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This paper offers a simple macroscopic approach to the question of the slip boundary condition to be imposed
upon the tangential component of the fluid velocity at a solid boundary. Plausible reasons are advanced for
believing that it is the energy equation rather than the momentum equation that determines the correct fluid-
mechanical boundary condition. The scheme resulting therefrom furnishes the following general, near-equilibrium
linear constitutive relation for the slip velocity of mass along a relatively flat wall bounding a single-component
gas or liquid: (vm)slip = −α∂ ln ρ/∂s|wall, where α and ρ are, respectively, the fluid’s thermometric diffusivity
and mass density, while the length δs refers to distance measured along the wall in the direction in which the
slip or creep occurs. This constitutive relation is shown to agree with experimental data for gases and liquids
undergoing thermal creep or pressure-driven viscous creep at solid surfaces.
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I. INTRODUCTION

The solution of fluid-mechanical problems involving con-
tact with solid walls requires knowledge not only of the
governing differential equations but also of the boundary
condition imposed on the tangential component of the fluid’s
velocity at the walls [1,2]. Though the empirical no-slip
boundary condition codified by Stokes’ [3] at the interface
between a solid surface and a liquid [4–6] or gas [7] applies
in commonly occurring situations [1,2], it has been known
since at least the time of Maxwell [8] that Stokes’ no-slip
condition is not inviolable, especially in the case of dilute
gases. Thus, slip (also called “creep” by gas kineticists) of
the fluid’s mass velocity is known to occur in gases whose
mean free path is large relative to the linear dimensions of the
container walls confining that gas internally, or to the linear
dimensions of a particle bounded externally by the gas [7].
(Moreover, there is a large body of empirical data suggesting
that slip can also occur in the case of liquids moving within
microfluidic and especially nanofluidic devices [4–6].) In the
case of nonisothermal fluids, whose temperature varies along
the particle or wall surface, the resulting thermal creep [8] gives
rise to the respective phenomena of thermophoresis [9–11] and
thermal transpiration [12,13]. For the case of isothermal fluids
(typically undergoing pressure-driven flow in a microfluidic
channel) the resulting slip phenomenon is termed viscous
creep.

When slip occurs, the problem becomes one of specifying
its constitutive form. While equations have been proposed in
attempts to quantify that slip in the case of gases [14,15], the
author is unaware of any equation with a rational claim of
universal applicability, namely, to both gases and liquids, as
well as to whether the flow is isothermal or nonisothermal.
Creep formulas that have been proposed in broadly general
contexts covering both gases and liquids are invariably char-
acterized by unknown phenomenological coefficients, such
as the Navier slip length [4,5]. These coefficients generally
need to be determined empirically, with their values apparently
dependent upon such factors as the physicochemical natures
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of both the fluid and solid, the solid’s surface topology (e.g.,
roughness), the surface’s hydrophobicity or hydrophilicity,
as well as other interfacial attributes. Given these features,
definitive progress in quantifying slip phenomena is currently
far from satisfactory.

This paper proposes a more-or-less general slip boundary
condition at solid surfaces focused on the issue of slip in
a broader, more general, context than currently exists, with
emphasis placed on the fluid’s volume velocity vv [16–19]
rather than its mass velocity vm. The issue of the fluid’s volume
velocity at a solid boundary arises in regard to its role in the
constitutive expression P · vv governing the rate per unit area
at which thermodynamic work is being performed at such a
surface, in which P is the pressure tensor.

II. VOLUME VELOCITY

In the absence of body forces such as gravity, the basic
equation governing energy transport in fluids, continua or
otherwise (e.g., rarefied gases), takes the form [1,2,20–23]

ρ
Dê

Dt
= −∇ · (ju + P · vv), (1)

where ρ is the mass density, ê the specific energy, ju the
flux of internal energy [24], P the pressure tensor, and vv a
velocity, here arbitrarily termed the fluid’s “volume velocity.”
For reasons discussed in detail elsewhere [16–19], the choice
of the prefix “volume” with respect to the velocity multiplying
P derives, in part, from an analogy between the areal rate-of-
working term P · vv appearing in Eq. (1) and its equilibrium
thermodynamic counterpart p dV [20], in which p is the
pressure and V the volume.

Appearing in the above is the material derivative

D

Dt
= ∂

∂t
+ vm · ∇, (2)

in which vm is the fluid’s mass velocity, defined as usual in
terms of the mass flux nm by the relation vm := nm /ρ. It is
this velocity that appears in the continuity equation

∂ρ

∂t
+ ∇ · (ρvm) = 0. (3)
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Until recently [16–19] it was always assumed [21–23]
that the velocity vv , defined by its role in the constitutive
formulation of the rate-of-working term in the energy equation
(1), was synonymous with vm such that

vv = vm. (4)

That is, the neutrally named and unsubscripted velocity
symbol v appearing in the areal rate-of-working term P · v in
Eq. (1) was implicitly assumed to be congruent with the symbol
vm, with the latter already defined not by its appearance in the
energy equation but rather by its appearance in the continuity
equation (3). The plausibility of Eq. (4) as a generality is,
however, questionable, since the volume velocity is not simply
a variant of the mass velocity. Rather, it is, operationally, a
fundamentally different quantity. Thus, whereas no consti-
tutive equation is required for vm, which is already defined
physically by its role in the continuity equation, the volume
velocity necessitates a constitutive equation, one necessarily
derived from its definition in Eq. (1) [with that equation
formulated in terms of the set of variables (vm,p,T ), T being
the temperature]. Explicitly, as a consequence of its definition,
vv necessarily depends upon the nature of its companion
constitutive equation governing P, with the latter already
defined by its appearance in the linear momentum equation
[21]. But since P itself requires constitutive formulation, the
same requirement must necessarily hold true for vv , too, since
it is only their product P · vv , rather than each field individually,
that is energetically objective. Thus, in effect, for a specified
P the symbol vv is to be chosen in a manner such as to satisfy
the first law of thermodynamics at each point of the fluid.

The preceding rationale dictating the definition of the
velocity symbol vv as the multiplier of the pressure tensor
in the energy equation appears to have been overlooked until
recently [16–19]. Consequently, the assumption throughout
the fluid-mechanics literature that Eq. (4) holds a priori is, in
general, without a rational foundation. It thus behooves one to
establish the operational protocol by means of which vv can, in
principle, be constitutively established, explicitly or implicitly,
at each point of the fluid and at each instant of time, in terms
of the independent variables (vm,p,T ). Logically, this can
only be accomplished from prior knowledge of the functional
constitutive dependence of P upon these same variables (or,
alternatively, by establishing both vv and P simultaneously
in terms of these variables as is, in fact, effected in earlier
papers [16–19]).

Were one to define a quantity jv by the expression

jv := vv − vm, (5)

belief in the equality (4) would then be tantamount to
supposing that jv = 0. We refer to jv in what follows as the
diffuse flux of volume. Much of what follows below will be
seen to focus ultimately, via Eq. (5), upon jv rather than vv .

A. Velocity boundary condition at a fluid-solid interface

Consider a closed, rigid container of volume V possessing
solid, immobile, impermeable walls ∂V . The container as a
whole is supposed held rigidly at rest (with respect to an inertial
reference frame). It is completely filled with a viscous single-
component fluid undergoing some generally nonisothermal

transient heat-transfer process involving movement vm of the
fluid’s mass. Gravity is supposed absent.

At a given instant of time the amount of energy E present
within the fluid confined in the container is [21]

E =
∫

V

ρê dV, (6)

where the specific energy ê consists of both internal and kinetic
energies (potential energy being absent in single-component
fluids owing to the assumed absence of gravity). The temporal
rate of change in the amount of this energy is given by the
expression [21]

·
E =

∫
V

ρ
Dê

Dt
dV . (7)

Use of Eq. (1) in the above jointly with the divergence
theorem gives

·
E =

·
Q+ ·

W , (8)

in which
·

Q = −
∮

∂V

dS · ju (9)

and
·

W = −
∮

∂V

dS · P · vv (10)

are, respectively, the rate of heat flow into the fluid from the
surroundings and the rate at which work is being done by the
surroundings on the fluid as a whole. Furthermore, dS = n̂ dS

is a directed element of surface area at a point lying on ∂V, at
which point n̂ denotes the outwardly directed unit normal to
the fluid domain V .

Given the rigidity, immobility, and impermeability of the
container walls, it is not possible for the surroundings to

perform work on the fluid. This requires that
·

W = 0, whence∮
∂V

n̂ · P · vv dS = 0. (11)

Furthermore, the impermeability of the container walls to
mass flow requires that

n̂ · vm = 0 on ∂V . (12)

Without loss of generality the functional dependence of
the dependent velocity field vv upon the independent fields
(vm,p,T ) [25] may, in principle, be implicit rather than explicit
in the subsequent development. Moreover, this dependence
may be nonlocal in nature, such that the constitutive equation
for vv at a given point of the fluid and at a given instant of time
depends, functionally, upon the values of the fields (vm,p,T ) at
points distant from the immediate neighborhood of that point,
not even necessarily even at the same time t . That is, at this
stage we leave open the possibility that the dependence of vv

upon this set of independent variables may take the form of
an integral distribution, one dependent upon the “history” of
these fields. In this context circumstances may be imagined
wherein the container is so large that a disturbance originating
in one portion of the (generally compressible) fluid may
require a finite amount of time before manifesting some effect
deriving therefrom in distant portions of the fluid. Despite
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such time lags, the integral condition (11) is nevertheless
required to hold at every instant of time. Moreover, it has
to hold independently of the initial conditions imposed upon
the differential equations governing the fluid’s motion in the
closed container. The possibility must also be considered that
the flow taking place is turbulent rather than laminar, or that
the fluid may be rheologically non-Newtonian [21] rather than
Newtonian. Other scenarios may also impact on the detailed
analysis required in applications.

The point of citing all of the above possibilities, however
unlikely some may be in commonly encountered applications,
is to focus on the fact that Eq. (11) must be satisfied for the
case of solid, immobile, and impermeable walls, independently
of all details, including the form taken by the constitutive
equation governing the pressure tensor. This is necessary to
assure global satisfaction of the first law of thermodynamics.

B. No slip of the volume velocity

The global condition (11) will obviously be satisfied if, at
each point on the bounding surface and at all times, one has that

vv = 0 on ∂V (∀t � 0). (13)

The latter, together with Eq. (12), is sufficient in present
circumstances to assure satisfaction of the first law [26]. Our
goal in what follows is to demonstrate that the boundary
condition posed by Eq. (13) is supported by several classes
of experiments, and to thus suggest, based on that agreement,
the general applicability of this local boundary condition at
solid surfaces.

Equation (13) is to be regarded as a working hypothesis,
one that is consistent (or at least not inconsistent) with
thermodynamic principles. In particular, we do not claim to
have offered a proof of the pointwise relation (13) based upon
the global condition (11).

As a consequence of Eq. (5), the boundary condition (13)
requires that

vm = −jv on ∂V . (14)

In terms of the latter’s normal and tangential components
we have that

n̂ · vm = −n̂ · jv on ∂V (15)

and

(I − n̂n̂) · vm = −(I − n̂n̂) · jv on ∂V, (16)

in which I is the idemfactor. The preceding equations show that
the slip velocity of the fluid relative to the bounding surface of
the solid is given by the expression

(vm)slip = −(I − n̂n̂) · jv on ∂V . (17)

Furthermore, based upon Eq. (15), condition (12) requiring
that the surface be impenetrable by mass becomes

n̂ · jv = 0 on ∂V . (18)

III. DIFFUSE VOLUME FLUX

As shown in earlier papers [16–19] devoted to the diffuse
transport of volume it follows, inter alia, from the principles
of linear irreversible thermodynamics (LIT) [22,23] that the

constitutive equation for jv (in situations where body forces
such as gravity are absent) is given by the expression

jv = −L21∇ ln T + L22∇p. (19)

Entropy production requirements require that L22 � 0,
together with other constraints imposed upon L21. The phe-
nomenological L coefficients are, according to the principles
of LIT, functionally dependent only upon p and T , while being
independent of vm.

A. Phenomenological coefficients

Several theoretical macroscopic and molecular models
quantifying the diffuse transport of volume through fluids
lead, independently, to the conclusion that in near-equilibrium
circumstances, and for circumstances where body forces are
absent, jv is given for both liquids and gases by the linear
constitutive relation

jv = Dv∇ ln ρ, (20)

in which the diffusion coefficient Dv � 0 (possessing the usual
units of a diffusivity) denotes the fluid’s volume diffusivity.
The several independent models leading from (19) to Eq. (20)
include the following: (i) equidiffuse transport theory [18,19];
(ii) Burnett’s solution of the Boltzmann equation for dilute
gases [27,28]; (iii) Dadzie et al.’s [29–31] extension of the
Boltzmann equation so as to now include internal molecular
transport processes occurring in so-called “volume space,”
above and beyond the usual “velocity-space” processes;
(iv) Durst et al.’s semitheoretical model [32–38] of transport
processes in compressible gases; and (v) Woods’ [19,39]
generic near-equilibrium constitutive hypothesis applied to the
diffuse transport of volume.

It has also been argued on theoretical grounds [17,18] that
in Eq. (20),

Dv = α, (21)

where

α = k

ρĉp

(22)

is the fluid’s thermometric diffusivity [21], wherein k is
the thermal conductivity and ĉp the isobaric specific heat.
Equation (21) is broadly supported in the case of gases by
Burnett’s constitutive equations [27,28] for the stress tensor
and the heat flux, as documented in Refs. [16–19]. When
applied to Eq. (19) the model posed by Eqs. (20)–(22) corres-
ponds to the following phenomenological coefficient values:

L21 = αβT (23a)

and

L22 = ακ, (23b)

where

β = − 1

ρ

(
∂ρ

∂T

)
p

(24a)

and

κ = 1

ρ

(
∂ρ

∂p

)
T

(24b)
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are, respectively, the fluid’s coefficients of thermal expansion
and compressibility.

IV. SLIP VELOCITY

Equations (20) and (21), jointly with (17) and (12), lead to
the following pair of constitutive expressions:

(vm)slip = −α
∂ ln ρ

∂s

∣∣∣∣
wall

(25)

and

(vm)normal = −α
∂ ln ρ

∂n

∣∣∣∣
wall

= 0, (26)

where δs > 0 and δn > 0 respectively denote elements of arc
length along and perpendicular to the wall in the directions of
increasing s and n. The algebraically signed scalar slip velocity
appearing in (25), referring to the fluid’s mass velocity relative
to the wall, is defined as

(vm)slip = ŝ · vm|wall, (27)

where ŝ is a unit tangent vector along the surface ∂V drawn
along a path line, and pointing in the same direction as that
for which the length parameter s is increasing in magnitude.
Similarly,

(vm)normal = n̂ · vm|wall, (28)

where, as before, n̂ is a unit normal vector perpendicular the
surface, pointing in the same direction as that for which the
length parameter n is increasing in magnitude.

A. Slip at smooth surfaces

With Nwall a characteristic distance measured in proximity
to, and normal to, the wall, it follows from (26) that the normal
component of velocity at the wall is of order (vm)normal =
O(α/Nwall). Given the strictly local, near-wall applicability
of this formula, an obvious choice for the characteristic length
is Nwall = O(R), where R is the local radius of curvature of
the wall at the point along the wall where the normal velocity
is to be calculated. Hence, for the case of a relatively flat wall,
one devoid of asperities, it follows that (vm)normal ≈ 0. In that
case it follows from (28) that

n̂ · vm|wall = 0, (29)

thereby assuring satisfaction of Eq. (12). The consequent
restriction of the slip formula (25) to relatively smooth surfaces
is counterpart to the comparable limitations of molecularly
based creep formulas [8,14,15,40] to one-dimensional trans-
port processes [7,35].

Einzel, Panzer, and Liu [41] discuss corrections to one-
dimensional slip-velocity formulas arising from curvature of
the surface. In this context they presented the following for-
mula for the variation in Navier slip length λ [see Eq. (38)] with
the surface’s radius of curvature R: λ = (1/λ0 − 1/R)−1,
where λ0 refers to the limiting value for a flat surface. Their
result is confirmed by Tibbs et al. [42].

B. Comparison of the slip velocity formula (25)
with data: Preview

The viability of the volume-velocity boundary condition
(13) can only be ascertained by examining pertinent experi-
mental evidence bearing thereon, with the outcome reflecting
on the correctness or lack thereof of this hypothesized
boundary condition. This empirical attitude is analogous to that
originally adopted by Stokes [3] and followed ever since with
respect to the conventional no-slip fluid-mechanical mass-
velocity boundary condition vm = 0 [1,2] at solid surfaces.
There, the credibility of Stokes’ hypothesis has been tested
in the context of elementary, well-defined situations. The
latter were sufficient in number, variety, and simplicity of
interpretation, such as to render Stokes’ no-slip hypothesis
credible as a general rule without, however, necessarily
supposing it to be inviolable. In what follows we adapt the same
empirical verification scheme to the present volume velocity
case, arguing that Eq. (13) overrides Stokes’ no-slip condition
in situations where fluid compressibility is sensible.

Experimental confirmation of the viability of the slip-
velocity formula (25) would, concomitantly, serve to confirm
(or, at least, not deny) the correctness of diffuse volume
transport theory (earlier referred to as “bivelocity” theory
[16,17]), as embodied in Eqs. (20) and (21), since these
constitutive equations are independent of those bearing on the
proposed boundary condition (13). That is, since vm = vv − jv ,
and since it is only vm that is experimentally accessible
independently of any constitutive hypothesis, any test of the
validity of the boundary condition vv = 0 on ∂V necessitates
having explicit constitutive knowledge of jv . On the other
hand, the converse is not true. That is, failure to confirm (25)
does not necessarily indicate the failure of diffuse volume flux
theory [16–19] since the source of the failure may simply lie
in the invalidity of the slip hypothesis (13) rather than in the
validity of the models underlying the constitutive relations (20)
and (21).

The theoretical predictions of Eq. (25) for various types
of gaseous and liquid-phase flows are compared below with
experimental data bearing thereon.

V. COMPARISON WITH SLIP VELOCITY DATA

A. Incompressible fluids do not slip

For those fluids whose density is effectively uniform
throughout, such that ρ = const, Eq. (25) yields

(vm)slip = 0 on ∂V . (30)

This no-slip prediction is, of course, supported by numerous
experiments performed on both liquids and “incompressible”
gases [4–7]. However, prior analyses supporting Stokes’
imposition of the no-slip condition on vm have not explicitly
identified the fluid’s incompressibility as constituting a neces-
sary (although insufficient) condition for its applicability, as is
implied in the present work.

1. Real liquids are compressible and, hence, slip

While it is true that no slip occurs when ρ = const, the
thermodynamic stability of fluids, liquids, as well as gases,
requires that the coefficient of compressibility defined in
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Eq. (24b) satisfy the inequality κ > 0 [43]. As such, whenever
pressure gradients exist (in isothermal fluids)—which is
always the case when fluid motion occurs—it is impossible
for the density to be uniform throughout the fluid. In that case,
in place of Eq. (30), one has either from (25) or from (19) and
(23b) that

(vm)slip = −ακ
∂p

∂s

∣∣∣∣
wall

. (31)

Since α and κ are each positive definite, in isothermal flows
the slip must always occur in the direction in which the pressure
along the walls is decreasing. For example, this direction of
slip accords with all known isothermal experiments involving
single-component pressure-driven Poiseuille-like flows in
microchannels [4,5]. Given that κ is small for liquids, the slip
velocity will surely be small for such fluids, except possibly for
very large pressure gradients. Reviews of the literature [4,5]
for this class of flows confirms the existence of some small
degree of slip for virtually all liquids. As such, all liquids slip
to some extent despite their relative incompressibility.

B. Gases

Equation (25) indicates that compressible gases fail to
obey the conventional no-slip condition. This conclusion is
implicitly supported, inter alia, by experimental data for gases
as reviewed by Gad-el-Hak [7]. In what follows we compare
the predictions of Eq. (25) with experimental results for both
nonisothermal and isothermal gaseous flows.

1. Nonisothermal gases: Thermal creep

It has long been known theoretically, ever since the classic
work by Maxwell [8], that the mass velocity vm slips at a solid
surface along which a temperature gradient exists, at least in
the case of dilute gases. This phenomenon, termed thermal
creep, has been confirmed experimentally on many occasions
(see the review by Brenner [44]) as well as theoretically by
molecular dynamic simulations [45,46]. The extent of such
slip was shown by Maxwell [8] to be given constitutively by
his thermal creep tangential-velocity boundary condition

(vm)slip = CS

υ

T

∂T

∂s

∣∣∣∣
wall

. (32)

Here, υ is the gas’s kinematic viscosity, while CS is
a nondimensional O(1) numerical coefficient whose value
Maxwell estimated to be 3/4 based on the assumption of
specular reflection of the gas molecules from the surface.
Theoretically established creep coefficient values for other
types of reflection, intermediate between specular and diffuse,
are provided in the extensive review paper by Sharipov and
Seleznev [14] (and more recently by Sharipov and Kalempa
[15]). Those tabulations cover the entire range of reflectivities,
varying from CS = 3/4 to CS = 1.15 [47].

Considerable experimental evidence also exists in support
of the functional form of Maxwell’s slip velocity formula (32),
although not necessarily his estimate of 3/4 for the value of
the thermal creep coefficient. The experimental results do,
however, support the general view that CS = O(1) [44], in
accord with the tabulation of Sharipov and Seleznev [14].
These experimental data derive, more or less exclusively, from

thermophoretic [9] and thermal transpiration [12] experiments.
In addition to experimental support, theoretical support also
exists for the correctness of Maxwell’s [8] nonisothermal creep
model [14,15,46–48].

For purposes of comparing Maxwell’s molecularly derived
Eq. (32) with our macroscopically derived expression (25)
for the slip velocity in nonisothermal gases, consider the case
where the contribution of the pressure gradient to the slip
velocity is small compared with that arising from the temper-
ature gradient. In that case Eq. (25) becomes

(vm)slip = αβ
∂T

∂s

∣∣∣∣
wall

. (33)

For dilute gases β = 1/T , whence the latter becomes

(vm)slip = 1

Pr

υ

T

∂T

∂s

∣∣∣∣
wall

, (34)

in which we have noted that, by definition,

α = υ

Pr
, (35)

where Pr = υ /α is the Prandtl number. For gases Pr = O(1)
[21], with values thereof generally lying in the approximate
range [49]

2/3 < Pr < 3/4, (36)

depending upon whether the gas is mono-, di-, or polyatomic.
Within the limits of uncertainty existing in the values of

the respective parameters CS and Pr−1, Eqs. (32) and (34) are
seen to be indistinguishable from one another. The previously
cited theoretical and experimental vales of CS thus enable
one to conclude that our macroscopic slip-velocity formula is
synonymous with that originally proposed by Maxwell [8]
on the basis of his molecular model [48], which focused
on the tangential transport of momentum in proximity to
the walls. Given the wide acceptance in the literature of
Maxwell’s thermal creep formula, this agreement contributes
to confidence in the viability of our general slip-velocity
model (25).

2. Viscous creep: Isothermal, pressure-driven gaseous
flows in narrow channels

For the case of both gases and liquids, it follows from
Eq. (25), together with (35), that

(vm)slip = − 1

Pr
υ

∂ ln ρ

∂s

∣∣∣∣
wall

. (37)

As such, the fluid slips along the wall in the direction of
diminishing density and, hence, for the case of isothermal
flows, in the direction of decreasing pressure. This is also the
direction in which the net flow of mass occurs through the
channel under the influence of externally imposed pressure
gradients.

Durst and his collaborators [33–38] have successfully
interpreted experimental data pertaining to the pressure-
driven isothermal flows of dilute compressible gases through
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microchannels by using their empirical slip-velocity formula,
namely,

(vm)slip = −υ
∂ ln ρ

∂s

∣∣∣∣
wall

. (38)

Use of the above boundary condition to solve the pertinent
fluid-mechanical equations was found by Durst et al. to
furnish results in accord with experimental data extending
over substantial ranges of Knudsen numbers. Given the Prandtl
number range for gases in Eq. (36), and considering the range
of uncertainties existing in both the accuracy of the constitutive
formula (20) relative to the model-free Eq. (19), and the
value of the volume diffusivity Dv appearing the former, it
is reasonable to declare our theoretical slip formula (37) to be
well supported by experimental data.

According to Durst et al. [33–38] their boundary condition
(38) fitted the data more closely than did Maxwell’s velocity-
creep boundary condition [7,8], namely,

(vm)slip = 2 − σ

σ
λ

∂vm

∂n

∣∣∣∣
wall

, (39)

where σ = O(1) is the momentum accommodation coefficient
and λ is the mean free path. Also noted by Durst et al.
[33–38] is the generally good agreement of their theory based
upon Eq. (38) with direct simulation Monte Carlo (DSMC)
simulations.

Dongari, Dadzie, and Reese [31] have confirmed that the
boundary condition posed by Eq. (38) leads to results for
isothermal gases flowing through microchannels that agree
well with experimental data.

As reviewed in Refs. [4] and [5], schemes other than
pressure-driven flows in microchannels possess the potential
for accurate experimental measurements of the slip velocity
in both gases and liquids. Prominent among these techniques
is atomic force microscopy (AFM). See, for example, Maali
et al., who used AFM to measure slip velocities in both
gases [50] and liquids [51].

C. Liquids

1. Isothermal liquids

According to Eq. (25), which is applicable to both gases
and liquids, the slip velocity can be reexpressed in the form

(vm)slip = αβ
∂T

∂s

∣∣∣∣
wall

− ακ
∂p

∂s

∣∣∣∣
wall

. (40)

In the case of isothermal flows, the latter reduces to Eq. (31). As
discussed in connection with that equation, liquids are largely
incompressible, whence κ ≈ 0. In the idealized case where
κ = 0 identically, no slip would occur.

2. Nonisothermal liquids

In view of the preceding comments, unequivocal quantita-
tive confirmation of our slip velocity model appears remote for
case of isothermal liquids owing to the smallness of the effect.
However, the same is not true for nonisothermal liquid flows.
In that case, one has from (40) that

(vm)slip = αβ
∂T

∂s

∣∣∣∣
wall

, (41)

wherein contributions arising from pressure gradients gener-
ated by the fluid motion have been neglected owing to the
smallness of κ . It is only through applications of Eq. (41)
that the possibility exists of testing our general slip velocity
formula (25) against liquid-phase experiments.

Experimental liquid-phase slip-velocity data of unequiv-
ocal impeachability, comparable in quality to that described
earlier for gases is, to the best of our knowledge, nonexistent,
except for the single instance described below. This dearth of
data for liquids owes to a number of sources. These include
the smallness of the slip effect in situations accessible to
experiment, as well as the difficulty of acquiring data that are
free of gravity effects, such as the natural convection currents
due thereto in the case of nonisothermal experiments. (For
small particles, the consequent presence of Brownian motion
further complicates the acquisition of reliable data.) These
difficulties are reviewed elsewhere [52].

Brenner and Bielenberg [9], upon solving the pertinent
fluid-mechanical differential equations subject to the boundary
condition (41), found the quasistatic thermophoretic velocity U
of a force-free, spherical heat-conducting particle of thermal
conductivity kS moving through a gas or liquid of thermal
conductivity k under the influence of an externally imposed
temperature gradient ∇T to be

U = − 1

1 + 2(kS /k)
αβ∇T . (42)

Before addressing the viability of the general formula
Eq. (42) for liquids, we first confirm its viability for the case
of gases, for which β = 1/T . The latter, together with use of
Eq. (35), jointly with recognition of the uncertainties existing
in the appropriate values of CS and Pr to be used, shows
that (42) is indistinguishable from Epstein’s [10] well-known
gaseous thermophoretic velocity formula

U = − 1

1 + 2(kS /k)
CS

υ

T
∇T , (43)

which, in turn, is known to agree well [9] with experimental
data for gases.

The sole source of liquid-phase experimental data of
which we are aware that is suitable for comparison with our
theoretical slip predictions pertains to the recent measurements
by Schermer et al. [11] of the thermophoretic velocity of a
small particle through a nonisothermal liquid. They found
that their data accorded closely with Eq. (42), especially
when contrasted with competitive theories for liquids which,
according to Schermer et al., differed from our Eq. (42) by as
much as two orders of magnitude in either direction, depending
on which particular theory was being tested. As reviewed
by Brenner [52], earlier attempts to accurately measure
thermophoretic velocities in liquids were unsuccessful owing
to the smallness of such velocities and the concomitant onset
of Brownian motion as well as corruption of these data by
natural convection effects.

In summary, the data of Schermer et al. [11] support our
general slip velocity formula (25) for the case of liquids.
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VI. SUMMARY AND CONCLUSIONS

This paper proposed a rational constitutive equation for
the slip-velocity suffered by a simple fluid, whether gas or
liquid, at its boundaries with a solid wall. Slip was shown to
arise as a consequence of gradients in the fluid’s mass density
along the wall. Experimental data derived from nonisothermal
phenomena in both gases and liquids were shown to support
the proposed slip velocity formula (25), although the available
liquid-phase data were scanty, leaving less conclusive the
support for liquids. Data encompassing isothermal pressure-
driven gaseous flows in micro- and nanofluidic devices offered
further evidence in support of the proposed slip model. This
concordance of experiment with theory served, concomitantly,
to offer indirect support for our general theory of diffuse
volume transport [16–19].

Prior to the present paper, theories pertaining to the
subject of slip at solid surfaces were largely limited to
gases [7,14,15]. Moreover, these theories were molecular
in nature, requiring, for closure, empirical knowledge of
the balance between specular and diffuse reflections at
the boundary, as quantified by empirical accommodation
or creep coefficients. In contrast, the slip model derived
herein was strictly macroscopic, requiring no empirical
parameters. Despite their very different origins, our paper
indicated a surprising level of compatibility between the two
models.

Yet to be addressed is the task of identifying, quantitatively,
the proposed slip model’s realm of applicability in regard to
the Knudsen number.
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