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ABSTRACT

U.S. petrochemical manufacturers operate in a very challenging environment on account of the recent
economic crisis, volatility in crude oil prices, rising capacity in the Middle East, etc. Recently, there
has been a focus on logistics costs and, in particular, capacity utilization as a means to retain a
competitive edge. This thesis focuses on marine dock optimization for a major bulk chemicals
manufacturer. The authors have surveyed the research literature to find commonalities in various
approaches to the problem of dock optimization- in the petrochemical shipping industry as well as in
allied operational environments such as container shipping. They discuss the inputs that would be
needed to build a decision-support-system designed for the express purpose of measuring dock
utilization.

Following a review of the industry context and relevant literature, the authors develop a demonstrative
framework that captures the key variables and constraints affecting loading and unloading operations.
The authors speculate that multiple simulation and optimization techniques could sufficiently address
the quantification of operational uncertainties at the marine dock. However, emphasis is placed upon
the need for thorough data gathering and correct prioritization of variables and constraints affecting
efficiency of dock operations.

Thesis Supervisor: James B. Rice, Jr.
Title: Deputy Director, Center for Transportation and Logistics



Table of Contents
1 I Introduction ..................................................................................................................................... 5

1.1 Context .................................................................................................................................... 5

1.2 Relevance ................................................................................................................................ 7

1.3 Research Direction .................................................................................................................. 9

2 Literature Review ......................................................................................................................... 11

2.1 Supply Chain Optim ization in the Petrochem icals Industry ............................................. 11

2.2 Efficiency at the dock level - a research gap in the petrochemicals industry ................... 13

2.3 Dock Optimization in Container Shipping ........................................................................ 15

2.4 Bulk Liquid Chemicals - loading and unloading from the ship's perspective................. 17

2.5 Sim ulation and Optimization Techniques .......................................................................... 17

3 Research M ethods ........................................................................................................................ 19

3.1 Sim ulation ............................................................................................................................ 20

3.2 V ariability ............................................................................................................................. 20

3.3 Benchm arking ...................................................................................................................... 21

3.4 Gathering D ata to Support the M odels............................................................................... 23

3.5 Proposed Process Flow ......................................................................................................... 24

3.6 U ser Interface ....................................................................................................................... 26

4 Conclusions .................................................................................................................................. 27

4.1 Review of Dem onstration Decision Support System ......................................................... 27

4.2 Im plications and Recom m endations................................................................................. 27

Bibliography ......................................................................................................................................... 29

Appendix A - Dem onstration Decision Support System ................................................................. 31



Table of Figures

Figure 1: Loading Arms at Dock (Kanon Loading Equipment, 2011) 5

Figure 2: Al-Chem Inc. Visual of Berth Schematics 6

Figure 3: Returns to share-holders 7

Figure 4: Decision Support System 10

Figure 5: Container Tanks with a Quay Crane, Truck & Chassis at Port (Alibaba.com, 2011) 14

Figure 6: Model System Flow 24

Figure 7: Hypothetical User Interface 26

Figure 8: Illustrative database to model marine dock operations 32

Figure 9: Illustration of how variables may be represented in a database 33

Figure 10: Sales History - Example 34

Figure 11: Variable - Inclement Weather 35

Figure 12: Equipment Incompatibility 36

Figure 13: Normal Distribution Example 37

Figure 14: Parcel 1, Simulation Process 38

Figure 15: Parcel 2, Simulation Process 39

Figure 16: Example Constraints 41

Figure 17: Optimizer Model Running, 1 of 4 42

Figure 18: Optimizer Model Running, 2 of 4 42

Figure 19: Optimizer Model Running, 3 of 4 43

Figure 20: Optimizer Model Running, 4 of 4 43

Figure 21: Compiled Optimization Results, 1 of 2 45

Figure 22: Compiled Optimization Results, 2 of 2 46



1 Introduction

1.1 Context

The influence of the petrochemicals industry in daily life is well known - petrochemical

products go into the manufacture of soaps, pharmaceuticals, plastics, tires and other objects

vital to the onward march of civilization. However, before consumers can reap the benefits of

petrochemicals in the form of household goods, a great deal of logistical planning goes into

the manufacture, transport and processing of petrochemicals. The raw materials used in

petrochemical manufacturing are typically supplied from refineries to manufacturing plants

via pipelines. The chemical plant then processes these raw materials and stores inventories of

finished product in various tank farms. The product is then transported via truck, rail,

pipelines and marine movements. Of these four modes of transport, maritime transport is

often the most feasible because demand points are often located far away from manufacturing

clusters, and manufacturing operations commonly

require large batches of these raw materials. Also,

maritime modes of transport offer the lowest cost per

ton-mile (Li, Karimi & Srinivasan, 2010). Refer to f

Figure 1 for an example of marine-dock operations for a

bulk-chemicals manufacturer. Pictured are loading arms

for bulk liquids connected to a vessel or barge.

Fbzure 1: Loadin-z Arms at Dock
(Kanlon Loading Equipment, 2011.

Our research focuses on the marine dock-side operations of a major US petrochemical

manufacturer referred to herein as Al-Chem Inc. As with any large petrochemical

manufacturer with a global footprint, raw materials as well as finished products are shipped



to world-wide clients via ocean-going tankers. Domestic clients who are accessible via inland

water ways are served via barges. Typically, a marine dock for a bulk chemicals

manufacturer provides berths for one or more vessels to pull alongside so that product can be

loaded onto vessels via direct hose-hookups or marine loading arms (as seen in Figure 1). A

team of logistics planners and marine operations experts work together to ensure that any

vessel which arrives at the port is "turned around," i.e., loaded or unloaded, as fast as possible

within the bounds of safety and process requirements. Figure 2 illustrates the layout of a

typical bulk chemicals marine dock. When a vessel pulls alongside its allotted berth, a

loading arm or transfer hose is connected from the dock to the vessel so that product can be

transferred from the manufacturing plant to the vessel's holding compartments. Some of the

main determinants of capacity at the dock are the number of berths, loading arms and

availability of labor.

Product I Product

Product 3 Product 6

Product 7 Product 5

The logistics cost of planning and executing loading and unloading operations constitutes a

significant proportion of the operating budget for an Al-Chem Inc. manufacturing facility. In

our research, we seek to study the problem of marine dock optimization. We survey the

literature on petrochemical marine logistics and propose a high level design for modeling

marine loading and unloading activities for Al-Chem Inc. Our proposed design is based on



sales and loading data from one of Al-Chem Inc.'s facilities but is generalized enough that

the principles may be applied to their other facilities and companies as well.

1.2 Relevance

In the US economy, petrochemical manufacturing is a $77.9 billion industry, and the nation's

dependence on this sector is expected to propel revenue growth over the next five years. By

one estimate, from 2011 to 2016, revenue is projected to grow by 3.8% per annum to $93.7

billion (Gotaas, 2011).

However, the recent recession has been challenging for this sector for various reasons

including falling demand and volatility in the prices of crude oil and natural gas. Demand and

supply imbalances in this sector further contribute to volatility. Figure 3 demonstrates how

average returns to share-holders in the chemicals industry have fallen by 55% (McKinsey &

Co., 2009).

On average, the chemical industry saw total returns to shareholders fall
by around 55% in 2008/2009
OVERVIEW (M"AX 2008 vs. END OF JANUJARY 2009. AVERAGE) BY SE,-*GMENT,

Global Breakdown by region

-44.8

-55.3 -53.7 --- 54.5 -55,0 -54.1 -5.
.57.7

Com- Special- Cor- Special- Com- Special- Com- Special-
mties rodi- ties modi- ities modi- tiesties ties ties ties

Asia Europe US

Figaure 3: Returns to share-holders



In a 2011 report on Top Ten Trends in the Petrochemical Industry, leading market research

experts make the case that one of the key factors for the recent slowdown in the US

petrochemicals industry has been caused by the emergence of increased "competition from

price-competitive producers in the Middle-East and Asia" (Research and Markets, 2011).

The report goes on to state that "rising feedstock prices are forcing many North American

petrochemical producers to reassess their profit margins in comparison to that of global

players. The capacity additions in the global petrochemical industry are increasingly favoring

Asia-Pacific and Middle Eastern locations. The major reason for this shift is the economies of

production in these regions. The Middle East has an unparalleled feedstock advantage and

Asia-Pacific countries like China and India offer very low labor costs compared to North

American and European countries" (Research and Markets, 2011). Feedstock prices refer to

the cost of raw materials used as inputs to manufacturing processes used by Al-Chem or other

North American petrochemical manufacturers.

In the face of such profound forces now buffeting the US petrochemicals industry,

optimization of capacity utilization is now a key success factor (Gotaas, 2011). To stay

competitive, it has become especially important to seek out improvements in working capital

and to drive costs down in the entire supply chain.

By one estimate, logistics costs can account for up to 20% of purchasing costs (Karimi,

Srinivasan & Han, 2002) in the global chemicals industry. Thus, maritime bulk transport is an

integral part of logistics because bulk shipping offers the lowest cost per ton-mile (Li et al.,

2010). The major chemical manufacturers are located in centralized hubs around the world,

whereas demand points are scattered around the globe. Therefore, the use of maritime-

transport of bulk chemicals is both necessary and crucial to the operation of chemical supply

chains. As ports and ships are both expensive to invest in and operate, it is easy to see how



any improvements in operational efficiency can translate to lower costs for the end customer,

increasing competitiveness.

1.3 Research Direction

Following a survey of the relevant research literature, we propose a high level design for a

decision-support-system (DSS) to maximize utilization/reliability at the level of the marine-

dock. We do not go deeply into the specific parameters for Al-Chem Inc. docks but use

available sales data and existing research literature to indicate how a DSS might quantify

utilization at the level of the berth.

Several variables and constraints impact day to day dock operations and introduce

unpredictability to operations. By first modeling the key elements (number of tanks, loading

arms, labor availability, etc.) of a typical bulk-chemicals dock in database terms, we present

an analytical approach to measuring the impacts of variability and operational constraints on

capacity utilization. Different manufacturing facilities may choose to emphasize different

metrics for measuring berth utilization - for example, by choosing to maximize the number

of orders that can be shipped from a given berth, over the course of a year. We utilize an

implicit assumption that berth utilization is maximized when we minimize the time required

for a vessel to complete operations and depart from the berth.

We show how it may be possible to model, simulate and benchmark dock operations to

identify areas of weakness and opportunity by using probabilistic tools in a decision-support-

system. At present, logistics planners at the port are able to consider forecasted supply (the

plant is primarily a supplier of chemicals, i.e., onshore to offshore) and give a "by-the-gut"

estimate of what sales orders (referred to in the bulk chemicals trade as 'parcels') the dock

will be able to handle. Our research aims to translate this semi-structured operational decision



making process into a more quantitative approach based on the key constraints and variables

at play. Figure 4 indicates the high-level elements that would interact together to serve as a

DSS. We cover the individual modules in greater depth in Appendix A.

Figure 4: DeiinSuppo:rt, System



2 Literature Review

Whereas the scope of our research is limited to analysis of a single marine-dock for one of

Al-Chem Inc.'s manufacturing facilities, in our research we have considered literature

pertaining to supply chain optimization in the broader petrochemical industry as well as

efforts relating to dock optimization in other types of shipping, e.g., container shipping. We

note the complexity inherent to globally distributed petrochemical supply chains and consider

the role of uncertainty in optimizing for efficiency at the marine-dock. We also discuss a

research gap in the marine dock optimization space for the petrochemicals industry.

2.1 Supply Chain Optimization in the Petrochemicals Industry

For Al-Chem Inc., a global player in the petrochemicals sector, the overall supply chain spans

production, storage and distribution sites over several countries. Al-Chem Inc. also serves

customers in several markets. Thus, the overall supply chain experiences uncertainty in

several dimensions. According to one 2005 paper "Uncertainty propagates through the supply

chain network from the market at supply side, quantity and quality of raw material, to

production quality and yield, and from the other side to the market economics and customer

demands" (Lababidi et al., 2004).

This uncertainty is further compounded at the marine dock owing to various operational

variables and constraints - in effect, an ever-changing combination of strategic, commercial

and operational considerations are always in play during loading and unloading operations.

To define the level of utilization or efficiency in such an environment requires a clear

prioritization of certain key factors, which, we assume, will be generated by company

management. The mathematical modeling approach proposed by Lababidi et al. in 2004 is a

good example of such prioritization: they generate an objective function which takes into



account such things as the planning horizon ("the time period representing the duration over

which a company tries to forecast production and allocate demands"), products ("final

outputs produced by the process industry"), demand sources ("market places and distribution

centers"), lost demand ("sales orders that will not be satisfied"), etc. The objective function is

designed to minimize "the total production costs and raw material procurement, as well as

lost demand, backlog, transportation, and storage penalization" (Lababidi et al., 2004).

The above approach is one example of optimizing the supply chain for a petrochemicals

manufacturer. Different organizations may have different approaches to building their

individual optimization functions. For example, petrochemical companies that are

competitors in the marketplace may collaborate on certain tasks or projects to improve

overall profitability for each participant. Supply chains become more efficient when

competing companies find ways to share or swap assets or information to better serve the end

customer while reducing total costs for each participant. Al-Husain et al. describe the concept

as follows:

In a commodity-type industry such as oil and petrochemicals, the source of the

commodity is often of no interest to the final customer as long as the commodity

adheres to its required specifications and the delivery of that commodity is made by

the promised due date. Therefore, competing oil and petrochemical companies form

supply chain alliances when delivering commodities to customers in order to reduce

transportation and inventory costs and improve customer service. In return, cost

savings for transportation in the overall supply chain are shared among participating

companies. This form of collaboration is referred to as shipment swapping" (Al-

Husain et al., 2008).



Collaboration in the form of such "swaps," where entities can swap shipments, assets or

entire business units, is a creative way to achieve improved supply chain efficiency in the

industry. This approach to supply chain optimization constitutes what may be termed

"paradigmatic change," which can supersede certain operational considerations at the level of

the marine-dock in favor of larger, systemic gains.

However, according to Al-Husain et al., this is still an emerging science: ".... despite the

significant advantages this practice has generated for companies, a defined model for making

such decisions does not exist. The subject has barely received any attention in the operations

management literature. Currently, no specific method has been adopted to determine when

companies should attempt to make swap decisions" (Al-Husain et al., 2008).

The above overview is intended to illustrate, at a macro level, some of the complexities

involved in trying to optimize supply chains in the petrochemical industry - multiple

transport options, fluctuating prices of raw materials, capacity constraints, legacy systems,

long lead times are only some of the factors in play at any given time. In the next section, we

show how uncertainty at the macro-level manifests itself even at the level of the marine dock.

2.2 Efficiency at the dock level - a research gap in the petrochemicals industry

Logistics planning for bulk chemicals is an under-represented area of research (De et al.,

2004). This may be because bulk chemical operations are affected by a number of different

factors which make the measurement of utilization level difficult. Some of the constraints are

vessel/barge capacities, product pump speeds, line switches, parallel loading, procedure-time-

cycles, safety requirements and storage capacities. Several variables also impact day-to-day

operations: asset conflicts, vessel and barge availability/timing, weather, river water level,

product demand, product availability and equipment failure. Furthermore, the order quantity



is not always fixed but can be within a range specified by contractual agreements. Also,

chemical cargo is subject to various rules and regulations, which influence the loading

process of chemical tankers/barges (Stadtler, 1983).

However, logistics planning and analysis of dock-side operations are well defined for certain

other types of shipping, such as container shipping or crude-oil shipping. It is well known

that operating tankers and container vessels can be quite expensive on a daily or even hourly

basis (Zeng & Yang, 2009) - hence, there have been numerous studies dedicated to

minimizing these costs while maintaining a high level of operational efficiency. In container

shipping, berth utilization is defined in terms of time spent at the berth by a container vessel -

this includes "several components such as paperwork, ballasting/de-ballasting, opening and

closing the hatches, actual loading/unloading as well as repair times in case equipment fails

during operation" (Jagerman & Altiok, 2003). Jagerman and Altiok define berth utilization as

"the asymptotic proportion of time that the berth is occupied by a vessel." Thus, in container

shipping, port time per vessel and berth utilization are critical measures of performance for

berth operations. Optimizing the

dock for efficiency and cost is

further aided by the fact that

"docks can be viewed as more

highly divisible-- multiple cranes

serve single vessels or multiple

vessels served by single crane i.e.

discrete units to load/unload"

(Wadhwa, 1992). Figure 5: Container Tanks with a Quay Crane, Truck & Chassis at Port
(Afibaba.com, 2011)



For bulk chemicals, on the other hand, several factors have contributed to a lack of research

in this space. Chemical cargo is shipped in (tank) containers, as seen in Figure 5, but also in

various other modes such as trucks, trains, barges, pipelines and multi-parcel chemical

tankers. At the typical chemical berth, operations can be locally optimized in several ways.

Planners could choose to optimize the amount of inventory stored on site to minimize holding

costs, minimize vessel loading/unloading time, truck waiting time, pipeline service costs etc.

To arrive at a single metric that can encompass all of the above factors is not feasible,

especially when different sets of constraints and variables apply to each of the above

operational metrics.

We further speculate that a high level of IP protection in a fragmented industry, coupled with

traditionally high margins for chemical products, has led to a lack of interest in analyzing

dock-side operations.

Next, we survey some of the work done in the area of dock optimization in the container

shipping industry, where, as mentioned earlier in this section, the issue has received

significant research attention.

2.3 Dock Optimization in Container Shipping

The fast-paced growth in containerized shipping has created a highly competitive climate

amongst world ports (Park & Kim, 2002). Though there are levers available to port planners

to differentiate their services, a primary criterion for port success is operational excellence.

Key measures used to evaluate ports, and hence to make impactful industrial site and

sourcing location decisions, are based on a port's ability to efficiently load and unload cargo

(Steenken, Vop & Stahlbock, 2004). For these reasons, quantitative modeling of port

operations for the container shipping industry has been recorded in the academic literature as



early as 1987 (Li & Vairaktarakis, 2004). Though the objectives may differ, by industry and

even amongst the various container-shipping related models, elements of this knowledge

stream prove useful for application to the chemical logistics issue at hand.

The objectives of different container port operations models have varied significantly: studies

consider different aspects of ship-berth link planning such as the degree of berth occupancy,

the percentage of congestion in port, the optimum cost combination, the minimal ship time in

port, the total cost of port system, the optimal determination number of berths and cranes in

port, the mutual QCs interference exponent, the optimal combination of berths/terminal and

quay cranes/berth etc. (Dragovid, Park & Radmilovid, 2006).

However, in spite of these divergent purposes, much of the literature has held that some time-

based performance measurement should be used. Mak and Sun hold that one such measure,

vessel turnaround time, is the most important port service level evaluation measure available

(Mak & Sun, 2009).

Further complicating the issue, some of the models attempt to balance optimization of vessel

loading and unloading and optimization of yard storage simultaneously (Boros, et al., 2008).

These dual objective approaches make abstraction of dock optimization techniques more

difficult. Despite the differing opinion on which criteria to optimize for, there is considerably

greater agreement on technique and methodology.

In the next section, we survey some of the literature around routing and scheduling vessels

arriving at the berth. In so far as a marine-dock is a link between sea and land operations, we

believe it is important to understand the notion of "optimized operations" from the

perspective of the ship-owner or charterer.



2.4 Bulk Liquid Chemicals - loading and unloading from the ship's perspective

As mentioned earlier, the objective at the level of the marine dock is to "turn around" vessels

as soon as possible - this process refers to completing operations in the least amount of time

possible while the vessel is in berth.

Therefore, unpredictability in vessel arrivals can impact on dock utilization - berths which

have been reserved for a particular vessel are un-utilized if the vessel is delayed.

Our survey of the research literature indicates a wide availability of material focusing on the

logistics of chemical tankers - their routing as well as scheduling. For this reason, in our

thesis, we assume this to be a separate problem to optimizing operations at the dock itself.

We direct the reader to the work of Jetlund and Karimi (2004) (multi-integer linear

programing) and Jagerman and Altiok (2003) (a study of queuing behavior), as illustrative

examples of approaches to routing and scheduling optimization. The approach taken by

Jetlund and Karimi seeks to maximize profit (Jetlund & Karimi, 2004) for the vessel operator

whereas the approach taken by Jagerman and Altiok seeks to measure the impact of

uncertainty in vessel arrival times on two critical factors: port time per vessel and berth

utilization (Jagerman & Altiok, 2003).

2.5 Simulation and Optimization Techniques

In the preceding sections, we have mentioned some of the many factors that impact upon

efficiency at the dock. Experienced logistics planners and marine operations personnel

develop certain heuristics, over time, for determining what the dock is able to handle for a

given level of product demand. However, it is impossible for humans to calculate a

quantifiable level of certainty about berth utilization without help from computerized



simulations. Computer simulation models would be able to solve complicated objective

functions - such as the one suggested by Lababidi et al. (2004) in Section 2.1 - by taking into

account several uncertain variables which can each be represented by a probability

distribution.

Thus, simulation as a tool to understand and improve dock operations has been in use for at

least two decades; due to the complexity of berth scheduling, simulation models are

increasingly being utilized to understand this aspect of port operations (Kozan & Casey

2006).

Dragovid et al. provide a detailed survey of the different approaches, including modeling

languages that researchers have taken to deal with issues of berth assignment and equipment

scheduling (Dragovid, et al., 2006). A type of simulation technique often used in modeling of

port operations is known as discrete-event simulation. This type of simulation takes a

procedural approach to scenario generation. The advantage of this technique is in the

possible precision-each event in a work cycle can be individually quantified for a more

accurate representation of system as a whole.

Hartmann addresses the interplay of theoretical scenarios, simulation and optimization and

asserts that "simulation models are developed to evaluate the dynamic processes on container

terminals" (Hartmann, 2004).

Once a scenario is generated, it is typically subject to either a simulation model or an

analytical model for optimization. As described in Dragovid et al. (2006), this scenario could

take form in an off-the-shelf software application, a custom computer program, or a purely

mathematical analysis.



3 Research Methods

As mentioned previously, dock operations are complicated by variables and constraints.

Variables include asset conflicts, vessel and barge availability/timing, weather, river water

level, product demand, product availability and equipment failure. Constraints can include

vessel/barge capacities, product pump speeds, line switches, parallel loading, procedure-time-

cycles, safety requirements and storage capacities.

To model for efficiency at the dock, we must express the impact of each variable or

constraint in terms of cost. Cost can be expressed as a combination of monetary terms -

dollars - or in units of time - hours. In our investigation of a design for modeling for dock

efficiency, we have chosen to express delay in hours.

Our design is based on two sets of inputs: commercial and operational. The commercial

inputs refer to forecasts of demand data for a given period into the future, weeks, months or

years. Operational data refers to foreseeable variables and constraints, which might impact on

loading operations.

Through the use of a database, user-interface, simulation and optimization engine, the model

is designed for use by a marine operations expert. The model is a high-level proof-of-concept

for analysis of dock utilization/reliability, and, as such, the generation of actual utilization

figures for a particular dock is outside the scope of this paper. To accurately model the

variables and constraints in terms of actual cost will require detailed inputs from operational

and commercial staff, which are not available in this instance. The demonstration in

Appendix A goes deeper into the design of such a system, but lacks fundamental elements of

a real-world implementation such as consideration of conflicting parcel priorities, special

prioritization of certain parcels or customers, expedited orders and unscheduled demand, etc.



3.1 Simulation

Computer simulation as an analytical tool in engineering design for ship-berth link has been

in use since at least the early 1970s (Dragovid et al., 2006). The type of computer simulation

we propose for use in this DSS is based on applied probability. Any complex physical system

will possess some degree of variability. In most cases, the primary sources of variability can

be analyzed and approximately characterized using the framework of probability. The

simulation approach attempts to represent the possible output of a system (or systems) by

subjecting a set of input data to a model of the system containing quantified characterizations

of the system's key variables. As computer processing power has increased, it has become

feasible to run a large number of complex simulations iteratively for combinatorial analysis

of multiple result sets. To put it simply, we are able simulate effects of multiple factors

within a system simultaneously and analyze the end result. Further, we can perform this

exercise multiple times to understand the range of possible occurrences within the system.

3.2 Variability

Because the simulation approach we propose is grounded in applied probabilities, the

investigation and definition of the key variables within the target system is of utmost

importance to the accuracy of the simulation model. For some variables, data will already

exist from which approximate probability distributions can be derived. One such example

from our data collection is vessel/barge actual arrival date. Combined with volumetric

information at the parcel-level, this database of vessel arrival dates and order sizes allows us

to understand seasonality by chemical type in terms of demand on the dock assets.

In some cases, new reporting practices should be put in place in order to begin collecting data

on a key variable. However, there will be many variables which should not be modeled

through abstraction from quantitative data. The value of precision gained through formal



quantitative data collection should always be weighed against the time and effort required.

An example where this trade-off favors qualitative data collection is vessel-to-dock

equipment conflicts. A data collection regimen could record each occurrence of an asset

conflict over time, but this would be unlikely to produce a sufficiently more valuable

approximation than interview-based data gathering with on-site operations personnel.

3.3 Benchmarking

Simulated demand scenarios alone provide valuable information in that they project a

potential future based on the input data and the variability quantified in the simulation model.

However, even greater insight can be gained through the iterative application of computer

simulation (e.g., Monte Carlo simulation) combined with an additional engineering systems

problem solving approach-optimization. A thorough treatment of optimization and the

ship-berth link problem can be found in Dragovid et al., 2007. The fundamental question that

optimization attempts to answer is as follows: Given a certain set of constraints and a certain

objective, how fully can the objective be met?

As with computer simulation, the domain of optimization comprises many different

approaches and techniques and as mentioned previously in our literature review, for the

optimization module in our demonstration, we have chosen to use Palisade Corporation's

Risk Optimizer with its Genetic Algorithm approach.

An optimization program has two primary components: the objective function and the

constraints. The objective function is typically stated in terms of maximization or

minimization and is subject to the satisfaction of all constraints. In designing a program

focused on optimization of marine dock operations, the objective function could be

considered in many different ways. For instance, the program might seek to minimize the



amount of free work time at the facility or the amount of money spent on demurrage charges.

Alternatively, the program could attempt to maximize the throughput of the dock in terms of

liquid weight, vessels served, or parcels dispensed. In our implementation of the proposed

DSS design (see Appendix A), we developed an objective function which seeks to minimize

the total idle time of the marine dock.

With the objective function defined, we are able to implement the constraints that the solver

will be subject to during the solution search. In our case, the constraints will primarily

consist of the simulated demand scenario derived from a single iteration of the Monte Carlo

simulation module. This scenario will define what chemicals will be demanded at what time

and in what quantity. Based on that information, and additional constraints imposed by the

model of actual dock operations (e.g., product pump speeds, parallel loading requirements,

dock-side safety requirements, etc.), the solver will seek to satisfy the objective function to its

fullest ability.

Once the solver has arrived at an acceptable solution, this process can be repeated for the

remaining iterative outputs of the simulation module. After all potential future scenarios

have been optimized based on the objective function it is possible to express the level of asset

utilization for the marine dock in terms of confidence intervals. For instance, we could say:

according to the model, this dock can satisfy 99.5% of this demand plan at 73.4% confidence.

Confidence in this context refers to the amount of certainty with we can predict the

occurrence the fulfillment of product demand based on the model. So, in this case, if we ran

the model through 1,000 iterations, we could expect demand satisfaction to be at or above

99.5% for approximately 734 iterations.



3.4 Gathering Data to Support the Models

Though the purpose of this research is to present a framework for the decision support

system, it is important to include a note on minimum and recommended data requirements.

As described previously, there are several different methods for gathering data and,

depending on the intended use and anticipated benefit of the data, a more or less rigorous

methodology will be appropriate. For the purposes of this investigation and proposal, we will

discuss our own data gathering and the recommended additional data gathering to support a

fully-operational (in terms of benefit to operational efficiency projects) implementation of the

DSS.

The data can be divided into three different categories-expected demand data, unplanned

variable data, and known constraint data. For our implementation of the DSS, the expected

demand data was provided by the sponsor company in the form of Enterprise Resource

Planning (ERP) order history. Though we received several years of data, not all data was

required to apply simple forecasting algorithms to the historical demand patterns. Ideally, in

a full implementation of the DSS, the forecast data used will be the best available forecast

that is used for other operational and business decision making processes.



3.5 Proposed Process Flow
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Figure 6 describes our proposed flow of information through the system over time. An expert

user (such as an experienced logistics planner) interacts with the user interface (refer

Appendix A) to run simulations and optimization scenarios based on forecasted demand.

Dock-side operations are modeled in a database such as in Appendix A, Figure 8. The

database in turn is accessed by the simulation and optimization modules after the user has

defined the particular variables and constraints he or she wishes to consider for the exercise.

In its essence, the simulation module would allow a user to see the effects of different

variables for a given order-mix of chemical parcels that are to be loaded in the near future. It

would express various possibilities of delays that might ensue based on expected variance in

such factors as water level or weather related delays. The user would be presented with

multiple scenarios from the simulation module from which he or she could extract a subset of
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scenarios which could then be further optimized based on operational constraints. The

activities carried out in the simulation and optimization modules are described in greater

detail in Appendix A.



3.6 User Interface

We've reviewed the gathering, modeling, simulating and optimizing of data from marine

dock operations. However, for routine operational use, the processes undergone to generate

the final output are overly complex. In order to simplify the process for the operational user,

all the components and modules of the system should be implemented behind a single,

seamless user interface. This interface should allow the user to input the base data for the

simulation module, select variables (and variable settings for advanced users, e.g. distribution

types, gamma values, p-values, etc.), select constraints (and constraint settings for advanced

users), and then start the system. For an example of what such a user interface might look

like, see Figure 7.

1. Select Demand Data 2. Select Settings Below 3. Simulate & Optimize!
Select File.. OCompleted Run

Si tn Simuation Adanced Optimization Optieization Adv=

Select Variable(s) Select Constraints

Inclement Weather n1A
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Highly Untimely Arrival
Water Level Problem
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Product Unavailable
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Poisson, Gamma: 1.2

Select Simulation Duration

A
1000 Iterations

Figure 7 Hypothetical UJserInefc

Pump Rates
Excluded Berths
Excluded Parallelism
Cleaning Penalties
Latency Penalties
Crew Shift Penalties H



4 Conclusions

4.1 Review of Demonstration Decision Support System

The above illustrative model of a DSS for dock optimization works on the following premises

related to data gathering and decision making:

e Availability of sales/demand data from operations, sales.

* Availability of quantitative and qualitative data on variables and constraints affecting

dock operation

* Prioritization of key variables and constraints by operations staff - this list of key

impacting factors will differ from dock to dock or manufacturing facility to

manufacturing facility.

* Design of an objective function for a given marine dock by management and

operations staff - a marine dock can be optimized for vessel time spent at berth, cost

per hour of operation, throughput of chemical product per year, etc.

The choice of simulation model or data gathering techniques will vary from dock to dock;

however, the principles of optimizing for efficiency or utilization will remain the same. It is

indeed possible for operations personnel to derive quantifiable metrics on utilization and

efficiency provided there are clear assumptions or guidelines on what constitutes efficiency

(cost, time, throughput or a weighted combination of these and other factors) and which

variables and constraints have the most impact on day-to-day operations.

4.2 Implications and Recommendations

We discussed in Section 1.2 that the US petrochemicals industry can expect revenues to grow

over the coming years. However, the competitive landscape for players in the petrochemical

industry is currently a challenging one, on account of volatility in prices of oil and raw



materials, rise of additional refining capacity in the Middle-East and Asia and after-shocks of

the 2009 economic recession still being felt. In this environment, a focus on reducing

logistics costs and optimizing capacity utilization is a key success factor. Whereas maritime

transport of bulk chemicals is a primary mode of transport for bulk chemical manufacturers

like Al-Chem Inc., not enough research has been carried out on optimizing operations at the

dock. In our thesis, we have surveyed the literature on optimizing marine-dock operations

from the perspective of the ship-owner as well as container port operators, and we have used

the relevant findings to suggest a model of a decision-support-system. We speculate that the

complexity of factors affecting loading and unloading operations has delayed the emergence

of an industry-wide standard, or even in many cases a company-wide standard, for measuring

marine dock utilization levels. However, without a unified framework for such evaluation,

comparison between docks, and thus prioritization of capital- and process-improvement

initiatives is not possible. We have shown that it is possible to quantify marine dock

utilization using processes and tools proven in other related operational environments. We

recommend the adoption of a unified, robust and repeatable decision support system

framework for implementation across multiple petrochemical manufacturing facilities. This

approach will enable the benchmarking capabilities necessary to remain operationally

competitive in the 21St century.
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Appendix A - Demonstration Decision Support System

Notes

The unplanned variable data, such as water level problems, inclement weather delays, other

vessel/barge arrival delays, equipment failure, etc., were gathered qualitatively for this study.

The categories of variables were derived through interviews and conversations with the

sponsor company.

Finally, the known constraint data were reported both quantitatively and qualitatively.

Details of many constraints, such as chemical-to-dockside compatibility, were provided by

the sponsor company. While other constraints, such as co-loading restrictions, were

described only in terms of functionality. Where full detail of constraints has not been

provided, placeholder values have been used. In a fully-functional implementation of the

DSS these values will be replaced by actual values based on equipment, environmental and

regulatory restrictions.

Modeling the Data

As seen in Figure 8, the data model reflecting the operational structure of the dock and

loading/unloading activity should remain largely the same between implementations of the

DSS. The DELIVERY table is the only table required for the hosting of information on

expected demand. However, most implementations will also include subsidiary reference

data tables with additional information on customers, products, etc. The other tables seen in

the figure provide the constraint data required to formulate the final optimization problem.

In Figure 9 we see a simple representation of unplanned variable data as probability

distributions. The last field in the table provides the formulation of the probability



distribution to whichever off-the-shelf or custom simulation software package is being used

for the DSS. We will discuss the use and functionality of these fields and tables in greater

detail within the following section.
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Fiure 8: Milustrative database to mde'I 'larine dock operations



SystemVariablesTables)

MAIN
VARID integer(10) - $WITCHtD integer(I1 0) J
VARjNAME integer(1O) NVALUE integer(1 0)
VARDESC integer(I0) PVALUE integer(10) E
SWITCH ID integer(I0) K

ACTIVE binary(1) Q
DISTNAME integer(10)
GAMMAVALUE integer(10) f
NVALUE integer(10) J
PVALUE integer(10) J
MEANVALUE integer(i) )
STDDEVVALUE integer(10)
FORMULA integer(10) @

Figure 9: Illustration of how variai)es rnay t represented in a database

Simulating the Effects of Unplanned Events on Unloading/Loading Times

Though many simulation techniques exist (such as discrete-event-simulation which we

mentioned in Section 2.5) and could be utilized within our proposed framework, we use

Monte Carlo simulation due to two key benefits. First, through its iterative approach, Monte

Carlo simulation helps to uncover unexpected interactions between the multiple variables

having unique probability distributions typically present within complex systems. Second,

because it is a widely-used analytical technique, many commercial software vendors provide

easy-to-use Monte Carlo simulation engines that interface with common enterprise and home

office software suites. For the simulation module in our implementation of the proposed

DSS, we use Palisade Corporation's @RISK and the DecisionTools@ Suite.

To begin the simulation of the unplanned events affecting unloading and loading times at the

marine dock, we begin by extracting a set of data from our operational database, referred to in

BINOMIALr Is



Figure 7 as CustomerDataTables. This data extract need only contain a minimal amount of

information-only 4 columns. First, it should have a column identifying the chemical type

for the parcel (see the CHEMDESC column in Figure 10). Second, it should have a column

quantifying the volume of chemical ordered for a given parcel (see the NETVOLUME

column). Third, it should have an expected ship date column (see the

ACTGOODSISSUEDATE column). Last, as a general recommendation, it should have a

unique identifier that allows for the information to be joined with other informative data after

the simulation and optimization routines (see ORDERID in Figure 10).

CNE DES NETLUM P ACT $OD SUEQDAT 4H4 TO FK RDERJ

NN 8 00 KG 2498338,839| 12/31/2010 605231 12/31/2010-605231

N25P1-2.5 9000 KG 2955994.81 12/31/2010 8003 12/31/2010-8003

NDNE 10/111210/12 2652538.83 12/30/2010 13433 12/30/20 0-63433

MEG-F GL 9000 KG 4722761.697| 12/29/2010 617643 |12/29/2010-617643
NDNE 12 900 KG 2495690s38 12/2/2010 605067 12/28/2010-605067

NDNE S 9000 KG 2497073.41 12/27/200 605231 12/27/2010-605231

Figure 10: Sales Hilstorn y - Examnple

Once the source data has been extracted from our database, we must choose and/or adjust the

probabilistic variables affecting time spent loading and unloading. To model these variables,

the DSS contains two separate probability distributions for each event. The first is a binomial

distribution with n equal to 1 and p equal to the approximate probability that the event should

occur. We refer to this as the binary switch as it controls the active state of variable in an

"ON/OFF" manner. In an iteration of the simulation where the outcome is a "1," the variable

is active. In an iteration of the simulation where the outcome is a "0," the variable is inactive.

As an example, in Figure 11, for the variable named Inclement Weather, we see that p has

been set to '0.05'. This indicates that the Inclement Weather variable should be activated in

approximately 5% of the simulation runs. Because we are using Monte Carlo simulation, i.e.

with a limited number of iterations, it is unlikely that we will often see an exact 1 in 20 ratio.
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Figure 12 shows the formulation for the main distribution itself. As can be seen in the screen

capture, the distribution is of the Poisson type with a Gamma value of '1.2'. This

formulation is the multiplied by the binary switch result value (to control activation, then so

time multiplier (in this case '4'). The end result of this formulation is that the value in the

selected cell ('C14') will be calculated subject to the previously mentioned binary switch and



a Poisson distribution with a defined gamma value and a multiplier of 4. This end value will

represent the number of hours delay experienced for the parcel in question.
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Below, in Figure 13, the same is shown for a variable with a Normal distribution having a
mean of '0' and a standard deviation of '8'.
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Following the definition of all variables and their two respective probability distributions, we

are able to calculate the potential time adjustment for each parcel en masse. As shown in

Figures 14 and 15, @Risk will calculate multiple iterations of the model at a single

command. In this case, 100 iterations of the model were run, the results of which can be seen

below, as distributions, for the two parcels selected.



The first parcel, identified by the order number 12/26/2010-613539, shows a distribution of

values such that '0' occurred more than 95% of the time and the rest of the iterations resulted

in either 4 or 8 hours of delay. We find a mean value of 0.12 hours of delay with a standard

deviation of 0.891 hours.

7 0NE 10/111210/12 2660644.828 40532 613433 12/20/2010-613433 0

18 EGAF 9000 KG 2796121,821 40531 605580 12/19/2010-605580 0

19 MEG-F GL 9000 KG 4423786.716 40531 617643 12/19/2010-617643 0

20 MEG-F GL 9000 KG 8381534.461 40530 612346 12/18/2010-612346 0

21 NDNE HBSO 9000 KG 2625772.831 40529 606349 12/17/2010-606349 0
22 NDNE 10 9000 KG 1362526.912 40527 605067 12/15/2010-605067 0

23 N25P1-2.5 9000 KG 3034410.805 40527 8003 12/15/2010-003 0

24 NDNE S 9000 KG 2498476.84 40525 605231 12/13/2010-605231 0

The second parcel, identified by the order number 12/20/2010-604660, shows a more widely

distributed results set with values ranging from 0 to 16 hours and just less than 95% of the

results with a zero value. The descriptive statistics show a mean of 0.440 and a standard

deviation of 2.19 for this result set (also 100 iterations, from the same simulation run).
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Fi5ure 15: Parcel 2, Simulation Process

We have demonstrated in the previous figures that Monte Carlo simulation can be used to

convert real-life unplanned operational interruptions into multiple potential planning

scenarios. We achieve this by using two-stage variables with a binomial probability

distribution as a binary switch and an additional probability distribution to represent incident

severities.

Optimizing Simulated Scenarios to Determine Dock Utilization Confidence Intervals

The simulated scenarios created by the previous process represent the potential actual

demand at the dock. Since the expected demand and the eventual actual demand are expected

to differ based on numerous factors, we constructed a simplified model in which the key

variables were cast in probabilistic terms. These probabilities, implemented through the



@Risk simulation software package, generate the input for the next module in our proposed

decision support system.

The problem of berth scheduling is very similar to the more frequently discussed operations

research problem known as crew scheduling. Similarly, this problem has been approached by

many different analytical tools - Lagrangian Relaxation, Sub-Gradient method, Mixed-

Integer-Linear-Programming, Simulated Annealing, Tree Search Procedure, etc. (Dragovid et

al., 2006). To maintain approach and interface continuity, we use Palisade Corporation's

RISKOptimizer for the optimization module of our illustrative approach to building a DSS.

RISKOptimizer combines the simulation and Genetic algorithm approaches making it useful

for large combinatorial problems where individual near-optimal solutions are acceptable for

the sake of iteration volume.

The first step in optimizing the simulated scenarios is identifying and quantifying the

constraints for the optimization model. Examples of these constraints for are shown in Figure

16. These constraints include the rate at which each individual chemical is pumped from

dock to vessel/barge, certain berths that a parcel cannot be loaded from, certain chemicals

that a parcel cannot be loaded adjacent to, cleaning penalties incurred if a berth is switched to

load a different chemical and latency penalties incurred due to special handling required by

certain chemicals (e.g., pre-heating/cooling). Each constraint restricts the way in which the

parcels can be loaded and thus reduces the expected utilization of the dock.
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380 000 0 20
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350 1 2 DEG 9000 KG EGAF 9000 KG 4 0
275 3 4 0 0 1 0
250 0 0 0 0 3 0
200 0 0 NEOFLO 3-56 9000 NEOFLO 3-14 9000 1 0
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Figure 16: Example C"on-straints

The next step is the optimization itself. Though the optimization needn't be observed or

overseen, we will use a model to explain the functionality it achieves. The model seen in

Figures 17-20 is based on a demonstration problem and spreadsheet included with Palisade

Corporation's RISKOptimizer software. In the first figure we find a graphical representation

of job queues (the five rows of colored bars) with a randomly determined job schedule in

place (the order and placement of the colored bars). The queues represent the berths and the

colored bars represent parcels. The random job schedule is far from optimal, but obeys all of

the constraints within the problem. As we see based on the progression of time and the

subsequent minimization of the idle time required, the RISKOptimizer engine continues to

test various solution attempts based on genetic logic and chooses improved solutions to the

problem. Finally, when the optimization has reached a certain time limit or goal value, it will

be stopped and the new schedule can be displayed in the chart. Again, this is not necessary

for most uses of the DSS, but could prove useful for an operational user at the dock.
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Order

2 71993 15
1 'K..1 j fl na n a
-5 3.5~2 36-.s n a n a

2W 54 5 4 14187 a t a na
1 1 1 74342 IS.1 na nia

2 4 2 4 14,107 na 28.394 na
2 32 3 2 67084 n'a 67,084

Figu.re 8: Opiizer Moxiel un g 2

A B

An n

2
3 13 1 3 32.4371
4 14 1 4 32.413

5 15 1 5 36,4995
6 21 2 1 6,78378

A B

2 
i -'I-



C D E F G H J K L M N 0

Draw Schedule

I10
m o E

OPTIMIZE - Idle time is further lowered as the

Randomize optimization continues. The
Or"er changes are seen reflected in the

re-drawn schedule above as weull
111mAL VALUES

parcel
ust

parcel I
berthID

berth
ID reQUired Time

1 11 1 1 59.6022
2 12 1 2 67.9388

3 13 1 3 30.3611

4 14 1 1 4 79.4731

5 15 1 5 47.435

6 1_ 2 1 6,83858

A

Total Idle Time 554.0916

OPTIMIZED VALUES

RISKOptim zer Progress

Iteration:

Skndaton:

Runtime:

Ongnal:

Best:

Proc
Time

berth
tDo

I2

460 003

16 41 4 1 66.538 n/a n/a n/a 66
5 15 1 5 47.435 47.435 n/a n/a

24 54 5 4 15.178 n/a n/a n/a
1 11 1 1 59.602 126.14 n/a rnia

19 44 4 4 .852 n/a ala na 1f
12 32 3 2 67.167 1n/a nla 67.167

Figtur 19: Optimizer Nl del Runningy 3 of 4

C D E F G H J K L M N 0

ice0 200 30 400 800 n n 70n

produtct
receired

When the optimization is
stopped, due to a goal or time
limit being reached, the final
result may be displayed, both in
numerical and graphical terms.

1 2 77.9946

Draw Schedule

Total Idle Time

15
24 54 5 4 18.198 n aa n/a
1 11 1 1 70.318 127.46 nla n/a

19 44 4 4 70.018 na n/a na 12
12 32 3 2 72.8081 n/a 72.808

Figure 20: Optimize_ r Mo:del Running, 4 of 4

41.743 41.743

OPTIMIZE ->

Rardomize
Order

IHMIA I 11 A 8 119: C

1 2
3 13 1 3 29.0292
4 14 1 4 83.1641
5 15 1 5 41,7434

L1 6 21 2 1 17.3118

!0 IoF 4F qG F Go0 7jO

i T r| r

777","'

A B

Avaiable for Nest Task ,

list IberthD 1

5 n/a Iala



The last feature of the decision support system is the results display, post-optimization. As

seen in Figure 21 and 22, the results will typically be displayed as a probability density

function. The data displayed in the columns above the chart describe the mean outcome of

the simulation. Within the chart itself, we find two key pieces of information. First, we find

the distribution of dock utilization statistics within the simulation (that is the total job time

over the total available time). Then, we find the confidence interval at which a given level of

dock utilization can be predicted. For instance, in the example below we see that with 99.5%

confidence we may state that according to our simulation-optimization model the dock should

not reach greater than 94.5% utilization. Again, in the last example we see that with 99.9%

confidence we may state that according to our simulation-optimization model the dock should

not reach greater than 100% utilization (that is the point at which assigned parcels cannot be

handled). This is the key statistic and evidence produced by the decision support system.
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