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Abstract

We propose new decomposition methods for use on broad families of stochastic and
robust optimization problemis in order to yield tractable approaches for large-scale real
world application. We introduce a new type of a Markov decision problem named the
Generalized Rest less Bandits Problem that encompasses a broad generalization of the
restless bandit problem. For this class of stochastic optimization problems, we develop
a nested policy heuristic which iteratively solves a series of sub-problems operating
on smaller bandit systems. We also develop linear-optimization based bounds for
the Generalized Restless Bandit problem and demonstrate promising computational
performance of the nested policy heuristic on a large-scale real world application of
search term selection for sponsored search advertising.

We further study the distributionally robust optimization problem with known
mean, covariance and support. These optimization models are attractive in their real
world applications as they require the model consumer to only rely on those statistics
of uncertainty that are known with relative confidence rather than making arbitrary
assumptions about the exact dynamics of the underlying distribution of uncertainty.
Known to be AP - hard, current approaches invoke tractable but often weak re-
laxations for real-world applications. We develop a decomposition method for this
family of problems which recursively derives sub-policies along projected dimensions
of uncertainty and provides a sequence of bounds on the value of the derived policy.
In the development of this method, we prove that non-convex quadratic optimization
in n-dimensions over a box in two-dimensions is efficiently solvable. We also show
that this same decomposition method yields a promising heuristic for the MAXCUT

problem. We then provide promising computational results in the context of a real
world fixed income portfolio optimization problem.



The decomposition methods developed in this thesis recursively derive sub-policies
on projected dimensions of the master )roblem. These sub-policies are optimal on
relaxations which admit "tight" projections of the master problem; that is, the pro-
jection of the feasible region for the relaxation is equivalent to the projection of that
of master problem along the dimensions of the sub-policy. Additionally, these de-
composition strategies provide a hierarchical solution structure that aids in solving
large-scale problems.

Thesis Supervisor: Dimitris Bertsimas
Title: Boeing Leaders for Global Operations Professor
Co-Director, Operations Research Center
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Chapter 1

Introduction

Sophisticated models for stochastic and distributionally robust optimization exist in

the academic community, but their application in practice is often limited by the

"curse of dimensionality". Exact formulations as mathematical optimization mod-

els for Markov decision problems and distributionally robust optimization problems

with known mean, covariance and support information exist, but the size of these

formulations are not polynoiially bounded and quickly explode for moderately sized

problems. Previous attenmpts at practical heuristics for solving these problems gener-

ally rely on policies obtained by solving relaxations with polynomially bounded size.

The main contribution of this thesis is to introduce efficient and computationally

promising decomposition methods for these problems.

The unified theme of the decomposition methods developed in this thesis is

that they study a sequence of efficiently solvable relaxations of the master problem.

Each relaxation is 'tight' when projected along specific dimensions of the master

problem, that is, the projection of the relaxation along those dimensions is exactly
the same as the projection of the master problem along those same "tight" dimen-

sions. Such relaxations can be efficiently solved to optimality yielding what we

call a sub-policy for the "tight" dimensions. A sub-policy sets our decisions along

tight dimensions, allowing us to collapse the overall dimension of the master problem.



As an example, suppose the decisions in our master problem involve how much

money, w;, should be invested in each of a collection of assets i 1, ... , N, each asset

having uncertain returns ri that lie in some space r E R which yields a difficult

optimization problem. We then consider a suibset of dimensions, say assets 1 and

2, and examine a relaxed space R -> R over which the investment problem becomes

tractable, such that 7r1 ,2(R) = ir1,2(R), where 7r12 is the projection operator onto the

dimension r1 and r2. Solving the investment problem over R, we obtain a sub-policy

for how to relatively invest in assets 1 and 2. By fixing this sub-policy, we can replace

assets 1 and 2 in the master problem with a portfolio corresponding to their relative

investment, thus reducing the dimension of the master problem.

In summary, the decomposition methods studied in this thesis involve iterating

the following three step process:

1. Obtain an efficiently solvable relaxation that admits a tight projection on se-

lected dimensions. That is, the projection of the feasible region for the relax-

ation is equivalent to the projection of that of the original problem along these

dimensions.

2. Solve the relaxed problem exactly to obtain an optimal sub-policy over the

projected dimension.

3. Use the optimal sub-policy to collapse the dimension of the original problem.

The nature of the decomposition methods studied in this thesis is to iteratively solve

a number of small tractable subproblems. The number of subproblems solved is

typically linear in the overall dimension of the problem; thus these methods are well

suited for large-scale application.

In this work, we will also introduce a broad class of Markov decision problems

called Generalized Restless Bandits for which such decomposition methods perform

well. We will study decomposition methods in the context of Generalized Restless

Bandits as well as distributionally robust optimization with known mean, covariance

and support information. In each of these regimes we will:



e Derive decomposition strategies which are efficiently solvable in practice.

a Derive sequences of efficiently solvable relaxations which can be used to bound

the true optinmium and evaluate performance of our heuristics a posteriori.

* Provide computational evidence of the effective performance of our heuristics

compared to prior work

e Discuss application areas for these problems.

* Perform an in depth case study of the application of our methods to a real-

world problem in the context of sponsored search advertising for Generalized

Restless Bandits and fixed income portfolio valuation for distributionally robust

optimization.

1.1 Structure of the Thesis

9 Chapter 2: Generalized Restless Bandits: Algorithms and Applica-

tions. Traditional multi-armed bandits model a class of Markov decision pro-

cesses where the state space is decomposable into the product of a number of

independent sub-processes called arms. The there are two actions available in

each time step for each arm "on" or "off" along with a constraint controlling

how many "on" actions must be chosen in each timestep. Arms transition only

when the "on" action is taken. Early work by Gittins {19, 181 and Whittle

[54, 55] found that such multi-armed bandit problems are efficiently solvable by

calculating an index for each state of each arm. The highest index states are

played in each time period.

Restless bandit models are an extension where arms also transition when an

"off" action is taken. These problems are in general P-space hard and current

research focuses on finding classes of restless bandits that are indexable (an

index policy is optimal) or on obtaining index based heuristics similar to the

non-restless case.



In the academic conimunity, bandits are often used to model research invest-

ment budgeting problems [3, 19, 31, 30, 54]. In this setting, arms can be thought

of projects and "on"/"off" as invest/not invest. Real-life projects, however, of-

ten allow for multiple levels of investment rather than an all-or-nothing choice.

This and other application areas motivats the definition of Generalized Restless

Bandits (GRBs). GRBs are similar to traditional bandit models in that the

state space is the product space of several independent subsystems; however,

rather than just two modes of operation, GRBs allow for an arbitrary number

of modes each with an associated cost.

We propose a decomposition method called nested policies to solve GRBs. In

this approach we recursively project the full polytope onto the space of two

arms and decide how a budget should be allocated optimally in the restricted

two-armed problem. This optimal sub-policy is then used to combine those two

arms into a single one, collapsing the number of arms in the overall problem.

In this chapter, we formally define the Generalized Restless Bandit problem,
derive linear optimization based bounds and propose the Nested Policy decomn-

position method. We also derive an additional algorithm to solve GRBs called

the generalized primal-dual method which is a generalization of existing meth-

ods to solve traditional restless bandit problems. We then demonstrate compu-

tational results that indicate the superiority of the Nested Policy method over

primal-dual approaches on a wide range of problems.

Chapter 3: Sponsored Search Optimization Application. In this chap-

ter, we perform a case study of GRB's based on real world data from an online

retailer of herbal suppliments. In this problem an advertiser considers a col-

lection of keywords and phrases on which to bid. Each time a user performs a

search containing selected search terms, an advertisement is displayed. The po-

sition of the advertisement and correspondingly the probability tihe user clicks

on it are related to the amount bid on the search term. In a GRB model, each

candidate search term is an arm, modes of operation are analogous to potential

bid levels, and the state space represents the advertiser's learning about the

response function of bid level-to-click through probability for the seardi term.



In the context of the resulting large-scale model, we also describe several steps

that can be taken to simplify the derivation of a nested policy.

Chapter 4: Distributionally Robust Optimization Problems. In this

chapter, we study the (listribitionally robust optimization problem with known

mean, covariance, and support. These models allow practitioners to incorpo-

rate known statistics about underlying distributions of uncertainty which be-

ing robust to dynamics that are unknown. These problems are known to be

AP - hard. We derive a decomposition strategy for these problems which it-

eratively finds sub-policies along pairs of dimensions of uncertainty. In order

to demonstrate an efficiently-solvable relaxation which is "tight" on projected

dimensions, we prove that the Sherali-Adams [47] closure is tight for the semi-

definite relaxation of n-dimensional quadratic optimization over a 2-dimensional

box.

We implement this decomposition method in the context of a real world fixed

income portfolio optimization problem. Distributionally robust optimization

with known mean, covariance, and support is particularly well suited for this

problem since returns for fixed income investments are bounded between the

face value and recovery rate upon default. Additionally, while the practitioner

may have reliable statistics on individual asset default as well as probabilities

of the joint default of pairs of assets, dynamics of the underlying uncertainty

related to baskets of default for larger subsets of assets are relatively unknown.

We also show that this same decomposition strategy yields a promising heuris-

tic for the MAXCUT problem, providing computational results on exhaustive

graphs for small probleis, random graphs for moderately sized problems, and

the DIMACS challenge [11 problems for large instances.

Chapter 5: Conclusions. This chapter contains the concluding remarks of

the thesis.



1.2 Contributions

" Definition of the Generalized Restless Bandit Problem (GRB). We

define a generalization of multi-armed restless bandit problem with multiple

actions available for each arm with each action consuming a different amount

of shared budget over all arms.

" Algorithms for solving GRBs. We propose a decomposition method for

solving GRBs called the nested policy approach. This method iteratively looks

at pairs of arms and decides how to allocate various amounts of budget between

them in each state by solving the corresponding two-armed subproblem exactly.

Once such a sub-policy is derived for a pair, the pair is combined into a single

arm, thus reducing the dimension of the overall problem. We also propose a

generalization of the primal dual heuristic of Bertsimas and Nino-Mora [81 for

traditional restless bandits. Superior performance of the nested policy approach

is shown in computational studies as the action space grows larger. We further

discuss linear optimization models which provide bounds on the true optimum

for GRBs.

" Real world application of GRB to the sponsored search advertising

problem. We model the advertiser's problem for sponsored search as a GRB.

We then implement this model on a large scale real world data set and show

promising performance of the nested policy approach.

" Decomposition strategy for the distribtutionally robust optimization

problem. We study the distributionally robust optimization problem with

known mean, covariance, and interval support. We propose a decomposition

strategy for this KP - hard problem that iteratively derives sub-policies for

pairs of decision variables. The relaxations solved incorporate full information

of the projected distribution of corresponding uncertain random variables for

each iteration in contrast to existing approaches which relax distributional in-

formation for the entire problem.

" Non-convex quadratic optimization in n-dimensions over a box in two-



dimensions in polynorially solvable. We prove that noin-convex quadratic

optimization in n-dimensions over a box in two-dimensions is efficiently solvable.

Our proof is a generalization of a result by Anstreicher and Burer [2] for n = 2

using simpler proof technology. This result ensures the tight nature of our

projected relaxations in the decomposition approach for the distributionally

robust optimization problem.

* Real world application to the fixed income portfolio optimization

problem. We model the fixed income portfolio optimization problem in the

context. of distributionally robust optimization with known mean, covariance,

and support. This model is then implemented on a real world data set showing

promising computational results.

* Decomposition approach for MAXCUT. We demonstrate the applicabil-

ity of the decomposition strategy for distributionally robust optimization to

the MAXCUT problem. The resulting decomposition approach for MAXCUT

shows promising computational results when compared to the well known ap-

proach of Goemans-Williamson rounding [24] on random graphs and performs

well on large scale problems from the DIMACS competition [1].
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Chapter 2

Generalized Restless Bandits:

Algorithms and Applications

Government institutions such as the National Science Foundation, drug companies,

and industrial conglomerates evaluating competing emerging technologies are faced

with complex multi-year research investment decisions with highly uncertain out-

comes. Restless multi-armed bandit models have been used in previous attempts to

solve these problems. Such models allow us to evaluate yes or no decisions on which

collection of projects to fund, but fall short of allowing us to consider various degrees

of investment in each individual project. We introduce a generalization of restless

multi-armed bandits to address this issue. The resulting class of Generalized Restless

Bandit processes is sufficiently broad to address numerous applications in investment

management, inventory management, scheduling, and statistical sampling. We de-

velop a Nested Policy heuristic to solve the Generalized Restless Bandit problem by

recursively decomposing a bandit system and exploiting our ability to efficiently solve

a two-armed system exactly. We also provide linear optimization modeLs which can

be used to bound the true optimum and thus measure the degree of sub-optimality of

a Nested Policy. To keep our proposed decomposition method tractable, we employ

a novel state-clustering technique based on solving integer optimization models. We

present promising computational results in both generalized and classical settings.



2.1 Introduction

The multi-period research investment problem is uIbiquitous in industrial and insti-

tutional research. The National Science Foundation (NSF) must decide each year

from amongst numerous applications which projects to support on an ongoing basis.

Phariaceutical companies must decide which drug lines to continue or initiate in

various stages of maturity. Large corporations such as General Electric must decide

which competing emerging technologies to pursue, such as competing approaches to

solar energy. Multi-armed bandit models and restless multi-armed bandit models

have been widely employed to solve such problems as seen in Asawa and Teneketzis

[3], Gittins and Jones [19], Kavadias and Loch [31], Kavadias and Chao [30], and

Whittle [54]. Bandit models are a special case of Markov decision processes which

are attractive in that each arm or project evolves independently over time. This

gives a natural decomposition of the overall state space of the bandit process as

the product space of the states of each arm. In these models, in each time period,

several projects are chosen to be pursued. Each pursued project incurs a reward and

transitions to another state.

Restless bandits are a variant in which non-pursued projects also transition to

a new state according to a different transition probability matrix. In these models,
however, projects must be either fully committed to or abandoned in each time

period. Attempted extensions beyond full commitment or abandonment in bandit

processes have been limited to rewards linear in the degree of commitment by
Niculescu-Mizil [35].

In this chapter, we address a further generalization called Generalized Restless

Bandit problems (GRBs). In a GRB each project may be pursued to any fixed number

of degrees in each time period under a total fixed budget rather than simply being set

"ton" or "off". Additionally, each project can produce non-linear payoffs in the degree

of commitment and change states according to separate transition matrices for each

degree of commitment. This allows us to preserve the appealing arm-independence



property of bandit. processes while addressing a much richer class of applications since

we are not limiting our action space to simply "on" or "off' for each arm.

2.1.1 Previous Work

Whittle [55] first studied a continuous-time version classical restless bandit under a

dynamic prograiming framework. He introduced a relaxed version of the probleim

where the total discounted time average number of N arms being played was equal

to some budget Whittle's relaxation could be solved to optimality in polynomial

time. He proposed a priority-index heuristic which reduces to the optimal Gittins'

index described by Gittins 119] and Whittle [54] in the non-restless case. This index is

derived by finding the least subsidy necessary to be paid in each state to be indifferent

between being active and passive. In any given time period, the arms with highest

indices in their current state are played. Whittle's heuristic only applies to a restricted

class of restless bandit which satisfy an indexability property as discussed in Whittle

[55], Bertsinias and Niio-Mora [7, 8], as well as Weber and Weiss [52], which ensures

that if a certain subsidy induces passivity for a state, all greater subsidies induce

passivity.

Since Gittins' work, research into solving restless bandit problems has focused on

identifying classes of problems that are indexable and for which index policies are

optimal as in Glazebrook et al. [22, 23], Ruiz-Hernandez [44], and Bertsimnas and

Ninio-Mora [7], and developing other index-like heuristics to solve larger families of

problems as in Bertsimas and Niio-Mora [8] which are not subsidy based. Such al-

gorithmic approaches attempt to assign a priority-index to each state of each arm

and then play those arms whose current. state has the highest index. Additionally,

Weber and Weiss [52] established conditions under which, for indexable restless ban-

dits index policies are asymptotically optimal; that is if a one takes a system with n

identical copies of an indexable restless bandit, index policies are optimal as n -+ oc

if the total budget is scaled in proportion. When dealing with a larger action space

for each arm, with each action consuming a different amount of the total budget, the

subsidy-based index policies of Whittle do not directly apply.



Since the work of this thesis, it has been brought to the author's attention that

Hodge and Glazerbrook [27] have defined a notion of subsidy-based index policies

for GRBs (referred to in their work Multi-Action Restless Bandits). They define

a different subsidy-based index for each action to be the amount required to cause

indifference between that action and an action consuming one less unit of budget.

Indexability in this setting refers ensuring that if a certain subsidy induces no greater

than a specific level of budget consumption x for a state, no greater subsidies can

induce a budget consumption greater than x in that state. They have established

conditions for the asymptotic optimality of such policies for indexable GRBs and are

working on identifying restrictive classes of GRBs which are indexable. While having

proved effective in solving classical restless bandit problems, this notion of a state-

based indexing policy is much more restrictive in the general case which we introduce,
where arms can be played to varying degrees rather than simply "on" or "off".

2.1.2 Applications

In addition to the research budgeting problem, the generalized restless bandit problem

allows us to model many applications of classical restless bandit models within a richer

framework as illustrated by the following examples:

* Modern Slot Machines. The archetypal example of a multi-armed bandit

problem is when a player sits in front of a collection of N slot machines. In each

time period, the player with M coins may pick M machines to play, putting a

coin in those machines and pulling their arms. Modern slot machines, however,

offer the ability to play with various amounts of money for a single pull. For

example, if the player inserts a single coin into a machine he or she may win

if three of the same symbol appear in a horizontal line after the pull; but if

the player inserts two coins into the machine he or she may win if those three

symbols appear in either a horizontal of diagonal line after the pull. The GRB

problem can model a player sitting in front of a collection of N such modern

slot machines with a budget of M coins in each period and the ability to put

multiple coins into a single machine for a single pull, offering differing payouts



and possibly different transitions.

* Multi-target sensor networks. In these problems, arms represent. N moving

targets which can be tracked using M radars which can be electronically steered

by a central controller. The objective is to derive a dynamic schedule of track

updates which minimize the variance in tracking error. Niio-Mora and Villar

[36] and Washburn and Schneider [51] model this problem as a classical restless

multi-armed bandit problem and derive a near optimal schedule that decides

which targets to track by individual radar in each time period. In the GRB

setting we are allowed to point multiple radars at a single target, giving us the

ability to track high-value targets with increased precision.

* Keyword selection in search-based advertising. Search-based advertising

involves a customer bidding a certain amount. on a search keyword or phase.

Whenever this keyword is included in an online search, the customer's adver-

tizement is presented to the search user in a screen position determined by the

bid amount.. Rusmnevichientong and Williamson [45] discuss the possibility of

using a multi-arned bandit model in the keyword selection problem but point

out that in such classical models the bid price of each keyword must remain con-

stant. A G RB model allows us to incorporate varying bid amounts for keywords

and simultaneously solve the keyword selection and bid level setting problems.

* Multi-task worker scheduling. Whittle [55] and Bertsimas and Niiio-Mora

[8] discuss the use of multi-armed bandits in the worker scheduling problem.

In each time period, M employees out of a pool of N must be assigned to

work. Work-assignment changes the state of each worker resulting in temporary

exhaustion and recuperation. The GRB problem allows us to extend this model

to the assignment of workers to multiple tasks with different levels of exhaustion.

* Make-to-stock production facility control. A make-to-stock production

facility can be used to produce N different product classes. Each finished prod-

uct experiences exogenous demand and the objective is to minimize lost-sales.

Veatch and Wein [49] propose a classical restless bandit formulation of this



problem where arm states represent class inventory levels and the facility is

assigned production of a specific product in each period. GRB models allow us

to increase our level of control over the production facility. Rather than simply

turn production of a specific product "on" or "off' in each period, we can model

the ability to produce any level of product mix.

* Clinical trials. In these problems, arms represent varying medical treatments

with states representing one's knowledge of treatment efficacy. Whittle [55] and

Bertsimas and Nifio-Mora [8] discuss the use of multi-armed bandits to decide

which collection of treatments to test in each time period with a clinical trial.

In the GRB setting, rather than having one type of clinical trial available for

each treatment, we can explore the possibility of various trials of differing cost.

2.1.3 Contributions

Our contributions include:

1. We introduce a generalization of restless multi-armed bandit problem called

the Generalized Restless Bandit (GRB) problem that allows for more modeling

power, compared to restless bandits. Rather than having two modes of opera-

tion, "on" or "off", each arm can operate in several modes of varying cost, with

the total budget in each time period being fixed. Each degree of operation has

its own associated reward and transition probability matrix for each state of

each arm.

2. We extend work by Bertsimas and Nifio-Mora [8] on classical restless bandits to

derive a hierarchy of linear optimization based relaxations for the GRB prob-

lem. These relaxations not only provide increasingly tight bounds oi the op-

t imal solution to a GRB, but also are useful in constructing the Nested Policy

heuristic described next. We also discuss a generalization of the primal-dual

index method used by Bertsimas and Niio-Mora [8] on classical restless bandits

and use this approach to benchmark our Nested Policy heuristic.



3. We propose a Nested Policy heuristic to solve the GRB problem based on our

ability to optimally solve the two-armed GRB problem in an efficient manner.

We show that if we consider pairs of arms in the original GRB problem, the

resulting two-armed GRB problem can be solved exactly in polynomial time

through linear optimization. To progress to the multi-armed case, the key in-

sight is that the dynamics of a two-armed GRB process under a fixed allocation

policy between the two arms can itself be viewed as an arm of a larger GRB

process. Thus, by implementing the optimal policy for two independent arms,

we can combine these two arms into one that operates on a larger state space.

We use a mixed-integer optimization based clustering technique to shrink the

state-space of this resulting arm, thus iteratively decreasing the number of arms

in our problem without expanding the state space.

4. We present promising computational results evaluating the performance of the

Nested Policy heuristic in three regimes:

(a) the classical non-restless nulti-armed bandit setting

(b) the classical restless multi-armed bandit setting

(c) the general setting.

2.1.4 Structure of the chapter

In Section 2.2, we define the Generalized Restless Bandit (GRB) problem and examine

the polyhedral structure of its associated performance region leading us to an exact

solution method for the GRB problem and discussing its complexity. Section 2.3

provides polynomially solvable linear optimization bounds on the optimal solution.

Section 2.3.1 extends the primal-dual index heuristic of Bertsimas and Niio-Mora [8)

to the GRB setting. Section 2.4 describes our proposed Nested Policy approach to

solving GRBs. This approach allows us to iteratively decompose a large GRB problem

into smaller ones that can be solved exactly. We begin discussion of the Nested Policy

Heuristic by detailing an example in Section 2.4.1. Section 2.4.2 details the general

steps in construction and implementation of the policy as well as the mixed-integer



optimization formulations of the Arm Aggregation and State Clustering subproblems

which are solved when deriving a Nested Policy. In Section 2.5, we report promising

computational results for the Nested Policy heuristic, evaluating performance in both

general and classical regimes.

2.2 The GRB Problem and its polyhedral struc-

ture

Consider a system of n arms, each arm i can be playedt up to a maxinun degree

Di in each time period, each degree d = 0,..., Di representing the cost of a different

mode of operation. In each time period, we must play all arms to a combined degree

M representing the total budget available. Each arm is a Markov chain over a finite

state space Si. In each period, the current state s = {sj}U 1 of the n arms is known,

where si E Si and IS| = ki for all i = 1,... , n. We need to decide the degree vector
n

d E Z" to which the arms will be played, di = M. The reward we obtain from
-i=1

the arm i is Rd' (si) for all i = 1, ... , n. Each arm i evolves independently with the

transition probability J1s (si -+ s') for all s, s' E Si. We would like to find the optimal

Markovian policy u E U that optimizes the total expected discounted reward

[oo n

It=0 (i=1

where # is the discount factor, 0 < # < 1, and U is the class of all admissible policies.

We assume that the probabilities of initial states are known and described by the

vector {aE},8E(_ si

2.2.1 The Performance Region Polyhedron

In order to formulate the problem mathematically, we adapt an approach described

by Bertsimas and Niio-Mora [8]. Let us consider the total expected discounted time



n

xd(s, u) that the degree vector d, d-- M, is chosen in state s under the policy u,
i=1

zd(s, U) = E )#I3t) ,

t=0

where Ifd(t) is the indicator whether the degree vector d is chosen in state s in period

t. The problem can then be formulated as follows

Z*max EE ERi (si) z sI u), (2.1)
uUdED sE S (i=1

where V {d E Z"+ 0 d Di , d= M .

Consider the performnancc region X of the vector x(u) = {xd(s, u)}ESAdE for all

u E U. For ease of presentation, we suppress u and write x = {xd}(s), a E S, d E D.

Problem (2. 1) is equivalent to the following problem:

= mR (si) Xd(s). (2.2)
zEX dEV aES \i=1 /

Bertsimas and Ninio-Mora [81 prove the following theorem for the more general case

of Markov decision chains, where D is any discrete set and can depend on s:

Theorem 2.1 (Bertsimas and Nihio-Mora [81) The following statements hold:

(a) X = P, where P is the polyhedron defined as follows

P = x ERIN E' : dri= a, +)3 E s;- )z, VS3E S.
dEV 'ES dEV (i=1/ }

(b) The vertices of polyhedron P are achievable by stationary deterministic policies.

The stationary deterministic policy can be detennined from the fact that for



each state s E S, every extreme point of P has at most one positive value xd(s) > 0

among all values xd(s), d E D.

As the GRB problem encompasses the traditional Restless Bandit problem, GRB

is PSPA CE-hard as shown by Papadimitriou and Tsitsiklis [38]. Additionally, this

problem is not in general indexable, that is we cannot assign an index 7;(si) to each

state of each arm such that the optimal policy in each time period is to play the arms

with the highest index. To see non-indexability, consider the case where each arm

starts in an initial dunmmy state and transitions deterministically to another state

regardless of the degree to which it is played. This is in fact equivalent to solving a

different multiple-choice knapsack problem in each time period where we must pick

exactly one degree from each arm with the knapsack constraint that the total degree

picked is equal to the budget.

2.3 Linear Optimization Bounds

Whittle [55] first introduced a relaxed version of the classical restless bandit problem

which is polynomially solvable. In this relaxation, rather than requiring the arms

to be played to a total budget of exactly M in each time period, we require the

discounted time average total degree to be M. Bertsimas and Ninio Mora [8] use this

relaxed problem to formulate the first-order relaxation polyhedron for the classical

restless bandit problem. We extend this formulation to the GRB case here to a set

of arms A and use x (si) to represent the total expected discounted time that arm i

is in played to degree di in state si:

D;

Zi(A) = max ( Rf(si)xf (s,)

iEA di=O SiESi

S.t. ( xf' (si ) = a., + Pi ( P(s' - sj )x' (W'), V i C A, Si 6 Si,

d'=0 -s ESj ak-O

(2.3)



A M
( dixf (si) =2, 1 - #(2.4)

iEA siESi d,=O

x(s)20, Vi E A, si E Si, di =- 0, ...,7 Di.

This problem can be viewed as solving the generalization of Whittle's relaxation

simultaneously over the projections of the GRB polytope onto the dynamics of

each individual arm. These projections are coupled by the time-average budgeting
D'M

constraint: E L L dix (si) = .

iEA siESi d=0

We can obtain higher order relaxations by considering partitions of the arms into

groups and examining the projections of the GRB polytope onto the joint-dynamics

of each group. For example, if we consider a partition of the arms into pairs {i, j} C

Q C 2A and use the variable x d, (s ,sg) to denote the total expected discounted

time that arm i is played to degree di and arm j is played to degree dj in the state

(si, s), we obtain the following second order relaxation:

Z2(Q) =

D min(DI,M-di}

inax (R.(s 3 ) + Ru (sg))Xi' (
{ij}EQd--= dj=0 (si,s)ES,®S,

Di min{Dj,M-di}

s.t. ' (si, s S) = asi,,i

ds=0 di=0
D; min{D,M-di)

(s',s' )ESi,j ds=O d,=O

V {i,j} E Q, Si E Si, Sj E S3 ,
Di min{D,,M-dd} M
E E E d + d)x'i"(sisg)=

{ij}EQdi=O dj=0 (s,,8j)ESij

x' (Si, s ) 2> 0,
V {i,j} E Q, si E Si, sj E S , d =0,..., Di, d, = 0,..., min{Dj, M - Di}

(2.5)

A series of refining partitions of the arms beginning with all n arms leads to a hierarchy

of linear relaxations providing a non-decreasing upper bound on the optimal solution.



For relaxations of higher order, we partition the arms into groups g E g of size e. We

use x;(s) to represent the total expected discouinted time that group g is played to

degree d in state s. The t-order relaxation is then:

Z,(g) = max Rf(si) xd(s)

9EG dED 9 BESg \ iEg /

s.t. z (S) = a, + # P(s' - si ) z9(s'),
dEV 9  A'ES dE 9 \iEg

Vg E g, S E Sg,

d, X(s) =

9E dE 9g AESg \ )
z (s) 0, Vg E g, s E Sq, d E Eg,

(2.6)

where the set V, - {d E ZI nl&E{O 1 di < Di} : ZiEg d, < M} and 3g = (&E, Si.

For a fixed , e-order relaxations can be solved in polynomial time as a linear

optimization problem providing an efficiently computable bound. For the remainder

of this work, we use the second order relaxation, f = 2.

2.3.1 Generalized Primal-Dual Method

Bertsimas and Ninio Mora [8] propose a primal-dual heuristic for the restless bandit

problem based on the linear relaxation Z 1. In the classical restless bandit setting, the

first-order relaxation is given by:

Zi(A) =

max E (R?(si)xz(si) + R(sj)x?(sj))
iEA siESi

s.t. xi(s,) + x!(si) = a., + #Eg S., 1 -+ sj)4! (s'), V i E A, si E Si,

Mz!j(si) = ,mp
iEA BiES1

zj(sj),zj(sj) 2! 0, Vi E A, si E- S, di = 0, .. ., Di.
(2.7)



The primal-dual method hinges on finding the optimal reduced costs 7Y (s) and yj (si)

associated with optimal values of x(si) and xz(si) which have the following natural

interpretation:

* -yi(s;): the rate of decrease in the objective function value of the LP relaxation

per unit increase in xi(s ).

e 'Yi'(si): the rate of decrease in the objective function value of the LP relaxation

per unit increase in x1(s ).

Bertsimas Ninto Mora [8] primal-dual approach reduces to assigning and index 6 ;(s;)

-y (si) - -77(s4) to each state of each arm and, in each time period, playing the arms

with the M lowest indices.

The natural extension of this primal-dual approach to the generalized restless

bandit setting is as follows:

" Solve the first-order linear programming bound Zi (A) to obtain optimal reduced

costs ? (si) associated with x4 (si).

" In each time period, when the system is in state 3, solve the multiple-choice

knapsack problem:

min ( 72'4 (si) -yP
iEA

Di

s.t. ( ( d, -yf, - M

isEA d,=o (2.8)
Di

L = 1, i E A
d=O

yi E {0, 1}, Vi E A, di 0, ... Di

" Play arm i to degree di where yj = 1 in the optimal solution.



Note that in practice, the involved multiple-choice knapsack problems can be solved

efficiently using a Lagrangian relaxation approach, relaxing the constraint

Di

Z di- yi= M (2.9)
iEA d1 =O

or by approximate dynamic prograimning methods such as those by Bertsimnas and

Demir [4] or when of manageable size, full dynamic programming such as found in

Pisinger [41].

We will use this generalized primal-dual approach to benchmark our Nested Policy

heuristic in Section 2.5.

2.4 The Nested Policy Approach

In this section, we outline the derivation and implementation of the Nested Policy

Heuristic. This algorithm is briefly described as follows:

1. Partition the set of available arms into smaller subsets of size , f is a parameter

of the algorithm.

2. Solve the GRB problem exactly over each of these subsets.

3. Replace each subset with a single arm having k states representative of the

dynamics of the subset under the policy derived in Step 2.

4. The above steps reduce the number of arms we are dealing with by a factor of f

each time they are performed. We repeat them until we are left with only one

arm.

We can control the level of approximation of the Nested Policy Algorithm by

adjusting the size, f, of the subsets found in Step 1 above and the maximum size, k,

of the state space for the representative arm created in Step 3 above.



To aid tihe reader's understanding of the Nested Policy approach, we begin with

a small example of its implementation and then present a conceptual description of

the heuristic.

2.4.1 Example

Suppose we have a GRB problem with a budget of M = 2 and eight arms labeled

i = 1 ... ,8, each with 2 possible states, IS;I = 2, and each arm able to be played up

to a maximum degree Di = 2. The following steps outline the derivation of a Nested

Policy with f = 2 and k = 2:

" We decompose the problem by considering pairs of arms, and for each pair

deciding how a given budget of some number D should be divided between the

two paired arms, while ignoring the dynamics of all arms outside the pair.

" For any given pair we need to know how budgets of D = 0, 1, 2 should be divided

between the paired arms since each of these budgets correspond to playing the

paired arms to a total degree of D and those arms outside the pair to a total

degree of M - D.

" We solve each subproblem created in this manner for a pair of arms {i, j}
and budget of D by solving the corresponding two-armed GRB exactly using

the performance-region approach which involves solving the linear optimization

problem (2.2) discussed in Section 2.2.1.

" This approach limits us in that the total budget constraint of M is the only

link we consider between the dynamics of arms in one pair and the dynamics of

arms outside that pair in the policy we derive. This limitation corresponds to

the second-order relaxation of the GRB, Z 2(Q), for the particular pairing Q of

arms selected. Thus we would like to choose the pairing Q*({1,...,8}) which

maximizes Z2(Q). We call this the Arm Aggregation problem which can be

modeled as a mixed-integer optimization problem as shown in equation (2.10)

in Section 2.4.2.



Construction of the Policy:

1. Let A1 = {1,...,8} be the set of active arms. Suppose we solve the Arm Aggre-

gation problem (equation (2.10) in Section 2.4.2) to obtain the pairing:

Q*(A) = {{1, 2}, {3, 4}, {5,6},{7,8}}.

2. Consider the pair { 1, 2}. Jointly these arms can be in one of four states as

shown in Table 2.1. Given that we allocate some portion D of the total buget

82 = 1 2 =2

si 1 sil,2) = (1, 1) s1 ,2) = (1, 2)
si = 2 sf ,2) = (2, 1) S1,21 =(2, 2)

Table 2.1: Joint states for arms 1 and 2.

M to arms 1 and 2 combined, we would like to know how D should be divided

between arms 1 and 2 in each of these states. We answer this question for each

possible value of D = 0, 1, 2 by solving an instance of the two-armed GRB,
equation (2.2) in Section 2.2.1, exactly over arms 1 and 2 with a total budget

of D.

3. Suppose the optimal policies for state s{1,2} = (1, 1) and D = 0, 1, 2 are as

shown in Table 2.2. Let us fix this portion of the policy by always playing arm

1 to degree 1 and arm 2 to degree 0 when they are in state (1, 1) and we have

chosen to play arms 1 and 2 to a combined degree D = 1. We similarly fix our

policy for all four joint states and values of D.

4. The key insight is that once this portion of the policy is fixed, we can view the

behavior of arm 1 and arm 2 together as that of a single arm A(1,2) which can

be played to a maxiiunim degree DA,,, = 2 and whose transition probabilities

and rewards are governed by the portion of the policy described in Table 2.2.



Allocation to Allocation to
Arm 1 Arm 2

D=0 0 0
D=1 1 0
D=2 1 1

Table 2.2: Optimal policies for state S{1,2) = (1, 1).

For instance:

= P (1 -+ 1) -P2(1 -+ 2)

=R'(1) + R4(1)
PA1, ((1, 1) -( (1, 2))

R1A((1 , 1))

The state space of this new arm is of size 4, whereas our original arms had state

spaces of size 2. If we continue combining this new arm with others directly,

the state space for each new arm would grow exponentially.

5. To address the issue of exponential state space growth, we approximate the

behavior of the arm A{ 1,2} by another arm A1 1,21 on a smaller state space of size

k = 2. This is accomplished by clustering the states (1, 1), (1, 2), (2, 1), (2,2) into

two clisters. This approximation will limit us in that when we derive further

portions of our policy we cannot differentiate between states in the same cluster.

Selecting the best state clustering in light of this limitation can be modeled as

a mixed-integer optimization problem as shown in equation (2.14) in Section

2.4.2. We call this the State Clustering problem. For this example, suppose the

clusters derived are as in Table 2.3.

s(1,2} = (1, 1) or (1, 2) -+ (1,2 = 1
S(1,2) = (2, 1) or (2,2) -+ s(1,2) = 2

Table 2.3: Clustered states for arms 1 and 2.



6. We repeat Steps 2-5 above for the other subsets of Q*(A1): {3, 4}, {5, 6}, and

{7,8} to obtain four new arms in total: A 2 = {A1,2), A{ 3,4}, A 5,6}, A{7,8 } each

on a state space of size 2.

7. We again solve the Arm Aggregation problem, now on this new set of arms, and

obtain the pairing:

Q*(A 2) = {{A1,2}, A 3,4} }, {A 5,6), A(7,8}} }
8. We repeat steps 2-5 for the subsets {A{ 1,21 , A(3,4}} and {A{ 5 ,6), A(7 ,8)} to obtain

two new arms A( 1,2,3,4} and A(5 ,6 ,7,s} both on a state space of size 2.

9. Now we are left with only two active arms A 3 = {At1,2,3,4}, A{5, 6 ,7,81} and thus

only one possible pairing. Repeating Steps 2 and 3 on this pairing completes

derivation on the Nested Policy.

Implementation the Policy:

9 To implement the Nested Policy when the system of original arms is in a

particular state s, we examine how each pairwise joint state was clustered

in each iteration of Step 5 to determine the corresponding states of our ap-

proximate arms A{. 1 . To illustrate this suppose the original arms are in state

s = (1, 1,1, 1, 1, 1, 1, 1) and that the relevant clusters derived in iterations of Step

5 are as in Table 2.4. These clusterings give us the states of all approximating

s{1,2} = (1, 1) S(1,2) = 1

sfa,4} = (1, 1) - (3,4) = 1
sf ,61 = (1, 1) -+ S(5,6) = 2

S(7,8} = (1, 1) -+ 9(7,8) = 2

sf = (1, 1) -+ 8(1,2,3,4) = 1
s1)= (2, 2) - (5,6,7,81 - 2

Table 2.4: Relevant clusters for example Nested Policy implementation.



arms corresponding to the state (1, 1, 1, 1, 1, 1, 1, 1) of the original system. We

then examine the solutions we derived from solving two-armed GRBs in Step 2

at each level. We first allocate M between {1,2, 3,4} and {5,6,7,8}; then we

refine this allocation to {12}, {3, 4}, {5, 6}, and {7, 8}; and finally refine down

to {1}, {2}, {3}, {4}, {5}, {6}, {7}, and {8}. Suppose Table 2.5 shows the rele-

vant portions of optimal derived optimal policies. By breaking down the total

First Arm State, Second Arm State, Budget Allocate to Allocate to
First Arm Second Arm

911,2,3,4} = 1, 915,6,7,8} = 2, D = M = 2 2 0

8{,2} = 1, 9{3,4} = 1,D = 2 1 1

515,6} = 2, 917,8} = 2, D = 0 0 0
si = 1,8 2 = 1, D = 1 1 0

83 = 1,8 4 = 1, D = 1 0 1

85 = 1, 86 = 1,D = 0 0 0
S7 = 1,7 8 = 1,D = 0 0 0

Table 2.5: Relevant portions of two-armed GRB solutions for example
implementation.

Nested Policy

budget of M = 2 in this nested fashion, we find that we should play the arms

1 and 4 to degree 1 and the rest to degree 0.

2.4.2 The Nested Policy Heuristic

Here we give a detailed description of our approach for any choice of I and k.

For the GRB problem, we describe a policy over a set of arns g on a state space

Sg with a total budget D by the mapping 7r' : S - ZII which allocates D over the

members of g. We use the notation 7r;(s,)ih to refer to the ira entry in this allocation,

that is, the degree that the policy allocates to arm i when in state s,.



Algorithm 1 (Nested Policy Construction). A Nested Policy with subset size f and a

number of representative states k for the GRB problem with n arms and a per-period

budget of M is constructed as follows:

1. Let j := 1 and let A be the set of arms for the original GRB.

2. Arm Aggregation:

" Input: A set of arms Aj and a subset size f.

" Output: A partitioning *(Aj) of the arms in Aj into subsets of size t.

" Objective: Our policy will consider joint dynamics of arms within a subset

at the granularity of their product state-space. The joint dynamics of arms

in different subsets are only coupled by the time-average fraction of the

total budget allocated to each subset. We wish to pick the partitioning

which minimizes the impact of this limitation.

" Method: We solve g* (Ai) arg max Z,(g) which can be modeled as a
9

mixed-integer linear optimization problem. If |AI is not divisible by t, we

add a sufficient number of dummy arms to A with each with one state and

no rewards. We present the formulation for f = 2 here; formulation for

general f can be found in Appendix A.

Define the binary variable w(i,j) for all {i,j} C A such that w(i,j) = 1

if {i, j} E *. The Arm Aggregation problem for f = 2 is then:

Di min{M-d,Di}

niax E Rid(si) + R 3(sg)) zn'Ndj(Si, sj)
,(i,}cA d,=0 d=0 (,a)ESi&S

(2.10)

S. t. X ,'d (Si, sj) <; UW (i,j ,( .1

V {ij} c A, si E Si, sg E Sj, dj = 0, ...,) Di, dj =- 0,.. .,min{M - di, Dj}



Di min{M-d,,Dj)

x Z di(si, sj) =_ a8 , (i,j) (2.12)
dj=O dj=0

Di min{M-dj,Dj}

+f3 # ~ If: 1i(s'I s - i (s sJ --+ 8 () x'ijs'
(8',8')ESi@Sj dj=0 dj=0

V {i, j} c A,si E Si, sj E Si,
Di min{M-i,Dj}

E E di +- dj)xi '(si, s)
{i,j}CA di=0 dy=0 (8y,sg)ESj0Sj

E w(ij) = 1, V k E A, (2.13)
{i,j}9k

' (si, s8 ) ;> 0,

V {ij} c A, si E Si, Sj E Sj, di = 0, ... ., Di, dj = 0, . .. , min{M -di, Djj}

w(i, j) E {0, 11, V {i, j} C A.

Constraints (2.11) ensure that if the pair {i, j} is not chosen xt'i s )

must be set to zero for all (si, si); U - here is a sufficiently large

constant. in constraints (2.12), we then multiply a,,,, by w(i, j) to ensure

that both sides of the constraint vanish if the pair {i, j} is not chosen. The

constraints (2.13) ensure that each arm appears in exactly one selected pair

and thus all pairs chosen constitute a partition of A.

3. For each subset of arms g E g*(A ):

(a) Arm Substitution:

9 input: A set of arms g

* Output: A new arm Ag on a state space S, representative of the

dynamics of g under a fixed optimal sub-policy, and vectors y. for

D = 0, ..., min{ M,Y Dj} with yD(sg) representing the expected dis-
iEg

counted fraction of time that the set g is in state s, if the arms in g

are played to a total degree D under this fixed optimal sub-policy.



* Method: For each D = 0, ..., min{M, E D}, solve the GRB prob-
iEg

lem over g with a budget of D exactly using the performance region

approach as in Equation (2.2) to obtain a policy 7r;(.). We use the

notation x. (D) to denote the optimal values of the variables xd(s) in

this implementation of Equation (2.2). yD is the given by:

dZ~~9
Y; (s,)= xA*(D)

dEE d,=D

create a new arm A, on the state space S, = 0 Sj with maximurn
iEg

degree DA, = min{ M,( Di } as follows:
iEg

- PD(s, -+ s') = S PD7 (pi(s,) -+ p(s',))
iEg

- Rg(s9 ) =, R (pj(sg))
iEg

Where pj(sg) is the projection of sg onto the state space of arm i,

Si; and D! - irD(s,) i is the optimal allocation to arm i under the

derived optimal sub-policy.

4. State Clustering:

* Input: A set of arms Ag., each Ag E Ag. having |S,| states, vectors y,,

and a number k.

e Output: A new set of arms Ag., each Ag E Ag. with no more than k states

which approximates the dynamics of A, and a mapping $(.) which maps

the states S, of A9 to corresponding states Sg of Ag.

* Method: For each Ag, if |SgI < k, we leave the state space S9 unchanged

and let S, = S,. Let C C Ag. be the set of Ag such that |SI > k, we will

shrink the state-space of these arms. Note that in future steps our policy

will be limited in that it will not be able to differentiate between states in the

same cluster. We wish to pick the clustering which minimizes the impact of



this limitation. This clustering problem can be modeled as a mixed integer

linear optimization problem as follows.

For each i E C, each si E Si and each si E Si { 1,... , k} define the binary

variable p(sj, sj) such that cp(si, 9j) = 1 if $(s ) = sj. Additionally, define

the binary variables p4(si) which will indicate whether degree d is allocated

to arm i in clustered state §j. We also define auxiliary variables zf(si, 9j)

which are linearizations of equation (2.24) below. The State Clustering

problem is then:

max (jR(s;)x(sj) (2.14)
V0kiE Ag. d=0O S E Si

Di M

s.t.Zx '(si) = a8 +l >j Z 1(s'; -+ si)xf(s'), V iE .Ag., si E Si,
d=O 8'ESj d=O

D'M

Zdx(si)= ,p
iEAg. sXESi d=O

Di

(s pi) 1, Vi E C, §j E i, (2.15)
d=O

z d(s , 9j) Up(si, 9;), V i E C, Si E Si, s; E S;, d =1 0...,I M,

(2.16)

x (s) -zf~s, s) 5 (1 p~s, 3)),(2.17)

Vi E C, s1 E Si, s. E Sj, d = 0, .. ., D

zid(si, ) 5 UVd(s), V i E C, si E S, d = 0,..., Di, (2.18)
sES1

0 < z4 (si,' 9) < xd(sj), V i E C, si E 5, si E 5, d = 0, ... , M,
(2.19)

pO(S,) = 1, V i E C, 8i E Si, (2.20)

xd(Sj) ;> 0, V i E .Ag-, si E Si, d = 0,1. .. ,1 D, (2.21)



(i) E {0, 1},1 V i E C, 9i E 4, d =o, . . . , Di (2.22)

p(Sjgs) E to, l}, Vi E C, si E Sj, s E S;. (2.23)

Constraints (2.15) ensure that at most one degree d is chosen uni-

formly to be played for all states in a cluster. The constraints

(2.16),(2.17),(2.18),(2.19) together linearize the non-linear implications:

= 0 -+ d4(s )(si, si) = 0, Vi, 9i E S, d = 0, ... . Di,
siEsi

through the sufficiently large constant U = M and the auxiliary variables1-f0

zi(s ,I§) = od(s;) (s;, g;) (2.24)

Once the optimum clustering is obtained from this mixed-integer optimiza-

tion problem, for each arm i E C, we reduce the underlying Markov chains

P9 on S, to the corresponding optimal Markov chains on the clustered

state space S, with respect to Kullback-Leibler (K-L) divergence metric

using the method of Deng et al. [15]. The corresponding transition proba-

bilities are:

Pz( -+s')=Z F(s) -+ (s') , V , s' E 52.

eE-1 1
'(i)-

Similarly, the rewards of the clustered state 9 can be approximated as fol-

lows:

s)= Z yf(s)Ri(s), VE Sf.
yid(s) , yq()



5. Sc Aj+1 := U {Ag.
gEG*(Aj)

6. If |Aj+1 I 1 STOP, else let j j + 1 and goto Step 2.

Notice that |Aj+ 1| < , so Algorithm 1 terminates after ~log,(n)] iterations.

Additionally, with f fixed, each GRB subproblem we solve in Step 3(a) of Algorithm

1 is a linear optimization problei whose dimension is polynomial in the input size

of the original GRB problem.

For GR.Bs where arms have moderately sized state-spaces the formulation of

the State Clustering problem 2.14 can be solved efficiently by modern integer

optimization solvers. However, if there are many arms in the GRB and each arm

has thousands of states, solving the State Clustering problem as a mixed-integer

optimization probleIn can prove prohibitively expensive. In such instances, we have

found two alternative to be empirically successful.

The first approach is that the State Clustering problem can be solved independently

for each arm in series rather than siniultaneously for all arms that must be clustered.

This can be accomplished by solving (2.14) on the set of arms (A\g) U Ag and

clustering the singleton Ag for each Ag E C in Step 4 of Algorithm (1). In this way,

we solve ICI mixed-integer optimization problems but the number of continuous and

binary variables is greatly reduced.

Alternatively, we can consider the State Clustering problem as a traditional clustering

problem with respect to the arm states Si. For each state space Si, we would like to

generate k-partitions, which can be defined by the aggregation function 44 : Si -+ 9;,

where S is the index set of the partition. For each state si E Si, we have a reward

vector Rf(sg) E RM+1. Empirically, we have found that clustering states based on

this reward vector using a traditional method such as spectral clustering discussed

by von Luxburg {50] provides a feasible solution for our mixed-integer optimization

formulation of the State Clustering problem which is not too far from optimal. Thus

traditional clustering methods can be used in lieu of a mixed-integer optimization

approach for large problems or to provide a good initial solution for an integer

optimization solver to speed up solution time for moderately sized problems.



Once the Nested Policy is constructed using Algorithm 1, it is implemented

through Algorithm 2.

Algorithm 2 (Nested Policy Implementation). Let J be the total number of iterations

run in Nested Policy Construction. Using the objects derived in Algorithm 1, the

Nested Policy is implemented through a call to the recursive function nestedPolicy(-):

1. Let sA1 E S be the state of the original n bandits.

2. For each arm i E A1, play i to degree nestedPolicy(1, i, sA,)

e function nestedpolicy(j, i, sA, )

1. If j = J, RETURN 4rM (sA)| (this quantity represents the allocation of

the total budget M to arm i in the clustered state s )

2. otheruise:

(a) For each g E g*(Aj), let Sg be the components of sA, corresponding to

members of g.

(b) Let §4 be a |g*(Aj)|-dimensional vector with components g,

#(Sg).

(c) Let d := nestedPolicy(j + 1, A§, gA,+,) where 4 E i. This quantity d

represents the amount budgeted to arm Ag when the system is in the

state A

(d) RETURN 4r|(s§)|i where 9 i (this quantity represents the allocation

of a budget of d to arm i in the clustered state s§.

2.5 Computational Results

in this section, we evaluate the Nested Policy heuristic's ability to solve the GRB

problem in its full generality, and also gauge its performance on classical special cases



of the G1113 probleni where well established algorithms may be used as benclunarks.

To this end we evaluate the Nested Policy heuristic through simulation in three set-

tings:

* The regular bandit setting, Di = 1, P_ I where 1 is the ki x k identity

matrix. Here we compare to the optimal Gittins' index found in Gittins [19]

and Whittle [54].

" The restless bandit setting, Di = 1. Here we compare to the prinal-dual heuris-

tic of Bertsimas and Nifio Mora [8].

" The generalized bandit setting where each arm can be played to an arbitrary

degree Di. In this regime we perform a miore detailed analysis of large problems

with parameter scaling an( various problem structures. Here we compare to a

myopic multiple-choice knapsack heuristic as well as the generalized prinial-dual

approach of Section 2.3.1.

Instances for simulation in the regular and restless settings were generated on bandits

with 5 arms and 3 states. When performing State Clustering with the Nested Policy

heuristic in these settings, expanded state spaces were clustered into 3 states. In the

general setting, we explore larger bandit problems with 10 arms and 7 states with

State Clustering into 7 states for the Nested Policy heuristic. We study performance as

the discount rate is and the maximum degree of each arm vary in different instances as

well as examine performance under structures of reward monotonicity and decreasing

marginal returns. In all settings, arm Aggregation was performed with f = 2.

The probability transition matrices were generated as matrices of uniform [0,1],

each row normalized to sum to 1. For the regular an restless settings, a bug(et of M =

1 is used and the discount factor used was # = 0.9 to avoid trivial study of myopic

problems. For these settings, we generated 10 problem instances and simulated 600

trials to obtain a distribution of scores under each policy for each instance. Each trial

ran for t time periods such that fl > 10-10. For each setting we present the average

performnance over all 10 instances, the average standard deviation across instances,



and the average distance from the second-order optimality bound derived during the

first Arm Aggregation step for both the Nested Policy and the associated benchmark.

In the general setting, we study problems with 10 arms, 7 states, and a total budget

of M = 8. We examine performance as the discount rate is varied (# E {.1, .5, .9}) and

the maximum degree of each arm in increased Di E {3,6}. We also study resilience

to different reward structures:

" Rewards for each (arm, state, degree) triplet generated independently.

" Monotonicity: For each (arm, state) pair, rewards are monotonically non-

decreasing in degree, R?(si) Rf(si)Va > b.

" Diminishing Returns: Rewards are monotonically non-decreasing in degree un-

der decreasing marginal returns.

When called for, rewards were generated as follows to create an environment of

decreasing marginal returns.:

1. R-(s) = 0

2. For each state si, generate Di uniform [0, 1] numbers sorted in decreasing order

{luk(S) }t
3. R (sj) = Ed 'k(si)

2.5.1 Regular Bandits

The baseline for comparison used is the Gittins' index policy which is the optimal

policy for this problem.

Figure 2-1 shows the cumulative distribution of the discounted valuation obtained

for one instance demonstrating that Nested Policy performance is close to optimal in

distribution. As seen in Table 2.6, the Nested Policy performs within 2.5% of optimal

on average over 10 instances and has only slightly higher variance than the optimal

policy.



Figure 2-1: Regular Bandit
simulation.

Setting: Cumulative distribution of value obtained in

Average Average Distance From
Performance Standard Deviation Optimal Solution

Nested Policy 29.34 2.22 2.4%
Optimal Policy Benchmark 30.07 2.09 0.0%

Table 2.6: Regular Bandit
stances).

Setting: Summary statistics from simulation (10 in-

2.5.2 Restless Bandits

The baseline for comparison used is the primal/dual heuristic due to Bertsimas and

Niio Mora [8]. This heuristic assigns an index to each state of each arm based on

reduced costs from the associated first order relaxation. In each time period, the

bandits whose current states have the highest index are played.

The Nested Policy and primal/dual heuristic have very close performance overall

with the Nested Policy performing less than 2% better on average as seen in Table

2.7. Figure 2-2 shows that the value distributions for these policies nearly overlap

for a particular instance. Figure 2-3 shows the value distribution for the nine other

instances where it can be seen that average performance is affected by primal/dual
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Figure 2-2: Restless Setting: Cumulative distribution of value obtained in simulation.

Average Average Distance From
Performance Standard Deviation Optimality Bound

Nested Policy 23.35 0.73 0.6%
Primal-Dual Benchmark 22.95 0.77 2.3%

Percentage of instances where
Nested exceeds benchmark 30%

Table 2.7: Restless Setting: Summary statistics from simulation (10 instances).

under-performing significantly on 2 instances; on the majority of instances the per-

formance of the two methods nearly overlaps or primal/dual slightly outperforms the

Nested Policy.

2.5.3 Generalized Bandits

Here we compare the Nested Policy heuristic to two benchmarks:

" The generalized primal-dual approach of Section 2.3.1.

" A myopic multiple-choice knapsack heuristic.
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Figure 2-3: Restless Setting:
for additional instances.

cumulative distribution of value obtained in simulation

For the second benchmark, the myopic multiple-choice knapsack problem is solved in
each time period to play that set of arms which maximizes rewards for the current
time period. In each time period, this algorithm must pick exactly one degree number
to play for each arm with a knapsack constraint such that the total combined degree
picked is equal to M. The reward assigned to each degree di is equal to R_ where si
is the current state of arm i.

Table 2.8 shows performance of the three methods in 18 instances with various
parameters and problem structures as a percentage of second-order optimality bounds.
The problem structures listed in Table 2.8 are as follows:

" Independent: Rewards for each (arm, state, degree) triplet generated indepen-
dently.

" Monotonic: For each (ann, state) pair, rewards are monotonically non-
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# Di # Problem Type Myopic Knapsack Primal-Dual Nested
1 3 0.1 Diminishing 66% 98% 97%
2 3 0.5 Diminishing 54% 87% 94%
3 3 0.9 Diminishing 41% 95% 94%
4 3 0.1 Monotonic 98% 100% 99%
5 3 0.5 Monotonic 83% 93% 90%
6 3 0.9 Monotonic 84% 90% 93%
7 3 0.1 Independent 97% 98% 98%
8 3 0.5 Independent 96% 95% 97%
9 3 0.9 Independent 84% 90% 94%
10 6 0.1 Diminishing 53% 59% 96%
11 6 0.5 Diminishing 48% 83% 91%
12 6 0.9 Diminishing 51% 75% 89%
13 6 0.1 Monotonic 64% 63% 99%
14 6 0.5 Monotonic 54% 59% 95%
15 6 0.9 Monotonic 74% 83% 99%
16 6 0.1 Independent 56% 57% 92%
17 6 0.5 Independent 47% 58% 96%
18 6 0.9 Independent 54% 76% 98%

Table 2.8: General Setting: Performance as a percentage of optimality bound.



decreasing in degree, R?(si) ;> Rb(sj)Va > b.

* Diminishing: Rewards are monotonically non-decreasing in degree under de-

creasing marginal returns.

As expected, the myopic knapsack policy is the worst performing method and tends

to perform its best relative to the other methods when future rewards are heavily

discounted (# low). The Nested Policy heuristic shows resilience to changing problem

parameters and types, always achieving at least 89% of the optimality bound. As

a carryover from the restless setting, the generalized prinal-dual method performs

comparable to the Nested Policy heuristic when the degree of each arm is low, but its

performance suffers greatly as this degree is increased. The Nested Policy heuristic

achieves a 95% overall average of the optimal bound over all instances of both degree

3 and 6 whereas the overall perfornance of the generalized prinal-dual methods drops

from 94% to 66% moving fron 3 to 6. This is consistent with expectations as the

generalized primal dual method is an index-based heuristic that relies heavily on a

Whittle relaxation of the coupling budget to hold in expectation over time rather

than with probability 1 in each time period. The work of Whittle {55] and Weiss

and Weber [52] posits that index policies based on this type of relaxation perform

well asymptotically as a number of indexable identical restless bandit arms (and

total budget) is scaled appropriately due to Law of Large numbers type arguments.

When we scale the number of different actions, taking increasing amounts, of budget

available for each arm, we increase in general the variance of a particular policy

on the generalized restless bandit, theoretically causing slower convergence to good

performance of index or index-based heuristics.

2.6 Concluding Remarks

We have introduced a generalization of the restless bandit problem (GRBs) motivated

by a broad range of applications. To solve such GRBs we have proposed a Nested

Policy approach that, generates a feasible policy exploiting our ability to solve smaller

subproblems optimally. We have also provided methods to bound the objective for



GCRiBs and thus provide an a posteriori guarantee on the suboptimality of the Nested

Policy heuristic. Our computational results show that the Nested Policy heuristic

performs on par with other well established heuristics on restricted GR.Bs and is not

too far from optimal in both restricted and general settings. Furthermore, this work

demonstrates the viability of decomposition methods and integer-optimization based

clustering methods in solving stochastic optimization problems.



Chapter 3

Sponsored Search Optimization

Application

Internet search engine companies generate revenue through the sale of sponsored

search advertising. When a particular search keyword or phrase is queried by an end

user, in addition to being shown relevant internet search content the user is exposed

to several advertisements related to the search as shown in Figure 3-1. A bidding

process is used by potential advertisers to determine which ads are displayed to a

user with each search query. In this process, each competing advertiser submits a bid

level for each candidate keyword or phase along with a total daily, weekly or monthly

budget. Each time an end-user search query is submitted, this information is used

by the search engine company to rank ads, which are then displayed in rank-order to

the user on the search results page. Advertisers do not pay for these impressions, but

rather when and if the user actually clicks on an ad and is directed to the advertisers'

website. Competing advertisers are not aware of each other's bids but usually have

access to some historical data from the search engine company showing the search

popularity of each term. The ranking process used by the search engine company is in

general a black-box to advertisers. The amount actually paid for a user click-through

is typically equal to the bid amount of the next-highest-ranked bid plus some nominal

increment and does not exceed the advertiser's own bid level.
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Figure 3-1: Sponsored search advertising.

In this chapter, we will focus on the problem an individual advertiser faces of maxi-
mizing search-user exposure to their website given a fixed daily budget. This problem
can be conveniently modeled as a modification of the Generalized Restless Bandits
presented in Chapter 2 where keywords and phrases are represented by bandit arms,
different bid levels are represented by different degrees of play for each arm, and un-
certainty in the bid response and the black-box nature of rankings are captured in the
underlying Markov chains. We then implement and test this model using real-world
data from an online retailer.

3.1 The advertiser's problem

The problem faced by an advertiser is to maximize total exposure to its website from
search user traffic. The advertiser is faced with hundreds or thousands of keywords,



phrases, and groups of words or plhrases that it can bid on. Each bid will compete

with those of other advertisers for exposure to search users and prices the cost of user

click-through. Higher bids can generally lead to more impressions on the customer

as well as higher ad rankings which can increase the likelihood a user will click on

the ad; but with higher bids each customer click consumes a larger fraction of the

underlying advertising budget. Advertiser's typically set a weekly budget and are

free to change their bid levels for each word or phrase each week, receiving feedback

in the form of the prior week's performance

The primitives of this problem are the total weekly budget M and the bid level

associated with keyword in each week t, bi(t). Feasible bid levels are drawn from a

discrete set B, typically in small increments, such as 5 cents. Over the period of a

week, ads are displayed to customers as a result of search queries and result in a total

number of customer impressions Impi(bi(t)); customers have an aggregate propensity

to click on an ad which will depend on the ad's placement on the search page which is

a )lack-box function of the advertiser's bid. We call the resulting click-through rate

(number of clicks divided by number of impressions) CTR,(bi(t)). Each click will

result in an average cost to the advertiser Ci(bi(t)) which depends on the unknowns

of ad ranking and competing bids for the keyword in addition to the advertiser's bid.

The total weekly cost incurred by the advertiser for a particular keyword or phrase

is then:

Costi(bi(t)) = Ci(bi(t)) -Impi(bi(t)) -CT R(bi(t)).

The total weekly exposure gained from a particular keyword or phrase is given by:

Clicksi(bi(t)) = Impi(bi(t)) -CTR,(bi(t)).

The advertiser's objective is to maximize the total exposure to its website while

keeping expenses below the advertising budget. Typically exposure today is worth

more than exposure tomorrow, so future exposure is discounted at some rate #*.
Advertisers have access to their own historical bidding behavior and performance;

while the true responses of Ci(b (t)), Impi(bi(t)), and CTR,(bi(t)) are mkmown results



Search terms * Arms (i)

Weekly budget - Budget (M)

Bid level - Degree (di)*

Estimate of response - State (si)
Total click-through I Reward Rf (si)

Uncertainty Transitions lip(s' -+ s;)

*Through budget consumption that bid level leads to.

Table 3. 1: Mapping sponsored search to a GRB.

of search engine ranking and user behavior, advertisers can hold estimates of these

response functions based on historical cost-per-click, number of impressions, and click-

through-rate observed at different bid levels. Advertisers generally have sparse data

available with which to estimate keyword performance as a function of bid level.

With historical data available, only a handful of bid levels may have been tested on

each word and a small number of impressions may lead to imprecise estimates of

click-though rate. To address this problem, advertisers may cluster historical data

for groups of keywords can lead to reliable estimates of desired metrics.

3.2 Modeling as a modified GRB

The mapping of the advertiser's sponsored search problem is outlined in Table 3.1.

Given a collection of N candidate keywords or phrases, each such search term can be

viewed as an arm of a slightly modified Generalized Restless Bandit problem. Since

data for individual search terms can be sparse, terms that have exhibited similar

responses to various bid levels can be clustered together, giving a richer picture of

how a particular term's response function may change over time. The state space

of each arm i = 1, ..., N then consists of these possible search term clusters 8 E S,

representing advertiser's estimate of the current response function for the term. As

time passes, media exposure, user behavior and advertiser pricing are in constant



flux, causing terms to change clusters, from s to s' according to a bid-dependent

transition probability matrix P"'d(s -+ s') which can be calibrated from publicly

available historical data in conjunction with the advertiser's personal historical data.

The advertiser's own personal historical data can be used to estimate its own cost

and success with search terms in a particular clusters s, Cost,(bid) and Clicks,(bid)

for various bid levels. The advertiser's weekly budget M is consumed by the cost

of clicks. The modification we make to the GRB problem of Chapter 2 is that the

entire budget does not have to be consumed, but rather in each time period the

budget cannot, be exceeded. Note that the fundamental actions available (keyword

bids) consume differing amounts of budget in different states. For example, a bid of 5

cents on a popular, high priced word will likely lead to a very low ranking, generating

no clicks and zero cost; however, the same 5 cent bid on a less popular word may

generate 10 clicks in a week resulting in a 50 cent charge. Thus the feasible degrees

of play that need to be considered in order to be nodeled as a GRB are the potential

amount of budget consumed:

E) {Cost,(bid) : s E S, bid E B}

where B is the set of feasible bid levels. To map a policy in terms of this degree set to

real-world bid levels for a keyword in a particular state, we then simply find the bid

level for that state that consumes closest to that degree amount without exceeding

it. Since the total budget consumption constraint is relaxed, an optimizer is then

allowed to select any bid level that does not exceed a parcel of budget consumption.

Finally, we can specify the transition probability matrix and reward for each state in

terms of this degree set as follows:

bid(d, s) = argmaXbidE{Cost.(bid) : Cost,(bid) < d}, d c E:, s E S,

Pd(s -+ s') = pbid(ds)(S -+ '),

R'(s) Clicks.(bid(d,s)).



3.2.1 Simplification of arm aggregation and arm substitution

Note that in this GRB model for sponsored search, the bandit contains N identical

copies of a single arm. Recall the Arm Aggregation step in the Nested Policy

Algorithm 1 of Chapter 2. In this step, we examine all possible partitioning of the

arms into pairs and solve an integer optimization problem to find the partitioning

that yields the best performing Whittle-type relaxation. However, in the case where

the underlying arms are identical, all such partitions yield the same relaxation. Thus,
the Arm Aggregation step is trivially solved by selecting an arbitrary partitioning

into pairs.

Additionally, since each atomic arm is identical, as we progress through the Nested

Policy Algorithm, each aggregated arm we encounter is simply a representation of

some aggregated number, m of atomic arms. Thus, we only need to solve the Arm

Substitution problem of the Nested Policy Algorithm 1 of Chapter 2 once for each

m = 2,..., N throughout the entire progressing of the Nested Policy Algorithm.

3.2.2 Simplification of state clustering

Consider the state clustering problem in the Nested Policy Algorithm 1 of Chapter

2 which solves a binary optimization model to approximate an aggregate arm on a

large product state space by a representative arm on a smaller state space applied to

the sponsored search problem:

M
mRZ(s)(sj) (3.1)

teA. aESd --

D,

dz4(s ) < I M ,(3.3)
iE4. SiESj d=O~



Di

I4(sg) 1, Vi E C, 9i E S;, (3.4)
d=0

z14(s, s) < U (Si, sj), Vi E C, si E Si, si E Si, d = 0,..., M, (3.5)

X4(s) - z4 (si, sj) < U(1 - p(si, 9;)), Vi E C, sj E S;, s E SE , d = 0,..., Di,

(3.6)

Zi(si, si) K Ubd(9i), Vi E C, si E 54, d = 0, ... , D , (3.7)
OiESi

O z.(s , s)Kx(si), Vi E C, Si E Si, si E Si, d = 0, ... , Di, (3.8)

s ; 1, Vi E C, si E Si, (3.9)

X d(s,) ;> 0, Vi EAg., s9jE Sid-=0, .*.,Dj, (3.10)

ld(si) E {0, 1}, V i E C, 9i E 5j, d = 0, ... ., Di (3.11)

V(si, 9i) E {0, 1}, Vi E C, Si E Si, si E Si. (3.12)

Where we have implemented the modification of not exceeding the period budget

rather than consuming the entire budget in (3.3).

Since the Arm Substitution step of each iteration of the the Nested Policy Al-

gorithm, we are left with a collection of aggregate arms each representing identical

copies of an aggregation of some number m of atomic arms. Thus the rewards and

transition probability matrices for each arm are identical and conservation of flow

constraints (3.2) for each arm differ only in the initial distribution ai(si). Thus the

constraints:

D M

Exd(s) = as + # P(s' --+ g)d(s'), s E A(S)
d= ES'E Sd=O

are valid where A(s) represents the current set of aggregated arms. These constraints

arise from averaging the conservation of flow constraints (3.2) over each arm i for each

state in of the aggregated atomic arm state space s E A(S). Here xd(s) represents the

expected discounted time-percentage of atomic bandits is in state (s). at. represents



the initial distribution over all atomic bandits in state (s). Since all of the N = Ag.

arms in this step are identical and have the same D = Di, if we enforce that the same

clustering scheme be used for each arm, we can then simplify the State Clustering

problem by clustering over xd(s) with the following:

D

ma x IV - Rd(S)Xd(s) (3.13)
d=O 6EeA(S)

D D5

s.t. Ex d(9) = as + E P"(s' -+ s)xd(sI), s E AS, (3.14)
d=O B'EA(S) d=O

Z V- dXds) M , (3.15)
sEA(S) d=O

D

#,dps) < ,SE5 (3.16)
d=O

zd(s, g) Up(s, 5), V s E A(S), 5 E 5, d = 0, ... ,D , (3.17)

zd(s) - zd(s,g) U(1 - (s,, )), 8 E S, 9 E S, d = 0,..., D, (3.18)

E z d(S, 7 ) < Ud (g), V95 E 5, d = 0, . .. , ,(3.19)
aEA(S)

0 < zd(s, g) zd(s), Vs E A(S), 9i E Si, d = 0, ... , D, (3.20)

Z p(s, ) = 1, V s E A(S),
iES

zd(S,) > 0, V i E Ag., si E A(S), d = o, . .. , D,

#pd(g) E= {0, 1}, V§N E 5, d = 0, . .. , D

p(s,7 ) E {0, 1}, V s E A(S), 9 E Si.

where the left-hand-side of (3.15) has been appropriately weighted to capture the total

budget being consumed by arms being played to a particular degree in a particular

state.



3.3 Implementation on real-world data

We implemented the model described in the previous section on a data set provided

to us b-y a real-world online retailer of herbal suipplenents. T he data set included 6

months of daily search data on 1,931 keywords with feasible bid levels predominantly

in 5 cent, increments from $0.05 - $0.50 but extending ip to $2 for certain words.

During the 6 month period, the retailer had experimented with various bid levels for

different words and spent an average of $2,231.55 out of a $2,250 weekly budget to

generate an average of 12,074 clicks for an average cost per click of 18.5 cents. Due to

the sparse data available for each search term at differing bid levels, we clustered terms

according to similar historical performance and behavior. Using the provided data as

well as data available from Google Analytics (53] on the overall search popularity of

the words, we clustered keywords into 10 states oin the attributes of search popularity

and the bid amount the online retailer had learned had to be placed to achieve various

top search rankings. Examining these attributes at cross sections of time allowed us to

see how frequently search terms moved between clusters. Since the retailer's learning

about bid-4rank response fundamentally depended on its bid level for a certain word,

we obtained the action dependant transition matrix Pd(s -+ s'). Varying bid levels

for words in each clster that yielded clicks consumed on average between $0.03 and

$304.621; we approximated this degree set 'D by 5 cent increments from $0.00 - $1.00,

25 cent, increments from $1 - $10 and 1 dollar increments from $10 - $305. Overall

we obtained a GRB system with 1,931 arms on 10 states with this degree set and

a total period budget of $2,250. Table 3.2 shows the results of 2 years simulated

performance of this system, that is simulating the resulting bandit system for 104

time periods; in each time period, the state of the current state of the bandit system

is observed and a degree is selected for each arm yielding a transition to a new state

in the new period. Results are shown transformed to time-average performance for

direct comparison with the historical baseline. The Nested Policy heuristic is able to

achieve an 81% increase in average weekly clicks over the historical baseline, attaining

'As an example, a word with an average cost-per-click of $0.01 with an average of 3 clicks per
week consumes $0.03 of weekly budget; whereas a word with an average cost-per-click of $0.50 and
an average of 610 clicks per week consumes $305 of weekly budget



91.73% of the first order optimality bound by driving the cost per click down to 10.23
cents outperforming both the myopic knapsack algorithm and generalized primal-dual

approach from Chapter 2, Section 2.3.1.

Method Average Weekly Clicks Cost per Click Budget Utilization
Historical 12,074 $0.185 89.26%

Myopic-Knapsack 13,899 $0.161 89.52%
Primal-Dual 18,840 $0.119 89.96%

Nested Policy 21,933 $.1023 89.72%
Optimality Bound-(1 - #) 23,908 < $0.094 N/A

Table 3.2: Weekly performance in simulation of sponsored search GRB model.

3.4 Concluding Remarks

In this chapter, we demonstrated the feasibility of applying the Nested Policy ap-

proach to large-scale Generalized Restless Bandit models based on real world data.

The superior performance of the Nested Policy compared to both the myopic knap-

sack and generalized primal-dual approaches was maintained in this large scale setting.

Furthermore, we discussed simplifications to the steps of the Nested Policy Algorithm

for large-scale problems with identical bandit arms to decrease computation time.



Chapter 4

Distributionally Robust

Optimization Problems

In this chapter, we study the distributionally robust optimization problem with

known mean, covariance and support information. This problem is particu-

larly relevant for fixed income investing where certain statistics on the marginal

performance of the underlying notes are known with relative certainty, but the dy-

namics which drive the joint distribution of large baskets of investments are unknown.

It is well known that incorporating support information over intervals along with

known mean and covariance admits a reduction from matrix co-positivity [9] making

the robust problem of interest AP - hard. Previous approaches [42, 341 to this

problem involve using one efficiently solvable relaxation for the entire problem and

applying the resulting policy. We propose an algorithm which uses a sequence of

efficiently solvable relaxations to determine nested policies involving pairs of decision

variables. Each of relaxations is tight in the projected dimension of each pair of

interest.

An additional contribution from this chapter is a proof that non-convex quadratic

optimization in n-dimensions over a box in two-dimensions is efficiently solvable.



This proof is a generalization of a result by Anstreicher and Burer [2] for n = 2

using simpler proof technology. This result ensures the tight nature of our projected

relaxations.

4.1 Problem Definition

Distributionally robust optimization allows practitioners who face uncertainty to

use statistics of an underlying distribution which can be readily estimated while

being robust to the underlying dynamics and structure that is unknown. This is in

contrast to stochastic optimization, where knowledge of the entire distribution must

be assumed.

In the distributionally robust problem with known mean, covariance and support,

we consider an optimization problem whose uncertain data is comprised of n random

variables, Ni = {1, ..., n}. We are given moment information for the joint distribution

of these variables up to order 2; that is E [- r] = for all i # j, a + P 2.

Additionally, the support of all variables is bounded: supp(ri) = [ai, bi]. The goal is

to select a weighted exposure, w, to the underlying random variables in the context

of maximizing a measure of worst-case expected utility. Given a decision maker's

utility function and weighted exposure, worst-case expected utility can be viewed the

expected utility of that exposure under a worst-case distribution y selected by an

adversary from among those distributions that share known characteristics.

4.2 Motivating example: fixed income portfolio

optimization

Fixed income investing typically involves a purchase of, or loan originating, a

debt obligation from an obligor to an investor. One fundamental property of this

type of investing is that returns are naturally bounded between the face value of



the obligation and total loss of investment or some ensured recovery rate thereof.

Additionally several statistics are typically assulmed or inferred with relatively

high certainty about the return including the probability an individual obligor

defaulting, the expected loss givenl default, and the probability of joint default for

pairs of obligors. In order to value portfolios of fixed income investments what

remains to be modeled are the dynamics of the distribution that governs default

and loss (list ributtions jointly for all obligors. Typical approaches in industry such

as CreditMetrics [26] and Moody's KMV [13, 16] involve assuming an overarching

copula model1 . Such copulas models involve assuming there is some underlying

parameterized distribution, typically Gaussian in nature. Model parameters are

then chosen as to match the known marginal statistics. The problem with these

models is that there is no intuition about the structure that these copulas should

have and thus the models used are most often simply those with the most convenient

parameterizations. Additionally, possibly one the most relevant information in fixed

income portfolio valuation is the probability of simultaneous default of a large basket

of obligors. Gaussian copulla models by their very nature lead to light tails and

recent history has shown that the use of such models severely underestimate the

probability of such events [11, 29].

Robust optimization is an alternative to assuming a copula model for the joint

distribution of dynamics. This approach allows us to use the statistics we know and be

robust to tile dynamics we don't. Rather than assuming a copula with little real world

justification simply because it is easily parameterizable, robust optimization allows

us to prepare for all possible distribution which would exhibit the known statistics.

4.2.1 Formulation

For the fixed income portfolio optimization problem, we are given a set of n assets

N, = {1, ..., n}. We index the set N here so that we may alter the set of assets under

consideration in further analysis. For each asset i E N it is common to be able to

'See Glasserman [21, 201 for examples of simulation involving copula models.



estimate the following with relative certainty [26, 13, 16]:

" Face value (bi): the maximum return achievable for the asset if the obligor for

the underlying asset does not default. prior to maturity of the asset.

* Probability of default (pi): the probability that the obligor for the underlying

asset will default before maturity, leading to an overall return less than bi.

" Expected loss given-default (lgdi) : expected loss of face value given that the

obligor on the underlying asset defaults before maturity.

" Variance of loss-given default (vgdi) : variance of loss of face value given that

the obligor on the underlying asset defaults before maturity.

" Minimum insured recovery amount (al) : minimum return achievable by the

asset; this amount is often insured by outside derivative contracts, ensuring that

losses from face value cannot cause total return to fall below this threshold.

" Probability of joint default (pij): the probability that the obligors for the un-

derlying assets i and j will both default together. It is assumed that, due to

the recovery process, losses given default are marginally independent for assets

i and j.

If we consider each assets return as a random variable ri we then have the mean,
covariance, and support of r: E [r -ro] p ? for all i # j, a + < 2 and supp(ri) =

(ai, be]. Where the moments are given by:

p,'. = f, - pi -gdi, (4.1)

p." = p - (1gd? + vgdi), (4.2)

p4J = p -(lgdi - lgdj). (4.3)

We wish to select a collection of weights of exposure to the assets that satisfy some

linear constraints:

Aiw1 g (4.4)



It is assumed that the constraints w > 0 are included in this constraint set. The most

common constraint set is to invest a in a total portfolio with unit weight ( wi = 1)

while disallowing short-selling w > 0. Other common constraints include ensuring

a minimum or maximum exposure to a certain subset of assets, such as an industry

sector.

Our goal is to maximize worst-case expected utility. The utility functions we study are

piecewise quadratic, allowing us to directly capture Markowitz-type utility functions

[33], and closely model more complex utility functions with piecewise approximation:

min {q, - (wT r) 2 + C. - wTr + d,}. (4.5)
U

To ensure robustness to any distribution that matches known mean, covariance, and

support information, we allow an adversary to select any probability distribution

matching these characteristics by solving the robust optimization problem:

Z*(Ni) =

max inf min {q, - (wTr) 2 + c.. wTr + du} dp(rN1 )
A1w<bp(rN 1) J

s.t. f r,-rdpI(rN) = Vi #j E N1 ,a + f < 2,

fa<r dp(rN)= 1 Vi E N 1 .

(4.6)

Isii [281 and Smith [48] have shown that strong duality holds for the inner problem

with the following polynomial optimization problem:

max sup yo + Z p y
Alw:g V

a+#<2

s.t. q, - (wTr) 2 - 2 y,"f (rrO) + C.. wTr + d yo ;> 0 (4.7)

ifjEN,a+f32

VU,r : ai < ri 5 b,i E N1.



Given w, y, we have for each u the following separation problem:

S.(w,y) =

min q . (wTr)2  y (rr + C,- wTr+ d - yo > 0
r:aj:5r;5bj,ENi \:j~j+< /i

ifjEN1 ,a+#3 2

(4.8)

Thus, each constraint demands coefficients of a quadratic that is non-negative over

a hypercube in R". The corresponding separation problem is AFP - hard as it ad-

imits a reduction from matrix co-positivity [9]. Previous approaches have focused on

tractable relaxations which avoid full incorporations of mean, covariance and support

simultaneously. The decomposition method we will describe in Section 4.4 motivates

us to focus on sub-problems incorporating mean, covariance and support simnultane-

ously; in Section 4.5.1 we show that such focused sub-problems are tractable.

4.3 Prior work

Distributionally robust optimization has been well studied when only moment infor-

mation is known. Scarf [46] studied the application of optimization of the newsven-

dor problem under the worst case distribution having a known mean an variance.

El Glhaoui et al. [17] studied robust optimization of the Value-at-Risk metric un-

der mean and covariance information. Popescu [42] proposed a methodology based

on parametric quadratic progranuning to handle more general utility functions when

mean and covariance information is known. Bertsimas et al. [5, 6] and Natarajan et

al. [34] show that when only first and second moment information or only first mo-

ment information is known along with support, the problem is tractable with concave

piecewise linear objectives. Goh and Sin [25] study the variation with known mean

and support and show that one can even incorporate adaptive decision rules to allow

primal decisions to be anticipatory functions of adversarial uncertainty. Chen et al.

[12] allow for the inclusion of information on directional derivatives. The full problem

we study with known mean, covariance, and interval support was shown by Bertsimas

and Popescu [9] to be AP - hard. Delage and Ye [14] propose a data-driven method



where the distributional support is outer-approxinated by a ball. This relaxation of

the adversarial problem is then tractable. Natarajan et al. [34] exploit the fact that

the problem with known mean and covariance is tractable alongside the problem of

known mean and support in the context of portfolio optimization. Their approach

convolves the two bounds available from these relaxations by essentially allowing an

adversary to pick two distribitions, one which matches the mean and covariance, and

one which matches the mean and support. The primal decision-maker is then allowed

to select on an asset-by-asset basis which distribution the uncertain return for that

asset is drawn from.

4.4 Decomposition strategy

The decomposition strategy we propose involves solving a sequence of adversarial

problem relaxations which have tight projections on two-variable dimensions. We

then use the solutions to these relaxations to obtain a sub-policy with respect to the

"tight" dimensions, that is we fix the proportional weighting in these two uncertain

random variables. With this fixed sub-policy, we may replace the two individual

random variables with a new one representing their fixed proportional weighting. In

this way, we iteratively reduce the dimension of the overall problem.

We begin by picking two uncertain random variables, indexed by say n - 1 and

n. We then solve the following problem which relaxes the support constraints on

variables , ... ,n - 2:

Z(N 1 ) =

max inf minI {q. (wTr)2 + c. -WTr + du} dp(rN1 )
Ai<gp(rN,) .U

s.t. f r'rdp(rN1 ) = Vi# j E N,a + # 2

d(rNI) = 1 Vi E N1
aj<_r;<b,i>n-2

(4.9)

By solving Z(NI) we obtain the desired weights w,_ 1 and wn and fix our relative



weighting policy between variables r,_1 and rn.

Once this portion of our policy is fixed, we can consider a new random variable

f-1l= + Wnrn (4.10)
Wn-1 + n

. We know that

[ n-1 En 2 E n-1 En n
sRupp(rn-_-) c an_1 + -Ln bn_1 +4 b.

Wn-1 + Wn Wn-1 + Wn Wn1 + W n Wn-1 + Wn
(4.11)

and we know that the moments of ri, r 2 , ... , r 2 n-- must obey the original moment

constraints on r1, ..., rn-2 as well as:

E r?- r] = - - + " - (4.12)

Vi = 1, ...,n- 2, a +# 2 (4.13)

Thus, if we define the new set N2 = {1, 2, ... , n - 2, n - 1} we can consider the dis-

tributionally robust optimization problem Z(N 2) characterized by these constraints.

The linear constraints on weight variables take the form:

A 2 W <-9 (4.14)

where A 2 is formed by replacing columns n and n - 1 (A 1 (n) and A 1(n - 1)) with a

single colunn:

A 2(n - 1) = Wn1 A1 (n - 1) + wnA,(n) (4.15)
Wn_1 + wn

We can then iterate this procedure combining random variables rn-2 and r-- to

obtain a fixed policy between these them, yielding a new random variable ra-2 and

likewise the set N2, continuing until solving Z(Nn_1). In each iteration, we consider

the problem:



Z(Nt) =

max inf J in, {q, - (wTr )2 + c. - wTr 4 d,} dI(rN,)
Atw:5gjp(rNt) j u

s.t. f r r dp(rN,) =

<r<b dp(rN

More formally this algorithm can be stated as follows:

Vi j j E Nt,a + /3 2

n ~- t, -t +1

(4.16)

Algorithm 3 (Decomposition niethod for distributionally robust optimization).

Given a set of random variables ri,i E N1  { 1,...,n} having known support

supp(ri) = [ai, bi] and mean and covariance E qr?- r] = pmf for all i # j, a + 13 < 2,
and the problem of finding a feasible weighting A1w < g, decomposition is performed

as follows:

1. FORt=1 ton-1

(a) Let m := INtl

(b) Solve the problem Z(Nt) (4.16) to obtain a weighting wt.

Define a new random variable r;-y with

port as follows:

known mean, covariance an sup-

[t- 1 * am- 1 + Wm. * am
ntm-1 +kS

-im-+wt 
m-1

= y ,

Wm-1 * bm-1 + Wm ' bn]

-ppm-1 m R4It OA4 I~

Vi=1,...,m-2,a+p# 2.

(d) Define the matrix At+1 by replacing columns m and m - 1 of At (At(n)

and At(n - 1)) with a single column:

) n- 1A 1 (n - 1) + wnA1(n)
At+1 (-n--) = W(417)

(C)

supp(r.-)

E [r?-r -



(e) |Nt+ I N u {m - 1}\{m - 1, m}

2. Let t*= argmaxtZ(Nt)

3. The final weight given to asset i is then:

i-1
wi - H i Nen|-1V

Wt<i = t(4.18)

wi, i > n - t*.

There are also several possible extensions to this algorithm. Selecting which two

assets to combine in each iteration can be done in a similar manner to the Arm Ag-

gregation method discussed for Generalized Restless Bandits in 1 of Chapter 2 rather

than simply combining the two with highest index. Additionally, if supplemental

application-based information is known about the support of a joint distribution of

any two uncertain random variables rm- and rm, this information can be directly

incorporated into the support of r;;;-1 . In each iteration of the algorithm, we are

tightening the support of two assets of the adversarial problem; however when we

combine two assets with known support into a single asset with known support, we

are slightly relaxing the adversarial problem since:

m-1 * a.-1 + . a. -1 ' m-1 W W + m
supp(r;--)C c_; - + , + ,ni+ rEm-1 + WM Wm-1 + Wm Wm-1 + Wm Wm-1 + Wm

and this inclusion need not be equality. Thus using such known real-world informa-

tion on the joint support of rm-1 and rm can tighten the bounds obtained.

Even without additionally joint support information, the decomposition algorithm

can provide us bounds on performance for the full problem with known mean, covari-

ance, and support. Let Zt (w, i) denote the value of the policy w under distribution

i for asset set Nt and let p1*(w) be the worst case worst case distribution for the

overall problem with full support for a weighting of w. That is:



p*(w) =

argminj(frNi) J {' Wr + C( ) W r + d,} dp(rN1 )

s.t. f rir d p(rN1) Vi / j E N 1 ,a + # 2,

j dp(rN,) 1 Vi E N1 .

(4.19)

We then have the following:

Theorem 4.1 Z(Nt) < Zt(wt, p*(wt)). That is, in each iteration of the decomposi-

tion algorithm, Z(Nt) provides a lower bound on the true worst-case performance of

the policy wt.

Proof. Let yt be the worst-case (listribution for Z(Nt). Since

SUPPr~w_ [E m-1 ' am-1 + m '. am I m-1 * bm-1 + m '. - .
supp(ri) c +mam ,mm W~'m + , rn

Wm-1 + E1 m wm-1 + Wm Wm-1 + Wm m-1 + m

pL*(wt) is feasible for the adversarial problem in Z(Nt). Thus Z(Nt) = Ze(wt, pt) <

Zt (wt, p* (wt)).-

Corollary 4.2 Z(Nt.) provides the best achievable bound encountered in the de-

composition algorithm. This bound is achievable by using policy w*.

There is a natural interpretation of this decomposition strategy in the context

of application to fixed income. In each iteration, we select two assets to discover a

relative investment strategy. That is, given an amount of money to invest in assets

(a) and (b), what percentage should be invested in asset (a) and what percentage

in (b)? To answer this question, we solve Z(Nt) which restricts the adversary as

tightly as possible in the dimensions of these two assets. The solution, wt, fixes a

sub-policy by giving us the desired relative investment strategy. With proportions of

investments fixed, we can then replace assets (a) and (b) in further problems by a



representative portfolio.

It remains to be shown that the key problem Z(Nt) is efficiently solvable, this is

the focus of the following section.

4.5 Solution of the key separation problem

Recall the problem Z(Nt) with two-variable support solved in each iteration of the

decomposition algorithm:

Z(Nt) =

Jmin {qu - (wTr)2 + Cu. WTr + du} dp(rN,)

£ riridp(rN) =

L/ri!b. dp(rNt

Vi / j E N,a + 8 / 2

= n - t, n - t + 1

(4.20)

In the same manner as the problem with full support, due to Isii [28] and Smith

[48], we have that strong duality holds for the inner problem with the following

polynomial optimization problem:

Z(Nt) = nax supb
At V

Yo + E p Sy
a+,0<2

)
2 

_ ( yu r + c-I

ifjENi,a+ it2
WU,r : a; :5 ri < bi~i =n - t,n - t + 1.

+ du - yo > 0

(4.21)

Here each constraint demands coefficients of a quadratic in n-dimensions that is

non-negative over a box in two-dimensions. Unlike the case where the quadratic

must be non-negative over a hypercube in R" which admits an AP - hard separation

problem, we will show that the corresponding separation problem here is efficiently

solvable.

max inf
Atw!5g p(rNt)

s.t.

q. -(wT



Given w, y, we have for each u the following separation problem:

S.(w, y) =

mm qu -(wTr )2 - ( y'?(rr) + cu. -wTr 4 - yo > o.
r:a; ri'b,i=n-t,n-t+1 i jEN,a+#<2

(4.22)

Normalizing the support of rt and rn-t+1 to fall between 0 and 1, we obtain the

equivalent problem:

SU(w, y) = min QU(W, y)
( r )T <1

s.t. 0 < rn-t, rn;-t+1 < 1
(4.23)

The semi-definite relaxation [10] (SDP relaxation) to this problem is given by:

S.(w, y) = mini

s.t.

trace (RTQu(w, y))

R - 0
r1,

0 < ri-t,r 1 nt+ 1 1-

where R >- 0 demands that the matrix R be positive semi-definite. We will show

that by adding a small number of linear constraints to St(w, y) we obtain an exact

formulation of Su(w, y), thus yielding an efficiently solvable problem.

4.5.1 On quadratic optimization in n dimensions over a two-

dimensional box

In this section, we consider the problem:

~T(

min Q
( X)T (X

s-t. 0 < X1, X2 < 1.

(4.24)



with X E Rn. Where we have the box constraints:

Xi < 1, (4.25)

0 < X1, (4.26)

X2 < 1, (4.27)

0 < X2. (4.28)

Taking the SDP relaxation of the problem we consider the matrix:

T
Xi 2 X3

xlixl2XT

X2 X12 X22 X2)3
X 3 Xia X23 X33

and applying the reformulation-linearization technique (taking the first Sherali-

Adams closure) [47], multiplying each pair of upper and lower bound constraints

together, we obtain:

Y >- 0, (4.29)

1= 1, (4.30)

i - X1 0, (4.31)

X2 - X22 > 0, (4.32)

X1 - X12 > 0, (4.33)

X2 - X 12 2 0 (4.34)

X 12 > 0 (4-35)

X 1 2 - X1 - x 2 + 1 0. (4.36)

Let Y = {Y: (4.29) - (4.36)} and consider the region:
T

D = conv { ) : 0 x1, x 2 , 1}-
)(X )



Theorem 4.3 Y = D.

This theorem generalizes a result of Anstreicher and Burer [2] for n = 2

using simpler proof technology. This result ensures that if we relax the support

constraints for all but two variables, the problem can be solved exactly and efficiently.

Note that by construction Y ) D . It remains to prove Y C E.

Definition 4.4 (Face) Let S be a convex set. A convex subset F of S is called a

face of S if x E F, y, z E S where x is a strict convex combination of y and z implies

that y and z are in F. An extreme point of S is a non-trivial zero dimensional face.

An extreme direction of S is a one-dimensional face.

It is well known that a closed convex set S is the convex hull of its extreme

points and extreme directions2 . We will show that all extreme points of Y are rank

one matrices of the desired form and that Y has no extreme directions, thus proving

Our strategy for proving Theorem 4.3 is summarized as follows:

1. We show that the rank of an extreme matrix of an SDIP can be related to the

number of linear constraints it satisfies with equality (Theorem 4.5).

2. We then show that the upper-left 3 x 3 sub-matrix of any extreme matrix of Y

is rank 1 (Theorem 4.6).

3. Next we show that this implies that all extreme matrices of Y is rank 1 (Corol-

lary 4.7).

2see Rockefellar 143] Theorem 18.5



4. Finally, we show that Y has no extreme directions, in other words, it is 'curved'

(Theorem 4.8).

The following theorem is adapted from Pataki [391:

Theorem 4.5 For any face F of the feasible region of an SDP decribed by:

Y >- 0,
tr(Ai -Y) =b i = ... m,

tr(C -Y) d j =1,...,p.

(4.37)

(4.38)

(4.39)

if J is the index set of inequality constraints binding on F, then for Y E F:

1
-rank(Y) - (1 + rank(Y)) <; m +|JI + dim(F).
2

(4.40)

Proof. Let r = rank(Y). Since Y >- 0, by LDL decomposition, we can write:

Y = QAQT,

with Q E R"x', A E Sr, A >- 0, diagonal. We then have:

tr(QTAiQ - A) =

tr(QTCjQ - A) =

For the sake of contradiction, assume jr(r
linear system above is defined by m + |JI

ir(r +1). Thus there exist A,,..., Adim(F)+l

null space of QTAjQ and QTCjQ, j E J:

tr(QT AQ -Ak)

tr(QTCjQ - Ak)

bi, i = 1,... m,

d1, j E J.

+ 1) > m + IJI + dim(F). Note that the

equality constraints and that dim(S') =

E Sr linearly independent matrices in the

= 0, i = 1, ..., m, k = 1,..., dim(F) + 1,

= 0,j E J, k = 1, ..., dim(F) + 1.



Since A >- 0 and tr(QTCQ - A) > d,, j V J, 3c > 0:

A I eAk >- 0, k = 1, ...,1 dim(F) + 1,

(QTCyQ -(A iEAk)) d j J, k =1,..., dim(F) + 1.

For all k, the matrices Yk+ = Q(A+eA )QT and Y- = Q(A+EAk)QT are in the feasible

set of the SDP and Y = }(Y+ + Y -). Thus Y+, YJ- E F k = 1,...,dim(F) + 1. How-

ever, since the matrices Ak are linearly independent, the matrices A, A1, ... , Adim(F)+1

are affinely independent and thusY Y+ Iydim(F)+1 E F are affinely independent.

Thus dim(F) > dim(F) + 1 which is a contradiction. U

We will now proceed to prove that the extreme points of Y are rank 1 matrices.

Theorem 4.6 Let F be a zero-dimensional face of Y. Then for Y E F with

£411

xi

X12
Xia3

x12
X22

X23

the submatrix:

X11

212

is rank 1.

XTr
3

X23
X33J
)

Proof. We have rank(Y) rank(Y), applying Theorem 2, we obtain:

-rank(Y) - (1 + rank(Y)) IJI 41,2
(4.41)

where J is the set. of (4.31)-(4.36) binding on F. Note that rank(Y) # 0 since yl = 1.

We examine 3 cases.



Case 1: |Jj < 1. Then

rank(Y) - (1 + rank(Y)) < 4 => rank(Y) = 1. (4.42)

Case 2: IJI 5. The rHis of constraints (4.31)-(4.36) have rank 5 and the system

with (4.31)-(4.36) all at equality is infeasible, so |J| = 5. All systems with five of

(4.3l)-(4.36) are systems of 5 linear equations in 5 unknowns. It is easy to check that

these all correspond to rank 1 matrices.

Case 3: 2 < IJ| < 4. Then

rank(Y) - (1 + rank(Y)) < 10 => rank(Y) E {1, 2}. (4.43)

Suppose rank(Y) = 2. Since (4.31)-(4.36) implies that the first column of Y domi-

nates the second and third, which gives us that that:

E cone
X1

11

X22
,(

which gives:

X2

X12

X22

1 = axi +x 2,

xi = azu1 + #312,

X2 = ax 12 + #X22,

,# 0,

- 0 > 0.

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

Equation (4.44) implies:

1 = (aX1 + #z2)2. (4.49)



Substituting (4.45) and (4.46) into (4.44) gives us:

= a2x1u + 2a3x 1 + #2 X

= a(aX1 + #X12 ) + #(aX 2 + #X2),

1 <

(4.31)-(4.34)

a(aiX + fx 2) + 3(ax + pX2),

which implies that a + # 2 1.

Combining (4.49) and (4.50) we obtain:

(aXi + 1X2)2 = 2 xu + 2aixl2 + #2 X22. (4.53)

Finally, rearranging terms we obtain:

a2(X - x2) + 2aO(X12 - ziz2) + 32(X22 - X2) = 0. (4.54)

The semi-definite constraint on Y gives us that:

X11 X z,

X22 >x.

(4.55)

(4.56)

If (4.33) (XI = X12) or (4.34) (X2 = X12) is binding, then z12 X1 - X2 and (4.54)

implies zu = 7,22 = 2 zX = ziz2. Thus Y is rank 1 arriving at contradiction.

Therefore, since |JI 2 2, we will examine the subcases where any 2 of the remaining

constraints (4.31),(4.32), (4.35), (4.36) are binding as follows:

e Case 3a: (4.31),(4.32) binding: x 1 = Xu, £2 = Xz.

* Case 3b: (4.35),(4.36) binding: 12 = 0, 12 - X1 - X2 + 1 = 0.

* Case 3c: ((4.31) or (4.32)) and (4.35) binding, by symmetry: X1 = zu1X1 = 0.

* Case 3d: ((4.31) or (4.32)) and (4.36) binding, by symmetry: Xz = 11,X12 -

(4.50)

(4.51)

(4.52)



i- x2 4 1 = 0.

(a) Case 3a: (4.31),(4.32) binding: x 1 = X1 1 7 x 2 = X2 2 -

Then

X(1-a) =

X2(1.-#) =

#x 12,

ax 1 2.

Adding these together we obtain:

X1 + X2 - I = (a + #) 12 . (4.57)

Subtracting (4.36) from (4.57) then gives (1 - a - ))X 12 > 0. Since a + # 2 1

we have X12 = 0 or a + # = 1. But a + # = 1 implies that either x1 = x 12 or

X2 = X12 in which case either (4.33) or (4.34) are binding which we have already

shown to be a contradiction. Thus X12 = 0 and by (4.57), X1 + x2 = 1. But then

Y has the form:

+ X2-(

If either X1 or X2 are 0, then Y is a rank 1 matrix,

rank(Y) we have Y is a strict convex combination

dicting that F is a vertex.

(b) Case 3b:(4.35),(4.36) binding: X12 = 0, X 12 - X1 - X2

Thus z 1 + X2 = 1 and

1 = ax, +#X 2

z1 = ax 1

otherwise since rank(Y) =

of feasible matrices contra-

+ 1 = 0.

(4.58)

(4.59)

(4.60)

= z -



We then have:

1 = axi + #z2 (4.61)

X1 + 12 = ax + #X2 (4.62)

(1-a)xi + (1 -3)X 2 = 0 (4.63)

By combining (4.31) with (4.59) and (4.32) with (4.60) we obtain:

(1 - a)xi < 0 (4.64)

(1 - )x2 < 0 (4.65)

We must have 1i, 2 > 0 or else (4.33) (1i = 112) or (4.34) (12 = 112) would

be tight respectively which we have already shown to be contradictions. Thus

a =,8 = 1. But then (4.31) and (4.32) are tight, reducing to Case 3a.

(c) Case 3c: ((4.31) or (4.32)) and (4.36) binding, by symmetry: 11 = 11,1i2 = 0:

Then

1 = axi +8X2

1 = ax 1

X2 = #X22

If x, = 0 then X12 > 12 and if 1i = 1 then (4.36) implies 12= 0. In these cases

(4.54) implies zi = x2 z =2 z, X12 = X1i2 implying Y is rank 1, arriving at

contradiction. Thus in order for Y to be rank 2, 0 < 11 < 1.

But Y has the form:

1 IX1 X2 1 1X2 1 0 X2

Y = , z1 0 =X1 - 1 1 0 + (1 - zi) - 0 0 0

kX2 0 X22 ( 2 0 X22 ) 2 0 X22

and since rank(Y) = rank(Y), Y is a strict convex combination of feasible ma-

trices contradicting that F is a vertex.



(d) Case 3d: ((4.31) or (4.32)) and (4.36) binding, by symmetry: X1  x 11 ,x 1 2 - X 1 -

X2 + 1 = 0:

Then

1 = axi + #x 2

x1 = axi + #x 12

X2 = ax 12 + fX 22

Adding (4.66) and (4.66) and subtracting , we obtain:

X1 + X2 - 1 = (X2 2 - X2 ) + (a + #)x 12  (4.66)

0 = (X 2 2 - X2 ) + (a + -1)x 12  (4.67)

By (4.66) and (4.33) we have:

x1 (a + #)xi (4.68)

Since a + # > 1, we must have that a + # = 1 or x1 = 0. If x, = 0 the semi-

definite constraint x1 x2 2  x 2 implies X12 = 0 and we reduce to Case 3c. Thus

for Y to be rank 2 we must have a + f = 1.

Then together with (4.32) implies # = 0 or X2 = X2 2 . X2 = x22 reduces to Case

3a. So in order for Y to be rank 2, we must have fi = 0 which gives us that a = 1

and X2 = X12 . But this means that (4.34) is binding which we have already shown

to be a contradiction.



Corollary 4.7 The extreme points of Y are rank 1 matrices.

Proof. For an extreme point of Y:

1X1 X2 X3

X1 xn X12 X

X2 Xn2 X22 X23

X3 X13 X23 X33

we have that the upper 3x3 sub-matrix Y = y is rank 1. Since Y is positive
semi-definite, it is a convex combination of r = rank(Y) rank 1 matrices:

r

=Z2 wiwT, E A =1, 1 > 0.
i=1

We write wi = ( with y, E R3.
wi

Then we have
r

T=y = ,yiyT

i=1

Since rank 1 matrices are the extreme rays of the semi-definite cone, we must have

that:

y1 = aiy a # 0, Vi (4.69)

ZAa = 1 (4.70)

By (4.69) the matrix Yr = £1 E Y; and by (4.70), Y is a strict convex combination

of Y, i = 1, ..., r. Thus all Y must lie on the same face as Y. If r > 1, this contradicts

Y lying on a zero-dimensional face.

Since Y is a closed convex set, it is the convex hull of it's extreme points and

extreme directions. We have shown that the extreme points of Y are rank 1 matrices,
it remains to study it's extreme directions.



Theorem 4.8 Y has no extreme directions.

Proof. Suppose R is an extreme direction of Y. If Y an extreme point of Y then

we have:

{i + AR, A > 0}

is an extreme ray of Y. Let us write:

where A, Y E S3, y - yyT. The linear constraints on Y bound the entries of Y + AA

between 0 and 1 component-wise. Thus A = 0.

Suppose C # 0, then pick indices ij : Ci # 0. Since Y + AR >- 0 VA > 0, the

submatrix:
.73

AC,,

AC,,

AD.)

which implies Yi - AD,; - A2Ci 0, VA > 0 which is a contradiction.

Since R has the form:

)
we must have that D = ddT is rank 1. But then:

yy T 0

0 AddT
Y+AR

R=

Y =

R =



T T

2 V-d NAd -Od -rOd

So Y + AR is a convex combination of two points in Y implying both these points

lie on the extreme ray and thus d = 0.

Since R must be the zero matrix, Y has no extreme directions. O

Since all extreme points of Y are rank I matrices and it has no extreme directions,

we conclude that Y C D and that the Sheralli-Adams closure is exact. Hence Y = D

proving Theorem 4.3.

4.6 Computational Results

We tested Algorithm 3 against the method of Natarajan et al. [34] on a set of data
provided by an institutional fixed income asset manager consisting of 30 potential

obligors. We used the same objective function used in the computational testing of

Natarajan et al. [34] which approximates the normalized exponential utility function:

1 - exp(-200x)
= 200

by ten linear segments shown in Table 4.1.

Returns were converted to a daily rate to match the scaling of this function. The

results of the lower bound on performance obtained for each policy in each iteration of

the decomposition method as well as the method of Natarajan et al. [34] are shown in
Table 4.2. The best bound is found in the 23rd iteration, when the support of assets

8 and 7 are tight and thus the corresponding solution is selected. In each iteration of

the algorithm, we are tightening the support of two assets of the adversarial problem;

however when we combine two assets with known support into a single asset with



U CU du

1 1.3521 0.0002
2 1.1070 0
3 0.8848 0
4 0.6891 0.0002
5 0.5367 0.0006
6 0.4179 0.0011
7 0.3178 0.0016
8 0.2355 0.0021
9 0.1626 0.0027
10 0.1037 0.0033

Table 4.1: Piecewise-linear approximation to exponential utility.

known support, we are slightly relaxing the adversarial problem since:

SUPP(r--) 9
- an_1 + -an, - bn_1 + W-bn

Wn-1 + Wn Wn-1 + Wn Wn-1 + Wn Wn-1 + Wn

and this inclusion need not be equality. Thus the sequence of bounds obtained is not

monotone. We see that the bound obtained in each iteration for tightly projecting

onto all but eight asset/portfolio pair is better than that provided by the convolution

of the mean and covariance and mean and support bounds from Natarajan et al. [34].

4.7 Application to the MAXCUT Problem

We note that with a slight modification, a similar decomposition approach is appli-

cable to the MAXCUT problem. In MAXCUT, we are given a graph g = (K, E)

where each edge in the graph is given a particular weight we, e E 9. The objective is

to partition the vertices K into two sets, N+ and K-, where the cut-weight, that is

the total weight of edges between the two sets, Ei+g WOJ) is maximized. This

problem is well known to be KP - hard [37].



Method/ZN, Bound
Natarajan et al. {341 0.8106

Z(Ni) 0.8331
Z(N2 ) 0.835
Z(N) 0.8038
Z(N4 ) 0.8188
Z(N5 ) 0.8311
Z(N6 ) 0.828
Z(N7 ) 0.826
Z(N) 0.8269
Z(N) 0.8314
Z(NIO) 0.8179
Z(N11 ) 0.8156
Z(N 12) 0.8212
Z(N 13 ) 0.8229
Z(N 14) 0.8048
Z(Ni5 ) 0.8154
Z(N16 ) 0.8185
Z(N 17) 0.8066
Z(Ni8 ) 0.808
Z(N1 9 ) 0.8033
Z(N 20) 0.8098
Z(N 21) 0.8018
Z(N 22 ) 0.7986

Z(N23)* 0.8377
Z(N24 ) 0.8348
Z(N 25 ) 0.8364
Z(N26) 0.8325
Z(N 27) 0.818
Z(N 28 ) 0.8134
Z(N29) 0.8361

Table 4.2: Achievable bounds obtained on fixed income data set, 10-4 scaling.



It is easy to see that, MAXCUT can be modeled as a discrete optimization problem

by introducing decision variables:

+1, i EAN+,

-,iEAN-.

Note that:

w(jd)(1 - zixj)/2 = oj,(~)E ((7V)
W {0, otherwise.

Here 6(A+,NK-) is the set of edges that connect M+ and A(-. Letting W be the

matrix of edge weights MAXCUT is then equivalent to the following discrete opti-

mization problem:
ZMC = min xTW x

s.t. Xi E {-1,1 }, Vi E ..

For any x feasible for problem (4.71), we have that x? = 1, thus we can arbitrarily

alter the diagonal elements of W to obtain an equivalent optimization problem. Let

Amin =| min eign(W) I and define W = W + D, where D is a diagonal matrix such

that:

Djj = 1 + max{Amin, E Wij}.

We then have thatI W is positive definite and strictly diagonally dominant. Also the

optimization problem:

ZMC = min xTWx

s.t. xic{-1,1} ViEKN,

is equivalent to problem (4.7).

We can apply our decomposition method to MAXCUT by iteratively selecting a

pair (or other small subset) of vertices setting the subpolicy of assignment to K+ and

K- for that pair. In the context of MAXCUT, this amounts to simply dropping the



constraints Xk E {-1, 1} for k V {i, j}. More formally we can write this method as

follows:

Algorithm 4 (Decomposition al)l)roach for MAXCUT). Let N+,N('- be the set of

vertices whose assignment to K+ and N- respectively has been fixed by iteration t;

and let N = A\ (A,+ U N-) be the set of vertices yet unassigned. The decomposition

approach for using a subset size K is given as follows:

1. Let t := 0,No- := NN+ := 0',KN := 0

2. DO UNTIL Ar+ = 0

(a) For each subset S of NM with |S| = K:

i. Solve the optimization problem:

min xTWx

s.t. Xi E {-1, 1} Vi E S

= 1 ~ ~(4.72)Xi = 1 Vi E Kf+
zi = -1 Vi E Nfi-

to obtain an optimal solution xt*(S).

(b) Let * = mini (xt*)T Wxt* be the minimum
SCAit:ISI=K

the subset that attains this minimum.

(c) For each i E S*

Let A(++1 :=A+ u {i}

7+1:= N- U {i}

value obtained and S* be

if 4* = 1,

if * = -1

(d) Let Kt+1 = N\S*

(e) Let t:= t + 1

Since W is positive definite, we note that each optimization problem (4.72) can

be solved by solving 2 K linear systems arising from each possible i1 assignments of



the variables with indices in S. These linear systems have the form:

2W(T)x(T) = b(T)

where W(T) is the sub-matrix of W corresponding to the indices in

T = N\(Mt U i- U S)

and the 2 K versions of b arise from enumerating all possible {-1, 1} assignments of

xj for j E S given by:

b= E i - Ej Wi~ - j- i
jENJ~ j~gt+ jES

Since W(S) is symmetric and diagonally dominant, each of these linear systems can

be solved very efficiently in 0 (m log2(n)) time due to the method of Koutis, Miller

and Peng[32] where m is the number of non-zero entries in W and n = |N. Step 2 is

repeated |~}] times and Step 2(a) is repeated 0 ((n)) times for an overall algorith-

mic complexity of 0 (mnK log2(n)). Additionally, the overall running time of this

heuristic can be scaled by sampling from all subsets of size K for Step 2(a) rather

than exhausting them. We examine the effects of altering K and sampling in the

computational results that follow.

4.8 Computational Results for MAXCUT

We applied Algorithm 4 on three families of tests:

1. Exhaustively enumerating all possible 0/1 edge-weight graphs on 3-7 vertices

and comparing the method with K = 2, 3, 4, 5 to the optimal solution.

2. Random graphs generated on 8-30 vertices with K = 2,3,4. The method is

compared to the Goemans-Williamnson approach {241.



3. Four large-scale Ising-spin model challenge problems from the 2000 DIMACS

challenge [1], where the method is compared to the best results reported from

the technical report of the competition {40]. In this section, we test K = 2 with

random subset. sampling for Step 2(a) of the algorithm.

4.8.1 Exhaustive enumeration of graphs on 3-7 vertices

For this family of tests, we generated every possible 0/1 edge-weight graph on 3-7

vertices. The optimal solution was found using exhaustive search. The decomposition

method was run on each graph with K = 2, 3, 4, 5. As shown in Table 4.3, this method

obtains the optimal solution in all instances of possible 0/1 graphs on 3-6 vertices

and almost all instances of graphs on 7 vertices. In those graphs where the optimal

solution is not obtained, the cut obtained by the decomposition approach contained

one less edge than that of the optimal solution; increasing K above 2 had little effect

on performance. Figure 4-1 shows one such instance. Note that Goemans-Williamson

rounding [24] obtained the optimal cut for this particular instance.

Number of Vertices Number of Instances K=2 K=3 K=4 K=5
3 8 100% 100% N/A N/A
4 64 100% 100% 100% N/A
5 1,024 100% 100% 100% 100%
6 32,768 100% 100% 100% 100%
7 2,089,602 99.64% 99.69% 99.64% 99.98%

Table 4.3: Percentage of all possible instances for which optimal cut is obtained for
0/1 graphs on 3-7 vertices.



- - - Optimal Cut

- - - -- Cut obtained with K=2

Figure 4-1: Instance where decomposition approach does not obtain optimal cut.

4.8.2 Random graphs on 8-30 vertices

For this family of tests, random 0/1 edge-weight graphs on 8-30 vertices were gener-

ated. 100 instances were created for each size. Graphs were generated by including

each edge independently with 50% probability. To benchmark the decomposition

method, we used the Goemans-Williamson [24] approach which provides a semi-

definite optimization-based bound on the optimal solution and method of randomized

rounding to obtain a feasible solution with a guaranteed 87.8% attainment of that

bound in expectation. For each instance, we performed 1000 trials of randomized

rounding and selected the best solution. Figure 4-2 shows the average attainment

of the semi-definite optimization bound by graph size. The decomposition method

attains between 98-99% of the bound on average for all problem sizes, outperform-

ing Goemans-Williamson rounding which obtained between 95-97%. Increasing the



subset, size from K = 2 to K = 3 or K = 4 has little effect on performance.

Figure
Size.

4-2: Random Graphs: Average Attainment of Optimality Bound by Graph

Figure 4-3 shows the minimum attainment of each method over all instances for each

problem size. Again we see a noticeable margin in performance of the decomposition

method over Goemans-Williamson rounding.

4.8.3 DIMACS challenge problems

For this family of tests, we used the DIMACS torus set challenge problems [1] which

are a set of four large-scale MAXCUT problems from the Ising model of spin glasses.

Problems "torusg3-8" and "toruspm3-8-50" are graphs on 512 vertices whereas prob-

lems "torusg3-15" and "toruspm3-15-50" are graphs on 3,375 vertices. Due to the

large-scale nature of these problems, it is prohibitively expensive to solve (4.72) for

every subset in Step 2(a) of the decomposition method. As an alternative to solving

for each subset for K = 2, we compared randomly sampling one subset with randomly
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Figure 4-3: Random Graphs: Minimum Attainment of Optimality Bound by Graph
Size.

sampling 30% of all subsets for the graphs on 512 vertices and 0.003% of all subsets

for the graphs on 3,375 vertices. Table 4.4 shows the results of the decomposition

method as compared to the best submitted for the challenge competition [401. Even

Problem Size Decomposition Decomposition best from
Problem Size (1 sample) (30%/0.003%) Competition [40]
torusg3-8 512 390.73 399.36 391.11

toruspm3-8-50 512 436 446 458
torusg3-15 3375 2545.21 2698.29 2602.03

toruspm3-15-50 3375 2788 2872 3016

Table 4.4: Value of solution obtained to DIMACS challenge problems.

with very sparse sampling, the decomposition method was able to outperform the

best reported cut from the challenge in two of the four instances, one for each of the

problem sizes.
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4.9 Concluding Remarks

In this chapter, we demonstrated the ability to implement a decomposition method

in the context of distributionally robust optimization with known mean covariance

and support. In each iteration of this method, a sub-policy for the weighting of two

random variables is derived by forcing the adversarial problem to be tight on the

projection of those two assets. We show that this tightness can be achieved efficiently

by proving that the Sherali-Adams closure of a quadratic optimization problem in

n-dinensions over a box in two-dIimensions is exact. Each iteration also provides us

with a bound on the ultimate performance of the resulting heuristic by constraining

the support of the adversarial problem in differing dimensions.

We also outline the application of our decomposition strategy for distributionally

robust optimization with known mean, covariance and support to the fixed income

portfolio optimization problem. In contrast to previous approaches that solve a

single weak relaxation of the problem, this approach allows us to build a policy

from the ground up by constructing sub-policies on relaxations that are tight in

the dimensions of interest. In each step of policy construction we obtain an achiev-

able bound and are allowed to select a policy that attains the best bound encountered.

In addition demonstrated promising performance of our decomposition method

for the MAXCUT problem, whose feasible region is the boundary of that of the

separation problem for distributionally robust optimization. For large problems we

also see that random sampling of projected subproblems to save computation time

performs well, outperforming reported results on 2 of the 4 DIMACS [1] challenge

problems.

101



102



Chapter 5

Conclusions

The decomposition methods presented in this thesis provide a tractable family

of heuristics for large-scale stochastic and robust optimization problems. Using

relaxations that are tight on the projections of subsets of dimensions of the problem

to obtain sub-policies over these dimensions, we obtain efficient heuristics that

perform well in practice on large-scale instances.

e In the context of stochastic optimization, this admits not only a new heuristic

for classical restless bandit problems, but also allows us to define and solve a

much broader class of Markov decision problems, Generalized Restless Bandits

which have widespread real world application (Chapter 2). Our decomposition

strategy displays promising computational results in the form of the Nested

Policy Heuristic for these problems.

e The feasibility of implementation on large-scale real world systems is also

demonstrated by application to the sponsored search advertising problem

(Chapter 3). Additionally, simplifications to derivation of the Nested Policy

Heuristic are discovered for large-scale problems with identical arms.

* In the context of robust optimization, the separation problem for distribution-

ally robust optimization with known mean, covariance, and two variable support
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is equivalent to indefinite quadratic optimization in n dimensions over a box in

2 dimensions. The Sherali-Adams closure [47] of the semi-definite relaxation to

this problem is proved to be exact, giving us an efficiently solvable approach

(4). This allows us to use a decomposition strategy for distributionally robust

optimization with known mean, covariance, and n-variable support. The ap-

plication of this decomposition strategy to distributionally robust optimization

with known mean, covariance, and support is shown in the context of fixed

income portfolio optimization. This approach shows promising computational

results over existing methods to solve the distributionally robust problem which

often rely oin weak relaxations. It is also shown that a similar Projection-Based

Decomposition approach yields an efficient heuristic for the MAXCUT problem

with good performance relative to the Goemans-Willianson [24] rounding on

moderately sized graphs and challenge submissions for the DIMAC challenge

problems [1].
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Appendix A

Arm Aggregation for arbitrary

subset size

Define the binary variables w(g) for each g c A: Ig| = f such that w(g) = 1 if g E

The inixed-integer optimization formulation of the Arm Aggregation problem is then:

mnax E :E ER '(s ) xg (s)
gcA:Ig|=l dEDg BESg /iEg

s.t. ( x(s) = asw(g) + Z P (s --+ si) xz(s'),
dEVg 'ESg dEDg iEg

Vg c A: IgI = , E Sg,

Z ~I ~ d ( zd) x(s) = 1-( , ,) M
gcA:|g|=tdD ESg (Eg M

x'(s) < Uw(g), Vg c A:Ig|= f, 8 E Sg, d E Vg
1: w(g) = 1, Vk E A

gcA:Igj|tg3k

xz(s) ;> 0, Vg c A: Ig| = 1, 8 E Sg, d E Vg

w(g) E {0, 1}, Vg c A: IgI = f
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