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ABSTRACT 

This paper describes the development of an articulating endoscopic screw driver that can be used 

to place screws in osteosynthetic plates during thoracoscopic surgery. The device is small 

enough to be used with a 12 mm trocar sleeve and transmits sufficient torque to fully secure bone 

screws. The articulating joint enables correct screw alignment at obtuse angles, up to 60° from 

the tool axis. A novel articulating joint is presented, wherein a flexible shaft both transmits 

torque and actuates the joint; antagonist force is provided by a super-elastic spring.  Screws are 
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secured against the driver blade during insertion with a retention mechanism that passively 

releases the screw once it is securely seated in the bone.  The prototype has been fitted with a 

blade compatible with 2.0 and 2.3 mm self-drilling screws, though a different driver blade or 

drill bit can be easily attached.  Efficacy of the tool has been demonstrated by thoracoscopically 

securing an osteosynthetic plate to a rib during an animal trial. This tool enables minimally 

invasive, thoracoscopic rib fixation. 

INTRODUCTION 

An articulating tool for endoscopic placement of screws will enable minimally invasive internal 

fixation of rib fractures using video-assisted thoracic surgery (VATS).  VATS is a well-

established procedure for pulmonary resection, lung volume reduction, lung biopsy, and 

pericardial resection.  By selectively ventilating one lung, much of the pleural cavity becomes 

accessible; an appropriate device for screw delivery enables VATS fixation of rib fractures using 

osteosynthetic plates. 

Multiple fractures in adjacent ribs compromise thoracic stability and result in paradoxical motion 

(flail chest) during respiration.  This condition is common; 4-10% of trauma patients have rib 

fractures, of which 10-15% exhibit paradoxical motion [1].  This condition is painful at best, but 

also reduces respiratory efficacy; in extreme cases the fracture endangers the integrity of the 

lungs or heart.  Chest wall instability can be treated by sedation of the patient or through artificial 

respiration, though internal fixation (placement of an osteosynthetic device) is often required.  

Nirula et al. [2] identify three cases in which fixation may be beneficial: (1) in the case of 

multiple fractures and paradoxical motion, (2) in the case of isolated fractures that result in 

significant pain, and (3) in the case of a previous fracture that has failed to heal.  Engel et al. [1] 
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describe a survey of literature that demonstrated shorter ventilation times and ICU stays in all 

cases where internal fixation was used.  Solberg et al. [3] report that internal fixation reduces 

ventilation time, ICU stay, and sepsis. 

Despite the clear benefits of internal fixation, existing procedures are so invasive that many 

surgeons opt to treat indications with ventilation and analgesia alone.  Titanium osteosynthetic 

plates are perhaps the most prevalent fixation method in the literature; Nirula et al. [2] regard 

these as the standard against which other methods must compare.  These plates are screwed to 

the anterior surface of the rib at each fracture site, requiring large incisions and separation of 

musculature.  Acute Innovations recently introduced a U-plate design advertised as minimally 

invasive, though the device still requires a large incision, considerable dissection, and significant 

separation of musculature [4,5].  Literature in the field has called for further advances in 

minimally invasive procedures [2]. 

Performing internal rib fixation thoracoscopically would provide three distinct advantages.  First, 

this approach eliminates the large incisions and separation of musculature required for existing 

techniques.  Second, a mechanical advantage is obtained; a fracture constrained on the proximal 

surface will be placed in compression during normal respiratory stresses, offering greater 

stability and eliminating stress shielding; to support this hypothesis, we note that the radius of 

curvature of the ribcage increases during respiration [6], while previous biomechanical tests have 

simulated loading in a consistent manner [5].  Third, the neurovascular bundle along the inferior 

edge of each rib is clearly visible during VATS placement such that the surgeon can avoid nerve 

contact and associated post-operative pain, which is a major driver for post-operative removal of 

implants. 
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In this paper, we present a new articulating tool for enabling a VATS procedure for rib fixation.  

This tool can both drill the rib cortex and deliver self drilling or self tapping screws.  We are 

aware of no prior art that accomplishes this result.  The literature supports the use of ductile 

mandibular plates for fixation [1], a method preferred by the authors.  In a VATS procedure, 

these plates can be delivered through small incisions using existing endoscopic tools.  In this 

presentation, we focus exclusively on a novel device that can secure these plates using self-

drilling bone screws. 

The following sections will present the specific requirements for an endoscopic drill and screw 

delivery device.  Next, an overview of the device design is presented followed by engineering 

details of each component.  A scale prototype is shown, and finally we demonstrate the efficacy 

of the device in a porcine trial. 

DEVICE REQUIREMENTS 

Placement of osteosynthetic plates in a VATS procedure requires an articulating endoscopic tool 

to drill or drive monocortical self-drilling or self-tapping screws.  In this section, we discuss 

specific requirements for (1) an endoscopic device, (2) an articulating joint designed for the 

thoracic cavity, (3) a device for driving bone screws, and (4) a screw retention mechanism. 

The end of the tool must be able to pass through a standard trocar sleeve at the site of incision.  

While a smaller trocar sleeve (and thus smaller tool) is clearly advantageous, we consider the 

case of a large 12 mm trocar sleeve.  Hence, the tool must fit through a cylindrical opening 12 

mm in diameter.  Further, materials must be selected to be both (1) bio-inert and (2) resistant to 

high temperatures during autoclave sterilization. 
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The tool must articulate to drill or allow placement of screws normal to the local surface of a 

curved rib.  The end length of the tool (from the articulation joint to the tip of the driver) is 

directly related to the angle through which the same end must articulate (Fig. 1).  A shorter end 

length results in a smaller degree of articulation and improved maneuverability in the thorax, but 

a minimum length is imposed by the components that must be included.  The minimum radius of 

curvature of the ribs imposes an upper limit on tool end length; from Mohr et al. [7] this is 

approximately 10 cm in adults.  From the authors‟ surgical experience and benchmark relative to 

endoscopic staplers, 6 cm would result in a maneuverable tool.  Assuming an end length of 6 cm, 

the tool end must articulate between neutral and 60
o
.  The symmetry of the device allows this one 

direction of articulation to reach a partial hemisphere of screw orientations.  From parametric 

modeling of rib geometry (data from [7]), 60
o
 will allow full access to multiple anterior fractures 

through a single posterior incision.  The articulation must have a resolution of at least 10
o
 (the 

accuracy with which screws must be placed; [8]).  This end length and level of articulation is 

comparable to those of conventional endoscopic staplers [12]. 

To start a drill or screw into the ri  cortex  a normal thrust force of 1     N must be exerted at the 

tip of the driver, representing the maximum normal force the tool will experience.  Kincaid et al. 

[9] report starting loads on the order of 25 N for 3.5 mm self-tapping screws.  Hillery and Shuaib 

[10] show thrust forces between 25 and 45 N for a 3.5 mm drill in cortical bone, depending on 

drill feed.  In the authors‟ experience  self-drilling screws require very little thrust force to start 

driving (an order of magnitude less than the results reported here).  Still, we obtain a 

conservative estimate by scaling the results in the literature for a 2.0 mm screw; this allows 

adaptation of the device to drilling or self-tapping screw applications. 
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Hitchon et al. [11] find that the torque required to drive a 4 mm self-drilling screw in vertebrae is 

approximately 0.5 Nm, even at high bone mineral densities.  Kincaid et al. [9] report similar 

values for 3.5 mm monocortical self-tapping screws in femurs.   In comparison, drilling requires 

much less torque; Hillery and Shuaib [10] report values of 0.010 to 0.015 Nm for a 3.2 mm drill.  

Scaling these values linearly results in a torque requirement of approximately 0.25 Nm for a 2.0 

mm screw.  This scaling is quite conservative since the cortex of ribs is much thinner than that of 

constructs tested in the literature. 

Finally, to avoid the loss of screws inside the body, the tool must actively retain the screw, at 

least on the order of magnitude of other forces (e.g. thrust force). 

BACKGROUND 

To the authors‟ knowledge  no device exists in prior art that satisfies the requirements set forth.  

While a variety of endoscopic tools are commercially available, few allow active tool articulation 

(e.g. Oberlin and Penrod [12], Nicholas et al. [13]) and none of these provide torque 

transmission. 

Flexible shaft screw drivers are available for automotive and surgical use; patents by Prager and 

Volzow [14], Beyar and Sohn [15], and McGuire [16] use flexible shafts in surgical screw 

drivers, though their devices are either fixed-angle or unconstrained and thus unable to maintain 

a specific degree of articulation.  Takehana et al. [17] use closed-loop control of shape memory 

alloy elements to direct the lens of a laparoscope, but their invention would be incapable of 

transmitting the high axial forces required for screw placement. 



 

Joseph E Petrzelka MED-10-1046 7 

Devices for surgical screw placement commonly incorporate a screw holder of the type 

described by Stihl [18]; while this design is robust, it requires external actuation and is difficult 

to incorporate into an articulating device (Fig. 2).  Schwager and Dorawa [19] describe another 

mechanical screw retention device, also requiring external actuation. 

We conclude that there are no existing mechanisms which accomplish the requirements of 

endoscopic screw placement. 

DEVICE DESIGN 

Our endoscopic screwdriver (Fig. 3) incorporates three degrees of freedom.  Primarily, 

continuous (infinite) rotary motion must be provided at the tip of the screw.  Second, an 

articulating joint must provide small angle rotations (0
o
 to 60

o
).  Third, a positive screw retention 

device must be actuated in a linear manner.   

Rotary motion is provided via a flexi le shaft that „floats‟ through the articulating joint area.  

The joint pivots about two symmetric pins.  Changing the arc length of the flexible shaft actuates 

the joint, with antagonist motion provided by a super-elastic spring.  While the flexible shaft runs 

along the axis of the device, the hinge pins are offset slightly to avoid a singularity at the neutral 

position.  This arrangement is particularly desirable because it requires that only two components 

– the flexible shaft and the spring – pass through the hinge region.  Further, the flexible shaft 

serves a dual role: it both transmits torque and controls articulation.  This mechanism is 

illustrated in Fig. 4. 
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A novel screw retention mechanism is located at the end of the shaft.  This design uses an under-

sized but compliant ring to hold the screw against the driver head; as the screw fully seats it pulls 

itself through the compliant ring to a released position.  In this manner, the mechanism is passive 

and does not require external actuation (Fig. 5).  

A drive module is connected to the articulating head via a tubular housing, through which a drive 

shaft passes.  The drive module uses a DC motor to apply torque, though an alternative 

embodiment could allow manual or pneumatic power sources.  A lead screw collar changes the 

location of the housing with respect to the drive shaft, in effect changing the arc length of the 

flexible shaft and the angle of articulation (Fig. 6).  

The following sub-sections discuss the specific mechanical element selection and modelling for 

each module: torque transmission, joint actuation, screw retention, and user control. 

Torque Transmission 

The primary function of the device is to drill or drive a screw, requiring a transmission of torque.  

Further, this torque must be transmitted through a 60
o
 variable-angle joint.  From a survey of 

literature, we identify that 0.25 Nm is sufficient to drive a 2.0 mm self-drilling screw; less torque 

is required for driving a self-tapping screw or for drilling.  We designed a device capable of 

providing 1.0 Nm, allowing for a generous safety factor.  Further, the transmission element must 

consume only a fraction of the 12 mm envelope to allow for the fitting of other components (e.g. 

hinge and actuation elements). 

Rigid mechanical elements are unable to transmit the required torque at the small scale desired.  

Variable-angle gear sets are limited by both relative cost and size.  A universal joint (U-joint) 
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seems a natural choice for variable-angle torque transmission.  The use of two serial U-joints 

results in constant velocity (impossible using a single U-joint) and requires each to flex only 30⁰.  

However, at the small diameters required, U-joints have detrimentally low torque ratings.  A 

survey of commercially available stainless steel U-joints shows that a prohibitively large 

component would be required to achieve a reasonable design safety factor (Fig. 7). 

A compliant element offers much higher torque transmission at small scales.  Flexible shafts 

(flex shafts), wherein a cable core provides high torsional stiffness but low bending stiffness, 

offer an alternative to gear and U-joint systems.  To our advantage, flex shafts are limited only 

by their bend radius rather than by their absolute angle; thus, achieving a 60⁰ bend is quite 

feasible.  Further, flex shafts are capable of transmitting much higher torques than U-joints at the 

millimeter scale.  The primary failure mode of a flex shaft is not shear, but rather elastic 

instability via helixing.    The critical torque cT  at which the flex shaft becomes unstable is 

determined by its bending stiffness B , free length  , and tension P  [20]: 

BP
B

Tc 
2

22

2



   (1) 

Due to advantages of higher torque ratings at small size scales, this tool uses a 3.3 mm flex shaft 

with a 50 mm minimum bend radius and a 3.4 Nm maximum torque; testing shows that zero-

tension helixing occurs at cT  of about 1 Nm.  The bend radius of this shaft dictates the required 

free length; to a first order (Fig. 8), one can show that 

 DLR 
2

cot


    (2) 
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and thus determine the free length, L2 , as a function of  the maximum angle of articulation 

  and minimum bend radius R . Hence, for our device, a free length   of about 60 mm is 

required (note that this corresponds to L  = 30 mm, which only consumes half of the maximum 

end length of 6 cm, leaving room for bushings and a driver blade).  Further, the distance that the 

shaft moves from neutral is  

 

















2
sin

2
cos1


Ld    (3) 

In the present embodiment, this results in a deflection d  of 8 mm, requiring that a channel be 

provided such that the shaft can flex a small distance outside the tool housing at full articulation.  

At a neutral position (zero degrees articulation) the shaft is fully within the tool housing for 

movement through a trocar sleeve (Fig. 4). 

Joint Actuation 

As a secondary function, the device must articulate between zero and sixty degrees; the 

mechanism of actuation is not a trivial design problem given the size constraints and anticipated 

forces.  A four-bar linkage would allow fully actuated control of the articulation angle, but at this 

small scale link buckling and pin shear become problematic.  To solve these problems, we 

developed an under-actuated design that utilizes a tensile element coupled with an antagonist 

spring. 

The flexible shaft acts as the tensile element necessary to actuate the joint.  Based on Eqn. 2 and 

Fig. 8, the arc length of the flexible shaft is a function of articulation angle  :   
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 DLS

2
cot


    (4) 

Alternatively, the articulation angle can be expressed as a function of shaft arc length, thus 

allowing a deterministic change of articulation angle by modifying the relative position of the 

tool housing and flexible shaft.  This relationship can be observed in Fig. 9; note the different 

locations of the flexible shaft driven end at the extremes of articulation.  To avoid a singularity at 

0 , the pivot point of the joint is placed slightly above the centerline of the flexible shaft 

(distance D  in Fig. 8).  

The size constraints of this device motivate selection of a super-elastic nitinol (NiTi) antagonist 

spring.  An ideal antagonist device would provide a force of the same magnitude as the thrust 

force (15 N) along the entire range of articulation.  Constant force springs made from standard 

materials (i.e. spring steels) are too weak at the scale required.  The force exerted by a 

cantilevered beam spring configuration is governed by beam bending theory and is proportional 

to the curvature,  , and radius, r , which are related to the yield strain according to  

 max yieldr      (5) 

The curvature max  is dictated by design geometry (similar to Eqn. 2); hence this configuration 

results in an extremely small spring diameter and low forces for conventional materials.  

However, the super-elastic properties of NiTi provide a yield strain ( yield ) that is an order of 

magnitude greater than conventional materials, while maintaining a relatively constant stress 

level ( erelasticsup ).  Thus, the use of a NiTi beam spring allows a significant antagonist force in a 
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small envelope.  Moreover, the NiTi response is relatively constant above 10 degrees of 

articulation, whereas traditional materials exhibit a linear response; this constant force results in 

a more predictable response to external stimuli during use (Fig. 10). 

Hard stops are incorporated in the housing design at each extreme to prevent over-articulation of 

the joint in this under-actuated configuration. 

To validate this design, each structural force and tension were computed as a function of 

articulation angle  .  These calculations show that the shear force on the pin joint, the flexible 

shaft tension, and the actuation force are nearly identical (Fig. 11).  Each of these forces are well 

below the yield point of their respective mechanical elements. 

Screw Retention 

While a variety of screw retention devices exist in current art, each requires actuation of some 

variety.  Due to the limited space available in the articulating joint, a passive device is preferred.  

To this end, a sliding sleeve is installed at the driver tip of the device.  This sliding sleeve, with 

the screw pre-attached, snaps onto the driver tip (Fig. 5).  When axial loading between the 

screwdriver and the rib surface reaches a critical threshold (order of 10 N), the screw snaps free 

as the sleeve slips backwards.   

Both ends of the retainer (screw and tool) employ cantilever snap fits (Fig. 5), though the axi-

symmetric design we employ is not easily modeled by standard snap fit methods.  To model 

these snap fits analytically, we use energy methods to balance the removal force, beam 

deflection, and friction.  To calculate the stiffness of the cantilevers, we make thin shell 

approximations. 
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Testing of our design demonstrates that reasonable radial forces (of order 10 N) fail to dislodge 

the screw from this retention device, thus ensuring that the screw will not fall off inadvertently 

during surgery.  Furthermore, we have tailored the design for low application force (to facilitate 

screw alignment to the driver tip) and moderate removal force. 

User Control 

A handle is incorporated to allow device control outside the body.  This grip must provide a 

means of (1) applying torque and (2) actuating the wrist. 

Torque can be applied via a number of equally acceptable methods, including manual, electric, 

or pneumatic drives.  Any powered drive must have a peak torque on the order of 1 Nm and be 

able to operate between 10 and 1000 rpm for combined drilling and driving functions.  In the 

embodiment presented here, we provide an adapter for a standard surgical drill, though early 

prototypes utilized both manual and integral DC gear motor drives.  We have found that limiting 

current provides an effective means of preventing over-torque. 

Articulation is controlled by changing the relative position of the drive shaft (coupled to the flex 

shaft) and the main housing; this is accomplished by turning a leadscrew collar located at the 

handle of the tool. The total movement required follows from the change in arc length (Eqn. 4): 









 DLLS

2
cot2


   (6) 

In the present design,  S  of 6 mm is required for articulation of 60°.  While a number of 

mechanisms could accomplish this, a nut / leadscrew combination is chosen for fine resolution 

and stability (assuming it cannot be backdriven).  The drive shaft is axially constrained in the 
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handle so that its axial tension is decoupled from the drive mechanism.  Feedback is provided 

either through visual inspection of the articulating end or by incorporating a rule into the grip 

that correlates S  with  . 

PROTOTYPE / TESTING 

Several prototypes have been constructed and tested to demonstrate that each design criterion 

was met.  Both benchtop and porcine cadaver trials have demonstrated the efficacy of the tool.  

The design and actuation of the articulating mechanism proved intuitive to first-time users in the 

surgical community. 

The novel articulating elbow and preferred handle embodiment were prototyped for testing (Fig. 

13).  Each housing at the articulating joint was machined from stainless steel; the majority of 

other internal components were manufactured from various stainless steel alloys (e.g.  flex shaft, 

drive shaft, pivot pins, primary housing).  Rulon 641 bushings were used at each end of the flex 

shaft for biocompatibility and autoclave temperature resistance.  The handle was constructed an 

anodized aluminum leadscrew collar and a series of stainless steel sleeves designed to fit to a 

standard reaming attachment for the Stryker Cordless Driver series of battery tools.  A miniature 

collet was fitted to the end of the flex shaft to allow interchange of drill and driver bits. 

The end of the tool easily fits through a 12 mm trocar.  The angle of articulation can be adjusted 

continuously between 0
o
 and 60

o
 by turning the lead screw nut (Fig. 14).  The total end length of 

the device is approximately 5 cm from the articulating joint to the driver tip. 
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Prototypes of the screw retainer were machined from Delrin to the specifications set from the 

previous analysis.  In benchtop testing, these prototypes demonstrated easy placement with a 

relatively stiff grasp on the screw. 

Two separate porcine trials have been conducted [21].  The first demonstrated the ability of this 

design to enter through a trocar and be manipulated to a series of different operative sites.  The 

second demonstrated effective placement of osteosynthetic plates and screws (Fig. 15).  In this 

procedure, we were able to both drill and place screws with the same tool operating at different 

speed ranges.   Using the screw retainer allowed both reliable delivery of screws and 

manipulation of plate position with the screw tip.  Screws were successfully removed using a 

bare driver tip without the screw retainer and using forceps for retrieval from the thoracic cavity. 

CONCLUSION / FUTURE WORK 

In this work we presented a new device for endoscopic screw placement.  This tool enables 

exploration of new methods for internal fixation of rib fractures, using well established VATS 

procedures.  Using a novel articulating joint, the device can place screws at obtuse angles (up to 

60
o
 off-axis) to meet the local curvature of ribs while delivering relatively high levels of torque.  

The device can easily be adapted to other surgical applications by attaching different driver trips 

or drill bits.  A scale prototype proves design feasibility.  Using the tool in a porcine model 

demonstrated promising results for VATS fracture stabilization.   

While this tool has provided promising results in preliminary tests, we note that significant 

research remains to develop a complete clinical solution; we defer a thorough discussion of 

clinical aspects to forthcoming publications (including [21]).  Our future endeavors include 

testing in cadaver models with flail chest segments to evaluate the ability to reduce fractures and 

A B 
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the mechanical stability of the stabilized construct.  Development is ongoing in specific systems 

for fracture reduction, implant delivery, and implant removal. 
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List of Figure Captions 

FIGURE 1 – AN ENDOSCOPIC DRIVER MUST HAVE AN ARTICULATING JOINT TO PLACE SCREWS AT THE CORRECT ORIENTATION; THE 

REQUIRED ANGLE OF ARTICULATION IS POSITIVELY CORRELATED WITH THE END LENGTH OF THE DEVICE.  WHILE ILLUSTRATED 

HERE IN TWO DIMENSIONS, THE ADDITIONAL DEGREE OF FREEDOM ALLOWS ACCESS OF MULTIPLE FRACTURE SITES ON DIFFERENT 

RIBS THROUGH A SINGLE  INCISION. 

FIGURE 2 – PRIOR SCREW RETAINER DESIGN; THE SCREW CAN BE EITHER HELD BY A SET OF RETAINING AND LOCKING SLEEVES 

(A) OR RELEASED BY SLIDING THE SLEEVES AWAY FROM THE SCREW HEAD (B) [17].  THIS COMMON DESIGN IS DIFFICULT TO 

ADAPT TO ENDOSCOPIC USE BECAUSE IT REQUIRES ACTUATION. 

FIGURE 3 – ARTICULATING ENDOSCOPIC SCREW DRIVER, SHOWN AT MAXIMUM DEGREE OF ARTICULATION. 

FIGURE 4 – NOVEL ARTICULATING JOINT DESIGN INCORPORATING ACTUATION VIA A TORQUE-TRANSMITTING FLEXIBLE SHAFT AND 

ANTAGONIST ACTUATION VIA A SUPER-ELASTIC SPRING (ILLUSTRATED AT THE EACH EXTREME OF ARTICULATION).  A SLOT IN THE 

HOUSING ALLOWS THE FLEXIBLE SHAFT TO MOVE OFF-CENTER AT HIGH DEGREES OF ARTICULATION. 

FIGURE 5 – (A) NOVEL PASSIVE SCREW RETENTION MECHANISM DEMONSTRATING THE USE OF A SNAP FIT TO RETAIN THE SCREW 

TO THE DRIVER TIP.  (B) THE RETAINER SNAPS ONTO THE TOOL END AND SNAPS AROUND THE SCREW HEAD TO FIRMLY RETAIN IT.  

(C) RETAINER IN THE OPERATING POSITION.  (D) AS THE SCREW FULLY SEATS, THE RETAINER IS PUSHED BACK BY THE 

SUBSTRATE TO RELEASE THE SCREW. 

FIGURE 6 – EXTERNAL ACTUATION MECHANISM, INCORPORATING (A) A POWER DRILL ADAPTER TORQUE AND (B) A LEAD SCREW 

COLLAR TO ADJUST THE RELATIVE POSITION OF THE TOOL BODY (C) FORWARD, WHICH CAUSES THE TIP TO ARTICULATE (D) DUE 

TO THE RELATIVE FORESHORTENING OF THE FLEXIBLE SHAFT. 

FIGURE 7 – STATIC TORQUE RATING VS. OUTER DIAMETER FOR STAINLESS STEEL UNIVERSAL JOINTS; CURVE SHOWS A BEST FIT 

TO DATA POINTS COLLECTED IN A SURVEY OF COMMERCIALLY AVAILABLE COMPONENTS. 

FIGURE 8 – MODEL OF FLEXIBLE SHAFT GEOMETRY AS A FUNCTION OF ARTICULATION ANGLE θ, PIVOT LENGTH L, AND PIVOT 

OFFSET D.  
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FIGURE 9 – SCHEMATIC ILLUSTRATING THE CHANGE IN FLEX SHAFT ARC LENGTH BETWEEN THE EXTREMES OF ARTICULATION; 

ACTUATION TENSION IN THE FLEX SHAFT IS BALANCED BY AN ANTAGONISTIC BEAM SPRING. 

FIGURE 10 – CHART OF ANTAGONIST MOMENT (Nm) AS A FUNCTION OF ARTICULATION ANGLE FOR NITI AND STAINLESS STEEL 

BEAM SPRINGS AT A MAXIMUM CURVATURE OF 72 m
-1

.  THE SUPER-ELASTIC NITI PROVIDES A LARGER AND MORE UNIFORM 

ANTAGONISTIC MOMENT FOR UNIFORM RESPONSE TO EXTERNAL STIMULI. 

FIGURE 11 – CHART OF FLEX SHAFT TENSION (N) AS A FUNCTION OF ARTICULATION ANGLE; PIN SHEAR FORCE AND ACTUATION 

FORCE ARE OF SIMILAR MAGNITUDE AND RESPONSE. 

FIGURE 12 - CANTILEVER BEAM SNAP FITS ON SCREW RETAINER SHOWN IN (A) NEUTRAL POSITION AND (B) SNAP POSITION.  (C) 

ENERGY METHODS ARE USED TO ANALYTICALLY RELATE REMOVAL FORCE TO THE CANTILEVER DEFLECTION FORCE AND 

INTERFACE FRICTION, THEMSELVES FUNCTIONS OF CANTILEVER STIFFNESS AND DEFLECTION. 

FIGURE 13 – (A) PROTOTYPE OF THE ENDOSCOPIC DRIVER: THE ARTICULATING JOINT IS ACTUATED BY THE FLEX SHAFT, WHILE 

THE REMOTE HANDLE INCORPORATES AN ADAPTER TO A STANDARD SURGICAL DRILL.  A COLLAR WITH AN INTEGRAL LEAD SCREW 

ALLOWS SIMPLE AND PRECISE ADJUSTMENT OF ARTICULATION.  (B) TOOL DISASSEMBLES FOR CLEANOUT AND STERILIZATION. 

FIGURE 14 – THE TOOL SUCCESSFULLY ARTICULATES FROM 0° (NEUTRAL) TO 60° WITH CONTINUOUS RESOLUTION; ANGLES OF 

10° THROUGH 60° ARE ILLUSTRATED HERE.  

FIGURE 15 – IMAGES FROM PORCINE TRIAL.  (A) DRILLING; (B) SCREW PLACEMENT USING SCREW RETAINER (C) FULL 

ARTICULATION FOR DRILLING; (D) PLATE PLACEMENT VIA TROCAR. 
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