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Abstract

We introduce the concept of using a laser range finder array to measure height and
tilt for mobile robotics applications. We then present a robust, scalable algorithm for
extracting height and tilt measurements from the range finder data. We calibrate the
sensors using a precision two-axis system, and evaluate the capabilities of the sensors.
Finally, we utilize the sensors and the two-axis system for imaging to illustrate their
accuracy.
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1

Introduction

In many underactuated robotic systems there is a need for independent measurement

of the orientation of some part of the robot relative to the ground - independent, that

is, in the sense that the data should come directly from sensors and not from reverse

kinematics. Generating data from the configuration of the limbs of a robot becomes

futile when those limbs are off the ground. An extreme case is a running robot, which

may at some point have all legs off the ground at once. In order to generate new

control signals, the robot must have access to reliable sensor data, regardless of the

configuration and position of the robot. One such sensor system is an array of laser

range-finders, and it is this array system which forms the focus of this paper.

The principle of operation is simple; a set of sensors are arranged such that they all

face the ground at slightly different angles. The distance from each sensor to the flat

ground is then measured, and relevant information, like height and tilt, is extracted

using trigonometric and linear algebraic techniques. In this paper, we resolve two

barriers to the construction of such a system. First, we explore the methodology of

extracting the desired information from sensor data, and present a robust and scalable

algorithm for performing this extraction. Second, we calibrate and evaluate one of

the laser sensors; this calibration is an essential step towards getting reliable data

out of an array. Finally, to demonstrate the calibration, we use the laser sensor for

imaging, illustrating its accuracy and ranging abilities.
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2

Theoretical Analysis of Sensor

Array Data

The ultimate goal of this research is the creation of a sensor array composed of

multiple laser rangefinders. If each rangefinder is pointed downwards in a slightly

different direction, then so long as the ground is reasonably flat, the array data can

be processed to obtain useful information on the location of the array relative to the

ground. Specifically, it will be able to discern the distance normal to the ground

- the height of the array - as well as its angle relative to the ground, in the form

of pitch and roll angles or in some other equivalent form. By utilizing a variety of

techniques, the rangefinder array can quickly, accurately and robustly generate this

data, for integration into the control loops of mobile robots.

2.1 Transforming measurements

In the most general case, we may have an arbitrary number of sensors n, each with a

location and orientation fixed relative to some reference frame attached to the moving

platform. The ith sensor, then, may be parameterized by its position pi, its heading v,

and the range it reports, xi. Our goal, then, is to find the orientation and position of

the moving reference frame relative to the surface the lasers see. Solving this problem

directly via trigonometry is a difficult and messy process which leads to unwieldy



solutions for n > 4; however, by recasting the problem in the language of linear

algebra, we can avoid unnecessary trigonometry and make the problem tractable.

First, note that the inverse problem is comparatively easy; given a known position

and orientation, finding the expected range reported by a sensor is simply a matter

of applying the appropriate sequence of transformations. Taking a single range mea-

surement closes a vector loop which begins and ends in the plane we are measuring

against. That is, it creates a chain of vectors connected head-to-tail, which begin and

end in a known plane. Letting P be the position of the mobile frame origin in the lab

frame, and R be the rotation which takes vectors from the lab frame into the mobile

frame, the chain can be expressed as

V = P + Rpi + Rxii

This vector must be confined to the plane we measure against. Thus, if we choose

our lab frame such that 2 is orthogonal to that plane, we have

v z= (P + Rpi + Rxihi) - i= 0

This reduces to

Rz(pi + xihi) = 0 (2.1)

where R = ( cos(O) sin(#) cos(O) cos(#) sin(9) P2 ) is a row vector correspond-

ing to the z-component of the rotation and translation. Here, Pz is the height of the

mobile frame above the plane, and we have chosen 6 to be roll and # to be pitch.

Note pi and hi are four-vectors:

Pi1

0
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If we knew the position and orientation of the mobile frame - that is, if we knew

0, #, z, obtaining x would simply be a matter of solving equation 2.1. Given n sensors,

then, we have a set of n equations relating the orientation of the mobile frame to the

n measurements xi. This can be represented as a single matrix equation:

Plx P2x ... Pnx h1 x h2 x -- hn x 0 ... 0

RT Piy P2y Pny hiy h2y - hn 0 X 2 -- 0

Plz P2z ... Pnz h1z h 2 z -- hnz - 0

1 1.-- 1 0 0 --- 0 0 0 --- xn
(2.2)

To simplify the rest of the problem, we define a matrix X as

T

Plx P2x ... Pnx h1  h2 x - nx -x 0 ... 0

Ply P2y - Pny + hiy h2 y hny 0 X2 -.- 0

Plz P2z - Pnz h1  h2 z - - : --. 0

1 1.- 1 0 0 ... 0 0 0 ... xn
(2.3)

Taking the transpose of equation 2.2 we have a reduced matrix equation,

XRZ = 0 (2.4)

Our goal is to obtain the matrix Rz, in which is encoded our orientation infor-

mation, from a measured matrix X. Note first that the tractability of the problem is

dependent on n. As might be expected, for n < 3, the system is underdefined, and

there are an infinite number of solutions; in this case, there is insufficient information

to determine the orientation of the mobile frame. Additionally, for n > 3, the system

is overdefined; since our measurements are subject to noise, our matrix X will be

imperfect and the system will frequently be impossible to solve exactly. Only for

n = 3 are we strictly guaranteed a solution; we will begin our analysis there.

In this n = 3 case, the problem is reduced to finding the nullspace of the matrix

X. While there are many methods of doing this, the one which is indicative here is



to first diagonalize the system, then recognize that the eigenvector corresponding to

a zero eigenvalue lies in the nullspace of X. To do this, we first square the system by

multiplying by XT, then choose an appropriate method for diagonalization.

Most of these problems are mitigated by using a larger number of sensors. In

the presence of error, the system will become unsolvable; however, we can employ

projective methods to obtain a nearest solution, in the least-squares sense. We begin

by squaring the system and defining a quantity e:

E = XT XR2 (2.5)

We then diagonalize XTX:

XTX = VAV- 1  (2.6)

Note that since XTX is symmetric, we can express the eigenvectors in an or-

thonormal form, and thus V = VT.

The best solution to equation 2.4 is then the matrix R, which minimizes l |2, the

magnitude of e:

lE|2 = RTVA 2 VT R2 (2.7)

By inspection, this will be minimized by choosing Rz as the eigenvector corre-

sponding to the smallest eigenvalue of the matrix XTX. The fact that the matrix

XTX will in general be nonsingular permits us to use a modification of the power

method to compute this minimal eigenvector. The power method utilizes the fact

that successively multiplying a vector by a matrix will asymptotically map the vector

to the eigenvector of that matrix corresponding to its largest eigenvalue:

A nx = dA"vi (2.8)
i=1

Here, Ai denotes an eigenvalue and vi an eigenvector. As n - oc, the largest eigen-

value will dominate the others and the product will converge on an eigenvector. If



the matrix A is nonsingular, however, we may perform the same process the inverse

of A; the eigenvalues of the inverse of a matrix are the inverses of the eigenvalues

of the original matrix, and as such the largest eigenvalue of the inverse matrix will

correspond to the smallest of the original matrix. Thus, to find our eigenvector Rz

above, we simply choose an arbitrary vector x, and perform the multiplication as

many times as necessary to achieve our desired accuracy:

Rz, = (XTX)- )x (2.9)

The minimal value of n will depend on the typical magnitude of C, and thus will

be a function of the accuracy of the sensors. In practice, however, n is typically small,

on the order of 2 to 5. One key advantage of this method is that it does not require

access to complex numerical libraries; it can be easily coded in any programming

language, making it suitable to be run on a microcontroller of the type one might use

to drive the sensor system in a mobile robotics application.

We are left with a single degree of freedom in the solution RT: the length of the

calculated eigenvector. To obtain the desired result, we impose a normalization on

the first three coordinate values of R[.

To do this, we first divide R into two parts such that R = vT ):

v0 = ( cos(O) sin(#) cos(O) cos(#) sin(O) ) (2.10)

vi = P (2.11)

Trigonometric identities impose

v Tvo = 1 (2.12)

From this constraint, we can fully deduce the magnitude of RT. If we additionally

require Pz to be positive, we restrict the sign of R T; thus, the eigenvector has been

completely constrained and the the desired parameters {0, #, z} can be deduced.



The full algorithm can then be defined as below:

1. Collect data from n sensors.

2. Using a previously calculated set of position and heading vectors, calculate the

matrix X as in equation 2.3.

3. Compute (XTX) and (XTX)- 1 .

4. Choose an arbitrary vector x E R 4. Compute R2 as in equation 2.9

5. Normalize R2 as in equation 2.12

6. Extract {#S, 0, z} from R2 via trigonometry.

This method is scalable to an arbitrary number of sensors, requires no numerically

cumbersome calculations, imposes minimal calculation error, and results in output

that is nearly optimal, in the sense that it provides the best estimate of the desired

parameters, given a set of data.

2.2 Error Mitigation

The use of a linear algebraic framework opens up a realm of possibilities for interesting

ways of mitigating errors in the sensor array, as well as accelerating computation. For

instance, by computing the change in coordinates rather than the coordinates directly,

we can rapidly develop an estimate of the current state. If we define a matrix of

measurements A = XTX, with X defined as in equation 2.3, then we may solve the

problem once explicitly as in section 2.1, then iteratively for later times. Let the

subscript i denote a fully solved initial state AiRi = ERj, and let the subscript f
denote a later state for which only the measurement matrix Af is known. Thus we

have

A i R = esRi (2.13)

Af Rf = Ef Rf (2.14)



We denote variations by A:

Ef = Ei + AC (2.15)

Af Ai + AA (2.16)

Rf Ri + AR (2.17)

If we assume the variations to be small - that is, we assume the update is being

applied after a small time step, or in a slowly varying system - we can neglect second-

order terms. Moreover, we assume the variation in e to be negligible; c is a small

random variable we expect to vary more or less continuously, and variations in small

continuous variables are second order terms. Eliminating the f indexed terms in favor

of A terms and expanding, we find

AIR + AAR + Ai AR = eRi + Ej AR (2.18)

This can be solved for AR by substitution with equation 2.13:

AR = (eI - Aj)-1 AAR (2.19)

The result provides an accurate estimate of the final coordinate solution R given

the new measurements. This solution can be computed significantly faster than can

the eigensolution, and using it as an initial guess could potentially reduce the number

of iterations required by the initial algorithm. This speed has an additional advantage.

Assume one of the laser beams encounters an obstruction. The resulting data will

result in output parameters that dramatically deviate from true values, with no way

of knowing a priori which beam is giving incorrect data. The only sign of an error

will be the large value e generated in the algorithm. However, if the computation

can be done quickly enough, an exhaustive search becomes feasible; the algorithm

cycles through every combination of beams, starting with all n beams, then all n

combinations of n - 1 beams, and proceeding until E drops below a certain threshold.

1. Use equation 2.19 to estimate the new coordinates Rf from the new data.



2. Take the product RTAfRf = 6RTRf. If c is small - with small defined by

experiment - then Rf is likely very close to the true eigenvector. If C is large,

it is likely an obstruction has occurred.

3. If c is large, repeat the first step n times, where n is the number of sensors;

each time, remove a single sensor from the data. When the result gives a small

E, then the obstructed beam has likely been located.

4. Once the beams generating invalid data are obtained, the full algorithm detailed

in section 2.1 may be employed.

Obviously, this will only work if three sensors are providing unobstructed data.

This suggests a second benefit to including redundant sensors; in addition to reducing

the error constant E, they will provide additional redundancy in the case of an uneven

floor or the presence of obstacles.
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Calibration and Evaluation of

Sensors

The second phase of our project involved the design and fabrication of a two-axis unit

to be used to calibrate and evaluate the laser sensors. Once constructed, the unit was

used to measure the variation in sensor output current as the beam was scanned over

a wall, allowing us to calibrate the unit for a variety of ranges and angles of incidence.

The obtained calibration curve was then used to generate a depth-mapped image of

the lab; the image provided fair resolution, and some feature extraction was possible.

3.1 Design of Testing Unit

For the purposes of calibrating and evaluating the laser sensors, we create a two-axis

rotating platform, driven by precision servos and laser cut for accurate geometry.

The unit was constructed out of laser-cut acrylic. The first design iteration was

meant to be assembled, then clamped and glued together with an adhesive (Figure

3-1). This methodology proved unworkable, however; the need for disassembly to

remove the motors and laser sensors made permanent adhesion impractical. Moreover,

design flaws in this early iteration became apparent. There was insufficient mechanical

support for the pitch axis, which was largely supported by a cantilever action on the

motor gear; this resulted in sagging, and made accurate measurement of the position



of the laser sensor difficult.

Figure 3-1: First design iteration

A second iteration was built (Figure 3-2). This iteration supported the pitch axis

with a bearing, and reinforced the yaw assembly with additional material. Rather

than glue, this variant employed laser-cut acrylic struts, meant to mate with holes

cut in the main body. This design offered two distinct advantages; first, the snap-

fit action of the struts held the structure together without the benefit of adhesives,

facilitating assembly and potential disassembly, and second, the struts offered the

structure increased rigidity by reinforcing each corner.

The strut-supported assembly did prove troublesome to assemble; because of in-

consistencies in the laser kerf, it was difficult to cut mating holes for the struts that

interfered enough to provide a good grip, yet not so much as to prohibit assembly.

Ideally, multiple sample cuts would have been made and the best size chosen experi-

mentally; in practice, we simply made an initial estimate and found it to be less than

ideal, yet satisfactory. Although several cracks formed in the acrylic during assembly,

none proved structurally fatal.

To drive the unit, we chose two Dynamixel EX-106+ servos. These were chosen

primarily because of their high angular positioning resolution; manufacturer specifi-

cations claim a angular precision of 0.06', and preliminary evaluation suggested that



Figure 3-2: Second design iteration

precision could be attained quickly and repeatably, both essential in a precision mea-

surement unit. The servos had additional advantages, as well; they interface nicely

with Labview, they can be daisy chained to simplify wiring and control architecture,

and they offer high-torque for their size, guaranteeing enough power to move the

sensor assembly quickly.

The software implementation was done entirely in National Instruments Labview;

the motor drivers, laser data collectors, and high-level control were each written

separately, then merged into one larger program (Figure 3-3a). The only complication

of note came in the implementation of the motor drivers; the motor accepts commands

in hex-code literals, that is, actual four-bit sequences corresponding to the various

codes. Outputting such codes is a nontrivial task in Labview, which by default outputs

hex code in ASCII characters; the resolution of this issue required a relatively complex

subroutine (Figure 3-3b).

3.2 Calibration

To evaluate the accuracy and precision of the Micro-Epsilon range finders, we em-

ployed the pan-tilt unit described above. The unit was fixed at a known distance from



(a) Complete Labview block diagram (b) Labview subroutine for generating hex-
adecimal output

Figure 3-3: Labview code used to control scans

a flat plane, and measurements were taken at one degree intervals over a wide variety

of angles. The resulting data was fitted to a known form using Matlab's optimization

tools.

This form was inferred from predictions relating to the geometry of the unit and

three measured parameters: the yaw angle 0, the pitch angle #, and the range finder

measurement i, measured in mA. The geometry of the unit was obtained from the

solid model and verified with direct measurement; the position of the laser point

in Cartesian coordinate space can then be obtained via a series of rotations and

translations of axes.

We first suppose a linear relationship between the measured current i and the

experimental range r; that is, r =c 1i + c2. If 61 is a vector between the center of

yaw rotation and the location of the laser emitter, and h is the heading vector of the

laser in the rotating yaw frame, then the location of the laser point in the yaw frame

is given by 'yaw =J + rh. Rotating the frame by the yaw angle 0 and translating by

another vector 2 gives the laser point location in the rotating pitch frame; a similar

procedure gives the laser point location in the lab frame.

The complete transformation is then given by

r= V3 + R,(#) (V2 + RY()(i 1 + rh))

By measuring i for a series of angles 0, #, we can obtain the parameters ci, c2 which

most nearly project the data into the plane; these parameters can in turn be used to



interpret the measurements taken by the sensors in other contexts. For instance, the

same calibration can be applied to the multi-sensor array, or for use in imaging with

the pan-tilt unit.

The unfitted data is shown in Figure 3-4a. The fitted projection is shown in Figure

3-4b. The calibration constants obtained give the relation

mm
r = 242.15 i- 718mm (3.1)

mA

The standard deviation of the fitted normal distance is only 4.18mm over a distance

of 498mm, or approximately 0.8%. This range is characteristic of the likely ranges

sensors would report in an implementation of the array described previously, and the

accuracy of the sensor is promising for applications in such a system.

400 . 400

25 50 3 0

-150 0 5 0 200 460 Zm

(a) Unfitted laser sensor cur-(b) Fitted laser sensor output(c) Fitted laser sensor output,
rent scaled

Figure 3-4: Laser sensor ranging a plane. The data is presented as a three dimensional
point cloud, with color denoting angle of incidence with the plane

Moreover, the sensor data proved highly repeatable. Repeated measurements at

identical angles produced normally distributed data with a standard deviation of just

1.1mm. This suggests that much of the uncertainty in the distribution of points stems

from angular dependence; in principle, if we could develop a functional relationship

between the angle and the range distortion, we could employ perturbative methods

to generate a more accurate measurement of the angle in the sensor array.

Plotting the measured current against the actual range (as obtained via trigonom-

etry) reveals that there is almost no dependence of the error on 0, the angle of rotation

about the long dimension of the sensor (Figure 3-5a). However, there is a marked



dependence of error on #, the angle of rotation about the short dimension; at large

absolute values of #, the measured range drifts further and further from its actual

value (Figure 3-5b). Unfortunately, attempts to quantify this disturbance were largely

unsuccessful; adding first and second order perturbative terms to the function for r

were only capable of reducing its standard deviation by a few microns. The new

optimal calibration was found to be

mm
r =241.9 i - 716mm - 0.188# + 1.29# (3.2)

mA

850- 850

800- 800-

750- 750

700- 700
E E

650 650

600- 600-

550 550

50040 500

4501 45015 5.5 6 6.5 5 5.5 6 6.5
Sensor Output (mA) 5553 Sensor Output (nA) X 106

(a) Color indicates 0 (b) Color indicates #

Figure 3-5: Range versus measured current. The solid line is the calibration curve.

The new standard deviation of the fitted normal distance was measured as 4.15mm;

this improvement is likely too small to be significant, and no gain is likely to be had

by attempting to account for angular effects.

One may question whether some of the error observed in the experiment is endemic

to the machine itself, rather than the laser array. While this is certainly possible, it

is unlikely; in addition to the manufacturer's claims of accuracy, two simple tests

suggest the motion of the machine to be very accurate. First, the machine was able

to repeatedly hit a mark on a target wall with the laser beam, even after being taken

through its entire range of motion, and even when the wall was a substantial distance

- over twenty feet - away. Second, careful measurements of the motion of the laser

beam projected on the wall agree to within measurement error with the commands
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(a) Photo of imaged area (b) Depth plot of imaged area

Figure 3-6: Depth mapping of an area of the lab. Color denotes distance from camera.

given. That is to say, when the laser was told to move, for instance, one degree,

the observed motion corresponded almost exactly to that predicted by trigonometry.

Given this demonstrated accuracy and precision, it seems reasonable to ascribe any

error to the laser unit itself, and not the machine.

3.3 Imaging

As an application of the calibrated laser sensor, we use the pan-tilt unit for imaging.

This reveals several attributes of the sensor data.

Features can be clearly differentiated at many ranges (on the order of 300mm

to 4000mm) in the image in Figure (3-6). For instance, the cupboard and pipes on

the left of the photo are visible, as are the drop ceilings and and table on the far

right. Accuracy seriously breaks down at longer ranges, however; the red background

of the image fails to track the planar shape of the far wall, and is instead roughly

dome-shaped, as can be seen in Figure (3-7). This may be due to the exhaustion of

the sensor unit's range; the true distance was very nearly the limit of the sensor's

advertised 8m range.
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Figure 3-7: 3D point cloud of imaged



Conclusion

Both the experimental and theoretical work done here can serve as useful background

and groundwork for the construction of a laser array system. The algorithms pre-

sented in the first part of this paper are efficient and in some sense optimal; they

extract very nearly as much information as can be extracted from the range-finder

data, and perhaps equally important, they can be implemented easily in low-level

languages. The most computationally complex step is the inversion of a four-by-four

matrix. Moreover, the theoretical framework is scalable and robust, two useful fea-

tures in a system of this type; to generate more accurate data, we can simply add

more sensors, without doing a significant amount of additional work.

The experimental work offers two key results. First, it generated a calibration

curve for the sensors, which was found to be very nearly identical in each of several

sensors. This curve will allow for more accurate measurement when the sensors

are deployed; without it, we would be forced to estimate a calibration from the

manufacturer's data sheets, and given how far off our initial guesses were before

calibration, this would certainly result in greatly diminished accuracy. Second, the

experiments allowed us to get a gauge on how accurate the sensors are. For instance,

we measured experimentally the standard deviation of ranges reported, and found it

to be quite small. We also were able to measure things like deviations from linearity in

the sensors; results indicated that all higher-order terms and all angular dependence

are negligible in the regions of interest. This greatly simplifies the later design of the



sensor arrays, and suggests such a system can be highly accurate.

There are several concerns not addressed in this paper. One key design parameter

for the array system will be its throughput. The target application seeks to operate at

a command frequency of roughly 100Hz; the array will only be useful if it can operate

at similar speeds. While the sensors themselves have the bandwidth to operate at such

speeds, the rest of the system needs to be able to keep up. The National Instruments

ADC we used for experiments here - chosen for its compatibility with Labview - would

be far too slow at its 'high resolution' setting, and even its 'high speed' setting may

not be fast enough. We did an initial investigation of other ADC chips; while high-

resolution, high-bandwidth chips do exist, they tend to be expensive and frequently

introduce a large time delay. While this is fine for calibration and measurement, it

could be extremely detrimental if it occurs inside a command loop.

Finally, it remains to be studied precisely how to best integrate such an array

into a command loop. While the method outlined in Section (2.2) does utilize the

redundancy of the array, the inclusion of other sensors, such as gyroscopes or tilt

sensors, could augment this method to offer even more redundancy. There exist

various ways of measuring tilt and height, each with differing advantages; some have

better noise characteristics, some offer faster responses, and some are more consistent.

An ideal system would incorporate several types of sensors and synthesize their output

to generate superior results. The results of this research clearly indicate, however,

that a laser range finder array can and should form an integral part of any such

ensemble.


