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Abstract 

Seawater cooling towers have been used since the 1970’s in power generation and other 

industries, so as to reduce the consumption of freshwater. The salts in seawater are known 

to create a number of operational problems including salt deposition, packing blockage, 

corrosion, and certain environmental impacts from salt drift and blowdown return. In 

addition, the salinity of seawater affects the thermophysical properties which govern the 

thermal performance of cooling towers, including vapor pressure, density, specific heat, 

viscosity, thermal conductivity and surface tension. In this paper, the thermal 

performance of seawater cooling towers is investigated using a detailed model of a 

counterflow wet cooling tower. The model takes into consideration the coupled heat and 

mass transfer processes and does not make any of the conventional Merkel 

approximations. In addition, the model incorporates the most up-to-date seawater 

properties in the literature. The model governing equations are solved numerically and its 

validity is checked against the available data in the literature. Based on the results of the 

model, a correction factor that characterizes the degradation of the cooling tower 

effectiveness as a function of seawater salinity and temperature approach is presented for 

performance evaluation purposes. 
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Introduction 

Cooling towers are used in many applications to reject heat to the atmosphere. 

Heat rejection is accomplished within the tower by heat and mass transfer between the 

hot water droplets and ambient air. Seawater cooling towers have been used since the 

1970’s in facilities on the coast, as there is a potential to reduce fresh water consumption 

in power plants and other industries. In addition, the use of once-through cooling systems 

where hot water is rejected back into the sea caused many environmental problems. 

Therefore, seawater cooling towers have been found to be a competitive alternative in 

which seawater is recycled in a closed-loop cooling system [1]. The salts in the water 

create a number of engineering challenges including salt deposition, packing blockage, 

corrosion, potentially rising salt concentration, and salt emissions (drift). Moreover, the 

salts in seawater change the thermophysical properties with respect to freshwater, which 

in turn change the thermal performance of cooling towers. 

 

The corrosion problems in seawater cooling towers can be avoided by appropriate 

selection of construction material and equipment. The use of plastic and asbestos for 

packing, pipes and water distribution system provided a practical and predictable solution 

for most of the corrosion problems. The use of exposed ferrous metal must be avoided 

and if it is necessary to use metal for specific requirements, monel or stainless steel 

should be selected. Coatings such as epoxy may also be used to cover special metal 

construction joints or sometimes galvanized rebar is used in critical areas. More details 

and material selection for seawater cooling towers can be found in Walston [2]. 
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Obviously, all of these special materials add to the capital cost of the tower, which is 

beyond the scope of this paper.  

 

The thermal design and performance of cooling towers have been abundantly 

discussed in the literature. The first cooling tower theory was developed by Merkel [3], 

and it included many approximations. The major assumptions in Merkel’s model are: the 

water loss by evaporation is neglected; Lewis factor is assumed to be unity; and the exit 

air is assumed to be saturated. Sutherland [4] found that using the Merkel model can 

result in undersizing the tower between 5 to 15%. A more accurate model was developed 

by Poppe and Rogener [5] without using any of Merkel’s approximations. The cooling 

tower characteristics or Merkel number determined by Poppe’s approach is 

approximately 10% higher than the Merkel number determined by the Merkel model [6]. 

Knowing that the effect of seawater properties on the cooling tower thermal performance 

may be small at lower salinities, it is intended in this paper to use an accurate cooling 

tower model that does not make any of the Merkel approximations. 

 

The thermal performance of seawater cooling towers has not been studied 

carefully in the literature. The available data are mostly in technical reports, feasibility 

studies, or design guidance [7, 8]. General discussion about the effect of seawater 

properties on the thermal performance was given by Nelson [9] and Warner [10]. 

However, no detailed performance calculation was made. As a rule of thumb, cooling 

tower vendors recommend degrading the tower performance by approximately 1% for 

every 10,000 ppm of salts in the cooling water. In practice, most engineering contractors 
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specify a 0.55-1.1 oC margin on the wet bulb temperature to account for salts in the 

cooling water [8]. The objective of this paper is to investigate the thermal performance of 

seawater cooling towers by using a detailed model and to provide a correction factor that 

relates the performance of the seawater to that of fresh water cooling tower that has the 

same size and operating conditions. 

 

Seawater properties  

The thermophysical properties of seawater are different from those of fresh water.  

This difference is sufficient to affect the heat and mass transfer processes in cooling 

towers. The literature contains many data for the properties of seawater, but only a few 

sources provide full coverage for all relevant thermophysical properties. A recent review 

and assessment of seawater properties is given by Sharqawy et al. [11]. The properties 

that most strongly affect the thermal performance of cooling tower are vapor pressure, 

density, and specific heat capacity. In addition, thermal conductivity, viscosity and 

surface tension affect the heat and mass transfer coefficients within the packing. In this 

section, correlations of seawater properties to be used in the cooling tower model are 

described. All liquid properties are given at 1 atm pressure. 

   

The vapor pressure of seawater is less than that of fresh water which reduces the 

potential for water evaporation. The vapor pressure can be calculated using Raoult’s law 

which states that the vapor pressure of seawater is equal to the product of water mole 

fraction in seawater and water’s vapor pressure in the pure state. The mole fraction of 
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water in seawater is a function of the salinity. Using these results, an equation for 

seawater vapor pressure based on Raoult’s law is given by Eq. (1) 

⎟
⎠
⎞

⎜
⎝
⎛

−
×+=

S
Spp swvwv 1000

57357.01,,  (1) 

where S is the seawater salinity in g/kg on the reference-composition salinity scale 

defined by Millero et al. [12] which is currently the best estimate for the absolute salinity 

of seawater. From Eq. (1), it is shown that the seawater vapor pressure decreases with the 

increase of salinity. This decrease reaches about 8% at salinity of 120 g/kg. Consequently, 

the humidity ratio and the enthalpy of saturated air above the water surface decrease. As 

will be seen later in the cooling tower model, the difference between the enthalpy of 

saturated humid air at water temperature and the enthalpy of humid air at air temperature 

and humidity is the driving force for water evaporation and mass transfer [13]. Therefore, 

the reduction of vapor pressure by salinity decreases the amount of water evaporated into 

the air stream and hence reduces the heat rejection capability. 

 

The specific heat of seawater is less than that of freshwater which reduces the 

amount of sensible heat that can be transferred at the same temperature difference. The 

specific heat capacity can be calculated by using Eq. (2) given by Jamieson et al. [14] 

which fits the experimental measurements with an accuracy of ±0.3%. Equation (2) is 

valid for temperatures of 0 – 180 oC and salinities of 0 – 180 g/kg. 

32
, TDTCTBAc swp +++=  (2) 
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where cp,sw is in kJ/kg K, T in K, S in g/kg, and 

242 1004.41076.9328.5 SSA −− ×+×−=  
2643 1015.310351.710913.6 SSB −−− ×−×+×−=  

2966 1023.810927.1106.9 SSC −−− ×+×−×=  
21299 10125.710666.1105.2 SSD −−− ×−×+×=  

 

Figure 1 shows the specific heat of seawater calculated from Eq. (2) as a function of 

temperature and salinity. It is shown that the specific heat of seawater is less than that of 

fresh water by about 12% at 120 g/kg salinity.  

 

The density of seawater is higher than that of fresh water due to the salt content. 

This increases the mass flow rate of seawater for the same volumetric flow rate. 

Consequently increases the pumping power. The density of seawater can be calculated 

using Eq. (3) [11] which best fits the seawater density data measured by Isdale and 

Morris [15] and Millero and Poisson [16] and is in good agreement with IAPWS [17]. 

The fresh water density is given by Eq. (4) which best fits the fresh water density data 

extracted from the IAPWS [18] formulation of pure liquid water. Equation (3) has an 

accuracy of ±0.1% and valid for temperatures of 0 – 180 oC and salinities of 0 – 160 g/kg. 

( )2
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where ρsw and ρw are in kg/m3, t in oC, S in g/kg, and 
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Figure 2 shows the density of seawater calculated from Eq. (3) as it changes with 

temperature and salinity. It is shown in Fig. 2 that the density of seawater is higher than 

that of fresh water by about 10% at 120 g/kg salinity.  

 

The viscosity of seawater is higher than that of fresh water by about 40% at a 

salinity of 120 g/kg (see Fig. 3). It can be calculated using Eq. (5) given by Sharqawy et 

al. [11] which is valid for temperatures of 0 – 180 oC and salinities of 0 – 150 g/kg and 

has an accuracy of ±1.5 %. The pure water viscosity is given by Eq. (6) which fits data 

extracted from the IAPWS [19] release with an accuracy of ±0.05% and is valid for t = 0-

180 oC. 

( )21 SBSAwsw ++= μμ  (5) 

( )( ) 125 296.91993.64157.0102844.4
−− −++×= twμ  (6) 

where μsw and μw are in kg/m.s, t in oC, S in g/kg, and 

2853 1052.910998.110541.1 ttA −−− ×−×+×=  

21086 10724.410561.710974.7 ttB −−− ×+×−×=  
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The surface tension of seawater is higher than that of fresh water by about 1.5% at 

salinity of 40 g/kg (see Fig. 4). Unfortunately the available data and correlations for 

seawater surface tension are limited to temperatures of 40 oC and salinities of 40 g/kg 

[11]. Surface tension can be calculated using Eq. (7) which is valid for temperatures of 0 

– 40 oC and salinities of 0 – 40 g/kg with an accuracy of ±0.2%. Pure water surface 

tension is given by Eq. (8) [20] which is valid for t = 0 – 370 oC and has an accuracy of 

±0.08%. 
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w
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where σsw and σw are in N/m, t in oC and S in g/kg. 

 

The thermal conductivity of seawater is less than that of fresh water by about 1% 

at 120 g/kg (see Fig. 5). It can be calculated using Eq. (9) given by Jamieson and 

Tudhope [21] which is valid for temperature of 0 – 180 oC and salinities of 0 – 160 g/kg 

with an accuracy of ±3%.  
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where ksw is in mW/m.K, t in oC and S in g/kg. 
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Cooling Tower Model 

A schematic diagram of the counterflow cooling tower is shown in Fig. 6, 

including the important states and boundary conditions. The assumptions that are used to 

derive the modeling equations are as follows:  

• Negligible heat transfer between the tower walls and the external environment. 

• Constant mass transfer coefficient throughout the tower. 

• The Lewis factor that relates the heat and mass transfer coefficients is not unity. 

• Water mass flow lost by evaporation is not neglected. 

• Uniform temperature throughout the water stream at any horizontal cross section.  

• Uniform cross-sectional area of the tower. 

• The atmospheric pressure is constant along the tower and equal to 101.325 kPa. 

 

A steady-state heat and mass balances on an incremental volume leads to the following 

differential equations [6] 

Energy balance on moist air:

( ) ( )( )[ ]vwsaws
a hLehhLeMeMR

dz
dh ωω −−+−××= ,, 1  (10) 

Mass balance on water vapor 
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Mass balance on salts  
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It is important to mention that in the cooling tower literature, the mass flow rate 

ratio (MR) is usually referred by L/G (liquid-to-gas flow rate ratio) and Merkel number 

(Me) is usually referred by KaV/L where K is the mass transfer coefficient and L is water 

mass flow rate. However, in recent studies [6, 22] these symbols have been replaced by 

the ones used in this paper. In addition, the multiplication of the mass flow rate ratio and 

Merkel number (MR x Me) is referred in the literature as the number of transfer units, 

NTU (Braun et al. [23]). 

 

For a given number of transfer units (NTU), mass flow rate ratio (MR) and inlet 

conditions (tw,i, Si, ta,i, ωi). Equations (10) – (13) can be solved numerically to find the 

exit conditions for both air and seawater streams. The solution is iterative with respect to 

the outlet air humidity, outlet seawater temperature and outlet seawater salinity (ωo, tw,o, 

So). In this solution, seawater properties are calculated along the tower length using the 
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equations presented in the previous section. The Lewis factor is calculated using Eq. (14) 

given by Bosnjakovic [24] and the moist air properties are calculated using the 

correlations provided by Klopper [25]. In addition, seawater vapor pressure, Eq. (1), is 

used to determine the humidity ratio and enthalpy of the saturated moist air at seawater 

temperature. 

 

In the above cooling tower model, the heat and mass transfer coefficients are 

related by Lewis factor based on Chilton-Colburn analogy. However, the mass transfer 

coefficient (hD) should be determined in order to know the number of transfer units. 

Unfortunately, general correlations for the mass transfer coefficient in terms of physical 

properties and packing specifications do not exist for cooling towers. For that reason, 

experimental measurements are normally carried out to determine the transfer 

characteristics for different packing types. It is, however, important to note that in the 

present work an empirical correlation given by Djebbar and Narbaitz [26] is used to 

calculate the change in number of transfer units of a particular packing when seawater 

properties are used instead of fresh water properties. This equation is a modified form of 

Onda’s correlation (Onda et al., [27]) and has an average error of ±26% relative to 

experimental data. A comparison between the packing characteristic (Merkel number) 

calculated using the Djebbar and Narbaitz’s correlation and the experimental given by 

Narbaitz et al. [28] is shown in Fig. 7a. 
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Despite the deviation between Djebbar and Narbaitz’s model and the 

experimental measurements, the effect of physical property variation with salinity on the 

mass transfer coefficient is very small as shown in Fig. 7b. In this figure, the number of 

transfer units decreases by about 7% at a salinity of 120 g/kg. This reduction agrees well 

with the data presented by Ting and Suptic [29]. They recommended rating the cooling 

tower as if it was using freshwater and then increasing the water flow rate to compensate 

for the reduction in the number of transfer units by applying a mass flow rate correction 

factor. This correction factor method can be used in a design stage of the cooling tower. 

However, for rating of cooling towers if we assume a seawater cooling tower working at 

the same number of transfer units as of a fresh water tower, it is important to calculate the  

reduction in the cooling tower effectiveness. Therefore, it is assumed in the following 

analysis that the number of transfer units is the same as for a fresh water cooling tower 

and the reduction in the effectiveness is calculated subsequently. 

 

The mathematical model given by equations (10) – (13) subject to the boundary 

conditions showed on Fig. 6 were transferred to finite difference equations and solved by 

a successive over-relaxation method followed a procedure outlined by Patrick et al. [30]. 

A convergence criterion of  was used for the present computations where 

n is the number of iterations. Numerical solutions for the air and water temperature 

distribution along the tower as well as the air humidity and seawater salinity were 

obtained at different inlet conditions. 

1( ) 1n nt t+ − ≤ 50−
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Results and discussion 

To illustrate the results of the present work, the air effectiveness of the cooling 

tower is calculated at different inlet conditions. The air effectiveness is defined as the 

ratio of the actual to maximum possible air-side heat transfer that would occur if the 

outlet air stream was saturated at the incoming water temperature (Narayan et al. [31]), 

given by  

iaiws

iaoa
a hh

hh

,,,

,,

−
−

=ε  (17) 

 

To examine the validity of the numerical solution, the results at zero salinity were 

compared to those given by Braun et al. [23] who solved the same set of equations for 

Lewis factor of unity and constant properties. The comparison is achieved by making the 

necessary adjustments to the present model to suit Braun’s assumptions. Figure 8 shows a 

comparison between the cooling tower air effectiveness from the present work and from 

Braun et al. [23]. The numerical solution of the present work is in excellent agreement 

with that of Braun. In addition, Fig. 8 shows the numerical results using Merkel 

assumptions. The Merkel assumption solution differs by 1-3% at these particular 

conditions, however at higher water temperatures (40-60 oC) the amount of water 

evaporation increases and the difference may reach 10-15%. 

  

Figures 9 through 11 show the air effectiveness of the cooling tower as it changes 

with the number of transfer units at different mass flow ratio and seawater salinity. In 

these figures, the dry and wet bulb temperatures of the inlet air are 30oC and 25oC 
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respectively. In Fig. 9, the inlet water temperature is 40oC and the salinity of the inlet 

seawater is taken as 0 (fresh water), 40 and 80 g/kg. As shown in this figure, the air 

effectiveness decreases as the salinity increases. The decrease in the effectiveness is a 

weak function of NTU and MR. The air effectiveness decreases by about 5% at salinity of 

40 g/kg and by about 10 % at salinity of 80 g/kg. 

 

To examine whether the reduction of air effectiveness depends on the seawater 

inlet temperature, numerical results are obtained at different seawater inlet temperatures. 

Figures 10 and 11 show the air effectiveness versus NTU at seawater inlet temperatures 

of 60 and 80oC, respectively. It is found that the average reduction in the effectiveness is 

about 5% at a salinity of 40 g/kg and about 10% at a salinity of 80 g/kg. This salinity-

dependent reduction is the same when the water inlet temperature is 40oC.  

 

From Fig. 9 – 11, it is clear that the air effectiveness of the cooling tower 

decreases with an increase in the seawater salinity. This reduction is a linear function of 

the salinity as shown in Fig. 12. However, the slope of this linear relationship depends on 

the approach (App) which is the difference between the outlet water temperature and the 

inlet air wet bulb temperature given by Eq. (18).  

iwbow TTApp ,, −=  (18) 

 

Figure 12 shows that at a lower approach, the reduction in the effectiveness is 

higher than at higher approaches for the same seawater salinity. This is because at lower 

approaches the potential for water evaporation decreases (the difference between 
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saturated air enthalpy at water temperature and air enthalpy is lower). Therefore, the 

effect of reducing the vapor pressure due to the salts becomes significant on the 

effectiveness. This is found to be true for the range of NTU, MR and tw,i studied in this 

paper. Therefore, a simple expression is obtained for the reduction in the air 

effectiveness. The slope of the linear relationship between the salinity and effectiveness 

reduction is plotted versus the approach in Fig. 13, and a best fit equation is obtained as 

shown on this figure. Consequently, a relationship between the air effectiveness reduction 

as a function of salinity and approach can be expressed as,  

( ) SAppo
a

a ××−=− 0033.01324.01
ε
ε

 (19) 

where  and App are the air effectiveness and approach at zero salinity, respectively. 

Equation (19) can be rewritten in the form of a correction factor (CF) for the air 

effectiveness. This correction factor is the ratio between the air effectiveness at any 

salinity and that at zero salinity, written as, 

o
aε

( ) SAppCF o
a

a ××−−== 0033.01324.01
ε
ε  (20) 

 

It is important to note that Eq. (20) estimates the reduction of the cooling tower 

air effectiveness within ±2% from that calculated using the full numerical solution. This 

can be considered as an accurate estimation at higher salinities where the reduction in the 

air effectiveness is high (14 to 18%). However, at lower salinities, it is recommended to 

solve the governing equations numerically to get a better estimate. In addition, this 

correction factor assumes that the number of transfer units is independent of the salinity 
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which is an approximation with the following accuracy: The NTU decreases by a 

maximum of 7% at a salinity of 120 g/kg (for the particular packing shown in Fig. 7), 

which in turn reduces the effectiveness by an additional 3%. However, for typical 

seawater salinity of 40 g/kg, the reduction of NTU is about 2% which reduces the 

effectiveness by about 0.85%. It is somewhat difficult to combine the effect of salinity on 

the NTU and the effectiveness, since this calculation must be carried out for a particular 

packing with known specifications. Therefore, further reduction in the effectiveness 

should be considered when using Eq. (20) to account for the effect of salinity on the 

NTU. This reduction ranges from 0.85% at typical seawater salinity (40 g/kg) to 3% for 

salinity of 120 g/kg. 

 

Conclusion 

The thermal performance of a seawater cooling tower is investigated in this paper. 

The thermophysical properties of seawater that affect the thermal performance are 

discussed and given as a function of salinity and temperature. A detailed numerical model 

for a counterflow cooling tower is developed and numerical solution for the air 

effectiveness is obtained. It is found that an increase in salinity decreases the air 

effectiveness by 5 to 20% relative to fresh water cooling tower. A correction factor 

correlation is obtained that relates the effectiveness of the seawater cooling tower with 

that of fresh water cooling tower for the same tower size and operating conditions. This 

correction factor equation is valid up to salinity of 120 g/kg and is accurate within ±2% 

with respect to the present numerical results. 
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Nomenclature 

a effective surface area for heat and mass transfer per unit volume m2 m-3

App cooling tower approach given by Eq. (18) K 
cp specific heat at constant pressure J kg-1 K-1

CF correction factor given by Eq. (20)  
h specific enthalpy J kg-1

hc convective heat transfer coefficient W m-2 K-1

hD mass transfer coefficient (also K) kg m-2 s-1

hv specific enthalpy of water vapor J kg-1

k thermal conductivity W m-1 K-1

Le Lewis factor defined by Eq. (14)  
m&  mass flow rate (also L) kg s-1

MR inlet water to air mass flow ratio  
n number of iterations  
NTU number of transfer units defined by Eq. (16)  
Pv vapor pressure Pa 
S seawater salinity g kg-1

t temperature oC 
T temperature K 
tref reference temperature taken as 0 oC oC 
V volume of cooling tower m3

z dimensionless height of packing in the cooling tower  

Greek Symbols  
ε effectiveness  
ρ density kg m-3

μ dynamic viscosity kg m-1 s-1

σ surface tension N m-1

ω humidity ratio kg kg-1

Subscripts  
a moist air  
i inlet  
o outlet  
s saturated  
sw seawater  
w pure water  
wb wet bulb  
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 

 

0 10 20 30 40 50 60 70 80 90
0.56

0.58

0.60

0.62

0.64

0.66

0.68

Temperature, °C

Th
er

m
al

 c
on

du
ct

iv
ity

, W
/m

 K

S = 0 g/kgS = 0 g/kg

S = 40 g/kgS = 40 g/kg

S = 80 g/kgS = 80 g/kg

S = 120 g/kgS = 120 g/kg

 

 

 27



 

Fig. 6 
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Fig. 7a 
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Fig. 7b 
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Fig. 8 
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Fig. 9 

 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5

NTU

A
ir 

Ef
fe

ct
iv

en
es

s

S = 0 g/kg
S = 40 g/kg
S = 80 g/kg

MR = 0.5

MR = 1.0

MR = 2.0

Inlet water temp. = 40 oC
Air dry bulb temp. = 30 oC
Air wet bulb temp. = 25 oC

 

 

 31



 

Fig. 10 
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Fig. 11 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 1 2 3 4

NTU

A
ir 

Ef
fe

ct
iv

en
es

s

5

S = 0 g/kg
S = 40 g/kg
S = 80 g/kg

Inlet water temp. = 80 oC
Air dry bulb temp. = 30 oC
Air wet bulb temp. = 25 oC

MR = 0.5

MR = 1.0

MR = 2.0

 

 

 33
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Fig. 13 
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