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Learning and decision making in the brain are key processes critical
to survival, and yet are processes implemented by nonideal biological
building blocks that can impose significant error. We explore quantita-
tively how the brain might cope with this inherent source of error by
taking advantage of two ubiquitous mechanisms, redundancy and syn-
chronization. In particular we consider a neural process whose goal is to
learn a decision function by implementing a nonlinear gradient dynam-
ics. The dynamics, however, are assumed to be corrupted by perturbations
modeling the error, which might be incurred due to limitations of the bi-
ology, intrinsic neuronal noise, and imperfect measurements. We show
that error, and the associated uncertainty surrounding a learned solution,
can be controlled in large part by trading off synchronization strength
among multiple redundant neural systems against the noise amplitude.
The impact of the coupling between such redundant systems is quanti-
fied by the spectrum of the network Laplacian, and we discuss the role of
network topology in synchronization and in reducing the effect of noise.
We discuss range of situations in which the mechanisms we model arise
in brain science and draw attention to experimental evidence suggest-
ing that cortical circuits capable of implementing the computations of
interest here can be found on several scales. Finally, simulations compar-
ing theoretical bounds to the relevant empirical quantities show that the
theoretical estimates we derive can be tight.

1 Introduction

Learning and decision making in the brain are key processes critical to sur-
vival, and yet are processes implemented by imperfect biological building
blocks that can impose significant error. We suggest that the brain can cope
with this inherent source of error by taking advantage of two ubiquitous
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mechanisms: redundancy and sharing of information. These concepts will
be made precise in the context of a specific model and learning scenario
that together can serve as a conceptual tool for illustrating the effect of
redundancy and sharing.

Motivated by the problem of learning to discriminate, we consider a
neural process whose goal is to learn a decision function by implementing
a nonlinear gradient dynamics. The dynamics, however, are assumed to
be corrupted by perturbations modeling the error that might be incurred.
This general perspective is intended to capture a range of possible learning
instances occurring at different anatomical scales. The neural process can
involve whole brain areas communicating by behavioral, motor, or sen-
sory pathways (Schnitzler & Gross, 2005), as in the case of the multiple
amygdala-thalamus loops assumed to underpin fear conditioning, for in-
stance (LeDoux, 2000; Maren, 2001). Interacting local field potentials (LFPs)
may also be modeled as both direct—by long-range phase locking, for ex-
ample, in olfactory systems (Friedrich, Habermann, & Laurent, 2004)—or
indirect measurements of coordination and interaction among large assem-
blies of neurons. The learning dynamics may alternatively model smaller
ensembles of individual neurons, as in primary motor cortex, though we do
not emphasize biological realism in our models at this scale. Nevertheless,
one may still draw useful conclusions as to the role of redundancy and in-
formation sharing. The error too may be treated at different scales and may
take the form of noise intrinsic to the neural environment (Faisal, Selen, &
Wolpert, 2008) on a large, aggregate scale (e.g., in the case of LFPs) or on a
small scale involving localized populations of neurons.

If there is noise corrupting the learning process, an immediate question
is whether it is possible to gauge the accuracy of the predictions of the
learned function and to what extent the organism can reduce uncertainty in
its decisions by taking advantage of a simple, common information-sharing
mechanism. If there is redundancy in the form of multiple independent
copies of the dynamical circuit (Adams, 1998; Fernando, Goldstein, & Sza-
thmary, 2010), it is reasonable to expect that averaging over the different
solutions might reduce noise via cancellation effects. In the case of learning
in the brain, however, this approach is problematic because neurons are
susceptible to saturation of their firing rates, and on large scales aggregate
signal amplitudes will also saturate; the macroscopic dynamics that neu-
ron populations and assemblies obey can be strongly nonlinear. When the
dynamics followed by different dynamical systems are nonlinear, one can-
not expect to gain a meaningful signal by linear averaging (see Tabareau,
Slotine, & Pham, 2010). As a simple illustration of this phenomenon, con-
sider a collection of noisy sinusoidal oscillators allowed to run starting
from different initial conditions, with identical frequencies and indepen-
dent noise terms. The oscillators will be out of phase from each other, so
an average over the trajectories will not yield anything close to a clean
version of a sinusoid at the desired frequency. On the other hand, it is
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reasonable to suppose that synchronization across neuron populations or
between macroscale cortical loops may provide sufficient phase alignment
to make linear averaging, and thus “consensus,” a powerful proposal for
reducing the effects of noise (Tabareau et al., 2010; Masuda, Kawamura,
& Kori, 2010; Cao, Stewart, & Leonard, 2010; Young, Scardovi, & Leonard,
2010; Poulakakis, Scardovi, & Leonard, 2010; Gigante, Mattia, Braun, &
Del Giudice, 2009). Indeed, synchrony within a system of coupled dynam-
ical elements provides (quantifiable) robustness to perturbations occurring
in any one element’s dynamics (Needleman, Tiesinga, & Sejnowski, 2001;
Wang & Slotine, 2005; Pham & Slotine, 2007).

We will place much emphasis on exploring quantitatively the role of
synchrony in controlling uncertainty arising from noise modeling neural
error. In particular, we base our work on the argument that noisy, nonlin-
ear trajectories can be linearly averaged if fluctuations due to noise can
be made small and that fluctuations can be made small by coupling the
dynamical elements appropriately. In the stochastic setting adopted here,
synchronization refers to state synchrony: the tendency for individual ele-
ments’ trajectories to move toward a common trajectory in a quantifiable
sense. The estimates we present directly characterize the trade-off between
the network’s tendency toward synchrony and the noise, and ultimately
address the specific role this trade-off plays in determining uncertainty
surrounding a function learned by an imperfect learning system.

We further show how and where the topology of the network of neural
ensembles affect the extent to which the noise, and therefore uncertainty,
can be controlled. The estimates we provide take into account in a fun-
damental way both the nonlinearity in the dynamics and the noise. More
generally, the work discussed here also has implications in other related do-
mains, such as networks of coupled learners or adaptive sensor networks,
and it can be extended to multitask online or dynamic learning settings.
The difficulty inherent in analyzing dynamic learning systems, such as hi-
erarchies with feedback (Mumford, 1992; Lee & Mumford, 2003), poses a
challenge. But considering dynamic systems can yield substantial benefits:
transients can be important, as suggested by the literature on regularization
paths and early stopping (Yao, Rosasco, & Caponnetto, 2007). Furthermore,
the role of feedback and backprojections and attention-like mechanisms in
learning and recognition systems, both biological and artificial, is known to
be important but is not well understood (Hahnloser, Douglas, Mahovald,
& Hepp, 1999; Itti & Koch, 2001; Hung, Kreiman, Poggio, & DiCarlo, 2005).

The letter is organized as follows. In section 2 we consider a specific
learning problem and define a system of stochastic differential equations
(SDEs) modeling a simple dynamic learning process. We then discuss sta-
bility and network topology in the context of synchronization. In section 3
we present the main theoretical results, a set of uncertainty estimates, post-
poning proofs until later. Then in section 5, we provide simulations and
compare empirical estimates to the theoretical quantities predicted by the
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theorems in section 3. Section 4 provides a discussion addressing the sig-
nificance and applicability of our theoretical contributions to neuroscience
and behavior. Finally, in section 6, we give proofs of the results stated in
section 3.

2 Biological Learning as a Stochastic Network Model

The learning process we will model is that of a one-dimensional linear
fitting problem described by gradient-based minimization of a square loss
objective, in the spirit of Rao and Ballard (1999). This is perhaps the simplest
and most fundamental abstract learning problem that an organism might be
confronted with—that of using experiential evidence to infer correlations
and ultimately discover causal relationships that govern the environment
and can be used to make predictions about the future. The model realizing
this learning process is also simple, in that we capture neural communica-
tion as an abstract process “in which a neural element (a single neuron or
a population of neurons) conveys certain aspects of its functional state to
another neural element” (Schnitzler & Gross, 2005). In doing so, we focus
on the underlying computations taking place in the nervous system rather
than dwell on neural representations. Even this simple setting becomes in-
volved technically and is rich enough to explore all of the key themes. Our
model also supports nonlinear decision functions in the sense that we might
consider taking a linear function of nonlinear variables whose values might
be computed upstream. In this case, the development would be similar but
extended to the multidimensional case. The model may also be extended to
richer function classes and more exotic loss functions directly; however, for
our purposes, the additional generality does not yield significant further
insight and might raise biological plausibility concerns.1

2.1 Problem Setup. To make the setting more concrete, we begin by
assuming that we have observed a set of input-output examples {xi ∈ R, yi ∈
R}m

i=1, each representing a generic unit of sensory experience, and want to
estimate the linear regression function fw(x) = wx. When the square loss is
adopted, the total error incurred on the observations by fw is given by the
familiar expression

E(w) =
m∑

i=1

(yi − fw(xi ))2 =
m∑

i=1

(yi − wxi )2.

We will model adaptation (training) by a noisy gradient descent process,
with biologically plausible dynamics, on this squared prediction error loss

1In the sense that one would have to carefully justify biologically the particular
nonlinearities going into a nonlinear decision function on a case-by-case basis.



Synchronization and Redundancy 2919

function. The trajectory of the slope parameter over time, w(t), and its
governing dynamics may be represented in the biology in various forms.
Stochastic rate codes, average activities in populations of neurons and pop-
ulation codes, localized direct electrical signals, and chemical concentration
gradients are some possibilities occurring across a range of scales. The dy-
namical system may also be interpreted as modeling the noisy, time-varying
strength of a local field potential or other macro electrophysiological sig-
nal when there are multiple, interacting brain regions. We discuss these
possibilities further in section 4.

The gradient of E with respect to the weight parameter is given by
∇w E = −∑m

i=1(yi − wxi )xi and serves as the starting point. The gradient
dynamics ẇ = −∇w E(w) are both linear and noise free. Following the dis-
cussion above, we modify these dynamics to capture nonlinear saturation
effects as well as (often substantial) noise modeling error. Saturation effects
lead to a saturated gradient, which we model in the form of the hyperbolic
tangent nonlinearity,

ẇ = − tanh(a∇w E(w)),

where a is a slope parameter. Note that the saturated dynamics need not
be interpretable as itself the gradient of an appropriate loss function. The
fundamental learning problem is defined by the square loss, but it is imple-
mented using an imperfect mechanism that imposes the nonlinearity.2 The
error is modeled with an additional diffusion (noise) term giving the SDE,

dwt = − tanh(a∇w E(wt)) dt + σd Bt, (2.1)

where dBt denotes the standard one-dimensional Wiener increment process
with standard deviation σ > 0. This noise term σdBt and corresponding
error are due to intrinsic neuronal noise (Faisal et al., 2008), aggregated or
localized, and possible interference between large assemblies of neurons
or circuits and parallels the more general concept of measurement error in
networks of coupled dynamical systems.

2.2 Synchronization and Noise. We now consider the effect of having
n independent copies of the neural system or pathway implementing the
dynamics 2.1, with associated parameters {w1(t), . . . , wn(t)}. Since these dy-
namics are nonlinear, the effect of the noise cannot be reduced by simply
averaging over the independent trajectories. However, if the circuit copies

2Put differently, in our setting, the nonlinearity is not part of the learning problem,
and so the saturated gradient dynamics should not be viewed as the gradient of another
loss function.
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are coupled strongly enough, they will attempt to synchronize, and averag-
ing over the copies becomes a potentially powerful way to reduce the effect
of the noise (Sherman & Rinzel, 1991; Needleman et al., 2001). The noise can
be potentially large (we do not make any small-noise assumptions) and will
of course act to break the synchrony. We will explore how well the noise can
be reduced by synchronization and redundancy in the sections that follow.

Given n diffusively coupled copies of the noisy neural system and setting
a = 1 in equation 2.1, we have the following system of nonlinear SDEs,

dwi (t) =− tanh

[
m∑

�=1

(
wi (t)x� − y�

)
x�

]
dt

+
n∑

j=1

Wi j (w j − wi ) dt + σd B(i)
t , (2.2)

for i = 1, . . . , n, where B(i)
t are independent standard Wiener processes. The

diffusive couplings here should be interpreted as modeling abstract inter-
communication between and among different neural circuits, populations,
or pathways. In such a general setting, diffusive coupling is a natural and
mathematically tractable choice that can capture the key, aggregate aspects
of communication among neural systems. Electrical connections such as
those implemented by gap junctions in the mammalian cortex (Fukuda,
Kosaka, Singer, & Galuske, 2006; Bennett & Zukin, 2004) are also mod-
eled well by diffusive coupling terms when individual neurons are being
discussed; however, we emphasize that the system in equation 2.2 is a
conceptual model involving possibly large brain regions and do not make
assumptions at a level of biological detail that would invoke or require
gap-junction-type connectivity.

Each copy of the basic neural circuit is corrupted by independent noise
processes but follows the same noise-free dynamics as the others, mod-
ulo initial conditions. In fact these coupled systems may start from very
different initial conditions. We will assume for simplicity uniform symmet-
ric weights Wji = Wi j = κ > 0 when element i is connected to element j .
Defining (w)i to be the (scalar) output of the ith circuit, we can rewrite
system 2.2 in vector form as

dw(t) = −
(

tanh

[
m∑

i=1

(w(t)xi − yi 1)xi

]
+ Lw(t)

)
dt + σdBt, (2.3)

where L = diag(W1) − W is the network Laplacian and Bt is the stan-
dard n-dimensional Wiener process. The spectrum of the network Lapla-
cian captures important properties of the network’s topology and will
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play a key role. Finally, the change of variable Xt := w‖x‖2 − 〈x, y〉1, with
(x)i = xi , (y)i = yi , yields a system that will be easier to analyze:

d Xt = −(
tanh(Xt)‖x‖2 + L Xt

)
dt + σ̃dBt, (2.4)

where we have defined σ̃ := σ‖x‖2. The unique globally stable equilibrium
point for the deterministic part of equation 2.4 is seen to be X∗ = 0, which
checks with the fact that the solution to the linear regression problem is
w∗ = 〈x, y〉/〈x, x〉 in this simple case.

2.3 Role of Network Topology. The topology of a network of dynamical
systems strongly influences synchronization, to include the rate at which
elements synchronize and whether sync (or the tendency to sync) can occur
at all in the first place. Thus, the pattern of interconnections among neural
systems plays an important role in controlling uncertainty by way of syn-
chronization properties. In a network of stochastic systems of the general
(diffusive) type described in section 2, topology can be seen to influence
the robustness of synchrony to noise through the spectrum of the network
Laplacian. Laplacians arising in various interesting networks and applica-
tions have received much attention, in both biological decision making and
the context of synchronization of dynamical systems more generally (Kopell
& Ermentrout, 1986; Kopell, 2000; Jadbabaie, Lin, & Morse, 2003; Wang &
Slotine, 2005; Taylor, Tinsley, Wang, Huang, & Showalter, 2009; Poulakakis
et al., 2010).

We consider four important network graphs here, and these arrange-
ments will be helpful examples to keep in mind when interpreting the re-
sults given in section 3. The simplest graph of coupled elements is perhaps
the full all-to-all graph. This network is also the easiest to synchronize since
each element can speak directly to the others. The spectrum of the network
Laplacian λ(L) for this graph shows why it might be especially effective for
reducing uncertainty in the context of equation 2.3. With uniform coupling
strength κ > 0 and n denoting the number of elements in the network, one
can check that λ(L) = {0, nκ, . . . , nκ}. Denote by λ− the smallest nonzero
(Fiedler) eigenvalue and by λ+ the largest eigenvalue. Here λ− = λ+ = nκ ,
and it is these eigenvalues that control synchronization for any given net-
work. As we will show in theorem 1, the effect of the noise can be reduced
particularly quickly precisely because the nonzero eigenvalues depend on
both parameters, κ and n.

If fewer connections are made in the network, it becomes harder to syn-
chronize, and we move away from the all-to-all ideal. Figure 1 shows some
other common network graphs. The undirected ring graph, in the mid-
dle, has spectrum λi (L) = 2κ[1 − cos( 2π

n (i − 1))], i = 1, . . . , n. If the single
edge connecting the first and last elements is removed to make a chain, as
shown on the left in the figure, the network becomes considerably harder
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Figure 1: Examples of (undirected) network graphs.

to synchronize (Kopell & Ermentrout, 1986), although the spectrum of
the chain looks similar: λi (L) = 2κ[1 − cos( π

n (i − 1))]. This makes intuitive
sense because information is constrained to flow through only one path, and
with possibly significant delays. Finally, the star graph shown on the right
in the figure has spectrum λ(L) = {0, κ, . . . , κ, nκ}, and we can see that the
key Fiedler eigenvalue λ− = κ does not grow with the size of the network n.
The theorems in section 3 then predict that it will be impossible to increase
the synchronization rate simply by incorporating more copies of the neural
circuit. The coupling strength must also increase to make fluctuations from
the common trajectory (synchronization subspace) small. We will discuss
this case in more detail. As might be particularly relevant to brain anatomy,
random graphs and directed graphs may also be considered and have been
studied extensively (Bollobas, 2001).

In neuroscience-related models, each connection in a network has an
associated biophysical cost in terms of energy and space requirements. All-
to-all networks, with n2 connections among n circuits or neurons, is often
criticized as being biologically unrealistic because of this cost. However,
it has been noted that all-to-all connectivity can be implemented with 2n
connections using quorum sensing ideas (Taylor et al., 2009), wherein a
global average is computed and shared. The global average is computed
given inputs from all n elements, and this average is sent back to each cir-
cuit via other n connections. The shared variable may be communicated
by synapses or sensed chemically or electrically. Although quorum sens-
ing cannot realize any set of n2 connections, the global average may be a
weighted average, or there may be several common variables organized
hierarchically. This allows for a rich set of networks with O(n) connectivity
that behave more like networks with all-to-all connectivity for synchroniza-
tion and stability purposes. Furthermore, dynamics in the computation of
the quorum variable itself, when appropriate for modeling purposes, does
not necessarily pose any special difficulty for establishing synchronization
properties if virtual systems are used (Russo & Slotine, 2010).

The difficulty with which synchrony may be imposed can be normalized
by the number of connections in many cases to obtain a comparison between
synchronization properties of various graphs that take biological cost into
account. Using quorum variables where appropriate, graphs whose spec-
trums depend on n are thus roughly comparable on equal biological terms.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00183&iName=master.img-000.jpg&w=216&h=51
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Cost-normalized comparisons of synchronization properties are not always
possible or meaningful, however. Consider the ring and chain networks in-
troduced above. There is a difference of one edge between the two, but in
the noise-free setting, for example, the chain requires asymptotically four
times more effort to synchronize than the ring architecture (see Wang &
Slotine, 2005).

2.4 A Comment on Stability and Contraction. We turn to analyzing the
stability of the nonlinear system given by equation 2.4. We will argue that
this is difficult for two reasons: the presence of noise and the fact that the
(noise-free) dynamics saturate in magnitude. Indeed, without additional
assumptions, one cannot in general show that the system is globally ex-
ponentially stable. A common method for studying the stability properties
of a noiseless nonlinear dynamical system is via Lyapunov theory (Slotine
& Li, 1991); however, in the presence of noise, system trajectories along
the Lyapunov surface may not be strictly decreasing. Contraction anal-
ysis (Lohmiller and Slotine, 1998; Wang & Slotine, 2005) is a differential
formalism related to Lyapunov exponents and captures the notion that a
system is stable in some region if initial conditions or temporary distur-
bances are forgotten. If all neighboring trajectories converge to each other,
global exponential convergence to a single trajectory can be concluded:

Definition 1 (Contraction). Given the system equations ẋ = f (x, t), a region of
the state space is called a contraction region if the Jacobian J f = ∂ f

∂x is uniformly
negative definite in that region. Furthermore, the contraction rate is given by β,
where 1

2 (J f + J 	
f ) ≤ βI < 0.

An analogous definition in the case stochastic dynamics has also been
developed (Pham, Tabareau, & Slotine, 2009) and requires contraction of
the noise-free dynamics as well as a uniform upper bound on the variance
of the noise. However, for system 2.4, the Jacobian is found to be

J (w) = ‖x‖2diag(tanh2(w) − 1) − L ,

so that λ
(
J (w)

)
< −λ

(
L
) ≤ −λmin(L) = 0. The subspace of constant vectors

is a flow-invariant subspace, and L does not contribute to the dynamics
in this flow invariant space since L has a 0 eigenvalue corresponding to
its constant eigenvector. This difficulty can arise whenever one considers
diffusively coupled elements, and in such cases, the usual way around this
difficulty is to work with an auxiliary or virtual system (as in Pham &
Slotine, 2007) and study contraction to the flow-invariant subspace start-
ing from initial conditions outside. However, since tanh′(x) = 1 − tanh2(x),
we are still left with the difficulty that the noise-free dynamics can have a
convergence rate to equilibrium arbitrarily close to 0 as one travels far out
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to the tails of the tanh function; the system is not necessarily contracting.
Indeed, for any saturated dynamics, tanh

(
f(x, t)

)
, the rate can be arbitrarily

small. Thus, one cannot easily determine the rate of convergence to equilib-
rium using standard techniques. The analysis we provide in the succeeding
sections attempts to get around these difficulties by separately exploring
the system’s behavior in and out of the flow-invariant (synchronization)
subspace of constant vectors.

3 Controlling Uncertainty in Learning

In this section, we present and interpret the main results of the letter. The
argument we put forward is that noisy, nonlinear trajectories can be linearly
averaged to reduce the noise if fluctuations due to noise can be made small.
We show that the fluctuations can be made small by coupling the dynamical
systems and that one can precisely control the size of the fluctuations. In
particular, we give estimates that show that the trade-off between noise
and coupling strength among neural circuits determines the amount of
uncertainty surrounding the decisions made by the neural system. Proofs
of the theorems are postponed until section 6.

3.1 Preliminaries. We begin by decomposing the stochastic process
{Xt ∈ R

n}t≥0 into a sum describing fluctuations about the center of mass.
Let P = I − (1/n)11	, the canonical projection onto the zero-mean sub-
space of R

n, and define Q = I − P . Then for all t ≥ 0, Xt = P Xt + QXt .
Clearly, ker P = imQ is the subspace of constant vectors. We will adopt the
notation X̃t for P Xt and Xt1 for QXt (along with the analogous notation w̃t

and w̄t) and derive expressions for these quantities based on equation 2.4.
The macroscopic variable Xt satisfies

d Xt = 1
n

1	d Xt = −‖x‖2

n
1	 tanh(Xt) dt + σ̃√

n
d Bt (3.1)

and thus

d X̃t = d Xt − d Xt1

=−
(

tanh(Xt)‖x‖2 + L Xt − ‖x‖2

n
1	 tanh(Xt)1

)
dt

+ σ̃dBt − σ̃√
n

d Bt1. (3.2)

In terms of the original variable w, the fluctuations w̃t are purely due to
the noise, while w̄t parameterizes the average decision function. Because
the decision function we consider is linear, the uncertainty in the decisions
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is directly equivalent to uncertainty in the parameter w. We will study
the evolution of both the mean and the fluctuation processes over time;
however, to assess uncertainty, the central quantity of interest will be the
size of the ball containing the fluctuations (the “microscopic” variables).
We characterize the magnitude of the fluctuations via the squared norm
process satisfying

d‖X̃t‖2

2
=−

(
‖x‖2〈X̃t, tanh(Xt)〉 + 〈X̃t, L Xt〉

)
dt

+1
2
σ̃ 2(n − 1) dt + σ̃‖X̃t‖d Bt (3.3)

which follows from equation 3.2 applying Ito’s lemma to the function
h(X̃t) = 1

2 〈X̃t, X̃t〉 and the fact that 〈X̃t, dBt〉 = ‖X̃t‖d Bt in law.

3.2 Uncertainty Estimates. The first—and central—result says that the
ball centered at w̄ (the center of mass) containing the fluctuations can be
controlled in expectation from above and below by the coupling strength
and in most cases the number of circuit copies, via the spectrum of the
network Laplacian L . We note that lower bounds are typically ignored in
the dynamical systems literature, possible because they are less important
for stability analyses. We have found, however, that such bounds can be
derived in the case of saturated gradient dynamics and that control from
below can yield further insight into the problem of neural learning.

Let λ+ be the largest eigenvalue of L, and let λ− be the smallest nonzero
eigenvalue of L .

Theorem 1 (fluctuations can be made small). After transients of rate 2λ−,

(n − 1)σ 2

2λ+

(
1 − ‖x‖2

λ−

)
≤ E‖w̃(t)‖2 ≤ (n − 1)σ 2

2λ−

where w̃ = Pw(t).

Clearly the lower bound is informative only when λ− > ‖x‖2. Although
we do not explicitly assume any particular bound on the size of the examples
‖x‖, it is reasonable that λ− � ‖x‖2 since λ− can depend on the number of
circuits n and will always depend on the coupling strength κ , which can be
large. Large coupling strengths can be found in a variety of circumstances,
particularly in the case of motor control circuits (Grandhe, Abbas, & Jung,
1999; Kiemel, Gormley, Guan, Williams, & Cohen, 2003) for example.

In the next theorem, we give the variance of the fluctuations via a higher
moment of ‖w̃‖. This result makes use of the lower bound in theorem 1, and
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leads to a result that gives control of the fluctuations in probability rather
than in expectation.

Theorem 2 (variance of the trajectory distances to the center of mass). After
transients of rate 2λ−,

var
(
‖w̃(t)‖2

)
≤

(
(n − 1)σ 2

2λ−

)2 (
2 + 4

n − 1

)

−
(

(n − 1)σ 2

2λ+

)2 (
1 − ‖x‖2

λ−

)2

.

Chebyshev’s inequality combined with theorem 2 immediately gives the
following corollary:

Corollary 1. After transients of rate 2λ−,

P

[∥∥∥w̃(t)
∥∥∥2 − E

∥∥∥w̃(t)
∥∥∥2 ≥ ε

]
≤

var
(
‖w̃(t)‖2

)
ε2

. (3.4)

Since any connected network graph has nontrivial eigenvalues that de-
pend on the uniform coupling strength κ , we see that for fixed n as κ → ∞,
var

(‖w̃(t)‖2
) → 0. In the case of the all-to-all network topology, for example,

the eigenvalues of L depend on both n and κ so that var
(‖w̃(t)‖2

) = O(κ−2),
giving a power law decay of order O(κ−2ε−2) on the right-hand side of
equation 3.4.

Finally, we turn to estimating in expectation the steady-state average
distance between the trajectories of the circuit copies and the noise-free
solution. As we argued in section 2.4, the rate of convergence to equilibrium
of the trajectories wi (t) can be arbitrarily small. Although from theorems 3.1
and 3.21 the fluctuations can be made small, one cannot in general make a
similar statement about the center of mass w̄t process unless assumptions
about the initial conditions are made (and, by extension, the same holds
true for the trajectories wi (t)). Such an assumption would lead to control
over the contribution of the tanh terms and establishes a lower bound on
the contraction rate. Rather than make a specific assumption, however, we
state a general result: we again provide a lower bound, this time following
from the law of large numbers governing sums of i.i.d. gaussian random
variables and the lower bound on the fluctuations provided by theorem 1:
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Theorem 3 (average distance to the noise-free trajectory). Denote by w∗ the
minimizer of the squared-error objective, equation 2.1. After transients of rate 2λ−,

σ 2

n
+

[
(n − 1)σ 2

2nλ+

(
1 − ‖x‖2

λ−

)]+

≤ E

[
1
n

n∑
i=1

(wi (t) − w∗)2

]
≤ σ 2

2λ−
+ E[(w̄t − w∗)2],

where [ · ]+ ≡ max(0, ·).

Theorem 3 says that the average closeness of the noisy system to that
of the noise-free optimum is controlled by the trade-off between the noise
and the coupling strength and the number of circuit copies n. The former
controls in large part the magnitude of the fluctuations, as discussed above.
The latter quantity is the unavoidable linear averaging component and can
be brought to 0 only as fast as the law of large numbers allows— O(n−1/2)
at best. For fixed n as λ

(n)
− → ∞, the upper and lower bounds coincide

since E
[
(w̄(t) − w∗)2

] → σ 2/n. As both n → ∞ and κ → ∞, theorem 3 con-
firms that wi (t) → w∗ in expectation. If the fluctuations are not made small,
however, linear averaging will be wrong, and the error will be greater.
Just how bad linear averaging is when the fluctuations are allowed to be
large is described in large part by the maximum curvature of the noise-free
dynamics.3

Finally, we note that the estimates above depend on the number of sam-
ples m only through the norm of the examples x, and it is reasonable to
assume that this quantity may be appropriately normalized based on the
maximum values conveyed by subsystems or rates of neurons compris-
ing the circuit in the case of population or rate codes, or maximum field
strengths in the case of LFPs. However, the requirement that the organism
must collect m observations before learning can proceed is not essential.
We may also consider the online learning setting, where data are observed
sequentially and updates to the parameters (w)i are made separately on the
basis of each observation in temporal order. The analysis above studies con-
vergence to and distance from the solution in the steady state, whatever that
solution may be, given m pieces of evidence. Thus, the online setting can
also be considered as long as the time between observations is longer than
the transient periods. Indeed, in many scenarios, learning and decision-
making processes in the brain can take place on short timescales relative
to the timescale on which experience is accumulated. In this case, when

3One way to see this is to take the first-order Taylor expansion of the dynamics with
integral remainder. The remainder term can be upper-bounded by the spectral radius of
the Hessian matrix, which is related to curvature (see Tabareau et al., 2010).
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another piece of information arrives, the system moves to a region defined
(stochastically) around a new steady state. A complication can arise when
the new point arrives during the transient period of the previous learning
process—before the system has had a chance to settle, on average, into the
new equilibrium—however, we do not attempt to model this situation here.

4 Discussion

The estimates given in section 3 quantify the trade-off between the degree
of synchronization and the noise (error) and the role this trade-off plays
in determining the uncertainty of a decision function learned by way of a
stochastic, nonlinear dynamics. Estimates in both expectation and proba-
bility were derived. We showed how and where both the coupling strength
and the topology of the network of neural ensembles affect the extent to
which the noise, and therefore uncertainty due to error, can be controlled.
In particular, for most networks (see section 2.3), the effect of the noise can
be reduced by increasing either the coupling strength or the number of re-
dundant systems (or both), leading to a steady-state solution that is going
to be closer to the ideal, error-free solution with high probability. From a
technical standpoint, this is because fluctuations about the common trajec-
tory are exactly the way in which the noise enters the picture. When the
fluctuations are made small, the error is made small. In this way, an organ-
ism may mitigate error imposed by a noisy, imperfect learning apparatus
and solve a learning task to greater accuracy. Furthermore, synchronization
and redundancy can both improve the speed of learning, in the sense that
the rate of convergence to the steady-state solution also depends on these
mechanisms. Each of the bounds presented in section 3 holds after transient
terms of order e−tλ− vanish, where λ− is the smallest nonzero eigenvalue
of the network Laplacian. For any stable connected network, strong cou-
pling strengths directly improve convergence rates to the steady state, as
seen by the dependence of λ− on κ . In the case of all-to-all (including ap-
proximately all-to-all and many random graphs), λ− = O(nκ), so that both
increased redundancy and sync will improve the speed of learning.

Our overarching goal has been to explore quantitatively the role of re-
dundancy and synchronization in reducing error incurred by a stochastic,
nonideal learning and decision-making neural process. We have gone about
this by considering a model that emphasizes the underlying computations
taking place rather than particular neural representations. Looking at the
appropriate scale, we seek to address the precise meaning of ensemble mea-
surements and population codes, as well as the information these codes
convey about the underlying dynamics and signals. The results derived
support the notion that synchronization and redundancy play a more func-
tional role in the context of learning processes in the brain rather than being
a mere epiphenomenon.
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4.1 Synchronization and Redundancy in the Brain. Synchronization
has been suggested, over a diverse history of experimental work, as a fun-
damental mechanism for improvement in precision and reduction of un-
certainty in the nervous system (see Needleman et al., 2001; Enright, 1980).
Redundancy too is an important and commonly occurring mechanism. In
retinal ganglion cells (Croner, Purpura, & Kaplan, 1993; Puchalla, Schnei-
dman, Harris, & Berry, 2005) and heart cells (Clay & DeHaan, 1979), the
spatial mean across coupled cells cancels out noise. Populations of hair
cells in otoliths perform redundant, collaborative computations to achieve
robustness (Kandel, Schwartz, & Jessell, 2000; Eliasmith & Anderson, 2004),
and it has been suggested that multiple cortical (amygdala-thalamus) loops
contribute to fear response and conditioning, and emotion more gener-
ally (LeDoux, 2000). With motor tasks such as reaching or standing, it
has been argued that planning and representation occur at least partially
in redundant coordinate systems and involve redundant degrees of free-
dom (Scholz & Schoner, 1999). (Todorov, 2008) maintains that redundancy
and noise combine to give rise to optimal muscle control policies, raising the
interesting possibility that in some cases, the impact of the noise may need
to be adjusted but not necessarily eliminated altogether. On a more localized
scale, reach direction has also been found to be conveyed by populations of
neurons with overlapping tuning curves (Georgopoulos, Kalaska, Caminiti,
& Massey, 1982), where synchrony within such populations plays an im-
portant role (Grammont & Riehle, 1999). Multiple sensorimotor transforma-
tions involving disparate brain regions may be at play in the parietal cortex,
where redundant sensory inputs from multiple modalities must be mapped
into motor responses (Ting, 2007; Pouget & Sejnowski, 1997). In the ascend-
ing auditory pathway, varying degrees of redundancy have been noted and
contribute to the robust representation of frequency and more complex au-
ditory objects (Chechik et al., 2006). Ensemble measurements have also been
connected to behavior and have been suggested as inputs to brain-machine
interfaces, while in stochastic neural decision making, it has been suggested
that it is the collective behavior across multiple populations of neurons that
is responsible for perception and decision making, rather than activity of a
single neuron or population of neurons (Gigante et al., 2009).

In these examples and more generally, we suggest that redundancy plus
feedback synchronization is a mechanism that may be used to improve
the accuracy, robustness, and speed of a learning process involving the
relevant respective brain areas. This is separate from, and in contrast to,
redundancies that are harnessed to specifically increase storage capacity,
as in the case of associate memory models (Hertz, Krogh, & Palmer, 1991).
There, robustness to corruption is also achieved (via pattern completion
dynamics), but the degree of robustness must be traded off against capacity.
The primary function of such populations of neurons is to ostensibly store
and retrieve memory patterns rather than to implement adaptive, learning
dynamics while eliminating noise.
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Another theme emerging from these instances of sync and redundancy
is that key computations may be seen as implemented by distant brain re-
gions coupled together by way of long-distance projections and network
hubs. Recent experimental observations in C. elegans casts this interpreta-
tion in a developmental light (Varier & Kaiser, 2011) and suggests that such
interactions occur from an early stage in life and are important for normal
development in even simple organisms. Learning processes realized by
such computations and interactions are certainly susceptible to noise and
must cope with this noise one way or another. We suggest that synchro-
nization and redundancy are not only present and possible but provide a
ready, natural solution.

The ability to learn and make decisions reliably in the presence of un-
certainty is of fundamental importance for the survival of any organism.
This uncertainty can be seen to arise from three distinct sources, and the
approach discussed here treats only the first two: intrinsic neuronal noise,
both local and in the aggregate, and noise in the form of measurement error,
under which we include error due to limitations in precision and nonlin-
earity in biological systems. A third, and equally important, source of error
is that of uncertainty in the inference process itself (Yang & Shadlen, 2007;
Kiani & Shadlen, 2009). This uncertainty is specific to and inherent in the
decision problem and is characterized by the posterior distribution over
decisions given the experiential evidence. Our work considers uncertainty
only beyond that of the inference process and, as such, is one part of a
larger puzzle. We argue that intrinsic noise is both experimentally and the-
oretically important—and involved enough technically—to be addressed in
isolation, while holding all other variables constant. Indeed, intrinsic noise
intensities can be large. The role of the network’s topology and coupling
mechanism also strongly influences the overall picture, often in surprising
or subtle ways. But it is also possible that the methods recruited here can be
applied toward understanding some aspect of the inference error if different
inferences from the same observations can be made by different “expert”
(circuits), each with its own biases. Then averaging, nonlinearity and the
uncertainty could potentially be treated in a similar framework.

4.2 Extensions and Generalizations. Asymptotic stability of the
stochastic system considered here is guaranteed as long as there is cou-
pling. In general, if the dynamics of a stochastic system are contracting or
can be made contracting with feedback, then combinations (e.g., parallel,
serial, hierarchical) of such systems will be contracting (Pham et al., 2009;
Lohmiller & Slotine, 1998). In the present setting, the system governing
the fluctuations about the mean trajectory is contracting with a rate de-
pendent on the coupling strength and the noise variance. Thus, combina-
tions of learning systems of the general type considered here can enjoy
strong stability guarantees automatically since the individual systems are
contracting.
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Finally, we have assumed throughout that the errors affecting the col-
lection of redundant neural circuits or systems are mutually independent.
This is not an unreasonable modeling assumption. For large-scale learning
processes involving different brain areas, noise imposed by local spike ir-
regularities is largely unrelated to noise present in distant circuits. Within
small populations of neurons, it is likely that dependence among intrinsic
neuronal noise sources decays rapidly in space so that nearest neighbors
may experience somewhat correlated noise, but beyond this are not sig-
nificantly affected by other members of the population. Because noise in a
biological environment can never be fully dependent (whether due to ther-
mal or chemical-kinetic factors, or otherwise), partial dependence among
noise inputs may be explicitly modeled as, for example, mixing processes if
desired (Doukhan, 1994). Estimates of the form discussed here would then
be augmented with mixing terms, leading to results that make identical
qualitative statements about the role of redundancy and sync. Fluctuations,
and the effect of the noise, would still be reducible but would require larger
coupling strengths or more redundancy compared to what would be nec-
essary if the noise sources were independent.

5 Simulations

To empirically test the estimates given in section 3 we simulated several sys-
tems of SDEs given by equation 2.4 using Euler-Maruyama integration (over
time t ∈ [0, 10s], 105 regularly spaced sample points), for different settings
of the parameters n (number of circuits or elements), κ (coupling strength)
and σ (noise standard deviation). Initial conditions were randomly drawn
from the uniform distribution on [−5, 5], and we fixed ‖x‖2 = 1 and the
coupling arrangement to all-to-all coupling with fixed strength determined
by κ . For simplicity the simulated systems had an equilibrium point at
0, corresponding to y = 0, so that 〈x, y〉 = 0 and X∗ = w∗ (the change of
variables is the identity map and we can identify Xt with wt).

For comparison purposes, we show at the left in Figure 2 typical sim-
ulated trajectories of uncoupled (top) and coupled (bottom) populations
when n = 20, κ = 5, σ = 10. Both populations are driven by the same noise
and the same set of initial conditions; however, each element is driven by
noise independent from the others as assumed above. From the units on
the vertical axes, one can see that coupling clearly reduces intertrajectory
fluctuations as expected. On the right in Figure 2, we show the coupled
and uncoupled populations’ respective center of mass trajectories for
this particular simulation instance. One can see from this figure that the
average of the coupled system tends closer to 0 (X∗) and is less affected by
large noise excursions.

To empirically test the tightness of the estimates given in section 3,
we repeated simulations of each respective system 5000 times and aver-
aged the relevant outcomes to approximate the expectations appearing in
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Figure 2: (Left) Typical simulated trajectories for coupled and uncoupled net-
works driven by the same noise. (Right) Population average trajectories for the
coupled and uncoupled systems.

the bounds. Transient periods were excluded in all cases. In Table 1, we
show the values predicted by the bounds and the corresponding simulated
quantities, for each respective triple of system parameter settings. Sample
standard deviations of the simulated averages (expectations) are given in
parentheses. In Figure 3 we show theoretical versus simulated expected
magnitudes of the fluctuations E‖X̃t‖2 when n = 200 and σ = 10 over a
range of coupling strengths. The solid dark trace is the upper bound of
theorem 1, while the open circles are the average simulated quantities (again
5000 separate simulations were run for each κ). Error bars are also given
for the simulated expectations. Note that the magnitude scale (y-axis) is
logarithmic, so the error bars are also plotted on a log scale. We omitted the
lower theoretical bound from the plot because it is too close to the upper
bound to visualize well relative to the scale of the bounds.

Generally the estimates relating to the magnitude of the fluctuations are
seen to be tight, and the variance estimate is within an order of magnitude.
For the experiments with large noise amplitudes, the empirical estimates
can appear to slightly violate the bounds where the bounds are tight since
the variance across simulations is large. The lower bound estimating the
distance of the center of mass to the noise-free solution is also seen to be
reasonably good. For comparison, we give the upper estimate where the
empirical distance is substituted in place of the expectation in order to show
closeness to the lower bound. Theorem 3 predicts that the upper and lower
estimates will eventually coincide if κ and/or n are chosen large enough.

6 Proofs

In this section we provide proofs of the results discussed in section 3.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00183&iName=master.img-001.jpg&w=306&h=123
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Table 1: Estimated Versus Simulated Quantities.

Quantity Lower Bound Simulated Upper Bound

n = 20, κ = 5, σ = 10

E‖X̃t‖2 9.405 9.497 (std = 3.1) 9.500

var(‖X̃t‖2) - 9.450 (std = 14.7) 111.046
1
n E‖Xt − X∗1‖2 5.470 12.249 (std = 22.2) 12.249 (std = 22.2)

n = 20, κ = 1, σ = 5

E‖X̃t‖2 11.281 11.719 (std = 3.8) 11.875

var(‖X̃t‖2) - 14.261 (std = 23.0) 184.45
1
n E‖Xt − X∗1‖2 1.814 1.933 (std = 2.5) 1.946 (std = 2.4)

n = 20, κ = 1, σ = 10

E‖X̃t‖2 45.125 47.053 (std = 15.2) 47.500

var(‖X̃t‖2) - 230.275 (std = 373.4) 2951.234
1
n E‖Xt − X∗1‖2 7.256 14.761 (std = 24.1) 14.784 (std = 24.1)

n = 100, κ = 1, σ = 10

E‖X̃t‖2 49.005 49.556 (std = 7.0) 49.500

var(‖X̃t‖2) - 49.332 (std = 70.6) 2598
1
n E‖Xt − X∗1‖2 1.490 1.449 (std = 1.6) 1.449 (std = 1.6)

n = 100, κ = 5, σ = 10

E‖X̃t‖2 9.880 10.137 (std = 1.5) 9.900

var(‖X̃t‖2) - 2.151 (std = 3.2) 102.362
1
n E‖Xt − X∗1‖2 1.099 1.496 (std = 1.5) 1.496 (std = 1.5)

We first introduce a key lemma to be used in the development immedi-
ately below.

Lemma 1. Let P = I − (1/n)11	, the canonical projection onto the zero mean
subspace of R

n. Then for all x ∈ R
n,

0 ≤ 〈Px, tanh(x)〉 ≤ ‖Px‖2,

where the hyperbolic tangent applies elementwise.

Proof. Given x ∈ R
n, define the index sets I = {1, . . . , n}, I+ = {i ∈

I | (Px)i ≥ 0}, and I− = I \ I+. Since Px is zero mean,
∑

i∈I+ (Px)i =∑
i∈I− |(Px)i |. We will express the hyperbolic tangent as tanh(z) = 2s(2z) − 1,

where s(z) = (1 + e−z)−1 is the logistic sigmoid function. If we let μ = 1
n 1	x

be the center of mass of x, (Px)i = xi − μ ≥ 0 implies s(xi ) ≥ s(μ) by mono-
tonicity of s. Likewise, (Px)i < 0 implies s(xi ) < s(μ). Finally, note that since
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Figure 3: Simulated versus theoretical upper-bound estimates of the fluctua-
tions’ expected magnitude over a range of coupling strengths κ . Here n = 200
circuits and σ = 10.

P2 = P and 1 ∈ ker P , 〈Px, tanh(x)〉 = 〈Px, P
(
2s(2x) − 1

)〉 = 2〈Px, s(2x)〉.
Using these facts, we prove the lower bound first:

〈Px, tanh(x)〉 = 2
∑
i∈I+

(Px)i s(2xi ) − 2
∑
i∈I−

|(Px)i |s(2xi )

≥ 2s(2μ)
∑
i∈I+

(Px)i − 2s(2μ)
∑
i∈I−

|(Px)i |

= 2s(2μ) · 0 = 0.

Turning to the upper bound, we prove the equivalent statement
〈Px, s(2x) − x〉 ≤ 0. First, if μ = 0, then Px = x so 〈Px, tanh(x)〉 =
〈x, tanh(x)〉 ≤ ‖x‖‖tanh(x)‖ ≤ ‖x‖2 = ‖Px‖2, since ‖tanh(x)‖ ≤ ‖x‖ by
virtue of the fact that | tanh(z)| = tanh(|z|) ≤ |z| for any z ∈ R. Now sup-
pose that μ > 0. If z ≥ μ > 0, we can upper-bound s(2z) by the line tangent
to the point (μ, s(2μ)): s(2z) ≤ mz + b with m < 1

2 and b > 1
2 . If z < μ, we

can take the lower bound s(2z) > 1
2 z + 1

2μ − s(2μ). Using these estimates,

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00183&iName=master.img-002.jpg&w=299&h=214
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we have that

〈Px, s(2x) − x〉 =
∑
i∈I+

(Px)i (s(2xi ) − xi ) +
∑
i∈I−

|(Px)i |(xi − s(2xi ))

≤
∑
i∈I+

(Px)i (b − (1 − m)xi )

+
∑
i∈I−

|(Px)i |
(

1
2

xi + 1
2
μ − s(2μ)

)

≤
∑
i∈I+

(Px)i (b − (1 − m)μ)

+
∑
i∈I−

|(Px)i |
(

1
2
μ + 1

2
μ − s(2μ)

)

=
( ∑

i∈I+

(Px)i

)
(b + mμ − s(2μ)) = 0.

The second inequality follows from the fact that (1 − m) > 0, xi ≥ μ for
i ∈ I+ and xi < μ for i ∈ I−. Since

∑
i∈I+ (Px)i = ∑

i∈I− |(Px)i |, and recalling
that by definition b satisfies mμ + b = s(2μ), the final equalities follow. If
μ < 0, then the proof is similar, taking the line tangent to the point (μ, s(2μ))
as a lower bound for s(2z) and the line 1

2 (z − μ) + s(2μ) as an upper bound.

6.1 Fluctuations Estimates: Proof of Theorem 1. We begin by adding
λ‖Xt‖2dt, with λ ∈ (0,∞), to both sides of equation 3.3 to obtain

1
2

d‖X̃t‖2 + λ‖X̃t‖2dt =−‖x‖2〈tanh Xt, X̃t〉dt + (λ‖X̃t‖2−〈L Xt, X̃t〉) dt

+1
2

(n − 1)σ̃ 2dt + σ̃‖X̃t‖d Bt = e−2λtd
(

1
2
‖X̃t‖2e2λt

)
,

where the second equality follows, noticing that the right-hand side is the
total Ito derivative of the left-hand side of the first equality. Now multiply
both sides by e2λt , switch to integral form, and multiply both sides by e−2λt

to arrive at

1
2
‖X̃t‖2 = e−2λt‖X̃0‖2+

∫ t

0
e2λ(s−t)

(
1
2

(n − 1)σ̃ 2 − ‖x‖2〈tanh Xs, X̃s〉
)

ds

+
∫ t

0
e2λ(s−t)(λ‖X̃s‖2 − 〈L Xs, X̃s〉) ds + σ̃

∫ t

0
e2λ(s−t)‖X̃s‖d Bs .

(6.1)
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Upper bound: Next, note that 〈L Xt, X̃t〉 = 〈L X̃t, X̃t〉 since L(Xt1) = 0, and
that X̃t is by definition orthogonal to any constant vector. For all t, we also
have that

λ−‖X̃t‖2 − 〈L X̃t, X̃t〉 ≤ 0
(6.2)

−〈tanh Xt, X̃t〉 ≤ 0

almost surely. The first inequality follows from the fact that for all x ∈ imP ,

λ−‖X̃t‖2 ≤ 〈L X̃t, X̃t〉 ≤ λ+‖X̃t‖2,

if λ− is the Fiedler eigenvalue of L and λ+ is the largest eigenvalue of L .
The second inequality is given by lemma 1. Setting λ ≡ λ− and applying
the inequalities 6.2 to equation 6.1 gives the estimate

1
2
‖X̃t‖2 ≤ e−2λ−t‖X̃0‖2+ (n − 1)σ̃ 2

2

∫ t

0
e2λ−(s−t)ds+σ̃

∫ t

0
e2λ−(s−t)‖X̃s‖ dBs

= e−2λ−t‖X̃0‖2 + (n − 1)σ̃ 2

4λ−
(1 − e−2λ−t) + σ̃

∫ t

0
e2λ−(s−t)‖X̃s‖ dBs

(6.3)

almost surely. Taking expectations and noting that E[
∫ t

0 e2λ−(s−t)‖X̃s‖ dBs] =
0, we have that

E‖X̃t‖2 ≤ (n − 1)σ̃ 2

2λ−
(6.4)

after transients of rate 2λ−.
Lower bound: We show that E‖X̃t‖2 has a lower bound that can also

be expressed in terms of the coupling strength and the noise level. The
derivation is similar to that of the upper bound, and we begin with
equation 6.1. We set λ ≡ λ+ and apply the estimates λ+‖X̃s‖2 − 〈L X̃s, X̃s〉 ≥
0 and 〈tanh Xs, X̃s〉 ≤ ‖X̃s‖2 for all s a.s., yielding

1
2
‖X̃t‖2 ≥ e−2λ+t‖X̃0‖2 +

∫ t

0
e2λ+(s−t)

(
1
2

(n − 1)σ̃ 2 − ‖x‖2‖X̃s‖2
)

ds

+ σ̃

∫ t

0
e2λ+(s−t)‖X̃s‖d Bs .

Taking expectations and integrating the Ito term, we have

1
2

E‖X̃t‖2 ≥ e−2λ+t
E‖X̃0‖2 + (n − 1)σ̃ 2

4λ+
(1 − e−2λ+t)

−‖x‖2
∫ t

0
e2λ+(s−t)

E‖X̃s‖2ds.
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After transients of rate 2λ−, we can apply equation 6.4 to estimate the
remaining integral and lower-bound the above equation by

e−2λ+t
E‖X̃0‖2 + (n − 1)σ̃ 2

4λ+
(1 − e−2λ+t) − ‖x‖2 (n − 1)σ̃ 2

4λ−λ+
(1 − e−2λ+t).

Since λ− ≤ λ+, transients of rate 2λ+ have already transpired if we suppose
that we have waited for transients of rate 2λ−. Therefore, we can say that
after transients of rate 2λ−,

E‖X̃t‖2 ≥ (n − 1)σ̃ 2

2λ+

(
1 − ‖x‖2

λ−

)
. (6.5)

6.1.1 Inverting the Change of Variables. Finally, we can obtain correspond-
ing upper and lower bounds for the original system 2.3, noting that since
X̃t = P

(
w(t)‖x‖2 − 〈x, y〉1) = ‖x‖2 Pw(t), we have E‖w̃‖2 = E‖X̃t‖2/‖x‖4,

where we have used the notation w̃ for Pw. The ‖x‖4 in the denomina-
tor then cancels with the same quantity occurring in σ̃ 2 in equations 6.4
and 6.5, giving the final form shown in theorem 1.

6.2 Fluctuations Estimates: Proof of Theorem 2. We first derive the
fourth moment of the norm of the fluctuations. Starting from equation 6.3,
allow transients of rate 2λ− to pass so that we are left with the integral
inequality

1
2
‖X̃t‖2 ≤ (n − 1)σ̃ 2

4λ−
+ σ̃

∫ t

0
e2λ−(s−t)‖X̃s‖d Bs .

Squaring both sides, we can apply the identity (a + b)2 ≤ 2a2 + 2b2 to obtain

‖X̃t‖4 ≤
(

(n − 1)σ̃ 2

√
2λ−

)2

+ 8σ̃ 2
(∫ t

0
e2λ−(s−t)‖X̃s‖d Bs

)2

.

Taking expectations and invoking Ito’s isometry for the second term leads
to

E‖X̃t‖4 ≤
(

(n − 1)σ̃ 2

√
2λ−

)2

+ 8σ̃ 2
∫ t

0
e4λ−(s−t)

E‖X̃s‖2ds

≤
(

(n − 1)σ̃ 2

√
2λ−

)2

+ 8σ̃ 2

4λ−

(
(n − 1)σ̃ 2

2λ−

)

=
(

(n − 1)σ̃ 2

2λ−

)2 (
2 + 4

n − 1

)
,
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where the estimate 6.4 has been substituted in for E‖X̃s‖2. An upper bound
on the variance is then obtained from the identity var(Z2) = E[Z4] − (EZ2)2

and the lower estimate given in equation 6.5. Reversing the change of
variables as in section 6.1.1 yields the final result.

6.3 Distance to the Noise-Free Trajectory: Proof of Theorem 3. Theo-
rem 1 can be applied providing a lower bound for the average distance be-
tween the noisy trajectories of the neural circuit and the noise-free solution
to the learning problem. First, observe that from the orthogonal decompo-
sition Xt = P Xt + QXt and the change of variables mapping equation 2.3
to 2.4,

‖Xt‖2 = ‖Xt1‖2 + ‖X̃t‖2 = ‖x‖4‖w − w∗1‖2. (6.6)

Furthermore, we have that

Xt = n−1
∑

i

Xi (t) = n−1
∑

i

(wi‖x‖2 − 〈x, y〉),

so evidently ‖x‖−4
EX

2
t = E[(w̄t − w∗)2]. Next, note that if the fluctuations

are small, the trajectories (wi (t))n
i=1 are close to one another, and the average

trajectory w̄t = n−1w(t)	1 evolves essentially as w̄t ∼ w∗ + σ√
n Wt , where Wt

is interpreted as a white noise process. In this case, we then have that E[(w̄t −
w∗)2] = σ 2

n , and we see that E[(w̄t − w∗)2] ≥ σ 2

n when the fluctuations are not

necessarily small. So we have that ‖x‖−4
EX

2
t ≥ σ 2

n . Combining the above
with theorem 1,

σ 2

n
+

[
(n − 1)σ 2

2nλ+

(
1 − ‖x‖2

λ−

)]+
≤ EX

2
t

‖x‖4 + E‖X̃t‖2

n‖x‖4

≤ σ 2

2λ−
+ E[(w̄t − w∗)2]

with the notation [ · ]+ ≡ max(0, ·). Equation 6.6 then shows that the middle
quantity above is equal to E

[ 1
n

∑n
i=1(wi (t) − w∗)2

]
.
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