter 5 showed that it is difficult
to maintain the accurate location of certain parts without using grippers which
constrain the part’s position. The act of grasping a part tends to displace the part
slightly and cause it to apply a force to the constraining jig. Due to finite system
compliance, once the part is free from the jig, this force may sometimes displace the
part significantly. The displacement was found to be above the acceptable bounds
for some of the assembly operations. A gripper which conforms to the shape of
parts (self-conforming gripper) would maintain the position of the part without
imparting unnecessary forces.

The part positioning accuracy of a system which constrains the location of a
part in the grippers is somewhat decoupled from the accuracy of part fixturing

provided by the part jigs. As long as the part jigs deliver the parts within a certain
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range, the parts will be reoriented by the grippers, although the constraint might
not be in all degrees of freedom.

Other contributing errors are not discussed here. Errors from tolerance stackup
and clearance buildup are presented in References [34,189] and robot repeatability

and teaching errors are discussed in Section 2.10.

2.9 Errors in the Measurement and Removal Method

This section discusses errors which are generated in a system using a single part
position sensor. All references to an assembly procedure refer to the task described
in Table 2.2a.

2.9.1 Error Sources

We model the errors in aligning a part with its mating part as being from five

major sources.

teaching robot positioning  robot kinematics  robot—sensor align.  calculated transform
~ ~ teach ~ ~ ~ ~
6TPAA.A = 5T'PAA_A + 6TRAA + 6Tfr4 shift robot 1 5Tfr, shift sensor T 5Tcommand
(2.37)

Errors not being considered in this analysis are those associated with the part
model inaccuracies and out of tolerance parts, non-orthogonal coordinate systems,
stackup of part tolerances and clearances and certain robot positioning errors.

Table 2.3 shows the errors which occur during the calibration and teaching
phase (step 0). and Table 2.4 shows the pertinent errors which occur during the
task execution phase (steps 1 through 6).

2.10 Errors in a Typical Assembly Task

This section describes a hypothetical peg-in-hole assembly task which is performed
using the measurement and removal method. Requirements for a part position
sensor which can reliably perform the task in conjunction with a PUMA manipu-
lator are calculated. Because of the relative sparsity of robot accuracy data in the

literature, some of the values of the errors may not accurately correspond to actual
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Step  Variable

Description

G oF calih
0o T

~ teach

Raa

~ teach

6Tp.,
Y teach

Py

~ teach

6 Paaa

Table 2.3: Vectors corresponding to transformation errors which occur during the

Error due to the calibrated alignment of the sensor

frame and the motion of the robot (world frame).

Error in the robot position at the assembly

approach.
Error in the robot position at the sensor.

Error in the location of the object by the sensor
in the sensor coord. frame.
Error due to initial alignment of the part and the

assembly. It is due predominantly to user errors.

calibration and teaching phase.

Step Vafiable
3 §Tr.
4 S§Tp.,
5 §Tr..

8T R wa

Table 2.4: Vectors corresponding to transformation errors which occur during the

task execution phase.

Description

Error due to positioning of the robot at the nom-
inal sensing position.

Error in the location of the object by the sensor
in the sensor coord. frame.

Error due to positioning of the robot at the nom-
inal assembly position.

Vector corresponding to transformation of the ap-
parent robot world coordinate system as the robot
moves from a position near the sensor to a posi-
tion near the assembly. This is due primarily to
inaccuracies of the robot’s internal model of its

kinematics.
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values for certain tasks or particular robots. Most of the numbers mentioned in
the following sections are standard deviations not maximum values.

The task consists of the insertion of a 1.75 inch (44.5 mm) square cross-section
aluminum peg into a steel hole with .004 inches (.1 mm) clearance on each side
(clearance ratio is ¢ = .0025). The hypothetical peg has small chamfers (about .02
inches or about .5 mm) and the hole is chamferless. The task corresponds to one

of the demonstration tasks in Section 6.6.1.

Analysis of the Task

In order to successfully complete the task, both the non-wedging criterion, Equa-
tion (2.2), and the chamfer bound criterion, Equation (2.1), have to be satisfied.
We assume that the center of rotational compliance is 10 inches (254 mm) from
the tip of the peg (L, = 10 inches) and that the displacements from the trans-
lational and rotational compliances are about the same. (% ~ L%). With these

assumptions, the criterion for successful task completion is

€p C
0 — < - 2.38
o+ 21, " ( )
and
leo| < Lenamyer- (2.39)

where ¢ is the initial translational misalignment perpendicular to the insertion
direction, 6 is the initial angular misalignment, and L.pamyer is the size of the
chamfer. :
The coefficient of friction between an aluminum peg and a steel hole is about

0.3 [19]. The wedging constraint becomes

.0025
O+ 2| < 2

°T 20 3
Thus for reasonable misalignment errors the wedging criterion is dominated by the
rotational offsets (|| >

€0
20

on the displacement offsets; thus, the errors decouple and may be investigated

) and the chamfer crossing failure criterion depends

separately.

The maximum allowable displacement error is [from Equation (2.1)] ¢ = + Lepamser =
+.02 inches (+ .5 mm). The maximum allowable rotational error is [from Equa-
tion (2.2)] 6o = £ = £8.5 milliradians (.5 degrees). If 98.8 percent of the assembly
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trials (5 standard deviations) are to be successful, the allowable standard deviations
in errors are o( 02
Oc, = —Lé—) = .008 inches (.2 mm)

2(8.5
o4, = —LS———)— = 3.4 milliradians (.2 degrees)

Teaching Errors

Teaching errors discussed here are those that the user is directly accountable for.
With a single sensor system, the alignment of the part with its mating part in the
assembly, 5~T§Z:Z, is the sole error source. All other errors during teaching are
accounted for in the commanded transform error. It is assumed that the human
operator can specify a position for a low clearance ratio mating operation to within
a standard deviation of .002 inches (.05 mm) in translation and .1 degrees (.0017
radians) in rotation. The values of these numbers will vary depending on what, if

any, measuring tools are used to aid the alignment.

Robot Positioning Error

Only the error in positioning at the assembly approach position is included here;
the robot positioning errors at other locations in the workcell are accounted for in
subsequent sections.

We assume that this error is equal to the robot repeatability (other local in-
accuracies of the manipulator are taken into account in the kinematics error).
Repeatability is the error associated with the robot moving to a position associ-
ated with a certain set of joint angles. It is usually measured by having the robot
move to random positions in between measurements at the position of interest.
Repeatability of the PUMA robot was investigated by Lozinski [117] and Whit-
ney, Lozinski and Rourke [203]. Maximum values rather than statistical data was
presented; therefore, the repeatability standard deviation is estimated to be i of
the reported value, $.004 = .001 inches (.025 mm). No information was found on
orientation repeatability in the literature.

The repeatability of a PUMA robot was measured with the prototype sensor.
The errors were of the same order as the sensitivity of the sensor so accurate

readings could not be made. The readings obtained may, however, be used as a




§2.10: Errors in a Typical Assembly Task 77

maximum bound for the standard deviation repeatability of the manipulator; they
were .001 inches (.025 mm) translation and .06 degrees (.001 radians) in rotation
(see Section 6.5).

Robot Kinematics Error

A robot does not move precisely in its workspace because of an imprecise model of
its link and joint parameters, finite position encoder accuracies, structural defor-
mations, transmission errors, etc (see [117,203] for a discussion). We assume that
errors from all of these sources may be modeled by an error in the location of the
world frame. A manipulator will execute a given transformation with respect to a
slightly different world frame as certain conditions change. If it were to execute the
transformation with respect to a single world frame, it would have infinite accuracy.
This error taken over a small region and combined with the robot repeatability is
a measure of the local accuracy of the robot.

Here we consider errors which are generated from inaccuracies in the location
of the world frame and deviations from a nominal taught path. The orientation
error is given by Equation (2.35) and the translation error by Equation (2.36). We
assume that the location of the part (measured location) from the nominal location
(taught location) is described by a symmetric Gaussian of width 1.5 degrees (.024
radians) in rotation, and the PDF for the error in the robot’s world coordinate
frame has width .05 inches (1.3 mm) in translation and .5 degrees (.008 radians)
in rotation. In addition, we assume that the starting coordinate of the robot is at
position d = [12 12 —12]T inches ([305 305 —305]” mm). From Equations (2.35)

and (2.36) the standard deviation of the final error in each direction is

Ocpimmutin 52 \/2(.024)2(.0()8)2 = .0005 radians (.015 degrees)

in rotation and

~ 1/.0242(2(.05) + 4(12)?(.008)%] = .005 inches (.12 mm)

€kincmaticn

in displacement.

Sensor-Robot Coordinate Alignment Error

Errors in robot motion due to a coordinate frame misalignment with the sensor

- may be modeled with the same equations as the robot kinematics error. In this
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case, the error in the world frame is due to the misalignment between the sensor
and the robot frames with the error specified near the sensed part feature (d = 0).
The error is assumed to be .05 inches (1.3 mm) in displacement and 2 degrees (.032

radians) rotation.

Oty vt 2 \/2(.024)2(.032)2 = .001 radians (.06 degrees)

~~ 1/2(.024)%(.05)? = .0017 inches (.043 mm)

€pennor—robot

Thus, the total error is fairly small even with a relatively large sensor-robot mis-

alignment.

Errors in the Commanded Transformation

The errors not yet accounted for include: the sensor measurement error (56T, ),
the sensor measurement error during teaching (557’;::_16h), the robot repeatability in
positioning the part at the sensor (6~TRA\.), and the robot repeatability in positioning
the part at the sensor during teaching (6~T;f_m). The errors which occur during
teaching become embedded in the nominal transform which moves the part from
the sensor position to the assembly approach position. After a number of executions
of the assembly procedure, the commanded transform may be manually corrected
until most of these embedded repeatable errors are nullified; thus, they were not
included in the error budget. The only remaining errors are 56~Tpﬂ and 5~TRS. The
robot repeatability is assumed to be .001 inches (.003 mm) in translation and .06

degrees (.001 radians) in rotation; thus, the error due to the calculated command

—  /S52 2

06,-:;11) mand OGP.\‘ + '001
— 2 2

oamxm mand Ua Py + '06

Total Errors in an Erxample Assembly System

transformation is

Quantitative values for the five error sources in Equation (2.37) are

0., = -008 = 1 /.002% +.001% +.005% + .00172 + .0012 + S¢2_inches  (2.40)

~

in translation and

Oap = .2 = /.1 +.06% +.0157 + .06 + .06% + 502 degrees (2.41)
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in rotation. Thus, the allowable standard deviations in measurement accuracy for

the sensor for the hypothetical peg-in-hole task are

S

o.,.. = .0055 inches (.14 mm)

€pg

Saapﬁ = .14 degrees (.0025 radians)
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Part Position Sensing for

Assembly

Chapter 3

3.1 Literature Review on Vision Based Part Sensing

3.1.1 Ranging Systems

Identification and three-dimensional position measurement of objects require a
sensing system which can detect points or features on the object’s surface. Contact
or non-contact sensing techniques may be used to acquire surface position data.
Non-contact systems are generally faster, more versatile and higher resolution than
contact systems. Vision based systems are usually highly flexible and have high
resolution, but are sometimes slow. Jarvis [99] presents an overview of various
ranging techniques including light stripe systems, texture gradients, range from
focusing, stereo disparity, range from motion, moire fringe contours, single spot
triangulation, and time of flight measurements. Joseph and Hansel [23] also give
an overview, but it is predominantly a concise version of Jarvis’s article. Benton
and Scarborogh [23] describe some commercially available systems. Techniques for
obtaining depth information not cited in the aforementioned literature include an
optical proximity sensor [100], projection of regular patterns [184], focusing a ring
pattern [102], and a technique which servos the light source on a positionable sen-
sor [12]. A discussion of some systems which use the light stripe ranging technique
follows.

The “light stripe” technique for obtaining three dimensional measurements of

81
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points on surfaces of objects uses a planar light source projected across the scene.
The light source is usually either a white light projected through a slit or a thin laser
dispersed in one direction through a cylindrical lens. The scene is usually sensed
with a video camera. Three-dimensional coordinates may be calculated for each
illuminated point in the image (see Section 4.2.2 for a more detailed description).
Shirai and Suwa [175] scanned a light stripe across a scene containing polyhedral
objects. They segmented the planar surfaces by detecting discontinuities in image
stripe slope and spacing. Planes were then fitted to the points from lines in a
group. Agin and Binford [5] fit data generated from multiple images of a scanned
light stripe to generalized cylinders. Their technique only worked well on parts of
objects which were close in structure to a generalized cylinder. Popplestone, Brown,
Ambler and Crawford [154] were able to construct models of objects composed of
planar and cylindrical surfaces from light stripe data. They clustered segments of

the light stripes and attempted to fit planes or cylinders to each cluster.

A sensor system developed at the National Bureau of Standards [7] used two
parallel light planes and a point source of light. Two images are taken. The first,
using the planar sources, is used to get range, pitch and yaw information. The
second, using just the point source, obtains position information perpendicular to
the optical axis and roll information. Because only two planes were used in the
NBS sensor, there was usually no confusion about which source a line in the image
corresponded to. In general, however, multiple planar sources can create stripe
to source correspondence problems [162]. By using multiple cameras, Echigo and

Yachida [56] solved the multiple stripe identification problem.

Cain [37] uses curve matching to inspect a motor end bell and a plastic bottle
from light stripe data. He is able to filter out spurious reflections by checking that
the direction of the ray from the source to the illuminated points in adjacent line
segments are consistent. Other references which use a light stripe ranging system
for object recognition or inspection include [4,23,129,130,155,156,183,195,198,209,.
This type of ranging system has also been extensively used for robotic welding (see
[3] for a reference list).

Accuracies in locating three dimensional features using these light stripe sys-
tems were usually not presented. Since little attention appeared to be given to
precise calibration, it is likely that the accuracies of these techniques were poor

with respect to the requirements for a vision-driven precision-assembly task (Sec-
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tion 3.4 discusses these requirements).

3.1.2 Model Based Object Recognition and Position Determination

Overviews of model based vision systems for identification and location of two and
three dimensional parts in a scene are given in [24,44,45]. A model based system
assumes a priori models of objects potentially in a scene. The goal is usually
to identify the objects and determine their position through matching with the
models.

Tkeuchi et al. [95] used a photometric stereo technique [206,93] to determine
the orientation of objects of known shapes and known surface properties stacked
in a pile. A needle map (surface normals plotted over the image) of the scene
was formed and used to segment the scene into regions corresponding to different
objects. The Extended Gaussian Image (EGI) [17,93,177] was then used to deter-
mine the orientation of a selected ohject. An EGI is essentially a mapping of all
the surface normals of an object onto the surface of a sphere. After determining
the object’s orientation, a grasp point for the object was chosen and a manipulator
was instructed to pick the object out of the pile. Brou [35] also used the EGI to
determine the pose of objects whose surface normals were calculated from data
points generated from a laser ranging system.

Oshima and Shirai [145,173,174] use a region growing algorithm on range data
to construct planar and quadric surface patches corresponding to surfaces of objects
in the scene. A kernel region from the scene is used to search possible models for a
correspondence (data driven search). Once found, regions surrounding the kernel
region in the candidate models are used to search through the scene for additional
matches (model driven search) until enough regions of a particular object are found.
This procedure is repeated for each object in the scene. Oshima et al. also report
using two other techniques: a photometric stereo-EGI technique for certain shaped
parts , and a polarimetric technique [106] for somewhat specular objects.

Faugeras et al. at INRIA [58,59,60] have developed a system which represents,
recognizes, and finds the position of three-dimensional objects from range data.
Objects are modeled by points, lines, planes, and quadric surfaces. They use a
hypothesize-and-test algorithm for determining the relative position of a sensed
object to a model. A rigidity constraint is used to help determine an initial hy-
pothesis. They have developed techniques for finding the best-fit rotation and
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translation which, although computationally efficient, fail to take into account the

relative measurement accuracy of each of the scene normal vectors.

Horaud and Bolles [91,28] have developed a three-dimensional feature based
system to recognize parts within a jumbled pile. The parts are modeled with
cylindrical and planar surfaces and a list of features is associated with each part
type. Light stripe range data is used to obtain points on the surfaces of the parts.
Edges between surfaces are found and classified as lines or arcs. An edge is matched
to possible model features then additional features in the image are used to guide
a tree search to converge to the proper interpretation. Tomita and Kanade [193]
have developed a similar feature based approach to the matching problem. They
find circular and straight surface bounding edges which are used as the matching
features. An initial match is found by essentially an exhaustive search. They
suggest that after a number of feature matches have been found, the hypothesized
transformation may be more accurately determined by performing a least squares

minimization of the errors between all the matched features.

Lozano-Perez and Grimson [76,77,78,79] use local constraints on geometric fea-
tures to prune an interpretation tree of possible three-dimensional object config-
urations. Earlier work described a similar technique for determining the position
of an object in a plane from sparse tactile data [63]. These techniques need only
sparse scene data; thus, the time needed to acquire three dimensional data from a
ranging system, which can sometimes take tens of minutes, may be substantially
reduced. Their technique is robust to partial occultation and is a possible solution
to the bin picking problem. This technique is very good at finding gross object
positions, but like most of the other systems described in the literature, does not
always produce accurate location information. This sparse range technique may,
however, be used to determine the pose of an object before it is grasped by a ma-
nipulator. Once grasped, the part may be repositioned so that a precise position

measurement may be taken by a sensor such as the one described in this thesis.

The following is a brief description of some other techniques which have been
used to determine the three-dimensional position of objects in a scene. Goad [67]
describes a technique which matches discontinuities in two-dimensional image in-
tensity to features in a part model. A matching hypothesis is formulated and
checked with multiple images from cameras positioned around the part. When a

certain number of edges agree in all views, the hypothesis is assumed to be valid.
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Herman [86] generates three dimensional models from light stripe range data by
finding discontinuities in the data (edges) using Hough transforms, then identifies
vertices and faces along with the edges to complete the model. Hébert and Kanade
[82] also model a part by its edges (they call this representation a 3-D profile). They
discretize the space of possible orientations of the object and precompute occluding
boundaries of a hypothesized image of the object in each of the orientations. In the
recognition phase, they attempt to match the precomputed occluding boundaries
to those in the actual image. The accuracy of the technique is highly dependent
on the fineness of the tessellation of the orientation space. Hough transforms have
been used in a non-feature based approach {18,111,127]. Edge curves, and planar

and quadric faces of objects in a scene may be found directly from the data.

3.1.8 Vision-Sensor-Driven Assembly

Sensor based assembly literature deals almost exclusively with force control and
active and passive compliance techniques (see [202] for an overview); very little
attention has been given to sensing in the alignment phase of an assembly task.
Shirai and Inoue [172] used a video camera mounted on the manipulator to monitor
a peg-in-hole insertion. Part alignment corrections were made as the assembly
progressed. Only two dimensional data was used and the bandwidth of the system
was very slow due to the image processing step. Inoue and Inaba [97] describe
a “hand-eye” system based on binocular stereo which can perform manipulations
with a length of rope. A commercial automated electronic component assembly
system (Automatix Multisert system) uses vision-driven assembly for both surface
mount and through hole components. Benton proposed using a light stripe system
to monitor and correct for errors in the the assembly of microswitch parts [23]. Park
[23] discusses this technique and some problems encountered, including sensing
positions of specular parts. Rutkowski and Benton [23] report on the algorithm
used to determine the pose. They use an iterative algorithm which transforms
imaginary data points in a part model until they align with the sensed data in the
laser stripe scene. Theoretical accuracy of part alignment for their system was .007
inches (.2 mm) and experimental accuracy under ideal conditions was .015 inches
(.4 mm). Experiments on real parts showed errors as much as .033 inches (.8 mm).

Test procedures and statistical results were not given.
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3.2 Locating Objects from Range Data

In this section, the question of which type of model fitting algorithm should be
used on raw range data is addressed. One method tries to fit the range data to one
of a number of previous observations of the part while another method tries to fit

an a priori mathematical model to the data.

3.2.1 Introduction

The precision of two techniques for finding the orientation of objects using range
data is investigated. The first method, a fitted boundary interpolation technique,
uses range sensor data recorded during a learning phase from many sensor scans of
a sample part at various precisely controlled positions about a nominal position.
This data is later used as the source for an interpolation routine which estimates
the exact position of a similar part based on data from a single scan. In the second
method, a feature locating technique, an accurate geometric model of the part fea-
tures of interest is used in conjunction with sensed data to calculate the orientation
and position of the part. Results from two-dimensional studies using these tech-
niques produce insight on the performance of the two algorithms in locating actual
three dimensional parts. Performance is evaluated as a function of the number of

data points, and the shape and the orientation of the object producing the data.

3.2.2 Method of Evaluation

The Sensor Model

A generalized three-dimensional range sensor is modeled in two dimensions by a one
dimensional camera array sensing contours (x, y coordinates of “visible” bound-
aries) of a two dimensional object (see Figure 3.1). The effect of discretization due
to the geometry of the sensing array and the finite resolution in range information
is studied. The width of the image and the precision of the range data are both
assumed to be represented by eight bit numbers (256 x 256 array).
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