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LEARNING STREUCTURAL DESCRIPTIONS FREOM EXAMPLES®

Abstract

The research here described centers on how a machine
can recognize concepts and learn concepts to be recognized.
Explanations are found in eomputer programs thar build and
maplpulate abstract descriptions of scemes such as those
children construct from toy blocks. One program uses sample
scenes to create models of simple configurations like the
three-brick arch. Another uses the resulting models in
making identifications. Throughout emphasis is given to
the importance of using good descriptions when exploring
how machines can come to perceive and understand the wisual
envirenment .

*This report reproduces a thesis of the same title submitted to
the Department of Electrical Engineering, Massachusetts Institute
of Techmology, in partial fulfillsent of the requirements for the
degree of Doctor of Philosophy, Januwary 19710,
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1 Kewy Ideas

How fn we reconnize examples of varicus concents?

How do we learn to make such recoanitiens?

How can machines do these thinas?

How important is careful teachina?

In this naper I describe a system that sheds some lieht
an these ouestions by demonstrating hcw a nachine can be
tauoht to see and learn new visuval concepts, It vorks in the
domain of three-dirensional structures made of bricks,
wedoes, and cther sinple objects,

Good descriptive metheds are of central imporiance TO
this work., This is denonstrated repeatedly in my system's
facilities for scene description, descriptinonm cerparison,
concept learning, and ddentificatien,

It is my opinion that the framework for Tearning that I
describe suggests a unity between learnino fror examples,
learning Ly imitatien, and learning by bedine told, This
unity lies in the necessary ability to nenerate and
manipulate good abstract descriptions,

1 also aroue the drportance of nood trainino SequUERCEs
prepared by ocood teachers, I think it is reascnakble to
helieve that neither machines ner children can be expected to
learn much without then.

Equally important is the notion of the near miss, ©&y¥



near miss [ mean a sample in a traininn seauence auite 1 1ike
the concept to be learned but which differs from that concept
in only a few sionificant points at most, These near misses
prove to convey essential points much more directly than
repetitive exposure to ordinary examples,

.1 Scene Description and Comparison

Much of the system to he described focuses on the
problem of aralyzina scenes consisting of the simple objects
that one finds in & child's toy box. There are two very
simple examples of such scenes in finure 1-1,

From such visual images, the system builds a very coarse
description. (figure 1-2) Structurinn the scene's description
in terms of nbjects is already a certain commitment, for
structurino it in other terms 15 passible. In any case,
analysis proceeds, fnserting more detail, (fiaure 1-3) And
finally there is the very fine detail about the surfaces,
lines, vertexes, and their relations,

Such descriptions permit one to compare and contrast
scenes throuah proarams that compare anmd contrast
descriptions. 0f course, one hopes that the descriptions
will be similar or dissimilar to the same deoree that the
scenes they represent seem similar or dissimilar to human
intuition. Then with a2 oeneral plan for such manipulations,

there is further hope that the same machinery can be useful
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in situations ranaine far from visual ones, aivino the work a
certain oenerality.

Certainly the necessary matchinao pronrams must be well
endowed with abtility, for a rich description capability
requires a matchine proaram that cam cope with and perform
reasonably in an enviromment where many matches are possible,
toth good and bad.

fAfter two scenes are descrited and correspondine parts
related by the matchinn program, differences in the
descriptions must be found, catecorized, and themselves
described, The prooram that does this must be able to
examine the descriptions of fioure 1-3 with the help of a
matching program and deduce that the difference btetween the
scenes is that there is a suprported-by relatior in one case,
while there is an in-front-of relation in the other, Cut the
faculty must be much more powerful than this simple examp le
indicates in order to face more complex pairs of scenes
exhibiting the entire spectrum between the nearly identical
and the completely different.

1.2 Concept Generation and Learning

To build a machine that can analyze line drawinas and
bufld descripticons relevant to seme comparisen procedure s
useful in dtself, But this is just a step toward the more

ambitious goal of creating a program that can learn to
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recognize structures, T will describe a program that can use
samples of simple concepts to nenerate models.

Figure 1-4 and the next few following it show a sequence
of samples that enables the machine to learn what an arch 1is,
First it gets the general idea by studying the first sample
in figure 1-4. Then it learns refinements to fts orioinal
conception by cemparinn its current impression of what anm
arch 15 with successive samples, It learns that the supports
of an arch cannot touch from figure 1-5, It learns that it
does not matter much what the top chject 1s from fioure 1-6,
find then from figure 1=7 it learns the fact that for one
object to be supported by the cthers is a definite
requirement, not just a coincidence carrying throuah all of
the samples.

Such new concepts can in turn help in makine ather, more
complex abstractions, Thus the machine uses previous
learning as an aid toward further lTearning and further
analysis of the environment, As yet these procedures are
clumsy, and the descriptions uncomfortably restricted, but
the results are encouraning enouch to sugnest that these

methods may lead te fncreasingly powerful performance.
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1.3 Identification

Ident ification requires additional proarams that use the
results of comparison programs, There are many problems and
many alternative methods involved because identification can
be done in a variety of contexts,

In one simple form of fdentification, the machine
compares the description of some scene to be identified with
a repertoire of models, or stored concepts, Then at the very
least there must be some method of evaluating the comparisons
between the unknown and the models so that some match can be
defined as best,

But many sephistications lie beyond this skeletal
scheme. For one thino, the identificatioen can be sensitive
to context. In fioure 1-8B, for example, one hidden object is
more 1ikely to bte a wedqe than in the other case, althounh
both hidden abjects present exactly the same 1ine
configuration, The identification could be further
prejudiced if the objective is to locate a particular type of
object., Thus the hidden object in fiqure 1=% should be
tentatively identified as a poscible trapezaidal ol id,

rather than a wedne, if trapezoidal solids are in demand.
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1.4 Psychological Modeling

Simulation of human intelligence f5 not a primary goal
of this work. Yet for the most part I have desinned proarams
that see the world in terms conforming to human usage and
taste, These proarams produce descriptions that use notions
such as left-of, en-top-of, behind, big, and part-of,

There are several reasons for this, One is that if a
machine is to learn from a human teacher, then 1t is
reasonable that the machine shoud understand and use the same
relations that the human does, 0Otherwise there would be the
sort of difference in point of view that prevents
inexperienced adult teachers from interactinn smoothly with
small children.

Moreover, if the machine is to understand its
environment for any reason, then understanding it in the same
terms humans do helps us humans to understand and improve the
machine's operation. Little is known about how human
intellinence works, but it would be foolish te ignore
conjectures about human metheds and abilities if those things
can help machines, Much has already been lecarned from
programs that use what seem like human methods, There are
already programs that prove mathematical theorems, play nood
chess, work analeay problems, understand restricted forms of

Ernglish, and moere, VYet in contrast, little knowledne about
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intelligence has come from perceptron work and other
approaches to intelljoence that do not exploit the plannina
and hierarchical oroanization that is characteristic of human
t houaht,

hnather reason for desianing programs that describe
scenes in buman terms is that human judnement then serves as
2 standard. There will be no contentment with machines that
only de as well as humans., FBut until machines bhecome better
than humans at seeing, dning as well is a reasonable goal,
and comparing the performance of the machine with that of the

human is & convenient way to measure SUCCESS,
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2 [Muilding UDescriptions
2,1 The Hetwork

There arec many ways to store facts alout a scene. fne

simple format is the unordered 1ist:

N is on top of O

AT is a side of L

B is in front of C
such an arrannement is desperately inefficient because the
whole of memory must be searched to oather all facts about
some particular component of the scenaea, It is natural,
therefore, to record facts in a mere structured vav to
facilitate retrieval.

In this connection, one hears such terms as 11ists,
trees, rings, and nets, each of which sumoests a form of
storane. In selecting orne, attentfon must be paid to several
criteria. I have already mentioned the problem of rapid
access, There may also be a need to use merory space
efficiently. DBut in the rescarch nhase, perhaps it is nmost
important that the storace format be in some sense natural
with respect to the information to be stored, This means
that the transformation from a situation to its
representation should be simple, not awkward., Sinnle 1ists
suffice for a trip to the arocery store, while tree-]like

charts frequently picture command hierarchies nr genealogical
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histories,

But many more complex situations require the net., A
qood example is the description of the words in a natural
lanquaoe. Fach word is described easily in terms of
relationships with other words which in turn are similarly
described, The result is a dictionary in which each word may
be theuaht of as a node which is related to other nodes
through the pointers that constitute its definition.

Similarly the network seems to have the appropriate
Elend of flexibility and elenance needed to deal
straightforwarly with scenes. It is the natural format.
Like words in a dictionary, each ohject is naturally thounht
of in terms of relationships to other cbjects and to
descriptive concepts 1ike large, rectanqular, and standina,
In fiogure 2-1, for example, one has concents such as DBJECT -
REC and OBJECT-DEF, These are represented diaorammatically
as circles. (finure 2-2) Labelled arrows or pointers define
the relationships between the concepts. (finure 2-3) Other
pointers indicate membership in oeneral classes or specify
particular properties, (figure 2-4) And pointers to circles
representing the sides extend the depth of the description
and allow more detail., (fiqure 2-5)

Now notice that notions l1ike SUPPORTED-BY, ARCVE, LEFT-

0F, BENEATH, and A-KIND-OF may be used not only as relations,
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but also as concepts. Consider SUPPORTED-GY. The statement,
"The WEDGRE is SUPPORTED=-BY the BLOCK, ™ uses SUPPORTED-BY as a
relation. Gut the statement, "SUPPOPTED-BY is the opposite
of NOT-5UPPORTED-EY," uses SUPPORTED-DY as a concept
undergoing explication. Consequently SUPPORTED-BY is a node
in the network as well as a pointer label, and SUPPORTED-DY
itself is defined in terms of relatiens to other nodes,
Fiqure 2-6 shows some of the surrounding relations and
concepts,

SUPPORTEU-BY may therefore apoear in diagrams as a
circle label or as a pointer label denending an its function,
A circle pierced by an arrow indicates simultanecus use as a
relation and as a concept. (figure 2-7)

Thus, descriptions of relationships can be stored 9n a
homogeneous network along with the descriptions nf scenes
that use those relatifonships. This permits big steps toward
program generality, A program to find negatives need only
know about the relation NEGATIVE-SATELLITF and have access to
the general memory net. There is no need for the program
itself to contain a distended table. This way proarams can
operate in many environments, both anticipated and not
anticipated., Algorithms desioned to manipulate netwnrks at
the Tevel of scene deseription can work as easily with

descriptions of objects, sides, or even of objects®
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functions, given the appropriate network.
.2 Freliminary Processing

Consider now the aeneration of a scene description, The
starting point is a line drawinn, without perspective
distortion, and the result is to be a network relating and
describing the various ocbjects with pointers such as IH-
FRONT=OF, ABOVE, SUPPORTED-BY, A-KIND-DF, ABUTS, and HAS-
PEOPERTY=-0F ,

First, drawinas of three=dimensional scenes are
communicated to the machine wsing a pronrvam by B, K, P, Horn
together with a special pen whose positien on a companion
tablet can be read Ly the machine directly. Then a proaram
written Ly M. N. Mahabala [1] classifies and labels the
vertexes accordine to the number of converoing lines and the
angles between them, Fioure 2-8 displays the available
categories, Hotfce that Mahabala's program finds pairs of Ts
where the crossbars lie between col linear upriohts. These
are called matched Ts, Such mairs occur frenuently when one
object partially cccludes another as in fioure 2-9,

The program then proceeds to create names for all of the
reqgions in the scene. Rinoreusly "reeion" as used here simply
refers to any maximal area in which one can move from any
point to any other point without crossine a 1ine, Including

the background figure 2-9 has efght renions, Various
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properties are calculated and stored for these recions.
Among these are a 1ist of the vertexes surrounding each
region and 2 1ist of the neighboring renions,

These results are then supplied to the elegant program
named SEF developed by A. Guzman [2]. This program
conjectures about which regions belona to the same objects.
For fioure 2-9, the end result of the program is the
commentary:

Body 1 consists of A 0 C

Body 2 consists ef 0 EF G 1
Surprisingly the program contains no explicit models for the
objects it expects to see, It simply examines the vertexes
and uses the vertex classifications to determine which of the
neighboring reaions are likely to be part of the same object.
Arrows, for example, stronoly suagest that the tvo narrow-
angle regions beloeng to the same body, (fioure 2-10) This
sort of evidence, tooether with a moderately sophisticated
executive, can sort out the reocions in scenes as complicated
as that in figqure 2-11, borrowed frem Guzman's thesis,
Twelve objects are reported and the reoions of each are
remembered,

This, then, is the sort of information ready for further

processing by my deseription-building procrams,
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2.3 The Alonorithms

The following sections describe the ideas behind
proarams that lock for the relations ABDVE, SUPPORT, IN-
FRONT-0OF, LEFT, RIGHT, and MARRYS. Generally these proarams
produce descriptions that are in remarkable harmony with
those of human observers., Sometimes, however, they make
conjectures that most humans disaaree with., On these
occasions one should remember that there is no intention to
precisely mimic psycholoogical phenomena, The npal is simply
to produce reasonable descriptions that are easy to work
with, FRioht now it 15 important to desian and experimant
with a capable set of proagrams and rostpone the ouestion of
how the programs mioht be refined to be more completely
lifelike.

2.3.1 Above and Support

T joints are stroma clues that one object partly
obscures another, but then one may ask if the obscurinag
occurs because one object is above the other or because one
is in front of the other. Even in the simple two brick case
there seems to be an enormous number of confiourations,
Figure 2-12 shows just a few possibilities,

Eut dn spite of this variety, there is a simple
procedure that often seems to correctly decide the ABOVE

versus IN-FPROMT-0F question. Consider the 1ines that form
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the bottorm border of the obscurina obfects in figure 2-12,
Finding these lines is the first job of the program. Hext
the program finds other objects whose renions share these
1ines, In general these other objects are below the
orininal, obscurine object.

This algorithm works on all the simple two-bBlock
situations depicted in fisure 2-12, It even works coerrectly
on the much more complicated, many-object scene in
fiqure 2-13, shown with the bottem lines highlighted,

The difficult part is to find the sc-called bottom
lines, which correspond rounhly te one's intuitive notion of
bottom border. The process proceeds by first notine those
1ines that lie between two reqions of the object in ocuestion,
I call these interior 1lines, Hext the prooram examines the
lower of each interior line's vertexes. This is iancred
unless it is an arrow, * or a K. Then information about
bottom lines is nleaned from each of the arrows, X5, and Ks
in the following way:

1, If the vertex is an arrow, then the two lines
formina the laroest angle, the barbs, are bottom
line candidates. See fioure 2-14,

2 If the vertex is an ¥, then the two non-collinear
l1ines are bottom line candidates., See figure 2-15,

3, If the vertex is a ¥, then the two adjacent lines,
those forminag the smallest clockwise and the
smallest counter-clockwise angles with the interior
1ine are bottom line candidates. See figure 2-1C.
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This is really a rule and two corollaries, rather than three
separate rules, Xs and Ks result primarily when arrows
appear fncognito, camouflaned by an alianment of objects as
illustrated by figure 2-15 and 2-16., Consequently, the
correspond ing rules amount to locatina the arrow-formina
parts of the vertex and them actina on that basic arrow,

One further step is necessary before a line can become
an approved bettom-line, Fs shown by fioure 2-17, some of
the lines aualifying so far must be eliminated, They fail
because they are too vertical, or more precisely, becawse
they are too vertical with respect to the arrovw's shaft, The
effective way to weerd out bad lines 95 as follows:

Fule: Eliminate any bottom 1ine candidate which is more

vertical than the shaft of the arrow suroestine that

cand idate,

Of course the proaram extends rudimentary baottom 1ines
throuanh certain vertexes., Finqure 2-10 skows the obvious
situations in which the bottem Yine propertwy is extended
through the crossbar of a T nr the chafts af a pair of
matched Ts.

This whole aleerithm 15 based on an assumption that the
machine observes the scene from above, If the conficuration
danaoles from the ceiling, simple channes adapt the proeram to

discriminate between UHDER ard TH=-FPRONT-0F, rather thanm AEMVE
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IN-FRONT=OF, O0One examines instead the hinher vertexes of

interior 1ines, substitutes the term ton lines for bottom

lines in the vertex inspection rules, ard the resultinn lines

usually separate objects from those above them,

2.3.1.1

by searchinn for both the AROVE and the BELOW
relations, the machine may often be ahle tn nuess its
own heinht, Censider finure 219, Fiogure 2-20 shows
the same scene with top and bottom lines hiohlighted and
with the conseaquent above and below relations. At 1east
in this case, the machine can correctly deduce that its
eye is level with obiect M because bath a chain of above
relations and a ckain of below relaticons originate at ™,

Discussion

This algorithm works effectively because of

circumstances all likely but not certadn to ke true in anv

particular scene, The method works bost when a scene

consfsts of bricks and wednes with one side parallel to the

table. In many other cases, the methnd works anwvway,

sometimes by coincidence and sometimes by principles not vet

fully explored.

okbjec

relat

Unfortunately, in explanation I am frequently
forced to appeal to intuitive notdinns abput what is
1ikely and what is not. [ know of no way to establish a
reasonrable probability metric on the situatiens |
discuss. All that can be said now s that any such
metric should reflect human disposition toward
coenfiqurations exhibitinag alinnment and symmetry.

The first 1ikely circumstance or princinle is that
ts tend to support other objects by contact throunh

ively horizontal sides. O0Objiects nnt so supported tend
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to s1ip, althouoh not always as demonstrated by figure 2-21,

Imagine now that the top object in finure 2-22 were
completely transparent except for a layver of paint an the
crucial, relatively horizontal bottom side, Since the scene
is viewed from above, this bared bottom side will nhscure
part or sometimes all of the supporting ocbject, See
figure 2-23, Consequently, some faces of the supportino
object generally border on lines resultinn from the edges of
the bottom side,

0f course many of the bottom side's ednes vanish when
the object is restored to opacity, Mevertheless, the ones
that remain still tend to form part of the seam between the
supported and the supportinn objects,

Now most of the vertexes of objects are formed by three
edges meeting together as in the tip of a pyramid. This
forms the sc-called trihedral angle, Consequently, when two
observable edoes of the bettom side form a concave annle, one
can expect a third edoe of the object tn lTeave the same
vertex and form the shaft of a downward directed arrow.

51ifoht alteration could permit the pronram to deal
with many objects with non-trihedral vertices, The
object in fioure 2-24, for example, has two interior

Iines meraoing at vertex V, By treatinn this as a

neneralized arrow, with multiple shafts, the same

algorithm can be used to define bottom lines,

5o far the lonic is as follows: If one object obhscures



FIGURE 2-Z21

FIGURE 2-22

FIGURE 2-23

<

FIGURE 2-24




43

another because it is om top of the cther, then the seam
between the two is 1ikely to form the barbs of one or more
downward directed arrows belongina to the top object.
Reversinag this, one would hope for the statement: The barbs
of downward directed arrows define seams across which one
l1ikely finds the supporting object or objects., Unfortunately
one often finds non-supporting objects as well.

2.3.1.2 Refinement

Figure 2=25 sugoests a serious kind of over enthusiasm.
The pillar, brick B, elevates the bottom lines of brick A and
they appear between the viewer's eye and a side of the
massive backoground brick, brick C., In the two bLrick case, 2
trick's bottoms lines border on the side of ancther brick
only when the cne is in fact supported by the other. Uhen
more objects are involved, wronag answers may result because
the botton 1ines can wander into regions of objfects that do
not offer support.

To handle this oroblem, 1 use a two part procedure. The
first part is simply the above aloorithm as described so far,
which now may be thought of as aeneratino a set of possible
supports, The second part, described below, criticizes these
possible supports and filters out some of the bad ones.

How one reason brick A in fioure 2-25 clearly does not

lie on brick C §s that it is absurd to think that an object
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can rest on a vertical side of some other object. Part 2 of
the support aloorithm makes sure that just such conjectured
supports are eliminated from the list of candidates., To dn
this, it eliminates a candidate 1f the only bottom-1ine-
bordering side seems vertical, It assumes a side is vertical
if an edge belongine te it 15 vertical,

There are two exceptions tn this rule that accur when an
object obscures the entire top of its supportino ocbiect as
block A obscures block T and as block B obhscures block C in
fiqure Z-26, First, if two bricks are alioned as are brick
A and Erick B, forming the familiar ¥ vertex, no rejection
takes place. Second, if the tep brick overlaps the support
as trick B overlaps brick C, at least one unmatched T appears
and again no rejection takes place,

If by this time zero or one support candidate remains,
then part 2 terminates, and the support, if any, is
announced., There are some cemmon situations, however, that
reauire part 2 to undertake additicnal computation. Cornare
figure 2-27 with fiqure 2-22. The vertical=-side filter
cannot eliminate the possibility of support frem brick C din
either fioure btecause one of C's bottom=line borderinn sides
is clearly not vertical. Yet human observers oenarally claim
the top brick in fTioure 2-27 cannot be other than sinaly

supperted, whereas they admit there may well be support from
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the larne rear block, C, in fioure p=08,

ince the only difference is in the he iaht of brick L,
this judoement must be the recsult of a heiaht comparision,

Stated simply, the program makes heinht judnements by
assuming an obiect is supported Dy the tallest of the suppnrt
candidates survivinn so far. It is simply above the others.
The heiaht of a stack cannot alwayvs be computed rioorcus]v,
however., In simple cases it is sufficient to lecate a
vertical 1ine telonging to the ohiect and measure it. Brick
¢ in fiagure 2-27 is such a Flock, But the verticals of Elonck
L disappear into T joints and only minimum heinhts can be
calculated from such lines without complicated and unexnplored
nkiect extranolation techrinques., Consenquently, as the
alaorithm reviews the heinhte and minimum heiahits presented
to it, it first selects the maximum of these, Then any
candidate whese heinht is known exactly is rejected if that
height is less than the max imum just caleulated, A1 whose
exact heioghts are unknown are allowed to pass,

Figure 2-29 shows why the support alaorithm freauently
resorts to recursion, If the support for block C is tn be
calculated, the heiaht of klocks D and [ must be compared.
nut this in turn reouires knowledae of their supnort so that
tatal heights can be added up from the chain of supports and

used in this last filterino operation of part 2.
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This completes discussion of the support aloorithm as it
now stands, It is not hard to delude it deliberately, but it
nevertheless operates with a reliability sufficient for use
by programs that build upen its results.

Improvements can be made in many ways. The followinag
are a2 few ideas hiah an my priority 1dist: 1, M planned
mod ification involwes usina Ls in the search for bottom
lines. So far the system gags on the scene in fioure 2-30,
finding no bottom lines, Gut if one 1ine of an L is nearly
vertical and the other is mearly hnrizontal, then the nearly
horizontal line should be an excellent bottom line, OF
course Ls are frequentlv buried just as arrows are, GBuried
Ls are found fn certain Ts, Xs and forks as shown in
figure 2-31. 2, The discovery of bottom 1lines can be fouled
by introducina small objects that obscure cruc ial vertexes.
Figure 2-32 shows how, This ceuld be corrected by a
procedure that extends lines, perhaps after the object is
jidentified. 3. The filterinn operation could be strenathened
in its ability to detect vertical sfdes. So far it knows a
side is vertical only if the side has a vertical edne.

Figure 2-131 shows how it can run aaround as a result. HNone
nf the sides of brick C appear vertical and the algorithm
consequently reports brick A is on top of brick € as well as

on brick L.
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2.3.2 In=front-of

Once a program can discover the SUPPORTED=BEY relation,
then it can frequently deduce IN-FRONT-OF relations by
default., That is, if one of two blocks appears to obscure
another but is not above it, then the relation IN-FRONT-OF 1is
a stromg possibility, Irn pursuing this I again use a two
part proaram: the first part proposes possible objects that
a oiven object may bte in front of; the second part rejects
the bad ones, While simple and direct, this prooram also
succeeds admirably on complex scenes,

Part 1 tries to find all objects that the object in
guestion obscures, First it gathers up most of the obscured
objects throuah search for particular types of T joints on
the periphery of the object. Supoose one defines a line to
be physically associated with a particular object when that
line in the two dimensicnal drawino results from an edae or
intersection of planes on the object, rather than from some
obscuring abject., Figure 2-34 illustrates. Then the types
of Ts sought are just those for which cne can be reasonably
sure that the crosshar belongs to the obhject conjectured to
be the obscuror,

Figure 2-35 shows twe kinds of gqualifying T joints, The
first kind occurs when the wide angle region associfated with

the T belonos to or s physically associated with the object
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from which IN-FRONT=-0OF relations are sought, Both of the
other regions, the ones borderine the shaft of the T, belong
to a second object, This nearly always indicates the second
object 1s obscured.

The second kind of T joint illustrated in fiqure Z2-35
pccurs when one shaft-borderino region belongs te an object
while the other belongs to the backeround, This aoain
assures the machine that the crossbar belonas to the
potentially obscuring object.

Figure 2-36 indicates bty counter example why nothing can
be deduced if the shaft=bordering reqgions belong to distinct
ohjects, The troubkle 15 that the crossbar of the T 15 not a
real edge of block C, but rather the crosstar is composed of
edges belonaing to A and B,

Sti11 another way to locate appropriate Ts is meore
global. The idea is to use whatever means are available to
find genuine edges belonging te a body and then to see if any
Ts 1ie along such lines. Hecall that the selection of bottom
1ines involves inspection of arrows, ¥s and Ks at the bottom
ends of interior lines, Furthermore the raticnale behind the
suppoert algorithm depends on the likelihood that such bottom
lines are physically associated with the same object as the
interior line of the arrow, X, or K. Conseouently the machine

can generate a whole family of peripheral lines 1ikely to be



a4

physical edaes by simply examining the arrows, X5, and Ks at
both ends of the interior lines, rather than just these at
the bottom ends, Then if any of these physically assoc iated
lines end at anm L, the other line forming the L 15 added to
the Tist, It is very unusual for one leg of an L te belong
to an object without the other lea belonainn also,

How if any physically associated 1ine is the crossbar of
a T, then the parent object obscures some octher object or
objects., Fioure 2-37 demonstrates what Find of edoes and Ts
are found by this method.

Hotiee that the Ts referenced by figure 2-37 are also
noticed by the previously discussed lTocal inspection since
they exhikit the recuired coenfiouration of objects about the
Ts lines, Fioure 2-35 demonstrates that both methods
contribute, however, since only the local method works on Ts
marked L while only the medified bottom-line finder helps on
those marked G,

Al1l of this yields obscured objects which are candidates
for relatine to the object studied by the relation IN=-FRONT-
OF., Hext, part 2 requests help from the support program and
then fmmediately rejects all the candidates for which the
REBOVE relation is known to held, This however is oftemn not
completely sufficient. In figure 2-39, the machina knows

brick A obscures brick C by wirtue of vertex V, But A 15 not
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directly above C, Clearly, the above check must be expanded
to the presence of chains of ABOVE relations in order fo
bring the algorithm into line with human taste, In the
course of this check, the proaram for ABOVE may be called
many times if the ABOVE relations have not yet been
sstablished, Any candidate that survives this check 1is
thought to be behind the object studied.

The most annoying weakness of this algorithm is that the
seam between the chscured and the obscuring object may not
exhibit the required type of T joints, Figure Z2-40 shows how
this can happen. I suspect that further progress can be made
in these situations of alignment through close consfideration
of Xs and perhaps Ks,

2.3.3 An Example
Figure 2-41 provides a somewhat more comnlex scene for
the IN=FRONT-0F and SUPPORTED<BY findinn programs te try.

The results are as follows:
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A supported-by B C dn-front-of F G
B K -
C b E -
U - E
E - -
F E =
G - -
H I J -
I - -
d - -
K H E

The only bad choice is the neglect of G as a support of F.
The reason is that the support criticizing procram has a
built in assumption that a supported object's bottom s
level, Therefore it believes E is the only support for F
because it is higher than G, the other possibility,
2,3.4 Left and Riaht

Two programs exist for decidino ff one object is left
af, right of, or neither with respect to another. The first
computes 1n a straightforward, simple way. It simply
compares the x coordinates of the vertexes of both objects.

If there is no overlap, that is if
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xcor{any vertex of one object)

{

xcor{any vertex of other object)

then the first obhject is to the left of the other, If there
is overlap, then no statement can be made.

This program, based on the no-cverlap criterion, could
be greatly improved through the use of an object extending
program, The machine is naive to think that object L in
figure 2-42 is left of ohject A. Humans tend to fill in the
obscured porticns of object C to form a complete block.

But even with an ability to imagine the hidden parts of
objects, such a program refuses to really acree with human
judgements. Consider the spectrum of situations fin
figure 2-43, For the first pair of objects, the relations
LEFT=0F and RIGHT-OF are clearly appropriate. For the last,
they are clearly not appropriate., To me, the crossover point
seems to be between the situations expressed by pafrs 4 and
5.

Mow notice that the center of area of one ohject is to
the left of the left-most point of the cther object in those
cases where LEFT-0F seems to hold, It is not so positioned
if LEFT=0F does not hold, Sucha criterion seems in

reasonable agreement with intuitive pronouncements for many
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of the cases [ have studied, It also yields reasonable
answers in figure 2-44 where in one case A is to the left of
B and in the other case it is not, Notice that the relation
is not symmetric, however, as the center of area of the much
longer brick, brick B, indicates B is to the right of A in
both cases.,

Figure 2-45 recguires extra attention, Mo matter what
the center of mass relations, humans are reluctant to use
efther LEFT=0F or RIGHT=0F if one object extends beyond the
other in both directions, One must additionally specify a
rule against this, leaving the following for LEFT-OF:

Say A is left of B <=>

1. The center of area of A is left of the leftmost
point of B,

2. The rightmost point of A is left of the rightmost
point of B.

The rule for SIGHT -0F 15 of course parallel in form,

Many people feel their perception of the relation
LEFT=0F differs considerably from either of the two
possibilities exhibited here. I believe the center-of-
area method s reasonable for the machine now, but it
would be interesting to more fully explore the question
of what humans think to see if other formulas are
better, Intuitive notions of LEFT=0F vary wildly and
the prn?ram can only be said to generally reflect my
personal preferences. Indeed, deciding if one object 1s
to the left of ancother stimulates far more arqument than
do questions involving relations 1ike IN-FROWT-OF and
SUPPORTED-BY. People have difficulty verbalizing how
they perceive LEFT-0F and tend to waver in their
methods, but implications are that criteria change
depending on whether the objects involved are also
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related by IN-FRONT-OF, ON-TOP-OF, BRIGREP-THAI, and so
an .

Professor Marvin Minsky has pointed out to me that
the orientations of objects are also a stronag influence,
In figure 2-46, for example, the cube seems left of the
arch's entrance even thouaoh all its vertexes are clearly
right of all the arch's vertexes, In view of this
observation, my procedure could probably do better by
asking hasical{y the same ouestions as before, but about
lines through the left-most, right-most, and center-of-
area points in the direction of orientatien instead of
what amounts to vertical projection of the points to the
x-axis. Put then there is the problem of finding an
object's intrinsic orientation. At the moment 1 know of
no general heuristics for this,

2.3.5 Harrys

The abuts and aligned-with relations arise frequently,
perhaps because of some human predilection to order, As
intuitively used, however, neither of these words corresponds
te the notion 1 want the machine to deal with, To avoid
confusion, I therefore prefer to use the term marry which I
define as follows:

Definition: An cbject marryvs another if those objects

have faces that touch each other and have at least cne

common edoge.
Thus the objects in fioure 2-47 are said to marry one
anothar, Those in fioure 2-48 do not because they have no
common edge, Similarly those in figure 2-49 do not because
they have no touching faces.

The MAREYS relation is sensed by methods resembling
those previously described. First the vertexes along the

border are collected. Then the X5, Ts and Ks are further
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examined:

The Xs are simple to handle, If exactly two of the
lines are collinear and if the other two separate two
objects, then those objects are very likely to deserve the
MARRYS relationship because such a vertex is strongly
associjated with al igned stacks or rows., Fioure 2=50
illustrates these situations., Fioure 2-51 shows why the two
objects must be separated by the two non-coll inear 1ines,
There three sides belorg to the same object and the MARPRYS
relation does not hold.

If there are four objects at the vertex and there are
two pairs of collinear 1ines, then the Tikely situation is a
field of objects with these sharing lines marrying each
other, Sea figure 7-52,

ks are stronaly correlated with the sort of alignment
illustrated Ly figure 2-53., The rule 15 simple: If there
are two objects with sides at a K vertex, then they probatbly
nmarry.

When three objects meet at a T one of the following

hiolds:

1, The objects with the stem in between marry each
other and both obscure the third object.

2. The third object is the obscuring object. Im
this case the two other objects may or may not
marry.
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3. A1l three objects marry.
4, Something else,

Of these, my programs check for case 1 only. The
central program looks for chains of IN<FRONT=0OF and SUPPORTS
relations between the shaft-bordering objects and the large-
angle object. If such chains are found for both, they likely
btoth obscure the large anale side and marry each other,
Figure 2-54 shows examples,

Mow consider the situation where only two ocbjects meet
at a T with the wide angle side and one of the other sides
belonging to one object. As figure Z-55 suagests, this sort
of T freouently becomes a K when seen from some other angle.
Like the K, the machine considers it strano enough evidence
for a MARRYS relation.

Figure 2-56 illustrates both of the T joint situations
that confirm marryment.

Noete that the machine is conservative in using this
MARRYS relation; the relation is not placed in ambiguous
situatioens such as those of figure 2-57.

3.6 Shape

Sefore an object can be fdentified, the 1ines that are
really edges of that object must be sorted from those that
are edoes of obscuring objects. It would neot de to think

object B in fiqure Z-58 has sides shaped 1ike those in
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figure 2-59,

The idea of an edge belonging to a body has been
discussed. The shape program I use first gathers together
those lines found to be genuine physically associated edoes
by the preogram that leoks for IN=-FRONT=OF relatiens. To
these it adds any 1ines that lie between two regions of a
toedy, the interier lines. Then if these lines include both
uprights in a pair of matched Ts, it adds a line joinina the
two Ts., And finally, any Tine shared with the backoround or
other body known to bte below or behind is certainly included,
These rules are sufficient to identify many of the Tines that
belong to any given object, while refecting many that do not
belong.

Figure 2-60 shows how this program sees object B of
figure 2-58, Lines L, M, N, and O are interfor 1ines. Line
P is a segment between matched Ts with the required kind of
vprights, 0 gualifies by way of the IH-FRONT-OF algorithm,
while R, S5, T, U, and ¥ qualify both by way of the IN-FRONT-
OF algorithm and the rule adding lines lTying between the
object and the background. Figure 2-61 shows how the rest of
the scene in figure 2-58 is dissected by this program.

Motice that the shapes are reasonably well defined.
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2.3.7 Size

Piaget has shown that at a certain age children
generally associate physical size with greatest dimension
[3]. They will, for example, adamantly maintain that a taTll
thin beaker has more water in it than a short fat one even
though they have seen them filled from other beakers of equal
size.

Rdults do not develop as far bevond this as might be
expected. [ do not think we really use the notion of volume
naturally. Apparent area seems much more closely related to
adult size judgement. Motice that beaker A in figure Z2-62
appears to have about the same amount of water in it as does
beaker B, even thouoh it must contain twice as much. Unless
a subject consciously exercises a formula for volume, he is
likely to report that object B in figure Z-£3 is
approximately ten times larcer than object A, even if told
both objects are cubes., The true factor of twenty-seven
times seems large when the trouble is taken to calculate fit.

Consequently, the size generating program does net
trouble with volume. Instead it calculates the area of each
shape produced by the shape detecting algorithm, Mext it
adds together the areas of all shapes belonoino to an object
to get its total area. Then using these areas it can compare

two objects in size or consult the fellowing table for a
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reasonably believable discrete partitioning of the area

scale:
0.0 to 0.5% of the visual area =--> tiny
0.5% to 1.5% of the visual area =<3 small
1.5% to 15% of the visual area --% medfum
158 to 35% of the visual area --y larae
35% to 100% eof the visual area --y hunge
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3 Discovering Groups of Objects

When a scene has more than a few oabjects, ft 1s usually
useful to deepen the heirarchy of the description by dividine
the objects into smaller groups which can be described and
thought of as individual concepts. Fioure 3-1, for example,
seems to divide naturally into three aroups of objects, one
being three objects tied together by SUPPORTED-EY pointers,
another being three similar objects on top of a fourth, and
the third beinc a set of objects in the arch configuration,
There are other kinds of grouping humans use, but in this
work I primarily explore only the three illustrated by this
figure 3-1. Grouping by identificatdion with a known rodel 4qs
discussed later in the chapter on identification. This
chapter deals with orouping on the basis of pointer chains
and on the basis of property similarities,
1 Sequences

A simple kind of group consists of chains of SUPPORTED-
BY or IN=FRONT-0OF pointers as in the tower of figure 3-1.
The first act of the oroupine program is to find sets of
objects that are so0 chained together. A11 such sets with
three or more elements oualify as groups.

In the event the scquence of pointers closes on itself,
a ring is formed. In figure 3-2 there 15 such a group

because each of the three objects rests partly on one of the
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other two. The result is a circular chain of SUPPORTED=-BY
pointers as shown in figure 1-3.

Using chains to define groups can become fairly complex
as illustrated by the scene in ffioure 3-4, A chain of
SUPPORTED-BY pointers splits into two branches in scene one
at the point where object C is supported by two objects, ]
and E. In scene two, twe chains of SUFPORTED-BY pointers join
at M which supports both I and L. The current version of the
grouping program terminates chains at junction points without
further fuss. This seems reasonable for it seems natural to
think of the scenes in ficure 3-4 as a set of aroups
consisting of N-B-C, G-H-1, and J-K-L.

Another kind of problem arises when objects tied
together Lty a simple chain of relations should not
constitute a aroup because of other factors, Figure 3-5
shows one kind of situation that can occur, for which I
nave only ideas but no programs. Ir this scene the
machine perceives a sinale cbject conalomerate, grouped
together by virtue of an unbroken chain of SUPPORTED-BY
pointers, But most humans see a short tower on top of a
board on top of another tower. This must be partly
because of the size differences and partly because of
the fact that the top group is not directly over the
ather objects, In any case, it would seem that radical
change in object properties should be possible grounds
for breaking a chain. With this, cne 15 into territory
where irrevocable committments should be avoided,
Perhaps the best thing would be to have the arouping
program offer alternative groupinas of tricky scenes and
postpone decisfon until hiaher level identification
programs indicate which arrangement leads to the best
mateh of the scene against known models.
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3.2 Common Properties
When several cbjects have the same or very nearly the
same description, they are immediately solid candidates for a
group, The leas on the table in figure 3-6 are typical., A1l
are bricks, all are standing, and all are supports for the

top board,

This kind of manipulation is s1ightly dangerous in that
my criteria for forming a group and admitting members to it
are a bit flimsy. 5o far the rules are based on the
following demands:

1. All candidates for group membership must be related

to one or more particular objects in the same way.
For the table case, all four objects are related to
the board by SUPPORTED-BY., This restriction appears
necessary because uniferm relationship to a single
object seems to have strong binding power, The
standing bricks in figure 3-7 naturally constitute
two groups, not ome,

2, There must be three or more members in the group, and
the members of Lhe oroup must share many of their
properties.

Figure 3-8 outlines the procedure for forming such
groups. The basic idea is to make a2 generous quess as to
what objects to include in a group and then te eliminate
objects which seem atypical until a fairly homogeneous set
remains,

To do this, a program first finds a candidate group by

locating a set of objects that relate to cne particular
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object in the same way. MNext comes formation of a common-
relationships-1ist through a Tisting of all relationships
exhibited by more than half of the candidates in the set,
Figure 3=9 helps explain this process. Objects A
through F are immediately perceived to be a possible group
because they all have a relationship, SUPPORTED-EY, with a
single object, G. The relationships exhibited by the
cand idates are:
Ay By and C:
SUPPORTED=BY pointer to G
MARRYS pointer to G

1

2

1 A-KIND-0OF pointer to BRICK

4 HAS-PROPERTY-OF pofinter to MEDIUM-STIE

S

1 SUPPORTED-BY pointer to G

Z MARRYS pointer to G

3 A-KIND=0OF pointer to BRICK

4 HAS-PROPERTY-OF pointer to SMALL
E and F:

1 SUPPORTED-BY pointer to G
2 MARRYS pointer to G
3 A-KIND=-OF pointer to WEDGE
4 HAS-PROPERTY=0F pointer to SMALL
Three relations appear in the common-relationships-11st
because they are found in more than half of the candidates’

relationships 11sts:
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common=relationships=1ist:

1 SUPPORTED-BY pointer to G

2 MARRYS pointer to G

3 A-KIND=-OF pointer to BRICK

After this commonerelationships=1ist is formed, all

candidates are next compared with it to see how typical each
is. The measure is simply the fraction of the total number
of properties of the candidate and the common-relationships-

1ist that are shared. Said in a more formal way, the measure

is

number of properties in dintersection

- e O W EN ER BN OEE NN ER WO R W e i I = . . - -

number of properties in unien

where the union and intersection are of
the candidate's relationships 11st and
the common=-relationships=11ist.

Figure 3=10 represents abstractly a sftuation in which the
candidate and the common-relationships=-1ist are ouite
different., The shared properties, represented by the shaded
area, 15 but a very small fraction of the total area, both
shaded and unshaded, Figure 3-11 gives the opposite extreme,

There is considerable overlap and the value is near one, the
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max imum possible,
Using this similarity formula to compare the various
objects of the figure 3-% example with the common-

relationships=-1ist, one has:

A versus the common-relationships-list --% 3/4 = 7%
versus the commen=relationships=-1ist =<» 3/4 = 75§
versus the commen=-relationships=list == 3/4 = .75

= 75

B

c

D versus the common-relationships=1ist =--» 3/4
E versus the common-relationships-1ist == 2/5 = 20
F versus the common-relationships-1ist == 2/5 = 20

A, B, C, and D do not have scores of 1 only because the
common-relationships=1ist does not yet have a property
indicating size. The reason is that there fs no size common
to more than half of the currently possible aroup members, A,
B, C, D, E, and F.

The much lower scores of E and F reflect the additiomal
fact that as wedges they are different from the standard
type. They are immediately eliminated according to the
following general rule:

Eliminate all candidate objects whose similarity scores
are less than 80% of the best score any object attains,

This dinsures that the group will have members all with a
nearly egual right te belong.

Next the process is repeated because those properties
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common to the remaining candidates may differ from those

properties common to the original group encugh that one or

more changes should be made to the common-relatienships=1ist.

This repetition continues until the elimination process fails

to oust a candidate or fewer than three candidates remain,
Lfter the first elimination of objects leaves A, B, C,

and 0, there 15 a new common-relationships-1ist:

common=relationships-1ist:
SUPPORTED=BY pointer to G
MBRRYS pointer to G

fi-KIND=OF pointer to ORICK
HAS=-PROPERTY-0OF pointer to MEDIUM-SIZE

e Gad Pl

Not ice that there is now 2 size property since three of tThe
four remaining objects have a pointer to medium size, The

new EﬂlTlFI'ET"EﬂI'I. SCares are:

A versus the common-relationships-l1ist == &4/4 =1
E versus the common-relationships-1ist --» 4/4 = 1
C wversus the common-relationships-1ist --} 474 = 1
D versus the common-relationships-1ist -=y 3/5 = .6

This time 0 is rejected because its uncommon size causes
a low score, leaving a stable group in which the objects are

all guite 1ike one another.
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3.3 Other Kinds of Grouping

Thera obviously cannot be a single universal groouping
procedure because attention must be paid not only to the
scene involved, but also to the needs of the varfous proorams
that may request the grouping activity, I have discussed two
grouping modes that programs can now do in response to
various demands., There remain many others to be explored,

One of these involves looking for things that fit
together, Children frequently do this at play without
prompting, and adults do it extensively in solving jiasaw
puzzies,

Another kind of grouping, one particularly sensitive to
the goals of the request, is grouping or the basis of some
specified property. The idea is to pick out all thinos
satisfying some criteria, such as all the big standing
bricks., The result could be a focusing of attention.

Still amother way to agroup invelves overall properties
that are not obvious from purely local observations,
Technigues here are again laroely unexplored, but it seems
that overall shape can sometimes impose unity on a complete
hodge=podge. Figure 312 illustrates this point, A1l of
the objects fit together to form a brick-shaped oroup, This
is clearly not inherited from any consistency in how the

parts are shaped or how they interact with their immediate
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neighbors,
4 Describing a Groupy; The Typical Member

The machine needs some means of describing groups. The
method it uses seems to work, but there is room for
improvement.

First, the parts of the group are gathered together
under a node created specifically to represent the group as a
conceptual unit, Figure 3-13 illustrates this step for a
group of three objects, A B and C.

Hext comes a concise statement of what membership in the
group means, This is done through the use of a typical-
member node, Properties and relations that most of the group
members share contribute to this node's description, If some
aroup were composed of three standing bricks arranced in a
tower, then the result would be the description shown in
figure 3-14, The typical member is there described as a kind
of brick, as standing, and as on top of ancother member of the
group., MNotice also the FORM pointer to SEQUEMCE which

indicates the kind of group formed,.
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4 Similarities and Differences
4,1 Network Matching

Powerful scene description proorams are essential to
scene comparison and identification., Matching is equally
important since the machine must know which parts of two
descriptions correspond before it can compute similarities
and differences, Figure 4=1 briefly illustrates., A process
explores the two descriptive networks and decides which nodes
of the twe best correspond in the sense that they have the
same function in the ir respective networks, The nodes 1in a
pair that so correspond are said to be linked to each other,
The job of the matching program is simply to find the linked
pairs. MHNode LC and node RC in figure 4-1 both have only A-
KIND-0F pointers to BRICK. Since no other nodes have similar
descriptions, it is clear that LC and RC should be a lTinked
pair. Similarly, LE and RE should be a linked pair since
both have A-KIND-OF pointers to WEDGE and both have
SUPPORTED =BY pointers to parts of a pair of nodes already
known to be linked,

0f course the job of the matching program 15 not so easy
when the two scenes and the resultino two networks are not
identical. In this case the process forms 1inked pairs
involving nodes that may not have identical descriptions, but

sepm most similar nevertheless, More details are described
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in the appendix,
4.2 The Skeleton

Once the matehing process has examined two networks and
has establ ished the linked pairs of nodes, then description
of network similarities proceeds. The result is simply a new
chunk of network that describes those parts of the compared
networks that correspond, This chunk 45 called the skeleton
because it is a framework for the rest of the comparison
description. As figure 4-2 suggests, each linked pair
contributes a nmode to the skeleton, Certain pointers connect
the new nodes together., These occur precisely where the
compared networks both have the same pointer from one member
of some linked pair to a member of some other l1inked pair.
Notice that the skeleton 1s basically a copy of the structure
that the compared networks duplicate.

4,3 Comparison Notes

Complete comparison descriptions consist of the skeleton
together with a second group of nodes attached to the
skeleton 1ike arapes on a orape cluster, Each of the nodes
in this second category s called a c-note, short for
compar ison note. The most common type of c-note 15 the
intersection c-note which describes the situation in which
both members of a 1inked pair point to the same concept with

the same pointer. Suppose, for example, that a pair of
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corresponding objects from two scenes are both wedges. Then
both concepts exhibit an A-KIND-OF pointer to the concept
WEDGE, {figure 4-3) In English one can say:
1. There is something to be said about a certain
linked pair.
2. There is an intersection involved.
3. The associated pointer is A-KIND=-OF,
&, The intersection occurs at the concept WEDGE.
Figure 4-4 shows how each of these simple facts translates to
a network entry. First, a pointer named C=-HOTE extends from
the skeleton concept corresponding to the linked pair to a
new concept that anchors the interzection description, The
fi-KIND=-OF pointer identifies this concept as a kind of
intersection. Finally other pointers identify the pointer,
A-KIND=-0OF, and the concept, WEDGE, associated with the
intersection.
ATT of the c-notes look Tike this intersection paradigm.
3.1 Digression: Evans' Prooram
Embod ying d ifference descriptions in the same network
format permits operation on those descriptions with the same
network programs. Thus two difference descriptions can be
compared as handily as any other pair of descriptians,
Those familiar with Tom Evans' vanguard program, ANALOGY

[4], can understand why this is a powerful feature, rather
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than simply a contributien toward memory homogeneity., Evans'
program worked on two dimensional geometric figures rather
than drawings of three dimensional configurations.
Mevertheless his ideas generalize easily and fit nicely into
the vocabulary used here.

Figqure &-5 suggests the standard sort of intelligence
test problem dnvolved., The machine must select the scene X
which best completes the statement: A is to B as C is to X.
In human terms one must discover how B relates to A and find
an X that relates to C in the same way.

Using the terminoloay of nets and descriptions, one
solution process can be formalized in the following way:
First compare A with B and denote the resulting comparison=
describing network by

d[A:E].
Similarly compare C with the answer fioures generating
descriptions of the form d[C:X]. The result is a complete
set of comparisons describing the transformations that carry
one figure into another. Next one should compare the
description of the transformation from A to B, d[A:B], with
the others to see which is most 1ike it. The best match is
assoc fated with the best answer to the problem, If M is5 a
metric on comparison networks that measures the difference

between the compared networks, one can say
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choose X such that
M{d[d[4:B):d[C:X]])
is minimum

The metric I use is not fancy. It is the one discussed
later in chapter 7 that serves to identify some scene with
some member of a group of models, [It'works because that
problem entirely parallels the problem of identifying a given
transformation description with some member of a group. The
identification program, together with a short executive
routine, handles the problem of figure 4-5 easily, cerrectly
reporting scene three as the best answer, Reasonably enough,
the machine thinks scene one is the second best answer.

The machine does as well on the slightly altered problem
in figure 4-6, reporting four as the best answer,

Of course if the machine's answers are to be those of
the probiem's formulator, then the machine's describing,
comparing, and comparison measuring processes should all give
results that resemble his., Moreover, a really good analogy
program should have available alternatives to its basic
describing, comparing, and comparisen measuring processes,
Then in the event no single answer is much better than the
cthers, the program can try some of its alternatives as one
or more of its basic functiens must not be operating

according to what the problem maker intended. Evans' proagram
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is superior to mine in this respect because it can often
compare two drawings in more thanm one way. It can visualize
the change in figure 4-7, for example, as either a reflection
or any one of several rotations.

Given my formulation of the analogy problem, it is easy
to see how certain interesting general izations can be made,
After all, once an X is selected, the network symbolized by
dfd[A:B]:d[C:X]] describes the prohlem, and as a descriptien,
it can be compared with the descriptions of other problems,
By thus applying the comparison programs for the third time,
one can deal with the gquestion, Analogy problem alpha is most
Tike which other analogy problem? Alternatively, one can
apply the analogy solving program to problen descriptions
instead of scenes and answer the guestion, Analogy problem
alpha is to analogy problem beta as amalogy problem gamma is
to which other analogy problem? This involves four levels of
comparison., DBut of course there is no limit, and with time
and memory machines could happily think about extended
analogy problems involving an arbitrary number of comparison
level s,

1.3.2 Another Digression: HNewell, Shaw, and Simen's Progqram

A classic piece of work in artificial intell fiaence is

that of Newell, Shaw, and 5imon on the scheme known as the

General Problem Solver, always abreviated GPS [5]. One form
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of GPS provides another example of how comparisons may be
usefully compared with other comparisons,

From an abstract point of view, GFE involves the notion
that praoblems may be thought of in terms of some solutfon or
goal, G, together with 2 current state C, Additonally there
are operatoers, O0(1), that convert classes of states into
others. One may abreviate their action by writing

G{i):F=IN(i) ==¥ F-OUT(1),
meaning that operator O0(i) tends to corvert states of the
form F-IN(1) into states of the form F-OUT(i).

GPS notices the difference betwsen the current state C
and the desired state G and then tries to apply an operator
relevant to reducing that difference, This produces a new
current state somewhat closer to the desired state, Applwing
this process iteratively, GPE may eliminate the difference
between C and B, thereby solving the problemn.

In early versions of GPS the programmers supplied a
table giving the relevant operations for all the differences
between C and G that might be observed. But Tater on Hewel]
descrited an aporoach [6] that I think may ke more
transparently represented using the same notions of second
order comparison minimization that s useful in discussing
analogy problems., The idea is that the operators, 0(i), may

be described by the difference between their input and output
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forms,
dlF=IN({i):F=-0UT(i}].
Then Hewell feels it is heuristically sound to apply the
operator whose description is mest lTike the difference
betwsen the current and desired states,
d{C:6].
Cne can say more formally,
choose the operator O(1) such that
M{d[d[F=IN(i):F-0UT({4)]:d[C:G]])
is min imum.

Hotice that the selection of an operator is curiously
like solving an analoey problem feor which one chooses a pair,
($(1),¥(i)) from a set of offered pairs that best completes
the statement: A is to B as X (1) is to ¥Y(i).

4.4 A Catalogue of C=note Types
4.4.1 The Supplementary-pointer

Consider the scenes in fioure 4-3 and their descriptions
in figure 4-9, Scene L has the peointer SUPPORTED-BEY between
LA and LB, but scene R does not have a pointer between the
objects Tinked to LA and LE. The note describing this
situation is called a supplementary-pointer c-note and has
the form shown in figure 4-10,

Figure 4-11 suggests a related situation. Kere the

linked concepts L and R differ only in that L has anm
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additional pointer identifying 1t as standing, This differs
from the supplementary-pointer case fn that STAND ING is not
linked to anything in the other scene. A peinter to the
concept EXIT signals this situatien, (figure 4-12) Exits
involve concepts generated by the scene description proaram
2e well as concepts like STANDING that reside in the net
permanently, If one scene contains more objects tham
ancther, the concepts left over anc not matched end up in
exit packages.
4,2 Pointer Modifications
Ssuppose the networks in figure &-13 are compared.

Notice the MARRYS pointer betwsen LA and LB and the DOES-ADT-
MARRY pointer between RA and RB. These could be handled

ind ividually as unrelated supplementary-pointer c-notes, but
this would ignore the close relationship between MARRYS and
DOES=-HOT-MARR Y. Consequently a different type of c-note is
ueed that receqnizes the relationship. It is the negqative-
satellite-pair c=note. Kith it, the comparison looks as
shown in figure 4-14, To find such negative-satellite-pair
c-notes, the comparisen programs peruse the descriptions of
unma tched pointers between linked pairs for evidence of
relationship. For example, MARRYS is described in part by a
MEGATIVE=SATELLITE pointer to UDES-NOT-MARRY. MNow of course

there are other pointers that are also just one step removed
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from a basic relation. A1l such pointers that are

mod ifications of the basic relation are called satellites
because they cluster around the basic relation to which they
are attached by the pointer MODIFICATION-OF, Uncertainty,
for example, is expressed by PROBABLY satellites or MAVYEBE
satellites, The MUST satell ites and the MUST=-NOT satellites
are others of particular importance in model construction.
These inform the model matching programs that the presence or
absence of some pointer is vital if some unidentified network
is toe be associated with a particular model network
containing such a pointer. Figure 4-15 shows some of the
satellites of MARRYS.

Each type of satellite is associated with a type of c-
note forming an open ended family. Thus in addition to
negative-satellite-pair c-notes, there are probably-
satell ite-pair c-notes, maybe-satell ite-pair c-notes, must-
satell ite-pair c-notes, must-not-satellite-pair c-notes and
50 0N,

4.3 Concept Modifications

Freoguently the members of 2 1inked pair both have
pointers to closely related concepts. For example, if a
brick in one scene is linked to a cube in amother, the
situation is as shown in figure 4-16., This is very much like

the pointer-satell ite idea with A-KIND=OF replacing
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MODIFICATION=-0F . In any case, the description generator
recognizes this and similar situations and again generates a
group of c-note types. The first of these is the A=-KEIND=0F
chain illustrated by the above situatien. This causes the c-
note of figure &=17.

The a-kind=of=chain c-note also includes situations in
which ene concept is related to another not directly, but
rather through two er three A-KIND-OF relations. Suppose,
for example, a cube is 1inked with an object for which no
jdent ificatien can be made, There is still an a-kind-of-
chain c-note because cube is 1inked to the general concept,
0BJECT, by a sequence of A=-KIND=OF relatfons. (fiqure 4-18)

Another kind of popular concept modification is the a-
kind-of-merge c-note. These a-kind-of-merge c-notes cccur 1f
there is no A=KIND=0OF chain as described above, but each
concept has a chain of A=-KIND-OF pointers to some third
concept, For example, WEDGE and BRICK are both connected to

the concept, OBJECT, by A-KIND-OF. (figure 4-19)
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5 Learning and Model Building
5.1 Learning

In this chapter I discuss learning to recognize simple
block configurations., Although this may seem 1ike a very
special kind of learning, I think the implications are far-
ranoing.

It is possible to assuime extreme positions on the
subject of learnino. One person may think learning to do
things is very complicated, while learning te recognize
things 1s comparatively simple, because one merely aquires
templates or some such, Conversely, ancther nerscn may think
learnine to do is simple, but learnina to recoqnize involves
deep Gestaltist problems of synthesis or other imped fmenta,

My opinion is that learning by examples, learning by
be ing told, learning by imitation, learning by reinfeorcement
and other forms are much like cne another,

In the literature there is frequently an unstated
assumtion that these various forms are fundamentally
different. But I think the classical boundaries between the
various kinds of learning will disappear, once superficially
different kinds of learning are understood in terms of
processes that construct and manipulate descriptions., Ho
kind of learning need be desperately complicated once the

descriptive machinery is available, but all constitute
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gpaque, intractable processes without it.

Then once the problem of using descriptions s
thoroughly understood, it will be possible to give meaningful
thought to a deeper problem, that of learning to use
descriptions., It does not seem simple, but using this point
of view, it seems less than impossible.

The notions of learning and teaching are broad and
confused. Generally, people think of these things as
gccurring together, s¢ that whenever something learns,
something else teaches., But somehow intuitive notions
fail when it comes to thinking about machines.
Computers can now play tolerable and improvino chess and
do marvelous symbolic integrations. Yet while people
freely use the word "teach"™ in describing what the
programmers do, hardly anyone thinks of the machine as
learning.

The reason seems to be that the human programmer
has supplied so much detail that the machine is more a
mimic than a thino with learning ability. The machine
acquires its skill without ever really knowing what is
geing on or how it might improve without the laborious
services of an information processing surgeon. The
unfortunate machine is in the pesition of school pupils
who know facts and perhaps memorize simple algorithms,
but are never proorammed to learn. The programs to be
discussed here are an effort to show that a machine can
do better and can learn in a realistic sense, given a
chance.

5.2 Descriptions and Models
I want to make a clear distinction between a description
of 2 particular scene and a model of a concept, A model is
like an ordinary description in that it carries information
about the various parts of a2 configuration. But a model fis

more in that it exhibits and indicates these relations and
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properties that must and must not be in gvidence in any
example of the concept involved.

Suppose, for example, the description generating
programs report the following facts in connection with the
arch in figure 5-1:

1. Object A is a brick.
?, 0Object A is supported by B and L,

Mow suppose the description containine these facts were
compared with the sceme in figure 5-2, where object A ois a
wedge, and with the scene 1in figure 5-3, where object A lies
on the table. In both cases comparison could ©e made and
differences appropriately noted, but the identificatien of
gne or the other of these new scenes as arches would be risky
indeed because so far the machine knows only what one arch
looks 1ike without kmowing what in that description 1is
important!

Humans, however, have no trouble identifvino the scene
in fiqure 5-2 as an arch because they know that the exact
shape of the top object im an arch is unimportant. On the
sther hand, no one fails to reject the scene in figure -3
because the support relations of the arch are crucial,
Conseguently, it seems that a description must indicate which
relations are mandatory and which are inconsequential before

that description qualifies as a model. This does not require
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any descriptive apparatus not already on hand. One need only
subst itute emphatic forms like MUST -BE-SUPPORTED=BY for basic
pointers like SUPPORTED-BY or, in some cases, add new
pointers. Discovering where and when to perform these
operations can be somewhat invelved, however, and requires
the bulk of this chapter for discussion.
5.3 Examples, Kear-misses, and Non-examples

Suppose it is desirable to train a machine to recognize
the letter A without restriction as to type size or font.
The designer then has two sets of options: He must decide
how his machine is to work; and he must decide what to show
the machine., One idea is to show the machine vast numbers of
fg and hope that it will benefit from such an experience by
some how noticine the features which apnear repeatedly. But
this assumes that the frequently seen properties are
essential ones, which can be a bad rule, Horeover, there is
1ittle possibility for skillful teachina. There is no
obvicus way the teacher could ouickly convey a particular
idea such as the notion that the ¢rossbar of an A 1is
important, even if the teacher realized it. Finally, such
samples generally only sungest preperties a candidate for
match should have -- it is hard for them te indicate
forbidden properties.

This is true because expert description proorams
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would be needlessly overburdened and would promote

confusion if they were always to indicate all negative

propert ies and those not observed. Therefore a

property's consistent absence can be easily overlooked,

If the description program does list all properties in

spite of inefficiency, then manyv properties are

statistically 1ikely to be missing from a short training
sequence, But the statistic-cathering machinery would
think such properties should not be present in examples
of the model, even thouoh their absence was by
coincidence,

One might attempt to train basically the same machine to
handle a whole repertoire of concepts by showing examples of
each member, Thus if the repertoire were the alphabet,
examples of all the letters would be shown, rather than just
As, This shifts the question to Vhich description does an
un known best match? It still avoids the more fundamental
guestion, What is it about each character that {5 essential
and permits it to be recoonized? The machine now may use fs
and non=As, but the difficulties are anly obscured, not
circumvented, There remains no way to directly coanvey an
idea, and there remains the fallacy that freguent appearance
means importance. The problem of indicating what properties
preclude identification with a particular model is only
tangentially and occasionally addressed in that sometimes a
property converts one description into another, as in the
case of adding a forbidden midline crossbar to a C. The

machine does not know a C cannot have a crossbary it only

knows such a crossbar makes a figure more Tike an E.
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In my judgement, near misses are the really important
examples in learnino. In conveyina the idea of an arch, an
arch certainly should be shown first. But then there should
be some samples that are not arches, but do not miss being
arches by much, Small differences permit the machine to
localize some part of its current opindon ahout a concept for
improvement, If one wants the machine to Tearn that the
uprights of an arch cannot marry, one should show it a scene
that fails to be an arch only in this respect. If the
machine is to know a C cannot have a crnssbar, it should see
a character that fails to be a C only bhecause of a crossbar,
Such carefully selected near misses can sugnest to the
machine the ifmportant owalities of a concept, can indicate
what properties are never found, and permit the teacher to
convey particular ideas ouite directly,

It 45 curfous how 1ittle there is in the T1iterature
of machine learning about mechanisms that depend on good
training seouences. This may be partly because previous
sc hemes have been too inadequete to bear or even invite
extensive exploration of this centrally important toepic.
Perhaps there is also a feeling that creatino a training
segquence 1s too much like direct proorammino of the
machine to involve real learning, This is probably an
exaggerated fear. I agree with those who belisve that
the learning of children is better described by theories
using the netions of proaramming and self-prooramming,
rather than by theories advocating the idea of self-
organization, It is doubtful, for example, that a child
could develop much intelligence without the programming
implicit in his instruction, guidance, closely
supervised activity, and ogeneral interaction with ather
humans.
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5.4 Model Development

The machine's model building program starts with a
description of some example of the concept to be learned,.
This description ig itself the first model of the concept.
Subseguent samples are either examples of the concept or near
misses, These examples and near misses reveal weaknesses and
lead to & new models, Section 5.5 shows in some detail how
the comparison between the current model and the description
of a new sample produce a new model in the case where only
one difference is found.

One then has a seouence of more and more sophisticated
models. See figure 5-4. Frequently, several responses may
appropriately address the compariscon Detween the current
model and a new sample. When this happens, branches occur in
the model development sequence and it is convenient to talk
about a tree of models, Figure 5=5 shows such a tree.
Sectfon 5.6 discusses how the alternative branches come
about. The machine selects one branch at each point for
further development, The meandering path lTeading from the
top of the tree down to the current model s called the main
1ine. The main line changes course when a particular
sequence of branch selections leads to untenable situations.

Section 5.7 describes how and when this happens.
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5.5 The Elementary Model Building Operations

This section considers the case in which the matchinag
program finds only one difference between the current model
and a new example or near miss. The table at the end of this
section summarizes the results,

B.5.1 The A-kind-of-merae: Current Model and Example

First consider the model and example in figure 5-G.
Figure 5=7 shows the resulting comparison description. Only
one difference is found: the object of the model points to
BRICK while the object of the example points to WEDGE, But
since both BRICK and WEDGE relate by A-KIND-OF to ODBJECT, the
a-kind -of -merge c-note occcurs., Several explanations and
companion responses are possible. One is that the source of
the c-pote may in general point to either of the things
pointed to by the A-KIND-OF pointer in the twe scenes., Thus
the cbject could be efther a WEDGE or a BRICK., Another
possibility is that the A-KIND-OF pointers from the object do
not matter at all and can be dropped from the model, Still
another option and the one preferred by the program is that
the object may be any member of some class in which both
HEDGE and BRICK are represented. In the example one such
class is simply the concept OBJECT and has already been
located as the intersection of A-KIND-0OF paths. The program

responds by replacing the pointer in the comparison network
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that points to the a-kind-of-merge c-note by an A-KIND=-0OF
pointer to the intersection or merge concept. In this case
an A=-KIND-0OF pointer is installed between the c-note origin
and the concept OBJECT. Then the altered compariscn network
fs the new model shown in figure 5-8.

The primary response I have selected for the
machine represents a moderate stand with respect to a
rather serious inductien problem., [ could have been
more conservative and used an A-KIND=-0OF pointer to a
concept representing the ordinary 0% of BRICK and WEDGE.
On the other hand, I could have been far more radical by
pointing the A-KING=0F peointer to THING, the universal
class, My actual cheice of poirting to the node
indicated by the merge concept to be the intersection of
A=KIND=0OF chains seems more flexible than either of the
extreems.

Since the merge concept is ftself defined in terms
of the network's content, the general fzations made will
change as the net arows, LCut since the appropriate
response should after all depend on the universe the
machine is operating in, the generalization changes are
likely to be improvements. MAnd in any case this
commitment is only ane among many,

£.5.2 The Supplementary-pocinter C-note

How suppose scene 1 in figure 5-9 represents the current
model while scene 2 contributes as a near miss., The matching
routine soon discovers that scene 1 produces a SUPPORTED-BY
relation between the two objects whereas scene 2 does not, A
supplementary-pointer c-note results, OFf course the
implication is5 that the concept studied reouires the two
objects to stand together under the support relation,

Consequently, when such a supplementary=-pointer c-note turns



SCENE

OHE-PART-TI5

e

A=KIND=0F

OBJECT

. h '

FIGUEE 53-8



SCERE 1 SCEME 2

FIGURE 5-3




141

up, it transforms to the emphatic MUST version of the pointer
involved, Thus the new model is the one in figure 5=10,

Of course the supplementary pointer can turn up in the
near miss as well as in the current model, Suppose scene |
in figure 5-9 is the near miss instead of the current model.
One concludes & cannot be aon B, The supplementary-pointer c=
note now indicates a relation that apparently cannot hold.
Appropriately, the MUST-NOT version of the supplementary
pointer is substituted in and the new net appears as in
figure 5<11.

5.5.,3 The Must-satell ite-pair C=note

Frequently comparison between the current model and a
new sample displays c-notes that do not reveal any new
feature, but rather result because of previous refinements in
the model, Suppose, for example, that the current model has
a MUST-MARRY pointer in a given location, while the sample
has a MARREYS pointer. MNow clearly the MARRYS pointer is
appropriate in the description and the must-satellite-pair c=-
note consequent to matching it with MUST-MARRY should be
replaced again by MUST -MARRY. Thus the emphatic form in a
must-satell ite-pair situation is retained and not interfered

with by ref inement ocperations attempted subsenuent to its

formation,.
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5,5,4 The A-kind-of -merge: Current Model and Near Miss
Somet imes a c-note offers two or more nearly equal

explanations. Consider the super simple current model and
near miss in figure 5=12. The c-ncte is5 an a-kind-of-merqe
announc ing that the current model points with HAS-PROFERTY-OF
to STANDING, the near miss to LYING, and both LYING and
STAMD ING have A-KIND-OF paths to ORIENTATIONS, How the near
miss may fail either because it is lying or because it is not
standing. Responding to these explanations, the model
builder might replace the a-kind-of-merge c-note by a MUST-
MOT-HAYE-PPOPERTY-0F pointer to LYING or by a MUST-HAVE-
PEﬁPEHT?-EF peinter to STANDING, Since most conceptis humans
discuss are defined in terms of properties rather than anti-

properties, the MUST version is considered more 1ikely.
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ACTION OF CONCEPT GENERATOR; EXAMPLE CASE

c-note type

a-kind-of-chain

a-kind-of-merge

negative-satellite

pair

mus t-be-satellite
pair

mus t-not-be
satellite pair

supplementary-pointer
or exit

pointer involved

negative-satellite or
fundamental pointer
in the model

negative-satellite or
fundamental pointer
in the example

must-be-satellite

must-not-be-satellite

respense

point to intersection
with model's pointer

1. point to intersection
with model's pointer
2. drop model's pointer
drop model's pointer
retain model's pointer

contradictiaon

drop model's pointer

ignore

contradiction

retain model's pointer



TABLE {cont.)

146

ACTION OF CONCEPT GENERATOR; MEAR MISS CASE

c-note type

a-kind-of-chain

a-kind-of-merge

negative-satellite
pair

mu§t~nﬂt—be—exten5iun
pair

supplementary-pointer

pointer involved

fundamental pointer
in the model

fundamental pointer
in the near miss

negative-satellite
in the model

negative-satellite
in the near miss

response

1. if model's node is at
the end of the chain
add must-not-be satellite
2, 1f near miss' node is
at the end of the chain,
use must-be satellite
to model's node

1. replace model's pointer
by 1ts must-be satellite

2. replace model's pointer
by must-not-be satellite
of near miss' pointer

replace model's pointer by
its must-be satellite

retain model's pointer

replace pointer with its
must-be satellite

insert pointer into the
using must-not-be satellite

replace pointer with its
must=not-be satellite

insert pointer into model
using must-be satellite
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5.6 Multiple C-notes

Cemparisons yielding sinnle c-notes are rare. More
often, the model builder must make sense out of a whele group
of c-notes, If the comparison involives a near miss, any one
of the c=notes might be the key to proper model refinement.
Moreover, many of the c-notes have alternative
interpretations that make further demands on executive
expertise.,

The model builder must therefore consider the c-notes
and all the possible interpretaticons of each, Then it must
produce the set of kypotheses that forr the model tree's
branches, These in turn must be ranked so that the best may
be pursued first,

The case of refinenent throuah an example is simpler
than through near misses, Since none of the observed
differences are sufficient to remove the example from the
class, it is assumed that all of the differences found act in
concert to loosen the definition embodied in the model,
Censequent]l y each c-note can be transformed independently and
a4 new model oenerated Ly their combined actien., There 15 no
problem of deciding if one difference i& more important than
another,

Comsenuently, if all the c-notes had but one

interpretation, only one new branch would be oenerated. The
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a-kind-of-merge c-note has three pessible interpretations,
however, and if one such c-nole oCCurs, it is oenly reascrable
to create three branches instead of just one, The action an
the other c-notes is the same for all three branches.

Year misses cause more severe problems, If two
differences are found, either nf them may be sufficient to
cause the sample to be a near miss, while the other
difference mav be equally sufficient or merely irrelevant.
1f the differences have multiple interpretations or more than
two differences occur, the number of possibilities explodes
and the machine cannot work simply by generating an
alternative for each possibility.

The model builder clearly must decide which
interpretatien of which differences are most likely to cause
the near miss.

The machine first forms twe lists: a primary list and a
secondary 1ist. Each c-note eventually ends up in one Tist
or the other.

Now some c-notes can never make the primary 1ist because
they are of themselves insufficient to explain why a given
sample is a near miss. Al1 of these go immed iately to the
secondary c-note list. One example is the situation in which
a pointer in the near miss corresponds in the current model

to an instance of the MUST-SATELLITE version of the peinter,
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A must-satell ite-pair c-note results but certainly 15 no
grounds for excluding the near miss from the class since the
required pointer is in fact present., Some other explanation
must be found.

The next and most obvious way to sort differences is by
level., This assumes only that the differences nearer the
or igin of the comparison description are the more important,
This certainly is a reasonahle heuristic since & missing
group of tlocks generally impresses a human as being more
jmportant than a shape change, which in turn duarfs a minor
blemish., Corseguently, the program determines the depth of
the remaininn c-notes which are nearest the origin of the
comparison descriptien, A1l those candidates found at
greater depth are relegated to the secondary 1ist,

The primary c=note list allews auick formation of little
theories about why the near miss misses and what to do as a
consequence. These theories are cal led hypotheses., A
complete hypothesis specifies one c-note as the sole cause of
the miss and it further specifies which interpretation of
that c=note is assumed. Consequently there is a hypothesis
for each interpretation of each c-note on the primary list.

The c-note specified as crucial by a hypothesis is
transformed as if it were the only c-note., The other c-

nates, btoth on the secondary and primary 1ists, are assumed
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by the hypothesis to be insufficient cause for the near miss,
Consequently as a new model is formulated accordino to the
hypothesis, all of the c-notes but one are treated exactly as
if the near miss were not a miss at all!

S0 far a single c-note is assumed to be the exclusive
cause of the miss, Uere all possible combinations considered
as well, not only would the branching increase enormously,
but the ranking of those branches would be Aifficult. Rather
than face this, [ have decided that only one special
combination of two c-notes is ever permitted to form a

hypothesis,

In this I have exercised what one micht call the
first meuristic of science: Fenin with the 1inear
model, the one that assumes all thines act
independently; then consider interactions as necessary,.
I next discuss a particular case in which it does seem
necessary to consider the joint action of twe
differences, It would be unreaseonable, hawever, ta try
for a general method for handling multiple differences,
In science as a whole, each particular method for
treating interacting effects is usally a major problem
in ditself and over-ambitious search for completely
general methods is of low wtility when premature,

Further justification for my appproch lies in
certain observations of Piaget's that indicate that
children seem to pay sharp attention to only a sincle
feature at any one time [3]. In comparine veolumes, for
example, they use mainly height. Yet, in spite of using
what appear to be linear comparisons, these same
children can learn physical concepts with a talent far
in excess of my goal for this thesis.

Hypotheses based on two contributing c=-notes are added

to the hypothesis 1ist only when two c=-notes with nearly
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identical descriptions occur, Consider figure 5-13. Since
exactly the same thing characterizes both blocks in the near
miss, there is no particular reason to suppose that one
difference should be singled out. Conseouently a third
hypothesis is formed, namely that Loth differences act
cooperatively, This additienal hypothesis takes precedence
over the two hypotheses that consider the differences
separately, It seems heuristically sound that coincidences
are significant., The machine creates new models with such
hypotheses by transforming both of the specified c-notes in
the miss-explanation mode.
5.7 Contradictions and Backina Up

Oy now one may wender why the pronrarm should deal with
alternatives to the nmain Tine of mede]l development at all.
To be sure, max inum Tikel ihood assumptions mav be wrong, but
then how could the machine ever know when such a decision is
an error? The answer is that the main line assumptions may
lead to contradiction crises which in turn cause the model
buflding prooram te retreat up the tree and attempt model
development along cther branches,

Consider anain the very simple situation presented in
figure 5-14, The current model and the near miss
combination generate an a-kind-of-merge c-note for which the

priority interpretation is that examples of the conceopt must
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be standing, The alternative, that examples must not be
lying, causes a side branch in the model development tree,
But suppose one really wants the concept to exclude lying but
not insist on standing., Showing the machine the example in
figure 5-15 does the job. The tilted Erick certainly is not
standing and its description has no HAS-PROPERTY-OF pointer
ta STANDING, Yet the current model has a "IUST=-HAVE-PROPERTY-
OF pointer to STAWDING, This is a contradictory situation.

When contradictery situations occur, the program assumes
it has made an incorrect choice somewhere, closes the branch
to further exploration, and backs up onme level to select
another alternative if any are available there, If no
alternatives are available, the program backs up still more
levels until either an wunexplored alternative is found, or
the top level is reached., If the top level is reached with
no other opticns found, the program succumbs and admits
failure. Hore often an acceptable unexplored alternative is
spon found and an effort is made to extend the model tree
down that branch, Of course, the first alternative a
contradiction causes to be explored may itself lead to
contradiction. Back up then starts from the new
contradiction and proceeds as before.

In the case at hand, an alternative is found and the

must-not-be-1ying interpretation of the comparison between






the scenes in figure 5-14 leads to a new intermediate model,
This in turn is refined by the scene of figure 5-15 which
originally caused the coantradiction on the former main 1ine,.
flo contradiction occurs on the new path becawse the MUST=NOT-
HAV E-PROPERT ¥=-0F = LYING combinaticen of the intermediate
moedel has nothing to clash with in the example. Indeed the
new example lends no new information to model devel opment
along this path, the model being the same before and after
comparison. The new example served solely to terminate
development of an improper path in the model development
tree,
2.8 Other Backino Up Possibilities

Many possible refinements to the elementary backina up
procedure invite attention., For one thing there are other
reasons why the learning preaoram mioht want to back up. In
add ition to the situation of direct contradiction, attention
should move back up the model tree if there are so many
differences between the current model and the sample that
hopeless confusion is suggested., The cause of such confusion
is Tikely to lie in the selectien of a wrong branch at some
higher point in the model tree. Similarly retreat is in
order if the program is forced to propose an unlikely
explanation to account for observed differences.

Right now the learning program backs up level by level,
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blindly exploring all possible paths from one branch point
before backing up to the next higher branch point. It would
be better if attention could move directly to the point in
the tree where the problem benan. There a better alternative
could be elected and learning could more 1ikely procede in an
orderly way.

Certainly the selection of the appropriate point 1s easy
in the case of direct contradiction, As explainec befeore,
these situations occur when some relation is found to be
essential at some point in model development only to be
absent from some subseaquent example of the concept. The
crucial point is the place where the decision was made that
the relation was essential, This is the point where
attention should qo and an alternative explanation should be

sought.
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& Some Generated Concepts
6,1 Physical Models and Functional Models

In this chapter I explore some of the properties of the
model generator through a series of examples., In the course
of this discussion, words 11ike house, arch, and tent occur
frequently as they are convenient names for the ideas the
machine assimilates. Be cautiened, however, to avoid
thinking of these entities in terms of functional
definitions., To a human, an arch may be somethino to walk
through, as well as an appropriate alionment of bricks., And
certainly, a flat rock serves as a table te & hungry person,
although far removed from the imace the word table usually
calls to mind.

But the machine does not yet know anything of walking,
residing, or eating, so the programs discussed here handle
only some of the physical aspects of these human motions,

There is nothing mystical about this. There is no
inherent obstacle forbidding the machine to enjoy
functional understanding. It is a matter of

general izing the machine's descriptive ability to acts

and properties reouired by those acts. Then chains of

pointers can link TABLE to FOOD as well as to the
physical image of a table, and then the machine will be
perfectly happy to draw up its chair to a flat rock with

the human, given that there is somethina on that table
which it wishes to eat,
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.2 The House

Figure 6-1 fllustrates what house means here. Basically
the scenme is just one w&ﬁge on top of one brick., But lacking
human experience, this one picture is insufficient to convey
much of the notion house to the machine., The model builder
must be used, and it must be permitted to observe other
camp VES.

Suppose the model builder starts with the scene in
figure 6-1, Then its description generation apnaralus
contributes the network which serves as the first unrefined,
unembellished model. (figure 6-5) llow suppose the scene in
figure 6=-2, a near miss, 15 the next sample, Its net is that
shewn in fioure 6-6. The only difference is the
supplementary pointer SUPPORTED-EY. Glancing at the table of
section 5.5, it is clear that the overall result is
conversion of the SUPPORTED-BY pointer in the old model to
MUST -BE -SU FPORTED <BY in the new model. Thus the new model is
that of fioure €=7. Figure 6-8 shows the current mode |
development tree.

“uch is yet to be learned. Fer one thina, the top
object certainly must be a wedne. Shewing the machine the
near miss of figure 6-3 conveys this point immed iately,
Similarly the near miss of finure €-4 makes the brick

property of the bottom object mandatory. But notice that
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both of these steps cause bifurcation of the model tree, The
reason is that the machine cannot be completely sure the miss
nccurs because the old property is last or because the new
nroperty is added, The proaram prefers the old-property-is-
lost theory and moves down the correspondina branch unless
contradicted. In both of these situations, the preferred
theory is correct resulting in the final model and tree showvn
in finure 6-9 and finure B-10,
6.3 The Pedestal

Development of a pedestal model proceeds much as does
the house with oanly iwo essential differences, First, the
top obiect must he a brick rather than a wedpe. Second, the
upper nbject must not marry the lowar, The scene fin
fioure 6=-11 yields tihe starting model. Fioure B-10 forces
the top chiject to he a brick while fioure F£-13 forces the
bot tom object to be a brick as well, Finure f-14 emphasizes
support, And finally, fioure 6-15 forbids the “ARRYS
relation.

F.4 The Tent

Think of the tent as two wvedoes, marryinn each ather.
s such it fllustrates the handline of twe similar
differences simultaneous]y,

Suppose the base model is the description of the scene

in fiqure 6«16 and the first sample is the near miss in
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figure &6=17, Two a=kint-of-nerae c=-notes result, one from
each of the two objects because they are bricks not wedges.
Since they differ only in source, the hynothesis that toth
act together is the priority one, which leads to the result
in figure &£-19, low this is complemented by the near miss in
fioure 6=18 which informs the machine of the importance of
the “AREYS relation. Acain dual c-notes amnounce the loss aof
a pair of MAREYS pointers and twin MUST -MAREY pointers are
installed, (figure 6-2C)
E.5 The Arch

The arch involves a mixture of the elements seen in the
previous examples, Cecause of the wider variety of
differences encountered, it produces a bushy tree and a
challenge to routines that select priority hvpotheses,

The scene in figure 6=-21 Forms the first model,
Combining this with the sceme in figure 6-22, the machine
deduces that the MAPRYS relations between the top and the
supports are not crucial,

lNext the near miss of fioure 6-23 indicates that the
support relations are crucial. Again, both new MUST-BE -
SUPPORTED -BY pointers are hand led jointly, and are installed
at once,

The machine 1earns perhaps the most important fact from

the near miss in figure 6-24, Here the twe supperts touch,
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supplying two ARRYS pointers to the description, This
cannot be allowed. Pesponding, the machine inserts MUST-HOT-
MARRY pointers between the two supports in the model,
Some may think that in asserting the MUST-HOT-MARRY
relations, the machine overlooks what they consider the

real principle, that of 2 hole or passage, DBut for a

child building with blocks, to have a hole and to have

two non=touching supports are very nearly the same idea,

Consequently the machine's opinion seems adequate for

the moment. Experiments such as these may help to

expose exactly what kinds of network relations are
adequate for a model of human thinking, from infant to
adult,

Finally, the top object is not mecessarily a brick. The
sample in figure 6-25 teaches the machine that anything in
the class CBJECT will do, since OBJECT Ties but one step
removed by an A-KINU-OF pointer from both WEDGL and ER ICK,

E,6 The Wedge

The capabilities of the medel builder certainly extend
beyond the level of object configurations, whose descriptions
allow the machine to learn about scenes, Here the
development of the wedge model illustrates the point.

Given the wedge in figqure 6-26, the description
generated is that of fiqure 627,

Wext, comparison with a brick establ ishes a MUST-BE-fi-
KIND =0F pointer to TRIANGLE. (fioure 6-23)

But now suppose the partly occluded object 1n

figure G6-29 is compared first with the current model of wedae
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and then with a description of a brick, As fiqure 6=30
illustrates, the surprising result 15 that both compariscns
have nearly the same descriptions. In both cases two
rectanagles are matched and a third side left unmatched. In
one case the unmatched side 1s another rectancle, and in the
other, it is a triancle. But there is as yet no way to
prefer one match above the other!

The problem is a 1ittle dinvelved., Mo severe mismatch 1s
evident to the difference description evaluation proaoram
because the "W ST=-EBE=-A-KIND=NF pointer is anchored to a node
that is mot matched., The model as it stands asserts firmly
that if three sides are seen, one of them must be a2 triangle,
but it does not assert that such a third side must be
present.,

This may seem to be a bug at first, but the problem is
really the machine's lack of experience. So far only two
configurations have contributed to the model, Consider the
result of refining the model with the scene in figure 6-29
which is causing the trouble, It 15 a near miss, But the
difference between it and the current model is an exit c-note
to the triangular side, The model builder perceives the need
for an emphatic pointer and ONE-PART=*UST-BE 135 inserted.
(figure 6-31)

Now if this model s compared again with the scene that
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just refined the model, the one in figure f-29, the result is
an exit c-note bearing an emphatic pointer, CHE-PART-MUST-RE,.
such a c-note strongly sungests bad mateh te the evaluation
program, and the apparent inadequacy disappears,

The scene in figure 6-32 estahlishes a final refinerpant.
This wedge shows enly two sides. After a bit of thinking,
the program decides ene of the two rectangular sides is
optional and preduces its final model., (figure 6-33)

€.7 The Composite Calumn

When a concept dnvolves groups of objects, the model
neneration problem really is no nore difficult, It juct
Lecomes a matter of concentrating on relationships between
the typical nembers of the groups studied,

Consider the notion of the compnsite column, hereafter
referred to simply as the column, Figure G-34 shows such a
column and fioure 6-40 shows part of the correspondinag
descriptive network, This description is gradually
transformed into a reasonable model in the following way:

Fioure €-35, with its bricks askew but ntherwise the
same, Introduces the "UST-MARRY pointer. Fiaure 6=36, made
of wedoes instead of bricks, relaxes the ifnclinatinn toward
bricks, find figure 6-37 causes replacenent of SUPPCRTEDR-RY
by MUST=-BE-SUPPCRTED-BY.

Hext, figure <38 contributes the most important part of
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the model, the part that demands a group, The scene in
figure 6-38 consists of only two objects and 95 not grouped
because the grouping program requires a minimum of three
objects. The resulting c-notes reflect the mandatory need
for a gqroup by way of a ONE-PART-MUST-BE pointer to the node
representing the group.

Finally, fiogure £6-39 general izes the model in an
important way because its typical-member node differs from
the model's principally because a different number of ebjects
iz indicated. Imn one case the NUMBER-OF -MEMBERS pointer
points to 3; 4in the other, 4, But since both 3 and 4 are
integers and have A-KILND=0F pointers to INTEGER, when the
comparison between the two is made an a-kind-of-merge c-note
results, The next medel consequently has a MUMBER-OF-MEMLERS
pointer to INTEGER, rather than 3, MNew columns may have any
number of objects greater than two.

Fiqure 6-41 displays the overall result,
3.8 The Arcade

The problem of learning about the arcade shown in
figure 6-42 adds another interesting dimension to the mode]
generation problem. HNothing new is needed in developing a
sequence of models for the arcade, with one important
except ion:

The arcade is a conglomeration of substructures, rather
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than of simply objects. As such the arcade development shows
how the model builder can appeal to thinas already learned in
the process of understanding more complex structures.

In building a description of an arcade, the description
programs identify arches using the previously assimilated
arch model, This leads to the description partially shown in
figure 6-43, Then subsequent samples, shown in figure 6-24,
figure 6-45, and fiqure G6-40 inform the machine that there
must be a ogroup, that the group elements must be arches, and
that the relation must be IN=-FRONT-0F.

The deduction that one arch is in front of another
invelyes methods less explored and less scund than
techniques previously described for dealing with
ind ividual objects. Indeed this is a virgin field of
inquiry that I have thought atout only enouagh to write
programs which can handle these few examples, it iz not
clear, for example, if each gstructure will require its
own set of heuristics for determining inter=-qroup
relations, or if seneral principles can be enunciated.
§o far my primitive programs assume only the followina
rul es:

1. If there is a chain of support relations

between every object in structure B to some object

in structure B, the B can be said to support A,

5 If some object in A is in front of some object
in B, but not vice versa, then A can be said to be
in front of A,
6,9 The Table
The table s much 1ike previous examples except that
groupina is done on the basis of object form and function,

rather than relation chains.
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Study the table in figure 6-47 and the description in
figure 6-48, The essentfial features of the table are
introduced by the following sequence of steps:

First the table should have bricks fer leqs, This idea
ije easily conveyed by the non-table of figure &-4%.
“oreover, this conceptfion of table excludes structures such
as that in figure 6-50, a fact which is handily incorporated
through a HUST=KOT-MARRY pointer, fext, since the non=table
in figure 6-51 has only two supports, no grouning occurs,
which leads to insistence on a group in the next maodel
refinement, This entirely parallels the process by which
the column was found to invalve a oroun. Finally, the scene
in figure 6-52 leads to replacement of the SUPPORTED=BY
pointer by 4UST-BE-SUPPORTED-BY. Figure E-53 shows the last
model in this development,

.10 The Arck in Uepth

co far the illustrations have shown networks only to
that depth appropriate for understanding. Figure 6=54 shows
the model for the arch in somewhat fuller bloom and better
ind jcates the breadth of the information available to

proarams that use the model.
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6.11 Directions for inprovement

Experiments with the concept generator titillate rather
than satisfy, for each success suqnests new ideas to De
explored, As it stands, the concept generator s a healthy
baby but not a contributing adult. The possibilities are
staggering, however.

ne way to improve model oeneration abilities is self-
evident; the system fmproves as the ability to describe
improves, The heuristic determination of support and
ocelusion and the rest can be dnproved, and more Amportant,
other so far neqglected relations and pronerties lie
unexplored. Description programs should and can be tauaht
to differentiate between cubes, bricks, bnards, and sheets,
They should know in general when the terms Tyinm and standing
are meaningful, They should be able to relate structures
more carefully. They should present alternative descriptions
if situations are plainly ambiguous. They should know about
color and texture, They should know about holes,

But as description becomes Latter, the burden on the
model builder becomes greater, for the proliferation of
properties and relations means that the number of c-notes
multiplies, thereby complicating all of the decision
nrocesses, To cope, it will probably be necessary to

institute further techniques for locatina the centrally
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important c-notes,

Fer one thing, c-notes involving certadin pointers might
rate priority attention. These might, for example, he
pointers that freguently played central reles in the
development of other models in the past., Additionally, some
pointers mioht be tentatively converted to HMUST-BE versions
by virtue of frequent occurrence in the samples under
consideration. Previous objections to this ddea still stand,
but dome with care, with the assumptions behind the actien
somehow indicated, some good might come from this,

If the machine could ask the teacher nuest fons, it would
open up ancther powerful kind of finesse., In situations
becoming precariously ambiguous, the model builder would ask
directly if some relation is inportant, or perhaps display
several imagined scenes to the teacher, recuestino a
statement about which are in the class to be learned,

Finally, and perhaps crucial, some confrontation needs
to be made with function, \ilhat to do, however, is unclear,
In dealing with the table, the development was already
strained. It is not really adequate to think of leas solely
a5 standing bricks, and generalization to the class aof all
objects seems specious. 5So far all models and
identifications deal only with descriptions of concepts'

parts, but this is not adequate to handle the notion of the
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leq, What is needed is the idea that somethina iz a leg, not
because of what its parts are and how they are related, but
rather because that something relates to something else in a
particular way, namely through the SUPPORTED-EY relaticn.
Given the ability to think this way, programs could identify
round legs, square legs, or legs made of several part s,
Functicnal use would serve as & very powerful interpretive
and qrouping tool adding immeasurably to the limited

understanding now attained,

1 emphasize that no fundamental barrier prevents
programs from thinking functionally., Indeed same
possibly useful programs already exist. As work
progresses, further analysis can be attempted and
identification can be expanded to include the
relationships that sugaest functien. At first work
should concentrate on thinns that are defined in terms
of currently observed use, rather than things that are
defined in terms of conjectured potential use., A table
leg, for example, is a leg because it currently is
observed to support something., The same object would be
far less likely to be identified by a human as a leq
were it seen separated from any table. There is 1ittle
possibility of identifyinog somethino as a table leg on
the basis of potential use unless a leg is specifically
searched for,
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7 Identification
7.1 Matching and Identification Alternatives

Once there are proarams that describe sCenes, compare
description networks, and build models, one may go on to
using these programs as elements in a variety of other goal-
oriented programs. The problem-solving programs described in
this chapter have the following kind of responsibilities:

To see 1f two scencs are identical,

To contrast two scenes and report the differences
between them, roughly in order of importance. This
supplies information that may prove useful to programs
that use a mechanical hand and arm to build copies of
SC enes,

To compare some scene with a 1ist of models and report
the most acceptable match, This §s the identification
problem in its simplest form.

To identify some particular subset of the objects in a
scene. This is not the same as identifying an entire
scene because fimportant properties may be hidden and
because context may make some identifications more
probable than others.

To find instances of some particular model in a scene,
It is frequently the case that the presence of some
configuration can be confirmed even though it would not
be found in the ordinary course of scene description,
This requires the ability te discern groups with the
required properties in spite of a shroud of irrelevant
and distracting information. It is not unlike the
problem of finding the bunny on a Playboy cover,



7.2 Exact Match

If two scenes are identical, thenm the networks
describing those scenes must be isomorphic. The nodes of the
two networks must relate with each other in the same ways,
and the nodes must relate to general concepts such as ERICK
and STAHDING in the same ways. Consequently, comparino two
such networks produces a simple Kind of comparison
description, There is a skeleton, which indicates how the
parts of the scenes interrelate, and there is a group of
intersection c-notes that describe how the parts of the scene
are anchored to the general store of concepts, flone of the
other types of c-notes appear because identical scenmes cannot
produce two networks with the necessary aberrations of form,

Conversely, if comparison of two networks results in
intersection c-notes cnly, then the parent scenes must be
identical in the sense that the description generating
mechanisms employed produce exactly matching networks, There
can be variation, but nothing so great as to vary the action
of the description oenerator. The scenes in fioure 7-1 are
identical with respect to the descriptive power of my
proorams because in both cases the relations observed are
LEFT=0F and RIGHT-0F, Wore capable programs might complain
that FAR-TO-THE-LEFT=0F and FAR=-TO=THE=R IGHT =CF hold in one

scene, while only LEFT-0F and R IGHT=0F held in the other.
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The scenes are clearly not identical with respect to a
program with such a capability.

One generalization adds a deqgree of flexibility to this
procedure that humans seem to exercise. The kind of question
to be answered is not of the simple form "Are two given
scenes identical?" but rather, "Are two given scenes
identical with respect to a certain degree of detail?”

An approach to this new problem is to mod ify the
intersection-only criterion. Instead of renquiring all c-
notes to be intersection c-notes, one reguires that all c-
notes be intersection c-notes at or above a certain level,
Thus if level one is specified, then the scenes in figure 7=2
are indeed identical because the comparison description shows
nothing but intersection c-notes at or above that level.,
{(figure 7-3) But if level two is alse of concern, then the
scenes are not identical because an a-kind-of-merge c-note
describing the difference in shape between face L and face C'
appears on that level,

This use of level plainly defines a concrete substitute
for the otherwise vagque notion of deoree of detail. One
simply says two scenes either are or are not identical down
to some particular level and the existence of non-
intersection type c-notes beyond that level is not of

concermn,
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7.3 Digression
The exact match detector is a major part of a curiously
simple program that checks for a certain kind of left-right
symmetry., The method is as follows:
1. Copy the description of the scene exactly.

2., Convert all LEFT=0F peointers in the copy to RNIGHT=0F,
and all RIGHT =0F pointers to LEFT-DF,

3. Compare the original description against the modified
copy, If the match is exact, the scene is symmotric,

This is, of course, an abstraction of the familiar
cond ition for y-axis symmetry in the mathematical semnse,
whereby symmetry is confirmed if and only if for every point
in the sceme, (x,y), the point (-x,v) is alse in the scene,
Switching LEFT=-0OF and RIGHT-OF pointers is the analonue of x-
coord inate negation and network matchina corresponds to a
check for dinvariance.

To see how this works, consider the scene in figure 7-4,
The center object, A, is flanked by B on the left and by C on
the right. Figure 7-5 shows the resulting description.
There are nodes correspend ina to objects A, B, and C, and
there are LEFT-0F and RIGHT -CF pointers indicating their
relationships,

Figure 7-6 shows the copy of the network with the LEFT-
OF and RIGHT=0F pointers switched, MHotice that the orioinal

network and the copy are identical. Hode A matches with B',
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L with C', and B with A'. Since there are no differences,
the machine concludes the scene is in fact swmétric.

Of course, a aeneralization of symmetry is possible,
just as generalization of identity is. The machine need only
perform the same copying and exchange operations and then
check for non-intersection c-notes only to some particular
depth, Thus the scene in fiqure 7-7 is symmetric to depth
one because the aroups of obiects are symmetrically placed,
It i5 not symmetric to depth two, hewvever, hecause the
placement of objects within the qroups is wrong, The scene
in figure 7-8 differs from that in figure 7-7 because there
is not only sywmetry in the location of aroups of objects,
there is also symmetry in the placement of obiects within the
groups. This means that the scene is more symetric to the
machine in the sense that the symmetry detection program
remains happy at a deeper level nf inquiry.

The machine knows LEFT-0F and BIGKT-OF are opposites
tecause information about these peinters lies in the general
memary net, (finure 7-9) Consequently, it s unnecessary to
tel 1 the program explicitly to substitute B ISHT-OF for LEFT-
OF and vice-versa., OCne need only ask the cymretry proaram 1f
there is symmetry with respect to either the pointer LEFT-0F
or RIGHT-0OF. The machine itsel1f can conjure up the

appropriate substitutions by working throuaoh the CPPOSITE
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pointer from whichever relation is suppliied, be it LEFT=-0F or
FIGHT=-0F. Similarly, if one asks for sywmetry with respect
to ABOVE, the proaram realizes that the proper substitutions
are BELOW for ABOVE and ABOVE for EBELOW, IN-FRONT-OF gives
EEHIRD for IMN-FRORKT-0F and vice-versa for a somewhat unusual
kind of symmetry oquestion,

Certainly mixtures are also peossible. One can ask for
both Teft-right and above-below substitutions which is am
abstraction of symmetry with respect to a point,

dathematically speakina, there is symmetry with
respect toe the particular peint (0,0) if for every point

(x,¥) in the scene, there is also a point (=x,=y). The

way to check a draving is to imanine moving every point

straight throuoh the origin until it is acain the same

distance from the origin but Ties in the opposite
guadrant. Far example, point I dn the symmetric drawino

in figure 7-10 goes to point P'., When the ernd result is
the same as Lhe original drawing, then the drawing is
symmetr ic.

Aore fmportant 15 a combination of a left-rioht and an
in=front=of == behind switch, This one gives the machine a
chance of realizing that two scernes are just front and back
views of the same confiauration as are the scenes in
figure 7-11.

Eventually I think the machine can come upon the
symmetry notion in the same way 1t now learns about
arches and houses, But at this point I do not think
there is enough comparison describing capability., The
needed step s the introduction of & prooram that
generates global c-notes from the local ones already at
hand, thereby introducinag the kind of hierarchy into the
comparison descriptions that is already the standard in
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scene descriptfons, One obvious ability of such a
program would be that of noticing a preponderance of
similar c-notes, [ think that this and some of the
double comparison ideas proven useful in doing analoay
problems are just the things the machine needs to learn
about symmetry,

7.4 Elementary Ildentification

Suppose a scene s to be identified, if possible, as a
HOUSE, PEDESTAL, TEMT, or ARCH., The ohvious procedure is tn
match fts description against those for each of the models
and then somehow determine which of the four resulting
difference descriptions implies the best match,

Recall that models generally contain nust-be satellites
and must-not-be satellites while ordinary descriptions do
not., Consequently, comparing an ordinary descrintion aga inst
a moedel leads to a vardiety of c-notes not found when ordinary
descriptions are compared. Pfmong these are must-be-zatel] ite
pairs, must-not-be-satellite pairs, and various flavars of
exits and supplementary-pointers, Such c-notes are decisive
in the identification process,

Coensider the case where some pointer in a2 scene's
description corresponds to its must-not-be satellite in the
model., This clearly means a relation is present that the
model specifically forbids. The resulting must-not-be-

satellite-pair c-note in the difference network is such a

serfous association impediment that identification of the
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unknown with the model is refjected outright, without further
consideration., This means that the near-arch in figure 7-12
cannot be identified as an arch because the network
describing the near-arch has MARRYS pointers between the two
supports while the model has MUST=NOT=-MARRY pointers in the
same place, The combination produces a comparison
description with a Prust-not-be-satellite-pair c-note that
positively prevents match,

Identification with a particular model 15 also rejected
if the difference description contains exits or
supplementary=-pointer c-notes which involve must-be
satellites. Such cenotes occur when essential relations or
properties are missing in the unknown., Thus the two bricks
in figure 7-13 do not form a pedestal because the model for
the pedestal has a MUST-CC=-SUPPORTED-EY pointer where the
scene of figure 7-13 has nothing. The result is a
supplementary=-pointer c-note invoelving the must-be satell ite
HUST-BE-SUPPORTED-EY. Again match fails,

The case of a-kind-of-merge c-notes invelves a slightly
more complicated rule, Recall that merge c-notes occur
generally when two nodes share properties that are not
identical, but which fall into the same general class. The
situation must be one where two linked nodes exhibit closely

related pointers to two other nodes from which paths of A-
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KIND=0F pointers lead te a common Tntﬂrse:tjnn. Fioure 7-14
shows such a situation, In this case the unknown is a kind
of wedge while the cerresponding object in the model must be
a kind of brick. Both WEDGE and EBRICK are kinds of objects,
which directly leads to a merge c-note assocfated with a
MUST -BE-A=KIND -0OF pointer in the model. But the fact that
the unknown has a property in the same class as a property
required by the model 15 insufficient. To insure rejection
of such matches, the rule is: Refuse identification if the
model's pointer contributing to the merae c-note s a must-
be-satell ite,

Figure 7-15 summarizes the procedure used on each c-
note.

Match of the scene in fiqure 7-16 against the PEDESTAL,
the TENT, and the ARCH all lead to difference descriptions
with c-notes that forbid identificatien. The PEGESTAL fails
because a merqge indicates that the reaquired A-KIND=0OF
relation between the top object and BRICK is missinag., The
TENT similarly fails because both of its objects must be
wedges, The ARCH fails because the model has a MUST-GE -
SUPPORTED=BY pointer to an object missinn in the unknown,
This in turn causes a fatal exit c-note in the difference
descript ion.

f course the machine can also match the samnle
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pedestal, tent, and arch of figure 7-17, figure 7-18, and
figure 7=19 against the same list of models. It makeg the
correct jdentificatien in each case,

The next problem emerges because some unknown may
acceptably match more than orne model in a trial 1ist,

Suppose one defines a new sort of arch that is just Tike the
old arch except that the top object must be a wedge rather
than just any object. Call this new model the WEDGE-ARCH,
Then the scene in figure 7-20 certainly matches with both the
ORD INARY-ARCH and the new WEDGE-ARCH. There is only one
slight variation in the difference descriptions. In the
WEDGE=-ARCH case, one has a must=-be=-satellite-pair c-note
because the unknown has an A-KIND-OF pointer to WEDGE and the
model has a MUST-BE-A-KIND-0F pointer. In the ORDINARY-ARCH
case, there is simply an A-KIND-0OF pointer from the model to
OBJECT, which with the unknown's A-KIND=0OF pointer to WEDGE
forms an a=kind-of-merge c-note,

O0f course there is nothing really wrong with reporting
both COROIMARY=ARCH and WEDGE-ARCH as the ddentification of
the unknown, Still, given several possible identifications,
there should be some way of ordering them such that one could
be reported to be best in some sense. To do this I assocfate
each kind of difference with a number and combine the numbers

te form a score for each comparison. Figure 7-21 shows the
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scale associatinae difference types with numbers., It evolves

heuristically from observations like the followina:

1., The intersection c-note has an assiogned value of 1.,

5.

£

This anchors the scale as all other numbers are fixed
according to how good or bad the corresnondina c=-note
seems relative to the intersection c=-note,

A must-be-satellite-pair c-note suggests good match
even more strongly than the intersection because it
ind icates that relations are present that are known
to be essential, A value of 3 aives it three times
the weight of a simple intersection.

Exit or supplementary-pointer c-notes that dinvolve
must-be-satellites are distinctively bad becauss they
indicate vital properties arec missinn, The value is
a damagine =G,

Gther exit and supplementary=-pointer c-notes are had
but not nearly so bad, A scere of -2 secms about
right,

Tust=not-be-satellite pairs are vory bad evidence
indead. The worst score of -6 ig dasorved,

The a-kind-of-mérge is nesitive or negative dependine
cn whether either of the pointers are must-be
satellites, If a must-be satellite is involved, an
important property is missina, resulting in a =4,
Ctherwise, it indicates lorse assnciation, not as
tight as that announced by an intersection, A .5 is
used.,

fince differences are noted and number associations

are made, a program must combine the numbers in a

reasonable way. If SCORE[U:"] represents the scere of

comparing unknown U against model ", then 1 use
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SCORE[UsM] = WOIIN(YY + #u{n)n(n)
where

M{i) = exp[=-L(i)]

a nd

H{1) is the number associated with the {1th
difference,

W(i)} is the weighting factor that reduces the
influence of lower level differences.,

L{i) is the level of the ith difference,

Combining the terms additively is convenient, and the
we ight ing terms, the Y&, handily reduce the influence of
the Tower level differences, T have no stronoer reasons
for usinag this 1 inear formula, and it is not somethino to
be defended to the death. EBut I do not think it would pay
to put ruch effort inte tuning such a formuwla because more
knowledee about the priorities of differences should lead
to far better programs that do rnot use numbers at all,
i.5% Identification in Lontext

Examine ficure 7-22, Hotice that object B seems to
be a brick while object U seems to be 2 wedoe, This is
curious because 0 and D show exactly the same arranaoement
of lines and faces, The result alse seems at odds with
the machine's models and identificatien process, as

deseribed so far, becausze so far anything identified ac a
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wedge must have a triangular face,

But of course context is the explamation, Differenmt
rules must be used when programs try to fdentify objects
or qroups of objects that are only parts of scenes, rather
than the whole scene. In the case where the guestion s
whet her or not the whole scene can be identified as a
particular model, it is reasonable to insist that all
relations deemed essential by the model be present, while
a1l those forbidden, be absent. GBut when the ouestion is
whether or not a few parts of a scene can be identified as
a particular model, then there is the pessibility that
some important part may be ohscured by other objects. In
these situations, my idantification program uses two
spec ial heuristics:

First, the coincidence of objects lying in a 1ine
seems to suqgest that each object is the same type as the
one obscuring it unless there is nood reason to reject
this hypothesis, This is what suagests object D is a
pedae in figure 7-22.

Second, essential properties in the model may be
absent §n the unknown because the parts involved are
hidden. This 1s why identification of object 0 with wedne
works even though 0 lacks the otherwise essential

triangular face. The reaquirement that forbidden



properties do not occur remains in force, however,

Elaborate work can be done on the problem of decdidinn
if the omission of a particular feature of some model is
admissable in any particular situation., Wy program takes
a sinqularly crude view and jgnores all omissions,
Fejection of the hypothesis that the obscured 15 1ike the
obscuror happens only if the machine notices details
specifically forbidden by relations in the model. Thus
the effort is not to select!/ the test matching model, but
only to verify that a particular fidentification is not
contradictory. This means that object B in figure 7-23
is confirmed to be brick-like while brick-ness is denied
to D because of the ruinous apparent triangularity of the
side face.

0f course if the propacation of a property like
brick-ness or wedge-ness down a series of objects is
interrupted, then the unknown must be compared with a
battery of models, with the progoram still foroiving
omissions, but now searchino for the best of many pessible
identifications,

No matter what the method by which a partly obscuraed
object is idemtified, the use of a PROBABLY=A-KIND=-OF
pointer instead of the basic A<KIND-0OF is used to qualify

the conjectured relationship between the object and the
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model it is identified with,

Figure 7-24 shows how the various pieces of this
procedure fit tooether, and figure 7-25 shows what happens
when it moves down a simple row of nhjects,

7.6 Learninag from Mistakes

Suppose the preogram attempts to identify the scene in
figure 7-26 as a pedestal, Identification fails because
the resulting type of a-kind-nf-merge ¢c-note cannot be
tolerated, ©Sti11 it would ke a pity to throw away the
informaticn about why the match failed, Instead the
otherwise wasted matching effort can be used to suagest
new identification candidates,

The way this works is gquite simple., First the
machine spends idle time comparino the various madels in
its armamentorfium with each other, Whenever the number of
differences observed are few, a simplified descripticn of
those differences is stored. Thus the machine knows that
a house is similar to a nedestal, from which it differs
only in the nature of the top object.

These descriptions link the known mndels tooether in
a sort of sipilarity network, {(figure 7-27)

This network and the difference descriptions noted in
the course of identification failure help decide what

model should be tried next. The description describing
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the differences between an unknown and a particular model
1s compared with the descriptions of the similarity net,
If the difference between the unknown and a particular
mode] matches the difference between that medel and some
other model, then identificatien with that other model is
Tikely,

For example, the scene of fiqure 7-26 relates to the
model of a pedestal in roughly the samo way that the model
of a house relates to the model of a pedestal, House 1is
consequently elevated to the top of the list of trial
models., Fiqure 7-25 clarifies the procedure,

7.6.1 Similarity Lescrintions

The similarity descriptions are simplifications of
the comparison descriptions and are part af the
description of each pointer that relates similar concepts,
When a losing identification reminds the proaram of some
difference structure it has seen, no serfous commitment is
made and mistaken conjectures do not hurt much,
Lonsequently it is desirable to strip the difference
descriptions to the important elements, thereby saving
storage space and increasing matching speed, even thounh
some wrong medels may be proposed as 1ikely
identifications, The simplified description therefore

consists in part of a sort of skeleton, (fiqure 7=29)
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Intersection c-notes and others associated with positive
numbers on the evaluation scale are ignored because only
the disruptive c-notes are of interest here. These
disruptive c-notes, which susaest poor match, are huna on
the skeleton.

Figure 7-30 shows the simplified difference
description resultine from comparisen of the house model
with the pedestal medel, MNotice that it is exactly the
same under this simplification transformation as that
resulting from comparison of the pedestal model and the
scene in figure 7-26,

7:.6.2 Definition of Quantitatively Small

This whole similarity scheme depends on the fact that
two models may have ocnly one or a few differences that
ma ke them strongly different in a qualitative sense,
Indeed, the similarity Tinks should exist only when the
models invelved are reasonably close in the sense of
produc ing few differances, 'hen this is true, an unknown
that nearly identifies with one model in the sense of few
differences is assured of matching well with the other,
particularly when the two sets of differences match, Thus
there must be seme rule for deciding 1f the number of
differences is sufficiently small to warrant a pair of

pointers in the similarity network. Currently the machine
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considers sufficiently small to mean the number of
mismatch-causing c=-notes is either less than two or less
than one=-third of the number of other c-notes,
J.7 The MNeedle in the Haystack

The scene of figure 7=31 is curious in that one can
find amn arch, a pedestal, a house, and a tent in it if one
is looking for them, GBut if they are not specifically
searched for, menticn of these particular models is
unlikely to appear in 2 description of the scene,
Although the configurations are present, they are hidden
by extraneous objects sn well that oencral orouping
programs are unlikely to sort them out. Yet the ouestion,
"Does a certain model appear in the scene?" is certainly a
reasonable one, One way to attack 1t divides nicely inte
three parts:

1. Find those objects in the scene that have the best
chance of heing identified with the model., TIf the
model has unusual pointers or references unusual
concepts, the pregram pays particular attentiorn to
them. Similarly, extra attention s paid to the
emphasized parts of the model, for if mates carnot
be establ ished for them, solid identification
cannot be affirmed. Happily, my standard network
matching program dees these thinns without
augmentation, The result is a set of links
between the ohjects of the mode! and their nearest
analogues in the scene. The other parts of the
scene remain unlinked and end up appearino in exit

c=notes,

2, UOnce a good aroup of objects is picked, then the
pointers relating these objects to the other
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objects in the scene are temporarily forqotten.

In human terms, this is 1ike painting the subgroun
a special color or otherwise reducing possible
confusion from relations with the surrounding
objects,

3. Finally, with the best group of objects set into
relief by the previous excision, the ordinary
identificaton routines are applied with the
expectation of reasonable performance,

The folly of direct application of the identification
programs |ies in the myriad irrelevant exit c-notes that
the extra objects in the scene weuld cause, Such clutter
leaves the machine as bewildered as it does humans.

7.8 Reacting to Identification

Once {dentification of a substructure happens, the

discovery should contribute to the store of knowledoe,
Figure 7-32 illustrates some of tre more obvious thinas
done after identification of the house and arch in
figure 7-=33. The highest level node no lonoer connects
directly to the individual objects. Instead, those
objects dangle from new subscene nodes by ONE-PART-1S
pointers. Similarly the old top level concept peints to
the new subscenes with ONE-PART-IS, The subscene nodes
naturally point by A-KIND-DOF to the models they identify
with,

Rather more can be daone if the machine knows

something about how the relations of a gqroup's components
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to cxternal objects dictate the relations of the aroup.
Ainy knowledgeable machine knows that a house confiouration
rests on whatever its bottom object rests on. flore
generally, the following rule seems reasenable:
Suppose A and B are aoroups of objects ident ified as
substructures, then if an object of A relates to an
object of B by SUPPORTED-DBY, then substructure 2
relates to substructure B by SUPPORTED-DCY,
In consequence, the net in ficure 7-3Z becomes that in
figure 7-34.
7.8.1 Cxamples
Using this same procedure, the scene ir fiaure 7 =35
spon reaches the state of illumination shown fin
figure 7-37. By examining either the picture or the net,
it is easy to see that the arches AT, AL, and AR
themselves constitute & sort of super-arch with arches as
parts instead of objects. The machine does not refuse
this substitution since the model for ARCH has only OME-
PIRT-IS pointers to BRICK and OBJECT, not ONE-PART-HUST-BE
pointers., The matching score is simply lower than it
would be for arches made of bricks. The final description
essentially states that the scenme consists of a sort of
arch supported by an arch composed of three arches,
Figure 7-36 shows a richer example includinag

instances of a pedestal. Again the machine identifies
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groups, establishes relations between the identified
groups, and then tries to identify groups of oroups,
reporting eventually that there is an arch composed of an
arch on top with two pedestals for supports, It then
notices that this generalized arch is supported by two
ord inary arches, But the generalized arch on top of two
supporting arches anain is a kind of arch, the fifth and
last discovered,
7.8,2 Other Relations

I have not thouqht much about the calculation of
other group properties, It seems reascnable, however,
that a set of programs using the following ideas should
work to some extent, albeit crudely, To find IN-FRONT-OF
relations between groups one can use the above rule for
SUPPORT with the obvious exchanae of IN-FRONT-O0F for
SUPPORTED-EY, To establ ish the size of a aroup one can
add together the individual areas of its cbjects., To
check for LEFT=0F and BIGUT-0F, one uses the center of
area and extreme points of the entire group rather than
those of an individual ohject. But otherwise the left-

right algorithm may remain the same.
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8 Closing Remarks
B.1 A System

The flow diagram in figure 8=1 shows how the
techniques fit together with those of others to form a
primitive scene-perceiving system. At the very becinning
1ies the scene, from which all dnformation ultimately
derives. A proagram developed by Griffith [7] watches the
scene through an eye resembl ing television camera, The
result is a line drawing, Hext proarams of Mahabala [1]
and Guzman [2] classify vertexes and group regions inte
bod ies, Mext is a stage in which object identification
15 dene, Following closely, one has the determination of
object-object relations and then group identification.
Finally there is identification of group-group relations,

Eeyond this, action depends on intent. fin one path
one finds attempted ifdentification of the entire scene
with a known model or models, On another, an effort is
made to find an instance of some particular model in the
scene, 5ti11 another path involves use of the
description to help form new concepts,

8.2 Conclusions

This collection of ideas and technigues supports four

major contentions, each of which depends on those

preced ing it, These things are small steps for a man, but
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niant leaps for a machine,
1. A computer can produce a detailed scene
descript fon consisting of the same sort of facte
humans ohserve,

2, These descriptions 1ead in turn to descripntions of
how scenes compare with one another,

3. An understanding of how scenes compare permits the

computer to learn models for new concepts from

examples and leads to a new way of thinkino about
learning,

4. These models final ly endow the machine with the
ability to recoqgnize instances of previously
learned concepts,

8.3 Backaround Issues
In a more cosmic sense, the goal behind this work is
to make a machine that can understand the environment Just
a5 we humans seem to. Some critics of Artificial
Intelligence think that this is not possible, perhaps
because they cannot imagine how it can be done, [ think
the real hang wup must 1ie in the understanding one has
about the notion of understandina, A review of a few
dictionaries convinces me that the editors are hard
pressed to define the word without using it. It s as if
it were a word so basic that it cannot be described in
simpler terms.
But surely to understand must invelve the formation

of a descriptive plateau of knowl edge lvina somewhere

between raw, totally unprocessed data and detailed answers
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to problems, I do net wish to belaber this point, but I
feel that the sort of abstraction represented by the
network description of a scene can be viewed as
constituting a sort ef understandina, If so, depth of
understanding corresponds roughly to the elaborateness of
a description, dense networks suggesting more
understanding than sparse ones,

Another notion of lono standing concern to philosophy
is that of the ideal form, Yet 1ittle work seems to have
gone intc careful study of what humans mean by such simple
concepts as that of the TABLE., I believe study and
improvement of the concept generator constitutes a fresh
approach to this problem and may lead to interesting new
results.

B.4 Suggesticns for Further lork

Improvements to anrd extensions of this work can he
understood in terms of two extremes: minor chanaoe and
majer overhaul, The minor-chanae category is laroe
because the hiohest priority ogoal in such work must be a
complete system, A complete swstem, however flimsy,
serves to guide resource allocatien into the most deserved
problem areas., Without experience with such a system, one
risks suffering from the phencmenon of diminishing

returns, expending great effort for marcinal improvements
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on relatively strong pieces of the system, FPut the

natural

result is that there is much roon for further

improvenent of the system's parts. Some possibilities

have already been mentioned, but it is appropriate to

mention them here as a convenience for these who wishk to

wark in

1.

the area,

Nearly all the programs that establish relatiens
between objects can be improved., The program that
looks for support bBlunders semetimes because
obviocus bottom lines are overlooked and sometimos
because a scene has tipred backoround objects.
The program that lecks for in-front-of
relationships cannot hondle situations in which
objects are aliagned. ™any of these programs could
?@nefit from a progran that could iwagine hidden
ines,

No distinctions are made between obvious,
unarquakle prorerties and border]l dne cases. It
might be ocod if the amalytic pronorars could
report things 1ike certainly-left-of or sort-of-
left-of instead of invariable, und ifferentiated
left-of,

The rules for the identificatior of a scene with a
mede]l need refinement. The weighting associated
with the various differences and the way those

we ights are cembined have a specious auality, It
would be fine if some way could be devised to
eliminate the numbers alteonether, perhans throuah
a more intelliaent prooram with a built=in
understand ing of priorities.

The schemes for recoonizing reasonable clusters of
objects is particularly primitive and has
undergone too 19ttle testing, Mechanisms must be
found for producing and handline alternatives to
the first partition devised,

The entire concept generatfon procedure and its
ramifications certainly should absorb great



attention. [ore powerful methods for recoonizine
impoertant differences are needed. The machine
should have a faculty by which it can complain or
ask questions if the teacher is doina poorly,
Generalization to functiomal properties is a must,
. The network matching prooran, althouah it is at
the core of the entire system, is a hastily
programmed, slow and stubborn stumblebum, Arn
improved version would simultanmeously increase the
power of the many system activities that use it.

The ather kind of improvement is the major overhaul,
This is not aimed at sophisticatine an existing part of
the system, but rathker focuses on the spectacular
increzses in power derived from bolder, hianer ideas, 1
discuss two such possibilities below. Regretally, these
problems are difficult to formulate and delimit.

First s the general problem of introducing bi-
directional information flow., Glance apain at the flow
difagram of figure 8-1. lflotice that all of the arrows
point from bottom teo top, indicating that all informat ion
moves in one direction only. There is as wet no way a
process can discourse with and modify the behavior of any
process acting below it,

It seems clear that for high level command to affect
low level operation in a non=-trivial way, there must be
some alternative or additional method that camn be thrown
into battle. As yet few such points of influence exist in

my system., There are two left-of -- right-of procedures,
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and there is the option of using or not usinn various
relation-finding and orouping procedures., [ut the forte
of an internally interactive systen will probably involve
selection of one method from several nossibi 1ities amonnq
which there are trades between speed and accuracy,

Another amorphous problem is that of wedding the
visual capabilities of this system with other systems that
specialize in different kinds of perception., A& real rokot
should understand the environment not only in terms of
vision but alsc in terms of touch, sound, lanquage, and
perhaps other mediums, Understandinn each of these is a
ma jor problem, but as work proceeds, there will be the
super-problem of understand ing how various perceptions of
the environment should interact to form a unifiad
under stand ing.

I understand neurcanatomical evidence is that
evolution has come to arins with this problem only
lately and only in man with any finesse. forman
Geschwind reports that monkeys have very limited
ability to correlate thinos they learn via the
visual, auditory, and somesthetic senses [8]. Indeed
it may be reasonable to say each menkey is really
three monkeys occupying the same skull, a visually
oriented monkey, 2 auditory one, and 2 scmesthetdc
one, Man apparently avoids this through a chunk of
cortex that somehow matches up these perceptions,

The chunk believed respensible by Geschwind is called
the inferior parietal lobule,
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Append ix

This appendix is a2 cursory introduction to the
netwark matchina program essential to many of the systen's
operations. Its job is to determine which nodes of two
descriptions best correspond, The corresponding nodes are
said to be the Tinked pairs.

The program starts vwith the entry nodes of two
descripticns., It immediately innuires if there is
evidence that the two nodes should be considered a linked
pair. The answer is yes if beth nedes have a commen
nointer te some commen intersection node, Thus ¥ and X'
are a lirked pair in figure A=1, but they are certainly
not in figure A=2, since nodes X and X' have neither
pointers nor nodes in cammon,

If no linking can occur, the program moves down ene
level through the most commoen pointer present to dauahters
of the currently inspected nodes and tries to find 1inked
pairs among them. In fiqure A-3, the entry nodes are not
linked on first dnspection since there are no commaon
pointers to any common rode, They bath have dauohter
nodes, however, and these are next examined. P is the
most numerous pointer, so nodes C1, C2, C1°, and C2' form

two groups in which the program tries to find good pairs
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to establish as linked., (fiqure A-4) Since C1 amd C1' both
have the same pointer to a common node they are good
cand idates for the formation of a linked pair. HNodes C2
and CZ' are even more alike, however, since they have tuwo
pointers to twe common nodes, Conseauently, C2 and C2°
are linked first, with action en C1 and C1' postponed.
tach time a pair of nodes is Tinked, the proaram trys
to link up any of their daughter nodes that are not
intersections, In the example this means that an effort
is made to find a linked pair between the left node, E1,
and the right nodes, E1' and E2', all of which are found
at the end of P pointers., (ficure A=5) This is the first
example of a contest. Goth E1' and [2' share common
intersections with C1. The winnina pair picked by the
machine is always the one with the hinkest count of common
pointers te intersectons or previously linked padrs. In
this case, E1-E1' scores hinher because there 15 not only
@ set of pointers to the intersecticon node, but also a seot
to the previously linked padr C2-C2°.

The Tinking of El and E1° causes examination of their
daughters, F1 on the left, F1' and F2' on the riaht.
(fioure Rf=6) F1 and F2' both have a pointer N to a cammen
noede, F1', however, has the must-be version of the

peinter I to the same node, Such satellites occcur
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freqguently in models, indicating mandatory relations.
Priority is given to matches in which satellites
correspond to the pointers they are modifications of,
This means the B with HUST =BE-R pointer match between
nodes F1 and F1' has somewhat more weioht than the match
of R with B that one would have between F1 and F2', The
F1-F1"' match therefore is considered the better one and
results in a linked pair,

F1 and F1"' have no daughters to be nmaired so no
further penetration of the net occurs. The next job is to
re-gxamine the next higher parent nodes because Tinks just
formed may provide enouah new evidence to 1ink two higher
nodes, In this case backup first considers nodes El and
B, EY and E1' are already linked., PAttentdion therefore
pops up stil1l ancther level to C1 and €C1'., CV and C1' are
linked, FRe-gxamination of their unlinked daughters, D and
E2, reveals nothing new.

Once more the programs attentien shifts upward, this
time to A and A'., MHow therec s a pair of pointers to
linked nodes supplying Tinkina evidence, (figure R-7) A is
conseqguently linked to A",

Hext comes further examination of the remaining
daughters of A and A'., [ is now the most commen pointer

to unaccounted for nodes, pointing as it does to G1, G2,
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and G2'. (figure A-8) Among these nodes there 1s the same
amount of evidence for linkino G1 and G2' as there is for
linking G2 and G2'., ‘Uhen this is the case and no further
evidence can be collected from linkino lower level nodes,
a linking is selected randomly from those possible. Here
G2 and G2" are Tinked,

This leaves only reexamination of C2 and C2', The
intersection evidence is clear ard they are Tinked, Since
A and A' have no more dauahters and since they are the

entry nodes, tle process terminates reporting the linkages

indicated on the fully displayed netvork of figure A-0,
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