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Abstract

In this thesis, we examine the effects of tidal dissipation on solid bodies in application
and in theory. First, we study the effects of tidal heating and tidal evolution in the
Saturnian satellite system. We constrain the equilibrium heating of Enceladus to be
less than 1.1(18000/QS) GW, where QS is the tidal quality factor of Saturn. The
constraint on the heat flow is calculated from simple conservation of energy and
angular momentum arguments and does not depend on the internal parameters of
the satellites. We then look for dynamical disequilibrium by constructing a resonance
model, tested by n-body integrations, to establish a consistent resonance history for
Mimas, Enceladus, and Dione. We find that Enceladus is at or near equilibrium
in its current 2:1 mean motion resonance with Dione. We also look for thermal
disequilibrium using the oscillation model of Ojakangas and Stevenson (1986) [Icarus
66, 341-358]. We find that Enceladus does not experience oscillations in heat flow for
any choice of parameters. We conclude that the most likely explanation for Enceladus’
anomalous heat flow is a QS lower than 18,000, which implies either time or frequency
dependent dissipation for Saturn.

Next, we create a coupled thermal-orbital model for the early evolution of the
Moon. We compute the tidal heating in a dissipative lid overlying a magma ocean
and the associated tidal evolution of the lunar orbit. We find that moderately high
orbital eccentricities can be obtained, but show that the nonhydrostatic shape of the
Moon cannot be explained by the shape solution of Garrick-Bethell et al. (2006)
[Science 313, 652-655]. First, the orbit corresponding to the shape solution cannot
be reached without stretching the tidal dissipation in the Earth to unphysically large
values. Second, we show that the Moon will either crack or deform following the
epoch of the shape solution and cannot maintain the shape until the present.

We continue our study of the Moon by considering the evolution of the precession
of the lunar core as the Moon tidally evolves in its orbit. Early on in the Moon’s
history, we show that inertial coupling will force the spin axis of the core to precess
along with the spin axis of the mantle. The coupling precludes a lunar dynamo
before the Moon reaches a semimajor axis of 26.0-29.0 Earth radii. We also note that
the Cassini transition happens after inertial coupling has weakened enough to allow
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the core to precess independently. The time of the Cassini transition is therefore a
promising epoch for the existence of a powerful lunar dynamo.

Finally, we present a new formulation of tides on solid bodies. Tidal deformations
are modeled as the excitation of elastic modes. We derive general expressions for tidal
heating, despinning, semimajor axis change, and eccentricity change for zero-obliquity
bodies with a perturber on a non-inclined, eccentric orbit. We then specialize these
equations to the constant time lag model and confirm our theory using the classical
expressions.

Thesis Supervisor: Jack Wisdom
Title: Professor
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Chapter 1

Introduction

Tides sculpt the solar system, creating such instantaneously dramatic effects as the

plumes on Enceladus and also the slow inexorable drift of the Moon away from the

Earth. As a secondary object orbits around a primary body, the gravitational force

of the primary causes a distortion in the shape of the secondary, and vice versa. We

can refer to one body as the perturber and the other body as the extended body,

but both objects are causing and experiencing distortion. This distortion is the tidal

bulge. Because the body experiences friction as the bulge is raised, the bulge is offset

from the line from the primary to the secondary. This offset is quantified as the tidal

phase lag δ, which is often related to the tidal quality factor Q = cot δ.

If the extended body is rotating significantly faster than the perturber is orbiting,

the tidal bulge will lead the perturber. Then the bulge has a positive torque on

the orbit of the perturber, increasing the semimajor axis. If the extended body

rotates more slowly than the perturber orbits, the bulge will lag behind, creating

a negative torque that decreases the semimajor axis of the orbit. The change in

orbital angular momentum of the perturber is counterbalanced by change in rotational

angular momentum of the extended body. Any change in the total rotational plus

orbital energy is counterbalanced by heating in the extended body as a result of

friction. So we see that tides can affect both the thermal evolution of a satellite’s

interior and the orbital evolution.

Chapter Two describes work published by Meyer & Wisdom (2007) on the tidal
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heating of Enceladus. Enceladus presents quite a puzzle to planetary scientists. The

2005 Cassini flyby revealed active plumes emanating from the south pole (Porco et al.,

2006) and a heat flow of 5.8± 1.9 GW (Spencer et al., 2006). This heat flow estimate

has been revised upward as more flybys occurred. The most recent estimate is 17.0±
3.3 GW (Howett et al., 2010). This heat flow is higher than expected from traditional

estimates of tidal heating and higher than on the neighboring satellites of Enceladus,

such as Mimas. The conventional formula for tidal heating in a satellite around a

primary is proportional to k2/Q of the satellite, where k2 is the Love number and Q is

the tidal quality factor. Because these two parameters are largely unconstrained, the

estimated tidal heating is very dependent on one’s assumptions about the satellite

properties.

We compute the equilibrium tidal heating of Enceladus in its current 2:1 mean

motion resonance with Dione, independent of the satellites’ physical properties. The

resonance excites Enceladus’ eccentricity e, while tidal dissipation damps the eccen-

tricity. These two effects balance each other, resulting in constant eccentricity, when

Enceladus is in tidal equilibrium. Energy is transferred to the satellites in the amount

n0T0 + n1T1, where n is the mean motion and T is the torque from Saturn on each

of the satellites, and some of that energy goes into expanding the orbits. The rest

is dissipated as tidal heating in the interior of the satellites. Combining this argu-

ment with conservation of angular momentum L allows us to derive the maximum

equilibrium tidal heating of a satellite in resonance:

H =
n0T0

√

1− e20
+

n1T1
√

1− e21
− T0 + T1
L0 + L1

(

GMm0

a0
+
GMm1

a1

)

= 1.1 (18000/QS) GW.

(1.1)

The second equality is derived by using the masses, semi-major axes, and eccentricities

of Enceladus and Dione, which are well known. No assumptions about the interior

properties were required. The resulting heat flow depends only on the tidal quality

factor Q of Saturn.

We argue that the minimum Q of Saturn is 18,000 because if the average Q of

Saturn is less than that, Mimas’s orbit would have evolved outward more than what
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is observed. This constraint can be avoided if Saturn’s Q has changed over time or

if the Q of Saturn is very frequency-dependent so that the Q applicable for Mimas

is not the Q applicable for Enceladus. Alternatively, if Enceladus is not in tidal and

thermal equilibrium, the heating rate could be higher.

Chapter Three describes our investigation into possible tidal disequilibrium for

Enceladus, published by Meyer & Wisdom (2008b). If the current or very recent evo-

lution in the 2:1 Enceladus-Dione resonance is chaotic or quasiperiodic, Enceladus’s

eccentricity could be or have been temporarily higher than the equilibrium eccen-

tricity, creating a heat flux above the equilibrium heat flux computed in Chapter

Two.

In order to investigate this possibility, we characterized the current and past reso-

nances experienced by Enceladus. First, we examined the orbital history of Enceladus

and the other Saturnian satellites. We created a resonance model, verified by n-body

integrations, and applied it to past resonances involving Mimas, Enceladus, and Dione

to create an orbital history for the satellites, consistent with the current semimajor

axes and eccentricities. This investigation included Enceladus’ current 2:1 resonance

with Dione. The 2:1 resonance is split into a multiplet of resonances due to the

oblateness of Saturn. Some of the resonances excite the eccentricity of Enceladus,

some excite the eccentricity of Dione, and some excite a combination. Enceladus

and Dione currently inhabit the e-resonance, which excites only the eccentricity of

Enceladus. The e-resonance is located at the largest semimajor axis in the multiplet,

so as Enceladus and Dione evolve outwards due to the tides from Saturn, they pass

by or through all the other resonances in the multiplet.

We find that Enceladus evolves past the e′ resonance that only excites the ec-

centricity of Dione, enters the ee′ resonance, exits that resonance and enters the e

resonance. As the system evolves deeper into this resonance, Enceladus enters a

secondary resonance inside the e resonance, which causes chaotic variations in the

eccentricity. However, we know that this resonance is in the past, based on the cur-

rent semimajor axis ratio between Enceladus and Dione. Instead, we are currently in

the regime immediately after these chaotic variations. Enceladus exits the secondary
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resonance with an eccentricity very close to its equilibrium eccentricity in each sim-

ulation we performed. As a result, Enceladus reaches tidal equilibrium (constant

eccentricity) almost immediately after leaving the secondary resonance. Based on

this, we conclude that Enceladus is in or near tidal equilibrium today and that there

is no resonance dynamic justification for a different amount of tidal heating than is

described in Meyer & Wisdom (2007).

Chapter Four describes our investigation into thermal disequilibrium, published

by Meyer & Wisdom (2008a), using a thermal oscillation model originally devel-

oped by Ojakangas & Stevenson (1986) for application to Io. The model relies

on a temperature-dependent Q and a lag between eccentricity growth and melt-

ing/advection to create oscillations in both orbital eccentricity and heat flow. Due

to Enceladus’ smaller size compared to Io, this model does not produce oscillations -

the system reaches equilibrium very quickly.

Chapter Five includes a study of the early evolution of the Moon, as published by

Meyer et al. (2010). Tides have shaped the history of our Moon. The most accepted

scenario for the formation of the Moon involves a giant impact between the Earth

and a Mars-sized planetesimal that spewed out material which then coalesced into

the Moon (Canup, 2004). The Moon formed in an orbit with a semimajor axis of

only a few Earth radii and then tidal dissipation expanded its orbit to the current

value of 60 Earth radii. Tides were especially strong very early in the Moon’s life,

when the Moon was close to the Earth and the Moon had a magma ocean.

We created a coupled thermal-orbital model for the Moon in order to explain

two lunar mysteries: 1) the nonhydrostatic shape and 2) the discrepancy between

the radiogenic ages of lunar zircons and the time that simple magma ocean cooling

models predict. We use a Mignard orbital model and a thermal model that includes

a conductive plagioclase lid over a convective magma ocean. We assume that all the

tidal heating occurs in the lid. We find that large eccentricities can be obtained.

Warm temperatures in the plagioclase lid persist long enough to solve the zircon

discrepancy, if the zircons originated at depths of 25 km or more.

Garrick-Bethell et al. (2006) found that the nonhydrostatic shape of the Moon
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could be explained if the Moon froze in its shape under one of two conditions: in

synchronous rotation when the orbit had a semimajor axis of 22.9 Earth radii and

an eccentricity of 0.49 or in a 3:2 spin-orbit resonance with a semimajor axis of 24.8

Earth radii and an orbital eccentricity of 0.17. As the Moon’s evolution is currently

understood, the Moon entered into synchronous rotation very early on in its lifetime,

so we try to match the synchronous shape solution of Garrick-Bethell et al. (2006).

We find that our model can only produce an orbit that matches the shape solution

if we stretch the dissipation in the Earth to unphysical values. To meet the shape

solution, we require a time lag of 123 minutes with a completely fluid Love number

for the Earth. The maximum time lag that is physically meaningful in the Mignard

tidal model corresponds to a 45◦ phase lag, which is equivalent to a 37 minute time

lag for our assumed initial rotation rate of the Earth. Using this maximum time lag,

we find that a maximum eccentricity of 0.31 is physically realistic in our model.

We are nevertheless able to conclude that the shape solution of Garrick-Bethell

et al. (2006) is unable to explain the nonhydrostatic shape of the Moon. A simple

energy calculation can distinguish whether the shape can be maintained from the time

of Garrick-Bethell’s shape solution to the present. If we assume that the Moon has

the current shape at the semimajor axis and eccentricity given by the synchronous

shape solution, as the orbit continues to evolve, that shape will no longer be the

shape that corresponds to hydrostatic equilibrium. If the Moon maintains the shape

as the orbit continues to change, energy will be stored as gravitational potential

energy because the shape is no longer in hydrostatic equilibrium. Conversely, if the

Moon loses the shape, energy will be stored as elastic energy in the deformed mantle.

If we assume that the Moon will choose the lowest energy configuration, we can

conclude that the Moon will deform immediately after the orbit evolves past the

shape solution of Garrick-Bethell et al. (2006). Thus, a different explanation of the

Moon’s nonhydrostatic shape is required.

Chapter Six describes the history of the precession of the lunar core and the

consequences for a lunar dynamo, as published by Meyer & Wisdom (2011). The

paleomagnetic signatures of Apollo samples are yet another lunar puzzle, best ex-
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plained by a dynamo early on the Moon’s history. Dwyer & Stevenson (2005) have

argued that the only plausible mechanism to power a lunar dynamo is mechanical

stirring due to precession. This stirring requires relative motion between the spin

axis of the core and the spin axis of the mantle, i.e. that the core and mantle do not

precess together. Goldreich (1967) showed that a lunar core of low viscosity would

not precess with the mantle today. But in the past when the Moon was closer to the

Earth, the core-mantle boundary would be more elliptical and inertial coupling could

act to lock the core spin axis to the mantle spin axis.

We studied the ellipticity of the core-mantle boundary over the course of the

Moon’s history to determine when inertial coupling would be effective at preventing

a lunar dynamo. We find that the transition from locked to unlocked core precession

occurred between 26.0 and 29.0 Earth radii. Before the Moon reached these semimajor

axes, a lunar dynamo would be precluded by inertial coupling. These semimajor axes

were reached very quickly. In addition, we note that the Cassini transition occurs at

about 34 Earth radii, after the transition to an unlocked core. During the Cassini

transition, the mantle spin axis undergoes a dramatic reorientation and because the

core spin axis will not be forced to follow, enormous amounts of stirring in the liquid

core will result. The Cassini transition may be the best chance for a powerful lunar

dynamo.

Chapter Seven describes a new formulation of solid body tides that models tidal

displacements as a sum of excited elastic modes, analogous to the modeling of stellar

tides as excited internal modes. The classical expressions for tidal heating, semima-

jor axis evolution, eccentricity evolution, and despinning are derived using a constant

time lag tidal model, where a tide is raised by an imaginary perturber displaced by a

constant time lag along the orbit from the real perturber. This model assumes that

the tidally distorted body is synchronously rotating, completely elastic and incom-

pressible, small enough for the relationship between the Love numbers h2 = 5/3k2

to hold, and that Q is inversely proportional to frequency, so that the tidal bulge is

offset by a constant time offset ∆t, not a constant angle offset.

This list of assumptions is both long and not necessarily applicable in many physi-
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cal situations. One of the most questionable assumptions is the frequency dependence

of the dissipation. For instance, while the Earth-Moon system fulfills many of the

above criteria such as synchronicity, the measuredQ of the Moon is roughly frequency-

independent (Williams, 2008) over the limited frequency range studied. Terrestrial

geophysicists have studied the Earth over a broader frequency range and have found

more complicated frequency dependences, such as described in the Andrade model

or Burgers model. Planetary scientists do not understand the frequency dependence

of Q, but as far as we do, the constant ∆t model seems like a poor choice. The

widespread use of the constant time lag model is due to its mathematical tractability,

not to any physical evidence in favor of it. Yet, the constant time lag model is the

only tidal model with published analytic (not numerical) expressions for tidal heating

and orbital decay at high eccentricity (Wisdom, 2008).

Describing tides as excited elastic modes allows us to derive tidal dissipation ex-

pressions as sums of terms that include the phase lags as generic functions of fre-

quency. Instead of assuming a constant time lag from the beginning of the derivation,

as in the classical derivations, we can derive formulae applicable for any frequency

dependence and then insert a phase lag with arbitrary frequency dependence. Our

elastic mode formulation is mathematically cleaner than the alternatives and assump-

tions about the tidal frequency dependence enter into the theory in a more modular

way. Here we present the derivation of the tidal formulation and the application to

the Kelvin-Voigt rheology that corresponds to the constant time lag tidal model.

Chapter Eight contains our conclusions and directions for future effort.
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Chapter 2

Tidal heating of Enceladus

The heating in Enceladus in an equilibrium resonant configuration with other Satur-

nian satellites can be estimated independently of the physical properties of Enceladus.

We find that equilibrium tidal heating cannot account for the heat that is observed to

be coming from Enceladus. Equilibrium heating in possible past resonances likewise

cannot explain prior resurfacing events.

2.1 Introduction

Enceladus is a puzzle. Cassini observed active plumes emanating from Enceladus

(Porco et al., 2006). The plumes consist almost entirely of water vapor, with entrained

water ice particles of typical size 1µm. Models of the plumes suggest the existence

of liquid water as close as 7m to the surface (Porco et al., 2006). An alternate model

has the water originate in a clathrate reservoir (Kieffer et al., 2006). Both models

require substantial energy input to drive the plumes. The plumes originate in the

features dubbed the “tiger stripes,” in the south polar terrain. The heat emanating

from the south polar terrain has been estimated to be 5.8± 1.9 GW (Spencer et al.,

2006). Howett et al. (2010) has revised the heat flow upward to 17.0± 3.3 GW using

the additional data from multiple Cassini flybys. Some heating mechanism provides

about 17 GW of energy to the system. The estimated rate of radiogenic heating is

0.32 GW, and the estimated current rate of tidal heating resulting from the small
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orbital eccentricity of Enceladus is about 0.12 GW, for an assumed k2 of 0.0018 and

a Q of 20 (Porco et al., 2006). So these sources of heating are inadequate.

Squyres et al. (1983) remark that even if the current rate of tidal heating was

sufficient to maintain Enceladus in an active state, much greater heating would be

required to initiate the process. They suggest that heating of order 25 GW is necessary

to initiate melting, and propose that this might have been obtained by a much larger

orbital eccentricity.

Any mechanism for supplying the required energy must pass the “Mimas test”

(Squyres et al., 1983). Mimas has an ancient surface, but is closer to Saturn than

Enceladus and has a larger orbital eccentricity. Any mechanism that is proposed

to heat Enceladus must not substantially heat Mimas. Using the conventional tidal

heating formula (Peale & Cassen, 1978; Peale, 2003), the estimated tidal heating in

Mimas is about 30 times the heating in Enceladus, if the rigidity of the two bodies is

the same. Thus conventional tidal heating in the current orbital configuration does

not pass the test.

One mechanism for heating Enceladus that passes the Mimas test is the secondary

spin-orbit libration model (Wisdom, 2004). Fits to the shape of Enceladus from

Voyager images indicated that the frequency of small amplitude oscillations about

the Saturn-pointing orientation of Enceladus was about 1/3 of the orbital frequency.

In the phase-space of the spin-orbit problem near the damped synchronous state the

stable equilibrium bifurcates into a period-tripled state. If Enceladus were trapped in

this bifurcated state, then there could be several orders of magnitude greater heating

than that given by the conventional tidal heating formula. What was special about

Enceladus compared to Mimas was its shape. New fits of the shape to Cassini images

of Enceladus showed that Enceladus was not near the 3:1 secondary resonance, but,

remarkably, was near the 4:1 secondary resonance (Porco et al., 2006). A similar

analysis shows that if caught in this secondary resonance, the system could again

be subject to several orders of magnitude additional heating. Unfortunately, the

predicted libration was not seen. An upper limit placed on the magnitude of the

libration was 1.5 degrees, which in turn places an upper limit on the heating from the
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secondary resonance mechanism of 0.18 GW (Porco et al., 2006). So if the limits of the

libration amplitude are reliable, then the secondary resonance spin-orbit mechanism

is ruled out for the present system. It may still be possible that the system was

locked in this resonance in the past. Note that the large heating that would result

from libration in the secondary resonance would damp the orbital eccentricity, and

at sufficiently small eccentricity the secondary resonance becomes unstable. Thus the

secondary resonance mechanism could at most produce an episode of heating.

Lissauer et al. (1984) suggested that Enceladus might have recently been involved

in a 2:1 mean motion resonance with Janus. Janus is evolving outwards due to torques

from Saturn’s rings. At present, Janus is just 1000 km outside the resonance. Only a

few tens of millions of years ago Janus was at the resonance. If Janus encountered the

resonance when the eccentricity of Enceladus was low, the probability of capture into

the e-Enceladus resonance would be high. They found that if Janus and Enceladus

were trapped in the resonance and were in an equilibrium configuration then Ence-

ladus would be subject to 4.5 GW of heating, which is comparable to the observed

heating. But the model has numerous limitations (Peale, 2003). The value of the

mass of Janus has been revised downwards, and this leads to smaller tidal heating

(see below). The angular momentum in the A-ring is limited, so the resonance could

only have persisted for a limited time in the past. More importantly, Enceladus shows

evidence of multiple resurfacing episodes. The resonance with Janus could at most

explain the most recent activity. In addition, the model has to appeal to an impact

to get the system out of the resonance. The alternative escape mechanism suggested

is that the Janus resonance became unstable when the Enceladus-Dione resonance

was reached. But this seems unlikely, as Enceladus and Dione are not deeply in the

resonance and Dione has little effect on the orbital evolution of Enceladus at present

(Sinclair, 1983). There may also be a problem damping down the implied equilibrium

eccentricity of Enceladus to the present low value of 0.0047 in the short time (tens of

millions of years) since the resonance was purportedly disrupted. Actually, the sim-

plest scenario for the encounter of Janus with the 2:1 e-Enceladus Janus-Enceladus

resonance is that Janus just passed through the resonance with little effect on the

31



orbit of Enceladus. In this scenario Janus encounters Enceladus at its current eccen-

tricity, but at this eccentricity the system has a low probability of being captured

by the resonance. We find that the capture probability at the current eccentricity of

Enceladus is only 0.7%.

There are other possibilities for resonance configurations involving Enceladus in

the past (see Figure 2-1). Perhaps tidal heating in these resonances was responsible

for past resurfacing events. These resonances include the 3:2 Mimas-Enceladus and

the 3:4 Enceladus-Tethys resonances. If the Q of Saturn is sufficiently low, numerous

other resonances could have been encountered. Evolution through these has not been

studied in detail, but we can estimate the equilibrium tidal heating expected while

trapped in the resonances (see below).

Ross & Schubert (1989) investigated tidal heating in Enceladus using multilay-

ered viscoelastic models of the satellite. They found that equilibrium heating in a

homogeneous Maxwell model at the current eccentricity can be as large as 920 GW.

The heating is proportional to the Love number of the satellite and in the viscoelastic

models the dynamic Love number can be orders of magnitude larger than the elastic

Love number. They also investigated heating in a two layer model consisting of a

conductive elastic lithosphere overlying a Maxwell interior and a three layer model

with a liquid water-ammonia layer between the lithosphere and the Maxwell core.

These models are tuned to give a heating rate of about 4 GW, similar to that found

by Lissauer et al. (1984) in their Janus model. These models require a low conduc-

tivity insulating layer. Thus, it appears to be possible for tidal heating to provide

enough input energy to account for the observed energy output from Enceladus. The

Mimas test is not addressed by these models; it seems likely that if similar viscoelas-

tic models were applied to Mimas then there would also be large tidal heating in

Mimas, contradicting its cold inactive state. Nevertheless, viscoelastic enhancement

of the Love number has been presented as a simple solution to the problem of heating

Enceladus (Spencer et al., 2006; Stevenson, 2006).

In this paper we calculate the equilibrium rates of tidal heating in Enceladus

independent of the physical properties of Enceladus, based on conservation of energy
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and angular momentum. We find that tidal heating in Enceladus is much less than

the observed radiated heat.

2.2 Heating from Torques

One mechanism of heating is tidal dissipation in a synchronously rotating satellite. As

a system evolves deeper into an eccentricity-type resonance, the eccentricity grows. As

the eccentricity of a satellite grows the rate of energy dissipation in the satellite grows,

with the square of the orbital eccentricity. Dissipation of energy in a satellite tends

to damp the eccentricity. As tidal torques push the system deeper into resonance,

the eccentricity grows, until the rate of growth is balanced by the rate of decay due

to the internal dissipation. At equilibrium, the eccentricity no longer changes and

there is a steady state rate at which angular momentum is transferred to the outer

satellite. The rate of angular momentum transfer is related to the rate of heating in

the satellites. The equilibrium rate of heating can be calculated using conservation

of energy and angular momentum (Lissauer et al., 1984).

The angular momentum L and energy E of a satellite of mass m in an Keplerian

orbit of semimajor axis a about a primary of mass M are

L = m
√

GMa(1− e2) (2.1)

E = −GMm/(2a). (2.2)

The rate of change of the Keplerian energy can be related to the applied torque.

The energy can be written in terms of the angular momentum and eccentricity: E =

Ẽ(L, e). Let n =
√

GM/a3; we have

∂Ẽ

∂L
=

n√
1− e2

≈ n, (2.3)

ignoring corrections of order e2. The rate of change in angular momentum is the
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torque
dL

dt
= T. (2.4)

Ignoring the change in energy due to the change in eccentricity, the rate of change in

orbital energy from an applied satellite torque is

dE

dt
=
∂Ẽ

∂L

dL

dt
=

nT√
1− e2

≈ nT, (2.5)

again ignoring corrections of order e2.

Assume there are two satellites, and that there is some resonant interaction be-

tween the satellites so that angular momentum can be transferred between them.

For the sake of qualitative reasoning, let us ignore contributions to energy changes

due to orbital eccentricities. Consider a small impulsive torque that causes a change

in the angular momentum of the system ∆L. For simplicity assume that the torque is

applied only to the inner satellite. The energy change due to this angular momentum

change is approximately ∆E = n0∆L. This is the energy input to the satellite

system. Now let’s take into account the exchange of angular momentum between

the satellites. The change in angular momentum ∆L is now distributed in some way

between the two satellites ∆L = ∆L0 + ∆L1. The change in energy of the orbits is

then ∆E = n0∆L0 + n1∆L1. Because n1 < n0, this energy change is less than the

energy gained by the satellites. The remaining energy goes into heating the satellites.

The energy input to the system is the sum of the energy inputs for the individual

satellites. This presumes there is no cross tidal interaction between the satellites. So

the total rate at which energy is transferred to the satellites from the rotation of the

planet is n0T0+n1T1, ignoring corrections of order e2. This energy changes the orbits

and heats at least one of the satellites.

So we can write

n0T0 + n1T1 =
d

dt
(E0 + E1) +H, (2.6)

where Ei are the Keplerian energies of the satellites, and H is the rate of heating.

We have ignored the gravitational interaction energy of the satellites. If most of the

34



heating is in one satellite, we can take H to be the heating rate of that satellite.

As an eccentricity-type resonance is approached one of the satellite eccentricities

grows. Near a j : (j − 1) mean motion resonance, the eccentricity depends on a

parameter δ = jn1 + (1 − j)n0 that measures how close the system is to resonance.

The condition of resonance equilibrium is that the rate of change of δ is zero. This

implies

j
dn1

dt
= (j − 1)

dn0

dt
. (2.7)

Close to resonance the parameter δ is small, so jn1 ≈ (j − 1)n0. Dividing these, we

find that
1

n0

dn0

dt
≈ 1

n1

dn1

dt
, (2.8)

which in turn implies
1

a0

da0
dt

≈ 1

a1

da1
dt
. (2.9)

Following Lissauer et al. (1984), let us assume that T0 >> T1. Conservation of

the angular momentum of the system requires

d

dt
(L0 + L1) = T0 + T1 ≈ T0. (2.10)

Using eq. (2.1) at small e, we find

1

2

L0

a0

da0
dt

+
1

2

L1

a1

da1
dt

= T0. (2.11)

Using the equilibrium condition, eq. (2.9), we find

T0 =
1

2a0

da0
dt

(L0 + L1). (2.12)

Using eq. (2.6), assuming n0T0 >> n1T1, the rate of change in energy of the system

is equal to

n0T0 =
d

dt
(E0 + E1) +H. (2.13)
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Using this equation, eq. (2.12), and the equilibrium condition again, we derive

H = n0T0 −
T0

L0 + L1

(

GMm0

a0
+
GMm1

a1

)

. (2.14)

Again ignoring corrections of order e2, we derive

H = n0T0

(

1− 1 +m1a0/(m0a1)

1 + (m1/m0)
√

a1/a0

)

. (2.15)

Lissauer et al. (1984) generalize this formula to three satellites in equilibrium.

For the torque on each satellite we use the formula

T =
3

2

Gm2R5
Sk2S

a6QS

, (2.16)

where k2S and QS are the potential Love number and Q of Saturn, m is the mass of

the satellite, RS is the radius of Saturn, and a is the orbit semimajor axis (Schubert

et al., 1986). For k2S we use the value 0.341 (Gavrilov & Zharkov, 1977). The

minimum QS for Saturn may be determined by the condition that Mimas be outside

the synchronous orbit at the beginning of the solar system—this gives about QS ≥
18, 000. A maximum can be placed on QS if we adopt the tidal origin of the Mimas-

Tethys resonance. The age of the Mimas-Tethys resonance for a QS of 18,000 is

2× 108 yrs (Sinclair, 1983). Placing the origin of the Mimas-Tethys resonance at the

beginning of the solar system limits the QS of Saturn to be less than 4× 105.

The principal resonances that exist now or might have been operative in the

recent past that involve Enceladus are: 2:1 Enceladus-Dione, 3:2 Mimas-Enceladus,

3:4 Enceladus-Tethys, and the 2:1 Janus-Enceladus resonances. For each of these

we can calculate the equilibrium tidal heating given the torque on the inner body.

This torque is tidal for all but Janus, for which it is a ring torque. Applying the

equilibrium heating rate formula to each of these resonances we find, for QS = 18, 000:

2.4 GW for the 2:1 Enceladus-Dione resonance, 0.71 GW for the 3:2 Mimas-Enceladus

resonance, 1.2 GW for the 4:3 Enceladus-Tethys resonance, and 0.81 GW for the 2:1

Janus-Enceladus resonance. For the Janus-Enceladus resonance Lissauer et al. (1984)
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found 4.5 GW, but they used the larger mass of Janus determined through Voyager

observations. Peale (2003) found 0.95 GW using the pre-Cassini mass of Janus,

2.0 × 1018kg, determined by Yoder et al. (1989). Keep in mind that Enceladus and

Dione may not be in an equilibrium configuration (see below). Also, the assumption

that one torque dominates is invalid.

If the torque to the innermost satellite does not dominate then the formula needs

to be generalized. Beginning with eq. (2.6), we use the resonance condition, eq. (2.9),

to get

H =
n0T0

√

1− e20
+

n1T1
√

1− e21
− T0 + T1
L0 + L1

(

GMm0

a0
+
GMm1

a1

)

. (2.17)

The formula readily generalizes to an equilibrium of three satellites, by adding an

additional term to each of the sums. And this formula reduces to that of Lissauer

et al. (1984) at small eccentricity if T1 is set to zero.

Using this formula we recalculate the equilibrium heating rates for each of the res-

onances given above, assuming QS = 18, 000. We find: 1.1 GW for the 2:1 Enceladus-

Dione resonance, 0.48 GW for the 3:2 Mimas-Enceladus resonance, and 0.75 GW for

the 2:1 Janus-Enceladus resonance. The implied heating of the Enceladus-Tethys

resonance is negative; this resonance has no equilibrium as the orbits are diverging.

Adding the torque on the outer satellite has reduced the heating for all resonances.

For the Enceladus-Dione and Mimas-Enceladus resonances these are upper limits

to the heating rates because we have used the lower bound of 18, 000 for the Q of

Saturn. For larger QS, the torques and heating rates will be proportionally lower (see

Figure 2-3).

The nonsolar radiated power from Enceladus is estimated to be 5.8 ± 1.9 GW

(Spencer et al., 2006). This is larger than all the equilibrium heating rates.

2.3 Equilibrium Eccentricity

The equilibrium heating rate corresponds to an equilibrium eccentricity of Enceladus.

We can derive the equilibrium eccentricity by requiring that the equilibrium heating

rate be equal to the heating rate in a synchronously rotating satellite in an eccentric
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orbit (Peale & Cassen, 1978; Peale, 2003):

H =
21

2

k2E
QE

GM2
SR

5
En

a6
e2, (2.18)

where k2E and QE are the potential Love number and Q of Enceladus, and e is the

eccentricity. Using eq. (2.16) and eq. (2.17), we find

e2 =
1

7D

{

1− 1 +m1a0/(m0a1)

1 + (m1/m0)
√

a1/a0
+

(

m1

m0

)2(
a0
a1

)6
[

n1

n0

− 1 +m1a0/(m0a1)

1 + (m1/m0)
√

a1/a0

]}

,

(2.19)

where D is a measure of the relative strength of tides in Enceladus versus tides in

Saturn:

D =
k2E
QE

QS

k2S

(

MS

mE

)2(
RE

RS

)5

. (2.20)

Thus the equilibrium value of the eccentricity depends on the unknown k2E/QE of

Enceladus and the unknownQS. Note that if the torque on the outer body is negligible

then the term with square brackets in Eq. (2.19) can be ignored, but for the satellites

considered here this is not the case.

We can illustrate the approach to equilibrium and confirm the equilibrium value of

the eccentricity by performing numerical integrations of the evolution of the system.

Our model is an averaged resonance model that includes terms in the disturbing

function up to order e2, with dissipative terms that affect both the semimajor axes

and eccentricities. We have applied this model to study the evolution into the eE-type

3:2 resonance between Mimas and Enceladus. For this resonance, Eq. (2.19) becomes

e2 ≈ (59.5D)−1. For k2 = 0.0018, QE = 100, and QS = 18, 000, the equilibrium

eccentricity is calculated to be 0.022. The simulated evolution is shown in Figure 2-2.

We see the eccentricity of Enceladus approach the predicted value.

For Enceladus and Dione in the current eE-type 2:1 resonance, the equilibrium

eccentricity is e2 ≈ (30.69D)−1. The value of D depends upon the unknown k2 and
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Q of the satellite. Conventionally, Kelvin’s formula (Love, 1944) ,

k2 =
3/2

1 + 19µ
2ρgR

, (2.21)

has been used to estimate Love numbers of small satellites, where µ is the rigidity,

ρ the density, g the surface acceleration, and R the radius. For Enceladus, taking

µ = 4 × 109Nm−2, we find k2 = 0.0018. With an assumed QE of Enceladus of

20, the equilibrium eccentricity of Enceladus is 0.014. This is above the current

eccentricity of 0.0047; so in this approximation, Enceladus is not in equilibrium and

is still evolving deeper into resonance. Note that if the eccentricity is below the

equilibrium eccentricity, and if the heat flow is steady, then the heating rate is lower

than the equilibrium heating rate.

However, Ross & Schubert (1989) have shown that the dynamic Love number

can be much larger than this conventional estimate. If the dynamic Love number is

large enough then, in principle, Enceladus could be at a tidal equilibrium today. If

Enceladus is at the equilibrium, then the estimates of the last section apply, and the

heating in Enceladus is 1.1 GW for a QS = 18, 000. If QS is larger than this then

the heating is proportionally smaller. Thus even with an enhanced dynamic k2 the

equilibrium heating rate is lower than the observed heat flux.

For which parameter values is the current Enceladus-Dione system at equilibrium?

Given the current eccentricity of 0.0047, and a value for QS, we can determine the

required value of k2E/QE for equilibrium. This is the solid curve shown in Figure 2-3.

Above this curve, the current eccentricity is above the equilibrium value and below

this curve it is below the equilibrium value. The horizontal line shows the k2E/QE

for Kelvin’s estimate of the Love number (calculated above) and for QE = 20. We

see that for this value the current system is at an equilibrium for QS = 159, 000. The

equilibrium heating rate for the 2:1 Enceladus-Dione resonance as a function of QS

is also shown in Figure 2-3.

Keep the “Mimas test” in mind. If k2E is significantly enhanced over the Kelvin

value because of the viscoelastic properties of ice, then one might expect this also to

39



be the case for Mimas.

2.4 Conclusion

The rate of heating of Enceladus in an equilibrium resonant configuration with other

Saturnian satellites can be estimated independently of the physical properties of Ence-

ladus. Our results update the values obtained for the equilibrium tidal heating found

by Lissauer et al. (1984) and Peale (2003). We find that equilibrium tidal heating

cannot account for the heat that is observed to be coming from Enceladus, and cur-

rent heating rates are even less for conventional estimates of k2E. Even allowing a

dynamic k2E much larger than the conventional k2E, as can occur for viscoelastic

models (Ross & Schubert, 1989), the equilibrium tidal heating is less than the heat

observed to be coming from Enceladus.

One resolution is that the tidal equilibrium is unstable and that the system os-

cillates about equilibrium. Yoder & Peale (1981) suggested that Enceladus might

oscillate about equilibrium if the Q of Enceladus is stress dependent. An alternate

suggestion was made by Ojakangas & Stevenson (1986), who emphasized the possible

temperature dependence of Q. In these models Enceladus would now be releasing

heat stored during a recent high eccentricity phase. There may be other mecha-

nisms to produce episodic behavior. For instance, perhaps Enceladus could just store

the tidal heat as the system evolves monotonically and release it episodically. These

mechanisms may be consistent with the episodic character of the resurfacing events as

suggested by spacecraft images. But it is curious that one has to appeal to nonequilib-

rium tidal oscillations or episodic activity to heat both Io and Enceladus (Ojakangas

& Stevenson, 1986). If the fraction of time spent in an active state is, say, of order

20%, for each satellite, then the probability that both are found in an active state

today is only 4%.

Other low-order resonance configurations are possible for the Saturnian satellites

in the past. These include the 3:2 Mimas-Enceladus and the 3:4 Enceladus-Tethys

resonances. The latter resonance has no equilibrium because the orbits are diverging,
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and the former has an equilibrium heating of only 0.48 GW. So equilibrium heating

at past resonances is no more successful at explaining past resurfacing events than

equilibrium heating is at explaining the present activity.

Enceladus remains a puzzle.
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Figure 2-1: The approximate locations of the first-order resonances among the Satur-
nian satellites are shown for QS = 18, 000. The shift of position of the resonances due
to Saturn’s oblateness has been ignored. Also shown are the tidally evolved orbits
as a function of time. The dotted line shows the synchronous radius. The minimum
QS is determined by placing Mimas at the synchronous radius at the beginning of
the solar system. The current 2:1 and 4:2 resonances between Enceladus-Dione and
Mimas-Tethys are not shown.

42



t[Gyr]

e E

0.0 1.0 2.0
0.00

0.01

0.02

0.03

Figure 2-2: The eccentricity of Enceladus approaches an equilibrium value as the
system evolves into the e-Enceladus 3:2 Mimas-Enceladus resonance.
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Enceladus (with eccentricity 0.0047) and Dione is a tidal equilibrium for the given
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the Love number, using a rigidity of 4 × 109N/m2, and a Q of 20. The dashed line
gives the equilibrium heating rate H in Enceladus as a function of QS.
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Chapter 3

Tidal evolution of Mimas,

Enceladus, and Dione

The tidal evolution through several resonances involving Mimas, Enceladus, and/or

Dione is studied numerically with an averaged resonance model. We find that, in the

Enceladus-Dione 2:1 e-Enceladus type resonance, Enceladus evolves chaotically in the

future for some values of k2/Q. Past evolution of the system is marked by tempo-

rary capture into the Enceladus-Dione 4:2 ee′-mixed resonance. We find that the

free libration of the Enceladus-Dione 2:1 e-Enceladus resonance angle of 0.5◦ can be

explained by a recent passage of the system through a secondary resonance. In simu-

lations with passage through the secondary resonance, the system enters the current

Enceladus-Dione resonance close to tidal equilibrium and thus the equilibrium value

of tidal heating of 1.1(18, 000/QS) GW applies.

We find that the current anomalously large eccentricity of Mimas can be explained

by passage through several past resonances. In all cases, escape from the resonance

occurs by unstable growth of the libration angle, sometimes with the help of a sec-

ondary resonance. Explanation of the current eccentricity of Mimas by evolution

through these resonances implies that the Q of Saturn is below 100,000. Though the

eccentricity of Enceladus can be excited to moderate values by capture in the Mimas-

Enceladus 3:2 e-Enceladus resonance, the libration amplitude damps and the system

does not escape. Thus past occupancy of this resonance and consequent tidal heating
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of Enceladus is excluded. The construction of a coherent history places constraints

on the allowed values of k2/Q for the satellites.

3.1 Introduction

Enceladus poses a problem. Cassini observed active plumes emanating from Ence-

ladus (Porco et al., 2006). The heat emanating from the south polar terrain is es-

timated to be 17.0 ± 3.3 GW (Howett et al., 2010), increased from 5.8 ± 1.9 GW

(Spencer et al., 2006). Radiogenic heating is estimated to account for only 0.32 GW

(Porco et al., 2006). The secondary spin-orbit model (Wisdom, 2004) could account

for the heating, but the system was not found to be librating (Porco et al., 2006).

The only remaining source of heating is tidal heating. Tidal heating in an equilibrium

configuration, one in which the eccentricities no longer change as the semimajor axes

continue to tidally evolve, can be estimated independent of satellite physical proper-

ties using conservation of angular momentum and energy. Equilibrium tidal heating

can account for at most 1.1(18000/QS) GW of heating in Enceladus, where QS is the

Q of Saturn (Meyer & Wisdom, 2007).

One possibility for higher heat flow is that Enceladus is oscillating about the tidal

equilibrium (Ojakangas & Stevenson, 1986). However, Meyer & Wisdom (2008a) have

shown that for the physical parameters of Enceladus, the Ojakangas and Stevenson

model does not oscillate. Another possibility is that the resonance is dynamically

unstable. If the system exhibited a, perhaps temporary, episode of chaotic variations

in the eccentricity then the heating rate could exceed the equilibrium heating rate. We

have therefore undertaken a systematic exploration of the dynamics of the Saturnian

satellite system, focusing on the evolution of Enceladus. In particular, we study the

evolution of Enceladus and Dione in the current 2:1 e-Enceladus type mean motion

resonance. We also study the evolution of Mimas and Enceladus through the several

3:2 mean motion resonances.

Though our study was primarily motivated by Enceladus, the free eccentricity of

0.02 of Mimas also poses a problem. If primordial, it should have damped in the age
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of the solar system. What excited it? To address this problem we have extended our

study to include the Mimas-Dione 3:1 multiplet of resonances.

3.2 Model

Our model is an averaged resonance model for a mean-motion commensurability

between two coplanar satellites. We include all terms, both resonant and secular,

in the disturbing function up to second order in the eccentricities of both satellites.

We also model the oblateness of the planet, including J2, J4 and J2
2 contributions.

We include tidal evolution of the orbits and tidal damping of the eccentricities. The

physical parameters, such as the Qs of Saturn and the satellites, are all assumed

to be constant in time. Details of the model are presented in Appendix A. We use

the Bulirsch-Stoer algorithm to integrate the differential equations (Bulirsch & Stoer,

1966).

3.3 Equilibrium Eccentricity

As a satellite system tidally evolves regularly into resonance, the eccentricity of one (or

both) of the satellites grows because of the resonance interaction. As the eccentricity

grows the dissipation grows with the square of the orbital eccentricity. Dissipation

within a satellite tends to damp the orbital eccentricity. An equilibrium is possible:

the satellites evolve deeper into the resonance, until the increase of eccentricity due

to the evolution deeper into the resonance is balanced by the decrease of eccentricity

due to internal dissipation.

When only the eccentricity of the interior satellite is excited the equilibrium ec-

centricity can be calculated (Meyer & Wisdom, 2007):

e20 =
1

7D0

{

1− 1 +m1a0/(m0a1)

1 + (m1/m0)
√

a1/a0
+

(

m1

m0

)2(
a0
a1

)6
[

n1

n0

− 1 +m1a0/(m0a1)

1 + (m1/m0)
√

a1/a0

]}

,

(3.1)

where ai, mi, and ni are the semimajor axes, the masses, and the mean motions of
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the satellites (0 for interior, 1 for exterior), and where D0 is a measure of the relative

strength of tides in the interior satellite versus tides in Saturn:

D0 =
k2,0
Q0

QS

k2S

(

MS

m0

)2(
R0

RS

)5

. (3.2)

Here k2,0 and k2S are the Love numbers, Q0 and QS are the tidal dissipation factors,

m0 and MS are the masses, and R0 and RS are the radii, of the interior satellite and

Saturn, respectively. When only the eccentricity of the exterior satellite is excited

then the equilibrium eccentricity is given by the same formula with the 0s and 1s

interchanged.

As the equilibrium eccentricity is approached, the amplitude of libration in the

resonance can either decrease or increase. It is either stable or unstable. In the

case of Io in the Io-Europa 2:1 e-Io resonance, the libration amplitude damps and

the equilibrium resonance configuration is stable. In the case of the evection reso-

nance in the evolution of the Earth-Moon system, the libration amplitude grows as

the equilibrium eccentricity is approached (Touma & Wisdom, 1998). This allows a

natural escape from the resonance with an eccentricity near the equilibrium eccen-

tricity. In our studies of the evolution of Mimas, Enceladus, and Dione, we found

that sometimes the amplitude of libration damped and sometimes it grew, depending

on the resonance and the physical parameters. Sometimes, as mentioned below, the

escape from resonance is assisted by temporary capture into a secondary resonance,

as occurred for Miranda (Tittemore & Wisdom, 1989).

After escape from resonance, the eccentricity decays with the timescale (Squyres

et al., 1983)

τ =
2ma5

21nMR5

Q

k2
, (3.3)

where m is the satellite mass, a is the semimajor axis, n the mean motion, M the

planet mass, R the satellite radius, Q the dissipation factor, and k2 the satellite po-

tential Love number. Note that the k2/Q for the satellite affects both the equilibrium

eccentricity (through the factor D0) and the timescale for eccentricity damping.

48



3.4 Enceladus-Dione 2:1 e-Enceladus Resonance—

Future

Enceladus and Dione are currently in the Enceladus-Dione 2:1 e-Enceladus reso-

nance.1 Enceladus has a forced eccentricity of about 0.0047. The system has a

free libration of about 1.5◦ (Sinclair, 1972). We decided to explore the future evolu-

tion of the system, with the primary goal of verifying the analytic predictions of the

equilibrium eccentricity for various parameters. To our surprise, we found that the

system exhibits complicated, sometimes (apparently) chaotic behavior.

The behavior we found depends on the assumed k2/Q of Enceladus, which is

unknown. So we made a systematic survey varying this parameter. We explored the

range of k2/Q between 1.8 × 10−5 to 9.4 × 10−4. The lower bound corresponds to a

Kelvin2 k2 = 0.0018 with a Q of 100. The upper bound corresponds roughly to a k2

that is 10 times the Kelvin value with a Q of 20.

For 1.8 × 10−5 < k2/Q < 7.8 × 10−5 the system tends toward the expected equi-

librium, but as the eccentricity approaches the equilibrium eccentricity the libration

amplitude increases. Eventually, the system escapes the resonance whereupon the

eccentricity decays.

For 7.8 × 10−5 < k2/Q < 9.4 × 10−5, the system exhibits an unexpected and

interesting behavior. As in the previous case, the system tends toward equilibrium

while the libration amplitude increases. Then the system enters a phase with large

chaotic variations in the eccentricity while the resonance angle alternates between cir-

culation and libration. Eventually the system escapes resonance and the eccentricity

decays. After the system leaves the resonance the libration angle decays toward π.

1The resonant argument of the Enceladus-Dione 2:1 e-Enceladus resonance is λE − 2λD + ̟E ,
where λE and λD are the mean longitudes of Enceladus and Dione, and ̟E is the longitude of
pericenter of Enceladus. For this resonance the eccentricity of Enceladus is excited.

2That is, using Kelvin’s formula

k2 =
3/2

1 + 19µ/(2ρgR)

for the Love number of a homogeneous satellite of density ρ, radius R, surface gravity g, and rigidity
µ. We chose µ = 4× 109 N m−2.
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An example of this behavior is shown in Figure 3-1.

For 9.4×10−5 < k2/Q < 1.76×10−4, the system exhibits similar chaotic behavior

to systems in the previous range of k2/Q values, but the system ultimately does not

escape the resonance. It settles into a finite amplitude librational equilibrium about

the equilibrium eccentricity, as shown in Figures 3-2 to 3-4. For larger values of k2/Q,

the chaotic phase is more brief. The fact that the evolution of the system settles on

a limit cycle is interesting. We are unaware of other examples in which the endpoint

of tidal evolution is a limit cycle.

For 1.76 × 10−4 < k2/Q < 2.80 × 10−4, the chaotic phase disappears, leaving a

system that grows into stable finite amplitude libration about the equilibrium eccen-

tricity.

For k2/Q > 2.80 × 10−4, the eccentricity reaches a stable equilibrium and the li-

bration amplitude damps to zero, as shown in Figure 3-5. This behavior was observed

up to k2/Q = 9.4× 10−4, but presumably extends beyond the studied range.

We have seen that a diverse range of behavior is possible for the future of the

Enceladus-Dione resonance, depending on the unknown k2/Q. In some of these sce-

narios, Enceladus has an exciting future.

3.5 Mimas-Enceladus 3:2 e-Enceladus Resonance

One possible mechanism for heating Enceladus beyond the equilibrium limit is for

Enceladus to evolve chaotically. The Enceladus-Dione 2:1 resonance exhibited such

behavior in the future. The most recent first-order resonance that the system has

passed through is the Mimas-Enceladus 3:2 e-Enceladus resonance, which was exited

1.16 Gyr ago (for a minimum QS of 18,000).3 So we explored this resonance for

similar chaotic behavior. However, we found regular evolution into equilibrium, with

no excursions above equilibrium, chaotic or otherwise.

We examined the system for a range of k2/Q of Enceladus of 6.0×10−6 to 9.4×10−4.

3Using a constant QS model, Mimas would be at the synchronous radius at the beginning of the
solar system for approximately QS = 18, 000 (Meyer & Wisdom, 2007).
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In order to assure capture into the e-Enceladus resonance,4 we chose semimajor axes

corresponding to a location just before the resonance and set the eccentricity of Ence-

ladus to be 0.0011 so the capture probability was high. In every case, the system was

captured into the e-Enceladus resonance and reached equilibrium. The libration am-

plitude damped. No escape or chaotic behavior was observed. We conclude that

Enceladus was not captured into this resonance because we found no natural mecha-

nism for escape.

3.6 Mimas-Enceladus 6:4 ee′ Resonance

The eccentricity of Mimas is relatively high (0.020) and has a short timescale for

tidal decay. For a Q of 100 and a Kelvin k2 of 0.00058, the timescale for decay of

eccentricity is about 325 Myr. Thus, either the eccentricity of Mimas started at a

much higher value, perhaps with a larger Q, or the eccentricity has been recently

excited. The most recent first-order commensurability involving the eccentricity of

Mimas is the Mimas-Enceladus 3:2 mean-motion commensurability.

One of the resonances at the 3:2 mean-motion commensurability is the Mimas-

Enceladus 6:4 ee′ mixed resonance, which was exited 1.15 Gyr ago (for QS of 18,000).5

We examined evolution through this resonance as a possible explanation for Mimas’s

free eccentricity. We succeeded in explaining the current free eccentricity if Mimas’s

k2/Q is 1.3 × 10−6. The evolution of the eccentricities of Mimas and Enceladus is

shown in Figure 3-6.

The time of exit from the resonance depends upon the Q of Saturn, which is here

taken to be the minimum QS = 18, 000. For larger QS the required k2/Q of Mimas

would be smaller.

4The resonant argument of the Mimas-Enceladus 3:2 e-Enceladus resonance is 2λM − 3λE +̟E .
For this resonance the eccentricity of Enceladus is excited.

5The resonant argument of the Mimas-Enceladus 6:4 ee′-mixed resonance is 4λM − 6λE +̟M +
̟E . For this resonance the eccentricities of both Mimas and Enceladus are excited.
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3.7 Mimas-Enceladus 3:2 e-Mimas Resonance

Another of the multiplet of resonances at this mean-motion commensurability is the

Mimas-Enceladus 3:2 e-Mimas resonance,6 which was exited 1.14 Gyr ago (for a

minimum Q of Saturn of QS = 18, 000).

We also examined evolution through this resonance to see whether Mimas’s eccen-

tricity can be explained. We found that Mimas’s eccentricity could be explained and

that there exists an intrinsic dynamical mechanism of escape from the resonance. In

particular, the libration amplitude grows until the amplitude of the libration reaches

π whereupon the system falls out of resonance.

For a k2/Q of 1.42×10−6 for Mimas, Figure 3-7 shows the evolution of eccentricity

toward an equilibrium value of 0.052, followed by a period in which the variations of

the eccentricity grow larger, and then as the system escapes from the resonance the

eccentricity decays to the present value at the current time. This particular k2/Q was

chosen so that Mimas’s eccentricity would damp to the current value at the present

from the equilibrium eccentricity at the time at which the system left the resonance.

This exit time depends upon the Q of Saturn, which is here taken to be the minimum

QS = 18, 000. For larger QS the required k2/Q of Mimas would be smaller.

Figure 3-8 shows the resonance angle for this resonance. The libration amplitude

shows a sudden increase as the system is caught in a 3-fold secondary resonance,

between the libration frequency and the frequency of circulation of σ1. This is sim-

ilar to the mechanism that took Miranda out of resonance at an inclination near 4◦

(Tittemore & Wisdom, 1989).

Mimas’s eccentricity can be explained either by passage through the 3:2 e-Mimas

resonance, or the 6:4 ee′ mixed resonance. Placing these resonances at the birth of

the solar system limits the time-averaged Q of Saturn to be below 70,000.7

6The resonant argument of the Mimas-Enceladus 3:2 e-Mimas resonance is 2λM − 3λE + ̟M .
For this resonance the eccentricity of Mimas is excited.

7QS may be non-constant—our calculations place limits on only the integrated evolution.
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3.8 Mimas-Dione 3:1 Resonance

As discussed in the following section on the past evolution into the Enceladus-Dione

2:1 resonance, the eccentricity of Dione is required to exceed 0.001 at the time the sys-

tem encounters the Enceladus-Dione 2:1 e-Dione resonance. The most likely mecha-

nism for exciting the eccentricity of Dione is temporary capture into the Mimas-Dione

3:1 ee′-mixed resonance. In addition, capture into this resonance is another possible

explanation for the current free eccentricity of Mimas. Passage through this resonance

occurred 0.75 Gyr ago, for a QS of 18,000, after passage through the Mimas-Enceladus

3:2 resonance.

Another possible explanation of Mimas’s free eccentricity is the Mimas-Dione 3:1

e2-Mimas resonance, which occurred 0.70 Gyr ago, for a QS of 18,000. Evolution

of Mimas’s eccentricity is shown in Figure 3-9. In this resonance, the eccentricity of

Dione is not excited. The former explanation of the eccentricity of Mimas is preferred

because it also excites the eccentricity of Dione.

Explaining Mimas’s eccentricity via either of these resonances places an upper

limit on the Q of Saturn of 100,000 (placing this resonance at the birth of the solar

system). To reach the current eccentricity of Mimas at the present time requires

a k2/Q of Mimas of 3.0 × 10−6 in the e2-Mimas resonance or a k2/Q of Mimas of

2.6× 10−6 in the ee′-mixed resonance.

3.9 Enceladus-Dione 2:1 e-Enceladus Resonance—

Past

For an isolated first order e-type resonance, the tidal evolution into the resonance

is simple. But when more than one resonance is present, the evolution can be more

complicated, even though the multiplet of resonances associated with a commensu-

rability are split due to the oblateness of the planet. The evolution of Enceladus and

Dione through the multiplet of resonances associated with the 2:1 commensurability

has been the subject of some discussion (Sinclair, 1983, Peale, 1986). Here we study
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the evolution numerically.

We have carried out an extensive survey of the evolution of the system through

the multiplet of eccentricity-type resonances associated with the 2:1 commensurabil-

ity between Enceladus and Dione. We found that the evolution of the system was

more complicated than expected. In particular, we found that it was rather difficult

for the system to pass through the other resonances of the multiplet before being

finally captured in the current resonance. The third-order Enceladus-Dione 6:3 ee′e′

mixed resonance8 is surprisingly important in the evolution. Also important is the

Enceladus-Dione 4:2 ee′ mixed resonance.9

In our simulations the system was initially captured by the Enceladus-Dione 2:1

e-Enceladus resonance, before any of the other resonances of the multiplet were en-

countered. As the system subsequently passed through the Enceladus-Dione e-Dione

resonance, it was occasionally captured. However, once captured, the libration am-

plitude damps and precludes a natural escape from the resonance; we conclude that

the system was not captured into this resonance. The next resonance encountered (in

our model) is the third order ee′e′ resonance. We found that the system was easily

captured into this resonance, and that once captured the system had no natural mech-

anism for escape. In rare cases, when the eccentricity of Dione was near the critical

value for certain capture, the system did escape this resonance by unstable growth of

the libration amplitude. But it is likely that this resonance was avoided by the actual

system. We found that in order to avoid capture into this resonance the eccentricity

of Dione had to exceed about 0.001 at the time of e-Dione resonance encounter. (For

one mechanism to explain this eccentricity, see above.) We also found that successful

passage through the third order resonance required that k2/Q of Dione be in certain

ranges, depending on the eccentricity of Dione at the time of the e-Dione resonance

encounter. For eD = 0.001, we found k2/Q needs to be smaller than about 1.4×10−5.

For eD = 0.003, we found that k2/Q for Dione needs to be less than 8.8× 10−5.

Once the system avoids the third order resonance, then in our simulations it is

8The resonant argument of the Enceladus-Dione 6:3 ee′e′ mixed resonance is 3λE − 6λD +̟E +
2̟D.

9The resonant argument of the Enceladus-Dione 4:2 ee′ mixed resonance is 2λE−4λD+̟E+̟D.
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almost always captured by the ee′ mixed resonance (in only one case out of hundreds

the system passed through the mixed resonance without being captured). However,

unlike the third-order resonance, in this resonance the libration amplitude is always

unstable and the system naturally escapes. As it escapes we found that it falls directly

into the e-Enceladus resonance.

As the system falls into the e-Enceladus resonance the system exhibits all the

behavior catalogued in section 4. But the limiting behavior happens right away;

the system does not fall out of the resonance with an eccentricity much below the

equilibrium value. In a survey of the possible behavior as a function of the k2/Q for

Enceladus, we only found a behavior consistent with the current state of the system

if k2/Q was at or just below the equilibrium value of k2/Q.
10 The equilibrium value

is 8 × 10−4; we found values as low as 4.8 × 10−4 also passed through the current

state of the system. But usually, we found the system escaped near the equilibrium

value for a given k2/Q. These results suggest that k2/Q for Enceladus is closer to

the equilibrium value than the Kelvin value (even with a Q as low as 20). For values

of k2/Q near the equilibrium value, the libration amplitude damps in a few tens of

millions of years once it enters the e-Enceladus resonance. Since the eccentricity of

Dione needs to decay to its current value, this rapid decay of the libration amplitude

may be inconsistent with the current state of the system.

However, we found that once the system is in the e-Enceladus resonance, it is often

temporarily captured in a 2:1 secondary resonance between the libration frequency

and the frequency of circulation of the e-Dione resonance angle (σ1).
11 The system

escapes the secondary resonance by unstable growth of the secondary resonance li-

bration angle. Once out of the secondary resonance, the libration amplitude in the

e-Enceladus resonance damps. The current libration amplitude is probably evidence

that the system has recently passed through this secondary resonance. This allows

time for the eccentricity of Dione to damp to its current value.

10By “equilibrium value” of k2/Q we mean the value such that the current state of the system is
at a tidal equilibrium, that is, the eccentricity is no longer changing. See Meyer & Wisdom (2007).

11After this work was nearly complete we learned of the work of Callegari & Yokoyama (2007),
who noted the existence of secondary resonances in this system.
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The evolution of the eccentricities of Enceladus and Dione as the system evolves

through the Enceladus-Dione 2:1 multiplet of resonances are shown in Figures 3-10

and 3-11, respectively. In this simulation, the k2/Q of Enceladus is 8.0 × 10−4, the

value for which the current eccentricity is the equilibrium eccentricity. The k2/Q

of Dione is 1.24 × 10−4. The event marked ‘a’ shows passage through the e-Dione

resonance. Event ‘b’ is capture into the ee′-mixed resonance. Escape from the ee′-

mixed resonance (‘c’) is quickly followed by capture into the 2:1 secondary resonance

(‘d’).

3.10 Discussion

The values of k2/Q for the satellites in the above sections were calculated for a min-

imum QS of 18,000. For a maximum QS that places the resonances at the beginning

of the solar system, the values of k2/Q are smaller. We can estimate the required

values of k2/Q by assuming that the eccentricity upon exiting the resonance is ap-

proximately the equilibrium eccentricity. We then constrain k2/Q for each satellite by

the requirement that the eccentricity decay to the present value at the present time.

Figure 3-12 shows the values of k2/Q, determined in this way, for Mimas as a function

of QS, for the Mimas-Enceladus 3:2 e-Mimas resonance and for the Mimas-Dione 3:1

e2-Mimas resonance.

We see that, as expected, a larger QS requires a smaller k2/Q for Mimas. Basically,

this is because the time since exiting the resonance is longer for a larger QS and to

slow the decay of the eccentricity k2/Q must be smaller. The k2/Q for Mimas in

the Mimas-Enceladus 3:2 resonance is smaller than that in the Mimas-Dione 3:1

resonance. The 3:1 resonance occurs closer to the present time, so the eccentricity

must damp more quickly, and also the 3:1 equilibrium eccentricity is larger than the

3:2 equilibrium eccentricity.

The interpretation of these values of k2/Q depends on the assumed rigidity through

the Love number k2. The rigidity of ice (and rock) at the conditions of Mimas is

uncertain. In computing the Kelvin value of the Love number presented above, we
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used a rigidity of 4 × 109 N m−2. With this rigidity, the Kelvin k2 of Mimas is

5.8 × 10−4. Thus the required Q of Mimas for the free eccentricity of Mimas to be

explained by passage through the Mimas-Dione 3:1 e2-Mimas resonance ranges from

about 190 (for QS of 18,000) to about 1000 (for QS = 100,000). The required Q

for Mimas for the Mimas-Dione 3:1 ee′-mixed resonance ranges from about 220 (for

QS of 18,000) to about 1050 (for QS of 100,000). The required Q for Mimas for the

Mimas-Enceladus 3:2 resonance ranges from about 420 (for QS of 18,000) to about

1600 (for QS of 70,000). But these values of Q are uncertain because of uncertainties

in the Love number. First, the rigidity assumed may be uncertain by up to a factor

of 3 in both directions (Moore, 2004). Then there may be viscoelastic modification

of the “dynamic” Love number (Ross & Schubert, 1989). With these uncertainties,

the required values of Q should not be taken too literally. Nevertheless, some may

be uncomfortable with the large Q of Mimas required at the larger QS end of the

allowed range. This might suggest that QS is closer to 18,000 than 100,000.

3.11 Conclusion

We have numerically explored tidal evolution through several resonances, including

the multiplets of the Enceladus-Dione 2:1 resonance, the Mimas-Enceladus 3:2 reso-

nance, and the Mimas-Dione 3:1 resonance.

Enceladus may have an interesting future in the Enceladus-Dione 2:1 e-Enceladus

resonance. For a range of k2/Q, we found that the system exhibits complicated and

sometimes chaotic behavior. Unfortunately, we only found this interesting behavior

in the future. Therefore, such chaotic episodes cannot explain the current heating of

Enceladus.

We then investigated the past Mimas-Enceladus 3:2 e-Enceladus resonance to see

if similar chaotic episodes occurred. We found no chaotic behavior and moreover, no

natural dynamical mechanism for escape. If the system had been captured in this

resonance, it would have remained in the resonance until the present time, contrary

to its observed state.
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We found multiple possible explanations for the large free eccentricity of Mimas.

The Mimas-Enceladus 6:4 ee′ mixed resonance can explain Mimas’s current free ec-

centricity of 0.020 for a k2/Q of Mimas of about 1.3×10−6. Escape from this resonance

is by growth of the libration amplitude.

In addition, the Mimas-Enceladus 3:2 e-Mimas resonance can excite Mimas’s ec-

centricity to large values, and for a k2/Q of about 1.42 × 10−6, the eccentricity can

decay from values near the equilibrium value of 0.052 to the current value in the 1.14

Gyr since the resonance was exited (for QS = 18,000). The system escapes as the

libration amplitude grows to π, sometimes with the help of temporary capture in a

secondary resonance.

If Mimas’s eccentricity is explained by either of the above mechanisms, the time-

averaged Q of Saturn is constrained to be less than 70,000 so that the Mimas-

Enceladus 3:2 resonance multiplet occurs after the birth of the solar system.

Mimas’s eccentricity could also be explained via excitation in the Mimas-Dione

3:1 e2-Mimas resonance for a k2/Q of Mimas of 3.0×10−6 or the Mimas-Dione 3:1 ee′-

mixed resonance for a k2/Q of Mimas of 2.6×10−6. In these cases, the time-averaged

Q of Saturn is constrained to be less than 100,000.

Of the Mimas-Enceladus 6:4 ee′ mixed resonance, the Mimas-Enceladus 3:2 e-

Mimas resonance, the Mimas-Dione 3:1 e2-Mimas resonance, and the Mimas-Dione

3:1 ee′-mixed resonance, the Mimas-Enceladus 6:4 ee′ mixed resonance is encoun-

tered first as Mimas tidally evolves. If it is captured then the eccentricity of Mimas

will be large after escape, so subsequent capture into the Mimas-Enceladus 3:2 e-

Mimas resonance will be unlikely (we estimate 1.4% using the formulae of Borderies

and Goldreich, 1984). If the eccentricity decays sufficiently, then there is a chance

that the system will be subsequently captured into the Mimas-Dione 3:1 e2-Mimas

resonance or the Mimas-Dione 3:1 ee′-mixed resonance. For a maximum k2/Q for

Mimas of 3 × 10−6 we estimate the probability of this capture in the 3:1 resonance

at 4.5%. Alternatively, the system may pass through the Mimas-Enceladus 6:4 ee′

mixed resonance, and be captured into the Mimas-Enceladus 3:2 e-Mimas resonance.

After escape, the system again has a small chance of being captured by one of the

58



Mimas-Dione 3:1 resonances. Capture into the Mimas-Dione 3:1 ee′-mixed resonance

is preferred because the scenario requires lower (perhaps more realistic) Q of Mimas

and also excites the eccentricity of Dione to the level required for successful passage

through the Enceladus-Dione 2:1 multiplet.

The evolution into the current Enceladus-Dione 2:1 e-Enceladus resonance is sur-

prisingly complicated. The system is first captured into the e-Enceladus resonance,

well before the point of exact commensurability. Subsequent evolution is marked by

passage through or past the e-Dione, ee′e′, and ee′-mixed resonances. In order to suc-

cessfully arrive at the current state of the system, the e-Dione and ee′e′ resonances

must be avoided because once captured, escape is unlikely. In our simulations, we

found that this requires that the eccentricity of Dione must exceed 0.001 when it

encounters the e-Dione resonance. A likely mechanism for exciting the eccentricity of

Dione is capture into the Mimas-Dione 3:1 ee′-mixed resonance.

Once the system has passed the e-Dione and ee′e′-mixed resonances, the system is

usually captured into the Enceladus-Dione 2:1 ee′-mixed resonance and this phase of

the evolution shows large variations in the eccentricity of Enceladus. However, these

variations are unfortunately not large enough to substantially enhance the heating

rate over the equilibrium rate. The system naturally escapes the ee′-mixed resonance

by growth of the libration amplitude, and then is immediately captured back into the

e-Enceladus resonance.

After leaving the ee′-mixed resonance, the system usually is caught in a 2:1 sec-

ondary resonance between the libration frequency in the e-Enceladus resonance and

the circulation frequency of the e-Dione resonance angle. This secondary resonance

temporarily increases the libration amplitude of the e-Enceladus resonance angle. In

some of our simulations, the e-Enceladus libration amplitude damped to the current

observed value of 1.5◦ as the eccentricity of Dione damped to its observed value of

0.0022.

Since the system always escapes this secondary resonance close to equilibrium,

we are able to conclude that Enceladus is probably near its equilibrium eccentricity.

Therefore the equilibrium heating rate of 1.1(18, 000/QS) GW (Meyer & Wisdom,
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2007) due to the Enceladus-Dione 2:1 e-Enceladus resonance applies. To exceed this

rate of heating requires some other form of non-equilibrium behavior.
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Figure 3-1: The future evolution of Enceladus’s eccentricity as it evolves deeper into
the Enceladus-Dione 2:1 e-Enceladus resonance. The system approaches equilibrium,
but the libration amplitude is unstable and the eccentricity enters a chaotic phase
with large variations in amplitude. Eventually the system falls out of resonance. Here
k2/Q of Enceladus is 8.6× 10−5.
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Figure 3-2: The future evolution of Enceladus’s eccentricity in the Enceladus-Dione
2:1 e-Enceladus type resonance for k2/Q = 1.0 × 10−4. After the chaotic phase the
system enters a limit cycle in which the eccentricity oscillates.
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Figure 3-3: The initial evolution, spanning 1.3 Gyr, for k2/Q = 1.0 × 10−4 is shown
in the phase plane h0 = e0 sin σ0 versus k0 = e0 cos σ0. The evolution begins with a
libration near σ0 = 0, the amplitude increases as the eccentricity increases. There is
a chaotic transient which makes a splatter of points on the phase plane. The system
eventually settles down on a limit cycle (see Figure 3-4).
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Figure 3-4: The evolution of Enceladus in the Enceladus-Dione 2:1 e-Enceladus type
resonance for k2/Q = 1.0 × 10−4 eventually settles on a limit cycle, shown here in
the phase plane h0 = e0 sin σ0 versus k0 = e0 cos σ0. The plotted segment of the orbit
spans 3 Gyr.
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Figure 3-5: The eccentricity of Enceladus in the Enceladus-Dione 2:1 e-Enceladus
type resonance for k2/Q = 3.3 × 10−4 reaches a stable equilibrium. The libration
amplitude damps to zero.
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Figure 3-6: The upper trace shows the evolution of the eccentricity of Mimas in the
Mimas-Enceladus 6:4 mixed ee′ resonance. The lower trace shows the evolution of the
eccentricity of Enceladus. After leaving the resonance at -1.15 Gyr (for QS = 18, 000),
the eccentricity of Mimas decays to the current free eccentricity. Here k2/Q for Mimas
is 1.3× 10−6, and k2/Q for Enceladus is 4.1× 10−5.
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Figure 3-7: The evolution of the eccentricity of Mimas as it encounters the Mimas-
Enceladus 3:2 e-Mimas resonance. The eccentricity approaches an equilibrium value
of 0.052, but as it reaches equilibrium, the libration amplitude grows. Eventually the
system escapes from the resonance and the eccentricity decays to the current value
at the present. Here k2/Q of Mimas is 1.42× 10−6 and the timescale for eccentricity
decay is about 1.3 Gyr.
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Figure 3-8: The resonance angle of the Mimas-Enceladus 3:2 e-Mimas resonance
versus time. There is a sudden growth in the libration amplitude because the system
was captured by a 3-fold secondary resonance. When the amplitude reaches π, the
system falls out of resonance. This figure corresponds to Figure 3-7.
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Figure 3-9: The evolution of the eccentricity of Mimas as it encounters the Mimas-
Dione 3:1 e2-Mimas resonance. The eccentricity grows to an equilibrium value of 0.07
before escaping the resonance and decaying to the present value of 0.02. Escape from
the resonance occurs via unstable growth of the libration amplitude. Here k2/Q for
Mimas is 3.0× 10−6.
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Figure 3-10: The past evolution of the eccentricity of Enceladus in the Enceladus-
Dione 2:1 multiplet of resonances. Feature ‘b’ shows the entrance into the ee′ reso-
nance and feature ‘d’ shows capture into a 2:1 secondary resonance. In this simulation,
the k2/Q of Enceladus is the equilibrium value of 8.0× 10−4, so the constant equilib-
rium eccentricity of Enceladus, which it achieves shortly after it leaves the secondary
resonance, is the current value of 0.0047.
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Figure 3-11: The past evolution of the eccentricity of Dione in the Enceladus-Dione
2:1 multiplet of resonances. Feature ‘a’ shows passage through the e-Dione resonance.
The rise in eccentricity between events ‘b’ and ‘c’ is due to the ee′-mixed resonance.
The value of k2/Q of Dione is 1.24× 10−4.
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Figure 3-12: The solid line shows the k2/Q for Mimas for which the eccentricity of
Mimas will decay to the current value for a given QS if the system was caught in the
Mimas-Dione 3:1 e2-Mimas resonance. The dotted line shows the k2/Q for Mimas for
which the eccentricity of Mimas will decay to the current value for a given QS if the
system was caught in the Mimas-Enceladus 3:2 e-Mimas resonance.
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Chapter 4

Episodic Volcanism on Enceladus:

Application of the

Ojakangas-Stevenson Model

The main equations in the paper “Episodic Volcanism of Tidally Heated Satellites

with Application to Io” by Ojakangas & Stevenson (1986) are presented; numerical

integration of these equations confirms the results of Ojakangas & Stevenson (1986)

for Io. Application to Enceladus is considered. It is shown that Enceladus does not

oscillate about the tidal equilibrium in this model by both new nonlinear stability

analysis and numerical integration of the model equations.

4.1 Introduction

We have shown that equilibrium tidal heating in Enceladus cannot account for the

non-solar heat emanating from Enceladus (Meyer & Wisdom, 2007): equilibrium

tidal heating can account for only 1.1(18000/QS) GW of the observed 17.0± 3.3 GW

(Howett et al., 2010), increased from 5.8 ± 1.9 GW (Spencer et al., 2006). Provided

the origin of the observed heating is tidal heating, it is possible that Enceladus is

oscillating about equilibrium. A model for oscillation about equilibrium has been

presented for Io by Ojakangas & Stevenson (1986). Fischer & Spohn (1990) pre-
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sented similar oscillation models for Io, emphasizing different rheologies. Ojakangas

& Stevenson (1986) mentioned the possible application of their model to Enceladus.

The Ojakangas & Stevenson (1986) model would only apply to Enceladus if heat

transport is mainly by convection. Squyres et al. (1983) discuss whether convection

occurs in Enceladus. They consider a convecting region overlain by a nonconvecting,

conductive crustal ice layer. They find that for crustal thicknesses larger than 30km,

heat transport is dominated by convection. Here we assume convection occurs and

that the Ojakangas & Stevenson (1986) model is applicable to Enceladus.

We first review the Ojakangas & Stevenson (1986) model. We carry out a new

linear stability analysis for their full model. We show that, in fact, Enceladus does

not oscillate about the tidal equilibrium within the Ojakangas & Stevenson (1986)

model.

4.2 Ojakangas and Stevenson Evolution Equations

Consider the thermal evolution of a satellite, with index 0, in resonance with another

satellite, with index 1, exterior to it. Let mi be the mass of the satellite i, and ni

be the mean motion. The semimajor axis of the inner satellite is a and its orbital

eccentricity is e.

The physical parameters of the inner satellite are the heat capacity Cp, the tem-

perature T , the radius R, the density ρ, the thermal diffusivity K, the surface gravi-

tational acceleration g, the thermal expansion coefficient αT , the kinematic viscosity

ν(T ), the critical Rayleigh number Rac, and the Love number k(T ) and the tidal

quality factor Q(T ). The values adopted for these physical parameters are listed in

table 4.1.

The basic equation for the thermal state states that the rate of change of the

thermal energy in the satellite is a balance between tidal heating and loss from thermal

convection:

m0Cp
dT

dt
=

21

2

GM2
pR

5n0

a6

(

k(T )e2

Q(T )

)

− 4πR2ρCpKT

(

gαTT

ν(T )KRac

)1/3

. (4.1)
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The temperature dependence of the factor Q/k is unknown, but approximated

by a power law near the solidus and a constant at low temperature. A form that

interpolates these characteristics is

Q(T )

k(T )
= f(T/Tm) =

[

(

Q

k

)−1

0

+ A

(

T

Tm

)n
]−1

, (4.2)

with

A =

(

Q

k

)−1

min

−
(

Q

k

)−1

0

, (4.3)

where Tm is the melting temperature, (Q/k)0 is the value of Q/k at low tempera-

ture, and (Q/k)min is the minimum value of Q/k that is reached near the melting

temperature. The viscosity is taken as a power law

ν(T ) = νTM(T/Tm)
−L, (4.4)

where, in silicates, 20 < L < 30, and νTM = 1012-1013m2s−1. In water ice, 35 < L <

37, and νTM = 1010m2s−1 (Durham et al., 1997).

The equilibrium value of the temperature is

T0 =

[

7

2β

kp
Qp

Gm0RR
5
pn0

Cpa6

(

νTMT
L
mRac

gαTK2

)1/3
]1/m

, (4.5)

where m = (L + 4)/3, and β = 13 for Io in the Io-Europa-Ganymede resonance

and β = 30.69 for Enceladus in the Enceladus-Dione resonance (Meyer and Wisdom,

2007). The equilibrium value of the square of the eccentricity is

e20 =
m2

0R
5
pkp

βM2
pR

5Qp

f(T0/Tm). (4.6)

The convective cooling timescale is

τth =
R

3

(

νTMT
L
mRac

gαTK2

)1/3

T 1−m
0 . (4.7)

75



The characteristic timescale for the equilibration of eccentricity near equilibrium is

τe =
m1α|C(α)|
2Mpγc0e0

, (4.8)

where α is the semimajor axis ratio a0/a1, C(α) is about −1.19 for a 2 : 1 mean

motion resonance,

c0 =
9

2

(

Rp

R

)5
m0

Mp

n0
kp
Qp

, (4.9)

and γ is about 0.32 for the Io-Europa-Ganymede resonance. For a two-body j : j− 1

resonance,

γ = j − 1− j
m1

m0

(

a0
a1

)8

. (4.10)

For the Enceladus-Dione 2:1 resonance, γ = 0.49.

Let

p =
τth
τe

=
6β

7

Cpaγ

Gm1α|C(α)|
e0T0. (4.11)

For Io this constant is about 3.

Define the non-dimensional temperature TN = T/T0, the scaled eccentricity eN =

e/e0, and the non-dimensional time tN = t/τth. With these definitions the non-

dimensionalized evolution equations are

dTN
dtN

=

[

f(T0/Tm)

f(TNT0/Tm)

]

e2N − Tm
N (4.12)

deN
dtN

= e2N
p

2

[

1− f(T0/Tm)

f(TNT0/Tm)
e2N

]

(4.13)

The equilibrium heat flow is

q0 =
m0Cp

4πR2

T0
τth

(4.14)

=
7

2β

kp
Qp

Gm0RR
5
pn0ρ

a6
, (4.15)

which is 0.53(100, 000/QJ) W m−2 for Io, and 1.48(18, 000/QS) mW m−2 for Ence-

ladus. The latter corresponds to a total power of 1.1(18, 000/QS) GW emanating

from Enceladus.

76



In integrating the evolution equations, several assumptions have to be made. The

temperature T does not rise above Tm. During an interval in which T = Tm, the

tidal heating rate is greater than the convective cooling rate, and the excess energy

is assumed to be released through volcanism. The interval of T = Tm is terminated

when the rate of tidal heating falls (due to the declining eccentricity) below the rate

of convective cooling. The heat flow during an interval in which T < Tm is given

by the convective cooling term; the heat flow during an interval in which T = Tm is

given by the tidal heating term.

The eccentricity and heat flow of Io as functions of time are shown in Figure 4-1.

We confirm the oscillatory behavior found by Ojakangas & Stevenson (1986). The

same plot for Enceladus (Figure 4-2) shows no evidence of oscillatory behavior.

4.3 Stability Analysis

Ojakangas & Stevenson (1986) carry out a linear stability analysis for their simplified

model in which Q(T )/k(T ) is a power law. They then introduce a more realistic form

for Q(T )/k(T ) that approaches a constant for small T (see eq. 4.2). However, they

do not carry out the stability analysis for this case. Here we describe how the results

of the linear stability analysis are modified for their more realistic model.

For the simplified model they found that the equilibrium state, eN = TN = 1, was

unstable if n > m+ p. Further, they found that there were linear oscillations (either

growing or decaying) provided

m2 + n2 + p2 − 2mp− 2mn− 2np < 0. (4.16)

When the tidal equilibrium is linearly unstable, the nonlinear system oscillates.

We have carried out a linear stability analysis for the more realistic model in which

Q(T )/k(T ) is given by eq. (4.2). We find that the results of their analysis for the

simplified model continue to hold in the more realistic model if n is replaced by

n′ = nA(T0/Tm)
nf(T0/Tm) (4.17)
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Thus the equilibrium is linearly unstable if n′ > m+p, and there are linear oscillations

(growing or decaying) if

m2 + (n′)2 + p2 − 2mp− 2mn′ − 2n′p < 0. (4.18)

For Io, n′ ≈ n, for n in the range of interest 20 < n < 30, and T0/Tm ≈ 0.94. The

system is linearly unstable and develops nonlinear oscillation at moderate n ≈ n′.

For Enceladus, T0/Tm is smaller (T0/Tm ≈ 0.70) so the dropoff in n′ at large n is

more rapid. In fact, the peak of n′ is about 5, for n about 8. At this n, p ≈ 51.2.

Figure 4-3 shows a graph of n′ and m+ p as a function of n. Enceladus is not in the

unstable region for any n; instability requires n′ > m + p. This criterion cannot be

fulfilled for Enceladus for two reasons: the large value of p requires a large value for

n′ for instability, and the maximum value of n′ as a function of n is small. Thus for

any n the state of Enceladus damps down to the equilibrium state. This conclusion

is insensitive to the values we have adopted for the physical parameters.

4.4 Conclusion

We have shown that Enceladus does not oscillate about the tidal equilibrium within

the Ojakangas & Stevenson (1986) model. If Enceladus is oscillating about equi-

librium, then another model must be developed to describe those oscillations. One

possibility is the idea expressed by Yoder & Peale (1981) that there might be oscil-

lations about equilibrium if the Q of Enceladus was stress dependent, but this idea

has not been developed.
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Io Enceladus
Mp[ 10

24 kg] 1898.8 568.5
m0[ 10

20 kg] 893.3 1.08
m1[ 10

20 kg] 479.7 10.95
Rp[km] 71492 60330
Qp 105 1.8× 104

a [km] 421769 238400
R [km] 1821.3 252.3
k2p 0.38 0.341
Rac 800 800
αT [K−1] 3.0× 10−5 5.1× 10−5

K [m2 s−1] 1.0× 10−6 1.35× 10−7

Cp [J kg−1 K−1] 800 2100
Tm [K] 1400 273
ρ [kg m−3] 3500 1602
g [m s−2 ] 1.8 0.11
k2 0.027 0.0018
νTM [m2 s−1] 1012-1013 1010

β 13 30.7
γ 0.32 0.49
n 20-30 ?
m 8-12 13
L 20-30 35-37

Table 4.1: The adopted physical parameters for Io and Enceladus are presented.
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Figure 4-1: The scaled eccentricity eN (solid) and the non-dimensional heat flow qN
(dotted) are plotted versus the non-dimensional time for Io. The timescale τth is about
135Myr, the scale for the heatflow is 0.53 W m−2, and the scale for the eccentricity
is 0.0052. Here m = 12, n = 25, (Q/k)0 = 200/0.027, (Q/k)min = 3/0.027, and
QJ = 105.
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Figure 4-2: The scaled eccentricity eN (solid) and the non-dimensional heat flow qN
(dotted) for Enceladus are plotted versus the non-dimensional time.
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Figure 4-3: The parameter n′ (solid) is plotted as a function of n, for Enceladus. This
is to be compared with m+ p (dotted) plotted as a function of n. For n′ < m+ p the
system damps to the equilibrium state. The system is stable for all n. Here (Q/k)0
is 100/0.0018; (Q/k)min is 3/0.0018; T0/Tm = 0.70; and m = 13.
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Chapter 5

Coupled Thermal-Orbital

Evolution of the Early Moon

Coupled thermal-orbital histories of early lunar evolution are considered in a simple

model. We consider a plagioclase lid, overlying a magma ocean, overlying a solid

mantle. Tidal dissipation occurs in the plagioclase lid and heat transport is by con-

duction and melt migration. We find that large orbital eccentricities can be obtained

in this model. We discuss possible consequences of this phase of large eccentricities

for the shape of the Moon and geochronology of lunar samples. We find that the

orbit can pass through the shape solution of Garrick-Bethell et al. (2006), but we

argue that the shape cannot be maintained against elastic deformation as the orbit

continues to evolve.

5.1 Introduction

Garrick-Bethell et al. (2006) argued that the shape of the Moon could be explained

if the Moon froze in its shape while its orbit was eccentric and the rotation state was

either synchronous or in the 3:2 commensurate state (as is Mercury). For synchronous

rotation the implied orbit is a = 22.9RE, e = 0.49, and for the 3:2 spin-orbit state the

orbit is a = 24.8RE, e = 0.17, where a is the semimajor axis of the lunar orbit and e

is the orbital eccentricity. There are two questions to be addressed by this hypothesis:
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can evolutionary scenarios be generated such that the lunar orbit passes through the

shape solutions, and can the shape of the Moon be frozen in at this epoch?

Past studies of the evolution of the lunar orbit have largely ignored the evolution

of the eccentricity, and focused instead on the evolution of the orbital inclination

(Goldreich, 1966; Touma & Wisdom, 1994). One exception is Touma & Wisdom

(1998), in which the evolution of the lunar orbit through the evection and eviction

resonances was studied. Large eccentricities were obtained, but at an earlier epoch

(and smaller semimajor axis) in the evolution of the lunar orbit than suggested by

the shape solutions. In this paper we explore an evolutionary scenario that reaches

moderately large eccentricities during the epoch indicated by the shape results. A

key element of our scenario is that the orbital evolution is coupled to the thermal

evolution; in this model large eccentricities can be obtained during the shape epoch

and still decay sufficiently to connect to the current configuration of the lunar orbit.

We present a coupled thermal model for the evolution of the lunar orbit. We

expect that in a lid decoupled from the mantle by a magma ocean tidal heating will

be enhanced in the lid (Peale et al., 1979) and dominate that in the mantle. Here we

assume dissipation occurs entirely in the lid and that heat transport in the lid is by

conduction and melt migration. The model is limited, and there are many unknown

parameters. Our goal is not to explore evolutions for all possible parameters, but

to determine whether a high eccentricity orbital phase passing through the shape

solution and consistent with today’s orbit can be obtained.

In the next section we review aspects of lunar geochronology. Then we recall the

Mignard evolutionary equations, correcting a number of typographical errors. This

is followed by a presentation of the dissipative lid thermal model, a discussion of the

elastic stability of the shape, and our conclusions. In Appendix B, we present in detail

the two layer model for tidal dissipation developed by Peale & Cassen (1978) in their

classic study of tidal dissipation in the Moon, correcting a number of typographical

errors and making the results explicit.
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5.2 Geochronology Constraints

At the beginning of magma ocean solidification the iron- and magnesium-rich phases

crystallizing from the cooling magma sink to the bottom of the magma ocean. When

approximately 80% of the lunar magma ocean has solidified, plagioclase will begin

to crystallize and float; plagioclase will continue to be added to this flotation crust

until the last dregs of the magma ocean solidify (Snyder et al., 1992). The ages

of the plagioclase in the anorthosite flotation crust, therefore, could span the range

from about 80% solidification to the age when the last plagioclase cools below its

closure temperature. Here we stress that though geochronological anorthosite ages

have often been interpreted as recording the time of magma ocean solidification, the

two are actually decoupled. Anorthosite begins to form long before the magma ocean

is solidified, greatly prolongs the remaining solidification process, and may record

ages younger than the time of magma ocean solidification if cooled slowly or reheated

later.

The short half-life of the tungsten-hafnium (W-Hf) decay system allows dating of

the time of separation of the metallic core of a planet from its silicate mantle. Recent

work by Touboul et al. (2007) indicates that both the Moon and Earth differentiated

primarily after the W-Hf system was extinct, that is, at 60 -10/+90 Myr or more

after solidification of the first solar system materials. Earlier measurements using the

same system lead Yin et al. (2002) to conclude that the giant Moon-forming impact

occurred at 29 Myr after solar system formation.

Using 4.567 Gyr as the formation time of the oldest solar system materials (Con-

nelly et al., 2008) and both the W-Hf dates described here, the earliest age that the

Earth and Moon likely differentiated is between 4.538 and 4.507 Gyr. This age for

the putative Moon-forming giant impact marks the beginning of the geochemically-

determined timeline of formation and cooling of the Moon.

The oldest surface materials on the Moon are assumed to be the anorthositic

highlands, formed by flotation in the lunar magma ocean (Wood et al., 1970; Smith

et al., 1970). Though there have been a number of geochronological ages determined
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using the Sm-Nd system, it has inherent difficulties that are improved upon by using

the more precise U-Pb system. Nemchin et al. (2009) dated a single zircon crystal

from a lunar crustal breccia and obtained an age of 4.417±.06 Gyr. This zircon was

likely the product of crystallization of a small pocket of melt, and implies that this

portion of the crust recorded an age of 90 to 121 million years after lunar formation.

Planets with a magma surface should cool extremely quickly (Abe, 1993, 1997;

Elkins-Tanton, 2008). A plagioclase flotation crust will slow the cooling of the planet

significantly in comparison to the cooling of a magma ocean with a liquid surface.

Calculations based on techniques from Elkins-Tanton (2008) indicate that the lunar

magma ocean may have solidified to 80% in less than 104 years, and perhaps as little

as 103 years. After this near-instantaneous interval plagioclase will begin to form

and float. Once sufficient anorthosite has floated to cover the surface of the Moon,

cooling will slow substantially; conductive heat loss through the anorthosite lid is the

rate-limiting step in cooling.

The anorthosite will record the age at which it cooled past its closure temperature.

When the minerals making up the lid are heated, they are prone to losing their

radiogenic daughter products through increased diffusion. The closure temperature

below which radiogenic ages are preserved through lack of diffusion depends upon

mineral type, mineral composition, cooling rate, and absolute temperature. Zircon

would lose its original lead composition when subjected to moderate thermal events,

on the order of 1000◦C, for even short periods. A 0.1 mm zircon that is heated to

1000◦C for 20,000 years will lose its lead and be geochronologically reset (Cherniak

& Watson, 2003). Therefore, no matter when the anorthosite originally formed,

if it remains hot or is again heated, the age will record that event. The mineral

geochronology is effectively measuring the time of cooling of the tidally heated lid,

and not its time of formation.

5.3 The Orbital and Rotational Model

Mignard (1979, 1980, 1981) has derived approximate averaged equations governing
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the evolution of the lunar eccentricity and inclination. The equations of motion are

averaged over the orbital period and the period of precession of the lunar orbit. Solar

perturbations are included. We use these here, but we allow the relative amount of

dissipation in the Moon to that in the Earth (the Mignard A parameter) to change

with the thermal state of the Moon.

The Mignard evolutionary equations are:

dX

dt
=

CX

X7

[

− f0
β15

(1 + A) +

(

UX3/2 cos i+ A
ω′

n
cos(I ′)

)

f1
β12

]

(5.1)

de

dt
=

Ce

X8

[

− f3
β13

(1 + A) +

(

UX3/2 cos i+ A
ω′

n
cos(I ′)

)

f4
β10

]

(5.2)

di

dt
= − Ci

X13/2
sin i

(

U +
A

X3/2

)

f2
β10

(5.3)

dU
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= −CU,0
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nG

]

+ CU,1
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cos i
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2 1

X6
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d(ω/nG)
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=

Cω,0

X6

[

− f2
β9

[

(

ω

nG

)2
2 + (sin i)2

2
+ U23(cos i)

2 − 1

2

]

+2U cos i
f1
β12

1

X3/2

]

+ Cω,1

[

2
n⊙

nG

U −
(

ω

nG

)2

− U2

]

(5.5)

where β =
√
1− e2, U = (ω/nG) cos(I), the grazing mean motion nG =

√

GM/R3
E, G

is Newton’s constant, X = a/RE, with RE the radius of the Earth, a is the semimajor

axis of the lunar orbit, e the orbital eccentricity, n is the orbital mean motion of the

Moon around the Earth, n⊙ is the orbital mean motion of the Earth around the Sun,

i is the orbital inclination to the ecliptic, I is obliquity, ω is rotation rate, m is the

mass of the Moon, M is the mass of the Earth, µ = (1/m + 1/M)−1 is the reduced

mass, and unless otherwise stated primed variables refer to the Moon and unprimed

variables refer to the Earth. We also define

CX = 6γ
m

M

m

µ
(5.6)

Ce = 3γ
m

M

m

µ
(5.7)
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where γ = k2n
2∆t and
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2
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8
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16
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64
e8
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16
e5, (5.16)

and

A =
k′2
k2

∆t′
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(

M

m

)2(
R

RE

)5

=
k′2
Q′

Q

k2

(

M

m

)2(
R

RE

)5

(5.17)

is a measure of the relative amount of dissipation in the Moon to the dissipation in

the Earth, where k2 is the potential Love number, Q is the tidal dissipation factor,

and R is the radius of the Moon, 1738 km. The moment of inertia ratio for the Earth

is α = CE/(MR2
E). We take α = 0.33.

The Mignard model is limited. The doubly averaged equations cannot follow the

precession of the lunar orbit. Furthermore, they use only a single tidal model (the

constant ∆tMignard model). The current lunar laser ranging results indicate that the

frequency dependence of tidal dissipation might be better described by a more com-

plicated model (Williams, 2008; Efroimsky & Williams, 2009). However, the physical
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state of the Earth and Moon in the situation under consideration is so different than

at present it is not clear that the same frequency dependence would apply. We assume

here that Q is temperature dependent, but ignore possible frequency dependence. A

more complicated model does not seem warranted.

The obliquity of the Moon varies substantially as the orbit evolves (Ward 1975;

Wisdom 2006); in particular large obliquities are obtained during the “Cassini transi-

tion” at around a = 33RE, and the rate of tidal dissipation depends on the obliquity

(Peale and Cassen 1978; Wisdom 2008). However, Peale and Cassen (1978) showed

that the tidal heating due to the high obliquities during the Cassini transition did

not substantially affect the thermal evolution of the Moon. Here, we are focusing on

an earlier epoch during which the obliquity is likely to be close to zero. We take the

lunar obliquity I ′ = 0 throughout the evolution.

In our simplified model we assume that the Mignard A parameter varies primarily

due to variation in the k2/Q of the Moon. This assumes that the change in dissipation

in the Moon dominates that in the Earth. The reason for this is that the Moon has

a lid, which makes the magma ocean last longer than that of the Earth. We define

A = CA(k
′

2/Q
′) (5.18)

where CA = A0/(k
′

2/Q
′)0, where A0 and (k′2/Q

′)0 are the initial values of these pa-

rameters.

The current value of the A parameter is about 0.3 (Williams et al., 2001), but the

value of A early in the evolution of the Earth-Moon system is very uncertain. The Q

of the Earth is currently dominated by the Earth’s oceans; the Earth’s solid body Q is

estimated to be 280 (Ray et al., 2001). But the Q of the early Earth, which may have

had a magma ocean, may be very different—perhaps ranging from 1 to 300. The k2

of the early Earth might be more like the fluid Love number of the Earth (0.97) than

its current value (0.299). The Q of the Moon has similar uncertainties—perhaps also

ranging from 1 to 300. The k2 of the Moon is presently dominated by rigidity (0.025);

the k2 of an early Moon might be closer to the fluid value of 3/2 for a homogeneous
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fluid body. Taking account of these uncertainties, the A parameter appropriate for

the early Earth-Moon system might range from roughly 0.01 < A < 1000. We will

focus on an initial A parameter of about 1.0, roughly in the middle of this range. For

larger values of A0 the eccentricity plummets to values that are not easy to reconcile

with the current eccentricity; for smaller values of A0 the eccentricity does not get

low enough.

The initial rotation state of the Moon is not known. Here we consider only the

possibilities that the Moon’s rotation was initially synchronous or initially nonsyn-

chronous and asymptotic (Peale & Gold, 1965; Hut, 1981). We did not explore an

initial 3:2 rotation state, because we think the synchronous solution is more plausible.

For the 3:2 solution one must satisfactorily explain how the Moon was captured into

the resonance and then explain how it escaped. For a constant ∆t (Mignard) tidal

model, the expression for the asymptotic rotation rate is (Levrard et al., 2007)

ω′

n
=
N(e)

Ω(e)

2x

1 + x2
, (5.19)

where x = cos I ′, for the obliquity of the Moon I ′, N(e) = f1(e)/β
12, and Ω(e) =

f2(e)/β
9. If the Moon’s initial rotation was nonsynchronous and asymptotic, then

when the Moon’s rotation rate is close enough to synchronous the rotation rate be-

comes locked to synchronous. Here we assume that locking occurs if

|ω
′

n
− 1| < 5

8
ǫ, (5.20)

where ǫ = (3(B − A)/C)1/2 is the out-of-roundness parameter, and A < B < C

are the principal moments of inertia of the Moon. We do not know the value of

ǫ when capture might have occurred; here we take the critical (5/8)ǫ to be 0.01.

The evolution is not sensitive to this choice, because once the eccentricity begins to

decrease, it decreases rapidly to small values.

The initial eccentricity of the Moon is also unknown. We presume here that

the Moon formed from a giant impact with the Earth, and that the Moon formed

roughly in the equatorial plane of the Earth with only moderate eccentricity. The
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Moon-forming n-body simulations of Kokubo et al. (2000) found that the eccentricity

of the initial lunar orbit ranged from 0.00 to 0.15. We think that these results should

not be taken too literally since the physical state of the Moon-forming disk is not

likely to be well represented by a collection of cold point particles. Instead it is likely

that the Moon-forming disk was largely molten (Thompson & Stevenson, 1988), and

that the Moon formed from cooler material being lost from the outer edge of the

disk. But the orbit of the Moon in this formation scenario has not been studied,

so there are no other hints as to the initial eccentricity of the lunar orbit. Another

process may play a role in setting the initial orbital eccentricity: passage through the

evection resonance. Even if the dance of the lunar orbit through the evection and

eviction resonances as described in Touma & Wisdom (1998) does not occur (perhaps

because the rate of tidal evolution is too large for capture to occur) it is likely that the

eccentricity will suffer a non-adiabatic change on passing through the strong evection

resonance. Touma & Wisdom (1998) found non-adiabatic eccentricities from 0.00 to

0.08 in this case. We assume e = 0.05 at X = a/RE = 6, initially. We assume the

initial inclination at this point is 10◦, the initial rotation period of the Earth is 5

hours, and the initial obliquity of the Earth is 10◦ (Touma & Wisdom, 1994).

5.4 The Dissipative Lid Model

The model Moon consists of a plagioclase lid with initial thickness 10 km, above a

magma ocean with initial thickness 200 km, above a solid interior. We assume that

the magma ocean is convecting and the adiabatic temperature profile is characterized

by a constant temperature Tf (the temperature at the top of the magma ocean).

We take the initial value Tf = 1573 K. Tidal heating occurs solely in the lid and

the temperature profile of the lid is modeled. The temperature at the surface of the

lid is fixed at the equilibrium temperature, assumed to be 280 K. The temperature

at the base of the lid is fixed to match the temperature of the magma ocean, Tf .

We assume an initial thermal profile that is linear between these two values. The

temperature profile in the lid evolves according to Fourier’s law of heat conduction.
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As the temperatures in the interior of the lid evolve to above the solidus of plagioclase,

heat is advected to the layers above by rising plagioclase liquid. The solidus of

plagioclase is assumed to be Tp = 1823 K (Deer et al., 1996).

The thermal evolution in the lid is described by

∂T

∂t
=

2κ

r

∂T

∂r
+

∂

∂r

(

κ
∂T

∂r

)

+
H

ρlCp

+
∂T

∂t

∣

∣

∣

∣

melt

(5.21)

where r is the radius and t is the time, H is the local volumetric tidal heating rate,

κ = k/(ρlCp) is the thermal diffusivity, Cp is the specific heat capacity, and k is the

thermal conductivity. The density in the lid ρl is 2730 kg/m3. We use Cp = 1256

J kg−1 K−1 and κ = 10−6 m2 s−1. This equation is just Fourier’s law written in

spherical coordinates, with the approximation that the heating and temperature are

spherically symmetric (do not depend on angles).

The tidal heating rate in a homogeneous satellite at arbitrary eccentricity and

obliquity was determined by Wisdom (2008). There it was shown that the tidal heat-

ing at large eccentricity can be dramatically larger than the conventional (e2) formula

gives. That calculation assumes a specific tidal model where the tidal bulge is delayed

by a constant time lag (the Mignard model). For other tidal models presumably the

form of the dissipation is somewhat different, but considering other uncertainties this

form should be adequate. The heating rate is

dE

dt

∣

∣

∣

∣

T idal

=
21

2

k2
Q

GM2R5n

a6
ζ(e, I ′), (5.22)

where k2 and Q are the satellite’s potential Love number and tidal dissipation factors,

respectively, M is the mass of the Earth, R is the radius of the (homogeneous) Moon,

n is the orbital mean motion, a is the semimajor axis of the orbit, e is the orbital

eccentricity, I ′ is the obliquity of the satellite to the orbit, and

ζ(e, I ′) =
2

7

f0(e)

β15
− 4

7

f1(e)

β12
cos I ′ +

1

7

f2(e)

β9

(

1 + (cos I ′)2
)

(5.23)

where β = (1− e2)1/2.
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We use the two-layer model from Peale & Cassen (1978) described and corrected

in Appendix B to estimate the tidal heating as a function of radius in the lid. The

local heating rate, averaged over angles, is given by:

H =
µLG

2M2k22R
2nζ(e, I ′)

a6Qg2

(

−126(α′

1)
2 +

252

5
α′

1α
′

2 −
42

5
(α′

2)
2 − 21

5
(α′

0)
2 − 252

5
(α′

3)
2

)

.

(5.24)

where the surface acceleration on the Moon is g = 1.62 m s−2 and where µL is the

rigidity of the lid, which we assume constant. We use 6.5×109 N/m2. This is a factor

of 10 smaller than that used by Peale & Cassen (1978) based on seismic velocities

in today’s cold Moon; we use a lower rigidity because of the high temperatures in

the lid during the early epoch. To some extent the choice of rigidity is arbitrary and

offset by the uncertainty in the values of the tidal Qs of the early Earth and Moon.

The temperature dependence of the rigidity of the plagioclase lid is ignored and the

α′

i and k2 functions are given in Appendix B.

The lid is varying in thickness δl and we parametrize depth in the lid using y

which varies from 0 (at the surface) to 1 (at the base). Let T (t, r) = T ′(t, y), with

r = R− δly where R is the radius of the Moon, then the heat equation becomes

∂T ′

∂t
= − 2κ

δlr

∂T ′
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+
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∣

∣
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(5.25)

We introduce a discretization of the lid by dividing it into N spherical shells of

thickness ∆r = δl∆y. Let T i be the temperature in the ith shell corresponding to

yi = i∆y, where i runs from 0 at the surface to N at the base of the lid. Then

Eq. 5.25 becomes

dT i

dt
= − 2κ

δlr

(

T i+1 − T i−1

2∆y

)

+
κ

δ2l

(

T i+1 − 2T i + T i−1

∆y2

)

+

(

T i+1 − T i−1

2∆y

)

yδ̇l
δl

+
H

ρlCp

.

(5.26)

The melt migration term is handled separately.

As layers of the lid reach their melting temperature, portions of these layers begin

to melt as heat continues to be added. The amount of melt mass depends on the

latent heat of melting, L = 5 × 105 J/kg. These melted portions rise to the surface,
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due to their positive buoyancy, bringing heat and mass with them. We model the

ascent of this melt using a leaky dike model, where the melt loses a fraction of its heat

and mass to each layer that it rises through. We varied the leak fraction from 0 to 1.

The qualitative behavior is insensitive to this parameter; for the runs reported here

we use 0.02 (for N = 100). Any heat remaining when the melt reaches the surface

is assumed to be instantaneously radiated away. The remaining mass is deposited at

the surface and the layers are redefined to account for the new mass distribution. As

the melt is removed from a layer and redeposited in other layers or at the surface,

the layers are redefined so that they remain equal in mass to the original layers. The

temperature of the redefined layer is the mass-weighted average of the temperatures

of the original layers that were incorporated into each layer.

The thermal evolution of the magma ocean is described by two equations. First,

4π(R− δl)
2k
dT

dr

∣

∣

∣

∣

base

+ Ėr = − 4π(R− δl)
2k

1

δl

dT

dy

∣

∣

∣

∣

base

+ Ėr = Cpρf (V̇fTf + ṪfVf )

(5.27)

where the left-hand side is heat conducted out of the magma ocean into the lid plus

radiogenic heating Ėr, and the right-hand side is the change in heat content as a result

of changing the volume Vf by both melting/freezing and changing the temperature in

the magma ocean. We take ρf = 3000 kg m−3. We compute the radiogenic heating

by extrapolating the chondritic abundances of 235U, 238U, 40K, and 232Th back to the

time of formation of the Moon. We then multiply by the heat production per mass,

the density, and the volume of the magma ocean and sum over the four isotopes. The

half-lives, current abundances, and specific heat productions are given by Turcotte &

Schubert (2002).

Second,
Ṫf
Tsol

f = − V̇l
Vfi

= −4π(R− δl)
2 δ̇l
Vfi

(5.28)

which describes the fractional crystallization of the magma ocean. Here Vf is the

volume of the magma ocean and Vl is the volume of the lid. We are assuming fractional

solidification is linear between the magma ocean solidus and liquidus. Here, Tsol =

Tfi−Ts is the difference between the initial temperature in the magma ocean and the
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solidus, and Vfi is the initial volume of the magma ocean. Each fractional increment

in temperature change between those values, ∆Tf/Tsol, results in a similar fractional

change in the solid to liquid ratio of the magma ocean ∆Vf/Vfi. The factor f is the

proportion of plagioclase in the solidified portion of the melt; this is added to the base

of the lid. We assume f = 0.2 (Snyder et al., 1992; Warren, 1986). As the magma

ocean crystallizes, f gives the fraction of material that joins the lid and 1 − f gives

the fraction that joins the solid interior at the base of the magma ocean.

The solidus of the fractionally solidifying magma ocean, Ts, is parameterized to

fit the bulk lunar mantle solidus of Longhi (2003). As crystallization proceeds and

solidification moves to shallower depths, the solidus moves to lower temperatures

than the Longhi (2003) results as the remaining liquid composition evolves. This

evolution is expressed in the final term of the solidus expression, calibrated to match

temperatures calculated from the MELTS program (Ghiorso & Sack, 1995). We use

Ts = 2134− 0.1724ǫ− 1.3714× 10−4ǫ2 − 4.4

0.2Vf/Vfi + 0.01
, (5.29)

where Ts is the solidus in Kelvin and ǫ is the radius of the base of the lid in km.

The change in magma ocean depth δf can be related to the change in lid thickness

using V̇l = −fV̇f :

δ̇f =
(1− 1/f)(R− δl)

2 − (R− δl − δf )
2

(R− δl − δf )2
δ̇l = A1δ̇l. (5.30)

Then we can relate the rate of change in magma ocean volume V̇f to the rate of

change of the lid thickness δ̇l. The volume of the magma ocean is

Vf =
4

3
π(R− δl)

3 − 4

3
π(R− δl − δf )

3 (5.31)

and so

V̇f = −4π(R− δl)
2δ̇l + 4π(R− δl − δf )

2(δ̇l + δ̇f ) = A2δ̇l + A3δ̇f . (5.32)
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Solving the above equations, we find that

δ̇l =
−4π(R− δl)

2κ 1
δl

dT
dy

∣

∣

∣

base
+ Ėr

−4π(1/f)(Vf/Vfi)(R− δl)2Tsol + Tf (A2 + A1A3)
(5.33)

and

Ṫf = −Tsol
f

4π(R− δl)
2

Vfi
δ̇l. (5.34)

Upon discretization, Eq. 5.33 becomes

δ̇l =
−4π(R− δl)

2κ(TN−1 − TN−2)/(∆yδl) + Ėr

−4π(1/f)(Vf/Vfi)(R− δl)2Tsol + Tf (A2 + A1A3)
. (5.35)

We choose an effective 1/Q of the lid by averaging the 1/Q of the individual

layers, as given in terms of the temperature of each layer by the Ojakangas-Stevenson

formula,
1

Q
(Ti) =

1

Qmax

+

[

1

Qmin

− 1

Qmax

](

Ti
Tp

)n

. (5.36)

We set Qmax = 100, and let Qmin vary with the run. Experimentally, the parameter

n ranges from 20 to 30 (Ojakangas & Stevenson, 1986); we use 25. We integrate

Eqns. (5.26) and (5.35) as well as the equations for δ̇f and Ṫf using the Bulirsch-

Stoer algorithm, which has automatic step-size control. We carry out melt migration

every 1 year. In our simulations we usually set the number of layers N = 100, but

varied this parameter (and the corresponding leak fraction) to check that our results

were insensitive to it.

Figure 5-1 shows the eccentricity of the lunar orbit versus the semimajor axis for

a run in which A0 = 1.0, the Earth’s phase lag ∆t = 123 minutes (with k2 = 0.97),

and the lunar Qmin = 0.35. These parameters were chosen to give a peak eccentricity

near that required by the shape solution. There is considerable flexibility in the peak

eccentricity; generally, increasing the dissipation in the Earth (larger ∆t) gives a

larger emax, but this must be compensated by a smaller Qmin to match the current

eccentricity of the lunar orbit. A more complete model would allow the Earth’s k2 and

Q to vary with time, and would probably give different constraints on Qmin for the
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Moon. Thus the very low value of Qmin should not be taken too seriously. We reduced

∆t to 2.6 minutes (with k2 = 0.299) when the orbit reached 30RE to approximate the

changes in these parameters, and so that the evolution to 60 RE would take about

4.6 Gyr.

Figure 5-2 shows the tidal heating in the lid and compares it to the radiogenic

heating in the magma ocean. Tidal heating peaks when the eccentricity is at a

maximum and remains higher than the radiogenic heating rate until the eccentricity

becomes small.

Figure 5-3 shows the evolution of the depth of the lid and the depth of the magma

ocean as a function of time. In this model, the magma ocean solidifies at 272 Myr.

The lid reaches a final thickness of 46 km. Radiogenic heating prolongs the magma

ocean by about 55 Myr.

Figure 5-4 shows the temperature at four layers in the lid versus the logarithm

of the time for this same run. The temperature at 10 km depth decreases below the

closure temperature of 1000◦C for zircons (Cherniak & Watson, 2003) at a time of

about 9.1 Myr, at 15 km depth at a time of 32.5 Myr, at 20 km depth at a time of

63.2 Myr, at 25 km depth at a time of 100.2 Myr, and at 30 km depth at a time of

142.0 Myr. Our model cannot follow the temperatures in the lid once the magma

ocean solidifies, so the graphs of the temperatures are terminated at this point. As

discussed above, the closure time needs to be 90 to 121 Myr after lunar formation to

match the zircon dates. Our model suggests that the dated zircon originates from a

depth of approximately 25 km.

Figure 5-5 shows the temperature at four layers in the lid versus the logarithm

of the time for a run in which the eccentricity and consequently the tidal heating

has been set to zero. The thermal evolution is decoupled from the orbital evolution.

We see that tidal heating affects the temperature of the shallowest layer, but not at

depth. Thus even without tidal heating the dated zircon must originate at a depth

of approximately 25 km. So the geochronology is consistent with our model if we

focus on closure times at depth instead of solidification times of surface materials.

Therefore, the age of the lunar breccias is not evidence for a high-eccentricity phase
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of the lunar orbit.

Unfortunately, the above discussion of an evolution that matches the shape solu-

tion of Garrick-Bethell et al. (2006) was only achievable by increasing the time lag of

the Earth’s tidal response to ∆t of 123 minutes (for an assumed k2 of the Earth at

that epoch of 0.97, the fluid Love number of the Earth). This is an unphysical value

for the time lag. For the tidal model to correspond to a lagged tidal bulge, the time

lag cannot exceed an eighth of the rotation period of the host planet (Efroimsky &

Williams, 2009). This is because the tidal torque peaks for a 45◦ delay. The time lag

that we chose does not satisfy this constraint. The rotation period of the early Earth

was approximately 5.1 hours, when the Moon was at a semimajor axis of 6.8Re, where

Re is the radius of the Earth. Thus the tidal time lag is physically constrained to be

less than 37 minutes. For this value of ∆t, the peak eccentricity is only 0.31. The

peak occurs at a semimajor axis of 16.5 Earth radii. The new evolution is shown in

Figure 5-7.

Notice that the new evolution no longer passes through the shape solution of

Garrick-Bethell et al. (2006). This means that the coupled thermal-orbital model

cannot produce the orbit capable of matching the shape solution, since Figure 5-

7 shows the evolution with maximum dissipation. For this maximal time lag, the

magma ocean takes 272 Myr to freeze, as shown in Figure 5-8, compared to 217 Myr

for the unphysical evolution that matches the shape solution. The calculated depth

of the zircon dated by Nemchin et al. (2009) is not substantially modified, as can be

seen by comparing Figure 5-9 with Figure 5-4.

5.5 Elastic Stability of the Shape Solution

We have found that a high eccentricity phase of lunar evolution can only carry the

Moon through the synchronous shape solution for an unphysical choice of terrestrial

dissipation parameters. Even if our model was able to produce an orbit to match the

shape solution, as in Figure 5-1, the temperatures in the lid are close to a peak during

this phase. So for the shape to record this hypothetical high eccentricity phase, in our
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model we must rely on the rapid freezing of the melt as it reaches the surface of the

Moon. As a large percentage of the lid is processed as melt during the high eccentricity

phase, this may give a way of recording the shape even though tidal heating is also

near a peak. Several questions arise, though, concerning the subsequent stability of

the shape of this frozen lid. As the orbit continues to evolve to lower eccentricity

and larger semimajor axis, the gravitational and centrifugal potentials change and so

the lid must develop stress in order to maintain its shape. Is this stress below the

breaking stress? Is the lid strong enough so that it can maintain its shape rather than

elastically deform to subsequent hydrostatic shapes? We consider these questions in

this section.

We follow the method described in Goldreich & Mitchell (2010), Matsuyama &

Nimmo (2008), and Vening Meinesz (1947). First, recall (Garrick-Bethell et al., 2006)

that the average tidal and centrifugal potential at orbital eccentricity e and semimajor

axis a gives rise to a triaxial distortion of the surface of the Moon with the distortions

along the principal axes of

∆ra = hcR

(

3

4
X−3,2,2(e) +

5

12

)

(5.37)

∆rb = −hcR
(

3

4
X−3,2,2(e)−

5

12

)

(5.38)

∆rc = −hcR
(

1

2
X−3,0,0(e) +

1

3

)

(5.39)

where R is the radius of the Moon, h ≈ 5/2 is the fluid displacement Love number,

Xi,j,k are Hansen functions (Plummer, 1960), and

c =

(

R

a

)3
mEarth

mMoon

. (5.40)

We assume the â axis points to the Earth (the Moon rotates synchronously), the

ĉ axis is perpendicular to the orbit, and the intermediate b̂ axis completes a right

hand basis set (â, b̂, ĉ). In terms of these principal displacements we calculate the

displacement d of the surface of the rigid lid in terms of the colatitude θ measured
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from the ĉ axis, and the angle γ measured from the â axis. (The spherical coordinates

are completed by a longitude φ measured from the meridian through the â axis.) We

find

d = R
[

α(cos2 θ − 1/3) + β(cos2 γ − 1/3)
]

, (5.41)

with

cos γ = sin θ cosφ (5.42)

and where

αR = ∆rc −∆rb (5.43)

βR = ∆ra −∆rb. (5.44)

In terms of these, we can express the surface stresses:

σθθ = Aµ
[

∆α (3 cos2 θ + 1) + ∆β (3 cos2 φ (3− cos2 θ)− 5)
]

, (5.45)

σφφ = Aµ
[

∆α (9 cos2 θ − 5) + ∆β (3 cos2 φ (1− 3 cos2 θ) + 1)
]

, (5.46)

σθ,φ = Aµ [∆β (3 cos θ sinφ cosφ)] , (5.47)

where

A =
2

3

(

1 + ν

5 + ν

)

, (5.48)

and where µ is the rigidity, and ν is Poisson’s ratio, which we take to be 1/4. In these

expressions we have written the stress in terms of ∆α and ∆β which are the differences

between α and β at a given orbit (a, e) minus the values of these parameters at the

particular orbit given by the shape solution. We assume the stresses are zero at the

shape solution. Other components of the stress are zero.

For a rigidity of 5 × 1010 N m−2, the stresses are approximately 1 kbar. This is

approximately the breaking stress for the lunar lithosphere (Solomon, 1986). Thus

the lithosphere may break, losing its shape. However, the rigidity is likely to be

smaller than given because the temperatures are high. So we may be able to avoid

breaking.
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The Moon could also elastically respond to these stresses by changing its shape.

Now we consider whether this is energetically favorable. Once the Moon’s orbit has

returned to a low eccentricity, the equilibrium shape will be different. If the Moon

does not elastically change its shape to match the equilibrium shape, gravitational

potential energy will be stored in the frozen-in shape. If the Moon’s shape does

change, elastic energy will be stored via the additional stresses in the lithosphere.

Since the Moon will tend to the lowest energy configuration, we can judge which of

these two outcomes will occur by comparing the stored gravitational energy to the

stored elastic energy.

The elastic energy density is given by

E =
1

2

∑

ij

σijuij =
1

2
(σθθuθθ + σθθuφφ) + σθφuθφ (5.49)

where the strains are given by

uθθ =
σθθ − νσφφ
2µ(1 + ν)

(5.50)

uφφ =
σφφ − νσθθ
2µ(1 + ν)

(5.51)

uθφ =
σθφ
2µ

. (5.52)

We integrate over the volume of the lid to find the total elastic energy

Ee =
2πδlR

2µ

1 + ν
A2

[

(∆α)2
(

8

5
ν + 8

)

−∆α∆β

(

8

5
ν + 8

)

+ (∆β)2
(

19

40
ν +

55

8

)]

.

(5.53)

Next we compute the gravitational energy. The energy is

Eg =

∫

V

ŪTρr
2 sin θdrdθdφ, (5.54)

where V is the volume of the Moon, and the average tidal potential is

ŪT (r, θ, φ) = n2r2ŨT (θ, φ). (5.55)
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We find

ŨT (θ, φ) = B2(e)P2(cos θ) + B2,2(e)P2,2(cos θ) cos 2φ, (5.56)

where P2(x) = (3/2)x2 − 1/2 and P2,2(x) = 3(1− x2) and

B2(e) =
1

2
+

1

3
X−3,0,0(e) (5.57)

B2,2(e) = −3

2
X−3,2,2(e). (5.58)

The Hansen coefficients are

X−3,2,2(e) = 1− 5

2
e2 +

13

16
e4 − 35

288
e6 + · · · (5.59)

X−3,0,0(e) = (1− e2)−3/2. (5.60)

To compute the volume integral we make a change of variables from r to s

r = s(R + d(θ, φ)), (5.61)

to get

Eg = n2ρ

∫ 1

0

ds

∫ π

0

dθ

∫ 2π

0

dφ
[

ŨT (θ, φ)s
4(R + d(θ, φ))5 sin θ

]

(5.62)

= n2ρR4

∫ π

0

dθ

∫ 2π

0

dφ
[

d(θ, φ)ŨT (θ, φ) sin θ
]

, (5.63)

where we have made a small d/R approximation, and used the fact that the angular

integral of ŨT is zero. Next using

d(θ, φ) = −hŪT (R, θ, φ)

gMoon

= −hn
2R2

gMoon

ŨT (θ, φ), (5.64)

then

Eg = − n4ρhR6

gMoon

∫ π

0

dθ

∫ 2π

0

dφ
[

(ŨT (θ, φ))
2 sin θ

]

(5.65)

= − hcmMoonn
2R2 3

4π

[

2

5
(B2(e))

2 +
24

5
(B2,2(e))

2

]

. (5.66)
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We compute the difference in the elastic energy from the stress-free shape solution

a = 22.9RE, e = 0.49, to the elastic energy at a = 22.9Re, e = 0.0, and similarly

for the gravitational energies. Using µ = 5 × 1010Pa, n = 1.35 × 10−5 s−1 (for

a ≈ 20Re), h = 5/2, δl = 104m, mMoon = 7.35× 1022kg, c = 1.4× 10−4, we find that

the elastic energy stored in going to zero eccentricity is 9.2 × 1019J. The difference

of the gravitational energy between these two orbital configurations is 1.7 × 1021J.

The ratio of the change in elastic energy to the change in the gravitational energy is

about 0.053. This implies that the shape will deform elastically and lose memory of

the shape solution. This elastic change in shape would be essentially instantaneous

compared to the timescales of the evolution we are considering. The stresses that

develop would then relax on a viscous timescale, which is very uncertain.

5.6 Conclusions

We have developed a simplified model for studying the coupled thermal-orbital evo-

lution of the early Moon. The model assumes tidal heating occurs only in the lid

and gives a temperature profile of the lid as a function of time. We assume that the

variations of the k2 and Q of the Moon dominate those of the Earth. Future work

should include tidal dissipation and heat transfer in both the mantle and the lid, and

model the variation in Earth’s k2 and Q.

The eccentricity of the lunar orbit can reach high values in this model. For small

dissipation in the Moon (small Mignard A parameter), an initial eccentricity tends to

grow. As the eccentricity grows to large values the tidal heating increases dramatically

(Wisdom, 2008). This heats the Moon and causes the Q of the Moon to change due to

its strong temperature dependence. With a small Q (large A parameter) the Moon’s

eccentricity begins to decay.

Parameters can be chosen that cause the orbit to pass close to the values of semi-

major axis and eccentricity required by the synchronous shape solution of Garrick-

Bethell et al. (2006). The parameters we had to choose are somewhat extreme,

particularly the ∆t of the Earth. Holding other parameters constant, the value of the
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peak eccentricity is larger for larger dissipation in the Earth (larger ∆t). To reach

the eccentricity of Garrick-Bethell et al. (2006) we had to use a ∆t of 123 minutes

(for k2 = 0.97). This time lag is larger than the maximal physically realistic value of

37 minutes.

Another severe problem is that the orbit matches the shape solution at a time

when tidal heating of the plagioclase lid is at its peak. Garrick-Bethell et al. (2006)

demonstrated that this shape does indeed match the current shape of the Moon, but

whether it could have been preserved after formation at that eccentricity, while the

heating rate is large, remains the question.

During the period capable of creating the crustal shape observed on the Moon to-

day, assuming that the orbit corresponding to the shape solution can be reached, por-

tions of the lunar crust were being melted through tidal dissipative heating, erupted

to the surface, and quenched. We find that 89% of the lid is processed as melt in our

model. The melt material that is placed on the surface solidifies and cools quickly,

and may record the shape of the moon during the time of melt production. The

peak of melt production is after the peak eccentricity, so it may be that the recorded

shape will reflect a lower eccentricity than the peak. The rigidity of this surface and

near-surface crust would be significant.

At the time of melt production, the lid is still underlain by a magma ocean which

allows for elastic deformation of the lid. To determine whether the shape would be

preserved until the present, we can make a simple energetics argument. If the Moon

kept the shape that it froze in at the peak of eccentricity, when the orbit drops to low

eccentricity, gravitational potential energy will be stored in the now non-equilibrium

shape. If instead the Moon elastically deforms to match the new equilibrium shape,

there will be elastic energy stored due to the stresses in the lid. By comparing the

elastic and gravitational energies, we determined that the Moon will elastically deform

and lose the shape it developed at the peak. So we conclude that if a magma ocean

is still present at the high eccentricity phase during which the shape is frozen in (as

in our model) then the shape could not be maintained as the orbit evolved to lower

eccentricity. If we try to circumvent this conclusion by increasing the rigidity, then
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we have shown that the lithosphere would break, again losing its shape.

Though the shape cannot be explained by a high eccentricity phase of the evolution

of the lunar orbit, a high eccentricity phase is not excluded. The coupled thermal-

orbital model presented here can give high eccentricities which subsequently damp to

values low enough to reach the present eccentricity (whether or not some component

of the lunar eccentricity is due to passage through the Jovian evection resonance).

At the peak of tidal heating the crust is melted internally and molten anorthosite

erupted onto the lunar surface. These materials will cool quickly, so the closure age

is roughly the same as the age of crystallization, which is less than 1 Myr after lunar

formation. This short time lag is insufficient to explain the young ages measured in

lunar rocks.

At depth in the crust materials will have their geochronological ages reset by

heating over a far longer time period than the period of active melting. The crust

is heated to temperatures below melting but above the zircon closure temperature

of 1000 ◦C (Cherniak & Watson, 2003). If the lunar breccias originate at a range of

depths, they will experience varying delays in cooling that could explain the range

of ages measured. For the sample dated by Nemchin et al. (2009), we find that an

origin at about 25 km depth is consistent with the measured age.

The lunar crust is highly brecciated from impacts, and rocks used for age deter-

mination may have originated at depth and been excavated by impacts. Wieczorek

& Phillips (1999) estimates that the original excavation depths of the major basins

range from 15 to 50 km, making the scenario of mid-crustal origin for these rocks

plausible. The zircon dated by Nemchin et al. (2009) is from a melt breccia, sample

72215, and its depth of origin is unknown. However, Garrick-Bethell et al. (2009)

demonstrated that sample 76535 was excavated from a depth of about 45 km without

being brecciated or melted. This is further evidence that the dated zircon could have

originated at large depth.

We find that a moderately high eccentricity phase of the lunar orbit is a robust

feature of our model. We are only able to match the synchronous shape solution by

stretching the dissipation in the Earth to unphysical values. However, even if the orbit
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corresponding to the shape solution could be reached somehow, we conclude that it is

unlikely that the Moon’s shape during this epoch could persist to the present. Lunar

geochronology of crustal breccias can be explained if they originate at depth.
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Figure 5-1: The eccentricity of the lunar orbit plotted versus the semimajor axis of
the orbit, for the dissipative lid model. For reference, the dot shows the orbit that
gives the solution to the shape problem for synchronous rotation.
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Figure 5-2: The tidal heating rate in the lid plotted versus time (solid line, see left
axis). The radiogenic heating rate in the magma ocean is shown as a dotted line.
The dashed line shows the orbital eccentricity versus time (see right axis).
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Figure 5-3: The depth of the magma ocean δf (solid) and the depth of the lid δl
(dotted) plotted versus the logarithm of the time. In this model the magma ocean
disappears after about 217 Myr and the lid reaches its full depth of about 46.3 km.
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Figure 5-4: The temperature at six layers in the lid plotted versus the logarithm of
the time. The eccentricity behavior is as shown in Figure 5-1. The depths of each
layer are 5 km, 10 km, 15 km, 20 km, 25 km, and 30 km. The temperature increases
with depth. The horizontal line indicates the approximate closure temperature of
zircon.

110



log10t[yr]

T
[K

]

98765

2000

1500

1000

500

0

Figure 5-5: The temperature at six layers in the lid plotted versus the logarithm of
the time. Here the eccentricity and consequently the tidal heating are set to zero.
The depths of each layer are 5 km, 10 km, 15 km, 20 km, 25 km, and 30 km. The
temperature increases with depth. The horizontal line indicates the approximate
closure temperature of zircon.
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Figure 5-6: Recalculation of Figure 1 from Peale, Cassen, and Reynolds (1979). This
shows the ratio of the total dissipation in the two-layer model to the total dissipation
in a homogeneous body (η = 0) plotted versus η, the fractional thickness of the
interior.
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Figure 5-7: The eccentricity of the lunar orbit plotted versus the semimajor axis of
the orbit, for maximum realistic dissipation parameters. For reference, the dot shows
the orbit that gives the solution to the shape problem for synchronous rotation.
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Figure 5-8: The depth of the magma ocean δf (solid) and the depth of the lid δl
(dotted), plotted versus the logarithm of the time using maximum realistic dissipation
parameters. The magma ocean disappears after about 272 Myr, and the lid reaches
its full depth of about 46.3 km.
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Figure 5-9: The temperature at six layers in the lid plotted versus the logarithm of
the time, for maximum realistic dissipation parameters. The depths of each layer are
5 km, 10 km, 15 km, 20 km, 25 km, and 30 km. The temperature increases with
depth. The horizontal line indicates the approximate closure temperature of zircon.
The temperatures are not significantly different from the temperatures in Figure 5-4.
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Chapter 6

Precession of the Lunar Core

Goldreich (1967) showed that a lunar core of low viscosity would not precess with

the mantle. We show that this is also the case for much of lunar history. But

when the Moon was close to the Earth the Moon’s core was forced to follow closely

the precessing mantle, in that the rotation axis of the core remained nearly aligned

with the symmetry axis of the mantle. The transition from locked to unlocked core

precession occurred between 26.0 and 29.0 Earth radii, thus it is likely that the lunar

core did not follow the mantle during the Cassini transition. Dwyer & Stevenson

(2005) suggested that the lunar dynamo needs mechanical stirring to power it. The

stirring is caused by the lack of locked precession of the lunar core. So, we do not

expect a lunar dynamo powered by mechanical stirring when the Moon was closer

to the Earth than 26.0 to 29.0 Earth radii. A lunar dynamo powered by mechanical

stirring might have been strongest near the Cassini transition.

6.1 Introduction

Paleomagnetic measurements of lunar rocks show magnetic remanence most easily

explained by a long-lived early lunar dynamo (Garrick-Bethell et al., 2009). Dwyer

& Stevenson (2005) argued that the only plausible driving force for an early lunar

dynamo is mechanical stirring of the liquid core due to the relative motion between

the core and mantle. This driving mechanism is only an option if the core of the
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Moon does not precess along with the mantle.

The orbit of the Moon is inclined by about 5 degrees to the ecliptic and regresses

with an 18.6 year period. The rotation of the Moon is synchronous with the orbital

motion. The spin axis of the solid Moon is tilted with respect to the ecliptic and

its precession is locked to the precession of the orbit: the Moon is in a Cassini state

(Peale, 1969). Goldreich (1967) showed that a liquid lunar core of low viscosity would

not precess with the mantle; the spin axis of the lunar core is nearly normal to the

ecliptic. For the Earth, the core precesses with the mantle because of the inertial

coupling mechanism (Poincaré, 1910a; Toomre, 1966). That is, the spin axis of the

Earth’s fluid core is nearly parallel to the spin axis of the mantle, and both regress

with a period of roughly 26,000 years. Goldreich showed that the inertial coupling

mechanism fails for the Moon, arguing that the ellipticity of the core-mantle boundary

was smaller than required to cause the core to precess with the mantle today. We

address here whether the lunar core precessed with the mantle at earlier epochs.

If the core is locked to the mantle (as for the Earth), then the spin axis of the

core is nearly aligned with the symmetry axis of the core-mantle boundary. If the

spin axis of the core is slightly displaced from this configuration then the spin axis

precesses about the symmetry axis with the core precession frequency ωc (Touma &

Wisdom, 2001)

ωc = ω fc (C/Cm), (6.1)

where ω is the rotation frequency of the Moon, fc is the core flattening, and C/Cm,

the ratio of the polar moment of inertia of the Moon to that of the mantle (the Moon

excluding the core), is approximately 1 for the Moon. The core flattening is given by

fc = (Cc − Ac)/Cc where Ac and Cc are the smallest and largest moments of inertia

of the core. If the core is not locked to the mantle, then the spin axis is no longer

closely aligned with the core-mantle boundary symmetry axis.

Whether the core is locked to the mantle depends on the relative frequencies of

the precession of the core and the mantle (Poincaré, 1910a). If the mantle precesses

faster than the core ωm > ωc, as is the case today, the core will not follow the mantle.
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However, if the precession frequency of the core is larger than that of the mantle

ωc > ωm, the core and mantle will precess together, with the core oscillating around

the symmetry axis of the mantle with the frequency ωc. Since C/Cm is approximately

unity, we may restate the condition for locking in terms of the flattening. Locking

occurs for core flattening larger than ωm/ω. In the limit of very small flattening, the

rotation axis of the core is perpendicular to the ecliptic plane.

Goldreich argued that the lunar core flattening is too small today for the inertial

coupling mechanism to lock the core to the mantle. But earlier in the lunar history,

the Moon was closer to the Earth, and rotated more rapidly, so the Moon was subject

to greater tidal and centrifugal forces. Thus the lunar core flattening was larger in

the past.

Here, we model the past ellipticity of the lunar core-mantle boundary and compare

the estimated precession rate of the core to that of the mantle to determine when the

lunar core was locked to the mantle.

6.2 Model and Results

We assume that the Moon rotates synchronously with its orbital motion. We take

the orbit of the Moon to be circular, as the effect of eccentricity on the precession

of the Moon is small (Touma & Wisdom, 1994). The Moon’s orbit is inclined and

precessing. For the history of the lunar orbit under these assumptions we use the

model of Touma & Wisdom (1994). They examined various tidal models and found

that the basic evolution did not depend on the tidal model. Here we use the Mignard

model from that work. We approximate the density in the Moon by a two layer

model, with constant density in the mantle and in the core. The core is presumed to

be fluid.

The surface and core-mantle boundary are out of round: we describe these surfaces

by the shape functions

ri(θ, φ) = ai(1 + ǫi20P2(cos θ) + ǫi22P22(cos θ) cos(2φ)), (6.2)
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where P2(x) = (3x2 − 1)/2 and P22(x) = 3(1 − x2), and θ is the colatitude, φ is the

longitude measured from the sub-Earth point, and ai is the mean radius. The shape

function ri gives the radius of the surface as a function of colatitude and longitude.

The label i is either “c” for core or “s” for surface. We can relate the flattening to

the shape parameter fc = −(3/2)ǫc20. This was derived by performing the integrals

for the principal moments.

The origin of the low order shape and moments of the Moon is still discussed. The

“fossil bulge” hypothesis asserts that the shape was determined at an early epoch and

has been constant since that epoch. Explaining that shape has been difficult however;

one possibility is that the shape formed when the Moon was in a moderately eccentric

orbit (Garrick-Bethell et al., 2006), though Meyer et al. (2010) argue against this

scenario. We adopt the fossil bulge hypothesis, though it is unclear at what time

(what lunar semimajor axis) the fossil bulge was established. At earlier epochs we

presume the shape of the mantle of the Moon was approximately hydrostatic.

We consider two simplified models. In one model, the “non-hydrostatic mantle”

model, we consider the shape of the mantle (its surface) to be responsible for the

low order moments of the Moon, and find the shape of the core-mantle boundary

by assuming its shape is hydrostatic, i.e. that the total potential is constant on that

surface. In the other model, the “hydrostatic mantle” model, we determine both the

shape of the surface and the shape of the core-mantle boundary by assuming they

are both hydrostatic. We expect the hydrostatic model to be applicable early in the

lunar evolution, and the non-hydrostatic model to be applicable later (presuming the

fossil bulge hypothesis), though the point of transition is unclear.

The potential acting on a particular mass element in the Moon with radius r,

colatitude θ, and longitude φ is given by

U = Urot + Utidal + Um, (6.3)
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where the rotational (centrifugal) potential is

Urot =
1

3
ω2r2P2(cos θ), (6.4)

the tidal potential is

Utidal = −GMr2

r3p
P2(cosα), (6.5)

and Um is the potential due to the mass distribution in the Moon, and where α is

the angle of the mass element from the Earth-Moon line measured from the center of

the Moon, ω is the rotational/orbital frequency of the Moon, G is the gravitational

constant, M is the mass of the Earth, and rp = a is the semimajor axis of the Moon

(not to be confused with ac and as).

For a synchronous Moon with zero obliquity in a circular orbit, the angle α is given

by cosα = sin θ cosφ. But the Moon has a small non-zero inclination and obliquity.

The tidal potential thus has periodic variations, on an orbital period. The average

tidal potential governs the shape, because variations in hydrostatic shape occur on a

timescale long compared to the variations in the tidal potential. The average tidal

potential differs from that for zero obliquity by terms of second order in the small

obliquity. For most of the history of the lunar orbit, these periodic variations in

the tidal potential are ignorable. An exception occurs during the Cassini transition,

which occurs near 33.4Re (Ward, 1975; Wisdom, 2006), during which the Moon briefly

develops large obliquity. Taking account of obliquity, the average tidal potential is

Utidal = −GMr2

r3p

[

P20(cos θ)

(

−1

2
+

3

4
(sin ε)2

)

P22(cos θ) cos(2φ)

(

1

4
− 1

16
(sin(ε))2 − 1

4
(sin(ε/2))2

)]

,(6.6)

where ε is the obliquity of the spin axis to the orbit. This can be derived by first

computing cosα for an arbitrary point in the synchronously rotating but oblique

Moon. Then form the potential, average it over time, and reexpress the position in

terms of the Legendre polynomials. For the obliquity as a function of semimajor axis

we use the results of Wisdom (2006).
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For a homogeneous body (uniform density ρm) with surface shape function rs,

mean radius as, and parameters ǫs20 and ǫs22, the exterior potential is (Jefferys, 1976)

U s
ext(r, θ, φ) = −4

3
πGρa3s

(

1

r
+

3

5

a2s
r3
ǫs20P2(cos θ) +

3

5

a2s
r3
ǫs22P22(cos θ) cos(2φ)

)

, (6.7)

and the interior potential is

U s
int(r, θ, φ) = −4

3
πGρa3s

(

3a2s − r2

2a3
+

3

5

r2

a3s
ǫs20P2(cos θ) +

3

5

r2

a3s
ǫs22P22(cos θ) cos(2φ)

)

,

(6.8)

These expressions are correct to first order in the shape parameters. Note that at the

radius r = as the exterior potential and the interior potential agree to first order in

the shape parameters, so at this order we can use the two potentials interchangably.

For a body that has, in addition, an out-of-round core, we add to this potential the

potential due to a core of additional density ∆ρ = ρc − ρm. The additional potential

exterior to the core-mantle boundary is

U c
ext(r, θ, φ) = −4

3
πG∆ρ a3c

(

1

r
+

3

5

a2c
r3
ǫc20P2(cos θ) +

3

5

a2c
r3
ǫc22P22(cos θ) cos(2φ)

)

,

(6.9)

and the additional potential interior to the core-mantle boundary is

U c
int(r, θ, φ) = −4

3
πG∆ρ a3c

(

3a2c − r2

2a3
+

3

5

r2

a3c
ǫc20P2(cos θ) +

3

5

r2

a3c
ǫc22P22(cos θ) cos(2φ)

)

.

(6.10)

The potential Um at the core-mantle boundary is

U cmb
m (θ, φ) = U s

int(rc(θ, φ), θ, φ) + U c
ext(rc(θ, φ), θ, φ), (6.11)

and the potential Um at the surface is

U surf
m (θ, φ) = U s

ext(rs(θ, φ), θ, φ) + U c
ext(rs(θ, φ), θ, φ). (6.12)

The total potential on these surfaces in addition includes the rotational and tidal
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contributions.

We solve two problems: (1) given the shape parameters for the mantle determined

by matching the observed gravitational moments, find the hydrostatic shape of the

core-mantle boundary (we call this the “non-hydrostatic mantle” case), and (2) find

the hydrostatic shape of both the mantle and the core (we call this the “hydrostatic

mantle” case). We solve both models as a function of the Earth-Moon distance

(semimajor axis of the assumed circular orbit).

We use two methods of solution. In one method we define a function that is

nonzero and positive if the surfaces that should be hydrostatic are non-hydrostatic.

This function takes a number of differences of the potential at different colatitudes and

longitudes, squares them, and sums over all differences taken. We then find the shape

parameters by minimizing this function over the shape parameters, using the Nelder-

Mead downhill simplex method. In the second method, we truncate the potentials

at first order in the shape parameters. We then project the potentials (which are

functions of colatitude and longitude) onto the second degree spherical harmonics,

P2(cos θ) and P22(cos θ) cos(2φ), by performing the integrals of the products of these

functions, the total potential on each surface, and the surface area element. The

result is a set of linear equations in the shape parameters that we solved analytically,

but are too complicated to display. The shape parameters determined by the two

methods agree to first order in the shape parameters, about four or five digits.

Williams et al. (2009) found that the ratio of the core moment to the total moment

of inertia of the Moon Cc/C was 1.2 ± 0.4 × 10−3. In Figure 6-1, we show the

core flattening calculated for the hydrostatic and non-hydrostatic mantle models as a

function of the core density, for three values of Cc/C. We vary the core density from

4700 kg/m3 (Fe-FeS eutectic) to 8100 kg/m3 (pure Fe) (Kuskov & Kronrod, 1998).

The flattening is not sensitive to the assumed Cc/C as demonstrated in the figure

(though the radius of the core does depend on the assumed Cc/C).

For the non-hydrostatic mantle model we use

C20 =
(B + A)/2− C

ma2e
= −2.04× 10−4 (6.13)

123



and

C22 =
B − A

4ma2e
= 2.24× 10−5, (6.14)

determined from the libration parameters (Dickey et al., 1994). These correspond to

mantle shape parameters of ǫs20 = −3.40× 10−4 and ǫs22 = 3.74× 10−5, ignoring small

contributions from the core. Here m is the mass of the Moon, and ae is the mean

equatorial radius. The principal moments of the Moon are A < B < C.

There is marginal detection of the ellipticity of the lunar core-mantle boundary

from laser ranging analysis (Williams et al., 2009). They find the flattening of the

core-mantle boundary to be fc = 2.0 ± 2.3 × 10−4. The large error bar is argued to

be more a reflection of a correlation in the result with other uncertain parameters

rather than uncertainty in the flattening. Williams et al. (2009) notes that the core

flattening is not hydrostatic (by comparing the result to the expected hydrostatic core-

mantle boundary with a hydrostatic mantle). Of course, the fact that the mantle is

currently non-hydrostatic is well known. We can see from Figure 6-1 that the observed

flattening agrees well with the hydrostatic flattening expected of the core-mantle

boundary inside a non-hydrostatic mantle (the non-hydrostatic mantle model).

Emboldened by this success, we now calculate the hydrostatic flattening of the

core-mantle boundary as the lunar orbit evolves. Figure 6-2 shows the results. The

parameters we adopt are: ac = 350 km, as = 1738 km, ∆ρ = 4400 kg/m3, ρ = 3300

kg/m3. For the present lunar orbit we find, in the hydrostatic mantle case, ǫc20 =

−1.01× 10−5; and, for the non-hydrostatic mantle case, we find ǫc20 = −1.39× 10−4.

These correspond to core flattening parameters of fc = 1.52 × 10−5 and fc = 2.09 ×
10−4. We see that at large semimajor axes the precession of the fluid core is not

coupled to the precession of the mantle, but at small semimajor axes the two precess

together. The point of transition is uncertain (26.0Re - 29.0Re, where Re is the

radius of the Earth), because the semimajor axis at which the Moon developed its

nonhydrostatic shape is uncertain. The time is much more uncertain, as the timescale

for tidal evolution early in the lunar history is unknown. But assuming average tidal

parameters such that the orbit of the Moon reaches the Earth 4.5 Gyr ago, these lunar
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semimajor axes are reached in less than 40 Myr. By comparison, the lunar sample

76535 shows evidence of a lunar magnetic field 4.2-4.3 Gyr ago (Garrick-Bethell et al.,

2009).

Requiring the core to be decoupled from the mantle at that time allows us to

place a lower limit on the average rate of tidal evolution during this epoch. The rate

of tidal evolution is no slower than a factor of about 6 compared to the average tidal

evolution rate. For the constant ∆t Mignard model this implies ∆t > 0.44 minutes,

compared to today’s value of about 10 minutes.

The Cassini transition occurs at around 33.4Re. We see that it is likely that the

core did not follow the mantle during the Cassini transition. Since the obliquity of

the Moon is large during the Cassini transition, we may speculate that there was a

large magnetic field during the transition because of the large stirring (presuming the

hypothesis of Dwyer and Stevenson, 2005). So we might expect nonzero lunar pale-

omagnetic measurements to cluster near the time of the Cassini transition, perhaps

allowing us to constrain that time. At present there are not enough paleomagnetic

data to assess this hypothesis.

We have constructed a simple model to study the transition between locked and

unlocked core and mantle, described in Appendix C. The behavior of the offset be-

tween the spin axes of the core and mantle is shown in Figure: C-1. We see that

the spin axes can have large misalignment during the transition, which may be an

additional epoch of large stirring.

6.3 Conclusion

The fluid core of the Moon does not precess with the mantle of the Moon. We have

shown that this is also the case for much of lunar history. But when the Moon was

close to the Earth the core followed the mantle. The transition occurred at 26.0Re -

29.0Re.

Dwyer & Stevenson (2005) suggested that the lunar dynamo needs mechanical

stirring to power it. The stirring is caused by the lack of locked precession of the
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lunar core. So, we do not expect a lunar dynamo powered by mechanical stirring

when the Moon was close to the Earth. The transition to unlocked spin axes and the

Cassini transition are both events that would cause large stirring in the core and are

therefore both candidates for sparking the onset of a core dynamo.
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Figure 6-1: The flattening of the lunar core plotted versus the assumed density of
the core, for fixed core moment of inertia. For the non-hydrostatic mantle model,
three curves are plotted. These three curves are the upper three on the plot and
indistinguishable from each other. These three curves correspond to different core
moments: Cf/C = 0.8× 10−3, 1.2× 10−3 and 1.6× 10−3. Similarly, the lower curves
(also indistinguishable) show the results for the hydrostatic mantle model and the
same core moment values.
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Figure 6-2: The period of precession of the lunar orbit and lunar mantle (line A), of
the lunar core in the “hydrostatic mantle” model (lines B), and of the lunar core in the
“non-hydrostatic mantle” model (lines C), plotted as a function of lunar semimajor
axis in Earth radii. For lines B and C the solid line takes into account the forced
obliquity of the Moon, whereas the dashed line assumes zero obliquity. The gap in the
non-hydrostatic mantle model occurs at the Cassini transition. The core precesses
with the mantle when the Moon is close to the Earth; and the lunar core decouples
from the mantle at large semimajor axis. The point of transition depends on the
model.
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Figure 6-3: The offset of the core spin axis from the mantle symmetry axis is plotted
versus the core flattening for the equilibrium points of the system. The equilibrium
points are found by adding a small dissipation and integrating the equations of motion.
Two broken curves are shown. For the solid curve the full resonance Hamiltonian was
used; for the dotted curve the nonlinearity parameter k was set to zero. For small
flattening the offset of the core is approximately the obliquity; the core spin axis is
perpendicular to the orbit. For large flattening, the offset tends to zero; the core spin
axis is locked to the mantle.
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Chapter 7

Tidal theory in an elastic mode

formulation

7.1 Introduction

Traditionally, solar system studies of tides have relied on the constant time lag model

of Darwin (1880), which is the only tidal model with published analytic (not numer-

ical) expressions for tidal heating and orbital decay at high eccentricity (Wisdom,

2008). In this model, tides are raised by an imaginary perturber displaced by a con-

stant time lag along the orbit from the actual perturber. If the orbit expands due to

the effect of tides, the time lag is constant and so the phase lag is forced to decrease

along with the orbital frequency.

The constant time lag model predicts that tidal dissipation is linearly proportional

to the orbital frequency for small phase lags. If we define the tidal quality factor

Q = arctan δ where δ is the phase lag, then the constant time lag model predicts

that Q is proportional to 1/n where n is the orbital frequency. Unfortunately, this

frequency-dependence is not in agreement with the few measured values.

For instance, the measured Q of the Moon is roughly frequency-independent over

the limited frequency range studied. Williams (2008) reports a Q of approximately

30 for a forcing frequency of one month and a Q of about 35 for one year. Terrestrial

geophysicists have studied the Earth over a broader frequency range and have found
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more complicated frequency dependences, such as described by the Andrade model

or Burgers model. Planetary scientists do not understand the frequency dependence

of Q, but as far as we do, the constant time lag model seems like a poor choice. The

widespread use of the constant time lag model is due to its mathematical tractability,

not to any physical evidence in favor of it.

Models of stellar tides take a different approach. Stellar tides are generally de-

scribed as the excitation of various modes of the star. The theory of the equilibrium

tide was pioneered by Zahn (1966, 1970, 1975, 1977, 1989), who computed the viscous

dissipation resulting from the velocity field in turbulent convective zones in the star.

If dissipation is dominated by the equilibrium tide, the fundamental and acoustic

modes of the star are the modes excited by the lower frequency tidal forcing. All

dissipation occurs in turbulent regions.

The theory of the dynamical tide describes the response of the star to modes of

higher frequency than the fundamental modes. For example, Terquem et al. (1998)

and Barker & Ogilvie (2010) examine the excitation of g-modes (gravity modes) and

resonances between the tidal forcing and the normal modes of the star. g-modes are

modes with a restoring force due to buoyancy. Inertial modes have a restoring force

from the Coriolis force and are important contributors to stellar dissipation (Ogilvie

& Lin, 2007; Goodman & Lackner, 2009). Recently, Penev & Sasselov (2011) have

re-examined the equilibrium tide and constrained the tidal quality factor that applies

for extrasolar planets.

In this chapter, we describe a new formulation of solid body tides that models

tidal displacements as a sum of excited elastic modes, analogous to the modeling of

stellar tides as excited vibrational modes. The assumptions about the tidal frequency

dependence enter near the end of the calculation in a modular and mathematically

clean manner. This modularity will allow us to easily compare tidal dissipation and its

effects for different rheologies in future work. Here we describe the theory and derive

general expressions for wobble damping, tidal heating, tidal despinning, and rate of

change of semimajor axis and eccentricity for a system with a zero-obliquity perturber

in an eccentric, noninclined orbit. We then specify a Kelvin-Voigt rheology, which
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corresponds to the constant time lag model, and verify our model with the classic

results.

7.2 Static Tidal Distortion

Our principal source for this section is Love (1944). We assume the body is homoge-

neous and incompressible.

The external disturbing potential is

UT (x, y, z) =
∑

lm

wm
l X̄

m
l (x/R, y/R, z/R), (7.1)

where wm
l are the coefficients of solid spherical harmonics X̄m

l (see Eq. (D.13)), and

R is the radius of the body. The external disturbing potential leads to a distortion of

the body: this distortion contributes to the disturbing potential. The total potential

can be written (Jeffreys, 1976) as V =
∑

lm V
m
l where

V m
l (x, y, z) = wm

l X̄
m
l (x/R, y/R, z/R) +

3g

2l + 1
ǫml X̄

m
l (x/R, y/R, z/R). (7.2)

The second term arises from the potential of the distortion of the body.

The displacement of a material particle in the body is given

~u(t, x, y, z), (7.3)

where the coordinates (x, y, z) refer to the position in the body of material particle

before displacement. The equations to be solved are

−∇p+ µ∇2~u+ ρ∇V = 0, (7.4)

Incompressibility implies

∇ · ~u = 0. (7.5)

Taking the divergence of the first equation and using the second equation, we see that
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∇2p = 0. We then put

p(x, y, z) = ρV (x, y, z) + p̃(x, y, z), (7.6)

where

p̃(x, y, z) =
∑

lm

pml X̄
m
l (x/R, y/R, z/R), (7.7)

and where X̄m
l is a solid spherical harmonic. Let ~u1 be1

~u1(x, y, z)

=
∑

lm

(

Am
l r

2∇X̄m
l (x/R, y/R, y/R) +Bm

l ~xX̄
m
l (x/R, y/R, y/R)

)

, (7.8)

where X̄m
l is, again, a solid harmonic. Using Eqs. (D.23-D.25), we find that ~u1 of

the form of Eq. (7.8) satisfies Eqs. (7.4) and (7.5) if the following two equations are

satisfied:

pml /µ = (4l + 2)Am
l + 2Bm

l

0 = 2lAm
l + (l + 3)Bm

l , (7.9)

respectively. For l = 2, these have the solution

Am
2 =

5pm2
42µ

Bm
2 = −4pm2

42µ
. (7.10)

To this solution we may add arbitrary solutions of the equation

∇2~u = 0, (7.11)

1The gradient operator is ∇ = x̂∂/∂x + ŷ∂/∂y + ẑ∂/∂z; it operates on the (x, y, z) dependence
of the following expression, not on the function it is adjacent to. Thus ∇X̄m

l
(x/R, y/R, z/R) is

proportional to 1/R times a homogeneous polynomial in (x/R, y/R, z/R).
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with

∇ · ~u = 0. (7.12)

It will be enough to add solutions of the form

~u2(x, y, z) =
∑

lm

fm
l ∇X̄m

l (x/R, y/R, z/R). (7.13)

The boundary conditions at the surface (see Love (1944)) require

0 = (lAm
l + Bm

l )R2pml + lfm
l −Rǫml (7.14)

0 = (2lAm
l +Bm

l )R2pml + 2(l − 1)fm
l (7.15)

ρwm
l = (µ(2lAm

l + (l + 2)Bm
l )− 1)pml + gρ

(

1− 3

2l + 1

)

ǫml . (7.16)

The solutions for l = 2 are

pm2 = −(21/2)(µ/gR)wm
2 /∆ (7.17)

fm
2 = 2(R/g)wm

2 /∆ (7.18)

ǫm2 = (5/2)(wm
2 /g)/∆, (7.19)

where

∆ = 1 + 19µ/(2ρgR). (7.20)

The displacement Love number is h2 = (5/2)/∆. The total displacement ~u1 + ~u2, for

this m, is

~u(x, y, z) = ~um
T (x, y, z)h2w

m
2 /(gR), (7.21)

defining the tidal shape function ~um
T . For m = 0, the tidal shape function ~u 0

T (0, 0, R)

has the components (0, 0, R), and the displacement at the surface along the z axis,

the axis of maximum tidal distortion, is h2w
0
2/g.
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7.3 Tidal Disturbing Potential

The tidal disturbing potential is the second harmonic contribution to the gravitational

potential energy per unit mass

U2(~x, ~R
′) = − Gm

(R′)3

(

3

2
(~x · R̂′)2 − 1

2
(~x · ~x)

)

, (7.22)

where ~x has components (x, y, z), m is the mass of the perturbing, tide-raising body,

and ~R′ is the vector from center of mass of the body to the tide raising body. The

distance between the bodies is R′, and the direction to the disturbing body is R̂′.

Let α, β, and γ be the direction cosines of R̂′ = αx̂ + βŷ + γẑ. Then, let N be the

rotation that takes the direction R̂′ to the ẑ direction: ẑ = NR̂′. Let N(θ, ψ) =

Mx(θ)Mz(ψ), where Mi are rotations about the indicated axes. Then, θ = acos(γ)

and ψ = atan(α, β). Using the property (N~x) · (N~y) = ~x · ~y, we see

U2(~x, ~R
′) = U2(N~x, ~z) (7.23)

=
∑

m

wm
2 (α, β, γ)X̄

m
2 (x/R, y/R, z/R). (7.24)

We find wm
2 (α, β, γ) = WX̄m

2 (α, β, γ), where W = −(Gm/R′)(R/R′)2. The corre-

sponding tidal shape function can be obtained with an appropriate rotation of ~u 0
T .

We have

(N(α, β, γ))−1~u 0
T (N(α, β, γ)~x) =

∑

m

X̄m
2 (α, β, γ)~um

T (~x). (7.25)

7.4 Elastic Free Modes

Our principal source for this section is Lamb (1882). In his terminology, modes

corresponding to tidal distortions are vibrations in the second class. We will assume

the material is incompressible. Our notation differs slightly from his.

The displacement is described as a sum over modes. Let

φm
ln(x, y, z)/R = (7.26)
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(Υln + ψm
l−1(κlnr))∇X̄m

l − l

l + 1

κ2lnr
2l+3

(2l + 1)(2l + 3)
ψl+1(κlnr)∇

(

X̄m
l

r2l+1

)

,

where

ψn(θ) = (−1)n(2n+ 1)!!

(

1

θ

d

dθ

)n(
sin θ

θ

)

, (7.27)

where κln and Υln are explained below. The functions ψn are related to the spherical

Bessel functions. The displacement is

~u(t, x, y, z) =
∑

lmn

RAm
lnφ

m
ln(x, y, z) cos(ω

n
l t+ ǫmln), (7.28)

where Am
ln and ǫmln are the amplitude and phase of each mode. The modes of interest

in the tidal problem are l = 2, m runs from −l to l, and n = 1, 2, . . .. The amplitude

Am
ln and the function φm

ln are dimensionless.

The modal frequencies are determined by the condition

aldl − blcl = 0, (7.29)

where, in the incompressible case,

al =
(κlnR)

2

2l + 1
− 2(l − 1) (7.30)

bl = 1 (7.31)

cl = 2(l − 1)ψl−1(κlnR)−
(κlnR)

2

2l + 1
ψl(κlnR) (7.32)

dl =
l

l + 1

(

ψl(κlnR) +
2(l + 2)

κlnR
ψ′

l(κlnR)

)

(7.33)

where ψ′(x) = dψ(x)/dx. Note that κln occurs only in the combination κlnR, deter-

mined by Eq. (7.29). The frequencies ωln of the modes satisfy

κ2ln = ω2
lnρ/µ, (7.34)

where ρ is the density and µ is the rigidity. Numerically, we find the lowest fre-

quency tidal mode has κ21R/π = 0.8484938956, the next lowest frequency mode has
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κ22R/π = 1.7421226796, and then κ23R/π = 2.8257142846. Finally,

Υln =
(κlnR)

2ψl(κlnR)− 2(l − 1)(2l + 1)ψl−1(κlnR)

(κlnR)2 − 2(l − 1)(2l + 1)
. (7.35)

7.5 Representation of Tidal Distortion by Elastic

Modes

Define the overlap integral

〈~u1, ~u2〉 =
1

V

∫

V

(~u1 · ~u2)dV. (7.36)

where V = (4/3)πR3, the volume of the body. The elastic modes have zero overlap.

Let

(β2n)
2 = 〈φm

2n, φ
m
2n〉. (7.37)

Note that β2n is independent ofm. We find: β21 = 0.5325432017, β22 = 0.2145631038,

and β23 = 0.0826504258. Define the l = 2 normalized elastic modes:

~uMnm = Rφm
2n/β2n. (7.38)

The tidal shape function ~u 0
T can be expanded in terms of the normalized elastic modes

with m = 0. Let

~u 0
T (x, y, z) =

∑

n

gn~u
M
n0(x, y, z), (7.39)

then

gn = 〈~u 0
T , ~un〉. (7.40)

We find g1 = 0.5608256130, g2 = −0.0381757369, and g3 = 0.0039974227. The

tidal shape function and its representation in terms of the elastic modes is shown in

Figure 7-1.

If the tidal distortion is rotated, then the representing modes rotate accordingly.
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z/R

(~u
0 T
(0
,0
,z
))

z
/R

1.00.50.0-0.5-1.0

1.0

0.5

0.0

-0.5

-1.0

Figure 7-1: The solid line shows the z component of the tidal shape function ~u 0
T .

The dashed line shows the representation of the tidal shape function using the n = 1
elastic mode. The dotted line shows the representation using the n = 1 and n = 2
modes. The three mode representation is indistinguishable from the solid line on this
scale.
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For a disturbing body with direction cosines (α, β, γ) the tidal distortion is

~u(x, y, z) =
h2W

gR

∑

m

X̄m
2 (α, β, γ)~um

T ((x, y, z)) (7.41)

=
h2W

gR

∑

mn

gnX̄
m
2 (α, β, γ)~uMnm(x, y, z). (7.42)

7.6 Lagrangian for Elastic Modes

We treat each mode as a degree of freedom. We assume here that the configuration

of the body is given as a sum of modal distortions (with l = 2). We write the

displacement as

~u(t, x, y, z) =
∑

mn

Πnm(t)~u
M
nm(x, y, z) (7.43)

where Πnm(t) is the dimensionless modal coordinate at time t.

The kinetic energy in each mode is

Tnm(t,Πnm, Π̇nm) =
1

2
MR2Π̇2

nm (7.44)

with M = ρV , the mass of the body. Recall that the modes are normalized. We

know the frequency of each mode, so we can write the elastic potential energy for

each mode:

Vnm(t,Πnm, Π̇nm) =
1

2
MR2ω2

2nΠ
2
nm. (7.45)

The Lagrangian for the free elastic modes is then

L(t,Π, Π̇) =
1

2
MR2

∑

mn

(Π̇2
nm − ω2

2nΠ
2
nm). (7.46)

This give the equation of motion

MR2(Π̈nm + ω2
2nΠnm) = 0, (7.47)

confirming a free oscillation with frequency ω2n. The modes will be forced when the
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full potential energy is developed.

7.7 Kinetic Energy

The next task is to develop the kinetic energy of the rotating body, taking into account

the fact that the shape is changing. We assume the undistorted starting configuration

of the body is a sphere of radius R and densityρ, with moment of inertia (2/5)MR2.

The configuration of the body at time t is obtained by distorting and rotating this

reference body. We give the body a distortion ~uA that gives the principal moments

of inertia and a time-dependent modal tidal distortion ~uT (t), followed by a time-

dependent rotation M(t) in space. The position of each constituent is

~xα(t) =M(t)(~x0 + ~uA + ~uT (t)). (7.48)

The velocity of the constituent is

~̇xα(t) = Ṁ(t)(~x0 + ~uA + ~uT (t)) +M(t)(~̇uT (t)) (7.49)

= Ṁ(t)M(t)−1M(t)(~x0 + ~uA + ~uT (t)) +M(t)(~̇uT (t)) (7.50)

= ~ω(t)× (M(t)(~x0 + ~uA + ~uT (t))) +M(t)(~̇uT (t)) (7.51)

= M(t)(~ω′(t)× (~x0 + ~uA + ~uT (t)) + ~̇uT (t)) (7.52)

The square of the velocity is

(~̇xα(t))
2 = (~ω′(t)× (~x0 + ~uA)) · (~ω′(t)× (~x0 + ~uA))

+ 2(~ω′(t)× (~x0 + ~uA)) · (~ω′(t)× ~uT (t) + ~̇uT (t))

+ (~ω′(t)× ~uT (t) + ~̇uT (t)) · (~ω′(t)× ~uT (t) + ~̇uT (t)) (7.53)

The distortion ~uA that gives the principal moments is volume preserving; it can

be represented as a gradient

~uA(x, y, z) = aR2∇X̄0
2 (x/R, y/R, z/R) + bR2∇X̄2

2 (x/R, y/R, z/R), (7.54)
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where

a =
(B + A)/2− C

A+ B + C
(7.55)

b =
(
√
3/2)(B − A)

A+B + C
. (7.56)

The sum of the principal moments is 3I where I = (2/5)MR2, the moment of inertia

of a homogeneous sphere. In these expressions we are ignoring second order contri-

butions to the moments in a and b; we are assuming a and b are small. Note that we

can write

R∇X̄0
2 = (−X̄1

1 ,−X̄−1
1 , 2X̄0

1 ). (7.57)

and

R∇X̄2
2 = (

√
3 X̄1

1 ,−
√
3 X̄−1

1 , 0). (7.58)

For convenience, we introduce

~u0A(x, y, z) = (x, y, z) (7.59)

~u1A(x, y, z) = R2∇X̄0
2 (x/R, y/R, z/R) (7.60)

~u2A(x, y, z) = R2∇X̄2
2 (x/R, y/R, z/R). (7.61)

The first term in the kinetic energy integral is, by design,

1

2

∫

V

ρ((~ω′(t)× (~x0 + ~uA)) · (~ω′(t)× (~x0 + ~uA)))dV

=
1

2

(

A(ωa)2 + B(ωb)2 + C(ωc)2
)

, (7.62)

where the components of ~ω′ are (ωa, ωb, ωc).

Introduce the integrals

I
(1)
knmij =

1

V

∫

V

(ei × ~ukA) · (ej × ~uMnm)dV, (7.63)

I
(2)
knmi =

1

V

∫

V

(ei × ~ukA) · ~uMnmdV, (7.64)
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I
(3)
nmn′m′ij =

1

V

∫

V

(ei × ~uMnm) · (ej × ~uMn′m′)dV, (7.65)

I
(4)
nmn′m′i =

1

V

∫

V

(ei × ~uMnm) · ~uMn′m′dV. (7.66)

In terms of these integrals, the complete kinetic energy is

T (t; q,Π;ω′, Π̇) =
1

2

(

A(ωa)2 +B(ωb)2 + C(ωc)2
)

+MR2
∑

knmij

akI
(1)
knmij(ω

′)i(ω′)jΠnm

+MR2
∑

knmi

akI
(2)
knmi(ω

′)iΠ̇nm

+
1

2
MR2

∑

nmn′m′ij

I
(3)
nmn′m′ij(ω

′)i(ω′)jΠnmΠn′m′

+MR2
∑

nmn′m′i

I
(4)
nmn′m′i(ω

′)iΠnmΠ̇n′m′

+
1

2
MR2

∑

nm

(

Π̇nm

)2

, (7.67)

where a0 = 1, a1 = a, and a2 = b, and q are the coordinates that specify the

orientation of the body in space. For k = 0, the nonzero coefficients are:

I
(1)
0,n,0,0,0 = I

(1)
0,n,0,1,1 = Cn (7.68)

I
(1)
0,n,0,2,2 = −2Cn (7.69)

I
(1)
0,n,1,0,2 = I

(1)
0,n,2,0,0 = I

(1)
0,n,−1,1,2 = I

(1)
0,n,−2,0,1 = −

√
3Cn (7.70)

I
(1)
0,n,2,1,1 =

√
3Cn, (7.71)

with C1 = 0.1747793752, C2 = −0.0501544874, and C3 = 0.0138166088, and with

I
(1)
0nmij = I

(1)
0nmji. These have a simple representation I

(1)
0nmij = −Cn∂i∂jX̄

m
2 (ωa, ωb, ωc).
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7.8 Potential Energy

The gravitational potential energy is the integral of Eq. (7.22) over the mass of the

body:

VG(t; q,Π;ω
′, Π̇) =

∫

V

ρU2(~x, ~R
′)dV (7.72)

It is convenient to introduce a number of integrals, and then write the potential energy

in terms of them. Let

J
(1)
knm =

1

V

∫

V

~ukA · ~uM
nmdV, (7.73)

J
(2)
nmn′m′ =

1

V

∫

V

~uM
nm · ~uM

n′m′dV = δnn′δmm′ (7.74)

J
(3)
knmij =

1

V

∫

V

(êi · ~ukA)(êj · ~uM
nm)dV, (7.75)

J
(4)
nmn′m′ij =

1

V

∫

V

(êi · ~uM
nm)(êj · ~uM

n′m′)dV. (7.76)

In terms of these the gravitational potential energy is

VG(t; q,Π;ω
′, Π̇)

= − Gm

(R′)3

(

(1− 3(α′)2)A+ (1− 3(β′)2)B + (1− 3(γ′)2)C

2

)

+
GmM

R′

(

R

R′

)2
∑

knm

J
(1)
knmakΠnm

+
1

2

GmM

R′

(

R

R′

)2
∑

nmn′m′

J
(2)
nmn′m′ΠnmΠn′m′

− 3
GmM

R′

(

R

R′

)2
∑

ijknm

J
(3)
knmijα

′

iα
′

jakΠnm

− 3

2

GmM

R′

(

R

R′

)2
∑

ijnmn′m′

J
(4)
nmn′m′ijα

′

iα
′

jΠnmΠn′m′ , (7.77)

where α′

0 = α′, α′

1 = β′, α′

2 = γ′, and (α′, β′, γ′) are the direction cosines of the

perturbing body with respect to the body axes:

(α′, β′, γ′) = (M(q))−1 (α, β, γ), (7.78)
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and (α, β, γ) are the direction cosines of the perturbing body with respect to a spa-

tially fixed rectangular basis, and M(q) is the rotation that carries the body in its

reference orientation (with principal axes aligned with the spatial axes) to the actual

orientation specified by the coordinates q.

The coefficients J
(1)
0nm are all zero, but there are some nonzero k = 0 terms among

the J
(3)
knmij. Specifically,

J
(3)
0,n,0,0,0 = J

(3)
0,n,0,1,1 = −Cn (7.79)

J
(3)
0,n,0,2,2 = 2Cn (7.80)

J
(3)
0,n,2,0,0 = J

(3)
0,n,−2,0,1 = J

(3)
0,n,1,0,2 = J

(3)
0,n,−1,1,2 =

√
3Cn (7.81)

J
(3)
0,n,2,1,1 = −

√
3Cn (7.82)

with Cn as before, and J
(3)
ij0nm = J

(3)
ji0nm. These have the simple representation J

(3)
0nmij =

Cn∂i∂jX̄
m
2 (α′, β′, γ′).

Recall that the elastic potential energy, following Eq. (7.45), is

VE(t; q,Π;ω
′, Π̇) =

1

2
MR2

∑

nm

ω2
2nΠ

2
nm. (7.83)

The total potential energy is V = VG + VE.

7.9 Lagrangian and Equations of Motion

The Lagrangian for the system is the difference of the kinetic energy T and the

potential energy V . Note that the kinetic energy does not depend on q and the

potential energy does not depend on ω′. Further, the potential energy depends on q

only through (α′, β′, γ′).

It will be convenient to use Euler-like angles to specify the orientation of the body

with respect to its reference orientation with the principal axes (â, b̂, ĉ) aligned with

the rectangular spatial axes (x̂, ŷ, ẑ). These are the principal axes of the body without

tidal distortion. We choose the rotation that carries the body to its actual orientation
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as

M(θ, φ, ψ) =Mz(φ)Mx(θ)My(ψ). (7.84)

Note that these are not the usual Euler angles.

The equations of motion for the angular velocities (ωa, ωa, ωc) and the coordinates

(θ, φ, ψ) are the Poincaré equations (Poincaré, 1910b). The equations of motion for

the velocities Π̇ and the coordinates Π are the Lagrange equations. In the derivation

of the Poincaré equations, we use the vector field basis corresponding to infinitesimal

rotations about the body axes (â, b̂, ĉ). In the chosen coordinates, the basis vector

fields are

ea = cosψ
∂

∂θ
− sinψ

cos θ

∂

∂φ
+

sinψ sin θ

cos θ

∂

∂ψ
(7.85)

eb =
∂

∂ψ
(7.86)

ec = sinψ
∂

∂θ
+

cosψ

cos θ

∂

∂φ
− cosψ sin θ

cos θ

∂

∂ψ
(7.87)

The commutators of these basis fields satisfy

[ei, ej](f) =
∑

ijk

ckijek(f), (7.88)

with structure constants

ckij = ǫijk, (7.89)

where ǫijk is 1 for (i, j, k) equal to a cyclic permutation of (0, 1, 2), −1 for a cyclic

permutation of (2, 1, 0), and 0 otherwise. Concretely,

[ea, eb] = ec (7.90)

[eb, ec] = ea (7.91)

[ec, ea] = eb. (7.92)

The Lagrangian depends on the coordinates (θ, φ, ψ) only through (α′, β′, γ′). In the

Poincaré equations we need ei(L̂), where L̂ is the Lagrangian written in terms of the
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angular velocities, and the vector field takes the derivative of the coordinate slot of

the Lagrangian. We have

ea(L̂) = γ′
∂L̂

∂β′
− β′

∂L̂

∂γ′
(7.93)

eb(L̂) = α′
∂L̂

∂γ′
− γ′

∂L̂

∂α′
(7.94)

ec(L̂) = β′
∂L̂

∂α′
− α′

∂L̂

∂β′
. (7.95)

The Poincaré equations are, in this case,

d

dt

(

∂L̂

∂ωa

)

= γ′
∂L̂

∂β′
− β′

∂L̂

∂γ′
+ ωc ∂L̂

∂ωb
− ωb ∂L̂

∂ωc
(7.96)

d

dt

(

∂L̂

∂ωb

)

= α′
∂L̂

∂γ′
− γ′

∂L̂

∂α′
+ ωa ∂L̂

∂ωc
− ωc ∂L̂

∂ωa
(7.97)

d

dt

(

∂L̂

∂ωc

)

= β′
∂L̂

∂α′
− α′

∂L̂

∂β′
+ ωb ∂L̂

∂ωa
− ωa ∂L̂

∂ωb
(7.98)

For our Lagrangian, including the I
(1)
knmij terms in the kinetic energy with k = 0, but

ignoring the other I(i) contributions, we find

∂L̂

∂ωa
= Aωa − 2MR2

∑

nm

Cn∂0X̄
m
2 (ωa, ωb, ωc)Πnm (7.99)

∂L̂

∂ωb
= Bωb − 2MR2

∑

nm

Cn∂1X̄
m
2 (ωa, ωb, ωc)Πnm (7.100)

∂L̂

∂ωc
= Cωc − 2MR2

∑

nm

Cn∂2X̄
m
2 (ωa, ωb, ωc)Πnm (7.101)

Similarly, keeping the k = 0 terms in J
(3)
knmij, but ignoring the other J (i) terms, we

find

∂L̂

∂α′
= − Gm

(R′)3
3Aα′ +MR2

∑

nm

FnΠnm∂0X̄
m
2 (α′, β′, γ′) (7.102)

∂L̂

∂β′
= − Gm

(R′)3
3Bβ′ +MR2

∑

nm

FnΠnm∂1X̄
m
2 (α′, β′, γ′) (7.103)
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∂L̂

∂γ′
= − Gm

(R′)3
3Cγ′ +MR2

∑

nm

FnΠnm∂2X̄
m
2 (α′, β′, γ′), (7.104)

where

Fn =
Gm

(R′)3
(6Cn) ≈

Gm

(R′)3

(

Rω2
2nh2gn
g

)

, (7.105)

where the last form of Fn is valid for large rigidity. The Poincaré equations are

constructed from these components.

Keeping the same terms as before, the Lagrange equations governing the motion

of Πnm are

Π̈nm + ω2
2nΠnm = −2CnX̄

m
2 (ωa, ωb, ωc) + FnX̄

m
2 (α′, β′, γ′)). (7.106)

Note that if we ignore the terms involving Π Poincaré’s equations become

A
dωa

dt
= (B − C)ωbωc − 3Gm

(R′)3
(B − C)β′γ′ (7.107)

B
dωb

dt
= (C − A)ωaωc − 3Gm

(R′)3
(C − A)α′γ′ (7.108)

C
dωc

dt
= (A−B)ωaωb − 3Gm

(R′)3
(A−B)α′β′, (7.109)

which are just Euler’s equations for the motion of a rigid body subject to a gravity-

gradient torque.

7.10 Chandler Wobble

Elasticity affects the period of the Eulerian wobble of the Earth (Chandler, 1891;

Newcomb, 1892). As an illustration of the formalism we have developed we will

calculate the elastic correction to the frequency of the Eulerian wobble. We assume

the body is rotating very nearly with its spin axis aligned with the ĉ principal axis, and

that the body is axisymmetric A = B. We assume there is no external perturbing

body. For simplicity we take into account only the gravest elastic modes (those

with n = 1). We assume here that the elastic modes are in equilibrium, so, from
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Eq. (7.106), we have

Π1m = −2C1X̄
m
2 (ωa, ωb, ωc)/ω2

21. (7.110)

We will assume ωa and ωb are much smaller than ωc; we will systematically ignore

terms that are second and higher order in ωa and ωb. With this assumption

Π1,0 = −2C1
(ωc)2

ω2
21

(7.111)

Π1,1 = −2
√
3C1

ωaωc

ω2
21

(7.112)

Π1,−1 = −2
√
3C1

ωbωc

ω2
21

(7.113)

Π1,2 = 0 (7.114)

Π1,−2 = 0. (7.115)

We have, in this case,

∂L̂

∂ωa
= Aωa + 2C1MR2Π1,0ω

a − 2
√
3C1MR2Π1,1ω

c

∂L̂

∂ωb
= Bωb + 2C1MR2Π1,0ω

b − 2
√
3C1MR2Π1,−1ω

c

∂L̂

∂ωc
= Cωc − 4C1MR2Π1,0ω

c. (7.116)

The Poincaré equations, with these assumptions, show that ωc is constant, so Π1,0 is

also constant. We define

A′ = A+ 2C1MR2Π10 = A− 4C2
1MR2

(

ωc

ω21

)2

(7.117)

B′ = B + 2C1MR2Π10 = B − 4C2
1MR2

(

ωc

ω21

)2

(7.118)

C ′ = C − 4C1MR2Π10 = C + 8C2
1MR2

(

ωc

ω21

)2

, (7.119)

and assume that (A′, B′, C ′) are the observed principal moments of inertia. The
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Poincaré equations are then

A′ω̇a

(

1 + 12C2
1

MR2

A′

(

ωc

ω21

)2
)

= ωbωc(B′ − C ′)

+ 12C2
1

(

ωc

ω21

)2

MR2ωbωc (7.120)

B′ω̇b

(

1 + 12C2
1

MR2

B

(

ωc

ω21

)2
)

= ωaωc(C ′ − A′)

− 12C2
1

(

ωc

ω21

)2

MR2ωaωc (7.121)

Taking the time derivative of the first equation and using the second, we find

ω̈a = −ω2
Cω

a, (7.122)

where the Chandler frequency is

ωC = ωc

(

C ′ − A′

A′
− 12C2

1

MR2

A

(

ωc

ω21

)2
)

, (7.123)

and we have ignored a quantity of second order. We see that the Eulerian frequency,

ωc(C ′ − A′)/A′, is reduced by elasticity. As developed, our theory does not apply to

a body such as the Earth where the body has significant radial variation in density.

Nevertheless, we can see what effective rigidity a homogeneous Earth must have

to get the observed Chandler period of 434 days. Using a density of 5500kg/m3

and a radius of 6371000m, C ′/(MR2) = 0.3307, and A′/(MR2) = 0.3296, we find

µ = 1.8×1011N/m2, which is actually comparable to modern estimates of the rigidity

of the Earth at a depth of about 1000km (Stacey, 1992). But our model is not really

applicable to the Earth.
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7.11 Dissipation

The Q of an oscillator is defined as

1

Q
=

1

2πE⋆

∮

dE

dt
dt, (7.124)

where dE/dt is the rate at which work is done on the oscillator, E⋆ is the energy

stored in the oscillator, and the integral is over one cycle of the oscillation. Consider

the damped driven oscillator

m(ẍ+ dẋ+ ω2
0x) = A cos(ωt). (7.125)

The forced response is

x(t) = B cos(ωt− δ), (7.126)

where

B2 =

(

A

m

)2
1

(ω2
0 − ω2)2 + (ωd)2

. (7.127)

Let

δ0 = arctan(ωd, ω2
0 − ω2), (7.128)

then for ω < ω0 the phase shift δ = δ0 is positive, meaning that the response of the

oscillator lags the forcing, and B is positive. For ω > ω0, the phase shift δ0 is greater

than π/2. We could take δ = δ0 for all ω and always keep B positive. Alternatively,

we can bring δ into the range of −π/2 to π/2 (the range of the one argument arctan)

by subtracting π from δ0 making δ = δ0 − π negative. Then we flip the sign of B

to be negative, so that the solution remains valid. So for ω < ω0, both δ and B are

positive, and for ω > ω0 both δ and B are negative. This reflects more clearly that

the response is out of phase with the forcing.

The energy dissipated per cycle is

∆E = πAB sin δ, (7.129)
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which is positive. For now, we take the peak energy stored in the oscillator to be

E⋆ = mω2
0B

2/2, (7.130)

and return to this definition later. The Q is then given by

1

Q
=

((ω2
0 − ω2)2 + (ωd)2)1/2

ω2
0

sin δ (7.131)

≈ ((ω2
0 − ω2)2)1/2

ω2
0

sin δ (7.132)

≈ sin δ, (7.133)

where the first approximation is for small dissipation (small d), and the second ap-

proximation additionally assumes small forcing frequency (ω << ω0). In the same

limit

tan δ ≈ ωd/ω2
0. (7.134)

So for large Q
1

Q
≈ ωd

ω2
0

. (7.135)

Note that in this model and with these definitions Q is inversely proportional to ω.

We incorporate tidal dissipation by adding an ad hoc dissipative term to the modal

equations, Eq. (7.106),

Π̈nm + dnΠ̇nm + ω2
2nΠnm = −2CnX̄

m
2 (ωa, ωb, ωc) + FnX̄

m
2 (α′, β′, γ′)). (7.136)

We assume dn is independent of m. We have

1

Qn

≈ ωdn
ω2
2n

, (7.137)

where ω is the forcing frequency, assumed to be much less than the modal frequency.
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7.12 Wobble Damping

Here we consider the decay of the Eulerian wobble due to dissipation in the elastic

modes. We again assume that the spin axis is nearly aligned with the ĉ axis. The

damped modal equations (keeping only n = 1 modes) are

Π̈1,0 + d1Π̇1,0 + ω2
21Π1,0 = −2C1(ω

c)2 (7.138)

Π̈1,1 + d1Π̇1,1 + ω2
21Π1,1 = −2

√
3C1ω

cωa (7.139)

Π̈1,−1 + d1Π̇1,−1 + ω2
21Π1,−1 = −2

√
3C1ω

cωb. (7.140)

As ωc is constant, we can assume

Π1,0 = −2C1(ω
c/ω21)

2, (7.141)

is constant. To construct the Poincaré equations we need

∂L̂

∂ωa
= Aωa + 2C1MR2Π1,0ω

a − 2
√
3C1MR2Π1,1ω

c

∂L̂

∂ωb
= Bωb + 2C1MR2Π1,0ω

b − 2
√
3C1MR2Π1,−1ω

c

(7.142)

ignoring second order quantities. Define (A′, B′, C ′) as before, and assume these are

the observed values of the principal moments. Then the left hand sides of the Poincaré

equations are

d

dt

∂L̂

∂ωa
= A′ω̇a − 2

√
3C1MR2ωcΠ̇1,1 (7.143)

d

dt

∂L̂

∂ωa
= B′ω̇b − 2

√
3C1MR2ωcΠ̇1,−1 (7.144)

and the right hand sides are

ωc ∂L̂

∂ωb
− ωb ∂L̂

∂ωc
= ωcωb(B′ − C ′)− 2

√
3C1MR2(ωc)2Π1,−1 (7.145)
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ωa ∂L̂

∂ωc
− ωc ∂L̂

∂ωa
= ωcωa(C ′ − A′) + 2

√
3C1MR2(ωc)2Π1,1. (7.146)

Collecting the equations, the wobble damping is governed by the constant coefficient

linear differential equations:

0 = Π̈1,1 + d1Π̇1,1 + ω2
21Π1,1 + ξωcωa (7.147)

0 = Π̈1,−1 + d1Π̇1,−1 + ω2
21Π1,−1 + ξωcωb (7.148)

0 = A′ω̇a − ξωcMR2Π̇1,1 − ωcωb(B′ − C ′) + ξωcMR2ωcΠ1,−1 (7.149)

0 = B′ω̇b − ξωcMR2Π̇1,−1 − ωcωa(C ′ − A′)− ξωcMR2ωcΠ1,1 (7.150)

where ξ = 2
√
3C1. We find the solution decays exponentially, proportional to e−t/τ ,

with
1

τ
= ξ2

(

ωc

ω21

)4(
MR2

A′

)

(ωC

ωc

)

d1. (7.151)

Using Eq. (7.135), we define the effective Q for an oscillation at the Chandler fre-

quency to satisfy
1

QC

=
ωCd1
ω2
21

, (7.152)

then
1

τ
= ξ2

(ωc)3

(ω21)2

(

MR2

A′

)(

1

QC

)

. (7.153)

The wobble damping timescale is approximately

τ ≈ 19.38
A

MR2

µQC

ρR2(ωc)3
. (7.154)

This agrees with Peale (1973), though the method of calculation is very different.

7.13 Tidal Friction

Consider a perturbing body in orbit about a dissipative elastic body. We assume the

spin axis of the body is perpendicular to the orbit plane (γ′ = 0) and that there is

no wobble (ωa = ωb = 0). We will use the same coordinates (θ, φ, ψ) to specify the
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orientation as before. Let n be the mean motion of the perturbing body, with true

longitude λ. We assume that A′ = B′. We will consider only the gravest elastic mode.

With these assumptions the equations of motion are

C ′ω̇c =
√
3MR2F1

(

Π1,22α
′β′ − Π1,−2((α

′)2 − (β′)2)
)

(7.155)

ω̇a = ω̇b = 0 (7.156)

with

Π̈1,2 + d1Π̇1,2 + ω2
21Π1,2 = F1

√
3

2
((α′)2 − (β′)2) (7.157)

Π̈1,−2 + d1Π̇1,−2 + ω2
21Π1,−2 = F1

√
3

2
2α′β′ (7.158)

Π1,1 = Π1,−1 = 0. (7.159)

with

Π1,0 ≈ −(2C1(ω
c)2 + F1/2)/ω

2
21. (7.160)

The average polar moment is

C ′ = C + 8C2
1MR2

(

ωc

ω21

)2

+ 2C1MR2 F1

ω2
21

. (7.161)

For this geometry α′ = cos(λ−φ) and β′ = sin(λ−φ), with ωc = φ̇. Define φ′ = φ−λ,
then the equations of motion are

C ′ω̇c =
√
3MR2F1 (−Π1,2 sin(2φ

′)− Π1,−2 cos(2φ
′)) (7.162)

Π̈1,2 + d1Π̇1,2 + ω2
21Π1,2 = F1

√
3

2
cos(2φ′) (7.163)

Π̈1,−2 + d1Π̇1,−2 + ω2
21Π1,−2 = −F1

√
3

2
sin(2φ′) (7.164)

Let’s assume that the rotation is not near synchronous, and that φ′ moves approxi-

mately uniformly

φ′ ≈ (ωc − n)t. (7.165)
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(We are taking the orbital eccentricity to be zero.) Then the Π equations are period-

ically forced damped harmonic oscillators, with solutions (assuming ω21 >> |ωc−n|)

Π1,2 =

√
3

2

F1

ω2
21

cos(2(ωc − n)t− δ2ωc−2n) (7.166)

Π1,−2 = −
√
3

2

F1

ω2
21

sin(2(ωc − n)t− δ2ωc−2n) (7.167)

where

tan δ2ωc−2n ≈ 2(ωc − n)d1
ω2
21

=
1

QT

, (7.168)

defining QT as the effective Q at the frequency 2(ωc−n). Substituting these into the

equation for ω̇c we find

ω̇c = −3

2

MR2

C ′

(F1)
2

ω2
21

sin δ2ωc−2n. (7.169)

This gives the rate of deceleration of rotation for a perturber of mass m in a circular

orbit. It can apply to either the case of the deceleration of a planet by a satellite or of

the rotation of a satellite by the primary. This expression is easily generalized using

Eqs. (7.127-7.131).

To reduce this expression to the usual expression we have to make an additional

assumption. For one of the factors of F1, we use the approximate form for large

rigidity in Eq. (7.105). We also use k2 = (3/5)h2. We find then

ω̇c = −3

2

k2
QT

(

R

R′

)3(
Gm

a3

)

(m

M

)MR2

C ′
f, (7.170)

where

f = 10C1g1 ≈ 0.98. (7.171)

Except for the f factor Eq. (7.170) gives the expression in Goldreich (1966).2 We

find that
∑

∞

i=1 10Cigi = 1. Therefore we ignore the f factor from here out. In each

case m is the tidal perturber, and M is the perturbed solid body.

2The expression given by Peale (1973) is too big by a factor of 2, as noted by Dobrovolskis (2007).
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This formula can be applied to get the tidal decay of rotation for a non-synchronous

satellite, but also for the tidal evolution of semimajor axis. Assuming the angular

momentum of the system is conserved, the angular momentum lost by the rotating

body goes into the orbit. We find, using Eq. (7.170), that the rate of tidal evolution

of the semimajor axis a of a circular orbit is

1

a

da

dt
= 3n

k2
QT

R5

a5
m

M
, (7.172)

which agrees with Peale (1986).

7.14 Tidal Friction with Eccentricity

Consider a perturbing body in an elliptic orbit about a dissipative elastic body. To

start, we will assume the spin axis of the body is perpendicular to the orbit plane

(γ′ = 0) and that there is no wobble (ωa = ωb = 0). Let n be the mean motion of the

perturbing body, a the semimajor axis, e the orbital eccentricity, ̟ the longitude of

pericenter, and λ the true longitude. Following Eqs. (7.162-7.164), the equations of

motion are

C ′ω̇c =
√
3MR2F1 (−Π1,2 sin(2(φ− λ))− Π1,−2 cos(2(φ− λ))) (7.173)

Π̈1,2 + d1Π̇1,2 + ω2
21Π1,2 = F1

√
3

2
cos(2(φ− λ)) (7.174)

Π̈1,−2 + d1Π̇1,−2 + ω2
21Π1,−2 = −F1

√
3

2
sin(2(φ− λ)), (7.175)

Π̈1,0 + d1Π̇1,0 + ω2
21Π1,0 = −(2C1(ω

c)2 + F1/2), (7.176)

where both F1 and λ vary nonuniformly because of the Keplerian orbital motion.

Recall that F1 ∝ (a/R′(t))3 (see Eq. 7.105).

To solve these equations we Fourier expand the periodic forcing. We use

(

a

R′(t)

)3

cos(kf(t)) =
∞
∑

j=−∞

X−3,k
j (e) cos(jnt), (7.177)
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and
(

a

R′(t)

)3

sin(kf(t)) =
∞
∑

j=−∞

X−3,k
j (e) sin(jnt), (7.178)

where f is the true anomaly and X−3,2
j (e) are Hansen functions.

Substituting these into the Π equations of motion gives

Π̈1,2 + d1Π̇1,2 + ω2
21Π1,2 = G1

√
3

2

∞
∑

j=−∞

X−3,2
j (e) cos(2φ− 2̟ − jnt)

(7.179)

Π̈1,−2 + d1Π̇1,−2 + ω2
21Π1,−2 = −G1

√
3

2

∞
∑

j=−∞

X−3,2
j (e) sin(2φ− 2̟ − jnt),

Π̈1,0 + d1Π̇1,0 + ω2
21Π1,0 = −2C1(ω

c)2 − G1
1

2

∞
∑

j=−∞

X−3,0
j (e) cos(jnt),

(7.180)

where φ = φ0 + ωct (with φ0 giving the orientation of the planet at time t = 0) and

G1

(

a

R′(t)

)3

= F1. (7.181)

These linear equations have the approximate solutions

Π1,2 =

√
3

2

G1

ω2
21

∞
∑

j=−∞

X−3,2
j (e) cos(2φ− 2̟ − jnt− δ2ωc−jn) (7.182)

Π1,−2 = −
√
3

2

G1

ω2
21

∞
∑

j=−∞

X−3,2
j (e) sin(2φ− 2̟ − jnt− δ2ωc−jn) (7.183)

Π1,0 = −2C1
(wc)2

ω2
21

− 1

2

G1

ω2
21

∞
∑

j=−∞

X−3,0
j (e) cos(jnt− δjn) (7.184)

where

tan δ2ωc−jn ≈ (2ωc − jn)d1
ω2
21

, (7.185)

tan δjn ≈ jnd1
ω2
21

. (7.186)
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In writing these expressions we have used the approximation that |2ωc − jn| << ω21.

These expressions are easily generalized.

Substituting these expressions into the equation for ω̇c and averaging over the

orbital period, we find

ω̇c = −3

2

MR2

C ′

(G1)
2

ω2
21

∞
∑

j=−∞

(X−3,2
j (e))2 sin δ2ωc−jn, (7.187)

where we have ignored the small time variation in C ′ which exists because F1 (see

Eq. 7.161) is now time dependent. Note that X−3,2
0 (e) = 0. This expression looks

more familiar if we assume large rigidity:

ω̇c = −3

2
k2

(

R

R′

)3(
Gm

a3

)

(m

M

)MR2

C ′

∞
∑

j=−∞

(X−3,2
j (e))2 sin δ2ωc−jn, (7.188)

where we have ignored the factor of f .

Next we compute the total energy dissipation. For the simple driven oscillator the

rate of dissipation is given by Eq. (7.129). Generalizing this to our case, where there

are many forcing terms, and integrating over an orbit period, we find the average rate

of energy dissipation to be

dE

dt
=

3

4

MR2G2
1

ω2
21

∞
∑

j=−∞

(X−3,2
j (e))2(2ωc − jn) sin δ2ωc−jn

+
1

4

MR2G2
1

ω2
21

∞
∑

j=−∞

(X−3,0
j (e))2(jn) sin δjn. (7.189)

For the special case of synchronous rotation we set ωc = n.

To derive the usual expression for tidal heating in synchronous rotation at low

eccentricity, we select the lowest order terms in eccentricity:

dE

dt
=

21

2

MR2G2
1

ω2
21

e2 sin δn, (7.190)

where δn = −δ−n = δ2ωc−n = −δ2ωc−3n. To get the familiar formula, we make a large
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µ approximation (as before) and find

dE

dt
=

21

2

k2
Q

Gm2nR5

a6
e2, (7.191)

where we have again ignored a factor of f = 0.98 and approximated sin δn by 1/Q.

This agrees with Peale & Cassen (1978) and Peale et al. (1979).

For the case of phase lags proportional to frequency we use δ2ωc−jn = (2 − j)δn

and δjn = jδn. Making the large µ approximation again, we derive

dE

dt
=

21

2

k2
Q

Gm2nR5

a6
e2η(e), (7.192)

where the tidal heating enhancement factor is

η(e) = 1 + 18e2 +
3329

28
e4 +

55551

112
e6 + · · · . (7.193)

This agrees with Peale & Cassen (1978) and Wisdom (2008). Wisdom (2008) gave

an expression valid at arbitrary eccentricity:

ζ(e) = e2η(e) =
2

7

f0(e)

β15
− 4

7

f1(e)

β12
+

2

7

f2(e)

β9
, (7.194)

where

f0(e) = 1 +
31

2
e2 +

255

8
e4 +

185

16
e6 +

25

64
e8,

f1(e) = 1 +
15

2
e2 +

45

8
e4 +

5

16
e6,

f2(e) = 1 + 3e2 +
3

8
e4, (7.195)

with β = (1− e2)1/2.

7.14.1 Orbital Evolution Not in Spin-Orbit Resonance

Next, we can use conservation of energy and angular momentum with the above

results to compute the rates of change of semimajor axis and eccentricity for the case
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in which there is no spin-orbit resonance. Based on conservation of energy,

da

dt
= − 2a2

GMm

(

Cωcω̇c +
dE

dt

)

. (7.196)

Substituting in Eq. (7.187) and Eq. (7.189) yields

1

a

da

dt
=
κ

2

∞
∑

j=−∞

j
(

3(X−3,2
j (e))2 sin δ2ωc−jn − (X−3,0

j (e))2 sin δjn
)

, (7.197)

where

κ =
a

GMm
MR2 G2

1

ω2
21

≈ k2nR
5

a5
m

M
, (7.198)

where the approximation is for large rigidity. Conservation of angular momentum

gives

1

e

de

dt
=

κ

4

√
1− e2

e2

(

−
√
1− e2

∞
∑

j=−∞

(X−3,0
j (e))2j sin δjn

+ 3
∞
∑

j=−∞

(

j
√
1− e2 − 2

)

(X−3,2
j (e))2 sin δ2ωc−jn

)

. (7.199)

Note that the leading term in 1/e de/dt as a polynomial in e is proportional to a

constant—the 1/e2 factor is cancelled by a leading factor of e2 in the subsequent

expression.

If we keep only the lowest order terms in eccentricity, the expressions reduce to

1

a

da

dt
= 3κ sin δ2ωc−2n (7.200)

and

1

e

de

dt
= −3κ

4

(

3

2
sin δn +

1

4
sin δ2ωc−n + sin δ2ωc−2n −

49

4
sin δ2ωc−3n

)

, (7.201)

which confirms Equation 7 of Goldreich (1963). (Goldreich’s ǫ3 is actually δn, which

is associated with frequency n, not 3
2
n , as stated.)
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For Mignard tides, where phase lags are proportional to frequency,

1

a

da

dt
= 6

κ

Q

[(

ωc

n
− 1

)

+ e2
(

27

2

ωc

n
− 23

)

+ e4
(

573

8

ωc

n
− 180

)

+ e6
(

3961

16

ωc

n
− 6765

8

)

+ · · ·
]

(7.202)

1

e

de

dt
=

33

2

κ

Q

[(

ωc

n
− 18

11

)

+ e2
(

13

2

ωc

n
− 369

22

)

+ e4
(

181

8

ωc

n
− 3645

44

)

+ · · ·
]

. (7.203)

7.14.2 Orbital Evolution in Spin-Orbit Resonance

Similar calculations yield the rates of change of semimajor axis and eccentricity in

spin-orbit resonance, where ωc = kn and therefore

ω̇c = −3

2
k
n

a

da

dt
. (7.204)

For the case of a tide-raising perturber orbiting around an extended body,

1

a

da

dt
=

2a

GMm

(

3k2Γm − 1
)−1 dE

dt
, (7.205)

with Γm = C/(ma2). Substituting in Eq. (7.189) yields

1

a

da

dt
=

κ

2

(

3k2Γm − 1
)−1

Υ, (7.206)

where

Υ =
∞
∑

j=−∞

(

3(X−3,2
j (e))2(2k − j) sin δ2ωc−jn + (X−3,0

j (e))2j sin δjn
)

. (7.207)

Conservation of angular momentum gives

1

e

de

dt
= −κ

4

√
1− e2

e2

(
√
1− e2 − 3kΓm

1− 3k2Γm

)

Υ (7.208)
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Note that the first parenthesized factor in Eq. (7.208) is approximately one for small

eccentricity in synchronous rotation, in both the limit that Γm = C/(ma2) is large

and small compared to one. Both these limits occur in the solar system: for the

satellites of the giant planets Γm >> 1, whereas for the Moon Γm << 1.

For the case of an extended body orbiting around a perturbing central mass,

1

a

da

dt
=
κ

2

(

3k2ΓM − 1
)−1

Υ, (7.209)

with ΓM = C/(Ma2), and

1

e

de

dt
= −κ

4

√
1− e2

e2

(
√
1− e2 − 3kΓM

1− 3k2ΓM

)

Υ. (7.210)

Note that ΓM = C/(Ma2) is typically small compared to one.

For Mignard tides we can expand Υ as a power series in e

Υ = 12(k − 1)2 + e2(90k2 − 324k + 276) + e4(315k2 − 1719k + 2160)

+
1

2
e6(1575k2 − 11883k + 20295) + · · · . (7.211)

Notice that for synchronous rotation the leading term in Υ is order e2, but for other

spin-orbit commensurabilities the leading term is a constant. Thus a satellite would

not be expected to be in nonsynchronous spin-orbit resonance at low eccentricity.

The eccentricity would decay rapidly to zero in finite time and then the resonance

lock would be lost.

If we specialize to synchronous rotation (k=1) and keep only the lowest order

terms in eccentricity, the expressions reduce to

1

a

da

dt
=

3κ

4
e2 (3Γm − 1)−1

(

3 sin δn +
1

2
sin δ2ωc−n −

49

2
sin δ2ωc−3n

)

(7.212)

for a perturber with mass m orbiting around a synchronous extended body with mass
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M and

1

a

da

dt
=

3κ

4
e2 (3ΓM − 1)−1

(

3 sin δn +
1

2
sin δ2ωc−n −

49

2
sin δ2ωc−3n

)

(7.213)

for an extended body with mass M orbiting around a central body with mass m.

For Mignard tides, where the phase lags are proportional to frequency, the common

factor in parentheses is 28δn. The rate of change of eccentricity is the same in both

cases:
1

e

de

dt
= −3κ

8

(

3 sin δn +
1

2
sin δ2ωc−n −

49

2
sin δ2ωc−3n

)

, (7.214)

which again confirms Equation 8 of Goldreich (1963), if his 2ǫ3 is actually the lag for

frequency n, not 3
2
n. For Mignard tides, where the phase lags are proportional to

frequency,
1

e

de

dt
= −21

2

κ

Q
. (7.215)

7.15 Conclusion

In this chapter, we have laid out the basis for a new tidal formulation that treats

solid body tides as the excitation of elastic modes in the body. We derived expres-

sions for wobble damping, tidal dissipation, tidal despinning, and rates of change

of semimajor axis and eccentricity. The most interesting result of these derivations

is the discovery that the rate of change of semimajor axis and eccentricity are, to

lowest order, proportional to e2 for the synchronous resonance and to a constant for

all other spin-orbit resonances. This would imply that we would not find objects in

nonsynchronous resonances at low eccentricities because the damping would rapidly

drop the eccentricity to zero and break the object out of resonance. This result has

only been derived for the constant time lag (Mignard) model so far.

In future work, we plan to extend the model to include inclination and obliquity.

We also plan to apply the model to different rheologies with different frequency de-

pendences for the phase lags. Our model will then be relevant and useful for any

solid body that evolves, due to tides, over a significant frequency range. We will

164



be able to compare the evolution of the Moon, icy satellites, and super-Earths in

different rheologies and perhaps constrain both the possible evolutions and the likely

rheologies.
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Chapter 8

Conclusions and Future Work

In this thesis, we have explored tides in general and in specific. We found that tides

can have an amazingly transformative effect on satellites.

For Enceladus, we found that the equilibrium tidal heating can be calculated to

be 1.1(18, 000/QS) GW, independent of satellite rheology. The actual heat flow on

Enceladus is an order of magnitude higher, so we investigated possible orbital and

thermal nonequilibrium. We found no evidence of current orbital non-equilibrium

and were able to conclude, based on the magnitude of the libration of the resonance

angle, that Enceladus is in or near equilibrium in its 2:1 mean motion resonance with

Dione (Meyer & Wisdom, 2008b). We also applied the thermal oscillation model of

Ojakangas & Stevenson (1986) that produces oscillations around equilibrium for Io

and did not find thermal nonequilibrium for Enceladus (Meyer & Wisdom, 2008a).

Recent work by others has focused on other models to produce thermal oscillations

(O’Neill & Nimmo, 2010; Běhounková et al., 2010) and non-tidal sources of heating

(Nimmo et al., 2007). However, no model has been able to produce enough heat

within the constraints put forward in Meyer & Wisdom (2007). At this point, I

believe that the key to understanding Enceladus’ mysterious heat flow lies with the

Q of Saturn. Conservation of energy and angular momentum forces the heat flow to

be less than 1.1(18, 000/QS) GW. We argued in Meyer & Wisdom (2007) that the

minimum Q of Saturn is 18,000, based on the orbit of Mimas. A QS of 18,000 is what

is required for Mimas to begin at the synchronous radius and then evolve outward to
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its current orbit. We argued that if QS was smaller than 18,000, Mimas would have

evolved outward farther than is observed.

However, there are two clear ways to avoid this constraint. First, we are applying

a constraint derived from the evolution of the orbit over the age of the solar system.

If QS is time dependent, such that the current QS is an order of magnitude less than

the average QS of 18,000, we can produce enough heating in equilibrium. Perhaps this

time dependence would be due to cooling over time or the precipitation of helium from

the upper layers of the atmosphere. Second, the constraint is derived from the orbit

of Mimas, not that of Enceladus. Perhaps frequency dependence allows a different

QS to apply to Enceladus than to Mimas. Theoretical work on the Q of giant planets

finds large variations in dissipation over small variations in frequency (Ogilvie & Lin,

2004; Wu, 2005).

Recent astrometric observations by Lainey et al. (2010) have measured the Q

of Saturn by directly measuring the orbital changes of Mimas and Enceladus. The

methodology is very similar to that in Lainey et al. (2009). They find a very small Q

of Saturn, about a factor of 10 smaller than the putative minimum Q of 18,000. If Q

is indeed this low, the measured tidal heating is consistent with the amount of tidal

heating expected from Meyer & Wisdom (2007). If this measurement of Saturn’s Q

is verified, it would be exciting confirmation of either time or frequency dependence

for dissipation in giant planets.

In addition, we studied tides on the Moon. We found that we could not match

the shape solution of Garrick-Bethell et al. (2006) without stretching the terrestrial

dissipation parameters to unphysical values (Meyer et al., 2011). In addition, we

prove that the Moon would either break or deform and would not maintain the shape

from the time of the shape solution until the present (Meyer et al., 2010). Therefore,

the shape of the Moon remains an unsolved problem.

Another lunar puzzle, the remanent magnetization of the lunar rocks, motivated

our study (Meyer & Wisdom, 2011) of the history of the core precession. We found

that inertial coupling would force the core spin axis and mantle spin axis to precess

together before the Moon reached a semimajor axis of about 26 to 29 Earth radii.
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Until the Moon reaches this point, an early lunar dynamo is precluded. We also note

that the Cassini transition occurs after the transition to unlocked core. Perhaps the

Cassini transition is the best chance for a powerful dynamo on the Moon. Future

work should include an estimate of the power available for the dynamo.

And finally, we have presented a new formulation of solid body tides that treats

tidal deformations as the excitation of the elastic modes of the body. There are many

promising directions for further research on this subject. We plan to expand the

model to include inclined orbits around an oblique extended body. We also plan to

include different rheologies. Rheology describes how the material inside the body

flows as a response to the tidal perturbation. Geophysicists model the interiors of

planets as sets of mass elements, where the motion of each mass element is analogous

to the motion of a mass connected to a combination of springs and dashpots.

Our work thus far has modelled the dissipation as a frictional force linearly pro-

portional to the rate of change of the modal coordinate (see Equations 7.125 and

7.136). This corresponds to a simple model in which a spring and dashpot are con-

nected in parallel. This spring-dashpot model is known as the Kelvin-Voigt model

and corresponds to phase lags that are linearly proportional to frequency. Therefore,

the constant time lag tidal model corresponds to the Kelvin-Voigt rheology.

We have specialized to the constant time lag tidal model only in the last steps

of each derivation. To extend our results to other rheologies just involves deriving

the appropriate magnitude and phase lag of the tidal response as a function of fre-

quency for whichever tidal models we would like to include. We have so far calculated

the magnitude and phase lags for the Maxwell, Standard Linear Solid, and Burgers

rheologies. We plan to also compute these quantities for the Andrade model and a

generic model with a phase lag that is a simple power law in frequency.
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Appendix A

The Resonance Model

We derived our model in a Hamiltonian framework and then added dissipative terms.

The Hamiltonian is

H = HK +HJ +Hs +Hr, (A.1)

where HK is the sum of the Kepler Hamiltonians for all the satellites, HJ is the

Hamiltonian for the oblateness contributions, Hs is the secular Hamiltonian, and Hr

is the resonant Hamiltonian, which has both direct and indirect contributions. Each

of these is initially expressed in Jacobi coordinates to effect the elimination of the

center of mass (Wisdom & Holman, 1991). We then reexpress each term in terms of

canonical Delaunay and then modified Delaunay elements. Finally, we make a polar

canonical transformation (Sussman & Wisdom, 2001) on each pair of eccentricity-like

momenta and conjugate coordinates to get coordinates that are nonsingular at small

eccentricity. The individual steps will not be shown in detail.

The state variables are as follows:

hi = ei cos σi (A.2)

ki = ei sin σi (A.3)

ãi = Λ2
i /miµi, (A.4)

where we label the satellites with subscript i = 0 for the inner satellite and i = 1 for
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the outer satellite in the resonant pair. The mass of satellite i is mi, and µi = GmiM ,

where M is the planet mass. The eccentricity of satellite i is ei. The resonance

variables are σi = jλ1 + (1− j)λ0 −̟i, where λi and ̟i are the mean longitude and

longitude of pericenter of satellite i. We also have

Λ0 = L0 − (1− j)(Σ0 + Σ1) (A.5)

Λ1 = L1 − j(Σ0 + Σ1), (A.6)

where Li =
√
miµiai, for semimajor axis ai, and

Σi =
√
miµiai(1− (1− e2i )

1/2) ≈ Λie
2
i /2, (A.7)

where Li ≈ Λi to first order in eccentricity. We define Σi = ΛiΣ̄i. Note that in the

absence of tides the state variables ãi and the associated variables Λi are constants of

the motion. The osculating semimajor axes ai and the associated Li are not constant.

Let
∂HK

∂Σi

= (1− j)n0 + jn1, (A.8)

where the mean motions are n0 = m0µ
2
0/L

3
0 and n1 = m1µ

2
1/L

3
1 . We also define

ñ0 = m0µ
2
0/Λ

3
0 and ñ1 = m1µ

2
1/Λ

3
1. In terms of these, we define

∆n0 = ñ0

(

3
J2R

2

ã20
+

45

4

J2
2R

4

ã40
− 15

4

J4R
4

ã40

)

(A.9)

∆n1 = ñ1

(

3
J2R

2

ã21
+

45

4

J2
2R

4

ã41
− 15

4

J4R
4

ã41

)

(A.10)

∆ ˙̟ 0 = ñ0

(

3

2

J2R
2

ã20
+

63

8

J2
2R

4

ã40
− 15

4

J4R
4

ã40

)

(A.11)

∆ ˙̟ 1 = ñ1

(

3

2

J2R
2

ã21
+

63

8

J2
2R

4

ã41
− 15

4

J4R
4

ã41

)

(A.12)

These are the changes in the mean motions and the changes in the rates of precession

of the pericenters due to planetary oblateness (Brouwer, 1959).

Next we define

∆σ̇0 = (1− j)∆n0 + j∆n1 −∆ ˙̟ 0 (A.13)
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and

∆σ̇1 = (1− j)∆n0 + j∆n1 −∆ ˙̟ 1. (A.14)

These are the changes in the rates of change of the resonant arguments due to plan-

etary oblateness.

The equations of motion are as follows:

dk0
dt

=
∂HK

∂Σ0

h0 +∆σ̇0h0

− Gm0m1

ã1Λ0

(Cs
ee′h1 + 2Cs

eeh0 + Cr
e + 2Cr

eeh0 + Cr
ee′h1) +

dk0
dt

∣

∣

∣

∣

t

(A.15)

dh0
dt

= −∂HK

∂Σ0

k0 −∆σ̇0k0

− Gm0m1

ã1Λ0

(−Cs
ee′k1 − 2Cs

eek0 + 2Cr
eek0 + Cr

ee′k1) +
dh0
dt

∣

∣

∣

∣

t

(A.16)

dk1
dt

=
∂HK

∂Σ1

h1 +∆σ̇1h1

− Gm0m1

ã1Λ1

(2Cs
e′e′h1 + Cs

ee′h0 + Cr
e′ + 2Cr

e′e′h1 + Cr
ee′h0) +

dk1
dt

∣

∣

∣

∣

t

(A.17)

dh1
dt

= −∂HK

∂Σ1

k1 −∆σ̇1k1

− Gm0m1

ã1Λ1

(−2Cs
e′e′k1 − Cs

ee′k0 + 2Cr
e′e′k1 + Cr

ee′k0) +
dh1
dt

∣

∣

∣

∣

t

. (A.18)

The tidal damping terms for satellite i are

dki
dt

∣

∣

∣

∣

t

= −7

2
ciDia

−13/2
i kiη (A.19)

dhi
dt

∣

∣

∣

∣

t

= −7

2
ciDia

−13/2
i hiη (A.20)

where

ci = 3
k2
Q

m0

M

√
GMR5 (A.21)

and

Di =
k2i/Qi

k2/Q

(

M

mi

)2(
Ri

R

)5

. (A.22)
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The factor η is a “speedup” factor that artificially enhances the rate of tidal evolution.

We found in selected test evolutions that the evolution was insensitive to the speedup

factor over a range of speedups of 1 to 1000. We typically used a speedup of 100 in

our numerical explorations.

The tidal contribution to the rate of change of semimajor axis ai is

dai
dt

∣

∣

∣

∣

t

= ci(1− 7Die
2
i )a

−11/2η. (A.23)

From Li =
√
miµiai we have

L̇t
i =

dLi

dt

∣

∣

∣

∣

t

=
Li

2ai

dai
dt

∣

∣

∣

∣

t

. (A.24)

From Σ̄i = (h2i + k2i )/2 we have

˙̄Σt
i =

dΣ̄i

dt

∣

∣

∣

∣

t

= hi
dhi
dt

∣

∣

∣

∣

t

+ ki
dki
dt

∣

∣

∣

∣

t

. (A.25)

From the definitions

Λ0 = L0 − (1− j)(Λ0Σ̄0 + Λ1Σ̄1) (A.26)

Λ1 = L1 − j(Λ0Σ̄0 + Λ1Σ̄1) (A.27)

we differentiate to get

Λ̇t
0 = L̇t

0 − (1− j)
(

Λ̇t
0Σ̄0 + Λ̇t

1Σ̄1 + Λ0
˙̄Σt
0 + Λ1

˙̄Σt
1

)

(A.28)

Λ̇t
1 = L̇t

1 − j
(

Λ̇t
0Σ̄0 + Λ̇t

1Σ̄1 + Λ0
˙̄Σt
0 + Λ1

˙̄Σt
1

)

. (A.29)

Note that the nontidal contributions to L̇i and ˙̄Σi cancel because Λi are constant

except for the tidal terms. Then we solve for Λ̇t
0 and Λ̇t

1,

Λ̇t
0 =

(1 + jΣ̄1)L̇
t
0 − (1− j)Λ0

˙̄Σt
0 − (1− j)Λ1

˙̄Σt
1 − (1− j)L̇t

1Σ̄1

1 + (1− j)Σ̄0 + jΣ̄1

(A.30)
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Λ̇t
1 =

(1 + (1− j)Σ̄0)L̇
t
1 − jΛ0

˙̄Σt
0 − jΛ1

˙̄Σt
1 − jL̇t

0Σ̄0

1 + (1− j)Σ̄0 + jΣ̄1

. (A.31)

And finally, from here, we use the definition of ãi =
√
miµiΛi to get the rate of change

of the state variables ãi.
dãi
dt

= 2
ãi
Λi

Λ̇t
i (A.32)

The disturbing function coefficients are as follows:

Cs
ee = Cs

e′e′ =
1

8

(

2Dαb
0
1/2(α) +D2

αb
0
1/2(α)

)

(A.33)

Cs
ee′ =

1

4

(

2b11/2(α)− 2Dαb
1
1/2(α)−D2

αb
1
1/2(α)

)

(A.34)

Cr
e =

1

2

(

−2jbj1/2(α)−Dαb
j
1/2(α)

)

(A.35)

Cr
e′ =

1

2

(

(2j − 1)bj−1
1/2 (α) +Dαb

j−1
1/2 (α)

)

− 2αδj2 (A.36)

Cr
ee =

1

8

(

(−5k + 4k2)bk1/2(α) + (−2 + 4k)Dαb
k
1/2(α) +D2

αb
k
1/2(α)

)

(A.37)

Cr
ee′ =

1

4

(

(−2 + 6k − 4k2)bk−1
1/2 (α) + (2− 4k)Dαb

k−1
1/2 (α)−D2

αb
k−1
1/2 (α)

)

(A.38)

Cr
e′e′ =

1

8

(

(2− 7k + 4k2)bk−2
1/2 (α) + (−2 + 4k)Dαb

k−2
1/2 (α) +D2

αb
k−2
1/2 (α)

)

(A.39)

where Dαf = αdf/dα, k = 2j, and bml (α) are the usual Laplace coefficients (Murray

& Harper, 1993). We have evaluated the coefficients at α = ((j − 1)/j)2/3.
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Appendix B

Tidal Heating in a Two-Layer

Model

In a classic paper Peale and Cassen (1978) calculated the rate and distribution of

tidal dissipation in the Moon. They also calculated the rate of tidal heating in a

two-layer model, consisting of an inviscid molten interior overlain by a rigid lid. The

result was used in another classic paper, Peale, Cassen, and Reynolds (1979), in

which it was predicted that there would be volcanoes on Io. We set out to use the

two layer model, but found that there were a number of typographical errors, and

that a considerable amount of work was required to recover explicit expressions for

the local energy dissipation. So the result of our labor is presented here.

The two-layer model consists of an inviscid fluid interior overlain by a rigid lid.

The lid has rigidity µ, density ρ, and surface gravity g. The radius of the satellite is R,

G is Newton’s constant, a is the semimajor axis of the orbit, e is orbital eccentricity,

and n is orbital mean motion. The radius of the interior divided by the radius of the

satellite is η.

Let

A(a, b) = (a(1 + η + η2) + b(η3 + η4))/E (B.1)

B(c, d) = (c(1 + η + η2 + η3 + η4) + d(η5 + η6))/E (B.2)
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C(e, f) = (e(η3 + η4) + f(η5 + η6 + η7 + η8 + η9))/E (B.3)

D(g, h) = (g(η5 + η6) + h(η7 + η8 + η9))/E, (B.4)

where E = 252(1 + η + η2) + 672(η3 + η4). Then, define

α0 = A(−108,−288)r21 + B(96, 180) + C(−320,−152)r−3
1 +D(384, 114)r−5

1(B.5)

α1 = A(−30,−80)r21 + B(48, 90) + C(0, 0)r−3
1 +D(32, 19/2)r−5

1 (B.6)

α2 = A(−36,−96)r21 + B(96, 180) + C(160, 76)r−3
1 +D(−96,−57/2)r−5

1 (B.7)

α3 = A(−48,−128)r21 + B(48, 90) + C(80, 38)r−3
1 +D(−128,−38)r−5

1 (B.8)

Note that A(−108,−288) = −3/7, A(−30,−80) = −5/42, A(−36,−96) = −1/7,

and A(−48,−128) = −4/21. We find that the coefficient of r−3
1 in α3 is a factor

of 2 smaller than is given in Peale and Cassen (1978). Otherwise, these expressions

reproduce the numbers given in the appendix of Peale and Cassen (1978).

Also, let

G(x) = F (19, 64, 64, 24) + xF (−228, 672,−672, 228), (B.9)

where x = µ/(ρgR), for rigidity µ, density ρ, surface gravity g, and radius R, and

where

F (a, b, c, d) = a(η7 + η8 + η9) + b(η5 + η6) + c(η3 + η4) + d(1 + η + η2), (B.10)

then define

k′2(x) = E/G(x). (B.11)

For µ = 6.5 × 1011, ρ = 3.34, g = 162., and R = 1.738 × 108 (all in cgs), we find

k′2 = 0.2649, for η = 1/2, and k′2 = 2.027, for η = 0.95, which are in satisfactory

agreement with the appendix in Peale and Cassen (1978).

Algebraically, the choice of E is arbitrary, since the strain depends on the product

of k′2 and the αi and this product is independent of E. Given the notation k′2 one

178



might have expected it to reduce to the Love number k2 for a homogeneous body when

η = 0, but this is not the case. For η = 0, k′2(x) = (21/2)/(1+(19/2)x) = 7k2. So the

reason for the choice of the factor E is a mystery; it looks like it should have had 1/7

the value it was given. Hence, we will choose E ′ = E/7. Define A′ = 7A, B′ = 7B,

C ′ = 7C, and D′ = 7D, then α′

i = 7αi. And then we can set k2(x) = k′2(x)/7. This

k2(x) has the expected value (3/2)/(1 + (19/2)x) for η = 0. And the coefficients in

Equations (10)-(15) in Peale and Cassen (1978) can be recognized as α′

i for η = 0.

The strains are:

err =
k2R

g

∑

m,p,q

α′

0(r1)

(

V2mpq

r2

)

(B.12)

eθθ =
k2R

g

∑

m,p,q

[

α′

1(r1)
∂2

∂θ2

(

V2mpq

r2

)

+ α′

2(r1)

(

V2mpq

r2

)]

(B.13)

eφφ =
k2R

g

∑

m,p,q

[

α′

1(r1)

(−m2

sin2 θ
+ cot θ

∂

∂θ

)(

V2mpq

r2

)

+ α′

2(r1)

(

V2mpq

r2

)]

(B.14)

erθ =
k2R

g

∑

m,p,q

α′

3(r1)
∂

∂θ

(

V2mpq

r2

)

(B.15)

erφ =
k2R

g

∑

m,p,q

α′

3(r1)
1

sin θ

∂

∂φ

(

V2mpq

r2

)

(B.16)

eθφ =
k2R

g

∑

m,p,q

[

α′

1(r1)

sin θ

(

∂2

∂θ∂φ
− cot θ

∂

∂φ

)(

V2mpq

r2

)]

. (B.17)

This corrects a typo in Eq. (B.16) in Peale and Cassen (1978).

Given the strains, we can compute the local rate of energy dissipation per unit

mass and, by integration, the total rate of energy dissipation. The local rate of energy

dissipation is, from Peale and Cassen (1978), Eq. (17),

H =
∑

ij

2µeij ė
∗

ij, (B.18)

where the dot indicates time derivative and the ∗ indicates that the phase of each term

is given a phase lag of 1/Q2mpq. Keeping only the potential terms (lmpq) = (2, 0, 1, 1),

(2, 0, 1,−1), (2, 2, 0, 1), and (2, 2, 0,−1), which are the most important terms for
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synchronous rotation in an eccentric non-inclined orbit, we find that the integral of

the local dissipation over angles gives

dEr

dt
=

2π2µG2M2e2k22R
2n

a6Qg2

(

−126(α′

1)
2 +

252

5
α′

1α
′

2 −
42

5
(α′

2)
2 − 21

5
(α′

0)
2 − 252

5
(α′

3)
2

)

.

(B.19)

In this case all the phase lags have the same frequency, so we assume they have the

same magnitude.

For η = 0 this becomes

dEr

dt

∣

∣

∣

∣

η=0

=
2π2µG2M2e2k22R

2n

a6Qg2

(

224 +−392r21 +
1813

10
r41

)

, (B.20)

where r1 = r/R. Multiplying by r2 and integrating from 0 to R, gives the total rate

of energy dissipation

dE

dt

∣

∣

∣

∣

η=0

=
2π2µG2M2e2k22R

5n

a6Qg2
133

6
. (B.21)

Using g = Gm/R2, wherem = (4/3)πρR3, and replacing one factor of k2 by (3/2)/(1+

(19/2)x), which for large x = µ/(2ρgR) becomes

k2 ≈
3ρgR

19µ
, (B.22)

we obtain
dE

dt

∣

∣

∣

∣

η=0

=
21

2

GM2e2R5n

a6
k2
Q
. (B.23)

This is the usual expression for tidal heating (Peale and Cassen, 1978, see also Wisdom

2004, 2008). Note that we had to make a large µ approximation to get it.

More generally, the angle integrated rate of tidal dissipation is given by Eq. (B.19).

The radial integral can be done analytically, but the expression is complicated, so will

not be displayed. Figure 5-6 shows the total tidal heating in the two-layer model as a

function of η, for Io parameters (R = 1.821×108, ρ = 3.53, g = 179.71, µ = 6.5×1011,

in cgs). This recalculates Figure 5-6 from Peale, Cassen, and Reynolds (1979). The
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agreement is not perfect, but they do not give the assumed values of their parameters,

and there was a factor of 2 error (typographical error?) in one of their coefficients.
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Appendix C

Transition from Locked to

Unlocked Core

We consider here a simple model that illustrates and illuminates the transition from

locked to unlocked core. Our model system is a core-mantle system perturbed by a

third body. We assume the orbital period is long enough compared to the natural

periods of the core-mantle system that the potential interaction can be averaged over

the orbit. We assume the orbit is fixed and circular, with zero inclination to the

ecliptic. For the real Moon the orbit is slightly inclined and regresses with an 18.6

year period, and the regression of the mantle of the Moon is locked to the regression

of the orbit. In this simple model the mantle regresses uniformly at a rate determined

by its obliquity and moments.

Following Touma & Wisdom (2001), we describe the core-mantle system, with

zero amplitude wobble, by the Hamiltonian

HCM(t, θ,Θ) = ωcΘ+
1

2
kΘ2, (C.1)

where, as before,

ωc = fcω
C

Cm

(C.2)

is the precession frequency of the core tilt mode, fc is the core flattening, ω is the
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rotational angular frequency, C is the principal moment of the body, and Cm is the

principal moment of the mantle. The nonlinearity parameter is

k = − fc
δC

[

1− 2δ2 + δ3

(1− δ)3

]

, (C.3)

where δ = Cc/C, where Cc is the principal moment of the core. Note that the

nonlinearity parameter is large for both small and large core. Let g′ be the angle that

measures the direction of the tilted core in inertial space. The canonical coordinate

θ = −g′. The canonical momentum Θ is a measure of the tilt J of the symmetry axis

of the core-mantle boundary from the angular momentum of the body. We have

sin2 J =
2G′

Cω
, (C.4)

with

G′ = (c2/D)Θ, (C.5)

where c = −
√
δ and D = 1 − c2. The tilt K of the core rotation axis from the

symmetry axis of the body is approximately K = J/δ. See Touma & Wisdom (2001)

for more details.

Again following Touma & Wisdom (2001), the potential energy is

n2(C − A)P2(cos θs), (C.6)

where n is the mean orbital motion, C and A are the largest and smallest principal

moments of the core-mantle body, and θs is the angle from the symmetry axis of

the mantle to the perturbing body. The complete expression for the potential can

be found in Touma & Wisdom (2001). Averaging over the orbital period is straight-

forward and simpler than the analysis in Touma & Wisdom (2001) because we are

taking the orbit to be circular. The resulting averaged potential energy is

n2(C − A)

[

−1

2
+

3

8
cos2 I sin2 J +

3

4
cos2 J sin2 I +

3

8
sin2 J
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+
3

2
cos I cos J sin I sin J cos(f ′ − g′)− 3

8
sin2 I sin2 J cos(2f ′ − 2g′)

]

, (C.7)

where I is the obliquity of the symmetry axis of the body to inertial z-axis (which is

perpendicular to the fixed orbit plane), and f ′ is the angle of the ascending node of

the equator on the orbit plane. The precession of the body is largely independent of

the core mode dynamics, so we take the obliquity to be fixed, and f ′ = −ωf t, where

the rate of regression of the equator is

ωf =
3

2

n2(C − A)

Cω
cos I. (C.8)

The fact that the angles only appear in the combination f ′−g′ and that f ′ is uniformly

regressing suggests a transformation to a rotating frame. We choose a new coordinate

θ′ = f ′ − g′ = θ − ωf t with canonical momentum Θ′ = Θ. Finally, we use the non-

singular canonical variables

y =
√
2Θ′ sin θ′ (C.9)

x =
√
2Θ′ cos θ′. (C.10)

The Hamiltonian is

H(t, y, x) = (ωc − ωf )
x2 + y2

2
+

1

2
k

(

x2 + y2

2

)2

+

+ n2(C − A)

[

3

2
(cos I sin I)αx+

+

(

3

4
− 9

8
cos2 I

)

α2(x2 + y2)− 3

8
(sin2 I)α2(x2 − y2)

−3

4
(cos I sin I)α3x(x2 + y2)

]

(C.11)

where α =
√

δ/((1− δ)Cω), and we have left out some constant terms. Note that

we used the approximation cos J = 1− (sin2 J)/2, as J is small. Note that though J

remains small, K can be large.

We carried out a numerical experiment to track the fixed points of the system
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as we varied the core flattening. We used parameters for the Moon, as given in the

body of the text. We integrated the equations of motion with the Bulirsch-Stoer

algorithm. We added a small dissipation so that the system would settle on the fixed

points. We started the integrations with initial conditions for x and y very close

to zero. Figure C-1 shows the magnitude of K for the resulting fixed points as a

function of the core flattening. We see that for large flattening the offset of the core

to the mantle symmetry axis goes to zero. For ωc near ωf the system passes though

a resonance and there is large offset of the core to the mantle. Then for small core

flattening the core is offset from the mantle by the obliquity K = I.

The pattern of bifurcations and fixed points on the phase portraits (the trajectories

in the x− y plane) are those of a first order resonance. We can obtain the standard

approximate Hamiltonian for a first order resonance by keeping only the first three

terms in the Hamiltonian. The resonance is between the precession of the core and

the precession of the equator. We obtain

H(t, y, x) = (ωc − ωf )

(

x2 + y2

2

)

+
1

2
k

(

x2 + y2

2

)2

+ n2(C − A)
3

2
(cos I sin I)αx

(C.12)

Using this approximate Hamiltonian we can derive the limiting values of the fixed

points for small and large core flattening. The fixed points are on the y = 0 axis, and

satisfy

0 =
∂H

∂x
= (ωc − ωf )x+

1

2
kx3 + n2(C − A)

3

2
(cos I sin I)α. (C.13)

Away from resonance we can ignore the nonlinearity term (i.e. set k = 0), and find

the fixed points to be

x = −n
2(C − A)3

2
(cos I sin I)α

ωc − ωf

. (C.14)

For small flattening, ωc << ωf and we find

sinK = sin I, (C.15)

exactly. So the core spin axis is offset from the mantle symmetry axis by the obliquity,
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and thus is normal to the orbit plane. In the other limit of large flattening, ωc >> ωf ,

and therefore the fixed point approaches zero.

log10 fc

si
n
K

-1-2-3-4-5

1.0

0.5

0.0

-0.5

-1.0

Figure C-1: The offset of the core spin axis from the mantle symmetry axis is plotted
versus the core flattening for the equilibrium points of the system. The equilibrium
points are found by adding a small dissipation and integrating the equations of motion.
Two broken curves are shown. For the solid curve the full resonance Hamiltonian was
used; for the dotted curve the nonlinearity parameter k was set to zero. For small
flattening the offset of the core is approximately the obliquity; the core spin axis is
perpendicular to the orbit. For large flattening, the offset tends to zero; the core spin
axis is locked to the mantle.
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Appendix D

Surface and Solid Spherical

Harmonics

We will use the terms “solid spherical harmonic” and “surface spherical harmonic.”

The normalized surface spherical harmonics are

Cm
l (θ, φ) = Pm

l (cos θ) cos(mφ) (D.1)

Sm
l (θ, φ) = Pm

l (cos θ) sin(mφ), (D.2)

where the normalized associated Legendre polynomials satisfy

Pm
l (x) = Nm

l Plm(x), (D.3)

with

Nm
l =

[

(2− δm,0)(2l + 1)
(l −m)!

(l +m)!

]1/2

, (D.4)

and

Plm(x) =
1

2ll!
(1− x2)m/2 d

l+m

dxl+m

[

(x2 − 1)l
]

. (D.5)

A few of the Plm are

P20(cos θ) =
3

2
(cos θ)2 − 1

2
(D.6)
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P21(cos θ) = 3 sin θ cos θ (D.7)

P22(cos θ) = 3(sin θ)2. (D.8)

For convenience we introduce

Xm
l (θ, φ) = Cm

l (θ, φ) m ≥ 0

= S−m
l (θ, φ) m < 0 (D.9)

The Xm
l (Cm

l and Sm
l ) are orthonormal in that

δll′δmm′ =
1

4π

∫ π

0

∫ 2π

0

Xm
l (θ, φ)Xm′

l′ (θ, φ) sin θdθdφ. (D.10)

The solid spherical harmonics are

X̃m
l

( x

R
,
y

R
,
z

R

)

=
( r

R

)l

Xm
l (θ, φ), (D.11)

where r2 = x2 + y2 + z2, cos θ = z/r, φ = atan(y, x). The solid harmonics satisfy the

orthogonality relations

δll′δmm′

2l + 3

=
1

4πR3

∫ a

0

∫ π

0

∫ 2π

0

X̃m
l

( x

R
,
y

R
,
z

R

)

X̃m′

l′

( x

R
,
y

R
,
z

R

)

r2 sin θdrdθdφ

=
1

4πa3

∫

V

X̃m
l X̃

m′

l′ dV, (D.12)

where the V is the sphere of radius R, and the last line introduces an abbreviated

notation.1

It is convenient to introduce

X̄m
l =

1√
2l + 1

X̃m
l . (D.13)

1Whenever we write a X̃m

l
without arguments, they are assumed to be (x/R, y/R, z/R).
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The first few X̄m
l are

X̄0
0 (x, y, z) = 1 (D.14)

X̄0
1 (x, y, z) = z (D.15)

X̄1
1 (x, y, z) = x (D.16)

X̄−1
1 (x, y, z) = y (D.17)

X̄0
2 (x, y, z) = (2z2 − x2 − y2)/2 (D.18)

X̄1
2 (x, y, z) =

√
3xz (D.19)

X̄2
2 (x, y, z) =

√
3(x2 − y2)/2 (D.20)

X̄−1
2 (x, y, z) =

√
3yz (D.21)

X̄−2
2 (x, y, z) =

√
3xy. (D.22)

Let X̃m
l be a solid spherical harmonic. It is a homogeneous function of degree l

in the coordinates (x/R, y/R, z/R). Euler’s theorem tells us that

(~x · ∇) X̃m
l (x/R, y/R, z/R) = lX̃m

l (x/R, y/R, z/R). (D.23)

A little calculation shows that

∇2(~xX̃m
l (x/R, y/R, z/R)) = 2∇X̃m

l (x/R, y/R, z/R), (D.24)

and

∇2(rkX̃m
l (x/R, y/R, z/R)) = k(k + 2l + 1)rk−2X̃m

l (x/R, y/R, z/R). (D.25)
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