The Greening of Community Development: An Analysis of Ecological Restoration and Neighborhood Planning in the Fenway

By

Trisha Miller

B.A International Environmental Policy (1998)

University of Michigan at Ann Arbor

Submitted to the Department of Urban Studies and Planning in Partial Fulfillment of the Requirements for the Degree of Master in City Planning

At the

Massachusetts Institute of Technology

June 2001

©2001 Trisha Miller. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part.

Signature of Author:__________________________

Department of Urban Studies and Planning
May 16, 2001

Certified by:__________________________

William Shutkin
Lecturer
Thesis Supervisor

Accepted by:__________________________

Dennis Frenchman
Chairman, MCP Committee
The Greening of Community Development: An Analysis of Ecological Restoration and Neighborhood Planning in the Fenway

By Trisha Miller

The Greening of Community Development: An Analysis of Ecological Restoration and Neighborhood Planning in the Fenway

By Trisha Miller

Submitted to the Department of Urban Studies and Planning
May 17, 2001 in Partial Fulfillment of the Requirements for the Degree of Master in City Planning

ABSTRACT

This thesis examines the relationship between the built and natural environment in the Fenway neighborhood of Boston, Massachusetts. Separate community planning initiatives to protect the urban watershed and promote a community development vision have improved the physical conditions of the Fenway neighborhood, but have failed to address long-term solutions to restoring a healthy and vibrant urban landscape. Drawing on the theory and practice of sustainable development, this study establishes a framework for analyzing community development and environmental protection issues. Moreover, it addresses the role of neighborhood institutions in forging non-traditional partnerships to meet a set of comprehensive planning objectives.

The Fenway case study suggests the potential for two ostensibly independent grassroots efforts to form a more synergistic relationship, in order to promote the linkage between local environmental strategies and community development networks. It concludes by offering a set of recommendations for the Fenway Community Development Corporation and local environmental organizations based on a sustainable development approach to neighborhood revitalization.

Thesis Supervisor: William Shutkin
Title: Lecturer
Acknowledgements

I am grateful for my loving family who have supported me in my pursuit of academic endeavors. I would also like to thank the friends I made in the Department of Urban Studies and Planning – fellow students, staff and faculty – who have helped foster a wonderful learning experience. Finally, I would like to thank Langley Keyes, my thesis reader, and William Shutkin who has advised me during my thesis and throughout my studies at MIT.
The Greening of Community Development: An Analysis of Ecological Restoration and Neighborhood Planning in the Fenway

CONTENTS

Chapter 1: Introduction to Sustainable Urban Development..................7
 Integrating the Environment, Economy and Community
 Theories of Sustainable Development
 Role of the Researcher
 Methodology

Chapter 2: A Planning History of the Fenway.......................................16
 Early History of the Fens and Muddy River, 1850 - 1880
 The Early 20th century: A Period of Growth and Infrastructure Development

Chapter 3: The Evolution of Community Development Corporations............32
 A Federal Response to Community Development
 Seeds of Hope: Birth of the Fenway CDC
 Community Development Partnerships
 Linking Smart Growth with Community Development
 The Next Wave of Community Development

Chapter 4: Building Community Strategies......................................43
 The Creation of an Urban Village
 Moving Beyond the Vision
 Restorative Redevelopment along the Muddy River

Chapter 5: Policy Analysis..58
 Neighborhood Institutions and Networks
 Capacity-Building and the New Role of the Fenway CDC
 Implementation: Utilizing Sustainable Development Indicators

Chapter 6: Conclusions and Recommendations..................................72
 Bridging the UVP and Muddy River Restoration
 A Natural Systems Approach
 Recommendations for Comprehensive Planning

Bibliography.. 78
Appendix

A: Stormwater Recommendations
B: Recommendations for Promoting Solar Energy
Chapter 1: Context of Planning for Sustainable Urban Development

Integrating the Environment, Economy, and Community

The link between communities and natural systems begins with a recognition that nature exists within the place where people live and work in America’s cities. Just as human culture is shaped by ecological conditions, human behavior impacts urban nature through city design. My thesis begins by addressing the history of urban design and planning in the Fenway neighborhood of Boston, Massachusetts. An analysis of these historical underpinnings tells a story of the relationship between society and nature.

The Back Bay Fens, America’s first artificial wetland or salt marsh, symbolizes the birth of neighborhood planning in the Fenway. Designated as a distinct historic and natural landmark, this body of land and water carves out the sinuous center of the Fenway neighborhood. As the neighborhood developed along the Back Bay Fens in the mid nineteenth century, it enclosed the urban waterway with a ring of commercial, industrial and residential buildings. The convergence of physical and infrastructure development on this former tidal flat shaped a new direction in land use planning. The Back Bay Fens functioned simultaneously as a park and sanitary catchment basin to treat waste and control floods in this low-lying urban neighborhood.

In the twentieth century, the separation between planning for community growth and planning for environmental protection signaled a departure from Olmsted’s vision of an integrated park system in the Fenway that connected urban communities to recreational open space. Presently, the Back Bay Fens and Muddy River waterway suffer

from neglect and urban encroachment. Current development projects reflect a growing disconnect between the natural and built environment. In the West Fenway, bordering Olmsted’s legendary Riverway and Back Bay Fens, the Boston Redevelopment Authority “BRA” completed a public rezoning process in April 2001 to guide future neighborhood development. The zoning changes, discussed in Chapter 4 and 5, focus on the creation of a new zoning district in the area immediately surrounding Fenway Stadium. However, this narrow zoning process fails to incorporate design guidelines or planning procedures that relate to Olmsted’s urban park, waterway, and the adjacent floodplain. (Refer to Figure 1 below a view of the Fenway neighborhood, including the Back Bay Fens.

Figure 1: Street Pattern of the Fenway Neighborhood

A parallel community-driven planning process – supported by the Fenway Community Development Corporation “CDC” – has taken a more holistic approach to redevelopment in the Fenway. In 1992, a local network of neighborhood residents envisioned the creation of a vital urban center, defined by mixed-income, mixed-use development, in the West Fenway. Their concept of an “urban village” supports a

2 The Urban Village is defined as “an ethnically and economically diverse population, a mix of businesses that serve the residents’ needs and provide social space, ample open space and recreational areas.”
comprehensive planning agenda, linking issues of housing development, transportation, local business capitalization, and the environment. Nearly a decade after the initial community plan was documented, residents, business owners, and academics formed an Urban Village Plan (UVP) campaign to mobilize around an alternative development vision for the Fenway community.

Simultaneously, a separate planning initiative was led by local residents and historic preservationists to redesign the Back Bay Fens and Riverway in order to restore Olmsted’s legacy of a park and natural flood control system. Neighborhood residents organized to leverage greater public sector financing for the preservation of Olmsted’s park legacy. A Muddy River Restoration project is currently underway to improve the recreational benefits and flood control functions of the Muddy River and Back Bay Fens.

Through an analysis of the synergistic effects of these independent planning projects within the Fenway, I hope to uncover the potential for building strategic alliances among neighborhood institutions. The Fenway case study – which includes the combined efforts of the Urban Village Plan and Muddy Restoration – illustrates the intersecting issues of place, neighborhood revitalization and quality of the urban environment. It is also the fodder for a renewed community-driven process to promote holistic development planning. Current local initiatives surrounding the Muddy River and Back Bay share community members and a collective vision for protecting the urban watershed. Yet, there is no public record of coordination or shared resources among the respective stakeholder groups to strengthen neighborhood alliances. The process of bridging community development with environmental protection begins by re-examining the role of institutions and their membership in the UVP and Muddy River Restoration. Whether
the two projects can be combined in order to strengthen political alliances and re-enforce community planning goals will be analyzed throughout this case study.

Ultimately, my thesis considers the potential for two ostensibly independent grassroots efforts to form a more synergistic relationship, in order to promote the linkage between local environmental strategies and community development networks in Boston’s Fenway neighborhood. The following sections of Chapter 1 outline the theory of sustainable development planning and role of community indicators, my role as a participant observer, and the methodology. Chapter 2 offers a brief planning history of the neighborhood by describing its metamorphosis from a tidal basin to a residential, commercial, and recreational center. In Chapter 3, I focus on the evolving role of CDCs in neighborhood revitalization and the potential to link development outcomes with environmental interests. The theory of sustainable development planning and emerging neighborhood networks is grounded in the Fenway case study in Chapter 4, which follows the recent community strategies led by the UVP campaign and the Muddy River Restoration. Chapters 5 and 6 correspondingly provide an analysis of these local strategies and offer a set of recommendations, in order to promote solutions to community development and environmental protection in the Fenway.

Theories of Sustainable Development

The root of the term sustainable development dates back to the Commission on Environment and Development 1987 publication of Our Common Future, also known as the Brundtland Report. The Commission’s agenda defined sustainable development as “those paths of social, economic and political progress that meet the needs of the present
without compromising the needs of future generations." This seminal work effectively linked the ecological factors and distributional effects of development and resource with a set of policy directives. In addition to establishing an international agenda for promoting alternative pathways to development, the Commission made a significant theoretical contribution to the promotion of conservation strategies and efficient technological solutions to resource constraints.

A sustainable development agenda addresses the constraints of natural resource allocation intergenerationally, within a system of finite natural resources. Ecosystem services are contingent upon the resilience of nature and the minimal sustainable yield of the earth's resources over time. Viewed through the lens of a finite ecosystem, this holistic approach "can describe the world in terms of energy flows and material cycles within specified systems" and determine a set of parameters for growth based on nature's limits. It also offers principles for ecological design that mimic natural systems. In Ecological Design, Sim Van Der Ryn and Stuart Cowan underscore the importance of designing environmentally responsible solutions to the built environment – shelter, energy systems, urban design, transportation, economics, and community patterns – that respond to our central values. Ecological design seeks creative ways to reduce the ecological footprint on human development.

Planning and development practitioners, academics and policymakers have identified principles of sustainability in practice. These principles build on the concept of creating healthy, vibrant communities for people to live and work, while minimizing

environmental degradation. The following characteristics, developed at a recent Massachusetts Regional Sustainable Development Forum,\(^6\) represent pathways to sustainable development.

Promote Vibrant and Diverse Communities

- Support economic self-sufficiency and strong local economies
- Maximize fairness and efficiency in distribution of resources
- Promote participatory decision-making and a healthy democracy, and engage typically under-represented, diverse population groups in decision-making

Work Within Nature’s Limits

- Use resources efficiently and productively
- Minimize use of fossil fuels and toxic materials
- Protect and restore ecosystems

These characteristics of sustainability build on urban planning initiatives at the neighborhood, local and regional scale. More specifically, they resonate with the goals and objectives identified in the Fenway case study. The first set of principles (promoting a vibrant and diverse community) complement the Fenway’s vision of creating an urban village, while the second set (working within nature’s limits) relate to the cleanup and restoration of the Muddy River. In order to ground theories of sustainable development, I have examined a set of sustainability indicators\(^7\) that monitor the health and vitality of a particular area. Derived from a comprehensive sustainable development index “SDI,”\(^8\) these indicators provide a tool for communities to evaluate future development projects

\(^6\) A variety of key groups in the Boston area came together to organize a day-long forum organized by New Ecology, Inc. and MIT on September 25, 2000 to help connect regional development practitioners and other stakeholders and highlight model projects in the area of sustainable land use and economic development.

\(^7\) Indicators are pieces of information that provide feedback on the health of a larger system.
and monitor long-term change based on the following categories of sustainability: nature, society, economy, and well-being. My findings in Chapter 5 highlight the potential for neighborhood institutions and networks to utilize a set of working indicators to address economic development and ecological health concerns in the Fenway.

Role of the Researcher

For the past six months, my primary role in the Fenway neighborhood revitalization project has been that of a participant observer. My research began by investigating the network of organizations, community members, and local institutions engaged in comprehensive redevelopment plans for the West Fenway. As a student intern at New Ecology, Inc.⁹, I was introduced to members of the Fenway CDC in the fall of 2000. In addition to my affiliation with the Fenway CDC in the non-profit sector, I have been a two-year resident of the Fenway neighborhood and occupant of a CDC-owned building. My physical proximity to the organization and area of study provided me with a direct link to the projects and neighborhood initiatives that have coalesced under the broad rubric of creating an Urban Village Plan. I have attended UVP Committee and Fenway Planning Task Force meetings, including a presentation I made at a recent public educational event on the history of land-use and planning in the Fenway neighborhood.

My contribution to the planning process overlaps with my research objective of documenting long-term growth and development trends in the Fenway. An unintended consequence of my research has been more direct involvement in the local UVP

⁹ AtKisson, “The Compass of Sustainability: Framework for a Comprehensive Information System.”
campaign. As a student researcher, I have interacted with proponents of the Urban Village model for community development as well as some of its harshest critics. I had access to information from rival community organizations, as well as the City of Boston. In order to understand the various roles of institutions and neighborhood networks, I set up a series of interviews with residents, academics, public officials, historians, civic leaders, and members of local organizations. The stakeholder interviews are integrated into my analysis of the UVP and Muddy River Restoration.

During my research, I realized the ecological and political opportunity to bridge the UVP campaign with the Muddy River Restoration project in the Fenway. After interviewing members from the Citizen’s Advisory Committee for the Muddy River and urban gardeners who sat on the Fenway CDC Board, I began to notice the physical connections between the Muddy River Restoration and land use development plans in the Fenway. Residents cited an absence of formal links between these neighborhood efforts, but identified a shared commitment to restoring the Muddy River and promoting an alternative development vision.

Throughout this process of engaging the local community, the role of an objective, outside observer has become somewhat fractured by my involvement in community-led events and public meetings. Therefore, I offer a context-driven analysis of the synthesis between environmental and community development issues affecting the neighborhood through the lens of direct research and observation. As a participant in the community, I have recognized that citizen involvement in community planning simultaneously triggers a response to urban, social, and environmental problems. As an

9 New Ecology (NEI) is a non-profit environmental organization that promotes economic development in distressed urban communities throughout New England.
informed researcher, I will reveal the process that has shaped community development outcomes at the neighborhood scale.

Methodology

My initial research included a review of the literature on past and present development plans for the Fenway neighborhood, community development networks, and community strategies surrounding the UVP and Muddy Restoration. In addition, I documented the history of the Fens as a hydrological and public resource. I also conducted a review of the evolution of community development corporations and the degree to which these institutions have introduced natural resource issues in community-based practice.

During the months of January and February, 2001, I interviewed 15 members of local public and private institutions, business owners, and residents engaged in either neighborhood redevelopment or the ecological restoration of the Back Bay Fens. Through a process of engaging and interviewing local stakeholders involved in the decisions that impact the land use planning, environmental protection, and development, I uncovered several grassroots efforts that have shaped the planning and urban environmental history of the Fenway. Within the UVP and Muddy River Restoration, I identified the role of local stakeholders (residents, organizations, public institutions, businesses) in creating new alliances to meet the aforementioned objectives of sustainable development. Finally, I researched sustainability indicators as a standard to evaluate the goals and potential outcomes of community-based development in the Fenway.
Chapter 2: A Planning History of the Fenway

This chapter provides a history of land use and development in the Fenway. Furthermore, it traces a relationship between land and community transformations that have occurred within the Fenway over the last century. Beginning with Olmsted’s design for the Back Bay Fens, the following sections illustrate how the Fenway developed from a pastoral landscape on the urban fringe to a bustling urban center. It also reveals how development plans mirror the ideological shifts among generations of urban planners, architects, politicians, and residents who have shaped the Fenway neighborhood.

Early History of the Fens and Muddy River, 1850 - 1880

Boston’s Back Bay Fens – located in the heart of the Fenway neighborhood – symbolizes the beginning of Fredrick Law Olmsted’s signature Emerald Necklace Plan for the City of Boston in 1879. Prior to infill land development, the Fens was an extension of salt meadows and tidal flats that pervaded the edge of the Charles River between Boston, Roxbury, and the town of Brookline (Figure 2). The image of Boston in 1852 (Figure 3) precedes the infill of the Back Bay and Fenway neighborhoods that occurred over the next few decades. The map demarcates Mill Dam Road on Western Avenue from the surrounding tidal flats. This important arterial road joined Beacon Street in the Northeast direction and extended outbound toward the neighboring town of Brookline. Sewall’s Point, at the corner of Beacon Street and Commonwealth Avenue, sits at the present site of Kenmore Square. This point formed the only strip of solid land in the Fenway during the 1850s. In addition to these physical features, the Boston and
Worcester and Boston and Providence Railroads (illustrated in Figure 3) traversed the area, connecting the tidal flats and salt marsh of the Fenway to Central Boston.

Figures 2 & 3: Early Maps of Boston in the Eighteenth and Nineteenth Centuries

*Light gray areas denote tidal flats in Figure 2

During the mid-nineteenth century, the Muddy River and Stony Brook drained into a large basin that contains the Back Bay Fens. This basin quickly became foul as the population of the Back Bay, Roxbury and Brookline (then known as the town of Muddy River) increased; the surface waterways carried sewage from these tidal flats to the Charles River. During periods of high tide, the estuaries would back up and create a swell of brackish, polluted water in the Fens. As noted by Ann Spirn in the *Granite Garden*, "The crowded conditions and polluted water and air created by the growing size and density of the nineteenth-century city precipitated a sanitary reform movement that provoked massive investment in civic infrastructure and landscape."**10**

In response to the crisis of sewage and inhospitable parkland, the recently formed Boston Parks Commission detailed a plan to create an integrated park system, linking Boston to the newly annexed suburbs. In 1876, the Boston Parks Commissioner Charles Dalton’s plan for the creation of a linear parks system received resounding support at the annual public meeting in Faneuil Hall. The plan was justified on economic, population, and sanitation grounds. Competition between investing in a sewage system and park system, however, caused the City to deny a request for $5 million to create additional parkland from the present day Fenway neighborhood to Roxbury.

The following year, the Boston City Council approved an acquisition of 106 acres of land for a park in the Boston, Brookline, and Roxbury region at a sum of $450. As Fredrick Law Olmsted highlighted in his speech to the Boston Society of Architects in 1886, “the principal part of the ground the Commissioners were able to purchase at the fixed price was a gulf of mud and water.”11 The infill of the Back Bay for residential development left remaining pockets of open space in the form of mud flats and marshlands at a surface in some parts over 20 feet below the grade of Commonwealth Avenue. The City Engineer became aware of problems associated with the topography of the site and declared: “If the state of Massachusetts had been hunted over, a space combining more disadvantages for a park could not have been found.”12

Despite the challenges of converting a land mass comprised of mud, salt marsh, and water into a recreational park, the Boston Park Commission continued to pursue the project. The Commissioners announced an open design competition, in which Olmsted

12 Ibid, 441.
was asked to judge the context entries. He refused on the grounds that the competition was ill-conceived and would lead to inadequate design plans. The contest winner, a local florist, was awarded $500, with a tacit agreement that his quixotic design would never be implemented. Figure 4 below is a design sketch from the Park Commission in 1876, the oldest archived park plan for the area that was later replaced by Olmsted’s design for the Back Bay Fens and Riverway.

Figure 4: Back Bay and Parker Hill Park, 1876

By 1879, Olmsted signed on to the Park Commission project as the Advisory Landscape Architect. Specific design criteria was established by the Park Commission, in order to create physical connections between the parkland and Central Boston. The Commission explicitly required direct access to the park “for all classes of citizens by walking, driving, riding, or by means of horse or steam car.” The philosophy behind this design guideline was to create publicly accessible open space that transcended class
distinctions and enabled all Bostonians to enjoy a pastoral landscape just beyond Central Boston. The electrification of Boston's railway system in the 1880s extended transit stops from Central Boston to the Fenway, increasing development potential and access to the newly annexed neighborhood.

Olmsted's Back Bay Fens (Figure 5) mimicked a sedge meadow marsh, more natural in view and function than a traditional urban park. His landscape design was touted as America's first artificial wetland, providing a natural mechanism to combat flooding and pollution along the former tidal flats. To this effect, Olmsted remarked: "The central purpose of this work is simply that of a basin for holding water as an adjunct of the general drainage system for the City." While Olmsted's sanitary project succeeded in improving public health conditions for urban residents, it simultaneously created an oasis of wild, open space amidst a burgeoning residential community.

Figure 5: Olmsted's First Published Plan for the Back Bay Fens, 1879

In order to implement his original design for the Back Bay Fens, Olmsted had to first convince the City Engineer and others that a natural systems approach to flood control in the Fenway was superior to an engineered solution. After approval of Olmsted’s general plan, a series sloping earthen banks were constructed to hold the overflow from the Muddy River and Stony Brook. The central catchment basin – formed out of existing tidal flats – absorbed increased water flows during periods of heavy flooding. A tidal gate, designed as a point of entry from the estuary to the Charles River, regulated the flow of tides entering the Back Fens.\(^5\) Olmsted’s plans were completed in 1895, but the salt marsh design would functioned for a mere 15 years after its initial construction. The Charles River Dam, built in 1910, permanently redirected urban hydrology in this region and converted the water flowing into the Fens from brackish to freshwater, consequently disrupting Olmsted’s landscape design.\(^6\)

The Back Bay Fens quickly became woven into Boston’s larger urban fabric. The natural areas were joined by a parkway loop and intersected by fingerlike entrances along Beacon, Boylston, Huntington, Westland, and Brookline Avenues. The major parkway (the Fenway) was laid out on the eastern slope, adjacent to the street grid known as the Seven Sisters – the first street plan constructed in the East Fenway. A second road was designed on the opposite border of the Fens (Park Drive). The parkway surrounding the Fens contained broad sidewalks for pedestrian activity. While pedestrian paths and parkways were designed for passive recreational use, Olmsted avoided the term ‘park’ in association with the Back Bay Fens. In fact, he understated the recreational benefits of

\[^5\text{Spirn, Granite Garden, 148.}\]
\[^6\text{As noted in the Granite Garden, \textit{‘After the Charles River Dam was constructed in the early twentieth century, the salt marsh declined, the Fens lost the aid of the tides in enhancing water circulation, and ultimately became a dumping ground for fill from the subway and other projects,’}\text{ 148.}\]
this landscape design. He merely noted that, within the catchment basin, “a variety of arrangements have been planned to lessen the unseemliness and inconvenience of an affair for such a purpose in the midst of a residential quarter.”

The Riverway, originally envisioned by Olmsted in 1881 and approved nearly a decade later, resolved the stagnant and polluted condition of the Muddy River, bordering the town of Brookline and city of Boston. The banks of the Muddy River were regraded, lined with walkways and bridges, and planted with grasses, shrubs and trees to form the Riverway. This scenic parkway extends from the Back Bay Fens to Leverett Pond, a surface water formed by natural glacial terrain. At the turn of the twentieth century, the Muddy River and Back Bay Fens resembled a thriving greenbelt surrounded by urban settlements. The following image (Figure 6) contains Olmsted’s Muddy River Design and a picture of the Riverway taken in the early 1900s. In the background, one can see the first structure (Christ’s Church) located along the Riverway.

Figure 6: The Muddy River – Design Plan and Photograph of the Riverway

17 Hoffman, Fredrick Law Olmsted Papers, 437.
The Early 20th century: A Period of Growth and Infrastructure Development

The Back Bay Fens and Riverway created a pastoral landscape on the urban periphery, accompanied by the formation of urban landmarks and single-family residences. The fire of 1873, and subsequent relocation of Boston homes and cultural institutions to the Fenway, created an impetus for development in the East and West Fenway during the early twentieth century. Multi-family apartment dwellings were developed along Beacon Street and Brookline Avenue, following a street grid that ran parallel to the Boston and Albany Railroad lines. During the late 1880s, the Massachusetts Historical Society, Christian Science Church, and Boston Symphony Orchestra settled in the East Fenway. Over the same period, new cultural institutions, such as the Massachusetts Fine Arts Museum “MFA” and the Isabella Stuart Gardner Museum, located in the West Fenway. The following images of the Westland Entrance to the Fens and the MFA – photographed at the turn of the twentieth century – document significant land transformations within the Back Bay Fens.

Figures 7 & 8: Photographs of the Back Bay Fens, c.1905

Perhaps the most remarkable achievement in the Fenway during this time was the construction of the Boston Red Sox's Fenway Stadium. The ballpark, built in 1912, remains the oldest active baseball stadium in America. Shoehorned between Landsdowne, Ipswich and Jersey Streets, the stadium's location played a pivotal role in the development of the West Fenway, including enhanced transit connections between the Fenway and downtown. Current plans to relocate or expand the stadium within the surrounding Fenway neighborhood are complicated by its unusual configuration between a former railway (now the Massachusetts Turnpike), arterial roadways (Boylston and Commonwealth Ave), and the natural contours of the Back Bay Fens and Riverway.

By 1920, the former mudflats of the Fenway were completely infilled, with the exception of the ring of urban waterways. The Back Bay Fens became an urban oasis at the intersection of the East and West Fenway. The size of the estuary, however, steadily diminished as the subway extended beyond the Fenway and excavated soil was disposed of in the Fens. During this period, the City of Boston called for the first major modifications to the Back Bay Fens in order to provide additional recreational benefits for the growing population of urban residents. There was an increasing demand to “meet the requirements of the clerk, businessman and even the farmer in seeking recreation ‘in the open.’” Architect Arthur Shurtleff ‘paved’ the way for greater public access and enjoyment of Olmsted’s park legacy. He developed a comprehensive plan to expand and rebuild parkways in the Riverway and Back Bay Fens. By 1925, the first footbridges were installed in the central basin of the Fens. Public amenities, such as a ballfield,

fieldhouse, bleachers, and rose garden were added to meet the City’s goal of creating a
vibrant public space for all residents.

Post-World War II to the Era of Urban Renewal, 1950-1970

The population of the Fenway neighborhood grew from 7,500 residents in the
early twentieth century to over 20,000 in 1950. The expansion of residential,
commercial and industrial development in the Fenway overwhelmed the system of
interconnected city streets and prohibited ease of travel to and from the main arterial
roads of Huntington, Boylston, Beacon, and Brookline Avenue in the West Fenway. The
post-war vision of Fenway became that of a swelling residential district near the heart of
a commercial urban center. High-rise development and austere city form dominated the
urban landscape, creating a schism between Olmsted’s natural systems approach to urban
planning and contemporary city design.

A vivid example of the changing perception of the urban environment is the 1954
Fenway Redevelopment Plan for the Back Bay Fens, created by the graduate class of
MIT’s School of Architecture. In the redevelopment plan, three student teams created
design scenarios for the East and West Fenway. One team proposed new traffic
expressway links in the Fenway neighborhood. Within this plan, urban nature followed
the pattern of a geometrical street grid. Open space included “well planted green squares

20 MIT Department of Architecture, The Fenway Redevelopment Plan for the Back Bay Fens Area of
21 Refer to Appendix B for illustrations of MIT Site Plan, 1954.
and quadrangles between new apartment blocks where residents can enjoy the quality which exists in the Fens on a larger scale.”

A second team offered a comprehensive planning approach to the Fenway neighborhood, which included the removal of existing building stock, increased development within the Back Bay Fens and permanent relocation of Fenway Stadium. Their planning objective was to create a harmonious landscape that mirrored downtown Boston. “The scale of new buildings in the area should relate to the proposed Boston Centre, representing a more suitable expression of contemporary life and technology than the existing Back Bay residential development.” The following image (Figure 7) is a proposed courtyard at the intersection with several high-rise buildings. Notice the landscape design emerging from sleek, impervious surfaces.

Figure 9: High-Rise Apartment Complex

Source: MIT Department of Architecture, 1954.

23 Ibid.
A third design team created a series of super blocks, connected to large, pedestrian boulevards. Their rendering of the Back Bay Fens reveals a series of concentric circles (small pedestrian islands) surrounded by narrow water channels, which eliminate Olmsted’s original landscape design and natural flood control in the Fens. As the study documents, “water is used throughout the scheme as a unifying element in the landscape, the old open fens water adapted to a more concentrated urban scheme, concentrated in an effort to achieve a true city environment.”

Each of the groups envisioned large-scale development projects modeled after areas of Central Boston, rather than the ecological design and planning history of the neighborhood. Consequently, their development patterns perceived urban nature as managed areas of green, open space nestled between high-density commercial and residential complexes.

In subsequent decades, holistic development planning in urban centers corresponded to these large-scale development trends. For example, the Fenway Project—a product of Boston’s General Neighborhood Renewal Plan of 1960—symbolized the Boston Redevelopment Authority’s “BRA” vision for comprehensive residential and commercial development and slum clearance. From the mid to late 1960s, the BRA argued that urban encroachment in the Fenway “created a serious blighting influence.”

In an attempt to recoup the loss of taxable property from the prevalent academic and cultural institutions in the Fenway, the BRA supported the creation of high-rise developments, greater homogeneity of land uses, and the removal of 574 apartment dwellings to acquire land for the Church Park Center in the East Fenway.

24 Ibid., 15.
The most significant impact of the General Renewal Plan on Olmsted's design would have been the creation of an Inner Belt Expressway, tunneled through the Back Bay Fens. This idea was proposed in 1965, in order to connect Parker Street through the Back Bay and beyond, but met fierce resistance from the Fenway community. The plan outraged residents, particularly urban gardeners, who risked losing their Victory Garden plots to make way for roadway expansion. It also highlighted an explicit disconnect between infrastructure development and ecological design in the Fenway. Within the Fens, additional recreation facilities were proposed, along with general landscaping improvements and recommendations for flood control. Meanwhile, the surrounding floodplains and parkways became primary targets for a large-scale transportation project.

After the BRA's seven-year progress report was issued, the only new development associated the Fenway Renewal Project was the Church Park complex on Massachusetts Avenue. The BRA claimed a major setback in rolling out their 40-year urban renewal strategy was the absence of federal funds required to meet the growing expenditures of a neighborhood renewal plan.26 The Fenway's transportation system, however, had grown tremendously during the era of urban renewal. The Charlesgate Interchange spurred a network of expressway ramps from Storrow Drive to Boylston Street. The Bowker overpass decimated the North entrance to the Back Bay Fens, near the former Charles River water gate. The following set of photographs, (Figures 10 & 11) were taken from the intersection of Charlesgate and Beacon Street. These images highlight the progression of infrastructure development along the Fens. The expressway ramp conceals a former pedestrian pathway to the Fens and the Charles River.

26 Ibid.
The most devastating changes to the natural landscape during this period occurred around the periphery of the Back Bay Fens. The Stony Brook gatehouse and general boundaries remained, but entrances to the Fens from its surrounding neighborhood were obscured by vehicular traffic flows and the Bowker overpass, an expressway ramp leading from Storrow Drive. Spirn underscores the loss of Olmsted's design in the *Granite Garden*: "The Emerald Necklace represents the vision of the nineteenth century and the negligence of the twentieth." Since 1950, the river has been channeled through an intricate system of culverts and roadways surrounding the former Sears Building. In order to accommodate new arterial roadways, the river was submerged at the intersection of the Riverway and Back Bay Fens. Portions of the remaining surface water became dumping grounds for debris, sewage and stormwater overflow. Illegal dumping and sewer connections led to significant increases in the amount of pollution entering the water and sediment, including traces of oil and heavy metals.

During the period 1970–1990, Olmsted’s Emerald Necklace revealed signs of abandonment and environmental degradation. The Fenway neighborhood also suffered from a general decline in the quality of housing and perception of public safety. Razed buildings gave way to vacant lots and underutilized properties. Peter Kwass, a long-term neighborhood organizer and current board member of the Fenway CDC, described the mid 1970s as a time of arson and urban decay.29 There was a downturn in the real estate market and 1975 was heralded as a time of real estate speculation. By the late 1970s, rent control and tenant activists retaliated against a disastrous legacy of urban renewal. As absentee landlords launched arson-for-profit scheme, records reveal 37 fires and five deaths on Symphony Road during this period alone. Community activists led by David Scondras, later a Boston City Councilor, galvanized the community to take to the streets and report these acts of violence and betrayal to the City. During this period, long-term resident Arlene Ash states, residents were “forced out by changing demographics.”30

The late 1970s and early 1980s ushered in a wave of condominium conversions and the beginning of physical rehabilitation of prewar housing stock. “My building went condo in 1983,” reports Helen Cox, who has lived in the Fenway since 1958, “and three-quarters of the elderly were forced out. A lot of us saw our neighbors displaced. It became more yuppified, and a lot of attractive restaurants came in…but the price that was paid was that a lot of long-term people had to leave.”31 From 1982-1985, annual rents were increasing by 30% or more. Where stable buildings had housed residents for decades, long-term renters found themselves forced out of their apartments to

accommodate the real estate transformation. The Fenway neighborhood, a former home to families and a stable elderly population, became an extremely transient community.

As affordable housing options diminished, low-income residents became more reliant on the responsiveness of community-based organizations and public institutions to provide housing alternatives. This period of neighborhood development signaled the growth of a new place-based enterprise – the Community Development Corporation “CDC”. The Fenway CDC, formed in 1978, was instrumental in developing affordable and moderate-income housing in the Fenway neighborhood (see Chapter 3 for a detailed history). Since its inception, the organization has rehabilitated over 250 affordable rental and cooperative housing units, several of which are located on the original Seven Streets of the East Fenway laid out during the late-nineteenth century.

Throughout the 1990s, a comprehensive community development strategy for neighborhood revitalization and river cleanup emerged from the collective vision of grassroots organizations such as Fenway CDC, Save Fenway Park, Fenway Civic Association, Restore Olmsted’s Waterway, and Friends of the Muddy River. As documented in the Fenway case study, these neighborhood institutions share a physical connection to Olmsted’s legacy. While this chapter provided an overview of the Fenway’s physical landscape and design history, Chapter 2 follows the institutional landscape of Community Development Corporations “CDCs” who continue to shape the built environment.

31 Interview with Helen Cox, April 23, 2001.
This chapter traces the history of the CDC movement, from ‘bricks and mortar’ development to local community planning initiatives. Furthermore, it documents several cases of collaborative partnerships between CDCs and other local and regional organizations and examines how these institutions and networks have evolved to support a diverse array of community-building and comprehensive planning activities. Within this framework, examples of joint environmental and CDC initiatives demonstrate an opportunity for CDCs to bridge economic development and environmental planning at the neighborhood level. This section is a prelude to the Fenway case study in Chapter 4, which highlights communities strategies surrounding physical development and ecological restoration in the Fenway neighborhood.

A Federal Response to Community Development

Community Development Corporations were originally conceived as locally based institutions vested with the authority and resources to plan, develop, respond to, and initiate development strategies in urban neighborhoods. The birth of the CDC movement ushered in a wave of economic development and community planning initiatives in low-income communities. Local CDCs become stakeholders in an integrative planning framework that responded to a former decade of urban renewal programs and redlining that had stripped urban neighborhoods of critical resources. Essential to their early success was the culmination of technical assistance from

32 Like social capital, community building supports “the belief that neighborhood residents, acting with community-based institutions, can expand individual opportunities by forging strong community ties.” (Walker, Community Development in the 1990s, 73.)
community planning and development agencies, financial resources from government and non-government sources, and the continuity of fiscal support.

In 1966, Robert Kennedy outlined the philosophy behind this collaborative planning and development effort. At the doorway of the Bedford-Stuyvesant Restoration Corporation in New York City – the first CDC in America – he extolled a vision for comprehensive community planning and development. His speech reinforced the crisis of urban disinvestment and neglect in post-war America and outlined a strategy for collaborative support from the federal government and private institutions to launch a new era of community development. The initial three-pronged strategy included:

1. cooperation with the private business community in self-sustaining, economically viable enterprises;
2. integration of programs for education, employment and community developments under a coordinated overall plan;
3. an impetus and direction to be given in these efforts by the united strength of the community, working with private foundations, labor unions, and universities, in Community Development Corporations organized for this purpose.

A continued commitment on behalf of the Federal government to support urban investment through decentralized decision making and community-driven planning initiatives is embedded in President Lyndon B. Johnson’s War on Poverty. The CDC movement was launched as an outgrowth of the Community Action Program (CAP) to provide direct federal support for community based-organizations. The CAP program was touted as the first step in devolving federal urban policy and the authority given to the community level. The CDC movement responded by emphasizing economic and physical development strategies, rather than solely the advocacy and action agenda of its

33 R. Shiffman, Comprehensive and Integrative Planning for Community Development (paper presented at the Community Economic Development Assessment Study Conference at the New School for Social
The CDC also retained a more collaborative style of leadership and leveraged significant private and public investment for housing economic development and human service programs.

A 1966 amendment to the Federal Economic Opportunities Act endorsed the Bedford-Stuyvesant experiment and encouraged its replication across the United States. CDCs are characterized by their 501 (c) 3 status as a nonprofit, community based organization, governed by a voluntary board that consists of neighborhood residents and business leaders. A defining element of their work may be their commitment to promoting revitalization strategies in distinct geographic areas, such as neighborhood planning districts. As Randy Stoeker emphasizes “CDCs have taken on the heroic task of trying to rebuild communities devastated by capital disinvestment.”

Seeds of Hope: Birth of the Fenway CDC

The Fenway CDC was created in 1974 in direct response to the crisis of urban renewal in the East Fenway. Opposition to a high-rise, luxury development projects and rampant arson-for-profit schemes in the neighborhood galvanized the newly formed CDC membership. Resident and future City Councilor, David Scondras, and others led a neighborhood effort to target culpable property owners on Symphony and Westland Avenues in the East Fenway. During the 1970s, the Fenway CDC focused on a joint strategy of 1) restoring affordable housing properties through non-profit development and 2) leading community organizing efforts to halt the footprint of urban renewal. Their

Research, June 14, 1989).

34 Ibid., 93.
first celebrated victory coalesced around a successful effort to block the extension of the high-rise Church Park residential development project – which replaced moderate-income housing and local businesses in the East Fenway – along Massachusetts Avenue. The Fenway CDCs earliest development project was the rehabilitation of 71 Westland Avenue, a low- to moderate-income apartment complex that continues to offer some of the lowest rents in the neighborhood. Another project included the rebuilding of an urban playground in the East Fenway, in the shadow of Church Park.

The next cooperative housing project, the Fensgate, was located in the East Fenway, at the Westland Avenue entrance to the Back Bay Fens. This building was designed in 1906 to mirror upscale residential development for high-income urban dwellers in the Back Bay. The City acquired the building in the 1920s and it eventually became the Fenway Little City Hall. In the early 1990s, the Fenway CDC restored the building to its current state and opened its community offices in the building. Touted as a flagship CDC project, the Fensgate was rehabilitated as a mixed-income residential apartment complex. The Fenway CDC hold regular home buying and money management classes in the Fensgate, as well as a “Walk to Work” program that provides employment opportunities for Fenway residents in the Longwood Medical area.

Following the 1980 fire on Peterborough Street in the West Fenway, community residents formed a grassroots effort that led to the birth of a new CDC in the West Fenway and the eventual redevelopment of 108-110 Peterborough Street. By the mid-1980s, the East and West Fenway CDCs merged to strengthen innovative development opportunities throughout the neighborhood. The Peterboroughs, built by the Fenway CDC in the early 1990s, was their first infill development project. This new building
provides a combination of market-rate rentals and affordable units, for seniors and handicapped tenants. The West Fenway building also offers the first federally financed housing units reserved for persons with HIV.

Another historic project led by the Fenway CDC was the conversion of abandoned condominiums along 64-70 Burbank Street in the East Fenway to mixed-income residential development. According to long-term neighborhood residents, the buildings were riddled with high levels of crime and neglect for over a decade. The Fenway CDC returned these buildings to the market, creating affordable and market-rate units and converting the basement to a jointly run after-school program with the YMCA. On the twenty-fifth anniversary of the Fenway CDC, Senator John Carey reflected on the Fenway CDC’s contribution to the community: “The FCDC’s efforts have resulted in increased access to permanent housing, and most importantly, have helped maintain the neighborhood cohesion.”

Anchored in the Fenway neighborhood, the CDC continues to fulfill its role as a community builder and successful non-profit developer. As the Fenway CDC expands its mission to strengthen community assets and form new neighborhood alliances, it will become a pivotal player in neighborhood-scale redevelopment in the Fenway.

Community Development Partnerships

From job creation to housing development, CDCs embody a place-based approach to solving contemporary social and economic problems facing local residents. Through partnerships with foundations, national intermediaries – namely the Local Initiatives Support Collaboration (LISC) and Enterprise – and the National Community
Development Initiative, CDCs have mobilized billions of dollars in joint investments to support institutional capacity building, technical assistance, human services, and housing production systems. During the 1990s alone, CDCs contributed over 90,000 units of new housing and 23 million square feet of commercial development in urban centers.

As CDCs evolve, they face an increasing demand to include nonphysical development activities, or community building, such as community advocacy, job training, and comprehensive neighborhood planning. According to Christopher Walker of the Urban Institute, “to be successful at community-building, CDCs must be able to forge collaborations and encourage broad participation of residents and neighborhood businesses. Such work,” he adds, “takes time and money.” While local CDCs may face a dearth of both of these ingredients for success, they are endowed with social capital – a network of social relationships within and across neighborhood and civic institutions – which provide the fodder for community building initiatives.

In “A Meeting of the Movements,” Miriam Axel-Lute documents efforts in the early nineties to build collaborative planning partnerships around issues of affordable housing and open space preservation. This effort has been magnified in the regional Smart Growth movement, which attempts to link local CDCs and regional environmental organizations around a common interest in preserving concentrated neighborhood development in urban areas. Their collective planning agenda aims to limit the negative environmental consequences of development and increase affordable housing opportunities for urban residents.

36 The Fenway CDC 25th Anniversary Celebration, (Boston: Fenway CDC, 1999).
37 Christopher J. Walker, Community Development in the 1990s (Washington, D.C.: The Urban Institute, 1998).
The Vermont Housing and Conservation Trust Fund, supported by Vermont legislature and the Governor since 1987 in as example of this type of regional approach to development and preservation. It has “made possible affordable housing for over 10,000 people and saved 165,000 acres of valuable farms and open space.” Their strategy for promoting a regional partnership lies in a common interest to promote housing and conservation solutions to a rural landscape eroded by patterns of increasing suburbanization. The Housing and Conservation Coalition (HCC) was formed by a collection of disparate groups: housing advocates, land trusts, historical preservation groups, and environmentalists. In order to maintain a balance between interests in affordable housing and preservation, the HCC Board is represented by an equal number of members from each constituency. The state fund is also allocated proportionally to the twin goal of protecting natural areas and increasing affordable housing opportunities for Vermont residents.

A second example is the New Jersey Coalition for Affordable Housing and the Environment. Their approach was to reverse policies and practices that encouraged urban sprawl, with a belief that “reinvesting in the cities would help preserve open space.” Similar to the Vermont coalition, this effort brought together affordable housing advocacy groups, local CDCs, statewide and local environmental groups. Currently, this network of institutions has spurred proactive policy responses to issues of brownfields redevelopment, urban reinvestment in several of New Jersey cities, and property tax reform. A problem with forging alliance on regional issues, such as the NJ State Development and Redevelopment Plan – designed to combat urban sprawl – is the

39 Ibid., 12.
scale of the project and the more narrow focus of CDCs and other community based organizations on development at the neighborhood-level.

Linking Smart Growth with Community Development

The emergence of a national Smart Growth Network[^40] has fostered a series of joint initiatives between civic institutions and government that seek consensus around issues of fair housing and environmental protection. “Since Smart Growth assumes agreement on a shared goal from the outset, the relation between housing and environmental groups in these coalitions has been managed in a less deliberate manner than the processes the Vermont and New Jersey coalitions went through,”[^41] states Axel-Lute. When asked why CDCs have become engaged in this movement, Brenda Clement, of the Rhode Island state association of CDCs responded that CDCs have “evolved and matured, we realized that housing isn’t enough. You have to look at transportation, jobs, the environment…” In essence, the intersection between regional environmental initiatives and community development is a proposal to restore and revitalize urban neighborhoods where the existing infrastructure and housing density can support sustainable urban development.

Sarah Karlinsky, in her report, “Community Development Corporations and Smart Growth: Putting Policy Into Practice,” highlights several innovative partnerships between environmental organizations and CDCs in cities where Smart Growth has

[^40]: Smart Growth, defined as “an effort, through the use of public and private subsidies, to create a supportive environment for refocusing a share of regional growth within central cities and inner suburbs. At the same time, a share of growth is taken away from rural and undeveloped portions of the metropolitan area.” (R. Burchell, D. Listokin, and C. Galley, “Smart Growth: More than a Ghost of Urban Policy Past, Less than a Bold New Horizon,” Fannie Mae Foundation, 1999.)

received overwhelming political support. The Coalition for a Livable Future (CLF), formed in Portland Metropolitan area, has launched a multifaceted campaign to promote mixed-use, transit-oriented development, affordable housing, conservation, and social justice. Their grassroots efforts have led to proposals for inclusionary zoning and fair-share housing with the City of Portland. The Coalition is represented by a variety of CDCs from the Metro Portland, who joined in part because of the opportunity to build capacity and participate in interdisciplinary policy research. The coalition also receives active support from the Metropolitan government and regional planning agencies.

In her study of CDCs, Karlinsky documents how coalitions are formed and coordinated among diverse interest groups seeking “windows of opportunity in the larger policy world.” CDCs move along a continuum of cross-boundary linkages from what she recognizes as their most comfortable to least comfortable allies. As evidenced in the formation of the Urban Village Plan Campaign in the Fenway neighborhood, CDCs will first build a coalition within a constellation of community-based organizations and then move toward less familiar neighborhood and local networks. In the case of many smart growth initiatives, CDCs move horizontally – creating linkages between several CDCs within a region – or rely on the umbrella of a state trade association, such as the Massachusetts Association of Community Development Corporations (MACDC). In Massachusetts, the Community Preservation Act created a “window” for these non-

traditional partnerships to coalesce under the broad scheme of community-driven planning for open space, historic preservation and affordable housing.43

In \textit{Urban Problems and Community Development}, Margaret Wier states, “we have no frameworks for conceptualizing how power and cross-boundary linkages are organized in different regions.” CDCs may lack systems to mobilize resources for community building “beyond bricks and mortar,” as well as the expertise and leadership to carry out broad mandates for neighborhood revitalization.44 However, the various case studies of regional collaboration between smart growth and urban investment allies underscore an increasing opportunity for CDCs to participate in public policy debates and shape regional outcomes. The alternative to smart-growth development – defined by mixed-use, mixed-income development in dense urban pockets close to transit hubs – may exacerbate the social isolation of a low-income residential neighborhood from its burgeoning suburbs.45 While the strategy for linking neighborhood institutions with regional partners may be unique to a particular region and political climate, local institutions recognize the potential benefits of forging innovative partnerships. The convergence of environmental, housing, and historic preservation issues is a symbol of future directions in local and regional planning. These efforts have pioneered a mutual gains approach to the revitalization of America’s urban landscape.

43 For an overview of the Community Preservation Act, which dedicates a state funding source based on a property tax surcharge and matching funds to support three distinct areas of planning, refer to Sharon Anderson’s Neighborhood Reinvestment Corporation, 2000.

44 Walker, \textit{Community Development in the 1990s}, 13.

45 Bruce Katz of the Brookings Institution calls this the “push factor,” which denies low-income communities access to job markets and services.
The Next Wave of Community Development

While CDCs continue to work toward comprehensive development planning, they may be confronted by other neighborhood organizations suspicious of their motivations in charting development plans that places them “in the driver’s seat, positioned to carry out the very projects they help plan – and then reap the development fees associated with them.” A question skeptics have raised is: have CDCs become just another housing developer or do they continue to serve as agents for social change? Commentators recognize the tension between organizing and development, as well as the need to work on multiple levels to succeed in building community strength and housing systems. In the words of community organizers from the Dudley Street Neighborhood Initiative, organizing must lead to development “when organizing is seen as the guiding force that creates the development opportunities.” In Massachusetts, the Massachusetts Association of Community Development Corporations “MADC” has begun a recent program to support community organizing efforts and collaborative initiatives with its local CDC partners.

In the twenty-first century, CDCs are uniquely positioned to build on the political opportunities surrounding ecological design and land use planning, in order to advance a long-standing vision for community development. As documented throughout this chapter, CDCs add value to the community planning process, including local ties to other community-based organizations, relationships with residents, and place-based solutions to neighborhood revitalization. Chapter 4 highlights a community strategies pioneered by the Fenway CDC to advance a comprehensive planning agenda.

Chapter 4: Building Community Strategies

The Creation of an Urban Village

Since the late 1980s, a community driven planning process – supported by the Fenway CDC – has led to the ambitious goal of creating an “urban village,” defined by mixed-income, mixed use development within the West Fenway. The Urban Village Plan “UVP” campaign envisions a blueprint for a vital urban center that builds on neighborhood assets: an ethnically and economically diverse population, a mix of businesses that serve the residents’ needs and ample open space and recreation areas for community gatherings and public use. Whether this vision can move beyond the aspirations of neighborhood residents and shape future development decisions will be determined, in part, by the ability of the UVP campaign to articulate a coherent implementation strategy and strengthen local alliances.

The Kenmore/Audobon Circle/Fenway Neighborhood Initiative “KAFNI” formed in 1989 to lead a community development process in the Fenway neighborhood. In 1992, the initiative produced the Urban Village Plan for the West Fens (UVP), which underscores the importance of developing a comprehensive strategy for revitalizing Boylston Street – considered the neighborhood’s auto mile – and the adjacent northern area, including the cleanup and restoration of the Muddy River within the Back Bay Fens. Concurrently, an MIT Planning Studio designed a plan, entitled “West Fens: Preparing for the Future,” which recommended a series of design guidelines and zoning changes to accommodate options for mixed-use development within the area. Nearly a decade following these reports, community organizations and the BRA continue to debate various strategies for importing the Urban Village model to the West Fenway.
A zoning process was set in motion in January, 2000 after news of the Fenway ballpark's relocation within the Boylston corridor of the West Fenway. The Boston Redevelopment Authority initiated a strategic community planning process, the Fenway Planning Task Force (FPTF), which includes a group of community, business and institutional representatives appointed by Boston Mayor Thomas Menino to assist the City in developing an Interim Planning Overlay District (IPOD), a Neighborhood Plan and new permanent zoning for the Fenway. The IPOD is a temporary zoning measure in effect until the City enacts permanent zoning for the area. The Zoning Commission adopted the Fenway IPOD in May 2000, until permanent zoning regulations can be prepared and adopted. Members of the Task Force include representatives from Fenway Civic Association, Fenway CDC, Audobon Circle, Symphony United Neighbors (SUN), Kenmore Business Association, and the Fenway Alliance (of colleges and institutions).

Figure 12: Fenway Special Study Areas Proposed Zoning Recommendations

As evidenced by the diverse array of local stakeholders involved in design and development projects within the West Fenway, the neighborhood is currently witnessing a resurgence of place-based solutions to neighborhood revitalization and community growth. Recently, two public community events sponsored by the Urban Village Coalition (March 18 and April 29, 2000) brought together 100 residents, landowners, institutions and community groups to participate in community visioning and planning activities for future development in the West Fenway. Participants reached consensus on the twin goals of promoting community-oriented development in the Boylston Street/Brookline Avenue area and including mixed-income residential development.

The neighborhood planning process has the potential to guide future zoning decisions and shape systemic changes to the urban landscape. At the May 11, 2000 vision session sponsored by the Urban Design subcommittee, all 12 of the small groups endorsed the UVP as a guide for the neighborhood’s development. At the most recent Urban Design subcommittee meeting, there was virtually no support for the inclusion of a ballpark as an allowed use in the North Boylston Street Subdistrict. The new stadium is considered incompatible with the UVP’s vision for Boylston Street. A recent Fenway Planning Task Force “FPTF” meeting revealed the heightened tensions between community members and the Mayor over this decision. Kim Konrad, President of Save Fenway Park!, described the ballpark as “an asset to the neighborhood if it is treated appropriately. Right now,” she added, “it’s a liability.” The ballpark issue has led to protracted public debates and much sound and fury, with little sign of resolution.48

48 On the eve of the Task Force Meeting, Mayor Menino announced that the Task Force had voted and approved the inclusion of the ballpark as an allowed use within the North Boylston Street subdistrict (9-2). Joe Barton, former head of the Task Force, responded publicly that a vote had not taken place.
A recent petition drive, sponsored by the newly formed UVP Committee, collected over 600 signatures in support of several zoning elements that will affect the North Boylston Street Corridor, such as additional affordable housing requirements and a provision that the ballpark is a prohibited use in the area (which would exclude a new ballpark from being developed, but would allow for the renovation of the existing park). Moreover, the Fenway CDC made a formal request to the Fenway Planning Task Force to set up a mechanism for a community vote to determine the permanent zoning in the neighborhood, rather than limiting the decision to a vote by the FPTF. The final Task Force public meetings on the IPOD study area of the West Fenway is scheduled for April 26, 2001. Final recommendations to the Mayor will be forthcoming, once the Task Force has reached consensus on zoning districts, permitted uses and design guidelines.

In a parallel community planning process, a collaborative design charrette for the ‘Future Fenway Design Initiative’ began on August 5, 2000. This 10-day, intensive symposium – co-sponsored by Save Fenway Park and the Fenway CDC – brought together nationally renowned architects and local residents to brainstorm feasible plans for renovating the ballpark and improving the surrounding neighborhood. Save Fenway Park!, a newly formed organization of baseball fans, preservation professionals, and residents, includes over 4,000 supporters concerned about the future of the historic stadium and the neighborhood. The charrette was organized by Save Fenway Park! to address issues of community and historic preservation, ballpark reconstruction, and urban design. As Konrad states, “We pulled together designs for the ballpark and urban

49 David Sucher writes, “Neighbors too often start from the viewpoint that development can be stopped.” (City Comforts: How to Build an Urban Village, 23). It is worth emphasizing that this neighborhood process has attempted to launch a proactive campaign to envision and redevelop the West Fenway, while simultaneously opposing the Red Sox proposal for relocating the Fenway Stadium.
planning with a philosophy of supporting great neighborhoods and urban ballparks.” The following images (Figure 13) of pedestrian plazas and street-front local retail illustrate design concepts from Fenway’s urban design charrette. Note the architectural rendering of the West Fenway, which opens site lines along Fenway’s arterial roads and creates a pedestrian boulevard along Boylston Street with a variety of building types.

Figure 13: Urban Village Proposals

Revisiting the Urban Village Plan: 2001

The following outline identifies the goals and objectives of a comprehensive neighborhood strategy for implementing the revived Urban Village Plan in the Fenway. The five priority areas emerged from grassroots neighborhood planning efforts over the last decade. These goals represent the community’s alternative vision for development in the Fenway and build on the Design Charrette’s urban design concepts.

1. Responding to the Fenway Housing Crisis
 - Includes the creation of at least 2,500 units, including mixed-income housing, with a combination of rental and home ownership options for low-to-moderate income residents, as well as market rentals and condos, along the North and South sides of Boylston Street;
 - Supports mixed-used, pedestrian-oriented development along the Boylston Street, with ground floor commercial/office spaces and upper floor residential units; and
 - Encourages an inclusionary zoning provision in the zoning guidelines that calls for 20% of all units to be affordable (consistent with the definition in the City’s overall ordinance). Alternatively, the 10% in the citywide ordinance could be augmented with a density bonus that allows for more FAR and/or height if greater levels of affordability are included.

2. Supporting Neighborhood Businesses
 - Requires assistance from the City to promote small business development;
 - Includes a New Business District on Boylston Street that offers a wide variety of retail services to meet resident needs,
 - Builds on community activities, such as arts, cultural, educational and recreational offerings;
 - Enhances foot traffic, storefront retail, community services, and public safety.

3. Creating New Anchor Institutions in the Neighborhood
 a. Building a Community Center
 - Creates a recreational and activity center for the neighborhood, and
 - Includes programs and services for youth and seniors.
 b. Locating a Neighborhood School in the Fenway
• Identifies the growing number of children in the neighborhood and the need for an elementary and middle school to serve Fenway residents, and
• Considers the possibility of creating an elementary school on Peterborough Street.

4. Supporting Transportation and Community-Oriented Development

a. Improved Transportation Links
• Recognizes that the Fenway is currently underserved by existing public transportation;
• Targets capital improvements to the MBTA Green and Orange Lines and the creation of additional, environmentally-friendly bus services;
• Calls for the removal of street-front parking lots and surface parking lots above 15 spaces in the West Fenway;
• Improves pedestrian walkways to make them elderly and handicapped accessible;
• Reduces auto-dependency, promotes car-sharing options, and increases public amenities (such as bike lanes and pedestrian crossings) that support bicycle and foot traffic.

b. Neighborhood-Scale Development
• Includes building facades that reflect varied, yet cohesive streetscapes, controlled building height, minimum and/or maximum setbacks.

5. Making a Commitment to Sustainability

• Recognizes that all development in the Fenway should reflect the community’s commitment to sustainability;
• Requires an investment in renewable energy and energy-efficient design and construction in future development projects;
• Supports Green Design Standards (established by the US Green Building Council’s LEED standards);
• Provides adequate open space for species habitat, recreation and flood control;
• Identifies the tremendous potential for using the adjacent "natural systems" of the Muddy River watershed as assets to the neighborhood for recreation, and for storm water drainage and biofiltration to mitigate flooding in the area.

Moving Beyond the Vision

In forging new partnerships for community revitalization, the Fenway CDC has embraced the Urban Village Plan “UVP” as an innovative community planning initiative.
The organization has begun to cultivate relationships with residents, businesses, developers, bankers and city agencies in order to forge a consensus-building approach to
neighborhood revitalization. “Creative partnerships need to occur,” Peter Kwass remarks, “Private developers and institutions are looking for collaboration.” With access to resources and development knowledge, the Fenway CDC is well poised to embark on the UVP campaign. Recognizing the potential challenges it will face as a non-profit housing developer engaged in community organizing and comprehensive planning, the organization has attempted to build on its previous successes and form stronger ties to other community-based institutions within the Fenway.

The coalition of urban villagers in the Fenway represents a possibility of strengthening neighborhood planning initiatives and civic networks. Cornell West refers to civic democracy as the ability of ordinary citizens to participate in decision-making procedures of institutions that regulate their lives. The UVP campaign includes a political strategy to demand greater public accountability from the BRA and the city of Boston over development projects in the Fenway. It also unites a diverse group of residents, landowners, developers, and community organizations committed to participating in future land use and zoning decisions in their neighborhood. As David Sucher, author of City Comforts: How to Build an Urban Village, remarks, “The effort to create an urban village in physical form is only a means to an end. The means are buildings and roads and parks. The end is improving relations between people.”

Sucher makes another analogy between the urban village and an ecosystem, highlighting the overlap of land use characteristics and building types. Mixed-use development brings a variety of people together because of the diversity of commercial, residential and retail uses within an urban center. Creating public squares, transit hubs

50 Shutkin, The Land that Could Be: Environmentalism and Democracy in the Twenty-First Century, 30.
51 D. Sucher, City Comforts: How to Build an Urban Village (Seattle: City Comforts Press, 1995), 9.
and open space within an urban neighborhood helps facilitate interaction between community residents. The neighborhood commons—identified as the Back Bay Fens within the Fenway—represent a critical public space between home and work. “Without a commons,” Sucher writes, “we lose the connectivity of urban life.”52

The photograph below (Figure 14) was taken in the Back Bay Fens at the height of the fall harvest season. Many of the residents I interviewed are urban gardeners who participate in the Victory Gardens—a collection of individual gardening plots located along the edge of the Fens. The pedestrian orientation of this park, located at the center of the neighborhood, creates a series of pathways that form a loop within the neighborhood. As neighbors and public officials continue to debate the plans for redevelopment in the West Fenway, they share a common affinity for this unique public space. As resident Arlene Ash states, “There is a special privilege to be in a neighborhood that has it all, community spaces, retail, local businesses and parkland. It feels like what a city should be.”53

Figure 14: Image of the Fenway Commons
Source: Manuel Delgado, 2000

52 Ibid., 23.
53 Interview with Arlene Ash, March 5, 2001.
The UVP creates an opportunity to foster new civic alliances between Fenway’s economic development and environmental constituencies who share a commitment to community-oriented development. The next section on the Muddy River documents a local movement to restore the Emerald Necklace and improve water quality within the Muddy River. As the UVP campaign continues to mobilize a critical mass of voters and neighborhood residents – the Fenway Family alliance, ballpark preservationists and fans, business leaders, and community advocates – the coalition has an opportunity to form stronger ties to the existing place-based project of restoring the Back Bay Fens and incorporate environmental principles into future design and planning initiatives.

Restorative Redevelopment along the Muddy River

A symbol of Fredrick Law Olmsted’s Emerald Necklace – Boston’s premier urban park system – the Back Bay Fens and Riverway are significant Boston landmarks and critical natural systems that flow through the dense, urban neighborhood of the Fenway. In 1986, a coalition of citizens, civic groups and the nonprofit organization “Restore Olmsted’s Waterway” (ROW) mobilized to sample, analyze, and eventually restore the health of an urban waterway, the Muddy River. Environmental education has led to a series of engineering studies and projects to prevent sewage and other forms of pollution from entering the River. Utilizing state and federal regulations – such as the State Wetlands Protection Act, the Clean Water Act, and the State Rivers Protection Act – Restore Olmsted’s Waterway (ROW) developed a Citizen’s Handbook and launched a

54 ROW began in 1984, after community testing in the Muddy River revealed high levels of pollution loads.
grassroots campaign to test and remove harmful pollutants and restore the Muddy River to a continuous waterway.

Simultaneously, the neighborhood organization, Friends of the Muddy River, worked with the town of Brookline to improve management of stormwater flowing into the River and to reduce illegal sewer connections that have resulted in high levels of bacteria and fecal coliform in the Muddy River. Targeted public campaigns aimed at reducing stormwater pollution and the private activities that contribute to this phenomenon – such as poor motor vehicle maintenance and improper disposal of oil, pesticides, paint and other materials – have led to recent improvements in water quality and wildlife habitat. However, it becomes more challenging to measure success with a recent reduction in water quality standards for the Muddy River. In 1998, the Muddy River was downgraded from a Class B river designation – safe for fish and wildlife habitat, as well as primary and secondary contact recreational activities – to Class B/CSO, which accommodates the outflow of sewage and stormwater in the event of a flood. The lenient standard may hinder regulatory responses to pollution reduction and stormwater treatment within the watershed.

The end of the twentieth century signaled a recent decade of recurrent flooding within the Fenway and public health hazards. Ironically, a 100-year storm covered the span of only six years, rendering the Federal Emergency Management Agency’s “FEMA” predictions obsolete. The map below illustrates the flood zone established by

55 1989 Metcalf & Eddy report identified possible illegal sewer connections to storm drains in Brookline.
57 On October 20-21 1996, a storm of the century poured on average 8.6 inches in the immediate Boston area over 36 hours, causing $100 million in damage to buildings and infrastructure. The Kenmore Square Green Line stop was completely flooded and rendered the green line inoperable for several days. (Boston
FEMA for an anticipated 100-year flood event. “After the [1996] flood,” states ROW, “it became clear that the river water had contained a significant amount of sewage. The basements of many Brookline residents had to be decontaminated. The toys and books in the Lynch Day Care Center in Brookline had to be destroyed due to contamination.”

The poor health of the urban riverway, its inability to handle an increase in water levels, and the threat of human exposure to water pollutants created a maelstrom of public outcry after the floods. Community-based responses to ecological restoration and the response of public agencies to health and safety issues provided an impetus for drafting an Emerald Necklace Environmental Improvement Master Plan.

Figure 14: FEMA Flood Plain Boundaries

58 Restore Olmsted’s Waterway, A Citizen’s Citizen’s Legal Manual of laws and regulations affecting the health of the Muddy River, 4.
Spearheaded by the city of Boston, town of Brookline, Boston Parks Department, and the Emerald Necklace Conservancy, the Plan is aimed at maintaining the parks and waterways along the 3.5 miles of the Muddy River – from Jamaica Pond to the Charles River – and restoring Olmsted’s legacy of the Back Bay Fens, a passive park that retains its natural beauty and ecological functions. These groups have secured public sector funding for both restoring the Muddy River and implementing a related flood mitigation plan. Since the Environmental Notification Form for the Muddy River was released, a citizen advisory committee, composed of 29 members from Boston and Brookline, continues to meet once a month to review the plans and focus on community priorities for flood control, dredging, and park restoration.

The Muddy River Enhancement Project – a master plan for the urban watershed – identifies natural solutions to flood control and stormwater drainage that may result in additional water quality benefits and enhanced aquatic/riparian habitat within the Muddy River. By requiring a bank-to-bank dredging project that corresponds to pre-industrial streambeds, the outcome would ultimately deepen the Muddy River system59 and upgraded flood control within the Emerald Necklace. Persistent water quality problems associated with sluggish dry weather flows, combined sewer overflows, illegal cross connection, high levels of sediment buildup and explosive growth of invasive aquatic macrophytes are also addressed in the Improvement Master Plan. However, land development and increased impervious surfaces along and adjacent to the floodplain could continually overburden the storm drain pipe system – designed to carry runoff from

59 The Muddy River System includes the Back Bay Fens, Riverway, Leverett Pond, Willow Pond, Ward’s Pond, Jamaica Pond, and Franklin Pond.
developed areas and discharge it into the River – if storm mitigation efforts are not simultaneously promoted along the park edge.

The implementation stage of this master plan is scheduled to begin this summer in the Charlestown area, where stop dams and culverts are in the process of being removed and pedestrian pathways redesigned to promote regional connections to the Charles River watershed. The project will continue upstream, in an effort to improve the watercourse and open up sight lines throughout the Fenway. A reconfiguration of the Muddy River entrance to the Back Bay Fens in front of Landmark Center (formerly the Sears parking lot) has been reconfigured to daylight natural streams, which will increase flood storage capacity and improve water quality. This proposal includes the excavation of culverts forming the hydraulic link between two water bodies flowing into the estuary of the Fens.

The focus of the current plan has shifted from the eradication of land use deemed incompatible with Olmsted’s initial design to the restoration of a degraded habitat that can support a variety of ecological and recreational services. Unlike the city of Boston’s 1988 plan for restoring the Emerald Necklace, the Victory Gardens and Clemente Field will remain intact within the Fens. The most controversial changes will perhaps occur within the portion of the Back Bay Fens surrounding Mother’s Rest, the northern basin, where a complete removal of phragmites – an invasive reed that currently chokes the aquatic habitat – has been approved to increase water absorption in this recharge area.

In essence, the plan strikes a balance between a purely historicist interpretation of Olmsted’s Back Bay Fens and contemporary approaches to community and urban design. The preliminary reports embody a vision of restorative redevelopment: a restored scenic
parkway – with native plantings and a series of bicycle pathways on regraded bridle paths – stormwater mitigation to control flooding in the West Fenway and Kenmore Square, and a reclaimed waterway. The project phasing begins with flood control and immediate dredging along the waterways, but incorporates wetlands restoration and landscaping into the overall planning scheme.61 The Muddy River Improvement Plan, unlike its predecessors, supports comprehensive solutions to ecological restoration, and in doing so, involves a diverse constituency of local actors and institutions within the Fenway.

60 Restore Olmsted’s Waterway has advocated for an open waterway park in front of the Sears building for over 10 years in order to reconnect the Fenway and the Riverway and to allow water from upstream to move through the Fens and improve stagnant conditions.

61 The Muddy River Restoration Draft Environmental Impact Report for this project will be released on April 25 and will review dredging, construction and staging, as well as Best Management Practices.
Chapter 5: Policy Analysis

“If you cry ‘Forward!’ you must be sure to make clear the direction in which to go. Don’t you see that if you fail to that and simply call out the word to a monk and a revolutionary, they will go in precisely opposite directions?” Anton Chekov

Effective partnerships to promote a sustainable development agenda rely on the strategic alliances among neighborhood institutions and their ability to define and implement place-based solutions to ameliorate environmental quality and economic health. The community-driven strategy led by the Fenway CDC to create an “urban village” has incorporated social equity, economic development, natural resource and public health issues in its community vision and UVP campaign. By examining policy approaches to neighborhood redevelopment and providing an analysis of the organizational capacity within the Fenway, this chapter will offer a set of tools to evaluate the effectiveness of the UVP an Muddy River Restoration in advancing a comprehensive planning agenda. Therefore, this chapter is divided among the following sections: 1) an analysis of the neighborhood institutions and networks 2) the capacity and responsiveness of the Fenway CDC to the Urban Village Campaign’s mission and 3) a proposed set of indicators that illustrate long-term economic development and ecological health trends in the Fenway.

Neighborhood Institutions and Networks

The Fenway neighborhood includes nearly a dozen separate community-based organizations involved in issues that range from public health and environmental protection to small business development and affordable housing. Their membership among local residents and property owners is equally as diverse. Surprisingly, the neighborhood lacks a central clearinghouse or public forum to disseminate information
and foster collaboration. From the mid to late 70s, the Fenway Interagency Group (FIG),
a consortium of local agencies and community-based organization, fulfilled this niche in
the community. Helen Cox, who worked at the Department of Public Welfare and served
as a FIG member at the time, commented on the ability of public and private institutions
to share information and liaison with the Mayor’s office. Ostensibly, the Office of
Neighborhood Services continues to serve as a community liaison in the Fenway. Yet,
outside of local institutions imbued with the responsibility of representing community
interests, there are few signs of active community partnerships that address
comprehensive planning and development.

The most evident examples of coalition-building and comprehensive design
emerged during the late 1980s. This era signaled the birth of KAFNI, the neighborhood
consortium formed under the direction and financial support of the Fenway CDC, and co-
authors of the Urban Village Plan. When asked why the Fenway CDC had made such an
investment in neighborhood planning, the former Board President, Arlene Ash
responded, “about the time of KAFNI, we realized that we were starting to have other
obligations to the community.”62 As outlined in Chapter 4, the KAFNI vision supported
community services and mixed-development projects that resonated with neighborhood
residents.

During this period, the Mayor appointed a Planning and Zoning Advisory Board
to guide his office on neighborhood concerns. The Committee dissolved a year later,
after failing to advance a proposal to rezone the neighborhood. A former Committee
member stated that, “the BRA felt threatened by the process and withdrew their

leadership surrounding rezoning in the neighborhood.”63 Others claimed that the neighborhood residents were the first to pull out of the process: “It was stacked and lacked neighborhood vision,” stated a Fenway neighborhood activist. According to former KAFNI member, Maura Zlody, “During the summer of 1989, KAFNI drafted new zoning guidelines and presented them to the BRA. There was, at that time, an impetus for zoning changes.”64 Irrespective of the cause, the rezoning process and development climate shifted from the Fenway to other Boston neighborhoods, leaving the KAFNI Plan with neither an implementation strategy nor a base of prospective developers.

The need for many diverse interests to be addressed through a comprehensive master planning process became a source of strength and tension within the KAFNI consortium. According to the Fenway CDC, it was a strategic decision to create a separate UVP in order to reach a larger neighborhood constituency. The Fenway Civic Association, under the leadership of the West Fens Business Association president, later pulled out of KAFNI and broke alliances with the CDC, signaling the loss of community consensus around redevelopment objectives. While the other participating organizations remained, funding ceased in 1992 and, according to Zlody, “there was no neighborhood entity that stepped in to get the plan off the ground.” Peter Kwass, Fenway CDC board member and co-founder, shared this viewpoint, “The plan didn’t go anywhere after its completion because there was no framework for it. The city was not engaged and there was no structure built from which we could move forward.” Without a clear implementation plan or long-term financial support, the UVP campaign failed to pursue its comprehensive planning agenda.

63 Interview with Maura Zlody, Jan. 26, 2001
64 Ibid.
Capacity-Building and the New Role of the Fenway CDC

Ten years later, the plan has come off the CDC shelves and into the hands of a new group of Urban Villagers – including some of KAFNI’s original members. One of the CDC board members who rejuvenated the plan was Jon Ball – also a founding member of the Fenway Action Coalition. Ball asked the question: “what kind of a political strategy would it take to foster community partnerships?” The Fenway Action Coalition, a group adamantly opposed to the ballpark relocation and hostile to the Fenway Planning Task Force “FPTF,” launched vocal opposition to the ballpark in January 1999. The group hosted public forums, where city councilors met with residents to discuss development agendas in the neighborhood. The second feature of this strategy, according to Ball, was to announce, “we [the Fenway community] have an alternative vision.”

This time, the Urban Village Campaign has its eyes on tangible development projects and a coordinated implementation strategy. With the support of Save Fenway Park!, the Fenway CDC has expanded its base of supporters and aligned its interests with those of neighborhood property owners who face the threat of eminent domain under the Red Sox’s current ballpark relocation proposal. In addition, the UVP campaign is now able to engage in the zoning and land use decisions that will ultimately shape future development outcomes.

One issue consistently raised at FPTF public meetings is the provision of market rate and affordable housing units in the neighborhood. According to Barton, “There is a clear signal that we [FPTF] support residential development in the Fenway, with an increase of 1,500 – 3,000 new housing units.” What remains to be resolved is the goal of
providing adequate housing that supports an economically diverse population. At the March 1 Task Force meeting and in their earlier public comments, Fenway CDC encouraged the BRA to include an aggressive inclusionary zoning provisions that mandate 20% of all new units built in the Fenway Planning District to be affordable. Alternatively, they recommended that the City’s 10% affordability requirement be augmented with a density/FAR bonus to create additional affordable housing units.

The UVP goal of “Making a Commitment to Sustainability” has been inadequately addressed at the FPTF public meetings. This presents an opportunity for the Fenway CDC and its community partners to impact zoning and land use changes within the neighborhood that reflect a commitment to natural resource issues. The November 2000 Fenway Zoning Recommendations, produced by ICON Architects, state that “new zoning that is appropriately linked to design objectives and guidelines should provide for Sustainable Development,” and promised that “these guidelines will promote the principle of sustainability in all areas.” The CDC has been critical of such aspirational statements that fail to include corresponding incentives to promote sustainable development, open space and natural resource protection, and energy efficient design.

In order to adequately address environmental protection in city design and development, the BRA and the Mayor must consider the Fenway Planning District in a larger context. The Fenway CDC’s public comments to the BRA emphasize that the ICON study makes no reference to connections between the West Fenway District and the nearby natural areas (the Fens, Riverway, Muddy River, etc.). The Fenway CDC and a partner organization, New Ecology, Inc., recognize the tremendous potential for using

65 Interview with Jon Ball, Apr. 10, 2001.
stormwater management. In a similar vain, the Fenway CDC sent recommendations to the BRA to incorporate environmental principles through open space requirements for commercial, retail and office use, density bonuses granted to developers who create additional open space and utilize “green design” or energy efficient standards. These laudable efforts have not resulted in any significant changes to the zoning guidelines, but have generated significant public support at recent FPTF meetings. Finally, the UVP committee has been active in encouraging transit use and transit-oriented design and development of buildings and the streetscape, in order to reduce the burden of auto-dependence and air pollution on the neighborhood.

An obstacle to achieving active community participation in planning and neighborhood development is a growing sentiment that the Fenway Planning Task Force (FPTF) fails to represent community interests and merely shadows the Mayor’s intention to permit a new ballpark in the North Boylston area. However, according to the Task Force Chairman, the focus of FPTF is to generate community support and forge consensus on a host of zoning decisions. FPTF includes “a base of people with different specializations,” stated Chair Joe Barton. Perhaps the diverse interests among Task Force members hinder a consensus-based approach to resolving zoning decisions. Or, as one neighborhood resident responded, “One can’t ignore the elephant in the living room,” a metaphor for the Red Sox’s proposal to build a new stadium along the north side of Boylston Street. In fact, the “new” ballpark footprint is demarcated in the ICON associates zoning recommendations for the IPOD special studies area. With such a

67 According to US Green Building Council’s LEED standards for energy efficient and environmental design.
polarizing issue dividing the Task Force and the community, it remains uncertain whether there will be community support behind the final zoning recommendations.

A proactive approach to neighborhood redevelopment plan is critical to the long-term success of the Urban Village Campaign. While critics claim the Urban Village “is not going to send signals to developers,” the CDC has already begun to pursue a series of meeting with landowners regarding mixed-use development options within the West Fenway. They are also beginning to reach out to environmental constituencies, such as the Citizens Advisory Committee for the Muddy River Restoration and ROW. Building from the community design charrette, Jethro Heiko, Fenway CDC Community organizer stated, “[FCDC] has begun to consider the unique position of the Fens as it cradles a dense, residential neighborhood.”

However, the dominant focus of recent CDC organizing efforts surrounds future zoning and land use recommendations to FPTF. They have taken definitive positions on transportation and parking, the ratio of on-site affordable housing, allowable uses within the primary sub-districts, Planned Development Areas and height and density requirements. In addition, the Urban Village Campaign – with substantial support from a Boston University Affordable Housing group – has gathered over 600 signatures from Fenway residents in support of the Urban Village development objectives and a community vote on final zoning recommendations.

The petition drive culminated with a recent community teach-in on April 5, 2001, where residents and supporters detailed the planning history of the neighborhood and the IPOD zoning process. The event was the Fenway CDCs first opportunity since the Design Charrette to publicly encourage alliance formation with other organizations. A
presentation was made by the Fenway Family Coalition to build support for the creation of a neighborhood school (a component of the Urban Village Campaign’s goal of supporting anchor institutions in the Fenway). In addition, participants highlighted local environmental strategies, from energy efficient design to neighborhood recycling.

The implementation strategy for the UVP should include active citizen participation at the remaining FPTF public events in the Fenway, meetings with local business and property owners, and mechanism to support a larger neighborhood constituency. Since the Urban Village Committee was revived in 1999, the number of participants has fluctuated from between 5 to 100 people. It is incumbent upon the Fenway CDC to internally support the plan – utilizing the expertise and resources of its economic development committee to forge alliances with local business owners – as well as build on its strategic partnerships with other community organizations, such as ROW, Friends of the Muddy River, Fenway Action Coalition, and the Alliance for Boston Neighborhoods.

In order to impact future development, these partnerships must extend to the political, economic and civic institutions that shape development outcomes within the Fenway. Presently, the Fenway CDC is aligned with New Ecology and Save Fenway Park! to advance the goals of community-oriented, mixed-use development, as an alternative vision to the Red Sox’s stadium development proposal. By reaching out to local business owners and other commercial developers, Fenway CDC has also begun cultivating potential redevelopment partners who share common interests in promoting the goals of the UVP. The Fenway CDC and its partners have developed several community initiatives that build on the central goals and objectives of the UVP:

affordable housing, transit-oriented design, a neighborhood school/community center, local business capitalization, and sustainable development. If the UVP committee positions itself as a clearinghouse for the community’s development vision, than it may succeed in creating a broader coalition to support the UVP framework.

Implementation: Utilizing Sustainable Development Indicators

A “sustainable development index” reports on long-term trends of an area, determined by the scale of measurement. Local examples of indicators of sustainability include: Sustainable Seattle, Jacksonville, Florida, the Boston Indicators project, and Local Agenda 21 initiatives. Research and development of these tools are being generated by institutions such as the United Nations Development Programme and the World Bank, as well as non-profit research organizations and think tanks, including but the World Resources Institute, Corporation for Enterprise Development, Worldwatch, and Redefining Progress. Among the indicator sets that have been generated by public and private institutions, the Human Development Index\(^\text{69}\) and Ecosystem Health Index\(^\text{70}\) aggregate measures of change into a composite index.

A new strategy that has emerged from Alan AtKisson’s research is the Compass of Sustainability, a composite index that be accessed by individual communities. As AtKisson states, “Compasses provide orientation, but not direction.” Taking a holistic approach to evaluating measures of sustainable development, the Compass focuses on the

following four categories: nature, society, well-being, and the economy.71 This multi-faceted approach identifies unique measures for each area of community assessment. A rising number in any of the four categories signals an improvement in overall conditions. Below are examples of indicators from each of the four clusters, corresponding to the directional quadrants of North, South, East and West.

1. **Nature** – water quality and availability, pollution loads and emissions

2. **Society** – health of government, social and family systems, measures of social capital and civil society

3. **Economy** – energy consumption, income and income-disparities, employment

4. **Well-being** – life expectancy, educational attainment, measures of satisfaction

As the Urban Village Plan and Muddy River Restoration develop, it will be valuable to have a common set of standards by which to evaluate the impact of these projects on the neighborhood and implement the UVP agenda. Therefore, I have recommended a set of sustainable development indicators that relate to the community development goals and objectives of UVP and ecological restoration. Through this approach, local projects in the Fenway could cluster key indicators into four topic areas, developing a weighted index in each category based on the priorities established within the community. As a composite index is formulated within the Fenway, the set of indicators will inform residents, civic leaders and government agencies by providing consistent feedback, measured over time, on the health of the community and the impacts of the two planning processes: the UVP and Muddy River Restoration.

In addition to providing an educational and evaluative tool for the neighborhood, the indicators provide a mechanism to concretely addresses economic development and

71 AtKisson, “The Compass of Sustainability: Framework for a Comprehensive Information System.”
ecological health concerns. The Sustainable Seattle report states, “It was the challenge of integrating economic, environmental, and social goals and the opportunity to define new measurements of progress that moved Seattle citizens to continue meeting and give birth to the volunteer civic effort called Sustainable Seattle.” In order to establish a set of community indicators that may form a compass index for monitoring sustainable development in the Fenway, the following criteria should be met: indicators illustrate a piece of the economic, environmental or social health of the community, reflect community values, monitor trends reliably over time, and remain policy-relevant.

NATURE

<table>
<thead>
<tr>
<th>Trend</th>
<th>Indicator(s)</th>
<th>Source</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality</td>
<td>Number of days when air quality exceeded National Ambient Air Quality Standards (NAAQS) for carbon monoxide and particulate matter</td>
<td>EPA: Division of Air Quality</td>
<td>Mobile sources of pollution, industrial and commercial processing facilities and power plants contribute to human exposure to criteria air-borne pollutants and contribute to greenhouse gas emissions</td>
</tr>
<tr>
<td>Water Quality of Surface and Groundwater</td>
<td>1. Concentration of heavy metals, sediment load, and fecal coliform in streams and rivers</td>
<td>Department of Environmental Protection, EPA Division I, Fisheries and Wildlife, Boston Drain Commissioner, Restore Olmsted's Waterway (ROW)</td>
<td>Increased concentrations of water pollutants endanger the health of aquatic ecosystems and degrade fish and wildlife habitat, also contribute to human health risks for recreational users.</td>
</tr>
<tr>
<td></td>
<td>2. Ratio of impervious/pervious surfaces within a floodplain</td>
<td>Land coverage by watershed (to monitor development in urban watersheds) through Landsat Images, GIS.</td>
<td>Increase in impervious surfaces within a flood plain increase urban runoff and decrease the natural flood control and groundwater recharge.</td>
</tr>
</tbody>
</table>

NATURE (cont’d)

<table>
<thead>
<tr>
<th>Trend</th>
<th>Indicator</th>
<th>Source</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Waste Generated and Recycled</td>
<td>Recycled materials generated by residences, stores offices and other generators as a percentage of solid waste generation</td>
<td>City of Boston, Solid Waste Division</td>
<td>Accumulation of solid waste contributes to overcrowding of landfills, leaching of toxic materials into soil and groundwater, increased pollution</td>
</tr>
<tr>
<td>Pollution Prevention</td>
<td>Toxic Release Inventory – direct toxics released into the environment by local manufacturing facilities, heavy metal loading into the sewage waste stream</td>
<td>EPA (through industry self-reported monitoring of 651 chemicals)</td>
<td>Human health and environmental impacts (cumulative exposure to toxic chemicals in air, soil and water and potential synergistic effects of chemicals released)</td>
</tr>
</tbody>
</table>

SOCIETY

<table>
<thead>
<tr>
<th>Trend</th>
<th>Indicator</th>
<th>Source</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure of Social Capital</td>
<td>Resident participation in civic associations</td>
<td>Membership lists of neighborhood volunteer organizations</td>
<td>Strength of social networks and associations leads to an increase community interaction and perception of public safety and welfare</td>
</tr>
<tr>
<td>Degree of Participation in Political and Civic Affairs</td>
<td>Voter Participation Attendance at Public Meetings/Hearings</td>
<td>Local Election Board, Neighborhood Precinct Mayor’s Office, Local Public Agencies</td>
<td>May reflect public accountability and responsiveness to community needs</td>
</tr>
</tbody>
</table>

ECONOMY

<table>
<thead>
<tr>
<th>Trend</th>
<th>Indicator</th>
<th>Source</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Employment</td>
<td>Rates of Employment and Income in the Fenway neighborhood</td>
<td>Census Tract Data, 2000 Census Report</td>
<td>Reflects economic opportunities or disadvantages for Fenway residents & income disparities</td>
</tr>
<tr>
<td>Locally-Owned Businesses</td>
<td>Percentage of Total Businesses located in the Fenway</td>
<td>Massachusetts Office of Business Development</td>
<td>Reflects business climate for entrepreneurs, opportunity for micro-enterprise initiatives</td>
</tr>
</tbody>
</table>
ECONOMY (cont’d)

<table>
<thead>
<tr>
<th>Trend</th>
<th>Indicator</th>
<th>Source</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing Affordability</td>
<td>Percentage of Monthly Income going toward housing costs</td>
<td>BRA, HUD, Fenway CDC</td>
<td>May reveal an affordability gap (over 30% of household income accounts for housing costs)</td>
</tr>
<tr>
<td></td>
<td>Neighborhood Housing Diversity (as a percentage of low-moderate-high income residential development options)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>Ratio of Renewable to Non-Renewable Energy Consumption</td>
<td>City Utility Companies, Solar Boston</td>
<td>Reduced demand for non-renewable energy sources, net reduction in greenhouse gas emissions, long-term cost-savings from efficient “green design”</td>
</tr>
</tbody>
</table>

HEALTH & WELL-BEING

<table>
<thead>
<tr>
<th>Trend</th>
<th>Indicator</th>
<th>Source</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian and Bicycle Friendly Streets</td>
<td>1. Number of sidewalks, bicycle lanes, street trees and lighting</td>
<td>Traffic Engineering Division and Department of Public Works, City Planning Office</td>
<td>Reflect community orientation, human scale development, public health and safety</td>
</tr>
<tr>
<td></td>
<td>2. Modal split estimates (pedestrian, public transit, and vehicular travel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Number of pedestrian/vehicle accidents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessible Open Space</td>
<td>1. Percentage of Public Open Space, compared to total land area</td>
<td>Land sat Images, Boston Parks and Recreation Department, City Planning Office</td>
<td>Creates recreational areas, public space, urban wildlife habitat, drainage for stormwater and local streams (which can lead to improved water quality)</td>
</tr>
<tr>
<td></td>
<td>2. Proximity of Open Space to residential development and neighborhood schools</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Through this proposed set of indicators, I have offered characteristics of a Sustainable Development Index that respond to specific goals of the UVP (creating
community-oriented development at a neighborhood scale, increasing affordable housing, supporting local business) and the Muddy River Restoration (improving water quality of the surface and ground water). In addition, I provided supplemental indicators to evaluate community participation and civic life, which may reflect the strength or weakness of neighborhood institutions and networks. Beginning with a premise that sustainable communities foster healthy economies and ecosystem, this proposed set of community indicators may increase the capacity of the CDC and its partners to implement the UVP plan and evaluate the synergies between neighborhood development and ecological restoration.73

73 The following trends were based on the Sustainable Seattle Indicators Project, while the specific indicators were amended to match source data available for the city of Boston.
Chapter 6: Conclusions and Recommendations

The central question addressed throughout this thesis is whether local community development corporations can position themselves at the front lines of environmental change. The Fenway CDC is a strong political force that will shape the future of neighborhood redevelopment in the Fenway. However, the organization lacks the institutional capacity to fulfill each of the UVP goals – responding the housing crisis, supporting neighborhood business, creating new anchor institutions, supporting community-oriented development, and making a commitment to sustainability – without the support of other neighborhood institutions. These broad planning objectives present an opportunity for the Fenway CDC and its partners to integrate the environment, economy and community into a comprehensive neighborhood redevelopment agenda. As a leader of the UVP campaign, the Fenway CDC has an opportunity to build relationships with other neighborhood institutions and promote a holistic model of community planning in the Fenway.

The last chapter on policy analysis uncovered the potential for building strategic partnerships between community development and environmental constituencies in the UVP campaign and utilizing indicators as a means of bringing these constituencies together toward a common goal. In this section, I outline a series of recommendations that build on local environmental strategies and community development networks. Through identifying innovative redevelopment and ecological restoration strategies for the Fenway neighborhood, my findings respond to the overlapping goals of the UVP and Muddy River Restoration project.
Bridging the UVP and Muddy River Restoration

The most evident missing link in the UVP campaign is the cleanup and restoration of the Muddy River, an initiative sponsored by the Olmsted Emerald Necklace Improvement Plan. The Muddy River, traversing 3.5 miles from Jamaica Pond to the Charles River, flows through the Riverway and Back Bay Fens in the heart of the Fenway neighborhood. While UVP meetings have addressed issues of environmental protection and Muddy River restoration, they fail to include members from active local organizations engaged in environmental cleanup and water resource protection within the Fenway. Over the last decade, local environmental stakeholders have garnered tremendous resources and the expertise to restore the Muddy River to Olmsted’s original design. With support from the city of Boston, town of Brookline and Parks and Recreation Department, a massive investment in the Muddy River Restoration project will begin as early as summer of 2001. While the project has leveraged public finances and support from other community stakeholders, it remains isolated from Fenway’s UVP planning agenda.

Neighborhood planning initiatives often overlook the critical functions of urban watersheds.\(^74\) The Muddy River Restoration project will not succeed as a long-term solution to flooding and pollution control unless it gains support from community development professionals, policymakers and citizens who guide development on a local-scale. These groups significantly impact the pollution load and stormwater discharge entering the urban watershed. A successful example of an interdisciplinary approach to watershed management is the 1999 Nine-Mile Run Design Charrette in Pittsburgh,
Pennsylvania. Through a charrette process, a team of planners, architects, and community members worked together to design a community plan for improving the ecological functions of an urban river in Pittsburgh. In their design proposal, the team emphasized that “by embedding sewer and watershed restoration in community revitalization, it reduces or eliminates problems that public work agencies would otherwise struggle to solve in isolated efforts.”

The Pittsburgh Design Charrette is applicable to the Fenway case study because it is an example of how restoring an urban river can lead to community and ecological revitalization. Beginning with a dialogue on the shared public and private interest in pursuing the UVP campaign and Muddy River Restoration, the Fenway CDC has an opportunity to tailor ecological restoration to its vision of holistic community development. (See Appendix A for a list of specific recommendations.)

Toward a Natural Systems Approach

Flooding and stormwater issues continue to raise great concerns for Fenway residents and compromise the health and ecology of the Muddy River. The amount of impervious surface along the Muddy River’s edge exacerbates the problem of recurrent flooding and reduces the amount of water that goes back into the watershed for storage. A storm drain pipe system is designed to carry run-off from developed areas and discharge it into the river through outlet pipes that eventually reach the Charles River. Sewer lines that run along the riverbed occasionally overflow the capacity of the pipe.

74 According to the Pittsburgh Nine Mile Charrette stormwater report, “Urban watersheds are characteristically heavily covered – 40 percent and more – with impervious surfaces: the pavements and roofs cause rain water to run off the surface, and prevent it from infiltrating the soil.”
system. This spreads raw sewage along streets, yard and the river itself, creating contamination and unsightly ground cover. Restore Olmsted’s Waterway “ROW,” an neighborhood force in river restoration, have linked high levels of water contamination in the Muddy River to combined sewer and stormwater overflows.

A united neighborhood strategy for ecological restoration should grow from ROW’s set of recommendations for retrofitting the natural capacity of the Muddy River and reducing common pollutants entering the watershed, such as oil, trash, salt, pesticides and fertilizers. The resident-led campaign to eliminate illegal sewer connections in the Muddy River prompted a public sector response to monitor effluent entering the river and streambeds. The organization remains vigilant in advocating for the elimination of regular sewage discharge into the River and the pre-treatment of stormwater through natural systems. Through the combined efforts of ROW, the Emerald Necklace Conservancy, and others, a daylighting proposal is underway restore an open waterway park in front of the former Sears building at Landmark Center, thereby reconnecting the Fenway and the Riverway to Olmsted’s original design and improving stagnant water conditions in the Muddy River.

A more integrated, natural solution to restoring the Muddy River and the Back Bay Fens is preferable over a highly engineered approach. A first step would be to update Boston and Brookline’s stormwater management plan and the outdated FEMA data. In doing this, the problem needs to be addressed from a comprehensive perspective. It is important to recognize that the capacity and stormwater overflow problems do not originate at Kenmore Square or Landmark Center, but rather are embedded in a regional

watershed issue. Investing in increased sewer conveyance and treatment capacity without carefully examining the ways of removing water from the system would be unwise. Reduction of stormwater flows into sewers costs less and can produce added value that benefits the Fenway community. As the Muddy River Master Improvement Plan is implemented in the Fenway, the Citizen Advisory Committee, local environmental groups, and the Fenway CDC should work collectively to identify innovative and cost-effective solutions to storm and sewer overflows that presently compromise public health and degrade the natural habitat. (See Appendix A for a list of recommendations.)

Recommendations for Comprehensive Development Planning

An example of a systems wide perspective on the ecological, economic and social sustainability of urban habitats can be found in L.A.’s TreePeople Design Charrette and Demonstration Project. In the proceedings from the 1997 Design Charrette, participants emphasized the importance of inter-disciplinary collaboration to foster strategic alliances among public and private partners working toward a shared vision of sustainability. For example, the demonstration project utilized a variety of planning and policy tools in order to integrate natural processes with water resource management, while simultaneously considering the regional impacts on water quality and the dependency on imported water. As stated the TreePeople Design Charrette, “the natural cycles of waste and water have been broken.”76 In order to restore the ecological integrity of these natural systems, the T.R.E.E.S. project demonstrates multiple ways of capturing stormwater, bioremediating soil contamination, purifying water runoff, and conserving energy.

76 Trans-Agency Resources for Environmental and Economic Sustainability. Los Angeles. (www.treepeople.org/trees/)
This iterative process of convening local stakeholders in the T.R.E.E.S. project encouraged participants to talk across disciplines and design physical constructs that mimic natural systems. Moving from conceptual designs to a demonstration site in the Fenway should be encouraged in order to model how urban landscapes can accommodate and benefit from the design of natural systems. The role of community partnerships is critical in advancing opportunities to restore the Fenway’s urban ecology. The UVP campaign should also take advantage of existing local resources to promote energy-efficient design and renewable energy sources in future development projects. A partner in this effort is the Solar Boston77 Initiative (see appendix B for Solar Boston recommendations). In order to adopt an alternative vision for restorative redevelopment that builds on the UVP goals and objectives, the Fenway CDC must seek greater political support from local government agencies and partners in the environmental field.

Through the Urban Village Plan, the Fenway CDC has revived a holistic approach to community development in the Fenway neighborhood. The Fenway CDC currently plays a vital role in design, zoning decisions, land use and development within the neighborhood. However, the UVP is a work in progress; the UVP committee has yet to develop an implementation strategy or generate additional resources for the initiative. As the UVP develops, the CDC has an opportunity to build strategic alliances that will help accomplish its development goals and restore the natural cycles within Olmsted’s Back Bay Fens. If the UVP campaign succeeds, it will serve as a model for future community revitalization.

77 Solar Boston is a partnership of local community-based organizations and solar energy companies that has been working since 1999 to help increase the use of solar energy in Boston, providing information and assistance to consumers.
Bibliography

Boston Redevelopment Authority. Feway Urban Renewal Plan. November 1, 1965

Sustainable Seattle. *Indicators of Sustainable Community: A status report on long-term cultural, economic and environmental health for Seattle/King County.* Seattle, WA: Sustainable Seattle, 1998.

Trans-Agency Resources for Environmental and Economic Sustainability. Los Angeles. (www.treepeople.org/trees/)

Appendix A: Stormwater Recommendations

Capturing roof runoff—in tanks or cisterns for irrigation or indoor graywater use

Disconnecting pavement and roof drainage—from sewer lines and directing it to adjacent vegetated soil to infiltration basins;

Engineering infiltration basins—water gardens, dry wells, and subsurface recharge beds to collect runoff and percolate into the soil;

Planting trees—to intercept a portion of the rainwater;

Rehabilitating soils—to increase infiltration rates and reduce risk of brownfields contamination;

Using porous pavement—varieties of asphalt, concrete, masonry, gravel and other materials with open pores to detain runoff, filter pollutants, and allow water to infiltrate the underlying soil.

Reconfiguring driveways, parking lots, and streets—to support and increase in pervious surfaces and vegetated soil.

Restoring historic streams (daylighting)—by excavating culverts and creating naturalized open channels;

Creating vegetated Swales—earthen drainage channels, as alternative to pipes, to slow the velocity of runoff, remove pollutants and infiltrate water into the soil.
Appendix B: Recommendations for Promoting Solar Energy

Supported by the U.S. Department of Energy’s Million Solar Roofs Program, the Solar Boston alliance enables developers and property owners in the Fenway to integrate solar energy as a clean, reliable alternative for heat and power generation in homes and commercial sites. One option for passive solar use is the installation of Photovoltaics (PV) to produce solar electricity using semiconductor technology. PV systems signal a long-term investment strategy in renewable resources by providing optimum energy performance for at least thirty years with minimal maintenance and zero net pollution. The Fenway CDC benefits from having a member of Solar Boston on its board and should utilize his international energy expertise in the design and construction of future CDC buildings.

In addition to offsetting pollution loads in urban neighborhoods, participants in Boston’s renewable energy programs can take advantage of several tax incentives for investing in solar, heat-pumped, or wind-powered energy systems (see appendix for a listing of the various tax incentives for commercial or public entities). These cost savings, coupled with the policy directive to encourage sustainable energy consumption and improve air quality in the Fenway, provide an opportunity for the Fenway CDC and other entities to adopt Solar Boston guidelines in the design and construction of new buildings and the rehabilitation of existing sites.