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Abstract

In this thesis, we begin by studying selected fluctuation observables in order to locate
the QCD critical point in heavy-ion collision experiments. In particular, we look
at the non-monotonic behavior as a function of the collision energy of higher, non-

Gaussian, moments of the event-by-event distributions of pion, proton and net proton
multiplicities, as well as estimates of various measures of pion-proton correlations. We
show how to use parameter independent ratios among these fluctuation observables
to discover the critical point, if it is located in an experimentally accessible region.

We then begin our investigation of the properties of quarks and baryons which live
in the strongly coupled plasma of certain gauge theories which are similar to QCD
using the AdS/CFT correspondence. We first study the velocity dependence of the
screening length, L,, of Nc quarks arranged in a circle (a "baryon") immersed in the
hot plasma of strongly coupled A = 4 super Yang-Mills theory moving with velocity
v. We find that in the v --+ 1 limit, L, oc (1 - v2 )'/ 4 /T, which provides evidence for
the robustness of the analogous behavior of the screening length defined by the static
quark-antiquark pair.

Finally, we compute the energy density and angular distribution of the power
radiated by a quark undergoing circular motion in the vacuum of any conformal field
theory that has a dual classical gravity description and many colors. In both the
strong and weak coupling regimes, the angular distribution of the radiated power is
in fact similar to that of synchrotron radiation produced by an electron in circular
motion in classical electrodynamics: the quark emits radiation in a narrow beam
along its velocity vector with a characteristic opening angle a - 1/Y. This jet-like
beam of gluons opens a new way of modeling jet quenching in heavy-ion collisions.

Thesis Supervisor: Krishna Rajagopal
Title: Professor

Thesis Supervisor: Hong Liu
Title: Professor
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Chapter 1

Introduction

In this Chapter we will present an introduction to the Quantum Chromodynamics

(QCD) phases of matter that current heavy-ion collision experiments are exploring,

namely the hadron gas and the quark-gluon plasma (QGP). We will discuss the phase

transition between the two phases and the existence of a second-order critical point -

the QCD critical point. We will then discuss the experimental evidence for the QGP

production and a probe used to learn more about its properties. We will introduce

the gauge/gravity duality as a tool to help us understand the properties of strongly

interacting theories, such as QCD.

1.1 QCD and Heavy-Ion Phenomenology

QCD, the theory of strong interactions, is a very remarkable theory. It becomes

weakly coupled at high energies (asymptotic freedom), which allows us to write down

the Lagrangian of QCD in terms of its perturbative degrees of freedom, the quarks and

gluons. This fundamental definition is very simple, yet QCD describes a very broad

range of phenomena such as jet quenching and color superconductivity, while its phase

diagram (when you turn on finite temperature and baryon chemical potential) is not

fully understood. The main reason is that QCD is strongly coupled at low energies

which results in quarks and gluons becoming confined within hadrons, like protons

and neutrons. Some regions of the phase diagram can be explored experimentally
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Figure 1-1: A sketch of the QCD phase diagram. See text for discussion.

using heavy-ion collision experiments and the study of the interior of neutron stars.

In this thesis we will focus on understanding aspects of the phase diagram region

where the baryon chemical potential is not too high, namely the quark-gluon plasma

and its phase transition to a hadron gas. But first, what is the QCD phase diagram

and what do we know about it?

1.1.1 QCD Phase Diagram

Figure 1-1 shows a sketch of the QCD phase diagram. The horizontal axis is the

baryon number chemical potential, pB, and the vertical axis is the temperature of

the system, T. In the regime of small temperatures and high densities quarks form

Cooper pairs and condense. This results in the formation of superconducting phases

[1, 2, 3, 4, 5, 6] which may arise in the core of neutron stars.

At small temperatures and low densities, QCD is in the hadron gas state, which

is what we see around us. In this state, chiral symmetry is broken and quarks and

gluons are confined within hadrons. As you increase the temperature, there is a phase

transition where quarks become deconfined and exist in a strongly coupled soup - the



strongly coupled quark-gluon plasma (sQGP). As you increase the temperature even

further, the QGP becomes weakly coupled where the quarks and gluons move almost

freely in the plasma. Heavy-ion collisions at the Relativistic Heavy Ion Collider

(RHIC) [7, 8, 9, 10] produced this strongly coupled QGP at the early stages of the

collisions (roughly l fi, [11], see Section 1.1.3 for more details). Theoretical studies of

the properties of this matter are very difficult due to the strong interactions involved.

Chapters 3 and 4 will focus on selected properties of moving matter in strongly

coupled plasmas of theories similar to QCD, using a tool called the gauge/gravity

duality, which will be introduced in Section 1.2.

At zero densities, finite T lattice calculations indicate that the phase transition

between the hadron gas and sQGP phase is a smooth crossover [12] at temperature

of around 170 MeV, whereas model approaches indicate that for zero temperatures,

the pB-driven transition is first order [13]. This means that the first order line ends

before reaching the pB = 0 axis, and the point where this first order line ends is

called the QCD critical point. Its location is not known theoretically even within a

factor of two on the yB axis. The use of lattice calculations to locate the critical

point is limited due to the notorious sign problem which arises for non-zero pB-

Reviews on the lattice limitations and model approaches on the location of the critical

point can be found in References [14, 15, 16, 17, 18, 19, 20, 21, 22]. Therefore, our

best bet is to locate it experimentally, using heavy-ion collision experiments. So

far, data has been published from the STAR collaboration on net proton cumulants

[23] in high energy RHIC collisions which exclude the critical point for pB < 200

MeV. Subsequent RHIC runs at lower energies will explore the phase diagram up to

[LB ~ 420 MeV, which will shed more light on where the critical point is or is not.

Chapter 2 is dedicated to describing how to experimentally locate the critical point

using fluctuation observables, if it is located in an experimentally accessible region,

together with a more detailed discussion of the STAR results.



1.1.2 Heavy-Ion Collision Experiments

In heavy-ion collision experiments, heavy nuclei, such as gold at RHIC and lead at

the Super Proton Synchrotron (SPS) and at the Large Hadron Collider (LHC), are

collided at very high center-of-mass energies F. At RHIC, the maximum Vs per

nucleon reached is 200 GeV and at the LHC the maximum vf per nucleon reached

will be 5.5 TeV. The reason that high collision energies are necessary is so that

matter with high energy densities is created. In order to see this consider a simple

argument: in the center-of-mass frame, the nuclei move at relativistic speeds and

hence their spherical shape becomes Lorentz contracted into a "pancake" shape. The

higher the collision energy is, the more squeezed the pancakes become and hence when

the nuclei collide (for simplicity head-on), their energy is concentrated at a smaller

volume, which results to a higher energy per unit volume (energy density). Colliding

large nuclei is also useful in creating larger volumes of high energy density matter

which makes it easier to study the properties of such strongly interacting matter in

bulk.

By varying the center-of-mass energy Vs of the colliding nuclei, one can change the

temperature and chemical potential of the produced matter at the initial stages after

the collision, thus scanning the phase diagram. As you increase Fs, the temperature

of the produced matter increases but the baryon chemical potential decreases. The

\F dependence of T is intuitive but perhaps the dependence of pB on \F is less

clear so let us give a simple argument: for higher \/s, more entropy is produced but

the baryon number is conserved; the net baryon number per collision is always equal

to the total number of baryons arising from the initial nuclei, namely 197 + 197.

Therefore, as we increase fs, these baryons are diluted among many more hadrons,

making the baryon chemical potential smaller.

As we mentioned above, a strongly coupled QGP is produced at the early stages

of the heavy-ion collisions. As this QGP expands and cools, it follows paths such that

the ratio of the baryon number density to the entropy density, nB/S, is constant. This

arises because the baryon number is a conserved quantity and assuming the expansion
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Figure 1-2: The orange lines indicate paths that matter after heavy-ion collisions
follow with the ratio of baryon number density to entropy density, nB/S constant.
Different paths shown are for different center-of-mass energies \/_.

happens adiabatically, the entropy is also conserved. Hence, the ratio of the densities

is conserved. Such paths are sketched in Figure 1-2.1 At some point the temperature

of the system drops such that the system crosses the phase transition region and the

QGP hadronizes. As the system expands even further, there is a point where the

mean free path of the particles becomes equal to the system size and there are no

more inelastic interactions. At that point, the particle numbers stop changing and we

have chemical freeze-out. In Figure 1-2, the chemical freeze-out points are denoted by

small circles. After that, the particles move towards the detector without changing

into other particles, thus the detector 'sees' roughly the particle multiplicities from

the chemical freeze-out conditions.

Experimentalists can measure the particle multiplicities of many hadron species,

and the ratios among these multiplicities turn out to obey the distributions arising

'Note that there is a discontinuity in the trajectories when the system goes though the first order
line. This occurs because as you move from the QGP phase to the hadron gas phase, there is a
sudden drop in the number of degrees of freedom and hence in the entropy. Therefore, in order for
the nB/s ratio to remain constant, the temperature has to increase.



from fitting a grand canonical ensemble with temperature T and baryon number

chemical potential pB. The temperature extracted from the fit is the chemical freeze-

out temperature and for RHIC at its highest energies, this temperature is around

155-180 MeV [24, 25]. This means that the system is in thermal equilibrium near the

freeze-out point. The N dependence of T and pB described above also translates

to the freeze-out conditions. Empirical parametrization of the pB dependence of the

freeze-out temperature has been obtained from heavy ion collision data. An example

coming from [26] is:

T(pB)= a - b A2-CpB (1-1)

with a = 0.166 GeV, b = 0.139 GeV- 1 and c = 0.053 GeV -3, which will be used in

Chapter 2.

As we mentioned above, the detector 'sees' the particle multiplicities from the

chemical freeze-out point. Therefore, in order to see the effects of the critical point

on observables, one should find observables that are sensitive to the proximity of

the critical point and try to get the freeze-out point as close to the critical point as

possible by varying the collision center of mass energy, f.

The critical mode, the o--field, is the order parameter of the phase transition

between the hadron gas and the QGP. The relation between its mass, ma, and the

correlation length, , is given by:

ma =- (1.2)

At the critical point, the critical mode becomes massless ( diverges) and develops

long-wavelength correlations. This is true only in the case of an infinite system that

lives for an infinite amount of time. But the QGP created in heavy-ion collisions has a

finite size and lives for only a short period of time, which limits ( at the critical point

to a maximum value of roughly 1.5 - 3 fm [27, 28, 29], which is still long compared

to the natural ~ 0.5 fm away from the critical point. It turns out that the finite

time is a more stringent limitation on the growth of the correlation length [30, 27]

than the system size finiteness. The critical mode couples to particles observed in the



detectors, for example pions and protons, in the following way:

L.,,, = 2 G o7r-r + g, p p,(13

where G is the coupling constant between the critical mode and pions and g, is the

coupling constant between the protons and the critical mode. Due to this type of

interactions, the increase in the critical mode fluctuations near the critical point re-

sults in an increase in the fluctuations of particle multiplicities, transverse momentum

distributions, etc. of particles that interact with the critical mode. As we change the

center of mass energy of the collisions, if the freeze-out point approaches the critical

point, we would see an increase in the fluctuations in the number of these particles.

These fluctuations would then decrease as we move away from the critical point. (This

is true for any observables which are sensitive to the proximity of the critical point

to the point where freeze-out occurs.) Hence, a characteristic signature of the critical

point is the non-monotonic behavior of such variables, as a function of V [31, 30].

Higher moments depend on higher powers of ( and thus increase more near the critical

point, hence making them more favorable in searching for the critical point [32]. This

non-monotonic behavior of higher moments of pion, proton and net proton multiplic-

ities near the critical point is the main signature that RHIC is currently searching for

in order to locate the critical point. In Chapter 2, we present a detailed analysis of

such higher moment observables and also show how to use nontrivial but parameter

independent ratios among these more than a dozen fluctuation observables to discover

the critical point.

1.1.3 Quark-Gluon Plasma Production

Experiments at RHIC have found that the resulting fireball of quarks and gluons

seems to behave collectively like an almost perfect liquid - a liquid which is well

described by hydrodynamics [33, 34, 35]. The conclusion of collective behavior comes

from examining the asymmetry of a collision around the collision axis. Suppose the

two nuclei do not collide centrally but collide with an impact parameter comparable



Figure 1-3: A sketch of the collision of two nuclei, moving in and out of the plane of
the page. The collision region is limited to the green "almond-shaped" region in the
middle and the nucleons outside that region (spectator nucleons) do not participate
in the collision.

to the nuclear radius. Then, the two nuclei collide in an "almond-shaped" region as

shown in Figure 1-3. If the resulting matter was weakly interacting like a free gas,
then the momentum distribution of the particles observed would have been uniform

around the almond shape. If, on the other hand, the matter produced is strongly

interacting and has reached local equilibrium, thus producing some form of a fluid,
then the pressure gradient along the short side of the almond (the x-axis in figure 1-3),
is much larger than the pressure gradient along the long side, thus producing particles

with higher transverse momenta in the direction of the short side of the almond. This

is what has been observed at RHIC: hadrons move with summed transverse momenta

that can be as much as twice as large in the short direction of the almond as they are

in the long direction. This is called elliptic flow and it is characterized by the elliptic

flow parameter v2 , where v2 is the second moment of the momentum distribution in

the collision around the collision axis.

Since the QGP is very well described by ideal hydrodynamics, that means it is

strongly coupled. The viscosity, r, is a measure of the ability of the medium to

transfer momentum over distances. The stronger the interactions between particles,

the harder it is for momentum to transfer across distances that are long compared to

~ S-1/3, where s is the entropy density, since the particles will be colliding more, and



hence the smaller q/s. For example, for weakly interacting A4A theory, q/s ~ A-

[36]. Therefore, large coupling means low q/s ratio. In the case of the QGP produced

at RHIC, this ratio is found to be between 0 and 0.2 [35], implying that the QGP

produced is strongly interacting. As we cannot use perturbation theory for strongly

coupled systems, we need to find alternative methods in dealing with such cases. The

gauge/gravity duality (AdS/CFT correspondence) which will be described below in

Section 1.2, is one such approach. It is used to calculate, among other things, some

properties of strongly coupled plasmas although not exactly the QGP of QCD. These

plasmas have been found to have an 77/s ratio equal to 1/47r - 0.1, [37] which is very

similar to the ratio measured for the QGP produced at RHIC. The ratio q/s is one of

the universal properties that are similar in all strongly coupled theories with a dual

gravitational description and many colors.

1.1.4 Probing the Quark-Gluon Plasma - J/ suppression

and jet quenching

As we learned in the previous Section, heavy-ion collisions produce a strongly coupled

QGP. Now let us see some experimental observables that can be used to learn more

about the properties of this plasma, which will also be the focus of later Chapters.

As the attraction between electrons is screened when placed in an ordinary plasma

compared to vacuum, it is reasonable to think that the attraction between quarks

will be screened when placed in the QGP. Due to the presence of the medium, the

interactions between the quarks inside mesons or baryons become weaker and there

is a point where these composite particles dissociate into their constituents. One

can define the screening length, L, which is roughly the size of the largest hadrons

which remain bound at a given T. But are there any hadrons that survive above

the deconfinement temperature T? Hadrons made out of light quarks all have the

same size (roughly 1 fin) and they all dissociate at the deconfinement transition

temperature. On the other hand, hadrons made out of heavy quarks, for example

charm and bottom quarks, have much smaller sizes and thus survive as bound states



even at higher temperatures, above the deconfinement transition. Examples of such

hadrons are the J/I (cE) and T (bb). Lattice calculations of the qg-potential indicate

that the ground state of the J/' dissociates at a temperature ~ 2 T [38, 39]. This is

the reason the J/I suppression has been suggested to be an ideal probe for the QGP

properties itself [40]. Data from SPS and RHIC do indeed demonstrate the existence

of such suppression [41] and will be further studied at the LHC.

One significant difficulty in explaining the data is that in lattice calculations,

the quark-antiquark pair is treated in the rest frame of the QGP but in collision

experiments, the c6-pair is created with some velocity. The AdS/CFT correspondence

has been used in order to calculate the screening length of a heavy qq-pair (a meson)

moving though a strongly coupled plasma obtaining [42]:

L" "n(v, T) es L*'* (0,T)(1 - v2)1/4 c1 (1 - v2 )1/4 , (1.4)

for large velocities. Expression (1.4) implies that the faster a mesons moves, the

smaller its screening length is. Chapter 3 will be focused on the screening length

calculation for a heavy baryon also using the AdS/CFT correspondence. It turns

out that the baryon screening length also scales with velocity as expression (1.4) for

large velocities, thus verifying the robustness of this scaling behavior. Note that these

mesons and baryons studied using the AdS/CFT correspondence are not the same

in all respects as the mesons and baryons found in QCD. These are external heavy

quarks moving in plasma of Nr= 4 Supersymmetric Yang-Mills (SYM) theory, which

will be discussed in the next Section.

When a very energetic parton is produced in nucleus-nucleus collisions, it must go

through the hot strongly coupled plasma that is present in the early times after the

collisions. Unless the parton is produced near the edge of this fire ball and heading

outwards, it has to propagate roughly 5-10 fm in this medium. These high trans-

verse momentum partons manifest themselves in the detector as jets. Experimental

results exist for back-to-back jets which arise from high transverse momentum par-

tons produced near the edge of the fire ball, with one parton going through the QGP



and the other exiting immediately [43] (compared to the jets arising in proton-proton

collisions where there is no QGP produced). These results show that the away-side

jet (defined as hadrons with transverse momentum pr > 2 GeV) is missing which

implies that the parton that propagated through the medium lost so much energy

that it produced no hadrons with pr > 2 GeV and instead its energy went into soft

particles. This is what we call jet quenching: a class of experiments where energetic

quarks or gluons produced in rare high transverse momentum elementary interactions

in the initial stage of the collision move through the fluid. For a recent review on jet

quenching see [44] and References within. As the parton moves through the strongly

coupled plasma, it not only looses energy but as it gets kicked by gluons, it acquires a

transverse momentum (transverse with respect to its original direction of motion) in

what is called transverse momentum broadening. The AdS/CFT correspondence has

been used in order to calculate the jet quenching parameter q by evaluating Wilson

loops [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55].

Jet quenching has so far been studied in the weakly coupled QCD regime and only

using a holographic calculation for the calculation of the jet quenching parameter.

This is valid only for high energy jets where there is a clear separation of scales,

which is not the case in the jets currently produced at RHIC. As the AdS/CFT

correspondence can be used to study strongly coupled field theories (in particular

K = 4 SYM theory, see next Section), we would like to use it in order to study the

jet propagation and how it interacts with a strongly coupled plasma. In Reference [56],

electrons and positrons are coupled to K= 4 SYM and they studied their scattering

through a virtual photon. It was found that energy flowed outwards in a spherically

symmetric manner with no jets. Similar results of isotropization of radiation at strong

coupling have been found in References [57, 58]. These results seemed to rule out the

use of K = 4 SYM theory to model jets. In Chapter 4 we will be discussing a set up

where a quark is moving in a circle in the vacuum of K= 4 SYM theory, which results

in a beam of gluons that is tightly collimated in angle and that propagates outwards

forever in the K = 4 SYM theory vacuum without spreading in angle - something

that looks like a jet. Even though this is not literally a QCD jet (as it is not produced



through the fragmentation of an initially far off-shell parton), it opens a new way of

modeling jet quenching in heavy-ion collisions. The pattern of radiation that we find

is very similar to that of synchrotron radiation produced by an electron in circular

motion in classical electrodynamics. If we were to add a nonzero temperature to

our calculation, we could watch the tightly collimated beam of synchrotron radiation

interact with the strongly coupled plasma that would then be present. The beam of

radiation should be slowed down from the speed of light to the speed of sound and

should ultimately thermalize, and it would be possible to study how the length- and

time-scales for these processes depend on the wavelength and frequency of the beam.

1.2 The Gauge/Gravity Duality

1.2.1 Motivation

It has long been known that black holes carry entropy that is proportional to the area

of their horizon. This is very strange because we are used to working with local field

theories where the degrees of freedom scale with the volume of the system, not its

area. This suggests that gravity has the same number of degrees of freedom as some

local quantum field theory (QFT) in one less dimension. This statement is made

formal by the holographic principle [59, 60] which says that a theory of quantum

gravity in a region of space (of dimension d + 1) is described by a non-gravitional

theory (for example a QFT) living on the boundary of that region (of dimension d).

How can we interpret this extra dimension from the view of the QFT? In QFT,

we usually regard observables as a function of the length scale we observe them.

For example, we integrate out the short-distance degrees of freedom and reduce the

theory to an effective theory living in a longer length scale. This is what is called

the renormalization group (RG) flow. We can think of a QFT as many copies of the

theory living at each length scale, where degrees of freedom smaller than that length

scale are integrated out. We can turn this length scale dependence of a QFT into an

extra spatial dimension and interpret the extra dimension of the quantum gravity as



the length scale (or energy scale) of the field theory living at the boundary.

But what type of gravity theory could it be? It turns out that the perturbative

expansion of a non-abelian gauge theory in 1/Nc (in QCD, Nc = 3, which is the

number of colors), when taking Nc to be large, looks very similar to the perturbative

expansion in the string coupling constant, g, of a closed string theory. This makes

it tempting to identify g, ~ 1/Nc and conjecture that the dual theory to the QFT is

some type of a closed string theory.

We would like the gravity theory living in the d + 1 dimensions to have the sym-

metries of the d-dimensional field theory. One such symmetry is the d-dimensional

Poincare symmetry (the group of isometries of Minkowski spacetime in d dimensions).

If we also require the theory to be conformal (which includes scale invariance), then

the d + 1-dimensional spacetime is uniquely determined to be the (d + 1)-dimensional

Anti-de Sitter spacetime, AdSd+1. This is a maximally symmetric spacetime with a

constant negative curvature. Hence, a conformal field theory (CFT) should have a

string theory description in AdS spacetime - the AdS/CFT correspondence!

1.2.2 The Duality

In the last Section we briefly motivated the duality between a conformal field theory

and a string theory in AdS spacetime. The most well studied form of the correspon-

dence is between X = 4 SU(Nc) Supersymmetric Yang-Mills (SYM) theory and type

IIB string theory on AdS 5 x S5 spacetime [61, 62, 63, 64]. AN = 4 SYM theory is

a conformal nonabelian gauge theory which has a massless spin 1 gluon, four mass-

less spin 1/2 gluinos and six massless spin 0 scalars, all in the adjoint representation

linked by the K = 4 supersymmetry. The theory is specified by two parameters: the

number of colors Ne and the 't Hooft coupling A which is defined as

A = gyN, (1.5)



where g'M is the gauge coupling. These parameters imprint themselves in the string

theory via the string coupling, g, and the curvature scale of AdS, RAds,

R 4
47rg,= A/Ne, As = A, (1.6)

S

where 1, is a fundamental length scale, called the string length. In the large Ne limit,

with A kept constant, the string coupling becomes small and quantum effects can be

neglected. When A is then taken to be large (a strongly coupled field theory), the AdS

curvature becomes very large compared to the string length. Since the string length

is the typical size of a fundamental string, this limit implies that we can ignore the

size of the strings and treat them as point particles. This is the same as omitting the

contribution of all the massive string states in low-energy processes and only keeping

the massless modes, i.e. the supergravity modes. Therefore, upon taking both of

these limits, gauge theory problems can be solved using classical gravity in AdS5 x S5

geometry. In this thesis we will only work in these two limits which implies that we

are ignoring the stringy and quantum nature of the strings.

So what are these 10 dimensions? The five dimensions wrapped in the S5 will

play no role in the computations done in this thesis. The S5 can be replaced by any

compact five-dimensional space X5 and our strong coupling results will be valid for

all conformal quantum field theories with a dual classical gravity description - since

conformality of the quantum theory maps onto the presence of an AdS 5 spacetime

in the gravitational description. 2 The field theory lives in the four dimensions of

the boundary of the AdS5 spacetime (the bulk). The AdS5 metric is given below,

where we denote the fifth dimension by u (which is the inverse of the AdS 5 radial

coordinate):
R 2

ds2 As (,,,dxdx,+du2). (17)

2Results will be valid for all strongly coupled conformal quantum field theories with a dual
classical gravity description as long as we express our results in terms of the 't Hooft coupling A in
each of the conformal field theories. The relations between this parameter, Nc, and the parameters
that specify the gravitational physics in the AdS 5 space - namely the string coupling and the
dimensionless ratio of the AdS curvature and the string length - will be different in different
conformal field theories, since these relations do depend on the geometry of X5 .



As u -. 0, we approach the boundary of the AdS 5 where the field theory lives. Note

that due to the prefactor in front of the Minkowski metric, smaller values of the radial

coordinate, i.e. larger values of u, (deeper in the bulk) correspond to larger length

scales in the (3+1)-dimensional field theory. This is the IR/UV relationship that

characterizes the AdS/CFT correspondence [65].

Suppose that we would like to turn on a finite temperature in the field theory

on the boundary. We can modify the AdS space by adding a black hole and iden-

tifying the Hawking temperature arising from the black hole with the field theory

temperature [61, 66]. The metric of AdS 5 with a black hole horizon at uh is given by:

ds 2 R2 [-f dt2+dx2±+1 , (1.8)

where
4

f = 1 -(1.9)
h

with Hawking temperature T = 1/(rUh) which is also the temperature of the field

theory state.

One of the important maps between the two theories is the correspondence be-

tween gauge invariant local operators O(x) and fields in the bulk gravity theory

4(x, u). The correlators of such operators can be evaluated using the GKPW formula

[67, 68], which assumes that the Euclidean partition functions of the two theories

agree with* certain boundary conditions. The GKPW formula relates the generating

functional of the field theory in Euclidean time to the renormalized on-shell classical

supergravity action:

Kexp (Jd4x o(x) 0(x) ~ exp (SgraV[(x, U)]), (1.10)

where we have absorbed the minus signs in the exponents using the Euclidean time.

On the left hand side, we are calculating an expectation value with some source

0, where 0 is the field in AdS dual to the operator 0 of the field theory. On

the right hand side, we are calculating the partition function of the gravitational



theory evaluated at # which solves the appropriate field equation in the bulk with

the constraint that # has a boundary value 0 (i.e. as u --+ 0). Using the formula

(1.10), we can calculate connected correlation functions of the gauge theory by taking

derivatives of the on-shell classical supergravity action:

((9(x 1 ) O(x 2 ) --- O(xa)) = onSgr[#(x,u)]
(0(X) O(2) -- OX.))- $0(x1) JOO(x2) ... JO#(xn).

4 0=0

One important application of the above formula is obtaining the gauge theory stress-

energy tensor TMN(x). The source field in this case is the boundary value of the AdS

metric GMN(X, u), which we will denote as g,,,. We obtain:

(TMN(X))= lim 2 6SI] (1.12)
U0 vl--g(x, U) og,, (X, U)

where we have divided by the square root of the metric determinant in order to

construct the stress-energy tensor (instead of the tensor density). Expression (1.12)

will become useful in Chapter 4, where we will calculate the radiation coming from a

quark moving in a circle.

As we have mentioned before, all the degrees of freedom in N= 4 SYM are in the

adjoint representation. But the quarks in QCD are in the fundamental representation,

hence we should find a way to add them to the N= 4 SYM theory. A way to do this

is to add a probe D3-brane. A Dp-brane is a "defect", where closed strings can break

and open strings can end, that occupies a p-dimensional (spatial) subspace. The

probe D3-brane is extended along the x1 , x2 , X3-directions (the spatial dimensions of

the gauge field theory) at some u = A< Uh. The external quarks are open strings

that end on the probe brane and hang down in the bulk. The quark mass, m., is

related to the probe brane location, A, by m, = RAds/(27rl2A). We can then take

the infinite quark mass limit, A -+ 0, where the probe brane sits at the boundary

in order to simplify our calculations. A meson in this picture is a string connecting

the two string endpoints at the boundary (the quark and antiquark) which hangs

down into the fifth dimension. Figure 1-4 shows a sketch of these configurations.
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Figure 1-4: Schematic picture of AdS5 black hole indicating the presence of an external
quark and an external meson. We only show two of the four boundary dimensions

(x1 , x2) and the (inverse) radial coordinate u.

Note that the quarks added in this way are external quarks and are not fundamental

degrees of freedom added to the .A = 4 SYM theory. The way to add Nf M = 2

hypermultiplets in the fundamental representation of the gauge group (where Nf is

the number of flavors and Nf < Nc), is to add Nf D7-branes in the black hole

geometry (1.8) [69, 70, 71]. In this thesis we will only add external quarks to N 4

SYM theory.

Now let us outline the main steps we will follow in subsequent Chapters in ob-

taining properties of the field theory from a given gravity configuration. Suppose we

have an external quark moving in the finite temperature N = 4 SYM plasma. Let us

denote the string worldsheet coordinates by (T, o-). Then:

1. Write down the string profile which is determined by a set of embedding func-

tions XM(T, o-) that specify where in the spacetime described by the metric GMN

the point (T, o-) on the string worldsheet is located. The index M runs over the

five AdS 5 coordinates (as the S5 will not play any role in our calculations).

2. Calculate the induced world sheet metric which is given in terms of these em-

bedding functions by

gab = GMN aaXMabXN, (1.13)



where a and b each run over (T, u) and GMN is the AdS5 metric given in (1.8).

3. Calculate the Nambu-Goto action which governs the dynamics of classical strings

SNG = -TO JdTd0-g, 1.14)

where To = VX/27Rids = 1/27a' is the string tension and g = det ga.b

4. Calculate and solve the classical equations of motion using the Euler-Lagrange

equations, with appropriate boundary conditions, in order to find the embedding

functions XM(r, o).

5. Using the embedding functions we can calculate properties of the plasma and

of matter moving through it. For example, the energy of the quark can be cal-

culated by plugging X" back to the Lagrangian. The energy and flux through

some area of the QGP caused by the motion of a quark can be calculated using

the operator/field correspondence (1.12).

1.2.3 Universality and Applications

In the previous Sections we sketched how to use classical supergravity calculations

in order to understand properties of strongly coupled K = 4 SU(N) SYM theory.

But given that we do not have a dual gravity theory to QCD, how reasonable is it to

apply the AdS/CFT correspondence as an attempt to understand QCD?

At the microscopic level, K = 4 SYM is very different from QCD: the theory is

conformal, supersymmetric and it contains an additional global symmetry. It has no

dynamic quarks but has additional scalar and fermionic fields in the adjoint repre-

sentation. Its coupling does not run, there is no confinement, no chiral symmetry

and hence no chiral symmetry breaking. These features make the vacua of the two

theories very different, but the differences become less important when we look at

temperatures above the deconfinement transition of QCD, i.e. above Tc. We know

that supersymmetry is broken for finite temperatures and, above Tc in QCD, there is

no confinement and no chiral condensate. Since K = 4 SYM is conformal and QCD



is not, we cannot use it to describe QCD at or below Tc. However, lattice calculations

indicate that QCD thermodynamics is reasonably well approximated as conformal

when the temperature is increased above about (1.5 - 2) Tc [72, 73, 74]. A difference

that still remains is the number of degrees of freedom. We can scale out this differ-

ence by taking ratios. An example of this is the ratio of the energy density of the

plasma (which scales with the number of degrees of freedom) to the energy density at

zero coupling. The calculation in V = 4 SYM can be done at strong coupling using

gravity and the result is 0.75 [75]. Lattice calculations with two and three flavors

suggest that for temperatures above T ~ 1.2 Tc, this ratio takes a value of around 0.8

[76, 77, 78].

The question now becomes whether there are any universal quantities we can

calculate that have qualitative or semiquantitative similarities among many different

strongly coupled plasmas and hopefully also with QCD. One such example is the ratio

of viscosity to entropy density, 1/s, which is equal to 1/47r for all theories with string

theory duals in the large-Nc and strong coupling limits [37, 79, 80, 81, 82]. As we

have mentioned in Section 1.1.3, this ratio for the QGP created at RHIC is between

0 and 0.2. This result makes us hope that QCD is in the same group of theories as

other calculable strongly coupled plasmas and we will try to make predictions based

on this. In this thesis we will discuss some other quantities and argue that they apply

to a large number of strongly coupled plasmas and hopefully also to QCD.

As we have mentioned in Section 1.1.4, one application of the AdS/CFT corre-

spondence is the calculation of the velocity dependence of the meson screening length.

A very nice picture arises from the string theory side for non-zero temperatures. For

meson sizes smaller than the screening length, L8, the energetically favorable string

configuration is a string hanging down in the bulk connecting the two end-points (the

quark and antiquark) on the boundary. On the other hand, due to the presence of the

black hole, for meson sizes larger than L8, the energetically favorable configuration

is simply two strings hanging down into the black hole unaware of each other. This

indicates a complete loss of interaction between the quarks and the meson has been

completely screened. Figure 1-5 shows a sketch of these string configurations. In
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Figure 1-5: Schematic picture of AdS 5 black hole and the computation of the meson
screening length between a quark and antiquark moving with velocity v, from hanging
semiclassical strings. The preferred configuration beyond a certain separation L,
(screening length) consists of two independent strings.

Chapter 3 we will do a similar calculation but with Nc quarks arranged in a circle,

which represents a baryon in the X = 4 SYM theory.

Another application of the AdS/CFT correspondence is the calculation of prop-

erties of a quark moving through a strongly coupled plasma. The calculation of the

drag force felt by a quark moving through a sQGP has been done in M = 4 SYM

theory [83, 84] and in many other gauge theories with dual gravitational descriptions

[85, 86, 87, 88, 89, 90, 91, 92, 93]. The calculation of the drag on heavy quarks in-

volves the calculation of the momentum flux flowing down from the boundary, along

the string world sheet and towards the horizon, which determines the amount of

momentum lost by the quark in its propagation through the plasma.

In Section 1.1.4, we mentioned that a quark rotating in a circle results to a beam of

gluons that is tightly collimated in angle and that propagates outwards forever in the

K = 4 SYM theory vacuum without spreading in angle (synchrotron radiation), which

opens a new way of modeling jet quenching in heavy-ion collisions. Details of the

calculations for the energy disturbance caused by the quark are presented in Chapter

4, but here we will briefly discuss the picture that arises from the gravitational side.

In AdS 5 , the string hangs down into the bulk and coils around on itself as it extends



in the AdS 5 radial direction due to the motion of the quark at the boundary (see

Figure 4-1 in Chapter 4). The presence of the string in turn perturbs the geometry

and the near-boundary perturbation in the geometry induces a 4d stress tensor on the

boundary. The induced stress has the interpretation as the expectation value of the

stress tensor in the dual quantum field theory. Using this interpretation we obtain

the energy density and angular distribution of the power radiated by the quark in

the field theory side. Reference [94] gives a nice geometric description of our results

where this geometry perturbation from the string is reproduced by a superposition

of gravitational shock waves emitted perpendicular to the motion of the string and

towards the boundary.

The remainder of this thesis is organized as follows: In Chapter 2, we present a

detailed analysis of higher moments of pion, proton, net proton and mixed particle

multiplicities in the search for the QCD critical point. We also show how to use

nontrivial but parameter independent ratios among these more than a dozen fluctu-

ation observables to discover the critical point, if it is located in an experimentally

accessible region. In Chapter 3 we will use the AdS/CFT correspondence in order

to calculate the velocity dependence of the screening length of a baryon (Nc quarks

arranged in a circle) moving though a strongly coupled N = 4 SYM plasma. We

will then, in Chapter 4, use the AdS/CFT correspondence to compute the energy

density and angular distribution of the power radiated by a quark undergoing cir-

cular motion in a strongly coupled plasma of any conformal field theory that has a

dual classical gravity description, which results to a radiation pattern that is very

similar to synchrotron radiation produced by an electron in circular motion in clas-

sical electrodynamics. Chapters 2, 3 and 4 are based upon Refs. [95], [96] and [97],

respectively.
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Chapter 2

Locating the QCD Critical Point

Using Fluctuations

2.1 Introduction and Illustrative Results

The second-order critical point at which the first-order transition between hadron

matter and QGP ends is one of the distinctive features of the QCD phase diagram.

Since we currently do not have a systematic way of locating this point from first

principles as model and lattice calculations face many challenges and much work still

needs to be done in order to overcome them (for reviews, see Refs. [14, 15, 16, 17,

18, 19, 20, 21, 221), our best bet is to locate it experimentally. Experiments with this

goal are underway and planned at the Relativistic Heavy-Ion Collider (RHIC) at the

Brookhaven National Laboratory (BNL) and at the Super Proton Synchrotron (SPS)

at CERN in Geneva [98, 99, 100, 101]. These experiments involve colliding heavy

nuclei (gold nuclei at RHIC and lead nuclei at SPS) at high energies and observing

the resulting particle distributions. It is therefore important to define, evaluate the

utility of, and select experimental observables that will allow us to locate the critical

point, if it is located in an experimentally accessible region.

As we discussed in Chapter 1, in heavy-ion collision experiments, the center of

mass energy f/ is varied, thus changing the temperature and chemical potential of

the produced matter and in this way scanning the phase diagram. The observed



collective flow of the produced matter at RHIC strongly suggests the production of

a strongly-coupled quark-gluon plasma [7, 102]. As the QGP expands and cools, it

follows a path on the phase diagram that is characterized by approximately constant

entropy density to baryon number density ratio until freeze-out, after when there

are no further interactions that change the multiplicities of hadron species. When

these particles are then detected, they give us information about the state of the

matter at the freeze-out point. Therefore, in order to see the effects of the critical

point on observables, one should try to get the freeze-out point as close to the critical

point as possible by varying the collision center of mass energy, xfi. Decreasing V

decreases the entropy to baryon number ratio, and therefore corresponds to increasing

the baryon number chemical potential, pB, at freeze-out.

Present lattice calculations evade the fermion sign problem in different ways that

all rely upon the smallness of pB/(3T). Although each is currently limited by system-

atic effects, and they do not give consistent guidance as to the location of the critical

point, all present lattice calculations agree that it is not found at pB < T, where

the calculations are most reliable [103, 104, 105, 106]. For this reason, experimental

searches focus on collisions which freezeout with pB > 150 MeV. The upper extent

of the experimentally accessible region of the phase diagram is determined by the

largest freezeout [LB at which collisions still have a high enough Vs that the matter

they produce reaches temperatures in the transition region.

Upon scanning in fi and thus in pB, one should then be able to locate (or rule

out the presence of) the critical point by using observables that are sensitive to the

proximity of the freeze-out point to the critical point [31, 30]. For example, for parti-

cles like pions and protons that interact with the critical mode, the fluctuations in the

number of particles in a given acceptance window will increase near the critical point

as the critical mode becomes massless and develops large long-wavelength correla-

tions. As we vary Vs, therefore, if the freeze-out point approaches the critical point,

we would see an increase in the fluctuations in the number of those particles which

interact with the critical mode. These fluctuations would then decrease as we move

away from the critical point. (This is true for any observables which are sensitive



to the proximity of the critical point to the point where freeze-out occurs.) Hence,

a characteristic signature of the critical point is the non-monotonic behavior of such

variables, as a function of fs [31, 30]. Another way to change the freeze-out point

is by changing the size of the system by varying the centrality of the collisions, since

larger systems freeze-out later and hence at somewhat smaller temperatures.

In this Chapter we describe how to use the increase in fluctuations of particle

numbers near the critical point as a probe to determine its location. The way one

characterizes the fluctuations of an observable is by measuring it in each event in an

ensemble of many events, and then measuring the variance and higher, non-Gaussian,

moments of the event-by-event distribution of the observable. The contribution of

the critical fluctuations to these moments is proportional to some positive power of

(, the correlation length which, in the idealized thermodynamic limit, diverges at the

critical point. In reality, ( reaches a maximum value at the critical point but does not

diverge because as it cools the system spends only a finite time in the vicinity of the

critical point. The system also has only a finite size, but it turns out that the finite

time is a more stringent limitation on the growth of the correlation length [30, 27].

Estimates of the rate of growth of ( as the collision cools past the critical point

(which take into account the phenomenon of critical slowing down) suggest that the

maximal value of ( that can be reached is around 1.5 - 3 fm [27, 28, 29], compared

to the natural - 0.5 fm away from the critical point. Higher moments depend on

higher powers of , making them more favorable in searching for the critical point

[32]. In this Chapter we consider the second, third and fourth cumulants of particle

multiplicity distributions for pions and protons. We also consider mixed pion-proton

cumulants, again up to fourth order.

Our goal in this Section is to provide an illustrative example of one possible

experimental outcome. In Section 2.1.1 we define the observables that must be mea-

sured at each f. In Section 2.1.2 we suppose that the critical point is located at

yB = 400 MeV and then guess how the correlation length ( at freezeout will vary

with the chemical potential pB, and hence with fF in a heavy-ion collision program

in which the beam energy is scanned. In Section 2.1.3 we plot results for how seven



of the observables that we define will vary with pB, if the guess for ([pB) that we

have made for illustrative purposes were to prove correct. In Section 2.2 we provide

the calculation of all the observables that we define, as a function of , the proton

and pion number densities, and four nonuniversal parameters that must ultimately

be obtained from data. In Section 2.3 we construct ratios of observables that allow us

to measure four combinations of C and the four parameters. And, we construct five

ratios of observables which receive a contribution from critical fluctuations that is in-

dependent of ( and independent of all four currently poorly known parameters. This

means that we make robust predictions for these five ratios, predictions that could

be used to provide a stringent check on whether enhanced fluctuations discovered in

some experimental data set are or are not due to critical fluctuations. We close in

Section 2.4 with a discussion of remaining open questions.

We shall find that critical fluctuations can easily make contributions to the higher

moments of the proton multiplicity distribution that are larger than those in a Poisson

distribution by more than a factor of 100. In Appendix A we convince ourselves

that we can construct a reasonable looking, but somewhat ad hoc, distribution whose

higher moments are this large. What we are able to calculate in Section 2.2 is moments

of the distribution, not the distribution itself. In Appendix A we construct a toy model

distribution that has moments comparable to those we calculate. We also use this toy

model to obtain a crude gauge of how our results would be modified by any effects

that serve to limit the maximum proton multiplicity in a single event.

In Appendix B we apply our calculation to determine the contribution of critical

fluctuations to the third and fourth cumulants of the event-by-event distribution of

the mean transverse momentum of the pions in an event. We find that the critical

contribution to these non-Gaussian cumulants are quite small, smaller even than

the contributions of Bose-Einstein statistics. For this reason, throughout the main

text of this Chapter we focus entirely on number fluctuations, rather than transverse

momentum fluctuations.



2.1.1 Moments and cumulants of fluctuations

We expect to see a peak in the Gaussian and non-Gaussian cumulants of particle

multiplicity distributions near the critical point as we change fi. In this subsection,

we describe how to calculate these higher cumulants from experimental data.

Consider an ensemble of events in each of which we have measured the number

of particles of two species, which we shall denote x and y. The possibilities for x

and y that we consider later include the number of pions N,, the number of protons

N,, and the number of protons minus antiprotons N,_, = N, - N. In each case,

the number that is tallied should be the number of particles of the desired species

near mid-rapidity in a specified window of rapidity. This window in rapidity should

be at least about one unit wide, in order for our results to apply without significant

acceptance corrections [107]. Furthermore, the longitudinal expansion of the matter

produced in the collision reduces correlations among particles separated by much

more than one unit in rapidity [107], making larger windows unnecessary.

We denote the average value of x and y over the whole ensemble of events by

(x) and (y). Throughout this Chapter, we use single angle brackets to indicate the

ensemble average of a quantity whose event-by-event distribution has been measured.

And, we shall denote the deviation of x and y from their mean in a single event by

x ax - (x)

y y - (y) (2.1)

We now define the cumulants of the event-by-event distribution of a single observable,

say x. The second and third cumulants are given by

K22 = (2 (2.2)

Kax ((x3), (2.3)

where we have introduced two equivalent notations for the cumulants. The second

cumulant "2x is the variance of the distribution, while the skewness of the distribution



is given by ' 3x/, r 2 . The fourth cumulant is different from the corresponding fourth

moment:

K4x = ((x')) ((Jx)) 3 ( (x)2)2 . (2.4)

The kurtosis of the distribution is given by 2

The defining property of the cumulants is their additivity for independent vari-

ables. For example, if a and b are two independent random variables, then 1 i(a+b) =

hia + nib. This property is easily seen from the cumulant generating function

9(p) = log(ePl") , (2.5)

which is manifestly additive. The n'th cumulant of the x-distribution is given by

Knx= . (2.6)
n9 p1=0

Using the double bracket notation introduced above, g(p) = ((eux)). As a result of

their additivity, cumulants of extensive variables, such as N, or N,, are all themselves

extensive, meaning that they are proportional to the volume of the system V in the

thermodynamic limit.

We shall also consider mixed cumulants, which generalize the more familiar Gaus-

sian measures of correlations to non-Gaussian measures. These are generated by

g(p, v) nxmy- log(e 6x+ 6 Y) , (2.7)
L m! n!(27

n,m

and, for example, are given by

KX1Y ((xy)) = (6xjy) , (2.8)

N122y E((XY2 )) = (Sx(6y) 2 ) , (2.9)

82x2 ((x 2 2 )) = ((ox) 2 (gy) 2 ) - 2( 6c jy )2 - ((6X) 2 ) (Q(y) 2 ) , (2.10)

K1x3y ((XY 3 )) = (ox (y) 3 ) -3 (Jx y) ( (jy)2 ) . (2.11)



For two extensive variables x and y such mixed cumulants are also extensive, propor-

tional to V.

We have described how to obtain the cumulants ijx, Kg, and nixj, from a data set

consisting of an ensemble of events in each of which x and y have been measured. We

can now define the intensive normalized cumulants that we shall analyze:

= l (2.12)
(Nr)

(N, Kip(2.13)
(N,)'

K(-P , (2.14)
(N1, + Njj)

Ki~j~r(2.15)

(N1, )+ N)i/r (N'r)I/r

where r i + j.

If N,, N , and Np are statistically independent and Gaussian distributed, then the

W2's in (2.12), (2.13) and (2.14) are nonzero and all the other W's vanish.

If N., N , and Np are statistically independent and Poisson distributed, then all

the wi's in (2.12), (2.13) and (2.14) with i > 2 are equal to 1, and all the mixed

cumulants vanish and therefore so do the w's in (2.15) and (2.16).

In this Chapter we shall calculate the contributions of critical fluctuations to the

normalized cumulants (2.12), (2.13) and (2.14) for i = 2, 3 and 4 and the normalized

mixed cumulants (2.15) and (2.16) for i's and j's such that r = 2, 3 and 4.

2.1.2 Dependence of ( on pB

We shall close this Introduction (in Section 2.1.3) by illustrating possible experimental

outcomes of measurements of the cumulants defined in Section 2.1.1, assuming that

the matter produced at the freezeout point of the fireball evolution for some collision

energy fs is near the critical point. In Section 2.1.3 we shall present only results,

while the calculations involved are presented in Section 2.2. What we shall calculate



in Section 2.2 is the contribution of critical fluctuations to the observables defined

in Section 2.1.1 in terms of the correlation length . In order to give an example of

possible experimental outcomes, we need to make an illustrative choice of how the

correlation length ( that is achieved in a heavy-ion collision depends on pB-

To start, let us assume that the critical point occurs at p_6 = 400 MeV. Let us

also assume that because the fireball only spends a finite time in the vicinity of the

critical point the correlation length reaches a maximum value of -max 2 fm in the

collisions in which the freeze-out point is closest to the critical point during an energy

scan. We stress that our choices of pc and max are arbitrary, made for illustrative

purposes only, and are in no way predictions.

How does the correlation length achieved in a heavy-ion collision depend on the pUB

at which the matter produced in the collision freezes-out? Close to the critical point,

the equilibrium correlation length (, is very long and there is not sufficient time for

the actual correlation length ( achieved in a collision to reach (, [27]. Lets suppose

that C reaches (, for I[B - pil3 > W, for some W, while for JpB - Acl ,< W finite

time effects limit ( such that it peaks at &m.x. In principle, qL(pB) could one day

be determined from lattice QCD calculations, but these calculations are challenging

at pL : 0 because of the notorious fermion sign problem, so this day remains in the

future. At present, all we can do is require that the static correlation length (e satisfy

the constraints imposed by the universality of critical behavior at long wavelengths.

The universal behavior is really only attained in the limit in which W -+ 0 and

(max -4 oo, so our use of it in the present context is illustrative but not quantitative.

As a function of pB -PC, in the universal regime ( must scale asC --+ fsAJB - 1-",

where v is the relevant critical exponent1 and f+ and f_ are the amplitudes of the

1 For our illustrative model of the (B) dependence along the freezeout curve we are assuming
that where the freezeout curve passes the critical point it is approximately parallel to the transition
line (crossover and first-order lines). The region of the QCD phase diagram in the (iB, T) plane near
the critical point can be mapped onto the Ising model phase diagram, whose reduced temperature
and magnetic field axes are conventionally denoted by t and h, respectively. Upon approaching the
Ising critical point along the t-direction, i.e., along the transition line, 6eg ~ t-" ~ t- 2/ 3 , while
along the h-direction, (eq ~ h-/3 ~ h- 2/5 . As long as h < t' on the freezeout curve, the t-like
scaling dominates and, since |pB - p41 t, we obtain eg [|B - IL ". The condition h < tP is
violated at points on the freezeout curve that are very close to the critical point, t ~ 0, where the
h-like scaling sets in. For simplicity we assume that this small-t segment of the freezeout curve in



singularity on the crossover and first-order side of the transition respectively. The

precise value of the critical exponent is v = (2 - a)/3 0.63, with the numerical

value being that for a critical point in the Ising universality class [108]. But, in

our calculation in Section 2.2 we shall be neglecting the small anomalous dimensions

associated with nonvanishing values of the exponents rj 0.04 and a ~ 0.1. So, to be

consistent, here too we shall simply use v = 2/3. The ratio of the amplitudes f+//-

is also a universal quantity. In the Ising universality class, f+/f_ 1.9 [1091. Since

f+/f_ > 1, the correlation length falls off more slowly on the crossover side yL < pA

The simplest ansatz for (pB) that we have found that incorporates the physics

that we have just described is

1B) =max (2.17)

with

W(pB)= W + Wtanh (pB/IB (2.18)

where W and w are nonuniversal parameters to be chosen and 6W is specified by

requiring that

S (f) 3 11= 1.93/2 . (2.19)W - 6W f _

We have constructed (2.17) such that ( has the universal behavior of Geq when |pB -

p4l > W(pB), but has a peak that is cut off at ( = (max where pB = P4- We have

chosen the shape of ( in the vicinity of the peak arbitrarily, for illustrative purposes,

not via analysis of the rate of growth of ( during the finite duration in time of a

heavy-ion collision. In Fig. 2-1 we show two instances of our ansatz for ((pB). They

differ in their choice of the width of the peak. We shall define the width A as the

distance in pB between the two points at which ((pB) crosses 1 fm, i.e. the width in

pB within which ( > 1 fin. The three curves in the figure have A=50, 100 and 200

MeV. In all three cases we have chosen w = 0.1A. (With this choice, W = 0.189A

the QCD phase diagram lies in a region where the equilibrium correlation length (eq already exceeds

(max = 2 fm, and thus ( ~ (max in this segment.
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Figure 2-1: The correlation length (pB) achieved in a heavy-ion collision that freezes

out with a chemical potential pB, according to the ansatz described in the text. We

have assumed that the collisions that freeze out closest to the critical point are those

that freeze-out at [L' = 400 MeV. We have assumed that the finite duration of the

collision limits ( to ( < max = 2 fm. We show '((B) for three choices of the width

parameter A, defined in the text. The choices of parameters that have gone into this

ansatz are arbitrary, made for illustrative purposes only. They are not predictions.

and 6W = 0.084A.) There is no reason to expect that A should be small and,

indeed, in model calculations it seems to be larger than 100 MeV [110]. Ultimately

A should be determined by lattice calculations; one first attempt to do so indicates

A - 100 MeV [105, 111].

2.1.3 Cumulants near the critical point

We shall concentrate our analysis on observables characterizing the fluctuations of

pions and protons. Pions are the most abundant species produced in relativistic

heavy-ion collisions. Protons are important, among other reasons, because their fluc-

tuations are proxy to the fluctuations of the conserved baryon number [112] and

because their coupling to the critical mode o is relatively large.

We have defined the normalized cumulants of the proton and pion distributions in

(2.13) and (2.12) and the normalized mixed cumulants in (2.15). Fig. 2-2 shows how
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Figure 2-2: The pB-dependence of w4p, the normalized 4th cumulant of the proton
number distribution defined in (2.13), with a pB-dependent ( given by (2.17). We
only include the Poisson and critical contributions to the cumulant. In the top panel
we choose P' = 400 MeV and illustrate how w4, is affected if we vary the width A
of the peak in ( from 50 to 100 to 200 MeV, as in Fig. 2-1. The inset panel zooms
in to show how w4p is dominated by the Poisson contribution well below pIc. In the
lower panel, we take A = 100 MeV and illustrate the effects of changing p4 and of
reducing the sigma-proton coupling gp from our benchmark gp = 7 to g, = 5.
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Figure 2-3: The p-dependence of selected normalized cumulants, defined in (2.12),
(2.13) and (2.15), with a p-dependent ( given by (2.17) as in Fig. 2-1. We only

include the Poisson and critical contributions to the cumulants. We have set all

parameters to their benchmark values, described in the text, and we have chosen

the width of the peak in to be A = 100 MeV. Note the different vertical scales
in these figures and in Fig. 2-2; The magnitude of the effect of critical fluctuations

on different normalized cumulants differs considerably, as we shall discuss in Sections
2.2 and 2.3. As we shall also discuss in those Sections, ratios of the magnitudes of

these different observables depend on (and can be used to constrain) the correlation
length (, the proton number density ny, and four non-universal parameters. We

shall also see in Section 2.3 that there are ratios among these observables that are

independent of all of these variables, meaning that we can predict them reliably. For

example, we shall see that critical fluctuations must yield wp27, = (w4 p - 1) (w4, - 1)
and w-; = (w3 - 1)2(wa, - 1) and wa_1 = (war - 1)(wax - 1)2. (The subtractions

of 1 are intended to remove the Poisson background; in an analysis of experimental
data these subtractions could be done by subtracting the wip or w, determined from

a sample of mixed events, as this would also subtract various other small background
effects.) 54



w4, might look like, with c(pB) given by Eq. (2.17). We illustrate how w4 , changes if

we vary the location of the critical point pL and the width A of the peak in Fig. 2-1,

as well as the sigma-proton coupling g,. As we shall see in Section 2.2.1, there are

four nonuniversal parameters that (for a given (m) govern the height of the peaks

of the normalized cumulants. These include gp and the sigma-pion coupling G, as

well as two parameters A and A4 that we shall define in Section 2.2.1. We have used

as our benchmark values G = 300 MeV, g = 7, A = 4 and 4 = 12. As we shall

discover in Section 2.2 and discuss at length in Section 2.3, the heights of the peaks

of different normalized cumulants are affected differently by variations in these four

parameters. Fig. 2-3 shows how six more different normalized cumulants vary with

AB. In this Figure we keep all parameters set at their benchmark values, deferring a

discussion of how these peaks change with parameters to Section 2.3.

In the case of free particles in the classical Boltzmann regime, with no critical

fluctuations, the fluctuations of any particle number obey Poisson statistics. The

Poisson contribution to wi, and oi,- is 1, and in the Figures we have added this

Poisson contribution to the contribution from critical flucuations that we calculate in

Section 2.2. There is no Poisson contribution to the mixed cumulants Wi,,. In reality,

in the absence of any critical fluctuations the 1 of Poisson statistics gets few percent

contributions from Bose-Einstein statistics, from initial state correlations that are

incompletely washed out, and from interactions other than those with the fluctuations

that are enhanced near the critical point. System size fluctuations are also a potential

non-critical contribution to the fluctuation measures. We do not attempt to estimate

this effect (see, e.g., Refs. [30], [113]), and assume that sufficiently tight centrality

binning suppresses it. We are ignoring all of these non-critical corrections to the

Poissonian 1 and in the plots shown here we only include the Poisson and critical

contributions to the cumulants. Existing data on ng,_,)/ng,_j) at Is = 19.6, 62.4

and 200 GeV [23] confirm that the non-critical corrections to the Poissonian 1 are

indeed small, and confirm that it is possible to measure 4th order cumulants with an

error bar that is much smaller than 1. At the time of writing this thesis, ratios of

proton and pion cumulants are being analyzed by the STAR collaboration for energies



= s 7.7, 11.5 GeV, but no results have been published yet.

We can clearly see the peak in all the normalized cumulants near the critical

point. In many cases, the peak due to critical fluctuations is larger than the Poisson

contribution by more than an order of magnitude.2 The results indicate that the

more protons are involved in the observation measure, the easier it is to identify the

critical contribution. The reader who would like to see an example of a probability

distribution that has w4 as large as w4, gets in Fig. 2-2 should consult Appendix A. A

more comprehensive discussion of the results is given in Sections 2.3 and 2.4, but it

is readily apparent that the measurement of these observables in heavy-ion collisions

at a series of collision energies is very well suited to ruling out (or discovering) the

presence of the QCD critical point in the vicinity of the freeze-out points of the

collisions in such an energy scan.

2.2 Calculating Critical Correlators and Cumulants

In this Section, we show how to calculate the critical point contribution to the cu-

mulants of the particle multiplicity distribution of pions, protons and net protons.

We essentially show how to obtain the normalized cumulants in Figs. 2-2 and 2-3 as

the location of the critical point, I, changes. We begin in Section 2.2.1 by calcu-

lating the correlators that describe the critical contributions to the fluctuations of

the occupation number of pions and protons with specified momenta. We use these

correlators to calculate the normalized cumulants in Section 2.2.2.

2.2.1 Critical point contribution to correlators

Fluctuations of observables, such as particle multiplicities, are sensitive to the prox-

imity of the critical point if the particles under consideration interact with the critical

field o - the field whose equilibrium correlation length diverges at the critical point.

In this Section, we shall treat the o- correlation length ( as a parameter, in this way
2 Although it is a small effect, note that the peaks of any of the cumulants involving protons do

not occur exactly at the p' at which (pB) from Fig. 2-1 peaks, because the cumulants themselves
depend directly on the proton number density and hence on pB, as we shall see in Section 2.2.



avoiding any consequences of our lack of knowledge of the dynamics of how the long

wavelength correlations in the o- field grow. In order to use the results of this Section

to make the plots in Section 2.1.3, in Section 2.1.2 we had to make an ansatz for

'(p). But, the results of this Section, expressed in terms of (, are independent of

the uncertainties in that ansatz.

We can describe the fluctuations of the o--field by a probability distribution of the

form

P(a-) exp(- -(a-)/T), (2.20)

where Q is the effective action functional for o-. It can be expanded in gradients and

powers of o- as

Q(o-) = d3X .(Vo)2 + .2 + 33 + /A + . . (2.21)

In this expression the sigma-field screening mass is

ma = (-l (2.22)

and, near the critical point, the o-3 and a' interaction couplings are given by

A = lA T (T ()3/2, and A4 = A4 (T i)-, (2.23)

where the dimensionless couplings A3 and A4 do not depend on (, but do depend on the

direction of approach to the critical point, as described in Ref. [32]. These couplings

(and their dependence on direction) are universal and they have been determined

for the Ising universality class [114]. Throughout this Chapter we shall use A = 4

and ~4 = 12 as benchmark values, because these are the midpoints of the ranges of

values known for these constants [114, 32]. In fact, both A3 and A4 will vary with

pB, as the location of the freeze-out point moves in the phase diagram, relative to

the critical point. We shall not attempt to parametrize the pB-dependence of these

parameters, however, because the dominant source of pB-dependence in our results is



the variation of ( with pB, and our knowledge of (pB) is sufficiently uncertain (as we

saw in Section 2.1.2) that this uncertainty would dominate any increase in precision

that would be obtained by modelling the pB-dependence of A3 and A4 .

The correlation functions and fluctuation moments and cumulants of the critical

field o- itself can be calculated directly using the probability distribution given in

(2.20), but these quantities are not directly observable. The long wavelength fluctua-

tions in the o--field manifest themselves in observable quantities in so far as they affect

the fluctuations of the occupation numbers of particles that couple to the a--field. This

coupling to the fluctuating field a- contributes to the moments of particle fluctuations

the terms proportional to the corresponding moments of a itself [32]. Both protons

and pions couple to the a field. We shall define the strengths of the corresponding

couplings g, and G through the respective terms of the effective Lagrangian (following

the notations of [30, 112]):

La,,,, =2 G a ,r+r- + ga p p. (2.24)

where 7r* is the (charged) pion field and p is the Dirac fermion field of the protons.

The coupling that we denote gp is often just called g. We shall make the discussion

that follows similar for protons and pions by defining a dimensionless measure of the

sigma-pion coupling

g, = G/m., (2.25)

and using the notation g when we intend an equation to be valid for either pions,

with g -- g., or protons, with g - gp. Throughout this Chapter we will use G = 300

MeV (see Ref. [30] for a discussion of how to estimate G) and gp = 7 (see, e.g., [115])

as benchmark values. It is important to bear in mind that both these parameters

and A3 and A4 are all uncertain at the factor of 2 level. These parameters enter into

our calculations of the various normalized multiplicity cumulants, making absolute

predictions of these observables in terms of ( difficult. The advantage that we have,

however, is that we will be able to calculate many different normalized cumulants

that depend differently on these parameters. In Section 2.3 we shall discuss how



to use deliberately chosen ratios of cumulants to measure and even overconstrain

various combinations of these parameters. And, we shall find five ratios of cumulants

that are independent of the values of all of these parameters, allowing us to make

parameter-free predictions of these ratios.

The critical contribution to the proton or pion correlators arises from virtual a-

exchanges which introduce powers of the correlation length -= m; 1, where m, is the

c-field screening mass. As the correlation length grows in the vicinity of the critical

point, the contribution to the particle correlators due to a a-exchange dominates over

other non-critical contributions. The effect of such an interaction on the two-point

particle correlators was studied in Refs. [30, 107] and on higher-point correlators in

Ref. [32]. In this Subsection we will only look at the particle correlators and in the

subsequent Sections we will show how to calculate cumulants of particle multiplicity

distributions from the correlators.

The contribution of critical fluctuations to the 2-, 3- and 4- particle correlators

due to c-exchanges can be calculated using the diagrammatic method developed

in Ref. [107] (see also Refs. [30] and [32]). We shall write the correlators using a

notation that applies to either protons or pions. They describe the correlation between

the onk's at different momenta, where nk = nk - (nk) is the difference between

the occupation number of the k'th pion or proton mode in momentum space in a

particular event and its mean value. The correlators are given by

d2 g2 v, v 2  d2  
2 v 2 v 2

(Jnkionk,)a gTk1 k 2  % ,k 2  (2.26)
m2 V T 7y&17-y2 VT 7Yki 7&

23 g 3V2 I2 2 2d 3 
3  9 21 V 2 V2

(dnonk2gnka)v - --- _- 3 / 2 Vk 2 2 (2.27)
V 2 T n. 7k1 'Yk2 '7a V 2T g 7k 7k2 7k3

( 6 nk 1
6 nk 6 nk 3 nkk)) - - 2 -- A4  2

V3 T /mkma 7ki 7k2 7k3 7k4

6d 4  
- 7Vk1 V2 2 V2. V2 4

6dT 2 2 - I7 2 , (2.28)V 3T2 3 1 9 Yk 7k 7k3 7k4



where we have used (2.22) and (2.23) and where we must now explain many aspects

of our notation. The subscript a- indicates that we have only calculated the contri-

bution of the critical fluctuations to the correlators. The double brackets around the

quartic correlator indicate that what is evaluated is the cumulant, as in (2.4). The

equations (2.26), (2.27), (2.28) apply to both protons (with g = gp) and pions (with

g =_ g, = G/m.). The degeneracy factor d is 2 for both protons and pions. (For

protons, d = d, = 2 counts the number of spin states. For pions, d = d, = 2 counts

the number of charge states - lr+ and r-. These degeneracy factors appear because

the coupling to the o--field is both spin and charge "blind".) The variance of the

fluctuating occupation number distribution is denoted by v2 and is given by

v = (nk) (1 ± (nk)), (2.29)

where, as usual,

() = (230
exp [(ykm - p)/T] :F 1 (2.30)

with m = m,, p = 0 and the upper sign for pions and m = m,Pp =IpB and the lower

sign for protons. And, finally,
vk2 + M2

7k = (2.31)

is the relativistic gamma-factor of the particle with mass m with a given momentum

k.3 We see from Eqs. (2.26)-(2.28) that these correlators, and hence the cumulants

that we will obtain from them, are proportional to powers of the correlation length (

and so peak at the critical point.

Now let us turn to mixed pion-proton correlators. The 2 pion - 2 proton correlator

3A note on subscript/superscript notation: we denote momentum subscripts with a bold letter
k. Subscripts/superscripts denoting particle type, e.g. p for protons, will be in normal typeface.



is given by

6d d2 / 2 2 Vr2 r2 po 2 26 d'2r 2 1 A3 1  ' rg k1 Vk 2 V k 3 1C4
((6n' 6n' onm))n/ )),=ys 2 - A4 4 4

6d&d 21 2 2 7 Vk Ic k I(2.32)

k V 3 T 2  c2 3  -
- Y 7 YY k

The prescription for obtaining other mixed correlators from the correlators (2.26 -

2.28) should be clear: each particle brings its own corresponding factor d g ol/y, to

the expression in, e.g., Eq. (2.28). In this way, the 1 pion - 3 proton and 3 pion - 1

proton mixed correlators can be obtained from Eq. (2.28), the 1 pion - 2 proton and

2 pion - 1 proton mixed correlators can be obtained from Eq. (2.27), and the 1 pion

- 1 proton can be obtained from Eq. (2.26).

Another useful fluctuating quantity to consider is the net proton number correla-

tors (the net proton number is defined as the number of protons minus the number of

anti-protons: N N, - N). In order to obtain the corresponding correlators one

can begin with the similar correlators for the protons and replace 2 with (1 -o),

where o is the occupation number variance for anti-protons. (See, e.g., Ref. [112]).

In the next Section we will use these correlators to evaluate cumulants of particle

multiplicity distributions for pions, protons and net protons and see how they can be

used to locate the critical point.

2.2.2 Energy dependence of pion, proton, net proton, and

mixed pion/proton multiplicity cumulants

In this Section we will concentrate on cumulants of the particle multiplicity distribu-

tions and how they vary as we change the location of the critical point and change

the value of parameters. Another application of the correlators given in the previ-

ous Section is the calculation of the critical point effect on higher moments of the

fluctuation of mean transverse momentum pt We find that the critical contribution

to PT fluctuations is rather small (e.g., smaller than the enhancement due to Bose

statistics) and thus not as useful in the search of the critical point. Details can be



found in Appendix B.

Now let us focus on how one can obtain higher cumulants of the particle multiplic-

ity distributions using the correlators found in the previous Section. As an example,

let us evaluate the critical contribution to the normalized fourth cumulant of the pro-

ton multiplicity distribution, w4 , defined in (2.13). The total multiplicity N, is just

the sum of all occupation numbers n&, thus (see ref. [32])

,, ((( Np) 4)), = V4  ((jnj jn , (2.33)

where

=f( d)k (2.34)
k - (27r)3

As we discussed in Section 2.1.1, see (2.13), we normalize the cumulant by dividing

by the total proton multiplicity Np. To simplify notation below, it is convenient to

introduce the proton and pion number densities

(Np) d[(n 1 JoodE E E2 - (235)
V Jk 7 mp

n, 2 y d, {n) = e(E-pB)/T + 2.5

nr (Nr) di 7 1IJ'0 dE E VE2 - m2
n V k (= d {nk) = 72eE/T _ 1 '(2.36)

The result we find for the normalized cumulant can then be written as

6(2~\ - \ 4) y ( j ) 4  (2.37)

We can see from expressions (2.26) - (2.28) that higher cumulants are proportional to

higher powers of ( and thus increase by a larger factor near the critical point where

becomes large. For example, the third and fourth cumulants are proportional to (9/2

and (7, respectively. If the correlation length ( increases from - 0.5 fm to (max = 2 fm

as in Section 2.1.2, these cumulants are substantially enhanced - as we have seen in

the plots in Section 2.1.3.

With an explicit expression for w4p,, in hand, we can now write our general result

for wepr,, in (2.15). We can also include w,,o, and og,,, defined as in (2.13) and (2.12)



in the notation via setting j = 0 or i 0 in wipj,,. We obtain

I' (r - 1)! a' a3
Wipj7r 6 i, o 6jo + r T 7r i jrr/ (2.38)

i- 5 r-3
= O~oOj, iozprefactor ( ,

ko+ j' cip" no (max

where we have defined

prefactor _ A' (r -Z1)! a ai no
Tr ! i/r j/P (2.39)

** Tr/2 ni/r r r n

and

a d d ] g a = dp gp k, (2.40)
fk 7k k 7k

A' = 1, A A3 and A' 2A- 4 . (2.41)

In the second line of (2.38) we have factored out the two main sources of IB de-

pendence: the correlation length ( depends on pB as we have discussed at length

in Section 2.1.2 and, if the normalized cumulant involves the proton multiplicity it

depends on np, which increases rapidly with increasing pB as shown in Fig. 2-4. We

have denoted all of the remaining factors in our result for the contribution of critical

fluctuations to the normalized cumulant by w prefactor, which depends only weakly on

p B as we illustrate in Fig. 2-5. The number density no is an arbitrary constant -

note that it cancels when (2.39) is substituted into (2.38) introduced in order to

make practor dimensionless. We shall choose
ipj 7r

1
no fm 3 = 6.116 x 10-5 GeV 3 . (2.42)

(5 fm)3

With this choice, (n)/no is of order 1 at the pB of interest to us - see Fig. 2-4 -

and none of the different oprefactor s are orders of magnitude smaller or larger than 1,

as illustrated in Fig. 2-5.

Let us now walk through the physics behind the different pieces of the expression
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Figure 2-4: Proton number density n, and net proton number density n,_- = np -np
at chemical freezeout as functions of pB. Both depend on T as well as pB; we have
taken T(pB) as in (2.43). We have normalized both n, and n, - using the constant
no of (2.42) introduced in (2.38) and (2.39).

(2.38). The Kronecker deltas describe Poisson fluctuations, which are of course

independent. As we described in Section 2.1.1, they contribute 1 to the wip's and the

wj,'s and they make no contribution to the mixed cumulants in which i and j are both

nonzero. More realistically, the 1 of Poisson statistics gets few percent contributions

from Bose-Einstein statistics (which are calculable), from initial state correlations that

are incompletely washed out, and from interactions other than those with the critical

o--mode. We are ignoring all of these noncritical corrections to the 1. In principle,

with sufficiently precise data their magnitude could be measured far away from the

critical point and this background could then be subtracted. If this background were

significant, one could also try to study and calculate these corrections theoretically.

Present data on r4(p-P)/r2(p-p) at Vs = 19.6, 62.4 and 200 GeV indicate that the

corrections to the Poissonian 1 are quite small, but this should be investigated also

for other cumulants.

The second, i-dependent, term in (2.38) is the contribution to wipj, made by the

critical fluctuations. It grows proportional to ((5r-6)/2 near the critical point. We
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Figure 2-5: The pB-dependence of prefactor and prefactor defined in (2.38), (2.39)
and (2.44). The three panels are for the normalized cumulants with r - i + j = 2, 3
and 4, respectively. The curves can be used to determine how the height of the peak
in the critical contribution to the normalized cumulants changes as we vary p', the
PB at which = max and at which (to a very good approximation) the normalized
cumulant has its peak. The height of the peak in wipy, [or wi(pp)j] is proportional
to (np/no)i-i/r [or (n pp/no)i-i/r] multiplied by the prefactor plotted in this Figure.
We have taken T(pB) as in (2.43) and have used the benchmark parameters G = 300
MeV, g, = 7, A3 = 4 and A4 = 12.
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see evidence of this in the heights of the peaks in different w's in Fig. 2-3, but it is

also clear from this Figure that the r-dependent difference in the power of is not

the only important source of t-dependence. Indeed, we see in (2.39) that oprefact i

proportional to n, i/r and to a' and, it turns out, %/rn, is close to constant. This

means that the dominant pB-dependence of the critical contribution to Wipj, at a

given ( is n , which we have factored out in (2.38) making the pU-dependence in

o rather mild. We can see the np/ = n' dependence of the height of the peak

in w4 , in the lower panel of Fig. 2-2: in this Figure (max is the same for all the curves

so the pB-dependence of the height of the peaks in w4, comes from its np-dependence.

For i = 0, meaning for a cumulant involving pions only, there is no large np-

dependence in wju, and the height of the peak in a figure like Fig. 2-3 is proportional

to ,refactor and the dominant AB-dependence of wj, itself comes from its (J-1 depen-

dence. For observables involving protons (i > 0), the dominant contribution to the

p' dependence of the height of the peak in w comes from the factor n -i/r and the

slowly varying prefactor in Fig. 2-5 adds relatively little to that strong dependence.

In plotting the curves in Fig. 2-4 and Fig. 2-5, we have allowed for the fact that the

chemical freeze-out temperature T decreases somewhat with increasing pB. We have

described this dependence using an empirical parametrization of heavy-ion collision

data from Ref. [26]:

T(AB)= a - bp2 - cy4, (2.43)

with a = 0.166 GeV, b = 0.139 GeV-' and c = 0.053 GeV -3. Almost all of the AB-

dependence of the orefactors plotted in Fig. 2-5 actually comes from the[pB-dependence

of the chemical freeze-out temperature T. In plotting Fig. 2-5, we have used our

benchmark values of the four nonuniversal parameters that determine the Wipj, for a

given (, namely g,, = G/m, = 2.1, g, = 7, v = 4 and A4 = 12.

Finally, completing our discussion of the proton-pion cumulants and Fig. 2-5, we

note that in the lower panel in this figure there is a point where all five oprefactors with

r = 4 cross. This occurs if at some value of pR it so happens that a,-(no/n,)1/r and

apno/n, coincide.



We now turn to the net proton multiplicity distribution, where by net protons

we mean N,_ = N, - Np. The calculation of the normalized cumulants involving

the net proton multiplicity and the pion multiplicity, namely (2.16), is analogous to

the calculation we have described above. As we discussed in Section 2.2.1, the only

change in the correlator from which the cumulants are obtained is the replacement of

V withv -V . We find

r3

Wi(pj)j 7r = ,O + 4, 0 + non,)+ n , (2.44)

where n,_p = n,-nj is the net proton number density. In comparison with Eq. (2.38),

we have pulled out another factor, ("-,p ) , which describes the vanishing of the

critical contribution to net proton cumulants at pB = 0, see Fig. 2-4. It then turns

out that the prefactor o Pc5g (defined as in (2.39), but multiplied by ("n±) and

with of replaced by v - ) differs from fpref"ct by less than half of one percent,

which is less than the thickness of the curves in Fig. 2-5. Hence, these curves also

depict o a

In order to evaluate either (2.38) [or (2.44)] and compare to data, we need the

proton number density n, [net proton number density np-] at each collision energy

fs. These can be extracted from data via the conventional statistical model fits done

at each V/ that give yB and T at chemical freeze-out at each ,f. The value of n, at

chemical freeze-out is specified in terms of pB and T by (2.35) and the value of np is

given by the same expression with pB replaced by -AB, so these number densities can

also be obtained from data. So, at each collision energy, one should take the [pB and

T from the statistical model fit, evaluate n, and n,_,, and then plug these into (2.38)

and (2.44) and see what conclusions can be drawn about ( and the constants g,, g,,

A3 and X using data on as many of the normalized cumulants wij, and Wj(,_y5g, as

possible. We shall provide tuned strategies for this analysis in Section 2.3. We close

this Section with two straightforward observations.

First, the proton/pion normalized cumulant wip,, is more sensitive to critical fluc-

tuations than the net-proton/pion normalized cumulant w(,_p)jr,, for any i /L 0 and



for any j. As an example let us consider w4, and w4(,_p). We can estimate pB(V)

using the parametrization of statistical model fits to data in Ref. [26]:

d
PB() = ,e/ (2.45)

with d = 1.308 GeV and e = 0.273 GeV-'. The proton number density np(pUB) is

then shown in Fig. 2-4. Then, at any fixed value of the correlation length ( the

np-dependence that enters the expressions (2.38) and (2.44) for W4p and W4(p-j) is

i - 0.34, 0.77, 4.9, 31 (2.46)

and

n(,_, n)_ ) 0.00072, 0.064, 3.4, 30, (2.47)
no np + n-

respectively, when evaluated at , = 200, 62, 19 and 7.7 GeV. Since n,_, is less

than n, (and consequently less than n, + np) at all pB - see Fig. 2-4 - the critical

contribution to w4p is greater than the critical contribution to W4 (,_) at all [LB. The

analogous argument applies in comparing any wi(,_)j, to the corresponding Wi,5,. In

all cases the suppression of the critical contribution to wi(,_j) is most accute at small

LB, meaning at large I. We shall ignore w(,_j)j, in Section 2.3.

Second, we can ask which observable is most sensitive to critical fluctuations.

For a given (, the critical contribution to wij,j is largest when r is largest, since

as we see from (2.38) this gives w the strongest s-dependence. The experimental

measurements reported in Ref. [23] demonstrate that K4(,_)/K2(p-P) can be measured

with error bars that are much smaller than 1, and we expect that w4, and w4, can

be measured with comparably small error bars. The error bars on measurements of

cumulants with r > 4 will be larger, so until experimentalists demonstrate that they

can be measured we have focussed on cumulants with r < 4. For a given ( and r,

the critical contribution to wip,j is largest for i = r if a;/np > a;/n, or for i = 0 if

a/n, < a;r/nr.

It is apparent from Figs. 2-2 and 2-3 that w4, > w4, at pIL' 400 MeV with our



benchmark values of gp and g, meaning that w4p is the normalized cumulant with

r = 4 that is most sensitive to critical fluctuations. And, it is sensitive indeed: we

see from the plots in Fig. 2-2 that if ( reaches 2 fin, the critical contribution to W4 ,

will be dramatic. Correspondingly, if for example experimental measurements were

to show that w4 , - 1 < 1 at some sB around 400 MeV, then ( < 1 fm at that pB.

However, if [Mc is much less than 400 MeV and/or if gp/g, is much smaller than with

our benchmark values, then ap;/n, could become less than a;./n,, making w4, the

best observable with which to find evidence for the presence of critical fluctuations.

(With gp and g, set to their benchmark values, a4/n, = a/n, at pB - 135 MeV.)

Both w4 , and w4, should be measured, and we shall see in Section 2.3 that if critical

fluctuations are discovered it will be very important to have data on as many of the

ij, as possible.

2.3 Ratios of cumulants

In the previous Section, we presented numerical results for the contribution made

by critical fluctuations to various cumulants of particle multiplicity distributions. In

order to locate the critical point, experimental results on multiplicity cumulants will

need to be compared to the theoretical predictions of the critical contribution to these

cumulants. But, recall that we had to choose benchmark values for four parameters:

gp, g, A3 and A4. These parameters are not known reliably or accurately enough

to permit a quantitative prediction for the effect of the critical point on any one of

the cumulants we have described. The normalized cumulants depend on (, of course,

but their dependence on the four poorly known parameters would make it difficult to

determine ( from data on any one of the cumulants, in isolation. In this Section, we

suppose that at some Vs there is experimental data showing several of the cumulants

significantly exceeding their Poisson values. We ask how ratios of cumulants can

be used to extract information on ( and the values of the four parameters. And,

we construct ratios of cumulants that are independent of ( and all the parameters,

allowing us to make robust predictions for the contribution of critical fluctuations to



these ratios.

The contributions of critical fluctuations to different correlators depend on differ-

ent combinations of ( and the four parameters. For example,

3p, Vn 3  
3 (9/2

,4p,C, Vn gI4 7, (2.48)

where A' 212 - A4. For the most general pion-proton cumulant,

'Kipr,u r VnggP - r-3 k , (2.49)

with r = i + j and with X,. as defined in (2.41). We have kept the np-dependence

since it introduces significant pB-dependence, but we have suppressed the T- and n.,-

dependence. In Table 2.1 we present the parameter dependence of various cumulant

ratios. Except for the first 3 entries, N,, N, and np,5, the quantities we consider are

all V-independent (i.e. intensive) by construction. (In constructing intensive ratios,

we can always remove V-dependence by dividing by N, to the appropriate power.)

Note that although we have not written the o- subscripts in the Table, the Table only

describes the parameter-dependence of the contributions from critical fluctuations.

When the ratios in the Table are constructed from data, the Poisson contribution

must be subtracted from each measured , separately, before taking a ratio. This

means that this Table will only be useful in the analysis of data at values of "I at

which several n's are different from their Poisson values by amounts large compared

to the experimental statistical and systematic error bars.

Looking at Table 2.1, one can see how to use cumulant ratios in order to constrain

( and the four parameters. The correlation length ( and the four nonuniversal param-

eters always appear in certain combinations in the multiplicity cumulants and it turns

out that we can only constrain four independent combinations. We have constructed

the Table to highlight ratios that can be used to constrain one example of four such



Table 2.1: Parameter dependence of the contribution of critical fluctuations to various
particle multiplicity cumulant ratios. We have subtracted the Poisson contribution
from each cumulant before taking the ratio. The Table shows the power at which the
parameters enter in each case. We only considered cases with r i + j = 2, 3, 4. We
defined 213 - 14 A1.



combinations, with each block delineated by double horizontal lines corresponding to

constraining

1. g, - using, e.g., K2,2,N,|/4,r2, or K4,N 4,,.

2. g,/gp - using, e.g., K2p2,,N2/ 4,N 2 or K3,,N,|nzN,.

3. Z/g, using, e.g., n3,N,3/2 N .

4. Z'/A - using, e.g., n2p 4/Kp.,

Since four independent combinations of ( and the four parameters can be constrained

by data on these ratios, we could, for example, use data to express ( and three of the

parameters in terms of the fourth, say gp.

We can see from Table 2.1 that there are also some combinations (e.g., the last

five entries in the Table) that are parameter-independent. The first two of these are

in fact the ratios of the skewness and kurtosis of protons to pions, where skewness

and kurtosis are defined as usual as

i3  li 4skewness = 3/, kurtosis - . (2.50)

The next row in the Table is the ratio of the two rows above it, giving a combination

that has the virtue that it only involves 3rd and 4th cumulants, which is advantageous

since the contribution of the critical fluctuations is larger at larger r. The last two

ratios in the Table are quite different, as they involve mixed cumulants, but they too

are parameter-independent. So, the last five ratios in the Table have no s-dependence,

no dependence on the four poorly known parameters, and no np-dependence. This

means that, after we subtract the Poisson contribution to each of the cumulants

involved, we can make a robust prediction for the ratios of the contributions of critical

fluctuations. We find that these five ratios are all precisely 1.

4 The ratio w2, = K2,1 /N, could also be used here. However, we have seen that the critical
contribution to this quantity is small and, given the multitude of alternative choices, we can afford
not to use this quadratic moment.



Now let us see how we can use these five ratios in order to locate the critical

point. Suppose that as you change the center of mass energy A§ of the collisions

there is a point where many cumulants exceed their Poisson values by statistically

significant amounts. As we see from Figs. 2-2 and 2-3, the qualitative signature of

the critical point is peaks in the multiplicity cumulants as a function of I. Suppose

experimental evidence for such peaks begins to emerge. The specific ratios of the

heights of the peaks in Figs. 2-2 and 2-3 depended on the benchmark choices for

parameters that we made in those Figures. So, how do you check in a parameter-

independent fashion whether the behavior seen in experimental data is consistent with

the hypothesis that it is due to critical fluctuations? You first subtract the Poisson

contributions, 5 and then construct the last five ratios in Table 2.1. If the fluctuations

seen in this hypothetical data are in fact due to the proximity of the critical point, all

five of these ratios will be equal to 1, with no theoretical uncertainties arising from

uncertainty in the values of the parameters. This would be strong evidence indeed

for the discovery of the QCD critical point.

2.4 Discussion

We have explored the effects of the long wavelength fluctuations that arise in heavy-ion

collisions that freezeout near the QCD critical point on higher cumulants of particle

multiplicities. The characteristic signature is the non-monotonic behavior of such

observables as a function of the collision energy, as the freezeout point approaches

and then passes the critical point in the QCD phase diagram. In Section 2.1 we

illustrated one possibility for how seven different cumulants (third and fourth cumu-

lants of protons and pions plus three mixed cumulants) might behave as a function

of pB, the chemical potential at freeze-out which is the quantity that a beam energy

'This can be done by subtracting the values of the cumulants in a sample of "mixed events," i.e.
events constructed artificially from tracks drawn at random from many different events in order to
remove all correlations. In this way, in addition to subtracting Poisson fluctuations one will also
subtract spurious experimental effects. The mixed event technique is widely used in the study of
quadratic moments and it could be used here too, even though present data indicate that spurious
experimental effects are quite small [23].



scan scans. In Section 2.2, after calculating 21 different cumulants as a function of

parameters and as a function of the correlation length ( at freezeout, we determined

that either w4 , or w4 , is the most sensitive to critical fluctuations, depending on the

values of parameters and depending on the location of the critical point. However,

if critical fluctuations are discovered it will be important to have measured as many

of the cumulant observables as possible. In Section 2.3 we constructed ratios of ob-

servables that will allow an overconstrained experimental determination of currently

poorly known parameters. And, we constructed other ratios of observables that, if

the measured cumulants are indeed dominated by critical fluctuations, are indepen-

dent of all the parameters in our calculation and are independent of the value of the

correlation length. We are therefore able to make parameter-independent predictions

for these ratios, predictions that we hope will some day make it possible to determine

with confidence that observed fluctuations do indeed indicate proximity to the critical

point.

There are several effects that require further investigation:

" In our treatment of the pions we have assumed that all pions seen in the detector

reflect the physics at the time of freezeout, but it is thought that roughly half

of the detected pions come from the later decay of resonances [30]. Let us look

at how this affects our results. Consider the peaks in Figs. 2-2 and 2-3, in the

vicinity of p' where freeze-out occurs closest to the critical point. Because the

cumulants (for example r,4,) are extensive, our calculation of the normalized cu-

mulants (for example w4, = n4,/(N,)) would be correct if the experimentalists

measuring w4, divide by the number of pions present at freezeout. By divid-

ing instead by the number of pions seen in the detector, the experimentalists

will obtain a smaller w4, than in our calculation. This is an effect that can be

corrected for.

" There are physical effects that can limit the upward fluctuation of N,. For

example, if the proton number density becomes too large, it will not be a good

approximation to treat the protons at the time of chemical freezeout as noninter-



acting. In Appendix A we make a crude attempt to estimate the consequences

of including such effects on the normalized cumulants. It will be much easier

to model the consequences of this effect with data that show evidence for crit-

ical fluctuations in hand, since such data itself will indicate whether upward

fluctuations in N, are cutoff, and if so at what N,.

" The fact that net baryon number is conserved will also limit the fluctuation in

N,. The magnitude of this effect depends on the size of the acceptance window,

and for noncritical (and Gaussian) fluctuations has been studied in Refs. [116,

117, 118, 119, 17]). It also depends on the features of baryon number fluctuations

outside the acceptance window. It may translate into a sharp cutoff on the

upward fluctuation of N, (as, e.g., proposed in a model study in Ref. [120]) or

the reduction in flucutations may be more smoothly distributed over a range

of N,. We defer investigation of this effect to future work. Experimentalists

will also be able to learn more about this and other effects by studying the

dependence of the normalized proton cumulants on the width of the rapidity

acceptance window, once there is data showing evidence of critical fluctuations.

" We have focussed on fourth and lower order cumulants. Our results show,

though, that higher order cumulants depend on even higher powers of the cor-

relation length (, making them even more sensitive to the proximity of the

critical point. However, the measurement of higher order cumulants involve

the subtraction of more and more terms, making it important to determine the

precision with which they can be measured. We have stopped at fourth order

because current analyses show that these cumulants can be measured with small

error bars. If cumulants beyond fourth order are measured, it will be possible

to construct further ratios of observables that overconstrain parameters or are

independent of parameters.
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Chapter 3

Strongly Coupled Plasmas -

Baryon Screening

3.1 Introduction and Summary

In the previous Chapter we discussed experimental signatures of the critical point

of the hadron to QGP phase transition. We now turn to study properties of quarks

moving in strongly coupled plasmas using the AdS/CFT correspondence. In this

Chapter we will look at the velocity dependence of the baryon screening length in

K = 4 SYM plasma and in Chapter 4, we will discuss the synchrotron radiation in

the same theory at zero temperature.

In N= 4 SYM theory at zero temperature, the static potential between a heavy

external quark and antiquark separated by a distance L""' is given in the large Nc

and large A limit by [122, 123]

47r2 V

V(L) =- F(.1)4 1Lmon ,(3.1)

where the 1/Lmson behavior is required by conformal invariance. This potential is

obtained by computing the action of an extremal string world sheet, bounded at

z - oo (z being the fifth dimension of AdS5 which is the inverse of u introduced

in Chapter 1) by the world lines of the quark and antiquark and "hanging down"



from these world lines toward smaller z. At nonzero temperature, the potential

becomes [124]

V( L"' ",onT ) ~ - VAf ( L"mes"n) L"meso" < L"mso

~ AOg(Lme"n) L m "* > L"'"*"n (3.2)

In (3.2), at Ls"**= 0.24/T there is a change of dominance between different saddle

points and the slope of the potential changes discontinuously. When L"'"" < L "

the potential is determined as at zero temperature by the area of a string world

sheet bounded by the worldlines of the quark and antiquark, but now the world

sheet hangs down into a different five-dimensional spacetime: introducing nonzero

temperature in the gauge theory is dual to introducing a black hole horizon in the

five-dimensional spacetime. When L'"a < L" ", f(L" "eo) reduces to its zero

temperature behavior (3.1). When L"o > Lm*, the potential arises from two

disjoint strings, each separately extending downward from the quark or antiquark all

the way to the black hole horizon. At L"'"*" >> mo", g(Lmn) is known and is

determined by the exchange of the lightest supergravity mode between the two disjoint

strings [125]. It is physically intuitive to interpret Lc as the screening length L, of the

plasma since at Lc the qualitative behavior of the potential changes. Similar criteria

are used in the definition of screening length in QCD [126], although in QCD there is

no sharply defined length scale at which screening sets in. Lattice calculations of the

static potential between a heavy quark and antiquark in QCD indicate a screening

length L., 0.5/T in hot QCD with two flavors of light quarks [127] and L" ~ 0.7/T

in hot QCD with no dynamical quarks [128]. The fact that there is a sharply defined

Lc in (3.2) is an artifact of the limit in which we are working.

In Refs. [42, 129], the analysis of screening was extended to the case of a quark-

antiquark pair moving through the plasma with velocity v. In that context, it proved

convenient to define a slightly different screening length L "*", which is the L"*"

beyond which no connected extremal string world sheet hanging between the quark

and antiquark can be found. At v = 0, Lm" " = 0.28/T [124]. At nonzero v, up to



small corrections that have been computed [42, 129],

Lm eson(v, T) ~i L meson(0, T)(1 - 12-1/4 C (1 - V2.1/4 (3.3)

This result, also obtained in Ref. [130] and further explored in Refs. [131, 132, 133],

has proved robust in the sense that it applies in various strongly coupled plasmas

other than N = 4 SYM [131, 132, 133]. The velocity dependence of the screening

length (3.3) suggests that in a theory containing dynamical heavy quarks and meson

bound states (which M = 4 SYM does not) the dissociation temperature Tdiss(v),

defined as the temperature above which mesons with a given velocity do not exist,

should scale with velocity as [42]

Tdiss(v) Tdiss(v = 0)(1 - v 2 )1/ 4 , (3.4)

since Tdiss(v) should be the temperature at which the screening length Lmeson(v) is

comparable to the size of the meson bound state. The scaling (3.4) indicates that

slower mesons can exist up to higher temperatures than faster ones. This result has

proved robust in a second sense, in that (3.4) has also been obtained by direct analysis

of the dispersion relations of actual mesons in the plasma [134], introduced by adding

heavy quarks described in the gravity dual by a D7-brane whose fluctuations are the

mesons [135]. These mesons have a limiting velocity whose temperature dependence

is equivalent to (3.4), up to few percent corrections that have been computed [134].

In the present Chapter, we shall return to the velocity-dependent screening length

and test the robustness of (3.3) in yet a third sense, by analyzing the potential and

screening length defined by a configuration consisting of Nc external quarks arranged

in a circle of radius L.1 In the gravity dual, there is a string hanging down from each

of these quarks and at nonzero T and large enough L, the only extremal configuration

of these string world sheets will be Nc disjoint strings. In order to obtain a baryon-

iThe baryon static potential between three static quarks has been computed in QCD itself using

lattice methods at zero temperature [136], and very recently the extension of these studies to nonzero

temperatures and hence the study of baryon screening in QCD has been initiated [137].
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Figure 3-1: A sketch of a baryon configuration with Nc quarks arranged in a circle at
the boundary of the AdS space, each connected to a D5-brane located at z = ze by a
string.

like configuration, we introduce a D5-brane into the gravity dual theory which fills

the 5 spatial dimensions of the S5 and sits at a point in AdS5 , and on which Ne

strings can end [138, 139, 140].2 This now means that for L less than some L, we

can find configurations as in Fig. 3-1, in which the Nc strings hanging down from

the quarks at the boundary of AdS5 end on the D5-brane. Following Ref. [140], we

have made the arbitrary choice of placing the Nc quarks in a circle; pursuing our
2We shall only consider the case where all Nc strings are located at the same point in the S5 ; it

would be interesting to generalize our analysis to the case where there are different species of quarks
corresponding to strings located at different points in the S5 which could then end at different
points on the D5-brane. We are also neglecting the interactions between the Nc string endpoints
on the D5-brane. Such interactions can be described via the Born-Infeld action for the D5-brane,
and have been analyzed in Refs. [141] for the case where the baryons are BPS objects and the
analysis can be pushed through to completion. In our case, in which supersymmetry is broken by
the nonzero temperature and in which the baryon configurations need not be BPS objects even at
zero temperature, such an analysis certainly presents technical challenges and may even be made
uncontrolled by potential higher derivative corrections to the D5-brane Born-Infeld action. We shall
follow Refs. [138, 139, 140] in neglecting string-string interactions. We shall find that the velocity
dependence of the screening length is controlled by the kinematics of the AdS black hole metric
under boosts: the fact that we find (see below) the same velocity dependence for the screening
length defined by a baryon configuration which includes a D5-brane as has been found previously
for that defined by the quark-antiquark potential whose calculation involves no D5-brane suggests,
but absent a calculation does not demonstrate, that the addition of string-string interactions on the
D5-brane will not modify our conclusions.



analysis to the point of phenomenology would certainly require investigating more

generalized configurations.3 Our central purpose, however, is to test the robustness

of (3.3) in a theoretical context in which the D5-brane introduces a qualitatively new

element. Note that in comparing our results for baryon screening to (3.3), if we want

to compare numerical prefactors we should compare L to Lm"n/2, since we have

defined L as the radius of the circle in Fig. 3-1 rather than its diameter.

The D5-brane plays a role somewhat analogous what has been called a "baryon-

junction" in various phenomenological analyses of baryons in QCD [142]. Baryon

junctions in phenomenological analyses have usually been envisioned as well localized

in (3+1)-dimensions, but this may not be the appropriate way of thinking of the D5-

brane. The IR/UV relationship that characterizes the AdS/CFT correspondence [65]

tells us that smaller values of the fifth-dimension coordinate z correspond to larger

length scales Rids/z in the (3+1)-dimensional field theory, where RAdS is the curva-

ture of the AdS space.4 The D5-brane is located at z = ze, the lowest point in z of

any part of the baryon configuration in Fig. 3-1. It therefore represents the longest

wavelength "disturbance" of the (3+1)-dimensional gluon field (and other K = 4

SYM fields) caused by the presence of the Nc quarks. We shall see in Section 3.3

that in K= 4 SYM this length scale R 2S/ze is comparable to 2L, meaning that the

baryon vertex describes a disturbance of the gluon fields comparable in size to the

circle of external quarks, not a baryon junction that is localized in (3+ 1)-dimensions.

The results (3.3) and (3.4) have a simple physical interpretation which suggests

that they could be applicable to a wide class of theories regardless of specific details.

First, note that since L.,(O) - 1, both (3.3) and (3.4) can be interpreted as if in

their rest frame the quark-antiquark dipole experiences a higher effective temperature

TV7. Although this is not literally the case in a weakly coupled theory, in which

the dipole will see a redshifted momentum distribution of quasiparticles coming at

it from some directions and a blueshifted distribution from others [143], we give an

3Note that for Ne = 3, there is no loss of generality in choosing the N, quarks to lie in a single
plane, but there is still an infinite space of distinct possible configurations to consider. Many have
been considered in lattice investigations [136, 137].

4 Note that in the Chapter 1 we introduced the inverse of the fifth-dimension u, which is related
to z by u = RAds/z.



argument below for how this interpretation can nevertheless be sensible. The result

(3.3) can then be seen as validating the relevance of this interpretation in a strongly

coupled plasma. The argument is based on the idea that quarkonium propagation

and dissociation are mainly sensitive to the local energy density of the medium. Now,

in the rest frame of the dipole, the energy density e is blue shifted by a factor ~ -

and since c oc T 4 in a conformal theory, the result (3.3) is as if quarks feel a higher

effective temperature given by TVy. Lattice calculations indicate that the quark-

gluon plasma in QCD is nearly conformal over a range of temperatures 1.5T < T <

5Tc, with an energy density e a bT4 where b is approximately constant, at about

80% of the free theory value [144]. So it does not seem far-fetched to imagine that

(3.3) could apply to QCD. We should also note that AdS/CFT calculations in other

strongly coupled gauge theories with a gravity description are consistent with the

interpretation above [132, 134] and that for near conformal theories the deviation from

conformal theory behavior appears to be small [132]. If a velocity scaling like (3.3) and

(3.4) holds for QCD, it can potentially have important implications for quarkonium

suppression in heavy ion collisions [42, 134], in particular suggesting that in a heavy

ion collision at RHIC (or LHC) which does not achieve a high enough temperature

to dissociate J/I (or T) mesons at rest, the production of these quarkonium mesons

with transverse momentum above some threshold may nevertheless be suppressed [42].

Our results indicate that if baryons containing three charm quarks are ever studied in

heavy-ion collision experiments, the suppression of their production could be similarly

dependent on transverse momentum.

In Section 3.2 we shall set up a general formalism for finding baryon configurations

of heavy external quarks in supergravity, with the Nc quarks arranged arbitrarily. In

Section 3.3 we shall apply this general formalism to the configuration depicted in

Fig. 3-1, allowing us to define a screening length L,. In Section 3.3.1 we evaluate

L, (v, T) for the case where the baryon configuration is moving through the plasma in

a direction perpendicular to the plane defined by the circle of quarks. (Equivalently,

the "baryon" feels a plasma wind blowing in a direction perpendicular to its plane.)

Static configurations are found by extremizing the total baryon action coming from



both the strings and the D5 brane. We find static configurations only for L < L8 (v, T)

with L.(0, T) = 0.094/T as in [140], comparable to }L"'*(0, T) above, and with

0.083
L,(v, T)= (1 - v 2)1/4  (3.5)

T

in the v -+ 1 limit. In this limit, we obtain (3.5) analytically. We find numerically

that L,(v, T)T/(1 - v2)1/4 varies monotonically and smoothly from 0.094 at v = 0 to

0.083 at v -+ 1, making

L,(v, T) ~ Ls(0, T)(1 - v 2)1/4  (3.6)

a good approximation. In Section 3.3.2 we do a similar numerical calculation for the

case where the wind velocity is parallel to the baryon's plane. At high velocities we

find a result like (3.5) except that the proportionality constant is different for different

quarks/strings, depending weakly on the angle between the wind velocity and the

string. L, is smallest for the quarks whose strings are oriented perpendicular to the

wind, even though in the configuration that we analyze these quarks are also closest

to the D5-brane. This indicates that as v increases the medium is most effective at

screening the potential felt by these quarks.

3.2 General baryon configurations

We wish to analyze a baryon configuration of Nc heavy external quarks in the NA=

4 SYM plasma at nonzero temperature. The baryon construction in supergravity

involves Nc fundamental strings with the same orientation, beginning at the heavy

quarks on the AdS boundary and ending on the baryon vertex in the interior of AdS5 ,

which is a D5 brane wrapped on the S5 [138]. In this Section, we shall allow the Nc

quarks to be placed at arbitrary positions in the (x1, x2, x3)-space at the boundary

of AdS. Note that the X = 4 SYM plasma contains no particles in the fundamental

representation, so the quarks we study here are external.

The gravity theory dual to K = 4 SYM theory at nonzero temperature is the AdS



black hole times a five-dimensional sphere, with the metric

ds2 =-f(z)dt 2  RR dsdQ, (3.7)
+ WdS fz

where
z 2 z

f(z) = (_ 1 ). (3.8)

Here, dQ2 is the metric for a unit S5, RAds is the curvature radius of the AdS metric,

z is the coordinate of the fifth dimension of AdS5 and Zh is the position of the black

hole horizon. Note that in Chapter 1 we introduced the inverse of the fifth-dimension

u, which is related to z by u = RAds/z. The temperature of the gauge theory is given

by the Hawking temperature of the black hole, T = zh/(7rRAdS). And, the gauge

theory parameters Nc and A are given by v5/ = RAds/a' and A/Nc = gym = 47rg,,

where a' is related to the string length 1, by a' = 12, 1/(27ra') is the string tension

and g. is the string coupling constant. (So, large Nc and A correspond to large string

tension and weak string coupling and thus justify the classical gravity treatment.)

We shall always work in the rest frame of the baryon configuration. This means

that in order to describe Nc quarks moving through the plasma with velocity v, say

in the x 3-direction, we must boost the metric (3.7) such that it describes a Af = 4

SYM plasma moving with a wind velocity v in the negative x 3-direction. We obtain

ds2 = -Adt 2 + 2B dt dx3 + C dx ± R (dx2 + dx ) + (z dz2 + RsdQ, (3.9)2B d dX 3 RAdS 1 fz)d R2 39

where

z2 ziz2z2 Z2 z14)
A= (1 -4) B= 2 2 C= 1 2 (3.10)

with

= 4cosh2 , and Z4 = zdsinh2 . (3.11)

We have defined the wind rapidity q via v = - tanh q. Although in Section 3.3

we shall specialize to circular baryon configurations as illustrated in Fig. 3-1, in this



Section we describe the construction of a baryon configuration with Nc heavy external

quarks placed at arbitrary locations in the z -- oo region of the boosted AdS metric

(3.9).

The construction in this Section can easily be generalized to baryon configurations

a large class of gauge theories at nonzero temperature, including K = 4 SYM as one

example. Consider any gauge theory that is dual in the large Nc and strong coupling

limit to Type IIB string theory in the supergravity approximation in a generic string

frame metric that can be written in the form

ds2 = j,,(z)dx"dx" + d z ± e2 (z)ds , (3.12)
f(z)

with the possibility of a nontrivial dilaton #(r). As before, x= (t, Y) = (t,x 1, x 2 , X3 )

describe the Yang-Mills theory coordinates (the boundary coordinates). Here, ds2 is

the metric of some five-dimensional compact manifold X5 that may not be S5. A

specific choice of gauge theory will correspond to specific choices of #(z) and the

various metric functions appearing in (3.12). The metric (3.12) is not even the most

general that we could analyze, since for example we have not allowed the metric

functions in (3.12) to depend on the coordinates of the internal manifold X5 and since

we have chosen the z-dependence of the X5-metric to be a common factor exp(2,(z)),

not some more complicated structure. Such complications do not add qualitatively

new features to the analysis of baryon configurations in a metric of the form (3.12).

Our construction of baryon configurations below starting from the metric (3.12) could

be applied to gauge theories known to have dual gravity descriptions some of which

are conformal and some not, without or with nonzero R-charge density, with K = 4

supersymmetry or to certain theories with only K = 2 or K = 1 supersymmetry,

at nonzero or zero temperature, with or without a wind velocity. In our explicit

definition of and calculation of the screening length L, in Section 3.3, we shall return

to the special case (3.9) of hot KN= 4 SYM theory with a wind velocity.

A baryon configuration in the supergravity metric (3.12) involves Nc fundamental

strings beginning at the external heavy quarks on the boundary (which we will take



to be at z = oo) and ending on the baryon vertex in the interior, which is a D5 brane

wrapped on the compact manifold X5 [138]. We denote the positions in Y-space where

we place the external quarks by q-(a), with a = 1, ... Nc, and we take all the quarks to

sit at the same point in the compact manifold X5 . We shall describe how to determine

the location of the D5-brane below. After so doing, we shall shift the origin of the

z coordinates such that the D5-brane sits at the origin, at 'e = 0. We denote its

position in the fifth dimension by z = ze. The total action of the system is then given

by
Nc

Stota= E Sing + SD5 , (3.13)
a=1

where S(a! denotes the action of the fundamental string connecting the a-th quark

with the D5-brane. Denoting the string worldsheet coordinates (T, o), we can choose

r = t, o = z, X= x(o-) , (3.14)

meaning that the shape of the a'th string worldsheet is described by functions x ")(z)

that extend from X ()(z) = e to z-a)(oo) =q() The Nambu-Goto action of one

string can then be written as

Strmg =72ra dz - (#0iT05 - yoog) x'xy = J dr Cstring, (3.15)

where T is the total time and where x' = xi. The action for the five-brane can be

written as
V(ze)TV

SD5 (27r)5/ 3  V(z) -- 0 e-+ 5 1' (3.16)

where V5 is the volume of the compact manifold X5 and V(ze) can be considered to

be the gravitational potential for the D5-brane located at z = ze.

In order to find a static baryon configuration, we must extremize Stotai, first with

respect to the functions X$a) (z) that describe the trajectories of each of the Nc strings

and second with respect to se and ze, the location of the D5-brane. Because Stotai

does not depend on the xa)(z) explicitly, the variation with respect to X(a) (z) leads



to Euler-Lagrange equations that have a first integral

string - ( a = const. K. (3.17)
1g(a) C(a)

string

where we have denoted the integration constants by K ") Next, we extremize the

action with respect to variations in the position of the D5-brane, understanding that

as we vary its position we adjust the string trajectories as required by their Euler-

Lagrange equations. Extremizing the action with respect to the location of the D5-

brane in i-space yields equations which receive one contribution from the boundary

term at the D5-brane at z = z, in the variation of each of the x, ) (z), equations which

take the form

K a) =0. (3.18)
a

(What arises from the variation are the K( " evaluated at z (z, but the Ki are

by construction z-independent.) The constraint (3.18) is a force balance condition,

encoding the requirement that in a static baryon configuration the net force exerted

by the Nc strings on the D5-brane in the xi directions, with i = 1, 2 and 3, must

vanish. Extremizing Sta with respect to ze yields the z-direction force balance

condition which we can write as

Nc

5H(a) E, (3.19)
a=1 ze

where

H(a) C r(a) - X'(a) -(a) - (3.20)
2 x';(a) f (Z)E La

is the "upward" (i.e. in the positive z-direction) force on the D5-brane from the a'th

string, meaning that the left-hand side of (3.19) is the upward force due to all the

strings, and where

E = =SD5 V5  &V(z,) (3.21)
T Oz (27r)4a'2 OZe

is the downward gravitational force on the D5-brane, given its placement at z = ze



in the curved spacetime (3.12).

Eqs. (3.17), (3.18) and (3.19) determine the shape of the string trajectories and the

location of the D5-brane, which is to say that they determine the baryon configuration

for a given choice of the positions of the quarks q(4). Used in this way, one would

integrate the first order equations (3.17), using the boundary conditions (a) (oo) =

q(a) to determine the integration constants K()(q(4), e, Ze) for a given choice of ze and

ze. Eqs. (3.18) and (3.19) can then be used to determine se and ze. Not all choices

of q-() will yield a static baryon configuration. For a given quark distribution at the

boundary, the question of whether equations (3.17), (3.18) and (3.19) have solutions

is a dynamical question depending on the specific metric under consideration. We

shall see specific examples of how this plays out in Section 3.3.

Alternatively, a baryon configuration can be specified by starting with a set of

'C") satisfying (3.18), solving for ze using (3.19), and integrating Eqs. (3.17) outward

from z = ze to the boundary at z = oo, only then learning the quark positions

q(a) in the gauge theory. Instead of specifying KCa), one can equivalently specify

S(a) X-()(Z)|2_2.

Whether we think of specifying conditions at z ze and integrating inwards or

specifying conditions at the D5-brane, since we are considering the Nc --+ oc limit

it is often more convenient to introduce the density of quarks and strings instead of

discrete position variables. At the boundary, the quark configuration can be specified

by a density of quarks p(q), which can be normalized as

J da-p(q-)=1 . (3.22)

We can then rewrite (3.18) as

Jdqpq)K(q) 0. (3.23)

However, (3.19) cannot immediately be written in terms of p(q) because the quantities

in (3.19) are evaluated at z = ze, and unlike the K's occurring in (3.18) are not z-

independent. So, we must use the string trajectories themselves to relate the density



of quarks at z = oo to a density of strings at z = ze, as follows. For any given ze and

Xe, a solution Y(z) to Eqs. (3.17) describes a single string trajectory which connects

a particular point 7 at z = oo to the D5-brane at z(ze) =e. The string connects to

the D5-brane with a particular value of the "angle" S= O2(z) |=ze. So, the set of

string trajectories Y(z) with all possible choices of q' determine a mapping from qonto

s, where the q's specify the location of quarks at infinity and the s's specify strings

at the D5-brane. Since the mapping corresponds to Hamiltonian "time" evolution

(with z playing the role of time) Liouville's theorem tells us that a given p(q) maps

onto a pv(s) that specifies the density of strings hitting the D5-brane as a function

of angle given by

pv(s) = p(q) ' 'ql .2 3 (3.24)
9 (Si, S2 , S3)

In evaluating the Jacobian determinant, the qs should be considered to be functions

of the 's, with the function being the mapping defined by the string trajectories Y(z).

If the solutions 5(z) are nontrivial curved trajectories, then the relation between p(q)

and pv(s) will be nontrivial. Eqs. (3.18) and (3.19) can now be recast in terms of

pv(s), namely 5

J d3spv(S-) K(s) = 0 (3.25)

and

d3-S = - . (3.26)

Note that K(s) is obtained by evaluating the left hand side of (3.17) at z = ze, while

H(s-) is obtained by evaluating equation (3.20) at z = ze.

We close this Section with a description of one way in which the formalism that we

have developed can be used. Suppose that we wish to describe a baryon configuration

in which the quarks all lie on some closed two dimensional surface in 5-space. For a

given ze, we can then use (3.18) in the form (3.23) to determine the density of quarks

5Note that in the continuous limit,

. d ps - -) = qp(q( .



along the surface required for any choice of ze located inside the surface. Or, if the

density of quarks along the surface has been specified, we can use (3.18) to determine

se for a given ze. We then repeat this exercise for all values of ze until we find an ze

that satisfies (3.19) in the form (3.26).

In next Section we apply (3.17), (3.18) and (3.19) to particular baryon configura-

tions in a K= 4 SYM plasma moving with a nonzero wind velocity.

3.3 Velocity dependence of baryon screening in

K = 4 SYM theory

We now refocus on baryon configurations at rest in the plasma of K = 4 SYM theory

with temperature T moving with a wind velocity v = - tanh r/ in the x 3 direction.

The gravity dual of this hot plasma wind is described by the metric (3.9). Following

Ref. [140], we shall analyze baryon configurations in which the Nc quarks all lie in a

single plane. In Section 3.3.1 we take the quarks to be uniformly distributed along a

circle in the (Xi, x2)-plane, perpendicular to the direction of the wind. In Section 3.3.2

we analyze a configuration in which the quarks lie in the (x 1 , x3 )-plane, parallel to

the direction of the wind. We expect that the two configurations we shall study

are sufficient to illustrate the generic aspects of the velocity dependence of baryon

screening in K= 4 SYM theory.

3.3.1 Wind perpendicular to the baryon configuration

In this Subsection we consider a baryon configuration lying in the (x 1 , x2)-plane (i.e.

X3 = 0) perpendicular to the wind direction. For simplicity, we arrange the Nc

external quarks uniformly around a circle of radius L as in [140], see Fig. 3-1. This is

a simple example within which we can illustrate many aspects of the general formalism

of Section 3.2 for constructing baryon configurations, and define and study the velocity

dependence of the screening length.

With the quarks arranged uniformly around a circle, it is clear by symmetry that



the D5-brane must sit at the center of the circle, which we shall take to be at the

origin: e = 0. Because of the rotational symmetry of the circular configuration and

of the background geometry (3.9), each of the Nc strings in Fig. 3-1 is equivalent.

They all sit at x3  0, and each can be described by a single function x(z), where

x 2 xi±xx extends from x =0 and z = ze, at the D5-brane, to x = L, at

the boundary of AdS5. With the D5-brane at ze = 0 at the center of the circle, it

is clear that the forces in the z directions exerted by the strings on the D5-brane

cancel, meaning that Eqs. (3.18) are automatically satisfied. The D5-brane sits at

some z = ze, which we shall determine for a given L using (3.19). So, x(ze) = 0 and

x(oo) = L. Applying equations (3.15) and (3.16) to (3.9), we find that in this case

i ( (x')2 z2 1
string = A 2 + , (3.27)

V R~a f(z)j

and
NcTRAdS VA(Ze)

SD5 8w'-328)

where f(z) and A(z) were given in Eqs. (3.8), (3.10) and (3.11). The equation (3.17)

that determines the shape of the string trajectory x(z) becomes

A z2 x'
RAzrn = K (3.29)

RidSstring'

where by symmetry there is only a single integration constant K for all the strings.

The z-direction force balance condition (3.19), namely the condition that the upward

force on the D5-brane exerted by the Nc strings balances the downward force of

gravity, becomes
A 1 + p4 cosh 2 y (

f Lstring , 4 1 - p4 cosh 2
-(

where we have defined
Zh _ 1RAdST

S= z _ r T(3.31)
ze Ze

We must solve (3.29) and (3.30) simultaneously, in so doing obtaining both the po-

sition of the D5-brane ze and the shape of the strings x(z) corresponding to a static



baryon configuration with size L.

The integration constant K must be the same at any z. Upon evaluating it at

z = ze and after some algebraic manipulations, equations (3.29) and (3.30) can be

written more explicitly as

, K
X = (3.32)

and
SR 4AdS 1 p 2cosh2 _(1p 4 l) 2, (3.33)z4

from which we obtain an explicit expression for the baryon radius L in terms of p and

the rapidity n:

L- (1 - p4 cs2 7 1 _ a 2 00 dy1
L rT cohP) 2 y(y4 _ p4)i' (y4 _ 1 + (1 - p)E2)"

(3.34)
where y = z/ze. We have evaluated (3.34) numerically, and in Fig. 3-2 we plot L

versus p for several values of 7. We see that L is small when p is small (meaning that

ze is large). As we decrease ze, pulling the D5-brane in Fig. 3-1 downward, p increases

and the size of the baryon configuration L at first increases, then reaches a maximum

value, and then decreases to zero. For a given 7, therefore, there is a maximum

possible baryon radius, which we denote L, beyond which no baryon configurations

are found. We shall identify L, with the screening length, although in so doing we

neglect a small correction that we shall discuss below. We see from Fig. 3-2 that at

any 7 for L < L.,(y) there are two solutions with different values of p. We shall see

below that the configuration with the larger p is unstable and has a higher energy.

According to (3.34), the nonzero value of p at which L -+ 0 in Fig. 3-2 is the

p at which the right-hand side of (3.33) vanishes. At this value of p, K is zero and

&2x|2, = 0, corresponding to a configuration whose strings have become vertical. Note

that the D5-brane becomes heavier when it is closer to the AdS black hole (i.e. E

in (3.30) increases with p), meaning that the strings emerging from the D5-brane must
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Figure 3-2: Baryon radius L versus p, where P = Zh/Ze is the ratio of the position of
the black hole horizon to the position of the D5-brane, for several different values of
the rapidity rq of the hot wind. The screening length L, at a given q is the maximum
of L(p), namely the largest L at which a static baryon configuration can be found.
We see that L, decreases with increasing wind velocity.

be more and more vertical in order to hold it at rest. At some p, the strings become

vertical and at larger p (smaller ze) no static configuration can be found. From (3.33)

we also see that this largest possible p is always smaller than the p = 1/ /cosh r at

which the speed v exceeds the local speed of light at the position of the D5-brane.

At any L for which there are two string configurations possible in Fig. 3-2, we

expect that the solution with the larger p is unstable, as in the case of the string

configuration between a quark and antiquark [145]. This instability can be seen on

qualitative grounds as follows. For the solutions with smaller p, we see from Fig. 3-2

that L increases monotonically with p. This means that if we deform the configuration

by pulling the D5-brane downward while keeping L fixed, the deformed configuration

with its enlarged p has too small an L to be static. The fact that L "wants" to be larger

means that the upward force on the D5-brane is greater than required to balance the

downward force of gravity. So, there is a net restoring force pulling the D5-brane back

upwards and the original configuration is stable against this deformation. In contrast,

for the solutions with larger p we see from Fig. 3-2 that L decreases monotonically



with p, meaning that if we pull the D5-brane downward, L "wants" to be smaller

and the upward force on the D5-brane is less than the downward force of gravity

(the downward force has increased more than the upward force) and the D5-brane

will accelerate downward. The configurations described by the part of the curve in

Fig. 3-2 for which L decreases with increasing p are therefore unstable. We shall

see below that these configurations have higher energy than the stable configurations

with the same L and smaller p.

We can use (3.34) and Fig. 3-2 to compare the length scale RidS/ze of the dis-

turbance of the gluon field induced by the Nc external quarks to 2L, the size of the

circle of quarks itself. In the small-p limit, (3.34) simplifies to

LT 0.4811 p , (3.35)
7r

which describes the linear region seen in all of the curves in Fig. 3-2 at small p. This

implies that at small p
R 2

Ads ~ 2.07 9 L ,(3.36)
Ze

comparable to 2L. We see from Fig. 3-2 that as we go from this small p regime

towards L = L8 , the ratio of Ri/ze to 2L increases by a further few tens of percent.

We see from Fig. 3-2 that the screening length L, decreases with increasing ve-

locity. At zero velocity, L, = 0.094/T as can be obtained from previous results [140].

We have evaluated L, as a function of rapidity q, and shall plot the result in Fig. 3-7,

along with analogous results from Section 3.3.2 for the case where the wind velocity

is parallel to the plane of the baryon configuration. From our numerical evaluation,

we find that at large q
a

Ls T cosh , (3.37)

with a = 0.0830. The screening length for a quark and antiquark separated by a

distance Lmeson moving through the plasma in a direction perpendicular to the dipole

also takes the form (3.37) in the high velocity limit, with a = 0.237 [42]. When we

compare the L, that we have computed for the baryon configuration to Lrnesn/2 (the



"radius" of the meson configuration at its screening length) we see that, in addition

to having precisely the same velocity dependence at high velocity, their numerical

values are comparable. Finally, it is perhaps not surprising that L "yon is somewhat

smaller than Lmeso"/2, for a given q and T, since the baryon vertex (D5-brane) pulls

the strings further downward, closer to the horizon.

We can also find the large rj dependence of L, analytically. If we define

y p coshTI, L L Vcosh q (3.38)

and take the scaling limit in which

7 -+ oc with p, L held fixed, (3.39)

we find that cosh r7 drops out of the leading terms in Eq. (3.34) and this equation

becomes

L = (1- 4E2 f dy + O ((cosh 7) -)
T 4EY 2 (y4 _ 1 + E2)2

- 37rT 4 ) 2F 1 ) 1 - E 2 + O ((cosh ?)-A) . (3.40)

(Note that according to (3.30), E only depends on ,.) The right-hand side of (3.40) is

function of p that goes to zero at p -* 0 and at p -- 0.880, and that has a maximum at

0.666 where L = 0.0830/T, yielding an L, that is in precise agreement with (3.37).

We close this Section by evaluating the energy of the baryon configurations that

we have constructed. The energy of one string can be found using Sstring and is given

by

1 0((x')
2 z 2 1i

Estring = dz A K +±-
2 Or ze AdS

T ' dy y4 - p 4 cosh2 1, (3.41)
2p wh (r4 _4) (y4 -1+(1 - p4)E 2) 2

where y z/ze. This energy is infinite because we have included the masses of the
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Figure 3-3: The total energy of the baryon configuration with a given L (relative
to that of Nc disjoint quarks moving with the same velocity) for several values of
the wind rapidity r. The lower (higher) energy branch corresponds to the solution in
Fig. 3-2 with lower (higher) p. The cusps where the two branches meet are at L = L.

quarks. As in Refs. [42, 129], we regularize the baryon energy by subtracting the

energy of (in this case Nc) disjoint quarks in a hot plasma wind of velocity v, whose

strings are dragging behind them in the x3 direction according to the solution found

in [83, 84]. This corresponds to regulating the z-integral in (3.41) with a large-z cutoff

A, subtracting

Emass = j dz = Nc j dy, (3.42)
27m'l zh 2p P

and then taking A to infinity. This procedure yields a finite answer. The total energy

of the baryon (strings plus D5-brane) becomes

Ett =NcTvN [1 j d(y 4 --p4 cosh 2?)1Etotai - ,TvA-10 dy Y -oh27 1 +1 - -
2 p(y4 pa)21 (y4 _ 1 + (1 - p4)E2)2

V 1 - p4 cosh 2 (

4p (3.43)
4p

where the last term is the contribution of the D5 brane to the energy.

In Fig. 3-3 we plot the energy of the baryon configurations at several values of rj.

As in Fig. 3-2, we see two configurations at every L < L. We have argued above



that the higher energy configurations (those with the larger p) are unstable, so we

focus on the lower branch. We see that at y = 0 this branch crosses zero energy at

L = 0.073/T, whereas the largest L at which a baryon configuration can be found

is L, = 0.094/T. This means that for 0.073 < LT < 0.094, even the lower branch

solutions have become metastable, as they have more energy than Nc disjoint quarks.

We see from Fig. 3-3 that this phenomenon does not occur at larger velocities; in fact,

it arises only for q < 0.755 since at q = 0.755 the baryon configuration with L = L,

has the same energy as Nc disjoint quarks, i.e. zero energy in Fig. 3-3. At the low

velocities 7j < 0.755, a more precise definition of the screening length would be to

define it as the length at which the lower curve in Fig. 3-3 crosses zero. We see from

Fig. 3-3 that by using L, as our definition of the screening length at all velocities,

as we do for simplicity, we are introducing only a small imprecision at low velocities,

,q < 0.755. These considerations have no effect on our calculation of L, at large q,

namely (3.37).

It is clear from (3.43) that in the large T1 limit (3.39) with L held fixed and L

therefore decreasing, the energy scales as - V/cosh . This scaling can also be deduced

from Fig. 3-3, as follows. The subtraction term (3.42) is defined such that for any

given T and 77, at small enough L the potential energy E(L) is the same as in vacuum

(i.e. for T = , = 0), namely E(L) oc -1/L. And, if E oc -1/L and the E(L) curves

for different q overlap as seen in Fig. 3-3, then E must scale like -V/oshj in the

limit (3.39).

The baryon configuration that we have analyzed in this Subsection is special

in that all Nc strings are equivalent. In the next Subsection we shall analyze a

configuration for which this is not the case, for which we shall need the full formalism

developed in Section 3.2.

3.3.2 Wind parallel to the baryon configuration

We now analyze the case where the Nc quarks are moving through the plasma (or,

equivalently in their rest frame, feeling a hot wind blowing) in a direction parallel to

their plane. We shall keep the wind blowing in the x 3 direction as before, meaning



that the boosted AdS black hole metric given by (3.9) is unchanged. We shall now

put the Nc quarks in the (X1 , X3)-plane.

With the quarks in the (X1 , X3)-plane and the wind velocity in the X3 direction, the

Nc strings in a circular baryon configuration are no longer equivalent, as the strings

make different angles relative to the wind direction. The N, strings would not all

hit the D5-brane at the same angle in this case. Analyzing this case is possible, but

we will instead consider a simpler configuration in which all Nc strings hit the D5-

brane symmetrically. In terms of the formalism developed in Section 3.2, we choose

a configuration in which the string density at the D5-brane is

12
Pv(si, S2, 83 ) = -6(s ± si - s2) 6(S2 ) (3.44)

where s is some constant and si = 2 x(z)|2.. The distribution (3.44) corresponds

to requiring that the Nc strings hit the D5-brane with a uniform distribution in the

azimuthal angle 4 in the (X1 , X3 )-plane and all with the same 2x|2I, = s. (Here,

x =xf + jX.) Unlike in the previous Subsection, this specification of the baryon

configuration in the vicinity of z = ze will not correspond to having the Nc quarks at

z = oo arranged on a circle. Note that (3.44) guarantees that the net force exerted

on the D5-brane in the x1- and x3-directions by the Nc quarks vanishes, meaning

that (3.25), or equivalently (3.18), is automatically satisfied. Given the choices that

we have made in specifying our baryon configuration, our task is twofold: we must

determine s as a function of ze such that the forces on the D5-brane in the z-direction

due to gravity and due to the strings cancel; and, we must solve for the shape of the

strings to determine what baryon configuration at z = oo our choices correspond to.

The shape of each string is specified by two functions xi(z) and X3 (z) that we

must obtain. We shall find that, when projected onto the (XI, X3)-plane, the string

worldsheets do not follow radial trajectories. That is, the trajectories xi(z) and X3 (z)

are not specified just by x(z); their azimuthal angle # is a nontrivial function of z

also.

Applying equations (3.15) and (3.16) to (3.9) with nontrivial xi(z) and x 3 (z), we



find that

string -/A( (j1+ (x+'2 z2 ± (x'3 ) 2 z 2f(z)
f (z) R 2s R 2s~I Jk) AdS /AdS

and find that the D5-brane action is given by (3.28) as before. With

by (3.45), the equations of motion (3.17) can be rearranged to give

x'2 Ris)K 2
1 2 z 2 ) z- R s

1 z)kzf 2 dK32A -R 2dSK12f)(2 _ 2 ( ) ( KfA- A A

Equation (3.19)

f12= (KK3fA 2X3 f22 _ R AasK 3 -A 2 K 2
3 Zg g2A-_RAdSKA A -1~s?

for the balance of force in the radial direction becomes

RAds A/Jff = NcE(p, q) ,
A ( Rds + f z ' 1) + f 2 z2 x3

(3.45)

Lstring given

(3.46)

(3.47)

(3.48)

where E(p, 7) is as in (3.30) and is the downward gravitational force on the D5-brane

and the left-hand side of (3.48) is the upward force due to the Nc strings. If we define

# to be the azimuthal angle in the (x 1 , x3)-plane that a string makes at z = ze where

it connects to the D5-brane, defined such that 0- 0 (# =7r/2) is in the positive-x 3

(positive-x1) direction, then our choice of having the Nc strings uniformly distributed

in # turns the sum over strings in equation (3.48) into an integral over #,

-E Nc7 ,

strings

(3.49)

and expression (3.48) becomes

RAds A 2 '" d# 1 E (p, n),V ~ 0 2,r ARds + s2f z 2 (A sin2 # + f cos 2 q)4
(3.50)

where s = 9zxIz, was introduced in (3.44) and as before p =Zh/Ze.

The constants K1 and K 3 must be the same at any z. By evaluating (3.46) and



(3.47) at z = ze and rearranging, we determine that

2 _ S2 A 2z 4f sin 2 q5
R ( ARs + s 2 z2 f (A sin2 4 + f cos2 ))

2 s2z 4f3 cos 2 0
3 R s (A Rs + s2 z2f (A sin 2 4 + f cos 2 0)) z (3.52)

With these integration constants now determined, we can integrate Eqs. (3.46) and

(3.47), obtaining
p3R 4sK1 Z/ze 1

zi (z) = 3 dy ,(3.53)
zh 1 Q

and
p3 Rz - K3 [/Z y 4 - p4 cosh 2  1

X3(Z) = 3 dy , (3.54)
z 4 ~ 4

where

R 4 K R 4 4K2
Q=(y-p4  )(y-p 4 cosh 2  _ AdsP4K 2 (4 _p4 ) _AdSP 3 (y4  p cosh 2 ).

zh h

(3.55)

Equations (3.53) and (3.54) specify the shape of the string worldsheets, while ze

(equivalently, p) is determined in terms of s by (3.50).

The calculation proceeds as follows. First, we solve (3.50) numerically to obtain

the s required at a given p. Second, we pick a particular value of 4 and use s

to evaluate (3.51) and (3.52), obtaining the z-independent, but #-dependent, K1

and K 3 . Third, we evaluate (3.53) and (3.54) numerically, thus obtaining the shape

of the string with a particular value of 4. The position of the quark at z = oo

corresponding to this choice of 4 is then (x1 (oo), x 3 (oo)) and we can determine L =

/$ 1 (oo) 2 + x 3 (oo) 2 for this choice of 4. Fourth, we repeat the second and third steps

for all values of 4.

In Fig. 3-4 we show the L obtained as we have just described at three values of 4,
as a function of p. We conclude from the fact that L is different for different values

of 4 that the Nc quarks at z = oo are not arranged in a circle in the (Xi, x3)-plane.

We illustrate this explicitly in Figs. 3-5 and 3-6. We started with circularly sym-
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Figure 3-4: L versus p for strings oriented in the # 0, 7r/4,7r/2 directions in the
(X1 , X3)-plane in a baryon configuration immersed in a plasma moving in the x3 -
direction with rapidity q = 2. We see that at a given p the distance L in the (X1 , x 3 )-
plane between a quark and the D5-brane at the center of the baryon configuration
depends on the angular position of the quark. This means that the N, quarks do not
lie on a circle.
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Figure 3-5: Strings projected on the AdS boundary for I = 2 and p 0.37 for strings
separated in # by 7r/12. (We have done all our calculations for N, - oo, but have
shown only 24 quarks in the Figure.) Baryon motion is in the x 3 direction. The
Figure is drawn in the rest frame of the baryon, meaning there is a hot wind in the
x3 direction. The Nc quarks that make up the baryon configuration are not arranged
in a circle: the "squashed circle" is wider in the direction of motion. Note also that
the projection of the strings are not straight lines.
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Figure 3-6: Same as Fig. 3-5, but for p = 0.4550611, very close to the maximum p at

which a baryon configuration can be found at q = 2. This configuration is unstable,
and has higher energy than the configurations with comparable L's at much lower

p. However, it illustrates the "squashing" of the baryon configuration away from a

circular shape and the curvature of the projections of the strings onto the (X1 , X3 )

plane. Both these effects are present in Fig. 3-5, but are more visible here.

metric boundary conditions at the D5-brane, but the resulting baryon configuration

at the AdS boundary is "squashed", wider in the direction of motion of the baryon

and narrower in the perpendicular direction. Inspection of Fig. 3-4 or comparison

of Figs. 3-5 and 3-6 shows that the shape of the baryon configuration at the AdS

boundary changes with p, becoming more squashed as p increases. In Figs. 3-5 and

3-6 we also see that the projections of the string worldsheets onto the (XI, X3 )-plane

are not straight radial lines. Their curved shapes are strikingly similar to the shapes

of the projections of strings joining a static quark-antiquark in the meson configura-

tions analyzed in Refs. [42, 129], although they are not precisely the same. Note that

Eqs. (3.50)-(3.52) are symmetric in # --+ r - #, which implies that string configura-

tions are symmetric with respect to reflection in the x1 axis, i.e. under x3 -> -X3,

as is manifest in Figs. 3-5 and 3-6. This forward-backward symmetry of the string

configurations indicates that the baryon configuration feels no drag as it is moved

through the plasma, just as for meson configurations [130, 42, 129], and as has been

demonstrated previously for baryon configurations with zero size [146].

It is straightforward to compute the energy of the baryon configurations that we

have found, as a function of p, but since (unlike in Subsection 3.3.1) the configurations

are not characterized by a single L(p) there is no analogue of Fig. 3-3 here. Also,
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Figure 3-7: The screening length L, as a function of 71 with its large-ri dependence
V/cosh r scaled out. The solid curve is for the case of a wind velocity perpendicular
to the plane of the baryon, as in Section 3.3.1. The other three curves are for wind
velocity in the plane of the baryon, and show the L, for the strings that make an
angle # = 0, r/4, 7r/2 with the direction of the wind.

(again unlike when the wind blows perpendicular to the baryon configuration as in

Subsection 3.3.1) we have no simple argument for at what p the baryon configurations

in this Subsection become unstable. Our argument in the previous Subsection relied

on the equivalence of all Nc strings, in that at a single p there was a change from

"a deformation that increases p makes all Nc strings want to have larger L" to "a

deformation that increases p makes all Nc strings want to have smaller L". Here, we

see from Fig. 3-4 that there is a range of p within which a deformation that increases p

makes some strings want to have smaller L while other strings want to have larger L.

Within this range of p, our simple argument yields no conclusion and a full stability

analysis as in Refs. [145] is required. We leave this to future work.

The maxima of curves as in Fig. 3-4 define a screening length L, for each # as a

function of rq. In Fig. 3-7 we plot LT /cosh 7 = LT/(1 -- v 2 )1/4 versus 'q for different

values of #. We find that the large-a dependence of the screening length has the same

form in all cases, namely
1

Ls T oc7> . (3.56)
T, /cosh n
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Figure 3-8: The screening length L, as a function of # at a large value of 77. Specifically,
7 = 10 corresponding to /cosh 7 = 1/(1 - v 2 )1/ 4 = 104.9.

This is the same large q dependence found in Section 3.3.1, Eq. (3.37), and in mesons,

Eq. (3.3). To make the former comparison manifest, in Fig. 3-7 we have also plot-

ted LT/cosh i for the case analyzed in Section 3.3.1 in which the wind velocity is

perpendicular to the plane of the baryon configuration. When the wind velocity is

parallel to the plane of the baryon configuration, L, has a weak angular dependence.

In particular, the constant of proportionality in Eq. (3.56) varies between 0.082 and

0.088 for different #, as can be seen in Fig. 3-7. A plot of L, in the large rj regime as a

function of # is given in Fig. 3-8, which shows the smooth variation of L, for large q as

we change #. Note also that (3.56) is a good approximation all the way down to the

small velocity limit T1 -+ 0, since the proportionality constant in Eq. (3.56) merely

changes from its (#-dependent) value at large q to the (obviously #-independent)

value 0.094 at q = 0. The central conclusion to be drawn from Fig. 3-7, then, is

that the simple velocity scaling (3.6) is a good approximation at all velocities and all

angles.

The similarities between our results and those for the meson screening length go

beyond just the dominant velocity scaling. Indeed, Fig. 3-7 is strikingly similar to

Fig. 7 of Ref. [129]. There too, for the quark-antiquark case, LT coshq is largest

at Ti = 0, a few percent smaller for T -+ oc if the quark-antiquark dipole is oriented
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parallel to the wind, and a few percent smaller still if the dipole is oriented perpendic-

ular to the wind. The only feature in our Fig. 3-7 that does not have a direct, almost

quantitative, analogue in Ref. [129] is the very small difference between the curves

for the two cases in which the wind direction is perpendicular to the line between the

quark and the D5-brane, namely the case in which the wind is parallel to the plane

of the baryon configuration and the quark is at = r/2 and the case in which the

wind is perpendicular to the plane of the baryon configuration.

Although we have only done our analysis for a wind that is either perpendicular

to or parallel to the plane of the baryon configuration, we expect that the qualitative

features that we have found in this Section should all be present for any wind direction

except perpendicular.

In Subsections 3.3.1 and 3.3.2 we have analyzed two particular baryon configu-

rations that suffice to make our point regarding the velocity dependence of baryon

screening. The general formalism of Section 3.2 can straightforwardly be applied to

baryon configurations with other shapes, whether specified by the density of quarks

at infinity or the density of strings at the D5-brane vertex. Technically, in order to

solve equations (3.18) and (3.19), it is simpler to specify the density of strings at the

D5-brane as we have done in this Subsection, but there is no obstacle of principle

to analyzing arbitrary densities of quarks at infinity in any wind velocity. While

the behavior at small q could differ for more general configurations, we expect that

in the large q limit, the scaling behavior (3.56) should still apply. The formalism

of Section 3.2 can also be used to generalize our results to the plasmas of other

strongly coupled gauge theories. For example, following a line of reasoning developed

in Ref. [132] for the meson sector, it can be shown that in a certain class of gauge

theories whose gravity duals are asymptotically AdS, as v -> 1 the baryon screening

length scales as L, oc (1 - v2 )1/4 1/4 , where C is the energy density of the plasma. E

is proportional to T4 for the specific theory that we have analyzed, at any v, in this

Section.
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3.4 Discussion

We have analyzed the screening of the static potential for a baryon configuration

consisting of Nc quarks in a circle (or slightly squashed circle) moving with velocity v

through the plasma of K = 4 SYM theory in a direction perpendicular (or parallel)

to the plane of the configuration. We find a screening length

a(1 - v 2 )1/4L, = T , (3.57)T

where a depends only weakly on v and angles. For example, a = 0.094 for v = 0 while

a = 0.083 for v -+ 1 with the direction of motion perpendicular to the plane of the

baryon configuration, and 0.082 < a < 0.088 for the case where the motion is parallel

to the plane, again for v -- 1. In this last case, a is smallest for those quarks on the

circle which are connected to the D5-brane junction at the center of the baryon by

a string that is perpendicular to the direction of motion. The velocity dependence

in (5.1) is precisely the same as that for the screening length defined by a quark and

antiquark moving through the plasma, and even the weak angular dependence of a is

strikingly similar. This is a confirmation of the robustness of the velocity dependence

of screening that in the meson sector has as a consequence the experimentally testable

prediction that in a range of temperatures that is plausibly accessed in heavy-ion

collisions at RHIC (or at the LHC) J/'[' (or T) suppression may set in only for

quarkonia moving with a transverse momentum above some threshold [42]. In the

baryon sector, it indicates that if baryons composed of three charm quarks are ever

studied in heavy-ion collision experiments which do not reach such high temperatures

as to dissociate them at rest, their production would also be suppressed above some

threshold transverse momentum.

We have found that if the baryon configuration we study feels a wind velocity

parallel to its plane (and presumably at any direction except perpendicular) the Nc

quarks are not all equivalent. Those in a direction perpendicular to the wind are most

affected by the wind velocity, as in the configuration we analyze with azimuthally

symmetric boundary conditions at the D5-brane they are the ones that are pulled in
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closest to the D5-brane and yet they are also the ones that have the smallest L.. It is

tempting to conclude from this that as a function of increasing v or T these quarks will

dissociate first. However, justifying such a conclusion requires further work. It could

be interesting to investigate configurations that are held circular in a wind parallel to

their plane, which would no longer have azimuthally symmetric boundary conditions

at the D5-brane. This would allow the analysis of a sequence of configurations with the

same shape but different size rather than a sequence of configurations whose degree

of squashing changes with size, as in our analysis. However, a definitive conclusion

requires comparing the energies of a baryon configuration on the one hand with a

well-separated quark and (Nc - 1)-quarks+D5-brane configuration, each trailing a

dragging string, on the other hand. If the varying effectiveness of the screening of the

potential binding different quarks to the baryon that we have found were to manifest

itself as some quarks dissociating before others, as a function of increasing T or v,

this would suggest that when heavy baryons with Nc = 3 dissociate while moving

through a strongly coupled plasma, they may at least initially dissociate into a quark

and a diquark.
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Chapter 4

Strongly Coupled Plasmas -

Synchrotron Radiation

4.1 Introduction and Outlook

The emission and propagation of radiation is an interesting and natural topic of

study in any field theory. For localized sources, one is typically interested in the

angular distribution and spectrum of radiation at spatial infinity and in deciphering

how information about the source is encoded in it. This topic has been studied for

more than a century within the realm of classical electrodynamics (for a textbook

treatment, see [147]). It is much less studied in realms where quantum effects can

be important, as for example in a nonabelian gauge theory in the limit of strong

coupling. This has largely been due to the absence of strong coupling methods for

studying real-time dynamics, which has recently become possible with the discovery

of gauge/gravity duality [61]. Because of this, strongly coupled real-time phenomena

in theories with gravitational duals have become accessible to reliable calculation.

To date, much of the analysis of real-time phenomena in gauge theories with

dual gravitational descriptions has focused on systems at nonzero temperature. The

reason for this, as we discussed in Chapter 1, is that these strongly coupled plasmas are

more similar to the strongly coupled quark-gluon plasma of QCD being produced and

studied in heavy-ion collision experiments at the Relativistic Heavy Ion Collider [7,
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8, 9, 10] than the vacua of these gauge theories are to the vacuum of QCD. Asking

how a test quark moving along some trajectory with nonzero acceleration radiates

in vacuum in a strongly coupled nonabelian gauge theory is a simpler question than

many of those that have already been studied at nonzero temperature. We shall

answer this question for the specific case of a test quark in circular motion in the

vacuum of KN= 4 SYM theory.

As we have discussed in Chapter 1, the two parameters of K = 4 SYM theory

are the number of colors Nc and the 't Hooft coupling A = gy2_Nc with gygM the

gauge coupling and we shall work in the large Nc limit throughout. Since the theory

is conformal, we can specify A. If we choose A -- 0, we can study the radiation using

methods similar to those used in classical electrodynamics. If we choose A -- 00,

the dual gravitational description of this strongly coupled nonabelian quantum field

theory becomes the classical gravity limit of Type JIB string theory in the AdS5 xS5

spacetime. The geometry of the five-sphere will play no role in our computation -

indeed it can be replaced by any compact five-dimensional space X5 . This means

that our strong coupling results will be valid for all conformal quantum field theories

with a dual classical gravity description - since conformality of the quantum theory

maps onto the presence of an AdS5 spacetime in the gravitational description.'

Because the vacuum of K = 4 SYM theory is not similar to that of our world,

studying the radiation of a test quark in circular motion in this theory does not

have direct phenomenological motivation. However, we shall find that the angular

distribution of the radiation is very similar to that of classic synchrotron radiation:

when the quark is moving along its circle with an increasingly relativistic velocity, the

radiation is produced in an increasingly tightly collimated beam - a beam which,

if Fourier analyzed, contains radiation at increasingly short wavelengths and high

frequencies. This is interesting first in its own terms and second with a view to

'Our results are valid for all strongly coupled conformal quantum field theories with a dual
classical gravity description as long as we express our results in terms of the 't Hooft coupling A in
each of the conformal field theories. The relations between this parameter, Nc, and the parameters
that specify the gravitational physics in the AdS5 space - namely the string coupling and the
dimensionless ratio of the square of the AdS curvature and the string tension - will be different in
different conformal field theories, since these relations do depend on the geometry of X5 .
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extending the calculation to nonzero temperature. First, from the point of view of

the quantum field theory we do not understand why the angular distribution of the

radiation that we find is almost the same at A -+ oo as it is at A -+ 0. Why should

the pattern of radiation when what is radiated is nonabelian and strongly coupled be

similar to that seen in classical electrodynamics? In this sense, our results come as

something of a surprise to us. Second, our results in this formal setting nevertheless

open the way to a new means of modelling jet quenching in heavy-ion collisions. If

we were to add a nonzero temperature to our calculation, we could watch the tightly

collimated beam of synchrotron radiation interact with the strongly coupled plasma

that would then be present. The beam of radiation should be slowed down from the

speed of light to the speed of sound and should ultimately thermalize, and it would

be possible to study how the length- and time-scales for these processes depend on

the wavelength and frequency of the beam.

We shall consider a test quark moving on a circle of radius Ro with constant an-

gular velocity wo. In spherical coordinates {r, 0, p} we can take the quark's trajectory

to be given by

Ir = Ro, 0 -, = wot . (4.1)
21

By a test quark we mean a test charge in the fundamental representation of the

SU(N) gauge group. The total power radiated by this test quark moving in the

vacuum of K = 4 SYM theory in the large-Nc and strong coupling limit has been

computed previously by Mikhailov in Ref. [148], who finds

P = a 2 ,(4.2)
27r

where a is the quark's proper acceleration, given by

a = 2vo , (4.3)

where the quark has speed

v Rowo (4.4)
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and where
1

1--v2  (4.5)

is the standard Lorentz factor. Mikhailov observed that upon making the substitution

2

V <-+ 5(4.6)

the result (4.2) becomes identical to the Larmor result in classical electrodynamics.

Furthermore, Mikhailov showed that the power radiated by a test quark moving along

an arbitrary trajectory is identical to what Lienard calculated in 1898 [149] - see

[147] for a textbook treatment - upon making the substitution (4.6). We shall go

beyond Mikhailov's result by computing the distribution in space and time of the

power radiated by the quark in circular motion. We shall not attempt Mikhailov's

generalization to an arbitrary trajectory.

Before leaping to the conclusion that Mikhailov's result suggests that the K = 4

SYM synchrotron radiation pattern will be similar to that in classical electrodynam-

ics, consider the results in the literature that push one's intuition in the opposite

direction. One interesting study related to zero temperature radiation was performed

in Ref. [56], where decays of off-shell bosons in strongly coupled holographic confor-

mal field theories were analyzed. (One can think of the off-shell boson as the virtual

photon produced in electron-positron annihilation, with that photon coupling to mat-

ter in a strongly coupled conformal field theory instead of to quarks in QCD.) It was

shown in Ref. [56] that there is no correlation between the boson's spin and the an-

gular distribution of power radiated through the sphere at infinity. In other words, if

one prepares a state containing an off-shell boson with definite spin, in the rest frame

of the boson the event averaged angular distribution of power at infinity will always

be isotropic. This stands in stark contrast to similar weak coupling calculations in

QCD, where the boson's spin imprints a distinct "antenna" pattern in the distribu-

tion of power at infinity [150, 151, 152]. Similar behavior regarding the isotropization

of radiation at strong coupling was also reported in Refs. [58, 57]. A natural question

to ask when considering the results of Ref. [56] is where does the isotropization of

112



radiation come from? Is isotropization a characteristic of the particular initial states

studied in Ref. [56] or is it a natural process which happens during the propagation

of strongly coupled radiation? Indeed, it has been suggested in Ref. [58] that the

mechanism responsible for the isotropization is that parton branching is not sup-

pressed at strong coupling and, correspondingly, successive branchings can scramble

any initially preferred direction in the radiation as it propagates out to spatial infinity.

Regardless of mechanism, these calculations provide an example in which the pattern

of radiation is very different in the strongly coupled K = 4 SYM theory to that in

weakly coupled QCD or QED. If the intuition about the emission and propagation of

radiation derived from these calculations applies to radiation from an accelerated test

charge, then, we should expect that in our strongly coupled nonabelian theory this

radiation should isotropize and "branch", populating longer and longer wavelength

modes as it propagates. We find nothing like this. The straightforward guess based

upon Mikhailov's result - namely that synchrotron radiation in strongly coupled

K = 4 SYM theory should look like that in classical electrodynamics - turns out to

be close to correct.

We shall analyze the angular distribution of power radiated by a rotating quark in

K = 4 SYM theory at both weak and strong coupling. Our weak coupling results are

valid only in this theory. At strong coupling, we obtain an analytic expression for the

energy density which is valid at all distances from the quark and for all holographic

conformal field theories. At weak coupling our analysis reduces to that of synchrotron

radiation in classical electrodynamics with an additional contribution coming from a

scalar field [153]. At strong coupling gauge/gravity duality maps the problem onto

that of the linear gravitational response due to the presence of a string.

Fig. 4-1 shows a cartoon of the classical 5d dual gravitational description. The

five dimensional geometry of AdS5 , which is the arena where the dual gravitational

dynamics takes place, has a four dimensional boundary whose geometry is that of or-

dinary Minkowski space. Ending at the boundary is a classical string whose endpoint

follows a trajectory that corresponds to the trajectory of the quark in the dual field

theory. The condition that the endpoint rotates about a specific (Minkowski space)
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Figure 4-1: A cartoon of the gravitational description of synchrotron radiation at
strong coupling. The arena where the gravitational dynamics takes place is the 5d
geometry of AdS5 . A string resides in the geometry and an endpoint of the string is
attached to the 4d boundary of AdS 5 , which is where the dual quantum field theory
lives. The trajectory of the endpoint of the string corresponds to the trajectory of
the dual quark. Demanding that the endpoint rotates results in the string rotating
and coiling around on itself as it extends in the AdS 5 radial direction. The presence
of the string in turn perturbs the geometry and the near-boundary perturbation in
the geometry induces a 4d stress tensor on the boundary. The induced stress has the
interpretation as the expectation value of the stress tensor in the dual quantum field
theory.

axis results in the entire string rotating about the same axis with the string coiling

around on itself over and over. In turn, the rotating motion of the string creates

gravitational radiation which propagates up to the boundary of the geometry. Just

like electromagnetic fields induce surface currents on conductors, the gravitational

disturbance near the boundary induces a 4d stress tensor on the boundary [154, 155].

As shown in Fig. 4-1, the induced 4d stress tensor inherits the coiled structure of the

rotating string. Via the standard gauge/gravity dictionary [61, 156], the induced 4d

stress tensor is the expectation value of the stress tensor in the dual quantum field

theory. So, by doing a classical gravitational calculation in five dimensions (which

happens to be somewhat analogous to a classical electromagnetic calculation) we can
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compute the pattern of radiation in the boundary quantum field theory, including all

quantum effects and working in a strong coupling regime in which quantum effects

can be expected to dominate.

At both weak and strong coupling we find that the radiation pattern at infinity

qualitatively resembles that of synchrotron radiation in classical electrodynamics.

And, at both weak and strong coupling, for the case of relativistic circular motion we

find the characteristic pattern of a lighthouse-like beam propagating out to infinity

without broadening. As stated above, at weak coupling the difference between our

results and those of classical electrodynamics simply amount to the presence of an

additional contribution coming from a scalar field. At strong coupling both the total

power and the angular distribution of power are found to differ somewhat from that

obtained by extrapolating the weak coupling result to strong coupling. Interestingly,

though, the angular distribution of power at strong coupling can be written as the sum

of the angular distributions of power coming from vector and scalar modes at weak

coupling with 2:1 relative strengths, whereas at weak coupling this ratio is 4:1. As the

radiation is far from isotropic at infinity, this problem provides a concrete example

demonstrating that radiation need not isotropize in a nonabelian gauge theory at

strong coupling. And, the width of the outgoing pulse of radiation does not broaden

as the pulse propagates outward, meaning that as it propagates out to infinity the

radiation remains at the (short) wavelengths and (high) frequencies at which it was

emitted.

We close this introduction with a look ahead at extending this calculation to

nonzero temperature T. The authors of Ref. [157] have shown that the power that

it takes to move the quark in a circle is given by the vacuum result (4.2) even for a

test quark moving through the strongly coupled plasma present at T # 0 as long as

W2 >> (rT 4.7)

In the opposite regime, where W2f 3 < 7r2T 2 , the power it takes to move the quark in a

circle through the plasma is the same as it would be to move the quark in a straight line
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with speed v. This power has been computed using gauge/gravity duality in Refs. [83,
84], and corresponds to pushing the quark against a drag force. The analogue of our

calculation - namely following where the dissipated or "radiated" power goes - was

done, again using gauge/gravity duality, in Refs. [158, 159, 160, 161]. There, it was

demonstrated that the test quark plowing through the strongly coupled plasma in

a straight line excites hydrodynamic modes of the plasma, trailing a diffusion wake

and - if the motion is supersonic - creating a Mach cone. It is a generic feature

of a nonzero temperature plasma, at weak coupling or at strong coupling, that any

power dumped into it in some localized fashion must eventually take the form of

hydrodynamic excitations [161]. These considerations and our results motivate the

extension of the present calculation to nonzero temperature, in particular in the

regime (4.7). At these high velocities or low temperatures, we know that (4.2) is

satisfied and, given our experience at zero temperature in this Chapter, we therefore

expect that at length scales that are small compared to 1/T the rotating quark

radiates a narrow beam of synchrotron radiation, even at strong coupling. If (4.7) is

satisfied, the wavelengths characterizing the pulse of radiation heading outward into

the plasma are much shorter than 1/T. But, we also know on general grounds that

this narrow pulse of beamed radiation must first reach local thermal equilibrium, likely

converting into an outgoing hydrodynamic wave moving at the speed of sound, and

must then ultimately dissipate and thermalize completely. Watching these processes

occur may give insight into jet quenching in the strongly coupled quark-gluon plasma

of QCD.

The outline of the rest of this Chapter is simple: we do the weak coupling calcula-

tion in Section 4.2 and use gauge/gravity duality to do the strong coupling calculation

in Section 4.3. In Section 4.4 we discuss the results and conclude.

4.2 Weak coupling calculation

In the limit of weak coupling, the radiation produced by an accelerated test charge

can be analyzed using classical field theory. For example, for the case of an electron
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undergoing synchrotron motion in QED, the appropriate classical effective description

is simply that of classical electrodynamics. For the case of a test quark (specifically,

an infinitely massive spin-1/2 particle from the K = 2 hypermultiplet that is in the

fundamental representation of the SU(N) gauge group) moving through the vacuum

of K = 4 SYM theory, more fields can be excited and the appropriate effective

classical description is more complicated. The Lagrangian for this theory can be

found, for example, in Ref. [162]. As can readily be verified by inspecting the field

theory Lagrangian, in the limit of asymptotically weak coupling and large test quark

mass the fields that can be excited by the test quark are the non-Abelian gauge field

and an adjoint representation scalar field. Interactions with all other fields are either

suppressed by an inverse power of the quark mass or a positive power of the 't Hooft

coupling A. Moreover, in the limit of asymptotically weak coupling the gauge and

scalar fields satisfy decoupled linear equations of motion.

Following Ref. [153], instead of dealing with N, decoupled components of the

gauge field and N, decoupled components of the adjoint scalar field, we consider

the case of a single U(1) gauge field and a single real scalar field with appropriate

effective couplings tailored to compensate for the fact that the actual theory contains

adjoint representation fields. The effective couplings can be determined by computing

the vector and scalar contributions to the Coulomb field of a quark in the effective

description and matching onto the full theory. In the large Nc limit the classical

effective Lagrangian reads [153]

11
Lclassical = -Ftv F11" - J - A - (0x)2 - PchargeX, (4.8)

where FA" is the field strength corresponding to the U(1) gauge field A", X is the

scalar field, and the sources corresponding to the test quark are given by

Pcharge = eeff V1 -3(r - rquark) , (4.9)
dr"

JA = eeff qua j3(r - rquark), (4.10)
dt

117



with quark the trajectory of the test quark, v =Park the velocity of the test quark,

and where it turns out that both effective couplings take on the same value

N 2 _ I I
e 2f- 2N c -- A. (4.11)eff 2Nc -2

In classical electrodynamics, Pcharge= 0 and, in the source for the vector field J, eegf

is just e. We shall take the trajectory of the test quark to be (4.1) throughout.

4.2.1 Solutions to the equations of motion and the angular

distribution of power

Comprehensive analyses of the radiation coming from the gauge field can be found

in classical electrodynamics textbooks (see for example [147]). However, because the

case of scalar radiation is less well known and also for the sake of completeness,

we present a brief analysis of the radiation for both fields. We shall linger in our

discussion on those aspects which will also be of value in the analysis of our strong

coupling results.

Choosing the Lorentz gauge 0 -A = 0, the equations of motion for the fields read

- &2 AO = J , -1 2 X Pcharge (4.12)

These equations are solved by

A"(t, r) J d4r'G(t-t', r-r')J(t', r') , (4.13a)

X(t, r) = dYrG(t-t', r-r')pcharge(t/1 rf) ,(4-13b)

where

G(t-t',r-r') = t- t' - |r-r'|) (4.14)
47rr-r')

is the retarded Greens function of -62 , and (W, r') is the point of emission. After
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using delta functions to carry out the r'4 integrations, we arrive at the expressions

A" = ef 1 dr uark (4.15a)
47xr'E(t', r) dt' It'=tret

eeff (4.15b)
47rr EH(t', r) 7 t=tret

where

E(t', r) r -rquark t - r - quark t) (4.16)
r

- 1/ /1 - v2 , r = rl, and the retarded time tret is the solution to

t - tret - |r - rquark(tret)I = 0 . (4.17)

(t - tret) is the light travel time between rquark(tret) and r. Because the motion of the

quark is periodic, rquark(tret) is a periodic function of its argument with period 27r/wo.

Eq. (4.17) then implies that if t is shifted by 2w/wo, tret shifts by the same amount so

that (t -tret) is left unchanged. Because the motion of the quark is circular, Eq. (4.17)

also implies that a change in the position of the quark corresponding to a shift in its

azimuthal angle by 6 o is equivalent to a shift in both t and tret by 6p/wo.

We now describe the qualitative behavior of the solutions (4.15). Fig. 4-2 shows a

pictorial representation of the solutions (4.15). As the quark moves along its circular

trajectory, it emits radiation in the direction of its velocity in a narrow cone of angular

width a. From the solutions (4.15) it can be shown that in the large -y limit a scales

like a 1/-y for both the scalar and vector radiation. The cone of radiation emitted

at each time propagates outwards at the speed of light. At any one moment in time,

the radiation emitted at all times in the past forms a spiral, as illustrated by the red

spiral sketched in Fig. 4-2. Clearly, the radial width A of the spiral must go to zero as

a -* 0, namely as 7y -+ o. As we illustrate in Fig. 4-3, in the large 'y limit the radial

width scales like A ~ 1/- 3 . To understand the scaling of A, consider an observer at

the point p in Fig. 4-3. As the quark moves along its trajectory, an observer at p will

see a short pulse of radiation of duration At ~ Roa/v. The leading edge of the pulse

will be emitted by the quark at time ti and the trailing edge will be emitted at time
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Figure 4-2: A sketch of the solutions (4.15). As the quark moves along its circular
trajectory, it emits radiation in a narrow cone of angular width a - 1/7 in the
direction of its velocity vector. The diagram is a snapshot at the time when the
quark is at the top of the circle. The red spiral shows where the radiation emitted at
earlier times is located at the time of the snapshot. The width A of the spiral scales
like A ~ 1/-y3, as explained in Fig. 4-3.

t2= ti + Roa/v. At time t2 the radiation emitted at ti will have traveled a distance

Roa/v towards p. Moreover, the chordal distance between the two emission points is

approximately Roa when a is small. It therefore follows that the spatial thickness A

of the pulse observed at p scales like

A (Roa/v - Roa) ~ Roa/y 2 ~ Ro/ 3 . (4.18)

We note that the fact that A and a scale with different powers of -y is a consequence

of the fact that the radiation is emitted in the direction of the quark's velocity. If

the radiation were emitted in any other direction, A and a would have the same y

scaling. Because we will re-use these arguments in the analysis of our strong coupling

results, it is important to note that they are purely geometrical, relying only on the

fact that the radiation travels at the speed of light and the fact that the outward

going pulse of radiation propagates without broadening, maintaining the spiral shape

whose origin we have illustrated.

In addition to determining how the pulse widths a and A are related, these geo-

metrical considerations in fact specify the location of the spiral of radiation precisely.
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Figure 4-3: A close-up illustration of the emission of radiation at two times ti and
t2 . The radiation is emitted in the direction of the quark's velocity vector, within
a cone of angular width a. An observer at the point p is illuminated by a pulse of
radiation of duration At ~ Roa and of spatial thickness A. The leading edge of the
pulse observed at p is emitted at ti and the trailing edge observed at p is emitted at
t2 . At time t2 the radiation emitted at ti, denoted by the solid red line, has traveled
a distance Roa/ov towards p. The chordal distance between the two emission points
is Roa in the a -+ 0 limit. The width A is therefore A = Roa(1/v - 1).

For a quark moving in a circle of radius Ro in the (X1 , X2) plane, at the time at which

the quark is located at (XI, X2) = (Ro, 0) the spiral of energy density radiated at all

times in the past is centered on a curve in the X3 = 0 plane specified by

z1 = Ro cos #+ sin3 , x2 =Ro - sin5+ Vcos ; , (4.19)

where fi is a parameter running from 0 to oo. At large r, this spiral can equivalently

be written

O(r, t) = - + wot - + O(1/r) (4.20)
2 Ro

in spherical coordinates, where we have also added the t-dependence.

Recall that the 'y-scaling of A depended on the fact that the radiation is emitted

tangentially, in the direction of the velocity vector of the quark. The same is true

for the shape of the spiral. For example, if we repeat the geometrical analysis for a

hypothetical case in which the quark emits a narrow cone of radiation in the r direc-
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tion, perpendicular to its direction of motion, the energy density would be centered

on a different spiral specified by

x1 = Ro 1 + cose CS X2 =-Ro 1 + ]sin. (4.21)

This spiral, including its t-dependence, is given in spherical coordinates by

rv
po(r, t) = v + Wot - ,V (4.22)

Ro

which differs from the correct spiral of Eqs. (4.19) and (4.20) by a phase shift at large

r. If the quark emits radiation perpendicular to its direction of motion, a distant

point p would be illuminated by light emitted when the quark was at the closest

point on its circle to p, whereas for the correct spiral (4.19) the light seen at p was

emitted one quarter of a period earlier but had travelled Ro farther, leading to the

phase shift of (-7/2 + v). In the near zone, (4.21) differs from the correct spiral

(4.19) in shape, not just by a phase shift.

In Section 4.4, we shall compare our results at strong coupling to those we have ob-

tained in this Section via geometrical arguments built upon the fact that the outward

going pulse of radiation propagates without spreading.

We now analyze the far zone behavior of the fields and compute the time-averaged

angular distribution of power. In particular, we wish to compute the angular distri-

bution of power radiated through the sphere at r = o averaged over one cycle of the

quark's motion. Denoting the energy flux by S, the time averaged angular distribu-

tion of power is given by

dP wo 2 J (9tS -lim r2 dret r S, (4.23)dQ 27T r- oc Jo tret

where, from Eqs. (4.17) and (4.16),

at rat ._ _ (4.24)
8 tret t - tret
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(Technically, the integration in Eq. (4.23) should run from tret = c to tret = c+ 2r/Wo

where c - -r. This is simply because in the far-zone limit the retarded time always

scales like tret - -r. However, as the motion of the quark is periodic one can always

shift the integration variable so that the integration runs from 0 to 27r/wo.)

For the simple case of scalar or electromagnetic fields, the computation of the

energy flux directly from the fields is relatively simple. However, in the gravitational

setting discussed below, the computation of the energy flux requires solving three

differential equations whereas the computation of the energy density requires only

solving one. Therefore, if possible, it is useful to extract the angular distribution of

power from the energy density alone.

For a conformal theory at zero temperature the far-zone energy density and flux

associated with a localized source must take the form

E(t, r) = 8(tret, ) ,S s(tret, ,' rr, (4.25)

up to O(1/r 3 ) corrections. Moreover, using the continuity equation and the fact that

atret/&t = -tret/&r in the far zone, it is easy to see that we must have e = s. In

terms of e, the time-averaged angular distribution of power reads

27r

dP _wo -- __

-- = - dtret & . (4.26)
dQ 27r 0 09tret

We see from Eq. (4.26) that we can extract the angular distribution of the radiated

power at infinity by analyzing the asymptotic behavior of the energy density.

The energy density associated with the vector field is Evector = I(E 2 +B 2) where

E and B are the electric and magnetic fields. The energy density associated with

the scalar is Esalar = I(VX) 2 . Evaluating these quantities for the solutions (4.15) in
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the r -> oo limit yields

Evector =[3 + 2v2 + (1 - 2v2 ) cos 20 - 8v sin 0 sin( p - W0 tret)
327r 2r2 6

- 2 sin2 0 cos (2(Qp - wotret,)) (4.27a)

eeff v2w
Escalar = 32~r2  sin2cos2 (p - Wotret), (4.27b)

up to subleading corrections proportional to 1/rs, where we have defined

( 1 - v sin 0 sin(p - wotret), (4.28)

which is the r -+ oo limit of E:

+ O(1/r). (4.29)

Note that the energy densities (4.27) are proportional to 1/ 6 and therefore have

maxima in the 0 = r/2 plane where has minima; at large r, these occur on the

spiral (4.20).

Noting from (4.17) that (t - tret) - r in the r -+ oo limit, we see from (4.24) and

(4.29) that &t/Otret = in the r -+ oo limit. We can now evaluate the expression

(4.26) for the time-averaged angular distribution of power, yielding

dPector _ v 2'y 3woe 2 (7y2_3) sin*6 + 3_/4 sin 2 (29) + 8y 4 cos 4 0

dQ 1287r2  (-y2 cos 2 0+ sin2 )7/2 (4-30a)

dPscalar _ v2 3 oge2 sin 2 0 [972 - 1 - v 2_Y2 cos(20)]
eff (4.30b)d2 5127r2  (72 COS2 + sin 2 0)7/2

Eqs. (4.30) show that the power radiated in vectors and in scalars are both focused

about 0 = 7r/2 with a characteristic angular width 6 oc 1/-Y. We shall plot the sum

dPvector/dQ + dPscalar/dQ in Section 4.4, where we compare this weak coupling result

to that obtained at strong coupling.

Integrating Eqs. (4.30) over all solid angles we find the power radiated in vectors
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and scalars

Pvector 2 effa2 , (4.31a)
3 47r

Pscaar = e , a2 (4.31b)
6 4-r

where a = vwo/(1 - v2 ) is the proper acceleration of the test quark. With eeg = e,

Eq. (4.31a) becomes the well known Larmor formula for the power radiated by an

accelerated charge in classical electrodynamics. Evidently, at weak coupling four

times as much energy is radiated into the vector mode as the scalar mode. We now

see that Mikhailov's strong coupling result (4.2) is equivalent to the result for weakly

coupled K= 4 SYM theory upon making the substitution

5 2X <-+ -e2ff , (4.32)
12

with the difference between this result and (4.6) - which was obtained by comparing

the strong coupling A = 4 SYM result to classical electrodynamics - coming from

the fact that in weakly coupled KN= 4 SYM theory the rotating test quark radiates

scalars as well as vectors.

4.3 Gravitational Description and Strong Coupling

Calculation

In this Section we will use the gauge/gravity duality [61] in order to calculate the

power radiated by the rotating quark at strong coupling. As we discussed in Chapters

1 and 3, the AdS/CFT correspondence provides a description of the (strongly coupled;

quantum mechanical) vacuum of N = 4 SYM theory in Nc -+ oo and A -* oc limit

in terms of classical gravity in the AdS5 x S5 spacetime. Since generalizing from

KN= 4 SYM to any other conformal quantum field theory that has a classical gravity

dual involves replacing the S5 by some other compact five-dimensional space (see

Section 4.1), in what follows, we shall never need to specify this five-dimensional
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space, meaning that all our strong coupling results will be valid for any large-Nc

conformal field theories with gravitational duals.

In the coordinate system used in this Chapter, the metric of the AdS5 spacetime

is

ds2  R ds [-fdt2 +dr2± .dus - (4.33)

where RAdS is the AdS5 curvature radius, u is the (inverse) AdS 5 radial coordinate

with the boundary at u = 0, and f = 1. (We have kept the factor of f in the metric

in order to generalize some of our calculations to nonzero temperature, where

f =1 - - (4.34)
U 4

h

with uh 1/(7rT) and T the temperature of the field theory state.) A single test quark

in the fundamental representation in the field theory corresponds in the gravitational

description to an open string with one endpoint attached to the boundary at u = 0.

Taking the Nc -> oc and A -- oc limits eliminates fluctuations of the string and

makes the probability for loops to break off the string vanish. Upon taking these

limits, the string is therefore a classical object. The presence of the classical string

hanging "down" into the five-dimensional bulk geometry perturbs that geometry via

Einstein's equations, and the behavior of the metric perturbation near the boundary

encodes the change in the boundary stress tensor. This is illustrated in Fig. 4-1, and

in this Section we shall turn this cartoon into calculation.

4.3.1 The rotating string

We begin by describing the rotating string. The metric perturbations that this string

creates are small in the large Nc limit, small enough that we can neglect their back

reaction on the shape of the string itself. We can therefore begin by finding the

shape of the rotating string in AdS5 , in the absence of any metric perturbations. The
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dynamics of classical strings are governed by the Nambu-Goto action

SNG = -To jd-r dVi.7g (4-35)

where To = vX/27rRdS is the string tension, a and r are the coordinates on the

worldsheet of the string, and g = det 9ab where g,, is the induced worldsheet metric.

The string profile is determined by a set of embedding functions XM (r, 0-) that specify

where in the spacetime described by the metric GMN the point (T, 0-) on the string

worldsheet is located. The induced world sheet metric is given in terms of these

functions by

9ab = 0.X - ObX, (4.36)

where a and b each run over (r, -). For the determinant we obtain

- g =(X - 0,X) 2 _ (OTX) 2 (,X) 2 . (4.37)

We choose worldsheet coordinates -r = t and a = u. As we are interested in quarks

which rotate at constant frequency wo about the ^ axis, we parametrize the string

embedding functions via

XM(t,u) = (t,r,(tu),u) (4.38)

where in spherical coordinates {r, 0, <} the three-vector r, is given by

r,(t, u) = (R(u), L, 4(u) + wot) . (4.39)

The function 4(u) describes how the purple string in Fig. 4-1 winds in azimuthal

angle as a function of "depth" in the AdS5 radial direction, whose coordinate is u. The

function R(u) describes how the string in Fig. 4-1 spreads outward as a function of

depth. Because we are describing a situation in which the test quark at the boundary

has been rotating on its circle for all time, the purple string in Fig. 4-1 is rotating at

all depths with the same angular frequency wo, meaning that the two functions R(u)

and 4(u) in the parametrization (4.39) fully specify the shape of the rotating string
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at all times. With this parameterization, the Nambu-Goto action reads

SNG = dt du L , (4.40)

where

( - 0wR2 )(1 + R'2) + R2 4 2  (4.41)
U

2

To determine the shape of the string in Fig. 4-1, we must extremize (4.40).

The equations of motion for #(u) and R(u) follow from extremizing the Nambu-

Goto action (4.40). One constant of motion can be obtained by noting that the action

is independent of #(u). This implies that

OL
S= -- (4.42)

is constant. Here and throughout, by' we mean &/&u. The minus sign on the right-

hand side of (4.42) is there in order to make 11 positive for positive wo. In terms of

H, the equation of motion for 0'(u) reads

2 _ u4f 2 (1 - A R 2)(1 +R'2 )
R2(R2 _ U41 2) (4.43)

The equation of motion for R(u) is given by

-R - -R =0. (4.44)
OR &-u 9R'

Taking the above partial derivatives of L and then eliminating 4 derivatives via

Eq. (4.43), we obtain the following equation of motion:

,, R(u+2RR')(1±R'2 ) 1+ R'2
± =0.(45u(u4 fl2 - R2) R(1 - w0R2) (4.45)

As a second order differential equation, one might expect that Eq. (4.45) requires

two initial conditions for the specification of a unique solution. However, it was shown

in Ref. [157] that this is not the case - together, Eqs. (4.43) and (4.45) imply that
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all required initial data for (4.45) is fixed in terms of 1 and wo. To see how this comes

about note that Eq. (4.45) is singular when 1 - w0R 2 = 0 or when R 2 _ U4 112 = 0.

In order to maintain the positivity of the right hand side of Eq. (4.43), 1 - w2R 2 and

R2 _ u4 2 must vanish at the same point. This happens where

1 1
U = UC V R =Rc=- (4.46)

We can then solve (4.45) in the vicinity of u = uc by expanding R(u) as

1
R(u) = Rc + Re(u - uc) + -R"(u - uc) 2 +..., (4.47)

2 c

where R" &R|U=UC. The second and third terms in (4.45) are divergent at u = uc

while the R" term is finite there. This means that when we substitute (4.47) into

(4.45) and collect powers of (u-uc), we obtain an equation for R' that does not involve

R'', meaning that the equation of motion itself determines Rc. A short calculation

yields

R'c = + 4 -V (4.48)
Therefore, both Rc and R' are determined by wo and U1 and consequently, for given wo

and U there is only one solution to Eq. (4.45). From the perspective of the boundary

field theory this had to happen: for a given angular frequency wo, the radiation

produced by the rotating quark can only depend on the radius Ro of the quark's

trajectory (which as we will see below can be related to H).

With the above point in mind, the unique solution to Eq. (4.45) is given by2

R(u) = v2 yU2 + R8, (4.49)

where v = Rowo is the velocity of the quark and 7 1/v/1 -v2. The velocity of the

quark is related to H via

1- = v27y4wo. (4.50)

2 One way to derive the solution (4.49) is simply to solve Eq. (4.45) with the series expansion
(4.47) and recognize the resulting series as that of (4.49).
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With R(u) given by (4.49), it is easy to integrate Eq. (4.43). Taking the negative

root of Eq. (4.43) so that the string trails its u = 0 endpoint, we find

#(u) = -u--wo + arctan (uywo) (4.51)

and thus

'(t, u) = wo(t - -yu) + arctan (uywo) . (4.52)

We thus have an analytic description of the shape of the rotating string.

We can obtain the profile of the rotating string projected onto the plane at the

boundary by using (4.49) to eliminate u from (4.52), yielding

7r r
Nt, r) = ot + - ± O(1/r) . (4.54)2Ro

Equation (4.54) describes a spiral whose neighboring circles (at fixed t) are separated

by 2irRo. Note that the curve (4.54) is the same spiral as (4.20) when the velocity of

the quark is v -+ 1. Indeed, it can also be shown that at all radii (4.53) is the same

spiral as (4.19) with v = 1. We conclude that for v -- 1 the rotating string hanging

down into the AdS5 metric is lined up precisely below the spiral in the boundary

theory where the radiated synchrotron energy density is located, in electrodynamics,

in the weak coupling calculation of Section 4.2 and, we shall see below, at strong

coupling.3 At velocities less than 1, the shape of the rotating string is not related to

3 This identification suggests interesting possibilities at nonzero temperature. Whereas at T = 0
the rotating string has a profile R(u) such that it extends out to infinite r, when T # 0 the rotating
string only extends out to some finite maximum radius rmax that depends on wo and v [157]. The
fact that at zero temperature we can identify the the spiral of the rotating string with the spiral of
energy density in the boundary quantum field theory suggests that, at least at v -- 1, the maximum
radius out to which the rotating string reaches may be some length scale related to how far the beam
of synchrotron radiation can travel through the hot strongly coupled plasma before it thermalizes.
Interestingly, if one takes the v -+ 1 at fixed Ro, one finds rmax - 00 [157].
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the shape of the spiral of energy density, at least not directly by projection.

The shape of the rotating string determines the total power radiated, as we now

explain. The string has an energy density g and energy flux ra, where

&SNG
r 6 = ( X (4.55)M -6oaX M)

with SNG given in (4.35), which satisfy

Btwor + OU7ro = 0 . (4.56)

This is simply the statement of energy conservation on the string worldsheet. The

energy flux down the rotating string is given by

- 7r6 = -wolI = - A- = -- a , (4.57)
27r 27r u2 27r

where we have used (4.50) and where a = vwoy 2 is the proper acceleration of the test

quark, and where the minus sign comes from our choice of parametrization of the

world sheet with a coordinate u that increases downward, away from the boundary.

The energy flux down the string is the energy that must be supplied by the external

agent which moves the test quark in a circle; by energy conservation, therefore, it is

the same as the total power radiated by the quark.4 Thus far, we have reproduced

4 The energy loss rate (4.57) can also be derived from the energy density along the string

- r = Z (1 + oW0 U2) (4.58)
0 27r U2

as follows. For u > uc, this energy density approaches the constant

- -gr T 'o . (4.59)

Now, consider the total energy along a segment of the string whose extent in u is Su, which we shall
denote by 6E = -7rgou. The rotating quark can be thought of as "producing this much new string"
in a time 6t that, from (4.52), is given by 6t - g. One should then identify 6E with the energy

pumped into the system during 6t. Equating 6E d 6t = Pt we thus find that

1 0 /A
P = -7r / - Ho . (4.60)

y 2-7r
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Mikhailov's result (4.2) via a calculation along the lines of Ref. [157] - but with

the advantage that we have been able to find analytic expressions for R(u) and <0(u),

which will be a significant help below.

We close this Subsection by commenting on an aspect of the physics of the rotating

string that we shall not pursue in detail. As pointed out earlier, there is a special

value of u, u = uc where we should specify the initial condition needed to solve the

equations of motion that determine the shape of the rotating string. uc has a more

physical interpretation: it is the depth at which the local velocity of the rotating

string, woR(uc), becomes equal to the speed of light in the five-dimensional spacetime.

This has a simple interpretation from the point of view of the string worldsheet. It can

be verifed that the induced metric on the string worldsheet gab has an event horizon

at u = uc. Thus disturbances on the string become causally disconnected across uc.

(This suggests that in the boundary field theory the regime r > R(uc) = Ro/v can be

thought of as the far field region, while r < Ro/v can be thought of as the near field

region.) Even though the AdS5 spacetime with metric GMN has zero temperature,

the worldsheet metric is that of a (1 + 1)-dimensional Schwarzschild black hole whose

horizon is at u = uc and whose Hawking temperature is given by

1 _1

T,- -TUnruh (4.61)

where Tunuh = - is the Unruh temperature for an accelerated particle with proper

acceleration a. As it radiates, the rotating test quark should experience small kicks

which would lead to Brownian motion in coordinate space if the quark had finite

mass. At strong coupling such fluctuations can be found from small fluctuations of

the worldsheet fields XM (t, u) in the worldsheet black hole geometry. The thermal

nature of the worldsheet metric indicates that such Brownian motion can be described

as if due to the presence of a thermal medium with a temperature given by (4.61).
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4.3.2 Gravitational perturbation set-up

In the limit Nc -+ oo, the 5d gravitational constant is parametrically small and

consequently the presence of the string acts as a small perturbation on the geometry.

To obtain leading order results in 1/Nc we write the full metric as

GMN = G(ON + hMN, (4-62)

where G(ON is the unperturbed metric (4.33), and linearize the resulting Einstein

equations in the perturbation hMN. This results in the linearized equation of motion

- D 2 hMN + 2DPD(MhN)P - DMDN h + - hMNR Ad S

+ (D2h - DPDQ hpQ - Z h) G(O)_ = 2 tMN, (4.63)

where h = hM, DM is the covariant derivative under the background metric (4.33),

K is the 5d gravitational constant and tMN is the 5d stress tensor of the string. In

K = 4 SYM theory, ni = 47r2 R ds/N2, but this relation would be different in other

strongly coupled conformal field theories with dual gravitational descriptions. We

shall see that ,2 does not appear in any of our results.

According to the gauge/gravity dictionary, the on-shell gravitational action

SG 1 dxV-G 7Z + 12s + SGH (4.64)

is the generating functional for the boundary stress tensor [156, 155]. Here, G is

the determinant of GMN, 7Z is its Ricci scalar, and SGH is the Gibbons-Hawking

boundary term [163], discussed and evaluated in the present context in Ref. [161].

The 5d metric GMN induces a 4d metric g,, on the boundary of the the 5d geometry.

The boundary metric is related to the bulk metric by

U2
9Pv(x) = lim 2 GLV (x7 U). (4.65)

u-+0 RdS

Because GMN OC 1/U2, the rescaling by U2 in (4.65) yields a boundary metric that is
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regular at u = 0. The boundary stress tensor is then given by [155]

TA x 2 6SG
T7f"(x )4 =W (4.66)

with g denoting the determinant of g,,, which was already introduced in Chapter

1 (expression 1.12). We see that in order to compute the boundary stress tensor,

one needs to find the string profile dual to the rotating quark and compute its 5d

stress tensor tMN- One then solves the linearized Einstein equations (4.63) in the

presence of the string source and then extracts the boundary stress tensor from the

variation of the on-shell gravitational action, as in (4.66). The nr dependence drops

out because Sc oc 1/.2 while we see from (4.63) that the perturbation to the metric

is proportional to i.

We determined the string profile in Section 4.3.1. From this, we may now compute

the 5d string stress tensor, which is what we need in order to determine the metric

perturbation due to the string. In general,

MN TOt __ V a (4.67)

For the rotating string given by (4.38) and (4.39) with (4.49) and (4.51), this reduces
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tMN 3
27ruRAds/&

( R 2 +R 2 2 $2+ 1

R 2 S2woR'g'

0

-R 2S 2wo(R' 2 + 1)

R 2s 2 o /

(4.68)

R2S2wo R'#'

R'2 (R2S2w - 1)

0

-R 2 S2R'g'

R'(R 2 82w2 - 1)

0 -R 2S 2wo (fR' 2 ± 1)

0 R4 s4(UR'2 + - '2 )

-R 2 2#' R2s 2w 1

(4.69)

where the components are in spherical coordinates, with the rows and columns ordered

(t,r,0,<p, u), and where s = sin0.

4.3.3 Gauge invariants and the boundary energy density

Given the string stress tensor (4.68), one can solve the linearized Einstein equations

(4.63). However, doing this in its full glory is more work than is necessary. The

metric perturbation hMN contains fifteen degrees of freedom which couple to each

other via the linearized Einstein equations. This should be contrasted with the 4d

boundary stress tensor, which is traceless and conserved and thus contains five inde-

pendent degrees of freedom. Therefore, not all of the degrees of freedom contained in

hMN are physical. The linearized Einstein equations are invariant under infinitesimal

coordinate transformations XM -> XM + M where 0M is an arbitrary infinitesimal

vector field. Under such transformations, the metric perturbation transforms as

hMN -+ hMN - DM N - DNOM, (4.70)
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where DM is the covariant derivative under the background metric G(N. The physical

information contained in hMN must be gauge invariant. This requirement restricts

the number of physical degrees of freedom in hMN to five,5 matching that of the

boundary stress tensor.

Just as in electromagnetism where gauge invariant quantities (e.g. electric and

magnetic fields) can be constructed from a gauge field, it is possible to construct gauge

invariant quantities out of linear combinations of hMN and its derivatives. The utility

of doing this lies in the fact that the equations of motion for gauge invariants don't

carry any of the superfluous gauge variant information contained in the full linearized

Einstein equations and thus can be simpler to work with. Indeed, as demonstrated in

Refs. [164, 161, 159], the equations of motion for gauge invariants can be completely

decoupled from each other.

As the background geometry is translationally invariant, it is useful to introduce a

4d spacetime Fourier transform and work with mode amplitudes hMN(u; w, q). Useful

gauge invariants can then be constructed out of linear combinations of hMN (U; W, q)

and its radial derivatives and classified according to their behavior under rotations

about the q-axis. As hMN is a spin two field, there exists one independent helicity

zero combination and a pair each of independent helicity one and two combinations.6

For utility in future work, we shall give an expression for the gauge invariant

quantity that is valid at zero or nonzero temperature, even though in this Chapter we

shall only use it at T = 0. At nonzero T, the warp factor f appearing in the metric

(4.33) is given by (4.34). When we later want to recover T = 0, we will simply set

f = 1.

5 Five degrees of freedom in hMN can be eliminated by exploiting the gauge freedom to set
h5M = 0 for all M, reducing the number of degrees of freedom in hMN to ten. However, just as
in electromagnetism, this does not completely fix the gauge. There exists a residual gauge freedom
which allows one to eliminate five more components of hMN on any u = const. slice.

6 There exist many different helicity zero, one and two gauge invariant combinations of hMN, but
only five are independent. Different gauge invariants of the same helicity are related to each other
by the linearized Einstein equations.
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We define HMN IhMN and

Z 4f qH' iHo_ 2f' qq Hij + 4if qHi5W o q

-( 2uq2 - (q2 iij -qq) Hi3 + . Ho5 - . to5 , (4.71)
q zu zo

where the zeroth and fifth coordinates are t and u respectively and where i and j run

over the three spatial coordinates. The quantity Z clearly transforms as a scalar under

rotations. With some effort, one can show that Z is invariant under the infinitesimal

gauge transformations (4.70). Z is therefore a suitable gauge invariant quantity for

our purposes.

The dynamics of Z are governed by the linearized Einstein equations (4.63). Using

the linearized Einstein equations, it is straightforward but tedious to show that Z

satisfies the equation of motion

Z" + AZ'+ BZ S, (4.72)

where

A 24+4q2 2 +6f +q 2u2f -30f 2  (4.73)
Uf (U2q2+6 - 6f)

w2  q2 u2 (14-5f -q 2U2 ) + 18(4-f -3f 2 )B --+ 2(4.74)
f2 u2f (q2 2 +6-6f)

S 8 4 (q2 2+6-6f) 2
2 f 0  3uq2f )ti3  (4.75)

8iw 8u [q2 (q 2 U2 +6) - f (12q 2 -9 f")] 8q2

+ to5 + 3f 2 (q2U2 - 6f + 6) - 3 - 8iqt
2 5 .

The connection between Z and the energy density may be found by considering

the behavior of Z and HMN near the boundary. Choosing for convenience the gauge

H5M = 0, one can solve the linearized Einstein equations (4.63) with a power series

expansion about u = 0 in order to ascertain the asymptotic behavior of the metric

perturbation. Setting the boundary value of H,, to vanish so the boundary geometry

is flat and considering sources tMN corresponding to strings ending at u = 0, one
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finds an expansion of the form [165, 161]

Hy,(u)= H 33+ H ) u 4+--- (4.76)

In the gauge H5M = 0 the variation of the gravitational action (4.66) relates the

asymptotic behavior of H,, to the perturbation in the boundary energy density via

[155]

=2 H (4.77)
500*

The coefficient H1 can in turn be related to the asymptotic behavior of Z by sub-

stituting the expansion (4.76) into Eq. (4.71). In doing so one finds that Z has the

asymptotic form

Z(u) Z(2) U2 + Z( 3 ) U3 + -__ , (4.78)

and that

00 -1Z3 (4.79)

We therefore see that the energy density is given by

R 3
=- AdSZ( (4.80)

The coefficient Z(2) in the expansion (4.78), which has delta function support at the

location of the quark, gives the divergent stress of the infinitely massive test quark.

It is therefore not of interest to us. We now see explicitly that, as we argued above,

in order to obtain the energy density in the boundary quantum field theory the only

aspect of the metric perturbation that we need to compute is Z, and furthermore

that all we need to know are the coefficients in the expansion of Z about u = 0.
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4.3.4 The solution to the bulk to boundary problem and the

boundary energy density

Although we have defined Z at nonzero temperature, henceforth as we determine Z

we return to T = 0, meaning f = 1. At zero temperature the coefficients A and B

appearing in (4.72) are given by

5
A = -(4.81)

U2
B = -2 _ ±2 + . (4.82)

and the general solution to (4.72) may be written

Z(u) =-u 3 Io(uQ) d Ko(u'Q) S(u')+a -uKo(uQ)li du' 12 S(u') +)3

(4.83)

where Q = q _ew2 , 1 and Ko are modified Bessel functions, and a and # are

constants of integration.

The constants of integration are fixed by requiring that Z(u) satisfy appropriate

boundary conditions. As Io(uQ) diverges as u -+ oo, regularity at u = oo requires

a = 0. The constant 3 is fixed by the requirement that the E -. 0 limit exists (so

all points on the string contribute to the induced gravitational disturbance) and that

no logarithms appear in the expansion of Z(u) near u = 0. This last condition is

equivalent to the boundary condition that the metric perturbation HMN vanish at

U = 0 so the boundary geometry is flat and unperturbed. For strings which end at

u = 0, we have

S(u) = so + O(n 2 ), (4.84)

where

SO = 8ni2 lim U2 0, =oo -8ni lim to (4.85)
u-+o2 u-O U

where we have used the fact that too oc u at small u. Furthermore, the Bessel functions
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have the asymptotic expansions

Io(uQ) = 1 + 0(u 2 ),

Ko(uQ) = -7E - log(!uQ) + 0(u2),

(4.86)

(4.87)

where -E is Euler's constant. Substituting these expansions into the second integral

in (4.83), we find

I 00
-IO(U'Q) S(1 SOdu'-2 S(u') -+0(1).

UE
(4.88)

Therefore, in order for the E -+ 0 limit to exist we must have

# SO
(4.89)

As one may readily verify, this value of 3 also eliminates all logarithms appearing in

the expansion of Z near the boundary.7

With constants of integration determined and with the asymptotic forms (4.84)-

(4.87), it is easy to read off from (4.83) the asymptotic behavior of Z. In particular,

we find

(4.90)

where
Ko(u q2-_wO)

(4.91)

is the bulk to boundary propagator.

At this point it is convenient to Fourier transform back to real space. At zero

7 A deformation in the boundary geometry implies that logarithms will occur in the expansion of
Z at order u3 and beyond. The linearized Einstein equations relate all higher order log coefficients
to that of the u3 coefficient in a linear manner. Therefore, if the order u3 coefficient vanishes all
other coefficients vanish. As is easily seen from the asymptotic forms (4.84) - (4.87), the value of 3
given in (4.89) ensures the order U3 logarithm coefficient vanishes.
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temperature the source (4.75) Fourier transforms to

S(t, x, u) = 8u(2 4 2(2too - 2t55 + ti)z~U2 U2I~)--2t 5 +t
5)

+ 4uViV t 3 - 80to5- 8Vjtj5 , (4.92)

where sums over repeated spatial indices i and j are implied. To take the Fourier

transform of the bulk to boundary propagator one must give a prescription for inte-

grating around singularities at w = q. The relevant prescription comes from causality

and requires analyticity in the upper half frequency plane. This requires sending

w -+ w + iE. With this prescription we have

1
g(t, r, u) -1 2(t)6'(-t 2 + r 2 + u2). (4.93)

,7M

We therefore have

Z(3)4(t, r) 'lim d4r' du g(t-t', r-r', u)S(t', r', u) - e so(t', r')g(t', r-r', ) - (t, r)

(4.94)

When we use (4.92) to express S(t', r, u) we find that when the du-integral of the first

term in (4.92) is done by parts, the resulting boundary term cancels the e-dependent

bulk-to-boundary propagator in (4.94).

Upon assuming that the stress-energy tensor on the boundary does not have sup-

port at (t, r), i.e. that the observer is located away from the source, we can safely

take the E -- 0 limit and obtain for the energy density

E(t, r) dS f dar' [fdu 9(t - t') [(4utoo - t M5V W) (W)
M 27r J Jo

+|r - r'1 2 (4too - 4t5 5 + 2tgi) J/// (W) - (tpjV'WV'W) ],( 4 .9 5 )3u 2u
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where

V -(t-t')2 +U2± +r - r' 2  (4.96)

and V' is the partial derivative with respect to X/M -{/t', r', u}. We see that the

r2 factors in (4.80) and (4.92) have cancelled, as expected. Because we have analytic

expressions for the profile of the rotating string, it turns out that we can evaluate

E explicitly, in two stages. First, using (4.68) including its three-dimensional delta

function, and using our expressions (4.49) and (4.51) for R(u) and 0(u), we obtain

E(t, X) = 2A du dt'[A6"(W,) + BJ"'(W,)] , (4.97)

with

A = 7 (3+ v 2 73W0u(-t'+ t +uY)) - vywor sin0cos+ v 3 74W ur sin0sin@,

B3 V2_422) + v4752U2 + 7 + |r - r,(t, u)12

-2v 3 73 WO 2 (cos - v2_3WOU sin 0) r sin 0 - v 2 Y(1 + v2 42t'Wu 2 )r 2 sin2  sin 2 0

+2v27 2 wou r2 cos sin 4 sin2 0, (4.98)

where @= + wo(yu - t') and

W = -(t - t') 2 + U2 +r - r,(t', u) 12 499)

Next, the integral (4.97) can be carried out via the change of variables

( I (7 + t'- t)) , -v I (-YU - t' + t) . (4.100)

Since points with -(t' - t) < 7u are causally disconnected from an observer on the

boundary at time t, the argument of the 6-functions in Eq. (4.97) is non-vanishing.

This allows us to deform the domain of integration and the integral takes the generic
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form

In= J du fd' dt'F(t',j)(W,)

2 dv d(-f((, v)((6) (W8), (4.101)

where Fn((, v) = Fn(t'((, v), u((, v)). Furthermore, the argument of the 6-functions

takes the form

W =r 2 + Ro + ( (4v - 2vr sin 0 sin(2vwo + V - wot)) - 2rRo sin 0[vwo sin(2vwo + p - wot)

+ cos(2vwo + p - wot)], (4.102)

which is then linear in ( and therefore allows us to evaluate In formally, obtaining

In = - du () nF( (=CO(V) (4.103)

+ j duE (1)&15 ((, V) ("-(W,(t' = t - 2v, u = 0)).
7 o=I_ (OcWP) c=-

Here (o(v) is the unique zero of W, at a given v and vo = (t - tret)/2, but we will not

describe in detail how these arise because the integrand in the first term in In vanishes:

by direct inspection of F2  A and F3  B we find ,2.P2 ((, v) = 0 and 3P3 ((, v) = 0.

Consequently only the boundary terms in the second line of Eq. (4.103) contribute

and we can perform the remaining integral using the 6-function. Finally, we obtain

S= 24wr274 r6 6  2r =2 ± 4r72 E(tre-t) + (27 2 _42 v2- 2  sin2 0+3r2 74W,02 2 )(tret-t)2

+ 7ry2 w E(tret-t)3 + 47 2 W (trett) + 8vy 2 or(tre-t)(tret-t+r E) x sin 0cos(p-wotret)

(4.104)

where E was given in (4.16). Recalling the discussion after (4.17), we note that E is

invariant under a shift of p by op that is compensated by shifts in both t and tret by
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op/wo. E is a periodic function of p with period 27r and a periodic function of t with

period 27r/wo, as it must be.

Eq. (4.104) is the main result of this Chapter. It is an explicit analytic expression

for the energy density of the radiation emitted by a test quark in circular motion, valid

at all times and at all distances from the quark. The only aspect of the calculation

that requires numerical evaluation is that one must solve the transcendental equation

(4.17) for tret. With tret in hand, one uses (4.16) to compute E and then evaluates

the energy density E using the solution (4.104). We shall illustrate our result (4.104)

in several ways in Section 4.4.

4.3.5 Far zone and angular distribution of power

We close this Section by evaluating the energy density (4.104) in the r - oo limit

and extracting the angular distribution of power ' la Eq. (4.26). In the far zone limit

we can replace E by its r -+ oo limit, namely ( in (4.28), and we can safely replace

tmt by (t - r) everywhere in (4.104) except within the p-dependent argument of the

cosine. In the far zone, the energy density (4.104) then reduces to that of Eq. (4.25)

with
wo-'V 4 - 4V2 sin 2 0 - 7 + 3 2 72  (4.105)
247r2  (6ry2

Using Eq. (4.26), we find that the time-averaged angular distribution of power is given

by

dP v2y33W02/55V 2 - 1 - v2_Y2 cos(20)
dQ 327r2  (-y2 cos 2 0 + sin 2 0)5/2

Just as in the case of weak coupling, the radiated power is focused about 0 = 7r/2

with a characteristic width ~ 1/. We shall plot (4.106) and compare it to the weak

coupling result in Section 4.4.

Upon integrating over all solid angles, we find the total power radiated

P = a2, (4.107)
27r
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Figure 4-4: Left: a cutaway plot of r 2E/P for v = 1/2. Right: a cutaway plot of

r2E/P for v = 3/4. In both plots the quark is at x1 = Ro, x 2 = 0 at the time shown
and its trajectory lies in the plane x3 = 0. The cutaways coincide with the planes

X3 = 0, cp = 0 and p = 77r/5. At both velocities the energy radiated by the quark is
concentrated along a spiral structure which propagates radially outwards at the speed
of light. The spiral is localized about 0 = -r/2 with a characteristic width 60 ~ 1/Y.
As v -+ 1 the radial thickness A of the spirals rapidly decreases like A ~ 1/-3

where again a = vy 2wo is the quark's proper acceleration, reproducing Mikhailov's

result (4.2) again. The fact that the power that we have obtained in this Section by

integrating over the angular distribution of the radiation (4.106) in the quantum field

theory matches the energy flux (4.57) flowing down the classical string in the dual

gravitational description is a nontrivial check of our calculations.

4.4 Results and Discussion

4.4.1 Radiation at strong coupling, illustrated

Fig. 4-4 shows two cutaway plots of the energy density E at strong coupling (multiplied

by r 2/P where P is the total power radiated) produced by a quark moving on a circle
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Figure 4-5: Plot of r2 /P at 0 = -r/2 and o = 5-r/4 at t = 0 as a function of
r for v = 1/2. The plot illustrates the fact that the pulses of radiated energy do
not broaden as they propagate outward. This implies that they do not broaden in
azimuthal angle, either. Strongly coupled synchrotron radiation does not isotropize.

of radius Ro at velocities v = 1/2 and v = 3/4. The Figure is obtained by evaluating

(4.104). The motion of the quark is confined to the plane x3 = 0 and at the time shown

the quark is at x1 = Ro, x 2 = 0, and is rotating counter clockwise. The cutaways in

the plots show the energy density on the planes x3 = 0, o = 0 and p = 77r/5 where o

is the azimuthal angle. As is evident from the Figure, as the quark accelerates along

its trajectory energy is radiated outwards in a spiral pattern. This radiation falls off

like 1/r 2 and hence has a constant amplitude in the Figure and propagates radially

outwards at the speed of light. The Figure shows the location of the energy density

at one time; as a function of time, the entire pattern of energy density rotates with

constant angular frequency wo = Rov. This rotation of the pattern is equivalent to

propagation of the radiation outwards at the speed of light. As seen by an observer

far away from the quark, the radiation appears as a short pulse just like a rotating

lighthouse beam does to a ship at sea.

What we see in Fig. 4-4 looks like an outward going pulse of radiation that does

not broaden as it propagates. Analysis of (4.104) confirms this, as we have illustrated

in Fig. 4-5 by extending the plot of the energy density outward to much larger radii

at one value of the angular coordinates, at time t = 0. As time progresses, the pulses

move outward at the speed of light, and an observer at large r sees repeating flashes of

radiation. This Figure provides a convincing answer to a central question that we set
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out to answer in Section 4.1. We see that even though the gauge theory is nonabelian

and strongly coupled, the narrow pulses of radiation propagate outward without any

hint of broadening. We find the same result at much larger values of 'y, where the

pulses become even narrower - their widths are proportional to 1/i3, as at weak

coupling and as we shall discuss below. The behavior that we find is familiar from

classical electrodynamics - in which the radiated energy is carried by noninteracting

photons. Here, though, the energy is carried by fields that are strongly coupled to

each other. And, yet, there is no sign of this strong coupling in the propagation of

the radiation. No broadening. No isotropization.

Fig. 4-5 is also of some interest from a holographic point of view. The qualitative

idea behind gauge/gravity duality is that depth in the 5th dimension in the dual

gravitational description corresponds to length-scale in the quantum field theory. In

many contexts, if one compares two classical strings in the gravitational description

which lie at different depths in the 5th dimension, the string which is closer to the

boundary corresponds to a thinner tube of energy density in the quantum field theory

while the string which is deeper, farther from the boundary, corresponds to a fatter

tube of energy density. Our calculation shows that this intuitive way of thinking about

gauge/gravity duality need not apply. The rotating string falls deeper and deeper into

the 5th dimension with each turn of its coils and yet the thickness of the spiral tube

of energy density in the quantum field theory that this string describes changes not at

all. Reference [94] gives a nice geometric description of our results using gravitational

shock waves which shines some light on this apparent contradiction with the IR/UV

duality.

The behavior of the outgoing pulse of radiation illustrated in Fig. 4-5 is different

than what one may have expected for a nonabelian gauge theory given that solutions

to the classical field equations in SU(2) and SU(3) gauge theory are chaotic with pos-

itive Lyapunov exponents and are thought to be ergodic [166, 167, 168]. Of course,

we have not solved classical field equations; we have done a fully quantum mechanical

analysis of the radiation in a nonabelian gauge theory, in the limit of large Nc and

strong coupling. It is nevertheless surprising from the gauge theory perspective that
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Figure 4-6: The energy density at 0 = ?r/2 and Wp = 57r/4 for quark velocity v = 1/2,
as in Fig. 4-5. r ~ 33RO corresponds to the location of a spiral in the energy density.
Directly ahead of and directly behind the spiral, the energy density is slightly negative.
To see how slightly, compare the vertical scale here with that in Fig. 4-5.

the radiation we find turns out to behave (almost) like that in classical electrody-

namics. From the gravitational perspective, we saw that the equations describing the

five-dimensional metric perturbations linearize, meaning that there is no possibility

of chaotic or ergodic dynamics.

The synchrotron radiation that we have found at strong coupling is, in at least one

respect, qualitatively different from that in familiar classical electrodynamics. The

difference is in principle visible in Fig. 4-5, but the effect is small and hard to see

without zooming in - which we do in Fig. 4-6. For large enough v we find that the

energy density is negative in some regions of space! Directly ahead of and behind

the spiral, the energy density dips slightly below zero. This is impossible in classical

electrodynamics. The effect that we have found is numerically small, as a comparison

of the vertical scales in Figs. 4-6 and 4-5 makes clear, but it is nevertheless in stark

contrast to the weak coupling results of Section 4.2, where the energy density is always

positive, as in classical electrodynamics. This small effect serves as a reminder that

the calculation that we have done is quantum mechanical. In a quantum field theory

the energy density need not be positive everywhere - only its integral over all space
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is constrained to be positive. In a strongly coupled quantum field theory, quantum

effects should be large. So, it is not surprising that we see a quantum mechanical

effect. What is surprising is that it is so small, and that in other respects Figs. 4-4

and 4-5 look so similar to synchrotron radiation in classical electrodynamics.

4.4.2 Synchrotron radiation at strong and weak coupling

Given the qualitative similarities between Figs. 4-4 and 4-5 and the physics of syn-

chrotron radiation in classical electrodynamics and weakly coupled I = 4 SYM

theory, we shall attempt several more quantitative comparisons. First, as can be

seen from Fig. 4-4, the radiation emitted by the quark is localized in polar angle

about the equator, 0 = -r/2. From the far-zone expression for the energy density,

Eqs. (4.25) and (4.105), it is easy to see that the characteristic opening angle about

0 = r/2 scales like 60 ~ 1/- in the v -- 1 limit. Furthermore, from Fig. 4-4 it can be

seen that the radial thickness A of each pulse of radiation decreases as v increases.

Again, from Eqs. (4.25) and (4.105) it is easy to see that A ~ 1/ 3 in the v -> 1

limit.8 Intriguingly, the scaling of both 60 and A with -y are identical to those at

weak coupling.

Emboldened by the agreement between the -- scaling of A and 60 at weak and

strong coupling, we have compared the shape of the spiral of energy density in the x3 =

0 plane, for example as depicted at two velocities in Fig. 4-4, with the shape of the

classic synchrotron radiation spiral (4.19). We find precise agreement, as illustrated

in Fig. 4-7. At strong coupling, the energy density E of (4.104) is proportional to

1/- 6 and so has maxima where 3 has minima. We have already seen that in the

r - oc limit, E -> of (4.28) whose minima lie on the spiral (4.20), which is the

8 There may be a holographic interpretation of A - 1/73. We saw in Section 4.3.1 that there is
one special point on the string, namely the worldsheet horizon at u = uc. Using the correspondence
between u and length-scale in the boundary quantum field theory, we expect uc to translate into a
length scale in the rest frame of the rotating quark, corresponding to a length scale

uc 1 Ro
6- 'y vwI - Rv (4.108)

in the inertial frame in which the center of motion is at rest. It is tempting to identify 6 with A at
V -> 1.
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Figure 4-7: r 2 e/P for v = 1/2 in the x 3 = 0 plane. The color code is the same
as in Fig. 4-4, with zero energy density blue and maximal energy density red. The
spiral curve marked with the black dots is (4.19), namely the place where the spiral
of synchrotron radiation would be in electrodynamics or in weakly coupled AK = 4
SYM theory. We see that the spiral of radiation in the strongly coupled gauged
theory with a gravitational dual is at the same location. This indicates that, as at
weak coupling, strongly coupled synchrotron radiation is beamed in the direction of
the motion of the quark. For reference, the solid black line is (4.21), namely the
place where the synchrotron radiation would be if the quark were emitting a beam of
radiation perpendicular to its direction of motion.

large-r approximation to (4.19). It can also be shown that the minima of E lie on the

spiral (4.19) at all r.

Recall that our derivation of (4.19) in Section 4.2 was purely geometrical, relying

only on the fact that the radiation is emitted tangentially, in the direction of the

velocity vector of the quark and the fact that the pulse of radiated energy density

propagates at the speed of light without spreading. We have seen in Fig. 4-5 that at

strong coupling and in the limit of a large number of colors, the radiation emitted

by a rotating quark does indeed propagate outwards at the speed of light, without

spreading. This justifies the application of the geometrical arguments of Section

4.2 to the strongly coupled radiation. The agreement with (4.18) and (4.19) then
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implies that the strongly coupled radiation is also emitted in the direction of the

velocity vector of the quark: if it were emitted in any other direction, A would

have the same 7-scaling as a and 60; if the radiation were, for example, emitted

perpendicular to the direction of motion of the quark, the spiral of energy density

would have the shape (4.21) instead of (4.19) - see Fig. 4-7. We therefore reach

the following conclusions: at both weak and strong coupling, the energy radiated by

the rotating quark is beamed in a cone in the direction of the velocity of the quark

with a characteristic opening angle a 1/-y; at both weak and strong coupling, the

synchrotron radiation propagates outward in a spiral with the shape (4.19), with

pulses whose width A ~ 1/' does not broaden.9

4.4.3 Angular distribution of power at strong and weak cou-

pling

We now turn to the time-averaged angular distribution of power radiated through

the sphere at infinity. By time-averaging, we eliminate all dependence on azimuthal

angle but nontrivial dependence on the polar angle 0 remains. For the case of weakly

coupled f = 4 SYM, in Section 4.2 we calculated the angular distribution of the

radiated power, finding
dP dPector dPscalar

dQ + (4.109)

with dPector/dQ and dPscaiar/dQ given in (4.30a) and (4.30b). For the case of strongly

coupled radiation, in any conformal quantum field theory with a classical dual gravity

description, our result for the time-averaged angular distribution of power is given in

(4.106). Since we know that the total power radiated at weak and strong coupling are

equivalent up to a substitution of their prefactors (4.32), it is natural to ask whether

the angular distribution (4.106) can be related to (4.109). The answer is yes, but

9 Note that if the radiation is isotropic in the instantaneous rest frame of the quark, then in
the inertial "lab" frame it will be beamed in a cone with opening angle ~ 1/y pointed along the
velocity of the quark. This, together with the result that the pulses of radiation propagate without
broadening, would yield a spiral with the shape (4.19).
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Figure 4-8: The normalized time-averaged angular distribution of power at both weak
and strong coupling at v = 0.9. At both weak and strong coupling, the time averaged
angular distribution of power is localized about 6 = 7r/2 with a characteristic width
60 ~ 1/y. The (slight) difference in the shapes of the two angular distributions is as
if the ratio of power radiated in vectors and scalars is 2 : 1 in the strongly coupled
radiation, while it is 4 : 1 in the weakly coupled case.

with a twist: we find that our strong coupling result (4.106) can be written as

dP v/\ ~ 5 dPvector 5 dPscalar'
- = + -(4.110)dQ A 5eiff/12 _6  dQ 3 dQ

where the relation between e 2 and A is given by (4.11) in K 4 SYM theory. We see

that the time averaged angular distribution of power at weak and strong coupling are

related by the following prescription: start with the weakly coupled result (4.109);

suppress the vector contribution by a factor of 5/6 and enhance the scalar contribution

by a factor of 5/3, noting from (4.31a) and (4.31b) that this does not change the total

power but means that the scalar/vector ratio in the total power has been increased

from 1/4 to 1/2; then make the change of prefactors (4.32); that gives you the strongly

coupled result (4.106).

The solid blue curve in Fig. 4-8 shows the time-averaged angular distribution of

power at strong coupling (4.106) for v = 0.9, normalized by the total power radiated
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at strong coupling, Py 1 given in (4.107). The dashed black curve in the Figure is the

normalized time-averaged angular distribution of power at weak coupling (4.109), nor-

malized by the total power radiated at weak coupling, which is PA1 = Pv +Pa+ ,

with (4.31a) and (4.31b). Because the two curves are normalized by their respective

total powers which are related by PAy1/P<1 = vA/(5e2/12), the comparison of

the two curves is the comparison of the right-hand side of (4.109) with the quantity

in square brackets on the right-hand side of (4.110). It is evident from the Figure

that the radiation pattern at strong coupling is qualitatively similar to that at weak

coupling. In both regimes, the angular distribution of power is focused about 0 = r/2

with a characteristic width 60 ~ 1/y. The small difference between the angular dis-

tributions is as if the ratio of the power radiated in vectors and scalars is 2: 1 in the

strongly coupled radiation, whereas it is 4 : 1 in the weakly coupled case. Of course,

we cannot actually separate the strongly coupled vectors from the strongly coupled

scalars.

4.4.4 Relation with previous work

Next, we return to the discussion of the relation between our present work and pre-

vious works that we began in Section 4.1. In Ref. [56], states produced by the decay

of off-shell bosons in strongly coupled conformal field theories were studied. It was

shown in Ref. [56] that the event-averaged angular distribution of power radiated

from the decay is isotropic (in the rest frame of the boson where the total momentum

vanishes) and independent of the boson's spin. This should be contrasted with similar

weak coupling calculations in QCD, where the boson's spin imprints an "antenna"

pattern on the distribution of radiation at infinity [150, 151, 152]. Our results are

not inconsistent with those of Ref. [56]. First of all, we and the authors of Ref. [56]

are considering very different initial states. Second, as discussed in Ref. [56], if their

initial off-shell boson has a non-trivial distribution of momentum, this distribution

imprints itself on the angular distribution of radiation at infinity and generically re-

sults in an anisotropic distribution of power. It is only the spin of the boson which

doesn't produce any anisotropy.
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In Ref. [58] it was argued that isotropization must occur in the strongly coupled

limit due to parton branching. Heuristically, the authors of Ref. [58] argued that at

strong coupling parton branching is not suppressed and that successive branchings

can scramble any initially preferred direction in the radiation as it propagates out to

spatial infinity. However, our results clearly demonstrate that this need not be the

case. We see no evidence for isotropization of the radiation emitted by the rotating

quark. In fact, the time-averaged angular distribution of power, shown in Fig. 4-8,

is slightly more peaked about 0 = r/2 in the strongly coupled limit. And, just as

for weakly coupled radiation, the strongly coupled radiation that we have illustrated

in Figs. 4-4 and 4-5 propagates outward in pulses that do not broaden: their extent

in azimuthal angle at a given radius remains the same out to arbitrarily large radii

and, correspondingly, their radial width is also unchanging as they propagate. It is

not clear in any precise sense what parton branching would mean in our calculation

if it occurred, since no partons are apparent. But, the essence of the effect is the

transfer of power from shorter wavelength modes to longer wavelength modes. In

our calculation, that would correspond to the pulses in Fig. 4-5 broadening as they

propagate. This we do not see.

4.4.5 A look ahead to nonzero temperature

It is exciting to contemplate shining a tightly collimated beam of strongly coupled

synchrotron radiation into a strongly coupled plasma. Although this will have its

failings as a model of jet quenching in the strongly coupled quark-gluon plasma of

QCD, so too do all extant strongly coupled approaches to this complex dynamical

problem. The calculation that is required is simple to state: we must repeat the anal-

ysis of the radiation emitted by a rotating quark, but this time in the AdS black hole

metric that describes the strongly coupled plasma that arises at any nonzero temper-

ature in any conformal quantum field theory with a dual gravitational description.

The calculation will be more involved, and likely more numerical, both because the

temperature introduces a scale into the metric and because to date we have only a nu-

merical description of the profile of the rotating string [157]. If we choose T < 1/Ro

154



and -y > 1 then the criterion (4.7) will be satisfied and the total power radiated

will be as if the quark were rotating in vacuum [157]. Based upon our results, we

expect to see several turns of the synchrotron radiation spiral before the radiation

has spread to radii of order 1/T where it must begin to thermalize, converting into

hydrodynamic excitations moving at the speed of sound, broaden, and dissipate due

to the presence of the plasma. We will be able to investigate how the length scale

or scales associated with these processes vary with Ro and 7. Note that the typical

transverse wavelengths of the quanta of radiation in the pulse will be of order Ro/-y

while their typical longitudinal wavelengths and inverse frequencies will be of order

Ro/y 3 , meaning that we will have independent control of the transverse momentum

and the frequency of the gluons in the beam of radiation whose quenching we will be

observing.

Since at nonzero temperature the coils of the rotating string only extend outwards

to some -- dependent rmax, it is natural to expect that this rmax will correlate with

at least one of the length-scales describing how the spiral of synchrotron radiation

shines through the strongly coupled plasma. Our guess is that rma will prove to

be related to the length scale at which the energy carried by the nonhydrodynamic

spiral of synchrotron radiation as in vacuum converts into hydrodynamic waves. If

so, we can estimate the parametric dependence of rmax at large 7, as follows. For

r > rmax, the power P oc ca2 OV 'y 4 /R radiated by the rotating quark will

be carried by long wavelength hydrodynamic modes whose energy density will fall

off oc i /Xy4/r2. For r < 1/T, we will have a spiral of synchrotron radiation whose

energy density is e/r 2 with e given by (4.105). Recalling from Section 4.2 that on the

spiral ( = 1 - V oc 1/-t2 , we see from (4.105) that, on the spiral, the energy density

is oc V 8-y8/r2. We expect that for 1/T < r < rmax this energy density will be

attenuated by a factor oc exp(-const r T). The parametric dependence of the rmax at

which the hydrodynamic modes take over from the nonhydrodynamic spiral can then

be determined by comparing the parametric dependence of the two energy densities:

2A ~ exp (-const rmaxT) , (4.111)
max max
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meaning that

rmax oc lg . (4.112)
T

Interestingly, the numerical results of Ref. [157] do indicate that rmax diverges slowly

as 7 -- oo.
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Chapter 5

Summary

Quantum Chromodynamics (QCD) is a very successful theory in describing the in-

teractions between quarks and gluons. But, as it becomes strongly coupled at low

energies, its phase diagram and many properties of QCD matter are still not well un-

derstood. Examples of such not well-known QCD properties include the location of

the QCD critical point - the endpoint of the first-order phase transition line between

hadron matter and the Quark-Gluon Plasma (QGP) - and properties of the strongly

coupled QGP, which is formed at the early stages of heavy-ion collision experiements.

In this thesis, we studied some of these properties and we summarize our work below.

In Chapter 2, we studied selected fluctuation observables in order to locate the

QCD critical point in heavy-ion collision experiments. The characteristic signature

is the non-monotonic behavior as a function of the collision energy of higher, non-

Gaussian, moments of the event-by-event distributions of pion, proton and net proton

multiplicities and of various measures of pion-proton correlations. We presented quan-

titative estimates of the contribution of critical fluctuations to all these observables as

a function of the same five non-universal parameters, one of which is the correlation

length that parametrizes proximity to the critical point. We constructed ratios of ob-

servables that will allow an overconstrained experimental determination of currently

poorly known parameters of the theory. And, we constructed other ratios of observ-

ables that, if the measured cumulants are indeed dominated by critical fluctuations,

are independent of all the parameters in our calculation and are independent of the

157



value of the correlation length. We are therefore able to make parameter-independent

predictions for these ratios, predictions that we hope will some day make it possible

to determine with confidence that observed fluctuations do indeed indicate proximity

to the critical point. At the time of writing this thesis, experimental data on pion and

proton cumulant ratios are being analyzed by the STAR collaboration which could

give us some indication on the location of critical point.

As we discussed in Chapter 1, the QGP created at the early stages of heavy-

ion collisions is strongly coupled and hence we cannot use perturbative methods to

analyze its properties. In this thesis, we used the gauge/gravity duality (or AdS/CFT

correspondence) as a tool to study two properties of strongly coupled plasmas - the

velocity dependence of the baryon screening length and the synchrotron radiation.

The duality applies to strongly coupled gauge theories that have gravity duals and

in this thesis, we applied the duality to K = 4 Supersymmetric Yang-Mills (SYM)

gauge theory.

In Chapter 3, we found that the screening length of a baryon configuration con-

sisting of Nc quarks in a circle (or a slightly squashed circle), moving with velocity v

through the plasma of A = 4 SYM theory in a direction perpendicular (or parallel)

to the plane of the configuration is given by

a(1 - v 2) 1/ 4

L, = T (5.1)

where a depends only weakly on v and, in the case of the baryon moving parallel to

the plane defined by the quarks, the angle between the strings and the velocity. This

velocity dependence is precisely the same as that for the screening length defined by a

quark and antiquark moving through the plasma, and even the weak angular depen-

dence of a is strikingly similar. This is a confirmation of the robustness of the velocity

dependence of screening that in the meson sector has as a consequence the experimen-

tally testable prediction that in a range of temperatures, that is plausibly accessed

in heavy-ion collisions at RHIC (or at the LHC), J/4' (or T), suppression may set in

only for quarkonia moving with a transverse momentum above some threshold [42].
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In the baryon sector, it indicates that if baryons composed of three charm quarks

are ever studied in heavy-ion collision experiments, which do not reach such high

temperatures as to dissociate them at rest, their production would also be suppressed

above some threshold transverse momentum.

In Chapter 4, we used the gauge/gravity duality to study another property of

strongly coupled plasmas - the synchrotron radiation. We computed the energy den-

sity and angular distribution of the power radiated by a quark undergoing circular

motion in the vacuum of strongly coupled N = 4 SYM theory. Our strong coupling

results are in fact valid for any strongly coupled conformal field theory with a dual

classical gravity description. We compared the strong coupling results to those at

weak coupling, finding them to be very similar. In both regimes, the angular dis-

tribution of the radiated power is in fact similar to that of synchrotron radiation

produced by an electron in circular motion in classical electrodynamics: the quark

emits radiation in a narrow beam along its velocity vector with a characteristic open-

ing angle a ~ 1/y - something that looks like a "jet". This jet-like beam of gluons

opens a new way of modeling jet quenching in heavy-ion collisions. By turning on a

finite temperature, we can study the broadening of this beam of radiation and the

length scales at which it converts into hydrodynamic excitations.

The gauge/gravity duality has given us many insights relevant for heavy-ion phe-

nomenology in recent years. Heavy-ion experiments at the LHC and RHIC are under-

way and will provide us with additional experimental information on the properties

of hot QCD matter at strong coupling. Therefore, a better understanding of these

properties will be a key theoretical focus in the coming years and we expect that the

gauge/gravity duality will continue to be a powerful tool in helping us understand

these topics.
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Appendix A

Toy Model Probability

Distribution for Critical Point

Fluctuations

In Section 2.2.2 we presented the calculation of (and results for) the second, third and

fourth cumulants of the pion, proton and net proton multiplicity distributions near

the QCD critical point. We found, for example, that with our benchmark parame-

ters w4, peaked at a value of around 400, while for a Poisson distribution w 4, = 1.

This dramatic increase in w4, due to critical fluctuations with a reasonable value of

= $ax= 2 fm raises the question of what the distribution whose moments we cal-

culated looks like - does it in any way look unreasonable or unphysical? Although

the results from Section 2.2.2 of Chapter 2 determine arbitrarily high cumulants of

the proton multiplicity distribution, they do not allow us to determine the shape

of the distribution itself. In this Appendix, we provide an example of a probability

distribution P(N,) which has values of w1, for i = 2, 3 and 4 that are comparable to

those we calculated in Section 2.2.2. This toy model distribution is somewhat, but

not completely, ad hoc, since we shall construct it in a way that does reflect the origin

of the critical contribution to the fluctuations.

Let us consider a free gas of particles of a given species that have a mass M(o-)

which is a function of a background field o-. As an example, for protons we shall
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use M(o) = mp + gpo-. And, let us assume that the o- field fluctuates with a given

probability distribution P,(a). The central simplification that we are making in

constructing this toy model is that we are assuming that o- is spatially homogeneous.

The field o- fluctuates, but at any given time it is the same everywhere in space. Let

us model the probability distribution for the number N, of particles with mass M(o-)

by considering the fluctuations of N, due to the fluctuations in o. Integrating over

the fluctuating o- we obtain the probability distribution for N,:

TP(N,) = fdo-P,(o-) Pm(,) (N,) (A. 1)

where PM(N) is the probability distribution for a particle with fixed mass M which

we choose to be Poisson:

PM(N,)- e-N, (A.2)
P p.

where N is the expectation (mean) value of N, for the distribution PM(N,). In

thermal and chemical equilibrium,

1V = V (A.3)
N k exp ( /k2+M(U)2-l 

where we choose the positive sign since protons are fermions. N depends on M and,

therefore, on o.

The probability distribution of o- is determined by the effective potential Q(a):

P,(-) ~ exp (-V T  (A.4)

where the effective potential can be written as

M~a 2 m 12 A±3 03 +±A4a 4 +., (A.5)
2 3 4

namely (2.21) without the spatial gradients. Eqs. (A.1)-(A.5) define the probability

distribution for the particle number, which will depend, among other things, on the

162



P(N,)

0.14 A ,

0.12

0.10

0.08

0.06

0.04

0.02

0.00
10 20 30 40

Figure A-1: An example of a distribution with ",odel 400. The construction of the
model distribution is described in the text, as are the values of its first few cumulants.
N, is the number of protons in a volume V = (5 fm)3 in the toy model distribution.
Other parameter choices are described in the text.

correlation length (= m- 1. Note that since the volume V in the model corresponds

to the volume within which the a field is homogenous we should think of V as a

parameter in the toy model just as ( is. The model treats only the zero-momentum

mode a = f, u(x)/V of the critical field, ignoring all other modes, i.e., the space

variation of the field a(x). This means, in particular, that it ignores the fact that the

correlations are exponentially small between regions of space separated by distances

further than (. For this reason we should not choose a value of V'/ 3 that is very much

larger than (.

As an example, in Fig. A-1 we plot the toy model probability distribution for the

number of protons, P(Np) of (A.1), with ( = 2 fin, A3 and A4 taking their benchmark

values, B = 400 MeV, V = (5 fm) 3 and gp = 6.185. We can then evaluate the mean
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and cumulants of this toy model probability distribution, and we find

(Np)model = 5.2,

2pmodel = 4.5

W model
3p -

W model = 405. (A.6)w4p

We chose all parameters in the toy model at their benchmark values with the exception

of gp, whose benchmark value is 7. We chose gp = 6.185 in the toy model in order to

get a probability distribution whose fourth cumulant is similar to that we calculated

in Section 2.2.2. In our full calculation of Section 2.2.2, with ( = 2 fin, pB = 400 MeV,

and all parameters at their benchmark values including in particular gp = 7 we obtain

(Np) = 3.0,

W2, = 4.2,

W3p = 30,

w4, = 405 , (A.7)

where we have quoted (Np) = Vn, for V = (5 fm) 3 . (The w's calculated in Section

2.2 are intensive, meaning that they are the same for any choice of V.) We see that

the distribution in Fig. A-1 has cumulants that are similar to those we calculated in

Section 2.2.2, including in particular having as dramatically large a value of w4p. We

see from the Figure that an w4, that is ~ 400 times larger than the Poisson value

does not indicate an unusual looking distribution. We can also note that the large

positive 4th cumulant is a consequence of the skewness of the distribution. If the

distribution were symmetric, the large positive 4th cumulant would indicate a highly

peaked distribution, but not so here.

We can also use our toy model to make a crude estimate of how our results for

the cumulants would be affected by an upper cutoff on N,. In a heavy-ion collision,

Np (say in one unit of rapidity) cannot fluctuate to arbitrarily large values. We can

164



implement this in the toy model by putting an upper cutoff on Np. Lets assume

that the neutrons are fluctuating with the protons, as is in fact expected [112]. It

seems clear that nucleon-nucleon repulsion (that we have not taken into consideration)

would cut off upward fluctuations in N, somewhere below those that correspond to

nucleon densities of 1/fm3 , meaning ~ 60 protons per (5 fm)3 volume. To get a sense

of the size of these effects, we tried cutting off the distribution in Fig. A-1 at N, - 30.

We find

(N,)"utomodel = 5.1

cutoff model 4.4

cutoff model 33-333

cutoff model 289. (A.8)

We see that a cutoff like this has little effect on the 2nd and 3rd cumulants, but it

does reduce w4, by 28%. (See also Ref. [120] for a study of the effects of introducing

a cutoff at large N, in the absence of critical fluctuations.)
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Appendix B

Mean Transverse Momentum

Fluctuations Near the Critical

Point

The correlators found in Chapter 2, Section 2.2.1 can also be used to estimate the

effect of the long wavelength fluctuations in the vicinity of the critical point on higher

cumulants of the mean transverse momentum pr. For example, the cubic cumulant

of the mean pr distribution around the all event mean pT, namely na(6 pT), is given

by

K3(JPT) (((PT - pF)s)

1
f k]T -i()([ks]T -pi)([ks]T - P)((onknon3 ))

(B.1)

and similarly for 4(opr). We can normalize /ak(oPT) by defining a dimensionless and

intensive variable Fk:

Fk - (N)k-InKk(pT) (B.2)

17(PT)



where (N) is the total particle multiplicity and vic(pT) is the variance of the inclusive

(single-particle) pT-distribution, defined as

v c(PT) = ) (kT - p)2 (nk). (B.3)

Upon evaluating (B.2) using the correlators given in Section 2.2.1, we obtain the

critical contribution to Fk. For pions with p, = 0 at T = 120 MeV and = 2 fm, we

find

F" = -0.0131 and F4 0.0177. (B.4)

In addition to the critical point contribution, expression (B.2) receives contributions

from Poisson statistics, Bose-Einstein enhancement, resonances, effects of radial flow,

etc. It was shown in [30] that the effects of resonances and radial flow are very small

and hence we will ignore them. Here we compare the critical point contribution to

that coming from Bose-Einstein enhancement. The 3- and 4-particle correlators for

an ideal Bose gas are given by

(((onk)3))BE (k-)((nk) + 1)(2(nk) + 1), (B.5)

((((n))())BE (fk k) + 1)(1 + 6(k)((nk) + 1)), (B.6)

where here by (nk) we mean the mean occupation number for an ideal Bose gas.

Evaluating (B.2) using the above correlators will give us the Bose-Einstein and the

Poisson contribution to Fk. In order to isolate the Bose-Einstein effect we subtract the

Poisson contribution (nk) from na and then evaluate Fk. Using the same parameters

as above we find

FBE = -0.2480 and FBE = 0.9388. (B.7)

We see that the contribution of critical fluctuations is smaller than that due to Bose-

Einstein effects. We conclude that it would be very difficult to use higher cumulants

of the mean PT distribution in order to search for the critical point. Furthermore,

as kinetic freeze-out (where particle momenta freeze) occurs after chemical freeze-out

(where particle numbers freeze), it is easier for pT fluctuations to get washed out (see,
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e.g. Ref. [121]), making them even less favorable observables in searching for the

critical point.
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