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ABSTRACT

U.S. petrochemical manufacturers operate in a very challenging environment on account of the recent
economic crisis, volatility in crude oil prices, rising capacity in the Middle East, etc. Recently, there
has been a focus on logistics costs and, in particular, capacity utilization as a means to retain a
competitive edge. This thesis focuses on marine dock optimization for a major bulk chemicals
manufacturer. The authors have surveyed the research literature to find commonalities in various
approaches to the problem of dock optimization— in the petrochemical shipping industry as well as in
allied operational environments such as container shipping. They discuss the inputs that would be
needed to build a decision-support-system designed for the express purpose of measuring dock
utilization.

Following a review of the industry context and relevant literature, the authors develop a demonstrative
framework that captures the key variables and constraints affecting loading and unloading operations.
The authors speculate that multiple simulation and optimization techniques could sufficiently address
the quantification of operational uncertainties at the marine dock. However, emphasis is placed upon
the need for thorough data gathering and correct prioritization of variables and constraints affecting
efficiency of dock operations.

Thesis Supervisor: James B. Rice, Jr.
Title: Deputy Director, Center for Transportation and Logistics
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1 Introduction

1.1 Context

The influence of the petrochemicals industry in daily life is well known — petrochemical
products go into the manufacture of soaps, pharmaceuticals, plastics, tires and other objects
vital to the onward march of civilization. However, before consumers can reap the benefits of
petrochemicals in the form of household goods, a great deal of logistical planning goes into
the manufacture, transport and processing of petrochemicals. The raw materials used in
petrochemical manufacturing are typically supplied from refineries to manufacturing plants
via pipelines. The chemical plant then processes these raw materials and stores inventories of
finished product in various tank farms. The product is then transported via truck, rail,
pipelines and marine movements. Of these four modes of transport, maritime transport is
often the most feasible because demand points are often located far away from manufacturing
clusters, and manufacturing operations commonly
require large batches of these raw materials. Also,
maritime modes of transport offer the lowest cost per
ton-mile (Li, Karimi & Srinivasan, 2010). Refer to
Figure 1 for an example of marine-dock operations for a
bulk-chemicals manufacturer. Pictured are loading arms

for bulk liquids connected to a vessel or barge.

Figure 1: Loading Arms at Dock
(Kanon Loading Equipment, 2011)

Our research focuses on the marine dock-side operations of a major US petrochemical
manufacturer referred to herein as Al-Chem Inc. As with any large petrochemical

manufacturer with a global footprint, raw materials as well as finished products are shipped



to world-wide clients via ocean-going tankers. Domestic clients who are accessible via inland
water ways are served via barges. Typically, a marine dock for a bulk chemicals
manufacturer provides berths for one or more vessels to pull alongside so that product can be
loaded onto vessels via direct hose-hookups or marine loading arms (as seen in Figure 1). A
team of logistics planners and marine operations experts work together to ensure that any
vessel which arrives at the port is “turned around,” i.e., loaded or unloaded, as fast as possible
within the bounds of safety and process requirements. Figure 2 illustrates the layout of a
typical bulk chemicals marine dock. When a vessel pulls alongside its allotted berth, a
loading arm or transfer hose is connected from the dock to the vessel so that product can be
transferred from the manufacturing plant to the vessel’s holding compartments. Some of the
main determinants of capacity at the dock are the number of berths, loading arms and
availability of labor.
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Figure 2: Al-Chem Inc. Visual of Berth Schematics

The logistics cost of planning and executing loading and unloading operations constitutes a
significant proportion of the operating budget for an Al-Chem Inc. manufacturing facility. In
our research, we seek to study the problem of marine dock optimization. We survey the
literature on petrochemical marine logistics and propose a high level design for modeling

marine loading and unloading activities for Al-Chem Inc. Our proposed design is based on



sales and loading data from one of Al-Chem Inc.’s facilities but is generalized enough that

the principles may be applied to their other facilities and companies as well.

1.2 Relevance

In the US economy, petrochemical manufacturing is a $77.9 billion industry, and the nation’s
dependence on this sector is expected to propel revenue growth over the next five years. By
one estimate, from 2011 to 2016, revenue is projected to grow by 3.8% per annum to $93.7

billion (Gotaas, 2011).

However, the recent recession has been challenging for this sector for various reasons
including falling demand and volatility in the prices of crude oil and natural gas. Demand and
supply imbalances in this sector further contribute to volatility. Figure 3 demonstrates how
average returns to share-holders in the chemicals industry have fallen by 55% (McKinsey &

Co., 2009).

On average, the chemical industry saw total returns to shareholders fall
by around 55% in 2008/2009
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In a 2011 report on Top Ten Trends in the Petrochemical Industry, leading market research
experts make the case that one of the key factors for the recent slowdown in the US
petrochemicals industry has been caused by the emergence of increased “competition from

price-competitive producers in the Middle-East and Asia” (Research and Markets, 2011).

The report goes on to state that “rising feedstock prices are forcing many North American
petrochemical producers to reassess their profit margins in comparison to that of global
players. The capacity additions in the global petrochemical industry are increasingly favoring
Asia-Pacific and Middle Eastern locations. The major reason for this shift is the economies of
production in these regions. The Middle East has an unparalleled feedstock advantage and
Asia-Pacific countries like China and India offer very low labor costs compared to North
American and European countries” (Research and Markets, 2011). Feedstock prices refer to
the cost of raw materials used as inputs to manufacturing processes used by Al-Chem or other

North American petrochemical manufacturers.

In the face of such profound forces now buffeting the US petrochemicals industry,
optimization of capacity utilization is now a key success factor (Gotaas, 2011). To stay
competitive, it has become especially important to seek out improvements in working capital

and to drive costs down in the entire supply chain.

By one estimate, logistics costs can account for up to 20% of purchasing costs (Karimi,
Srinivasan & Han, 2002) in the global chemicals industry. Thus, maritime bulk transport is an
integral part of logistics because bulk shipping offers the lowest cost per ton-mile (Li et al.,
2010). The major chemical manufacturers are located in centralized hubs around the world,
whereas demand points are scattered around the globe. Therefore, the use of maritime-
transport of bulk chemicals is both necessary and crucial to the operation of chemical supply

chains. As ports and ships are both expensive to invest in and operate, it is easy to see how



any improvements in operational efficiency can translate to lower costs for the end customer,

increasing competitiveness.

1.3 Research Direction

. Following a survey of the relevant research literature, we propose a high level design for a
decision-support-system (DSS) to maximize utilization/reliability at the level of the marine-
dock. We do not go deeply into the specific parameters for Al-Chem Inc. docks but use
available sales data and existing research literature to indicate how a DSS might quantify

utilization at the level of the berth.

Several variables and constraints impact day to day dock operations and introduce
unpredictability to operations. By first modeling the key elements (number of tanks, loading
arms, labor availability, etc.) of a typical bulk-chemicals dock in database terms, we present
an analytical approach to measuring the impacts of variability and operational constraints on
capacity utilization. Different manufacturing facilities may choose to emphasize different
metrics for measuring berth utilization — for example, by choosing to maximize the number
of orders that can be shipped from a given berth, over the course of a year. We utilize an
implicit assumption that berth utilization is maximized when we minimize the time required

for a vessel to complete operations and depart from the berth.

We show how it may be possible to model, simulate and benchmark dock operations to
identify areas of weakness and opportunity by using probabilistic tools in a decision-support-
system. At present, logistics planners at the port are able to consider forecasted supply (the
plant is primarily a supplier of chemicals, i.e., onshore to offshore) and give a “by-the-gut”
estimate of what sales orders (referred to in the bulk chemicals trade as “parcels’) the dock

will be able to handle. Our research aims to translate this semi-structured operational decision



making process into a more quantitative approach based on the key constraints and variables
at play. Figure 4 indicates the high-level elements that would interact together to serve as a
DSS. We cover the individual modules in greater depth in Appendix A.

User Interface

Database
Module

/ \

Simulation II‘ Optimization
Module Module

Figure 4: Decision Support System

10



2 Literature Review

Whereas the scope of our research is limited to analysis of a single marine-dock for one of
Al-Chem Inc.’s manufacturing facilities, in our résearch we have considered literature
pertaining to supply chain optimization in the broader petrochemical industry as well as
efforts relating to dock optimization in other types of shipping, e.g., container shipping. We
note the chplexity inherent to globally distributed petrochemical supply chains and consider
the role of uncertainty in optimizing for efficiency at the marine-dock. We also discuss a

research gap in the marine dock optimization space for the petrochemicals industry.
2.1 Supply Chain Optimization in the Petrochemicals Industry

For Al-Chem Inc., a global player in the petrochemicals sector, the overall supply chain spans
production, storage and distribution sites over several countries. Al-Chem Inc. also serves
customers in several markets. Thus, the overall supply chain experiences uncertainty in
several dimensions. According to one 2005 paper “Uncertainty propagates through the supply
chain network from the market at supply side, quantity and quality of raw material, to
production quality and yield, and from the other side to the market economics and customer

demands” (Lababidi et al., 2004).

This uncertainty is further compounded at the marine dock owing to various operational
variables and constraints — in effect, an ever-changing combination of strategic, commercial
and operational considerations are always in play during loading and unloading operations.
To define the level of utilization or efficiency in such an environment requires a clear
prioritization of certain key factors, which, we assume, will be generated by company
management. The mathematical modeling approach proposed by Lababidi et al. in 2004 is a

good example of such prioritization: they generate an objective function which takes into
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account such things as the planning horizon (“the time period representing the duration over
which a company tries to forecast production and allocate demands”), products (“final
outputs produced by the process industry”), demand sources (“market places and distrii)ution
centers”), lost demand (‘‘sales orders that will not be satisfied”), etc. The objective function is
designed to minimize “the total production costs and raw material procurement, as well as

lost demand, backlog, transportation, and storage penalization” (Lababidi et al., 2004).

The above approach is one example of optimizing the supply chain for a petrochemicals
manufacturer. Different organizations may have different approaches to building their
individual optimization functions. For example, petrochemical companies that are
competitors in the marketplace may collaborate on certain tasks or projects to improve
overall profitability for each participant. Supply chains become more efficient when
competing companies find ways to share or swap assets or information to better serve the end
customer while reducing total costs for each participant. Al-Husain et al. describe the concept

as follows:

In a commodity-type industry such as oil and petrochemicals, the source of the
commodity is often of no interest to the final customer as long as the commodity
adheres to its required specifications and the delivery of that commodity is made by
the promised due date. Therefore, competing oil and petrochemical companies form
supply chain alliances when delivering commodities to customers in order to reduce
transportation and inventory costs and improve customer service. In return, cost
savings for transportation in the overall supply chain are shared among participating
companies. This form of collaboration is referred to as shipment swapping” (Al-

Husain et al., 2008).
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Collaboration in the form of such “swaps,” where entities can swap shipments, assets or
entire business units, is a creative way to achieve improved supply chain efficiency in the
industry. This approach to supply chain optimization constitutes what may be termed
“paradigmatic change,” which can supersede certain operational considerations at the level of

the marine-dock in favor of larger, systemic gains.

However, according to Al-Husain et al., this is still an emerging science: “...despite the
significant advantages this practice has generated for companies, a defined model for making
such decisions does not exist. The subject has barely received any attention in the operations
management literature. Currently, no specific method has been adopted to determine when

companies should attempt to make swap decisions” (Al-Husain et al., 2008).

The above overview is intended to illustrate, at a macro level, some of the complexities
involved in trying to optimize supply chains in the petrochemical industry — multiple
transport options, fluctuating prices of raw materials, capacity constraints, legacy systems,
long lead times are only some of the factors in play at any given time. In the next section, we

show how uncertainty at the macro-level manifests itself even at the level of the marine dock.
2.2 Efficiency at the dock level — a research gap in the petrochemicals industry

Logistics planning for bulk chemicals is an under-represented area of research (De et al.,
2004). This may be because bulk chemical operations are affected by a number of different
factors which make the measurement of utilization level difficult. Some of the constraints are
vessel/barge capacities, product pump speeds, line switches, parallel loading, procedure-time-
cycles, safety requirements and storage capacities. Several variables also impact day-to-day
operations: asset conflicts, vessel and barge availability/timing, weather, river water level,

product demand, product availability and equipment failure. Furthermore, the order quantity

13



is not always fixed but can be within a range specified by contractual agreements. Also,
chemical cargo is subject to various rules and regulations, which influence the loading

process of chemical tankers/barges (Stadtler, 1983).

However, logistics planning and analysis of dock-side operations are well defined for certain
other types of shipping, such as container shipping or crude-oil shipping. It is well known
that operating tankers and container vessels can be quite expensive on a daily or even hourly
basis (Zeng & Yang, 2009) — hence, there have been numerous studies dedicated to
minimizing these costs while maintaining a high level of operational efficiency. In container
shipping, berth utilization is defined in terms of time spent at the berth by a container vessel —
this includes “several components such as paperwork, ballasting/de-ballasting, opening and
closing the hatches, actual loading/unloading as well as repair times in case equipment fails
during operation” (Jagerman & Altiok, 2003). Jagerman and Altiok define berth utilization as
“the asymptotic proportion of time that the berth is occupied by a vessel.” Thus, in container
shipping, port time per vessel and berth utilization are critical measures of performance for
berth operations. Optimizing the
dock for efficiency and cost is
further aided by the fact that
“docks can be viewed as more
highly divisible-- multiple cranes
serve single vessels or multiple
vessels served by single crane i.e.

discrete units to load/unload”

—

(Wadhwa, 1992). Figure 5: Container Tanks with a Quay Crane, Truck & Chassis at Port
{Alibaba.com, 2011)
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For bulk chemicals, on the other hand, several factors have contributed to a lack of research
in this space. Chemical cargo is shipped in (tank) containers, as seen in Figure 5, but also in
various other modes such as trucks, trains, barges, pipelines and multi-parcel chemical
tankers. At the typical chemical berth, operations can be locally optimized in several ways.
Planners could choose to optimize the amount of inventory stored on site to minimize holding
costs, minimize vessel loading/unloading time, truck waiting time, pipeline service costs etc.
To arrive at a single metric that can encompass all of the above factors is not feasible,
especially when different sets of constraints and variables apply to each of the above

operational metrics.

We further speculate that a high level of IP protection in a fragmented industry, coupled with
traditionally high margins for chemical products, has led to a lack of interest in analyzing

dock-side operations.

Next, we survey some of the work done in the area of dock optimization in the container
shipping industry, where, as mentioned earlier in this section, the issue has received

significant research attention.
2.3 Dock Optimization in Container Shipping

The fast-paced growth iﬁ containerized shipping has created a highly competitive climate
amongst world ports (Park & Kim, 2002). Though there are levers available to port planners
to differentiate their services, a primary criterion for port success is operational excellence.
Key measures used to evaluate ports, and hence to make impactful industrial site and
sourcing location decisions, are based on a port’s ability to efficiently load and unload cargo
(Steenken, Vo & Stahlbock, 2004). For these reasons, quantitative modeling of port

operations for the container shipping industry has been recorded in the academic literature as
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early as 1987 (Li & Vairaktarakis, 2004). Though the objectives may differ, by industry and
even amongst the various container-shipping related models, elements of this knowledge

stream prove useful for application to the chemical logistics issue at hand.

The objectives of different container port operations models have varied significantly: studies
consider different aspects of ship-berth link planning such as the degree of berth occupancy,
the percentage of congestion in port, the optimum cost combination, the minimal ship time in
port, the total cost of port system, the optimal determination number of berths and cranes in
port, the mutual QCs interference exponent, the optimal combination of berths/terminal and

quay cranes/berth etc. (Dragovié¢, Park & Radmilovi¢, 2006).

However, in spite of these divergent purposes, much of the literature has held that some time-
based performance measurement should be used. Mak and Sun hold that one such measure,
vessel turnaround time, is the most important port service level evaluation measure available

(Mak & Sun, 2009).

Further complicating the issue, some of the models attempt to balance optimization of vessel
loading and unloading and optimization of yard storage simultaneously (Boros, et al., 2008).
These dual objective approaches make abstraction of dock optimization techniques more
difficult. Despite the differing opinion on which criteria to optimize for, there is considerably

greater agreement on technique and methodology.

In the next section, we survey some of the literature around routing and scheduling vessels
arriving at the berth. In so far as a marine-dock is a link between sea and land operations, we
believe it is important to understand the notion of “optimized operations” from the

perspective of the ship-owner or charterer.
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2.4 Bulk Liquid Chemicals — loading and unloading from the ship’s perspective

As mentioned earlier, the objective at the level of the marine dock is to “turn around” vessels
as soon as possible — this process refers to completing operations in the least amount of time

possible while the vessel is in berth.

Therefore, unpredictability in vessel arrivals can impact on dock utilization — berths which

have been reserved for a particular vessel are un-utilized if the vessel is delayed.

Our survey of the research literature indicates a wide availability of material focusing on the
logistics of chemical tankers — their routing as well as scheduling. For this reason, in our

thesis, we assume this to be a separate problem to optimizing operations at the dock itself.

We direct the reader to the work of Jetlund and Karimi (2004) (multi-integer linear
programing) and Jagerman and Altiok (2003) (a study of queuing behavior), as illustrative
examples of approaches to routing and scheduling optimization. The approach taken by
Jetlund and Karimi seeks to maximize profit (Jetlund & Karimi, 2004) for the vessel operator
whereas the approach taken by Jagerman and Altiok seeks to measure the impact of
uncertainty in vessel arrival times on two critical factors: port time per vessel and berth

utilization (Jagerman & Altiok, 2003).

2.5 Simulation and Optimization Techniques

In the preceding sections, we have mentioned some of the many factors that impact upon
efficiency at the dock. Experienced logistics planners and marine operations personnel
develop certain heuristics, over time, for determining what the dock is able to handle for a
given level of product demand. However, it is impossible for humans to calculate a

quantifiable level of certainty about berth utilization without help from computerized
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simulations. Computer simulation models would be able to solve complicated objective
functions — such as the one suggested by Lababidi et al. (2004) in Section 2.1 - by taking into
account several uncertain variables which can each be represented by a probability

distribution.

Thus, simulation as a tool to understand and improve dock operations has been in use for at
least two decades; due to the complexity of berth scheduling, simulation models are
increasingly being utilized to understand this aspect of port operations (Kozan & Casey

2006).

Dragovi¢ et al. provide a detailed survey of the different approaches, including modeling
languages that researchers have taken to deal with issues of berth assignment and equipment
scheduling (Dragovi¢, et al., 2006). A type of simulation technique often used in modeling of
port operations is known as discrete-event simulation. This type of simulation takes a
procedural approach to scenario generation. The advantage of this technique is in the
possible precision—each event in a work cycle can be individually quantified for a more

accurate representation of system as a whole.

Hartmann addresses the interplay of theoretical scenarios, simulation and optimization and
asserts that “simulation models are developed to evaluate the dynamic processes on container

terminals” (Hartmann, 2004).

Once a scenario is generated, it is typically subject to either a simulation model or an
analytical model for optimization. As described in Dragovi¢ et al. (2006), this scenario could
take form in an off-the-shelf software application, a custom computer program, or a purely

mathematical analysis.

18



3 Research Methods

As mentioned previously, dock operations are complicated by variables and constraints.
Variables include asset conflicts, vessel and barge availability/timing, weather, river water
level, product demand, product availability and equipment failure. Constraints can include
vessel/barge capacities, product pump speeds, line switches, parallel loading, procedure-time-

cycles, safety requirements and storage capacities.

To model for efficiency at the dock, we must express the impact of each variable or
constraint in terms of cost. Cost can be expressed as a combination of monetary terms —
dollars — or in units of time — hours. In our investigation of a design for modeling for dock

efficiency, we have chosen to express delay in hours.

Our design is based on two sets of inputs: commercial and operational. The commercial
inputs refer to forecasts of demand data for a given period into the future, weeks, months or
years. Operational data refers to foreseeable variables and constraints, which might impact on

loading operations.

Through the use of a database, user-interface, simulation and optimization engine, the model
is designed for use by a marine operations expert. The model is a high-level proof-of-concept
for analysis of dock utilization/reliability, and, as such, the generation of actual utilization
figures for a particular dock is outside the scope of this paper. To accurately model the
variables and constraints in terms of actual cost will require detailed inputs from operational
and commercial staff, which are not available in this instance. The demonstration in
Appendix A goes deeper into the design of such a system, but lacks fundamental elements of
a real-world implementation such as consideration of conflicting parcel priorities, special

prioritization of certain parcels or customers, expedited orders and unscheduled demand, etc.
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3.1 Simulation

Computer simulation as an analytical tool in engineering design for ship-berth link has been
in use since at least the early 1970s (Dragovi¢ et al., 2006). The type of computer simulation
we propose for use in this DSS is based on applied probability. Any complex physical system
will possess some degree of variability. In most cases, the primary sources of variability can
be analyzed and approximately characterized using the framework of probability. The
simulation approach attempts to represent the possible output of a system (or systems) by
subjecting a set of input data to a model of the system containing quantified characterizations
of the system’s key variables. As computer processing power has increased, it has become
feasible to run a large number of complex simulations iteratively for combinatorial analysis
of multiple result sets. To put it simply, we are able simulate effects of multiple factors
within a system simultaneously and analyze the end result. Further, we can perform this

exercise multiple times to understand the range of possible occurrences within the system.

3.2 Variability

Because the simulation approach we propose is grounded in applied probabilities, the
investigation and definition of the key variables within the target system is of utmost
importance to the accuracy of the simulation model. For some variables, data will already
exist from which approximate probability distributions can be derived. One such example
from our data collection is vessel/barge actual arrival date. Combined with volumetric
information at the parcel-level, this database of vessel arrival dates and order sizes allows us

to understand seasonality by chemical type in terms of demand on the dock assets.

In some cases, new reporting practices should be put in place in order to begin collecting data
on a key variable. However, there will be many variables which should not be modeled

through abstraction from quantitative data. The value of precision gained through formal
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quantitative data collection should always be weighed against the time and effort required.
An example where this trade-off favors qualitative data collection is vessel-to-dock
equipment conflicts. A data collection regimen could record each occurrence of an asset
conflict over time, but this would be unlikely to produce a sufficiently more valuable

approximation than interview-based data gathering with on-site operations personnel.

3.3 Benchmarking

Simulated demand scenarios alone provide valuable information in that they project a
potential future based on the input data and the variability quantified in the simulation model.
However, even greater insight can be gained through the iterative application of computer
simulation (e.g., Monte Carlo simulation) combined with an additional engineering systems
problem solving approach—optimization. A thorough treatment of optimization and the
ship-berth link problem can be found in Dragovi¢ et al., 2007. The fundamental question that
optimization attempts to answer is as follows: Given a certain set of constraints and a certain

objective, how fully can the objective be met?

As with computer simulation, the domain of optimization comprises many different
approaches and techniques and as mentioned previously in our literature review, for the
optimization module in our demonstration, we have chosen to use Palisade Corporation’s

Risk Optimizer with its Genetic Algorithm approach.

An optimization program has two primary components: the objective function and the
constraints. The objective function is typically stated in terms of maximization or
minimization and is subject to the satisfaction of all constraints. In designing a program
focused on optimization of marine dock operations, the objective function could be

considered in many different ways. For instance, the program might seek to minimize the
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amount of free work time at the facility or the amount of money spent on demurrage charges.
Alternatively, the program could attempt to maximize the throughput of the dock in terms of
liquid weight, vessels served, or parcels dispensed. In our implementation of the proposed

DSS design (see Appendix A), we developed an objective function which seeks to minimize

the total idle time of the marine dock.

With the objective function defined, we are able to implement the constraints that the solver
will be subject to during the solution search. In our case, the constraints will primarily
consist of the simulated demand scenario derived from a single iteration of the Monte Carlo
simulation module. This scenario will define what chemicals will be demanded at what time
and in what quantity. Based on that information, and additional constraints imposed by the
model of actual dock operations (e.g., product pump speeds, parallel loading requirements,
dock-side safety requirements, etc.), the solver will seek to satisfy the objective function to its

fullest ability.

Once the solver has arrived at an acceptable solution, this process can be repeated for the
remaining iterative outputs of the simulation module. After all potential future scenarios
have been optimized based on the objective function it is possible to express the level of asset
utilization for the marine dock in terms of confidence intervals. For instance, we could say:
according to the model, this dock can satisfy 99.5% of this demand plan at 73.4% confidence.
Confidence in this context refers to the amount of certainty with we can predict the
occurrence the fulfillment of product demand based on the model. So, in this case, if we ran
the model through 1,000 iterations, we could expect demand satisfaction to be at or above

99.5% for approximately 734 iterations.
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3.4 Gathering Data to Support the Models

Though the purpose of this research is to present a framework for the decision support
system, it is important to include a note on minimum and recommended data requirements.
As described previously, there are several different methods for gathering data and,
depending on the intended use and anticipated benefit of the data, a more or less rigorous
methodology will be appropriate. For the purposes of this investigation and proposal, we will
discuss our own data gathering and the recommended additional data gathering to support a
fully-operational (in terms of benefit to operational efficiency projects) implementation of the

DSS.

The data can be divided into three different categories—expected demand data, unplanned
variable data, and known constraint data. For our implementation of the DSS, the expected
demand data was provided by the sponsor company in the form of Enterprise Resource
Planning (ERP) order history. Though we received several years of data, not all data was
required to apply simple forecasting algorithms to the historical demand patterns. Ideally, in
a full implementation of the DSS, the forecast data used will be the best available forecast

that is used for other operational and business decision making processes.
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3.5 Proposed Process Flow

sd Sys{emF!ow_’

X X x %

User Appkcation Iniedace Daapase Simutation Engmne Optimization Engine
M 1 n M 1

Sto

1: Request Default Sertngs

Z Request Default Settings

I Retum Default Settings

4. Display Defauk Settngs

£ Adjust Settings

6: Load Temp Sefings

=, 4

>
1 7: Rewm Completion Confimation
g

§: Dispiay Confimnation

< i
o intinlze ‘Smmlwm'c}c:‘m:m‘}
»

10. instiaiizp Sumulation

11: Request Settngs

12: Retum Temp Settings

14 Load Simulaton Resuits

— 2
13: Generate n Smwiations
15. Retum Conjgietion Confirmation

16 mitialze Optinvzation

17: Request Settngs & Simuiation Resulis

18: Retum Saftings & Shuiation Resulls

20: Load Optin Resuits

i

19 Oplimze n Stenanos
21: Retum Completion Confimation

22. Reguest Results

23: Retum Results

24 Dmsplay Resuis

Figure 6: Model System Flow

Figure 6 describes our proposed flow of information through the system over time. An expert
user (such as an experienced logistics planner) interacts with the user interface (refer
Appendix A) to run simulations and optimization scenarios based on forecasted demand.
Dock-side operations are modeled in a database such as in Appendix A, Figure 8. The
database in turn is accessed by the simulation and optimization modules after the user has

defined the particular variables and constraints he or she wishes to consider for the exercise.

In its essence, the simulation module would allow a user to see the effects of different
variables for a given order-mix of chemical parcels that are to be loaded in the near future. It
would express various possibilities of delays that might ensue based on expected variance in
such factors as water level or weather related delays. The user would be presented with

multiple scenarios from the simulation module from which he or she could extract a subset of
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scenarios which could then be further optimized based on operational constraints. The
activities carried out in the simulation and optimization modules are described in greater

detail in Appendix A.
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3.6 User Interface

We’ve reviewed the gathering, modeling, simulating and optimizing of data from marine
dock operations. However, for routine operational use, the processes undergone to generate
the final output are overly complex. In order to simplify the process for the operational user,
all the components and modules of the system should be implemented behind a single,
seamless user interface. This interface should allow the user to input the base data for the
simulation module, select variables (and variable settings for advanced users, e.g. distribution
types, gamma values, p-values, etc.), select constraints (and constraint settings for advanced
users), and then start the system. For an example of what such a user interface might look

like, see Figure 7.

1. Select Demand Data 2. Select Settings Below 3. Simulate & Optimize!

[Setectrite.. | [Completed
| Simulation ©| | Simutation Advanced JOplimization || Optimization Advanced

Select Variable(s) Select Constraints
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Highly Untimely Arrival ] Excluded Parallelism £
Water Level Problem ] Cleaning Penalties ]
Equipment Failure D Latency Penalties [_—_
Product Unavailable U Crew Shift Penalties L
Modify Variable(s)
Highly Untimely Arrival bd
IPoisson. Gamma: 1.2

Select Simulation Duration

/\

[ A
1000 iterations

Figure 7: Hypothetical User Interface
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4 Conclusions

4.1 Review of Demonstration Decision Support System

The above illustrative model of a DSS for dock optimization works on the following premises

related to data gathering and decision making:

e Availability of sales/demand data from operations, sales.

e Availability of quantitative and qualitative data on variables and constraints affecting
dock operation

e Prioritization of key variables and constraints by operations staff — this list of key
impacting factors will differ from dock to dock or manufacturing facility to
manufacturing facility.

e Design of an objective function for a given marine dock by management and
operations staff — a marine dock can be optimized for vessel time spent at berth, cost

per hour of operation, throughput of chemical product per year, etc.

The choice of simulation model or data gathering techniques will vary from dock to dock;
however, the principles of optimizing for efficiency or utilization will remain the same. It is
indeed possible for operations personnel to derive quantifiable metrics on utilization and
efficiency provided there are clear assumptions or guidelines on what constitutes efficiency
(cost, time, throughput or a weighted combination of these and other factors) and which

variables and constraints have the most impact on day-to-day operations.

4.2 Implications and Recommendations

We discussed in Section 1.2 that the US petrochemicals industry can expect revenues to grow
over the coming years. However, the competitive landscape for players in the petrochemical

industry is currently a challenging one, on account of volatility in prices of oil and raw
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materials, rise of additional refining capacity in the Middle-East and Asia and after-shocks of
the 2009 economic recession still being felt. In this environment, a focus on reducing
logistics costs and optimizing capacity utilization is a key success factor. Whereas maritime
transport of bulk chemicals is a primary mode of transport for bulk chemical manufacturers
like Al-Chem Inc., not enough research has been carried out on optimizing operations at the
dock. In our thesis, we have surveyed the literature on optimizing marine-dock operations
from the perspective of the ship-owner as well as container port operators, and we have used
the relevant findings to suggest a model of a decision-support-system. We speculate that the
complexity of factors affecting loading and unloading operations has delayed the emergence
of an industry-wide standard, or even in many cases a company-wide standard, for measuring
marine dock utilization levels. However, without a unified framework for such evaluation,
comparison between docks, and thus prioritization of capital- and process-improvement
initiatives is not possible. We have shown that it is possible to quantify marine dock
utilization using processes and tools proven in other related operational environments. We
recommend the adoption of a unified, robust and repeatable decision support system
framework for implementation across multiple petrochemical manufacturing facilities. This
approach will enable the benchmarking capabilities necessary to remain operationally

competitive in the 21 century.
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Appendix A — Demonstration Decision Support System

Notes

The unplanned variable data, such as water level problems, inclement weather delays, other
vessel/barge arrival delays, equipment failure, etc., were gathered qualitatively for this study.
The categories of variables were derived through interviews and conversations with the

sponsor company.

Finally, the known constraint data were reported both quantitatively and qualitatively.
Details of many constraints, such as chemical-to-dockside compatibility, were provided by
the sponsor company. While other constraints, such as co-loading restrictions, were
described only in terms of functionality. Where full detail of constraints has not been
provided, placeholder values have been used. In a fully-functional implementation of the
DSS these values will be replaced by actual values based on equipment, environmental and

regulatory restrictions.
Modeling the Data

As seen in Figure 8, the data model reflecting the operational structure of the dock and
loading/unloading activity should remain largely the same between implementations of the
DSS. The DELIVERY table is the only table required for the hosting of information on
expected demand. However, most implementations will also include subsidiary reference
data tables with additional information on customers, products, etc. The other tables seen in

the figure provide the constraint data required to formulate the final optimization problem.

In Figure 9 we see a simple representation of unplanned variable data as probability

distributions. The last field in the table provides the formulation of the probability
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distribution to whichever off-the-shelf or custom simulation software package is being used

for the DSS. We will discuss the use and functionality of these fields and tables in greater

detail within the following section.

CustomerDataTables ]

2
fg

D

negeritny (9] [0

inegerioy 09| | (310

5
integer1ty G [

Lﬁ; DESC integer(10) Q;J L{j DESC  integer{10} {&J LQ PLANT_FK integer(10) ;;g)

: ; DELIVERY B PLANT
F DELV.NUM - imtegert1) 157 = 4 ﬁ 1D integer{10) {;{]"f“;’ ------- !
{11 ACT_GOODS_ISSUE_DATE integer(10) [ : Lﬁ DESC integer{10) QQJ ; b HTERN_ LOADING ARM JOIN
& act_ovy integer(10) {9 ' ; h _; [] MATERIAL FK  integer(10) £ |
| Jary integer(10) [0 : LOADING_ARM ) r =504 [ pran_rx integerti0y G |
DENOMINATOR integer(10) ] : [ PLANT K integert10) Y pagia] -Oeig ARM_NUMBER_FK integer(10) {;{}J
[ oross_wEiGHT_KGS  itegercit) ] ! | [} ARM_NUMBER integeriia) () “*““‘é : 3’
7] NET_WEIGHT_KGS integer(10) {9 ! L{j DOCK_SIDE  integertt0} (] g &
|]] GROSS_WEIGHT_L8S integer(10) [ | 4 % % 3 £ TANK_LOADING ARM JOIN A
] NET_WEIGHT LBS integer(10) Y] ; _( MATERIAL A § [ Tank P integer(10y [ PG'A
7] nuMERAaTOR iteger(10y [ A ) integer(10) (Y Ly g F 209 f poa e integer(10) {9 | .
] PLANT_FK integer(10) {3 P o : i [} SHORT_NAME integer(t0)  [}Y) oA Oé E ARM_NUMBER_FK integer{10} [ J ;
[1] MATERIAL_FK integer{1ny (¥ PO--- -~ i T pESC integer(10) [} | v} L
7] mope_#x iteger1ty () PO----- -+ L{} MAX_PUMP_SPEED integer(10) (] v TANKMATERALJOW ) !
| [ sHie_to_FK integer(10) [ pO----- Pl [ TanNkCRK iteger(10) e :
| [7 mco_tERMS_FK wtegerti®) G bo--- ¢ MODE B P08 D eLaNT K integerti) G | i
LB SALES_DOC_FK integer(10) mJ i idwo  wesettmr Q4] ; ! Oia MATERIAL_FK integer(10) ﬁﬁ) .
i i | 0 oese imegerio) (9] : : :
i o SALES DOC A o : ! TANK'MG,QE‘WM A -
Toe eyt BURD o T TANK R megertiol 09 10777
- o 3 ke -——— § g
1 M| o
SALES_DOC_TYPE ) { : INCO_TERMS N TANK '

Figure 8: [Hustrative database to model marine dock operations

32




SystemVariablesTables )

( MAIN ) & BINOMIAL )
] VAR_ID integer(10) [¥]| _ | ] SWITCH_ID integer(10) [¥]
(] VAR_NAME integer(10) (| | | ] NLVALUE integer(10) [}]
VAR_DESC integer(10) [}]| | ] P_VALUE integer(10) [¥]
[] swiTcH_ID integer(10) [{]pO"

ACTIVE binary(1)  [}]

[] DIST_NAME integer(10)  [}f]

] GAMMA_VALUE integer(10) [}]

N_VALUE integer(10)  [}Y]

[] P_VALUE integer(10)  [}f]

MEAN_VALUE integer(10)  []

[] STD_DEV_VALUE integer(10) [}

Lg FORMULA integer(10) le

Figure 9: Higstration of how variables may be represented in a database

Simulating the Effects of Unplanned Events on Unloading/Loading Times

Though many simulation techniques exist (such as discrete-event-simulation which we
mentioned in Section 2.5) and could be utilized within our proposed framework, we use
Monte Carlo simulation due to two key benefits. First, through its iterative approach, Monte
Carlo simulation helps to uncover unexpected interactions between the multiple variables
having unique probability distributions typically present within complex systems. Second,
because it is a widely-used analytical technique, many commercial software vendors provide
easy-to-use Monte Carlo simulation engines that interface with common enterprise and home
office software suites. For the simulation module in our implementation of the proposed

DSS, we use Palisade Corporation’s @RISK and the DecisionTools® Suite.

To begin the simulation of the unplanned events affecting unloading and loading times at the

marine dock, we begin by extracting a set of data from our operational database, referred to in
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Figure 7 as CustomerDataTables. This data extract need only contain a minimal amount of
information—only 4 columns. First, it should have a column identifying the chemical type
for the parcel (see the CHEM_DESC column in Figure 10). Second, it should have a column
quantifying the volume of chemical ordered for a given parcel (see the NET_VOLUME
column). Third, it should have an expected ship date column (see the
ACT_GOODS_ISSUE_DATE column). Last, as a general recommendation, it should have a

unique identifier that allows for the information to be joined with other informative data after

the simulation and optimization routines (see ORDER_ID in Figure 10).

NDNE8 9000 KG 2498338.839 12/31/2010{605231 12/31/2010-605231
N25P1-2.5 9000 KG 2955994.81 12/31/2010{8003 12/31/2010-8003

NDNE 10/111210/12 2652538.83 12/30/2010{613433 12/30/2010-613433
MEG-FGL 8000 KG 4722761.697 12/29/2010i617643 12/29/2010-617643
NDNE12 9000 KG 2495690.838 12/28/2010{605067 12/28/2010-605067
NDME® 9000 KG 2497073.84 12/27/2010{605231 12/27/2010-605231

Figure 10: Sales History - Example

Once the source data has been extracted from our database, we must choose and/or adjust the
probabilistic variables affecting time spent loading and unloading. To model these variables,
the DSS contains two separate probability distributions for each event. The first is a binomial
distribution with n equal to 1 and p equal to the approximate probability that the event should
occur. We refer to this as the binary switch as it controls the active state of variable in an
“ON/OFF” manner. In an iteration of the simulation where the outcome is a “1,” the variable
is active. In an iteration of the simulation where the outcome is a “0,” the variable is inactive.
As an example, in Figure 11, for the variable named Inclement Weather, we see that p has
been set to ‘0.05°. This indicates that the Inclement Weather variable should be activated in
approximately 5% of the simulation runs. Because we are using Monte Carlo simulation, i.e.

with a limited number of iterations, it is unlikely that we will often see an exact 1 in 20 ratio.
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Figure 11: Variable - Inclement Weather

Figure 12 shows the formulation for the main distribution itself. As can be seen in the screen
capture, the distribution is of the Poisson type with a Gamma value of ‘1.2°. This
formulation is the multiplied by the binary switch result value (to control activation, then so
time multiplier (in this case ‘4’). The end result of this formulation is that the value in the

selected cell (‘C147) will be calculated subject to the previously mentioned binary switch and
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a Poisson distribution with a defined gamma value and a multiplier of 4. This end value will

represent the number of hours delay experienced for the parcel in question.

£ | =RiskPoisson(C13,RiskName(C9&" / "&C12) j*4*c11

| @Risk Formula |
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Al e
Paissan} | 1
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1] ol
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Parameters Standard
A Ci3

Equipment Incompatibility / Poisson

RISK Student Version
For@cader@ic Use Only

e Sk ; O e DA ~Opt D: 700t Model . OUE Opt Data {_;3

Figure 12: Equipment Incompatibility

Below, in Figure 13, the same is shown for a variable with a Normal distribution having a
mean of ‘0’ and a standard deviation of ‘8’.
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Figure 13: Normal Distribution Example

Following the definition of all variables and their two respective probability distributions, we
are able to calculate the potential time adjustment for each parcel en masse. As shown in
Figures 14 and 15, @Risk will calculate multiple iterations of the model at a single
command. In this case, 100 iterations of the model were run, the results of which can be seen

below, as distributions, for the two parcels selected.
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The first parcel, identified by the order number 12/26/2010-613539, shows a distribution of
values such that ‘0’ occurred more than 95% of the time and the rest of the iterations resulted
in either 4 or 8 hours of delay. We find a mean value of 0.12 hours of delay with a standard

deviation of 0.891 hours.
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Figure 14: Parcel L, Simulation Process

The second parcel, identified by the order number /2/20/2010-604660, shows a more widely
distributed results set with values ranging from O to 16 hours and just less than 95% of the
results with a zero value. The descriptive statistics show a mean of 0.440 and a standard

deviation of 2.19 for this result set (also 100 iterations, from the same simulation run).
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Figure 15: Parcel 2. Simulation Process

We have demonstrated in the previous figures that Monte Carlo simulation can be used to
convert real-life unplanned operational interruptions into multiple potential planning
scenarios. We achieve this by using two-stage variables with a binomial probability
distribution as a binary switch and an additional probability distribution to represent incident

severities.

Optimizing Simulated Scenarios to Determine Dock Utilization Confidence Intervals

The simulated scenarios created by the previous process represent the potential actual
demand at the dock. Since the expected demand and the eventual actual demand are expected
to differ based on numerous factors, we constructed a simplified model in which the key

variables were cast in probabilistic terms. These probabilities, implemented through the
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@Risk simulation software package, generate the input for the next module in our proposed

decision support system.

The problem of berth scheduling is very similar to the more frequently discussed operations
research problem known as crew scheduling. Similarly, this problem has been approached by
many different analytical tools - Lagrangian Relaxation, Sub-Gradient method, Mixed-
Integer-Linear-Programming, Simulated Annealing, Tree Search Procedure, etc. (Dragovic et
al., 2006). To maintain approach and interface continuity, we use Palisade Corporation’s
RISKOptimizer for the optimization module of our illustrative approach to building a DSS.
RISKOptimizer combines the simulation and Genetic algorithm approaches making it useful
for large combinatorial problems where individual near-optimal solutions are acceptable for

the sake of iteration volume.

The first step in optimizing the simulated scenarios is identifying and quantifying the
constraints for the optimization model. Examples of these constraints for are shown in Figure
16. These constraints include the rate at which each individual chemical is pumped from
dock to vessel/barge, certain berths that a parcel cannot be loaded from, certain chemicals
that a parcel cannot be loaded adjacent to, cleaning penalties incurred if a berth is switched to
load a different chemical and latency penalties incurred due to special handling required by
certain chemicals (e.g., pre-heating/cooling). Each constraint restricts the way in which the

parcels can be loaded and thus reduces the expected utilization of the dock.
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Figure 16: Example Constraints
The next step is the optimization itself. Though the optimization needn’t be observed or
overseen, we will use a model to explain the functionality it achieves. The model seen in
Figures 17-20 is based on a demonstration problem and spreadsheet included with Palisade
Corporation’s RISKOptimizer software. In the first figure we find a graphical representation
of job queues (the five rows of colored bars) with a randomly determined job schedule in
place (the order and placement of the colored bars). The queues represent the berths and the
colored bars represent parcels. The random job schedule is far from optimal, but obeys all of
the constraints within the problem. As we see based on the progression of time and the
subsequent minimization of the idle time required, the RISKOptimizer engine continues to
test various solution attempts based on genetic logic and chooses improved solutions to the
problem. Finally, when the optimization has reached a certain time limit or goal value, it will
be stopped and the new schedule can be displayed in the chart. Again, this is not necessary

for most uses of the DSS, but could prove useful for an operational user at the dock.
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Figure |8 Optimizer Model Running, 2 of 4
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Figure 20: Optimizer Model Running. 4 of 4
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The last feature of the decision support system is the results display, post-optimization. As
seen in Figure 21 and 22, the results will typically be displayed as a probability density
function. The data displayed in the columns above the chart describe the mean outcome of
the simulation. Within the chart itself, we find two key pieces of information. First, we find
the distribution of dock utilization statistics within the simulation (that is the total job time
over the total available time). Then, we find the confidence interval at which a given level of
dock utilization can be predicted. For instance, in the example below we see that with 99.5%
confidence we may state that according to our simulation-optimization model the dock should
not reach greater than 94.5% utilization. Again, in the last example we see that with 99.9%
confidence we may state that according to our simulation-optimization model the dock should
not reach greater than 100% utilization (that is the point at which assigned parcels cannot be

handled). This is the key statistic and evidence produced by the decision support system.
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Figure 21: Compiled Optimization Results. 1 of 2
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Figure 22: Compiled Optimization Results. 2 of 2
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