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Abstract

We first demonstrate theoretically and experimentally that electromagnetic resonators
with high quality factors (@) can be used to transfer power efficiently over distances
substantially larger than the characteristic dimensions of the resonators by operating
in a so-called “strongly coupled” regime. We next generalize the notion of strongly
coupled resonances to a system comprising one power source and multiple receivers in
a regime of broad practical applicability and show that, by appropriately tuning the
parameters of the system, it is possible to significantly improve the overall efficiency
of the wireless power transfer relative to the single-source and single-receiver configu-
ration. We experimentally verify the predicted improvement in efficiency for a system
consisting of one large source (area ~ 1 m?) coupling to two much smaller receivers of
dimensions comparable to those of many portable electronic devices (area ~ 0.07 m?).
Next, we present a novel design for an electrical conductor whose structure is opti-
mized to have the lowest achievable resistance in the 2-20 MHz frequency range,
where it can offer performance an order of magnitude better than the best currently
available conductors. The two following chapters deal with energy transport in pho-
tonic crystals. We first investigate numerically how a square lattice of dielectric rods
may be used to collimate a laser beam and the feasibility of using this system as
a chemical sensor. Finally, we present and demonstrate through specific examples
a systematic and general procedure, which is both computationally inexpensive and
straightforward to implement, for coupling strongly dissimilar waveguides with 100%
transmission.
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Chapter 1

Overview

A substantial part of this dissertation deals with phenomena arising in systems of
coupled electromagnetic modes that are well described by a subset of the powerful
phenomenological techniques collectively known as coupled-mode theories [29, 30].
Chapter 2 provides a physically intuitive and heuristic derivation of the coupled-
mode theory expressions that will be used throughout much of our work. Chap-
ters 3, 4, and 5 either deal directly with or (in the case of Chapter 5) were originally
inspired by the tantalizing possibility of making efficient wireless power transfer fea-
sible for practical applications. The mechanism for power transfer that we consider
here relies on the near-field interactions between the electromagnetic fields of differ-
ent resonators rather than on their radiative far-field, and we show that although
near-field interactions, by their very nature, decay faster as a function of distance
than radiative fields [36], it is possible, with proper design, to use them to achieve
efficient power transfer (where the precise meaning of “efficient” may depend on the
requirements of the particular application) when a source (the object transmitting the
power) and a device (the object on the receiving end of the transfer) are separated by
distances multiple times greater than their characteristic dimensions. Furthermore,
this near-field solution does not suffer from many of the drawbacks of a radiative ap-
proach such as lack of omnidirectionality (if the radiation is not directed), the need for
complicated tracking mechanisms (if it is), necessity of a clear line-of-sight between

the source and the device at practical frequency ranges for radiative power transfer,
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as well as more stringent safety concerns for radiative systems [35].

Chapter 3 starts by expressing the condition for efficient wireless power trans-
fer between two resonators in the framework of coupled-mode theory. Within this
framework, we are able to identify a “strongly coupled” region in the parameter
space of the coupled resonators where the efficiency of the transfer is sufficiently high
for a wide range of applications. Although the coupled-mode theory treatment is
general enough to apply to essentially any system of interacting resonators, we fo-
cus on electromagnetic resonances for a concrete demonstration of the principle of
strongly coupled resonances. For our first experimental validation of midrange wire-
less power transfer using near-field coupling, we build helical self-resonant coils which
rely on their distributed inductance and capacitance to resonate (in contrast to the
lumped inductance and capacitance of a textbook RLC circuit). We develop from
first principles an approximate analytical theory for self-resonant coils that matches
the experimental results reasonably well for a wide variety of parameters and proves
to be quite useful in predicting the expected performance of self-resonant coils before
they are built, thus aiding in their design. Finally, we measure the coupled-mode
theory parameters for our self-resonant coils and, in a separate experimental setup,
the efficiency of the power transfer and find the latter to be in good agreement with
the optimal efficiency predicted from the coupled-mode theory parameters. With the
self-resonant coils built for this project (measuring 60 cm in diameter) we are able to

achieve an efficiency ~ 50% at a separation of 2 m between the center of the coils.

Chapter 4 generalizes the coupled-mode theory treatment to a system contain-
ing one source interacting with an arbitrary number of devices in the limit where
the coupling between the source and a device dominates over the coupling of that
particular device to any other device. This setup approximates a real-world scenario
where a large resonator (e.g., embedded in a wall) serves as the source of power for a
multitude of much smaller receivers, which could potentially be integrated into elec-
tronic devices. We find that one can achieve significant gains in the overall efficiency
of the system by simultaneously powering multiple properly tuned devices, and that

this improvement in performance could lead to decent overall efficiencies even if the
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source is only marginally strongly coupled to an3'f particular receiver. We demonstrate
these results in a laboratory experiment coupling one large source (~ 4 times the area
of the self-resonant coils in Chapter 2) to two small sources (~ 1/16 times the area of
the source). We perform this considerably more complicated experiment using a very
different methodology from that of the previous chapter and find the directly mea-
sured efficiency to be in excellent agreement with the prediction from coupled-mode

theory.

In Chapter 5 we present an original design for an electrical conductor—consisting
of a number of mutually insulated coaxial conducting shells—that has much lower
resistance in the 2-20 MHz range (which is of particular interest to our wireless power
transfer approach) than the best currently available conductors: a solid wire or litz
wire (litz wire is a braid of many thin and mutually insulated strands [76, 24, 57]).
In the course of introducing our new conductor design, we also elucidate the physical
effects at work in a conductor at radiofrequencies (such as the skin-depth effect and
proximity losses) and analyze why litz wires, which work quite well at frequencies
below 1 MHz, become impractical above ~ 2 MHz. One obvious application of
our proposed conductor would be to build magnetic resonators for midrange wireless
transfer with improved performance and/or more compact design, although our novel

design could possibly be of use to any electrical application in this frequency range.

The next two chapters shift the focus away from wireless power transfer and
towards applications of photonic crystals. Photonic crystals are man-made periodic
dielectric structures whose properties can be tailored to enable an exceptional amount
of control over the propagation light and a variety of unique physical effects [37]. In
Chapter 6, we show how we used computer simulations to aid in the design of a sub-
sequently fabricated photonic crystal slab composed of silicon rods which supported
the propagaﬁion of a light beam with nearly no diffraction, a phenomenon known as
supercollimation. We also quantitatively compare the expected performance of su-
percollimation in our rod slab to an alternative photonic crystal consisting of a lattice

of holes in a dielectric slab.

Finally, Chapter 7 outlines a general procedure that could be used to couple very
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dissimilar Waveguides with 100% transmission. This technique is more easily under-
stood in a coupled-mode theory approach and is in principle applicable to any pair of
waveguides as long as a few simple conditions (weak-coupling of both waveguides to
a resonance and among themselves) are satisfied. The prescription is typically easy
to implement and computationally cheap, as we demonstrate explicitly for different

combinations of three different photonic crystal waveguides.
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Chapter 2

Temporal coupled-mode theory

2.1 Introduction

In this chapter we give an overview of the coupled-mode theory formalism [29] that
will be used in much of this thesis. In general, a couple-mode theory may refer to
any of a set of abstract approaches used to treat diverse problems such as coupled
parallel waveguides [28, 33], tapered waveguides [40, 56], resonant cavities coupled to
waveguides [20, 21, 74] and many other physical systems (e.g., see [30] and references
therein). A common thread in coupled-mode theory methods is to expand the physical
field in a finite basis and extract the coefficients governing the dynamics of the field
by enforcing some additional constraint such as conservation of energy [29], time-
reversal symmetry [74], Lorentz reciprocity [12], or using a variational principle [31].
Here we focus on two cases of importance to the problems treated in this thesis: a
system of discrete coupled resonators relevant to our analysis of midrange wireless
power transfer (Chapters 3 and 4) and a resonant cavity weakly coupled to waveguides
(Chapter 7). In the first case we will show—following the approach of [29]—that if
the system is time-invariant (so that the geometrical and material properties do not
vary in time) and the overlaps of the fields due to different resonators are sufficiently
small, then the total energy of the system can be expressed to good approximation
as the sum of the energies of the individual resonators and the coupling and decay

coefficients can be derived in a straightforward way by enforcing energy conservation
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and linearity. Similarly, we derive equations describing the evolution of the cavity
coupled to waveguides as done in [37] by assuming that the cavity is weakly coupled
to each waveguide (and that the direct coupling between waveguides is weaker still
and can be ignored to leading order), and enforcing time-invariance, time-reversal

invariance, energy conservation and linearity.

2.2 Coupled-mode theory of discrete coupled res-

onators

For concreteness, we shall focus on electromagnetic resonances in this section, al-
though the same arguments are applicable to other types of resonances (e.g., acoustic
and nuclear) as long as they obey the same general physical principles. We start by
considering a set of N lossless resonators, and assume that we have found the har-
monic solution to Maxwell’s equations for each individual resonator m in the absence

of all others:

V X en(r) = iwnim(r)h,(r), (2.1)
V X hy,(r) = —iwnen(r)eq(r), (2.2)

where €, (r) and p,(r) are the time-invariant permittivity and permeability profiles
associated with resonator m, and w,, its characteristic frequency. In addition to
Egs. 2.1 and 2.2, e,,(r) and h,,(r) must also satisfy the boundary conditions associ-

ated with the resonator. For convenience the modes are normalized such that

1 [ @ len®len(®)F + pn®lBn@)) = 1. (23)

Given Egs. 2.1, 2.2, and 2.3, the time-dependent electric and magnetic fields can be
written as Ep,(r,t) = an(t)en(r) and Hy,(r,t) = an(t)hy(r), |am(t)|? corresponds to
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the energy stored in the resonator, and the time evolution of a,,(t) is governed by

am(t) = —iWmm (t). (2.4)

We now relax the assumption that the resonators are lossless, and consider the quality

factor @, of the resonator traditionally defined as [36]

Energy stored in resonator m

Qm = Wn . (25)

Average power loss in m

As long as @,, > 1, the solution to Maxwell’s equations including losses is well
approximated by the lossless solution, and the average power loss is P, (t) o |am(t)]2.

Using Eq. 2.5, we find

Pu(t) = %"ilam(t)F

2T |am (B)]?, (2.6)

Il

where we have defined the decay rate 'y, = wp/(2Qn). Since P, (t) = dlan|?/dt =
ama@l, + amak,, Eq. 2.4 can be suitably modified to account for Eq. 2.6 by adding a

term proportional to ['y,:

am (t) = — (iwm + T'm) am(t). (2.7)

So far we have considered each resonator in isolation; let us now consider the res-
onators in the presence of one another and approximate the resulting electromagnetic

fields as an expansion in the modes of the individual resonators:
E(r,t) =Y an(t)em(r), H(rt) > an()hn(r). (2.8)
m m

A calculation of the electromagnetic energy contained in the fields of Eqgs. 2.8 would
generally have to take into account mixed terms of the form o« apa;. However,

provided that the resonators are sufficiently separated in space so that the overlap
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integrals between different modes satisfy
’/dr[e(em-e;-ke;‘n-en) +u(hy - bl +h -hy)]| <1, (2.9)

it is a good approximation [33] to neglect such energy cross-terms and take the total
energy of the system to be Urar = >, |am(t)]?. (This is the case for the systems
considered in this thesis, for which the overlap terms are < 1072.) Since |a,,(t)|? is the
energy stored in resonator m, we may find its coupling to another resonator n (ignor-
ing all other resonators for now) by noting that changes in the energy |a,,(t)|?> must
be due to a combination of the loss mechanisms embodied in I';,, and a net transfer of
energy to or from the other resonator. The latter effect is due to interference terms
in the real part of the Poynting vector E x H*/2; it follows that

d|am|2 _ 2 - * * *
o =20 mlam|® + i (@), Kmn@n — AmKi,,ar) (2.10)

mn-n

where the constant k., can be determined by integrating the aforementioned terms
of the Poynting vector between the two resonators, or by some equivalent method.
Although K, is typically a function of the angular frequency w, it can be self-
consistently approximated by its value at the mean of the resonant frequencies (wy, +
wn)/2 as long as it varies slowly within a frequency range ~ w/Qm or ~ w/@Q, of
that value. In general, there may be additional loss terms induced by one resonator
on another, but these terms are sufficiently small here that they can be ignored for
our purposes in this thesis (one such effect is considered in [43], which analyzes the
interference between the radiative fields of two resonators). We can derive some key
properties of K, by cohsidering the rate of total energy loss of the two coupled

resonators m and n:

d
E(|am|2+|an|2) = —20nlam|? — 2T an?

.ok * * * * *
+ i (a Kmnn — Qb G, + G Kopm G, — Qb Oy - (2.11)

Since we have assumed that all loss mechanisms are incorporated in I',, and I';,, the
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second line of Eq. 2.11 must equal zero. Combining that with the fact that the phases
of a,, and a, in Eq. 2.11 are arbitrary, we find that x,,, and k., must be real and
equal.

From Egs. 2.7 and 2.10, we see that the time evolution of the a,,(t) for a system

of coupled resonators is given by

m(t) = — (iwm + Tm) am(t) + D ikmnan(t). (2.12)
n#m

In order to apply this formalism to the analysis of power transfer between resonators,
we need to modify Eq. 2.12 to account for the effect a source exciting the resonator
and that of a load extracting power from the resonator. The first effect is accounted
for by adding a driving term F,,(t) to the right-hand side of Eq. 2.12, while the load
is modeled as an additional factor that increases the decay rate of resonator m from
Iy to (1 + 2,) T, and extracts power 22, |am(t)]? from it. Our coupled-mode

theory description of a system of coupled discrete resonators then reads

am(t) = = [iwm + (1 + Zm)lon) @ () + D Kmnn(t) + Fu(t), (2.13)

n#£m

which provides the starting point for the analyses in Chapters 3 and 4.

2.3 Coupled-mode theory of a resonant cavity cou-

pled to waveguides

We now consider a lossless system comprising a resonant cavity—of resonant fre-
quency wo—coupled to N waveguides [37]; Fig. 2-1 is a schematic representation of
the case N = 2 relevant to Chapter 7. Although we assume the system is lossless in
the sense that there is no dissipation in materials or power radiated outside of the
structure, the energy contained in the cavity mode can still escape through the waveg-
uides. If the coupling of the cavity to each waveguide is sufficiently weak, the cavity

mode is well approximated by the lossless case and, as in Section 2.2, we may define
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Figure 2-1: Graphical representation of a coupled-mode theory treatment of two
waveguides (red and blue strips) coupled by means of a cavity tuned to resonate at
the angular frequency wy and couple to each waveguide with quality factors 1 and

Q2.

a complex variable a(t) such that |a(t)* represents the energy in the cavity. Each
waveguide is in turn represented by two complex variables S,(J)(t) and S (t) defined
so that the amplitudes squared of their Fourier transforms S& )(w) and 557 (w) rep-
resent the power per unit frequency at w carried by the waveguide mode traveling
towards and away from the cavity, respectively. We further assume that the direct
coupling between waveguides can be neglected relative to the coupling between the
waveguides and the cavity.

The mode in the cavity can either decay into the outgoing waveguide modes with
decay rates I'y, = wy/(2Qm) [the @, being independent from each other as we neglect
direct interactions between waveguides to this order of approximation] or be excited
by the incoming waveguide modes S% )(t). Since the system is time-invariant and

linear, this process is described by an equation of the form

a(t) = —iwp (1—;2262 ) t)+Za S69(t) (2.14)

where the parameters a,, represent the coupling between the cavity and the incoming

mode. Much like the £, in Section 2.2, the a,, are approximated as constants over
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the frequency range of interest. Similarly, the power in an outgoing waveguide mode
S )(t) can come from either the decay of the cavity mode or the reflection of its

corresponding incoming mode:

SCt) = B SEI (1) + ymalt), (2.15)

where the 8, and <, are constants similar to «,,, all of which can be related to
wo and Q,, by enforcing conservation of energy and time-reversal invariance. First,
consider the decay of the cavity mode to an outgoing waveguide mode m when there
is no incoming power. Since the power lost by the cavity must equal the outgoing
power, we find from Egs. 2.14 and 2.15 that

dla@®)* _ wo

— = ool = bl =[SO @) (2.16)

The relative phase between a(t) and S& )(t) has been undetermined so far, and we
may fix it by choosing v, = m. Let us now run this solution backwards in
time (which we are allowed to due to time-reversal symmetry); the incoming mode is
now S (t) = v/wo/Qma(t), while the power in the outgoing mode is zero. Combined
with Eq. 2.15 this implies that §,, = —1. Finally, since the energy in the cavity is
growing exponentially at a rate wyla(t)|>/Qm, we find from Eq. 2.14 and the above
value of & )(t) that au, = /wo/Qm. The final coupled-mode theory equations then

read

a(t) = —iwo (1—222(2%) a(t)-l—ZM%Sf{fW), (2.17)
SO = —S,(,j)(t)-l-Jg—oa(t). (2.18)

Thus we see that, for a fixed wy, this physical setup can be tuned by varying the
various Q,, a property we exploit in Chapter 7. Let us now apply Egs. 2.17 and 2.18
to the case of a cavity coupled to two waveguides (Fig. 2-1). We are interested

(+)
1

- . 2
in particular in the transmission T'(w) = Sé_)(w) /S (w)| , the fraction of power
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coming in from the first waveguide that makes it to the second waveguide when only
the first waveguide is excited (here we work in the frequency domain for convenience).

S’éﬂ (w) = 0, Eq. 2.18 for the second waveguide immediately gives

SNw) = \/%&(w). (2.19)

Since we have set

Meanwhile, Eq. 2.17 becomes

—twa(w) = —iwed(w) — (2%21 + 2%22) woa(w) + \/g§§+)(w), (2.20)

which combined with Eq. 2.19 gives

57 (w) = - wo/v Qll@ 1 S (W), (2.21)
z(wo —CU) -+ (E -+ §Q—2) Wo
whence we can read off the transmission
2
T(w) = /(@) (2.22)

(wo — w)? + (2%21 + ﬁ) wg

When Q; = Q2, T(wo) = 1 (there is 100% transmission from one waveguide to the
other at the resonant frequency of the cavity), a property known as Q-matching [20]

that will be used in Chapter 7.
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Chapter 3

Wireless power transfer via
strongly coupled magnetic

resonarnces

3.1 Summary

We show, using the coupled-mode theory formalism, that a system of two coupled
resonances can in principle be operated in a “strongly coupled” regime wherein they
transfer power from one another with reasonably high efficiency. We then demon-
strate experimentally that a system of two helical self-resonant coils (which resonate
due their distributed, as opposed to lumped, inductance and capacitance) fulfills the
strong coupling criterion and therefore transfers power efficiently even though the
separation between the centers of the coils is many times larger than their char-
acteristic dimensions (i.e., “midrange” distances). We experimentally measure the
coupled-mode theory parameters of the coils as well as the efficiency of the coil-to-
coil transfer while powering a 60 W light bulb, and find that the measured efficiency
agrees well with the optimal efficiency predicted by the coupled-mode theory param-
eters. Using this setup, we can fully light up the light bulb when the centers of the

coils are more than 2 m apart with ~ 50% efficiency. We also derive from first prin-
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ciples an approximate analytical model for the coils that can predict most quantities

of interest within ~ 5%.

3.2 Introduction

Attempts to deliver power wirelessly date from at least the turn of the twentieth
century, when Nikola Tesla attempted to develop a scheme to transfer power wirelessly
over distance [77]. In the mid-twentieth century, much effort was also devoted to
developing a long-range wireless power transfer scheme using radio waves [10]. Over
the past decade or so, there has been a proliferation of portable electronic devices
(laptops, cell phones, robots, PDAs, etc.) which need to be recharged on a daily basis.
As a consequence, interest in wireless power has reemerged [23, 19, 32, 42]. Radiative
transfer [78], although perfectly suitable for transferring information, poses a number
of difficulties for power transfer applications in that the efficiency of power transfer
is very low if the radiation is omnidirectional, and unidirectional radiation requires
an uninterrupted line of sight and sophisticated tracking mechanisms. A theoretical
paper [44] recently presented a detailed analysis of the feasibility of using resonant
objects coupled through the tails of their non-radiative fields for midrange energy
transfer. Intuitively, two resonant objects of the same resonant frequency tend to
exchange energy efficiently, while dissipating relatively little energy in extraneous off-
resonant objects. In systems of coupled resonances (e.g., acoustic, electromagnetic,
magnetic, nuclear), there is often a general“strongly coupled”regime of operation
[2]. If one can operate in that regime in a given system, the energy transfer is
expected to be very efficient. Midrange power transfer implemented in this way can
be nearly omnidirectional and efficient, irrespective of the geometry of the surrounding
space, with low interference and losses into environmental objects [44]. The above
considerations apply irrespective of the physical nature of the resonances. In this
dissertation, however, we focus on one particular physical embodiment: magnetic
resonances. Magnetic resonances are particularly suitable for everyday applications

because most non-metallic and non-magnetic materials do not interact strongly with
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magnetic fields, so interactions with environmental objects are minimized. We were
able to identify the strongly coupled regime in the system of two coupled magnetic
resonances by exploring non-radiative (near-field) magnetic resonant induction at

~ MHz frequencies.

3.3 Coupled-mode theory derivation of the opti-
mal efficiency

Efficient midrange power transfer occurs in particular regions of the parameter space
describing resonant objects strongly coupled to one another. Coupled-mode theory is
a particularly convenient tool for analyzing systems whose physical properties (e.g.,
their loss and interaction mechanisms) can be linearized around their resonant fre-
quency. As argued in Section 2.2, a coupled-mode theory description of a set of NV

resonators reads

am(t) = — [iwm + (14 Zm) ] @m(t) + > ikmnan(t) + F(t), (3.1)
n#m

where the indices denote the different resonant objects. The variables an(t) are
defined so that the energy contained in object m is |am()|?, wm is the resonant
angular frequency of that isolated object, T, is its intrinsic decay rate (e.g., due to
absorption and radiated losses), and z,, is a normalized external loading through
which power can be extracted from the resonator. (Although we omit the specific
loading mechanism for generality for now, z,,, may be caused by e.g., a loading circuit
such as a simple resistor.) The F,,(t) are driving terms and the &k, are coupling
coefficients between the resonant objects indicated by the subscripts.

In this chapter, we limit the treatment to the case of two objects, denoted by source
and device, such that the source (identified by the subscript 1) is driven externally
at a constant frequency, and the two objects have a coupling coefficient x. Work
is extracted from the device (subscript 2) by means of a loading mechanism that

contributes the additional term x5 to Eq. 3.1. The work extracted is determined by
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the power dissipated in the load, that is, 2zoI'2|as(t)|?. Finding the efficiency 7 of the

transfer with respect to the loading involves solving Eq. 3.1 for a 2 x 2 system with
Kig =k, 1 =0, F1 # 0, and F5 = 0. One finds that the efficiency is highest when
the source and the device are resonant (w = w; = ws), in which case the efficiency as

a function of 2 and x/+/I'1I's becomes

$2F2|a2‘2
I‘1|a1[2 + (1 + ZBQ)PQ{OQP
[z2/(1 + 22)?][k*/(T1T2)]
L+ [/ + 22)][s%/ (T1T2)]

(3.2)

Thus we see that the efficiency depends only on the the dimensionless quantity
k/+v/T1T2 (which depends on intrinsic properties of the resonators as well on their
coupling) and on the loading factor zo which can in principle be tuned to any value
we wish. We find that the efficiency is maximized when z, = ma/—(l“—lﬁj and
a plot of the optimal efficiency as a function of x//T1I'z is shown in Fig. 3-1, from
which it is apparent that the efficiency of energy transfer is sufficiently high for many
applications requiring considerable amounts of power when x2/(I'1T2) 2 1. This is
commonly referred to as the strong coupling regime and can be intuitively under-
stood by noting that x represents the rate at which energy is exchanged between the
resonators, while 1/T'11 is a measure of how fast the resonators dissipate energy. If
the energy can be whisked away from the source resonator to the device resonator
and then to a load which converts that energy into useful work faster than the energy
is wasted (k 2 v/T'1[2), we would expect the overall energy transfer to be reasonably
efficient. Resonance plays an essential role in this power transfer mechanism, as the
efficiency is improved by approximately w?/I'% (~ 10° for typical parameters) relative

to the case of coupled nonresonant objects.

3.4 Theoretical model for self-resonant coils

After some experimentation in the laboratory, we decided to use self-resonant coils

for our demonstration of wireless power transfer. Relative to capacitively loaded
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Figure 3-1: Optimal efficiency as a function of the strong-coupling parameter
k/+/T1I'5. Notice how most of the upswing in efficiency occurs within one decade
of k/+/T'1T'2. We define the strongly-coupled regime as the parameter space defined
by &/+/I'1T's 2 1, where the efficiency is sufficiently high for a wide variety of real-
world applications.

coils [44]—which were the main alternative—self-resonant coils proved to be easy to
build with relatively good reproducibility, had sufficiently low losses for our needs,
and did not require very low loss capacitors that could handle high amounts of power.
For simplicity, both coils were designed to be identical. Self-resonant coils rely on
the interplay between distributed inductance and distributed capacitance to achieve
resonance. The coils are made of an electrically conducting wire of total length [ and
cross-sectional radius a wound into a helix of n turns, radius r, and height h. To the
best of our knowledge, there is no exact solution for a finite helix in the literature,
and even in the case of infinitely long coils, the solutions rely on assumptions that
are inadequate for our system [71]. We have found, however, that a simple quasi-
static model is in good agreement (within ~ 5%) with experiment. We start our
derivation of our theoretical model by observing that the current must be zero at the
ends of the coil, and make the educated guess that the resonant modes of the coil are
well approximated by sinusoidal current profiles along the length of the conducting

wire. We are interested in the lowest mode, so if we denote by s the parametrization
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coordinate along the length of the conductor, such that it runs from —{/2 to +1/2,
then the time-dependent current profile has the form Iy cos(ws/!l) exp(iwt). It follows
from the continuity equation for charge that the linear charge density profile is of the
form A sin(ws/l) exp(iwt), so that one-half of the coil (when sliced perpendicularly to
its axis) contains an oscillating total charge (go = Aol/7) that is equal in magnitude
but opposite in sign to the charge in the other half. As the coil is resonant, the current
and charge density profiles are m/2 out of phase from each other, meaning that the
real part of one is maximum when the real part of the other is zero. Equivalently, the
energy contained in the coil is at certain points in time completely due to the current,
and at other points it is completely due to the charge. Using standard techniques
from electromagnetism [36], we can define an effective inductance L and an effective

capacitance C for each coil as follows:

L= i ] [T ?—Jrglrl) (3)
& = war ) [T (34

where 11 is the magnetic constant, g is the electric constant, and the spatial current
J(r) and charge density p(r) are obtained respectively from the current and charge
densities along the isolated coil in conjunction with a parametrization of the geometry
of the object. The integrals in Egs. 3.3 and 3.4 can then be evaluated by numerical
integration (which takes of the order of a second in MATLAB). As defined, L and C
have the property that the energy U contained in the coil is given by

1
U = =L|LJ?
5 L1Do]
L e
= %Mo‘ - (3.5)
Given this relation and the equation of continuity dp/0t + V - J = 0, we find that
the resonant frequency must be fo = 1/[27v LC]. We can now treat this coil as a

standard oscillator in coupled-mode theory by defining a(t) = /L/2I(t). We can
estimate the rate of power dissipation and the @ by noting that the sinusoidal profile
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of the current distribution implies that the spatial average of the peak current squared
is |Io|?/2. For a coil with n turns and made of a material with conductivity o, we
modify the standard formulas for the ohmic (Ronm) and radiation (Ry.q) resistances
accordingly:

pow !
20 4rma

R., — [H inz(w_ry_i_i wh : (3.7)
rd T Ve (120 e 3\ ¢ ) |’ '

The first term in Eq. 3.7 is a magnetic dipole radiation term (assuming r < 2mc/w,

Rohm =

where c is the speed of light); the second term is due to the electric dipole of the coil
and is significantly smaller than the first term for our experimental parameters. The
coupled-mode theory decay constant for the coil is therefore I' = (Ropm + Rrad)/(2L),
and its quality factor is Q = w/(2I"). Finally, we find the coupling coefficient k3 ;
by looking at the work done by the source coil on the the device coil, assuming a
steady-state solution in which currents and charge densities have a harmonic time

dependence e~ *":

Wor = [ drEa(r)- 0
— _Zl;r-//drdr’ [,Uo |il_(r’) +P1(r’) r—r LI

r| € [r—1r}

i
|
§.
<
=
3

(3.8)

where M is the effective mutual inductance and the subscript 1 indicates that the
electric field is due to the source. Upon comparing Egs. 2.11 and 3.8, one finds
that k = kg1 = wM/(2y/L1Ly). When the distance D between the centers of the
coils is much larger than their characteristic size, x scales with the D~® dependence
characteristic of dipole-dipole coupling. Both x and I' are functions of the frequency,
and x/T" and the efficiency are maximized for a particular value of f, which is usually
in the range 1 to 50 MHz for typical geometrical parameters of interest [44]. Thus,

picking an appropriate resonant frequency for a given coil size plays a major role in
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Figure 3-2: Experimental setup for measuring the resonant frequency and quality
factor @ of a resonator. The self-resonant coil (center) is excited by a coil connected
to a CW source (right), and the amplitude of its excitation is picked up by coil
connected to an oscilloscope (left). The quality factor is found from the FWHM of
the measured amplitude as the frequency of the CW source is swept.

optimizing the power transfer.

3.5 Experimental measurement of coupled-mode

theory parameters and comparison to theory

The parameters for the two identical helical coils built for the experimental validation
of the power transfer scheme are h = 20 cm, @ = 3 mm, r = 30 cm, and n =
5.25. Both coils are made of copper. The spacing between loops of the helix is not
uniform, and we encapsulate the uncertainty about their geometry by attributing

a 10% (4 2 c¢m) uncertainty to h in the calculations of our analytical model. The
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Figure 3-3: Experimental setup for measuring the coupling constant x. The self-
resonant coil on the right is excited by a CW source by means of a small excitation
coil, while a pickup coil connected to an oscilloscope measures the amplitude of the
excitation of the self-resonant coil on the left. The coupling constant is related to the
frequency splitting between the two peaks of the amplitude detected by the oscillo-
scope as a function of the frequency of the excitation.

expected resonant frequency given these dimensions is fo = 10.56+0.3 MHz (the range
of values corresponds to the aforementioned uncertainty in the dimensions) and the
predicted () for the loops is estimated to be ~ 2500 (taking o = 5.9 x 107 S/m for
the copper conductor). The resonant frequency and quality factor of each coil are
measured using the setup shown in Fig. 3-2: a CW source excites the self-resonant
coil while a pickup coil measures the amplitude of the excitation. Recasting this setup
in terms of coupled-mode theory variables involves solving Eq. 3.1 for the case of one

driven resonator (denoted by the index 0). The amplitude-squared of the excitation
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Figure 3-4: Comparison of experimental and theoretical values for & as a function of
the separation between coaxially aligned source and device coils (the wireless power
transfer distance).

is readily found to be
|Fol?

PRV L 3.9
(wW—wp)?+172 (89)

lag|* =

meaning that the resonant frequency corresponds to the frequency at which the am-
plitude detected by the oscilloscope is maximum and that the Q can be related to
the full width at half maximum (FWHM) of the amplitude-squared. We find exper-
imentally that our coils resonate at a frequency of 9.90 MHz, corresponding to an
approximately 5% discrepancy with the prediction of our quantitative model, with a
@ of 950 £ 50. We estimate that the more significant difference between measured
and predicted values for the @ may be due to our model of resistive losses not taking
into account the proximity losses induced by one turn onto the other turns of a coil.
We henceforth use the experimentally observed Q and T’y = I'y = I’ = w/(2Q) derived

from it in all computations.
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Figure 3-5: Coupling « vs distance when: (a) the coils are coplanar (b) one of the
coils is tilted by 45° away from the coaxial orientation.

We measure the coupling coefficient s by placing the two self-resonant coils a
center-to-center distance D apart, exciting one coil with a CW source and measuring
the amplitude of the excitation of the second coil (Fig. 3-3). In coupled-mode theory,
this corresponds to a two-resonator system with Fy = Fe™®! F, =0, and #; = x4 =

0. The resulting amplitudes are

_ [Ty — i(w — wy)] Fe~ ™t
gy = (w—w)(w—ws) =2 [[1(w—wi) + To(w — wy)] + 1 Ta + k2 (3.10)

@ = i (3.11)
2 (w—wl)(w—wg)—i[Fl(w—wl)+Pg(w—wg)]+f‘1f‘2+f~c2' .

Eq. 3.11 implies that when the two resonators are tuned to the same frequency and
have the same quality factor (w; = wy and I'y = T';), the frequency splitting between
the two peaks of |az|? is given by 2v/k2 —I'2. In this work, we focus on the case
where the two coils are aligned coaxially (Fig. 3-4), and although we measured & as
as function of distance for two alternative orientations (Fig. 3-5), we did not proceed

with direct measurements of the efficiency for those.
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Figure 3-6: Comparison of experimental and theoretical values for the parameter /T’
as a function of the wireless power transfer distance. The theory values are obtained
by using the theoretical x and the experimentally measured I'. The shaded area
represents the spread in the theoretical £/I" due to the ~ 5% uncertainty in Q.

3.6 Measurement of the efficiency

Combining the measured @ with the measured and computed k, we can plot the
strong-coupling parameter x//I'1I'; = £/I" as a function of distance (Fig. 3-6). Com-
paring the results with Fig. 3-1, we find that we are in the strongly coupled regime

throughout the entire range of distances probed.

As our driving circuit, we use a standard Colpitts oscillator [17] whose inductive
element consists of a single loop of copper wire 25 c¢m in radius (Fig. 3-7); this loop
of wire couples inductively to the source coil and drives the entire wireless power
transfer apparatus. The load consists of a light bulb and is attached to its own loop

of insulated wire, which is placed in proximity of the device coil and inductively
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Figure 3-7: Schematic of the experimental setup. A is a single copper loop of radius
25 c¢cm that is part of the driving circuit, which outputs a sine wave with frequency
9.9 MHz. S and D are respectively the source and device coils referred to in the text.
B is a loop of wire attached to the load (light bulb). The various «’s represent direct
couplings between the objects indicated by the arrows. The angle between coil D and
the loop A is adjusted to ensure that their direct coupling is zero. Coils S and D are
aligned coaxially. The direct couplings between B and A and between B and S are
negligible.

Light-bulb

coupled to it. By varying the distance between the light bulb and the device coil,
we are able to adjust the parameter z, so that it matches its optimal value, given
theoretically by \/m [The loop connected to the light bulb adds a small
imaginary component to (1 + z2)I'2, which shifts the frequency of the device coil but
can compensated for by slightly retuning the coil.] We measure the work extracted
by adjusting the power going into the Colpitts oscillator until the light bulb at the
load glows at its full nominal brightness. We determine the efficiency of the transfer
taking place between the source coil and the load by measuring the current at the
midpoint of each of the self-resonant coils with a current probe (which does not lower
the Q of the coils noticeably). This gives a measurement of the current parameters I;
and I, used in our theoretical model. We then compute the power dissipated in each
coil from Py = T'L|I;2|?, and obtain the efficiency from n = Pw /(P + P> + Pw),
where Py is the power delivered to the load. To ensure that the experimental setup
is accurately described by a two-object coupled-mode theory model, we position the
device coil such that its direct coupling to the copper loop attached to the Colpitts
oscillator is zero. The experimental results are shown in Fig. 3-8, along with the
theoretical prediction for maximum efficiency, given by Eq. 3.2. We were able to

transfer several tens of watts with the use of this setup, fully lighting up a 60 W
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Figure 3-8: Comparison of experimental and theoretical efficiencies as functions of the
wireless power transfer distance. The shaded area represents the theoretical prediction
for maximum efficiency and is obtained by inserting the theoretical values from Fig. 3-
6 into Eq. 3.2, with 23 = /1 +&2/I"2. The black data points are the maximum
efficiency obtained from Eq. 3.2 and the experimental values of x/I" from Fig. 3-6.
The red dots present the directly measured efficiency, as described in the text.

light bulb from distances more than 2 m away (Fig. 3-9). As a cross-check, we also
measured the total power going from the wall power outlet into the driving circuit.
The efficiency of the wireless transfer itself is hard to estimate in this way, however,
as the efficiency of the Colpitts oscillator itself is not precisely known, although it is
expected to be far from 100% [17]. Nevertheless, the ratio of power extracted to power
entering the driving circuit gives a lower bound on the efficiency. When transferring
60 W to the load over a distance of 2 m, for example, the power flowing into the
driving circuit is 400 W. This yields an overall wall-to-load efficiency of 15%, which is
reasonable given the expected efficiency of approximately 50% for the wireless power

transfer at that distance and the low efficiency of the Colpitts oscillator.
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Figure 3-9: Photograph of the laboratory setup showing all of the key elements illus-
trated in Fig. 3-7. The self-resonant coils are suspended by pieces of insulated string
attached to the ceiling. (Image credit: Aristeidis Karalis)

3.7 Conclusion and outlook

Although the two coils are currently of identical dimensions, it is principle possible to
make the device coil small enough to fit into portable devices while maintaining the
general performance shown here. It should also be possible to considerably improve
the wall-to-load efficiency by driving the setup with a high-efficiency RF amplifier.

Both of these issues will be addressed in the next chapter.
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Chapter 4

Midrange power transfer to

multiple devices

4.1 Summary

This chapter takes the basic concept of using self-resonant coils to effect midrange
wireless power transfer explored in the previous chapter and expands upon it in a num-
ber of significant ways. For the case of a dilute system of device resonators (where
the direct coupling between the source and each device dominates over the direct cou-
pling between the devices), we provide exact expressions for the maximum efficiency
attainable and for the optimal matching condition, and quantify the improvement
in efficiency that can be obtained by powering multiple devices simultaneously. We
experimentally validate the possibility of using a large source resonator to power one
or more smaller resonators, an important step towards a potential real-world ap-
plication of the technology of midrange wireless power transfer: a larger resonator
embedded in a wall or a piece of furniture powering multiple small resonators embed-
ded in portable electronic devices. We have also employed an improved experimental
methodology which allows for in situ measurements of all the relevant coupled-mode

theory parameters as well as for direct measurements of the efficiency.

45



4.2 Overview

Although our first demonstration of efficient midrange wireless power transfer [48]
(Chap. 3) used identical resonators for convenience, the method of using high-Q
electromagnetic resonators—or a high-Q resonator of any kind [44]—can easily be
extended to asymmetrical designs for the source and device. Indeed, other research
groups applied the same principles to scenarios that featured a high degree of asymme-
try between source and device [70, 11]. These investigations are relevant to potential
applications which require the devices to be small enough to be integrated (preferably
seamlessly) into portable devices, yet the constraints on the size of the source may be
less stringent. One could imagine, for example, a relatively large source embedded in
a wall or a piece of furniture powering a multitude of compact devices.

We can obtain a quick estimate of how the dimensionless coupling coefficient
k = 2k/w of the system scales with the relative sizes of and the distances between
the resonators involved by noting that, if the interaction between the coils is pre-
dominantly magnetic and the the coils are separated by a center-to-center distance
D substantially larger than their characteristic dimensions, then the leading contri-
bution to k& will come from the dipole-dipole interaction of the coils, which scales as
D=3 [36]. Additionally, because of Faraday’s law, and assuming that the magnetic
field generated by the first coil is approximately uniform over the dimensions of the
second coil, the electromotive force induced around the second coil is proportional to
its area (and vice versa). The simplest dimensionless quantity that we can form out
of the areas of two coils (denoted by A; and A.) and their center-to-center distance
which has the requisite properties, namely reciprocity, D~3 dependence, and k — 0
if either A; — 0 or Ay — 0 is (A;42)%4/D3, so we conclude that the leading-order

dependence of the coupling on the geometry of the setup at midrange distances is

(A1A2)3/4

k x s

(4.1)

Thus we see that if we keep the product of the areas of the coils constant, the cou-

pling between them should stay roughly constant. Another important consequence
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of Eq. 4.1 is that if the source resonator is substantially larger than the device and
provided that the devices are sufficiently separated from one another (i.e. we are
dealing with a “dilute” system of resonators), then the coupling between the source
and each device dominates over the direct coupling between devices and allows us
to derive exactly the optimal efficiency of a dilute system consisting of an arbitrary
number of devices.

The bulk of the work for this project consisted of building a wireless power transfer
setup comprising one large source ~ 1 m? in area and two smaller devices ~ 0.07 m?
and experimentally verifying that the optimal efficiency of a system of two dilute
devices behaves as predicted by the coupled-mode theory treatment. Because the
areas of the source and device coils in this experiment are respectively four times and
one-quarter of the area of the coils in Chap. 3, the optimal efficiency as a function of
distance between the source and one device will be reasonably close to that obtained

in the first experiment as expected from Eq. 4.1.

4.3 Coupled-mode theory for a dilute system of
resonators

We once again employ the framework of coupled-mode theory, except that, instead
of the variables I';, and &, used in Eq. 3.1, we now work directly in terms of the
dimensionless parameters @, = wy/[2'y,] (the quality factor of the resonator labeled
by m and with resonant angular frequency wp,) and Ky, = 2Km, /w (the dimensionless
coupling between resonators m and n), as these parameters are more familiar to large
segments of the electrical engineering community which took an interest in our earlier

work. The coupled-mode theory equations now read

im(t) = — liwm + (1 + xm)§é——] anm(t) + % S iwhnan(t) + Fn(t),  (42)

n#m

where, as before, the complex-valued mode variables a,,(t) are normalized so that

the energy contained in resonator m is |am(t)|%, Zm is the normalized external load-
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ing that extracts the energy stored in mode m so it can be converted into useful
work, and F,(t) is the external driving term. In the general case, finding a solu-
tion to Eq. 4.2 involves inverting an M x M matrix (M being the total number of
resonators involved), which can lead to a wide range of interesting effects such as en-
ergy hopping [26]. This variety of possible phenomena also precludes the possibility
of making precise statements about the optimal efficiency of an arbitrary system of
mutually interacting resonators. Thankfully, the dilute approximation that we em-
ploy here—and which, as we argued, could be applied to potentially viable real-world
applications—does admit an exact analytical solution for the efficiency and for the op-
timal loading parameters z.,,. For definiteness, we label the (single) source resonator
0 [so that in Eq. 4.2, Fy(t) is the only non-trivial driving term] and the N devices by
m = 1,2,...,N. In the dilute case, the source is much larger than the devices and
the devices are not particularly clustered together so that, by virtue of Eq. 4.1, the
mutual coupling between devices is much smaller than the direct coupling between
the source and each device. We therefore neglect all off-diagonal terms in Eq. 4.2
except for kom = kmo. In the harmonic case am(t) ~ e~ Eq. 4.2 can be written in

matrix form as

ap FO
K ({6m}, {@m}: {zm}, {kom}) - a:l = ? , (4.3)
an 0

where 6,, = (Wm — Wm)/wn is the fractional detuning of each coil from its resonant
frequency. By inspection of Eq. 4.3, one can see that instead of fully inverting the
matrix K, we only need to find the first row of K~* to determine all of the coupled-

mode theory variables a,,. Using the adjoint method for matrix inversion, we find
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that

N 2 2
2 (1 + wn) . F
_ " /. 4.

lao] H w |: 50, + z6n] oK (4.4)

n=1

2
- 2p.2 2 N

‘am|2 (w/w ) O,QO x Hwn (1 + .Tn) + ién

(L+zm)? +4Q50% |15 2Qy,

F 2
m R for m = 1, 2, N N. (45)

It follows from the definition of the unloaded @ of a resonator [w x (total energy
stored) / (average power dissipated)] and from the interpretation of |a,|* as the energy
stored in resonator m that the power dissipated per resonator is P, = Wlam|?/Qum.
The normalized loading parameters z,, effectively lower the intrinsic @’s of the res-
onators of the coils by a factor of 1/(1 + z,), and a fraction &m/(1 + T,) of the
total power dissipated in a coil [which now equals P, = (1 + Zm)|am|?/Qm] can
in principle be converted into useful work. Defining the overall efficiency 7 of the
system as the ratio of the overall power delivered to all the loads to the total power

dissipated in all the resonators, we find

SN wn|anl?/Qn L6
! wlagl2/Qo + SN w(l 4 24)|an)2/@Qn (4.6)
_ SN (W/wn)? (k2 ,Qo@n) / [(1+ 2n)? + 4Q257] wn

1+ 20, (w/we)2(1+20) (k2,Q0@n) / [(1 + n)? + 4Q%52)

where we have used Eqgs. 4.4 and 4.5 in going from the first to the second line. We
find that a condition for optimizing the overall efficiency is that all the devices be

resonant at the driving frequency wy. The overall efficiency then becomes

g — Do [oa/ (Lt 20)"] [13,Q0Qn]
L+ 30, [/ + 20)] [k 1Q0@n]

(4.8)

Comparing Eqs. 3.2 and 4.8, we notice a significant similarity between the single-
device efficiency and the multiple-device efficiency for a system of dilute devices.

Moreover, we find again that the efficiency depends only on the strong-coupling pa-

49



rameters ko m+/QoQm. This parallel extends to the optimal values of the normalized
loading parameters x,, that optimize the efficiency. To solve for the optimal z,,
form = 1, 2,..., N, we can proceed by induction as follows: starting with the

case of two devices Eq. 4.8 can be readily maximized as a function of two variables

to yield z; = xo = \/ 1+ k§,1Q0Q1 + k§’2Q0Q2 as the optimal loading parameters.
Plugging this back into Eq. 4.8, we see that the two device resonators can effectively
be viewed as one effective resonator with an enhanced strong-coupling parameter

\/Eal QoQ1 + k5 2,Q0Q2. We can then reduce the analysis of Eq. 4.8 for three device

resonators to our previously solved analysis of two device resonators by treating any
two device resonators as one effective resonator and obtain for the optimal normal-
ized loading parameters z; = T, = 73 = \/1 + k3, QoQ1 + k3 ,Qo Q2 + kF 3QuQs. We

conclude again that the three device resonators act as one effective resonator with

effective strong-coupling parameter \/ kg 1QoQ1 + k§ ,QoQ2 + k3 3Q0Qs. This proce-
dure can be repeated up to some arbitrary number N of device resonators with optimal

loading parameters

N
Teff =1 =9 =...=ITN = 1+ Z kanQan, (49)

n=1

and effective strong-coupling parameter

N
> k2 .Qo@n- (4.10)
n=1

The efficiency is then more concisely expressed as the single-device efficiency (Eq. 4.8)

for Ueff
_ [weﬁ/(l + xeff)Q] Ulef
L+ [1/(1 + zer)] UZs’

which makes it much simpler to analyze the effect on the overall efficiency of adding

(4.11)

additional device resonators. One can see that the plot of the optimal efficiency as
a function of the effective strong-coupling parameters (Fig. 3-1) has an inflection

point in the vicinity of Usg ~ 1 (more precisely, at Usz = v/3/v/2 ~ 0.9306). Thus,
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this is the region in parameter space where the addition of extra resonators would
have a larger impact on the efficiency. As an example, a single device interacting
with the source with a strong-coupling parameter of 1 (which one could consider to
be borderline strongly coupled) would have an optimal efficiency of approximately
17.2%. The addition of another device with the same strong-coupling parameter
would increase the optimal efficiency to 26.8%, while four devices with the strong-
coupling value of 1 would have an optimal efficiency of 38.2%. We therefore conclude
that the approach of having one large source power multiple small devices distributed
over a large volume may lead to acceptable overall efficiencies even in cases where the
single device efficiencies are modest (e.g., worse than 20%). Note, however, that this
improvement only applies if the devices are driven simultaneously. In case one were
to split up the single system of one source and N devices into N systems comprising
one device each, e.g., by using time-multiplexing (the source would cycle through
the separate frequencies of operation of devices, each of which would be sufficiently
distinct to prevent strong coupling to the other devices) or by frequency-multiplexing
(the source would operate at a superposition of frequencies, one for each device), the
overall efficiency would necessarily be a weighed average of the efficiencies of the N

separate systems, and hence lower than the optimized simultaneous case studied here.

4.4 Experimental results

To demonstrate the principles outlined above experimentally, we built a large self-
resonant coil [48] that would serve as a source for two smaller device coils, all designed
to resonate at 6.5 MHz, which is in the range of optimal frequencies for this class of
resonators [44] and also close to the ISM (Industrial, Scientific, and Medical [22]) band
at 6.78 MHz. The source coil is a helix made of 4 turns of 1/2” copper pipe, 113 cm in
diameter, and 20 cm in height. The two devices are made of 15.25 turns of 1/4” copper
pipe, 30 cm in diameter and 18 cm in height. In real-life applications, a source coil
of this size (spanning an area of approximately 1 m?) could potentially be embedded

in the walls or in the ceiling of a room, while the area of the devices is comparable
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Figure 4-1: Computer-generated image of the experimental setup. For simplicity, the
device coils are placed at identical distances on either side of the source (center coil).
The image is to scale, with a center-to-center separation between the source and each
device of 200 cm. In the laboratory, all coils were suspended by pieces of insulated
string (which have no effect on the measurements) connected to the ceiling. The
excitation and pickup coils are not shown.

to those of some portable electronic devices and domestic robots. We placed the
devices on opposite sides of the source (Fig. 4-1). To couple and impedance-match to
each resonator we used smaller loop-and-capacitor “coupling” coils tuned to the same
frequency as the larger self-resonant coils (Fig. 4-2). Each coupling coil behaved to
a good approximation as a standard RLC circuit, greatly simplifying the impedance
matching procedure. The three coupling coils are then connected to appropriate
driving and loading circuits by means of standard coaxial cables. In order to minimize
the capacitive coupling of the self-resonant coils to the grounded sleeve of the coaxial
cables, we aligned the excitation coils symmetrically with the mid-point of the helical

coils.

By connecting each of the coupling coils to a separate port of a network analyzer
and sweeping the driving frequency of the network analyzer around the resonant
frequency of the self-resonant coils, it is possible to extract all of the coupled-mode
theory parameters in Eq. 4.2 and Fig. 4-2 from a fit of the measured input impedances.

We found experimentally that the quality factor of the source coil was Qo =w/2l =
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730 & 50. Due to imperfections in their (manual) fabrication, the two device coils
had somewhat different quality factors, with device coil 1 having Q1 = 1650 = 100
and device coil 2 having @, = 1850 & 100. The variation in the values of the quality
factors was due in part to the systematic effect of having to manually retune the coils
as they were moved to different positions, and in part due to uncertainties in the

least-square fits through which the strong-coupling parameters were obtained.

In the approximation where the current distribution along the length of the self-
resonant coils is a half-wave, we can apply the analytical model for self-resonant coils
developed in section 3.4 to predict the coupling between the resonators as a function
of distance. (In fact, before building the coils in the laboratory, the model was a
valuable tool for estimating what the geometry of each coil should be.) Although
this analysis does not take into account the imperfections of the coils, the calculated
values are within 10% of the experimental values of k (Fig. 4-3), obtained in the
same data fits as the experimental @ value. We found that the coupling ko2 between
the source and the second device was consistently higher than kg1, a discrepancy
that persisted even after we switched the positions of the two devices to control for a
potential effect of the walls and extraneous metallic objects in the laboratory on the
coupling between the resonators. We thus conclude that the difference in the coupling
must is due to variations in the exact construction of the device coils (as were the

differences in the quality factors of the two devices).

In order to effect power transfer at the resonant frequency, one can adjust the cou-
pling between each coupling coil and its associated resonator by varying the distance
between them or pitching the angle of the coupling coil, so that the system is properly
matched to the 50  ports of the network analyzer. After properly tuning the system,
the efficiency can be directly measured by the network analyzer. We measured the
efficiency between the source and each device separately, as well as the overall effi-
ciency between the source and both devices simultaneously (Fig. 4-4). Note that, as
a consequence of Eq. 4.9, the impedance-matching in the case of simultaneous devices
differs from that of a single device. The directly matched efficiency at the optimal

matching parameters matches the efficiency predicted from the coupled-mode theory
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parameters derived from the fits to within 0.5%.

Once the matching is done with the help of a network analyzer, one can connect
the coupling coils at the devices to a loading circuit with 50 € input impedance
and drive the source with a 50 Q RF amplifier to provide significant amounts of
power to the devices. In our setup, we were able to supply upwards of 25 W to
each device (the power being dissipated in resistive dummy loads) even when the
devices were farther than 2 m from the source, the power level being constrained by
the maximum output of the amplifier. Since RF amplifiers with efficiency greater
than 90% are common [25], they have a minor effect on the wall-to-load efficiency,
especially compared to the Colpitts oscillator used in Chap. 3.

It can be readily seen from Fig. 4-4 that the relative improvement in overall
efficiency due to having two devices coupled simultaneously to the source (green)
compared to having each device couple separately to the source (blue and red) is
more significant when the devices are placed at longer distances from the source, i.e.
when the coupling and strong-coupling parameters are lower, as predicted by our

couple-mode theory analysis.

4.5 Conclusion and outlook

We have derived analytically and shown experimentally for the case of two devices
the effect on the overall efficiency and on the optimal loading of the devices of adding
multiple device resonators to a system of strongly-coupled resonant modes. We find
that the approach of powering multiple devices simultaneously can result in a good
overall efficiency for the wireless power transfer even if the efficiency of the transfer
to each individual device is relatively low. Although the area of the self-resonant
device coils in this chapter is one-quarter of the area of our original self-resonant coils
(Chap. 3) and more comparable in dimension to the area of a wide range of electronic
devices, their significant height (18 cm) presents a major difficulty to their seamless
integration with existing equipment. Planar coils, in which the conductor is confined

to a plane and spirals towards the center starting from some outer radius, would
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present a much reduced profile (i.e. of the order of the diameter of the conductor
from which the coil is formed), but our analytical model indicates that, for a fixed
area and relative to helical coils, their coupling would be significantly reduced if the
spiral terminates too close to the center (this can be be intuitively understood by
noting that the inner turns of the spiral enclose a smaller area and therefore capture
less of the magnetic field produced by another coil). An electrical conductor that
offers similar resistance to the heavy gauge wires used up to now yet takes up a
much smaller volume would go a long way towards resolving these issues. In the
next chapter, we present a new design for an electrical conductor that meets these

characteristics.
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Figure 4-2: Schematic representation of the experimental setup showing all the
quantities of relevance to a coupled-mode theory analysis of the system and to the
impedance-matching to three ports of a network analyzer. The source coil is at the
center (compare to Fig. 4-1). The angular resonant frequencies and quality factors of
each resonator are shown above the respective self-resonant coils. Uy; and Uy, are
the strong coupling parameters between the self-resonant coils (the cross-coupling U 5
being negligible by comparison). Also shown are the strong-coupling parameters Wy,
W1, and W, between each self-resonant coil and its coupling coil, the series resistance
(ro, 71, and r9) of each coupling coil, the input impedance seen by the source port of
the network analyzer and the output impedance of the device ports of the network
analyzer (Zo = 50 ). All of the parameters shown can be extracted from the data
measured by the network analyzer.
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Figure 4-3: Coupling k£ = 2k/w between the source and each device as a function of
center-to-center distance. Because of imperfections in the fabrication of the device
coils, the measured coupling at the same distance for the two devices (blue and
red) differs by ~ 10%. Since /QoQ1,2 ~ 1100, each device is strongly coupled to
the source (k1/Qo@Q12 > 1) over the entire range of distances. Also plotted is the
coupling predicted (black) by a simple (and relatively easy to calculate) model that
ignores the imperfections of the coils, but nevertheless gives predictions within 10%
of the measured results.
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Figure 4-4: Efficiency as a function of distance for the cases where each device alone
is coupled to the source and where both devices are coupled simultaneously to the
source, and properly matched according to Eq. 4.9. The losses due to the small
resistance of the coupling coils have been subtracted out. Because of differences in
the construction of the devices, their Q’s and coupling to the source (see Fig. 4-3)
are different, thereby leading to a somewhat higher efficiency for device 2.
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Chapter 5

A low-resistance electrical

conductor for the multi-MHz range

5.1 Summary

We propose a new design for a conductive wire composed of several mutually insu-
lated coaxial and conducting shells. With the help of numerical optimization, it is
possible to obtain electrical resistances significantly lower than those of a heavy-gauge
copper wire or litz wire (the best currently available alternatives) in the 2-20 MHz
range. Moreover, much of the reduction in resistance can be achieved for just a few
shells; in contrast, litz wire would need to contain ~ 10* strands to perform com-
parably in this frequency range. Although the original motivation for this work was
to create a conductor that would significantly improve the performance of high-Q
coils for midrange wireless power transfer and to facilitate their miniaturization and
integration with portable devices, our results could also be pertinent to a number of
other uses such as RFID or applications operating at the ISM frequency bands at
6.78 and 13.56 MHz [22].
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5.2 Overview

In this chapter, we show that a structure of concentric cylindrical conducting shells
can be designed to have much lower electrical resistance for ~ 10 MHz frequencies
than heavy gauge wire or available litz wires. At such frequencies, resistance is
dominated by skin-depth effects, which forces the current to flow within approximately
one skin-depth § (which is ~ 20 um for copper at 10 MHz) of the surface of the
conductor, rather than being uniformly distributed over the cross section. As a result,
the electrical resistance at radio-frequencies scales inversely with the linear dimension
of the cross-section of the conductor, rather than as the inverse of the cross-sectional
area characteristic of direct-current (DC) resistance. The skin-depth effect is typically
mitigated by breaking the wire into a braid of many thin insulated wires (litz wire [76,
24, 57]), but the short skin depth at these frequencies makes traditional litz wire
impractical, as they would need to be composed of ~ 10 um-scale strands. In
contrast, we show that, in the case of a cylindrical conductor with cross-sectional
diameter 1 mm, as few as 10 coaxial shells can improve resistance by more than a
factor of 3 compared to solid wire, and thin concentric shells can be fabricated by a
variety of processes (such as electroplating, electrodeposition, or even a fiber-drawing
process [6, 50, 18]). We derive an analytical expression for the impedance matrix of
both litz wire and nested cylindrical conductors starting from the quasistatic Maxwell
equations; in particular, a key factor turns out to be the proximity losses [49] induced
by one conductor in another conductor via magnetic fields. Using this result combined
with numerical optimization, we are able to quickly optimize all of the shell thicknesses
to minimize the resistance for a given frequency and number of shells. As a check
of our analytical results, we also perform finite-element method simulations for both

litz wire and concentric shell structures.

For a cylindrically symmetrical system of nested conductors oriented along the
z direction, we shall see that Maxwell’'s equations reduce to a Helmholtz equation
in each annular layer. In the quasistatic limit of low frequency (which causes the

conductivity term to dominate over the dielectric constant), we show that this further
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simplifies into a scalar Helmholtz equation for E, alone, which can be solved in terms
of Bessel functions. The coefficients of these Bessel functions are determined by
the boundary conditions at each interface: continuity of E, and of Hy ~ OF,/Or.
Once the solution for E,, and thus the current density oF, (for conductivity o)
and the magnetic fields (from Ampere’s law), are obtained, the impedance matrix
can be derived from energy considerations. Of course, a real wire is not perfectly
cylindrical because of bending and other perturbations, but these effects can typically
be neglected to good approximation (e.g., if the bending radius is much larger than

the wire radius).

5.3 Analytical procedure

We start by analytically solving Maxwell’s equations in each medium (air,