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A Markov Chain Based Hierarchical Algorithm
for Fabric-Aware Capacitance Extraction

Tarek El-Moselhy, Ibrahim (Abe) M. Elfadel, and Luca Daniel

Abstract—In this paper, we propose a hierarchical algorithm
to compute the 3-D capacitances of a large number of topologi-
cally different layout configurations that are all assembled from
the same basic layout motifs. Our algorithm uses the boundary
element method in order to compute a Markov transition matrix
(MTM) for each motif. The individual meotifs are connected
together by building a large Markov chain. Such Markov chain
can be simulated extremely efficiently using Monte Carlo sim-
ulations (e.g., random walks). The main practical advantage of
the proposed algorithm is its ability to extract the capacitance
of a large number of layout configurations in a complexity that
is basically independent of the number of configurations. For in-
stance, in a large 3-D layout example, the capacitance calculation
of 1000 different configurations assembled from the same motifs
is accomplished in the time required to solve independently two
configurations, i.e., a 500 X speedup.

Index Terms—Integrated circuit interconnections, intercon-
nected systems, large scale integration, Markov processes, Monte
Carlo methods, parameter extraction, parasitic capacitance.

I. INTRODUCTION

ECENT integrated circuit technology nodes (32 nm and

beyond) rely on regular patterns, uniform gridded designs
and restricted design rules, in order to overcome many of the
manufacturing-process related complications [1]—[3]. The main
idea in such fabric-based design methodology, is to force de-
signers to use a relatively small number of patterns (design fab-
rics, or design motifs), which are litho-friendly and preopti-
mized from a manufacturing prospective, in order to build ar-
bitrary designs. As an example the reader is referred to Figs. 1
and 2, which represent two different configurations constructed
from the same six motifs. Notice that with “configuration” we
mean a structure constructed by a particular arrangement of the
motifs. In this paper we propose a new hierarchical capacitance
extraction algorithm specifically targeted to a large number of
topologically-different structures which are constructed from a
given set of motifs.
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Fig. 1. Hypothetical layout pattern composed of a set of motifs. The arrange-
ment of these motifs constitutes one configuration.
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Fig. 2. An alternative layout configuration made of the same set of motifs de-
fined in Fig. 1.

Hierarchical algorithms rely on first subdividing the geom-
etry into smaller subdomains, then resolving the local inter-
actions by computing each subdomain independently and fi-
nally connecting the different subdomains together by resolving
the global interactions. Fabric-based design methodologies do
not require an initial “subdivision” operation but rather an “as-
sembly” operation of predefined motifs. Nonetheless, hierar-
chical methods can still be the ideal choice to handle fabric-
based designs, since each design motif can represent a subdo-
main. Unfortunately, in the majority of the standard hierarchical
algorithms (e.g., [4]-[6]) resolving the global interactions con-
stitutes the bottleneck of the computation, since it relies on as-
sembling and solving a large linear system of equations. Such
operation must be repeated for each configuration, hence stan-
dard hierarchical algorithms are not suitable for the efficient ex-
traction of a large number of different configurations.

Recently, we have proposed a hierarchical technique [7]
which efficiently resolves the global interaction by using
Markov chain theory. In fact, in such algorithm resolving
the global interactions is a lot less expensive than resolving
the local interactions. The complexity of resolving the local

1521-3323/$26.00 © 2010 IEEE
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TABLE 1
CLASSIFICATION OF HIERARCHICAL ALGORITHMS

Resolving local
interactions
BEM FRW
[4], [3], [6] -
this paper [7]

Resolving global
interactions

Linear Systems
Markov Chain

interactions is primarily related to the geometrical manipula-
tions required by the standard floating random walk (FRW)
algorithm. On the other hand, resolving the global interactions
requires almost negligible complexity, since it involves only
scalar computations as opposed to geometrical manipulations
or large linear system solves.

Before proceeding with the details of this paper, we em-
phasize that just using “fast” or variation-aware extraction
algorithms is not suitable for the task at hand. “Fast” algorithms
(e.g., [8]-[11], etc.) rely on reducing the complexity of a single
solve from O(N?) to O(N). Unfortunately, in their present
implementations, they do not reuse any of the computations
between topologically-different configurations. Consequently,
the complexity of such algorithms scales linearly with the
total number of structures, which is computationally inefficient
if such a number is large. Variation-aware extraction algo-
rithms (e.g., [12]-[17]) typically handle problems, in which
the topology is fixed, while the dimensions (width, thickness,
or center—center distance) or shape (surface roughness) of
the conductors vary. Hence, such methods do not account for
variations which result in topological changes.

In this paper, the algorithm proposed in [7] is generalized.
In particular, we demonstrate that the two steps corresponding
to resolving the local and global interactions are totally inde-
pendent (see Table I). Consequently, the particular technique
best suited for computing each of the two steps can be inde-
pendently chosen. For instance, it is well known that discretiza-
tion based methods [such as boundary element method (BEM)
or finite element method (FEM)] are significantly more effi-
cient than discretization-free methods (such as FRW) for small/
medium size structures. Consequently, in this paper we pro-
pose to use the BEM to compute the Markov transition ma-
trices (MTMs) for each motif, unlike [7] in which the local in-
teractions are resolved using the FRW. It is also known that
for large systems, such as those that represent the global in-
teractions, Monte Carlo based methods are significantly more
efficient than linear system based methods. Consequently, we
choose to resolve the global interactions by first building a large
Markov chain from the computed MTMs. We then simulate
very efficiently the resulting Markov chain using random walks.
The efficiency of the resulting algorithm is near-optimal for
fabric-aware extraction. In other words, we can compute the ca-
pacitance of a large number of configurations, constructed from
the same set of motifs, in a complexity that is practically inde-
pendent of the number of configurations.

The rest of the paper is organized as follows. In Section I we
develop our new hierarchical algorithm (BEM-MTM). In Sec-
tion III we develop a fabric-aware BEM-MTM algorithm for
3-D capacitance extraction of a large number of configurations
constructed by different recompositions of a set of motifs. Fi-

Between every two nodes there is a capacitance

]
/\
i

X AR ¢
*— X X
&  VIVEVEVIV. S |
i 2 > <
Conductors with

prescribed potential

Fig. 3. The capacitance matrix of a single motif describes the connectivity be-
tween the nodes.

nally, in Section IV we show a variety of examples validating
our algorithm.

II. MAIN ALGORITHM: BEM-MTM

A. Computing Local Interactions Within Motifs

In our hierarchical algorithm, the local interactions within
each motif are captured by computing a Markov transition ma-
trix (MTM) for each motif. Such a MTM represents the proba-
bility of moving from any point on the surface of the conductors
inside the motif or any point on the boundary of the motif, to
any point on the surface of conductors inside the motif or on the
boundary of the motif. There are a variety of ways to define the
MTM. In particular, in [7] the MTM is defined as the relation
between the potential at the points on the surface of the con-
ductors inside of the motif, or on the boundary of the motif and
the potential at the same points. In this paper we define a more
general MTM, which relates the charge at the points on the sur-
face of the conductors inside of the motif or on the boundary of
the motif to the potential at the same points. Such a MTM can
therefore be interpreted as a capacitance matrix (see Fig. 3)

N
qi =Y Cijv; ey
=1

where q; is the charge at point 7, v; is the potential at point j
and C;; is the capacitance between 7 and j. Notice that v; is
the absolute potential relative to infinity. Equation (1) can be
rewritten as

N
viCii — i = — Z Cijv;. (2)

=1

Equation (2) can be written in matrix form
diag{C}v —q = —ACv 3)

where diag{C} is a diagonal matrix whose diagonal elements
are equal to those of C and AC = C — diag{C}.

Lemma 11.1: The matrix —(diag{C})™*AC is a MTM, in
which the element ¢, j represents the probability of moving from
the node ¢ to the node j inside of the same motif.
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Proof: In order to prove that —(diag{C}) 1 AC is a prop-
erly defined MTM we need to show that it satisfies the following
three properties.

* The diagonal element of each row is equal to zero.

* All elements of each row are strictly nonnegative

e The sum of any row is equal to 1.
The first statement is trivially true, since AC has zero diagonal
elements. The second statement follows from the fact that the
capacitance matrix has positive diagonal elements and negative
off-diagonal elements [18]. The third statement follows from
the fact that in any closed domain, where no field is allowed to
escape, the sum of any row of the capacitance matrix is zero
[18]. Consequently,

N
> Ci. )
J=1,j#i

The sum of any row (e.g., the ith row) of —(diag{C})~*AC is

Z Cij- (5)

J=1,j#i

’I,’

Substituting (4) in (5)

1 N

R > =1 (6)
j=Lj#i

|

The motif MTM or equivalently the capacitance matrix in a
closed domain (see Fig. 3) can be computed using any standard
extraction algorithm, such as FRW, BEM, or FEM. In this paper,
the MTM is computed using the BEM, since the motifs are typi-
cally small to medium size problems for which the BEM is very
efficient. For ease of presentation, we assume that the medium is
homogeneous with permittivity . For examples on how to apply
the BEM in media with complex dielectric configurations, the
reader is referred to [4], [5], [9]. Starting from the integral equa-
tion formulation

%qﬁ(r) = / pv(r)G(r,r")d*r — 7{ eG(r, 7" \Vp(r")d*r’

Q

T
+ 7[6¢(7")VnG(r, r')d2r' @)
T

where ) is the computational domain, I" is the union of the
boundary of the motif and the surfaces of the conductors, 7 is the
unit vectornormaltoI', V,, = #-V, G(r,r') = 1/4we||r—r'| is
the free space Green’s function, py () is the volumetric charge
density, and ¢(r) is the electric potential.
Using the fact that there are no volumetric charges py (1) =

and that the surface charge density p(r’) = —eV,¢(1"), we
obtain

%(j)(r) = ?{G(r, Y p(r")d*r + j{sqS(r')VnG(r, ) d?r’.

r r

(®)
Equation (8) is solved for the unknown potential ¢(r) and un-
known surface charge density p(r), which are defined every-

where on I'. For simplicity, both the charge density and the
potential are discretized using piecewise constant basis func-
tions supported on rectangular panels. Then, collocation testing
is used in order to obtain a linear systems of equations of the
form

(%I - Mn> v = Mq )

where v is a vector of the potential coefficients and q is a vector
of the charge coefficients (notice the use of charges not charge
densities), and

M,,(i,5) = f&VnG(m./r')dZT' (10)
SJ

M(i, j) = /%d“’ ' (11)
Sj

where{ refers to the principal value of the integral and a; refers
to the area of panel . Notice that both integrals are available in
analytical closed form. Using (9) we obtain

1
q=M"! (gI—Mn> v (12)
which leads to the following motif MTM
1
c=M" <§I—Mn>. (13)

B. Resolving the Global Interactions

When motifs are connected together, two different boundary
conditions must be satisfied, namely, the continuity of the po-
tential, and the continuity of the displacement field. Notice that
there is no charge accumulation at the interface between motifs.
When connecting motifs, each discretization panel can belong
to at most two motifs. Writing (2) at two neighboring motifs (see
Fig. 4), and summing the resulting expressions we obtain

Ve 4 g +V<2>c<2> q?

ZE: el (1) (1

J=1,j#1

Z v a4

J=1,#t

where the superscripts (1) and (2) refer to local quantities of
the first motif and of the second motif, respectively. We have
assumed without loss of generality that the common interface
point is given the local index ¢ in both neighboring motifs. Con-
sequently, at the boundary point ¢: vgl) = V§2) = vgg) and

(1) + q(2) = 0 we obtain

v (c(1>+c<2) Z ey Z v

J=1j#i J=Llj#1
(15)
which leads to
N (1) (2)
—C: —C
(9) _ Z i M Z (2)
\'2 + .
i 2) J 1 2
Jj= lj#l(czz C( ) Jj= 1#1(()‘1'6())
(16)
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Fig. 4. Two different motifs connected together. At point ¢ the boundary con-
ditions are satisfied by combining the capacitance networks of both motifs.

Equation (16) should be understood in a more general (elec-
trical circuits) context. The potential V; is a weighted sum of the
potential of all the nodes (in the global configuration) connected
to the node ¢. The weights are the ratio of the capacitance on the
link from ¢ to j to the total capacitance connected to node ¢

Vi = @ a7

K2
=151

where Ci(f) = CZ(L1 ) 4+ Cz(? ) and the summation is over all the
N, points that are connected to point ¢ in the global network,
i.e., after connecting the motifs. The weights —Ci(]g )19 which
represent the contribution of the potential at j to the potential
at 4, are interpreted as the probability of making a transition
from 7 to 5. Consequently, such a network of capacitances can
be interpreted as a Markov chain and it will be simulated in the
next section using Monte Carlo methods (e.g., random walks)

(71, [20]-{22].

C. Complete BEM-MTM Algorithm for Capacitance
Extraction

Section II-A defined local interactions using motif MTMs
that only incidentally could be interpreted as intermediate ca-
pacitance matrices. These capacitance matrices represent the ca-
pacitance between the actual conductors present in the structure
and additional nonphysical (virtual) motif boundaries, which are
introduced when motifs are assembled together to form a con-
figuration. Section II-B presented the equations necessary for
resolving the global interactions between motifs. In this section,
we show that, by combining the relations in Sections II-A and
II-B, random walk methods can be used in order to reduce the
large capacitance matrix generated when motifs are connected
together (which includes capacitances between the conductors
and the motif boundaries) to the desired smaller capacitance ma-
trix between only the physical conductors in the configuration.

To extract the capacitance between conductors I and J, the
total charge Q7 on the surface of the target conductor I as a
consequence of a unit potential on the surface of the source con-
ductor J is computed

Qilvs=1)= / p(r)ds = ¥ g

S, 1€EST

(18)

where the summation is over all the panels discretizing the sur-
face of conductor I. Consequently, the objective is to compute
each individual q;, which is achieved by resorting to (2). Fur-
thermore, since in any standard mutual capacitance extraction
setup the voltage at the target wire is set to 0, i.e., v; = 0, (2) is
reduced to

N

2 GV
qi = (~Ca) =2 (19)
Notice that the term —C,;/C;; represents the probability of
making a transition from the starting panel ¢ to some other
panel j inside or on the boundary of the same motif. Con-
sequently, the summation is computed using random walk
methods by choosing a point on the motif boundary or on
a conductor surface based on the probabilities —C;;/C;;. If
the chosen point is on a panel with prescribed potential v,
then the path is assigned the random variable —C;;v; and is
terminated. Otherwise, the chosen point is on the boundary of
the motif, and the path needs to be completed until reaching a
conductor anywhere in the configuration. To complete the path,
equation (17) is similarly computed using random walks. In
such computation the weighting functions w;; = —C,L-(jg ) / C,L-(,f] )
are interpreted as the probability of making a transition from
the point ¢ to the point j in the global network. This is im-
plemented by drawing randomly a number r from a uniform
distribution between 0 and 1. The point j is chosen such that
Zi;i wir, < rand Y 5_, w; > r. If point j is on a conductor
surface then the random variable —C;; [see (19)] is assigned to
the path and the path is terminated. The process of generating
paths is then repeated a large number of times. The unknown
charge q; is finally computed using q; = —C;;E[v;], where E]]
is the expectation operator

) #tof paths from I to .J
" total # paths starting from I

qi = — (20)

Important Note: Since in the capacitance extraction setup
only one conductor is assigned a nonzero potential at a time,
only paths terminating at that particular conductor will have a
nonzero contribution to the random variables. Consequently, the
capacitance from conductor I to all other conductors can be
computed simultaneously. If the target conductor is the same
as the source conductor (i.e., we want to extract the self capac-
itance of a conductor) then v; in (2) is equal to 1 and the value
of C;; is added to g;.

Algorithm 1 summarizes our complete algorithm for com-
puting the /th row of the capacitance matrix. Fig. 5 shows two
different possible paths.

D. Theoretical Analysis of BEM-MTM

Many standard “absorbing Markov chain” theorems and
well known results can be exploited to certify properties of
our BEM-MTM algorithm once we show how it is possible to
appropriately construct a large MTM 7 for the entire config-
uration

2y

=[5
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Algorithm 1 BEM-MTM for a given configuration
I: repeat
2:  choose randomly a point i on the the surface of the
target conductor /.

3:  using (19) take a step starting from point i

4:  if reached a point on the interface between motifs then

5 repeat

6: make a transition using the capacitance matrices

of both motifs defining the interface (see (17))

7: until a conductor or a configuration boundary are
reached

8: end if

9:  if terminated on a conductor J then

10: add —G; to capacitance C(/,J)

11:  else { terminated on configuration boundary}

12: add —G; to stray capacitance C(/,0)

13:  end if

14 C(I,I)« C(I,I)+ Gi
15: until convergence achieved
16: divide C(/,:) by the total number of walks

foe

— Path 2,
Path 1, 8 .
e . terminates in
terminates in
three steps
e adding to
adding to self cJ)

cap. of cond_I

Fig. 5. Two paths starting from point 7. The first terminates in one step on
conductor I, the second terminates in three steps on conductor J in a different
motif.

where Q is the transition probability matrix between “transient
states” (in our case any point on the interface between motifs as
shown in Fig. 6); R is the transition probability matrix from the
transient states to the “absorbing states” (in our case all the con-
ductors and any point on the external configuration boundary).
Matrices 0 and I simply define the behavior of the absorbing
states: once an absorbing state is reached the probability to re-
main in it is one, and consequently the probability to transition
to any other state is zero. The upper part [Q R] of the MTM 7
can be related to the individual MTMs of each motif using the
Law of Total Probability

o
[Q R](Z:J): C(g)

i

(22)

where |C;;| is the total capacitance between the points 7 and j
in the global capacitance network; and C;; is the total capaci-
tance connected to node ¢. Notice that there is no capacitance
between ¢ and j if they do not belong to the same motif, there
is a single capacitance if they belong to the same motif but not

Single ¢apacitance
betwgeni and [

Absorbing state

Transient
state

Interface
surface

g

. Two capacitances
betweeni andj

No capacitances ,+*
betweeni and k,””
p

.
.
.
.

- Motif(k+1)
[ ]

k

Fig. 6. Transition to interfaces (transient states) contribute to the Q matrix and
transition to conductors and configuration boundaries (absorbing states) con-
tribute to R.

Motifk

the same interface, and there are two different capacitances if ¢
and j belong to a common interface.

Having cast our BEM-MTM algorithm as an absorbing
Markov chain problem it is easy to rigorously answer many
legitimate questions using the literature available on that topic
[23]. For instance, the following theorem can be used to prove
the termination of each BEM-MTM “path” in a finite number
of transitions, and to even provide a precise estimate on the
average number of transitions before termination.

Theorem II.1: Assume that BEM-MTM starts at a point ¢
on an interface between motifs (i.e., a transient state), then the
average length of the walk on interfaces, or expected number
of transitions before reaching a conductor or the configuration
boundary (i.e., an absorbing state), is finite and is given by the
row sum of the ith row in the “fundamental matrix” N = (I —
Q).
Proof: The proof follows directly from Theorem 3.3.5 in
[23]. ]

E. Computational Complexity

Time: Assume that the structure was assembled using Ny,
different kind of motifs and that each motif k is discretized
using a total of nj panels (on boundary and conductor sur-
faces). The complexity of computing the kth motif MTMs is
O(n3). Notice that the inverted matrix is exactly the capacitance
matrix of the first type Fredholm formulation, which means
that we can use fast algorithms to compute nj matrix solves.
However, in general the independent motifs are sufficiently re-
quire fast algorithms. All the motifs are independent. Conse-
quently, the computation is embarrassingly parallelizable and
the total complexity for computing all motifs is bounded by

kN“ O(n3 /Nproce), where Nproce is the total number of pro-
Cessors.

The second part of the algorithm consists of resolving the
global interaction. For that we need to initiate a large number
of random walks. The complexity is linear in the number of
walks O(N,,). This part of the algorithm is also embarrassingly
parallelizable, consequently the complexity is O(N., /Nprocc)-
The main computational advantage of our algorithm is that the
complexity constant associated with this part of the computation
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is very small, since there are absolutely no geometrical manip-
ulations involved. Instead, all transitions, are implemented by
purely numeric manipulations, and are consequently extremely
cheap.

Memory: The memory required for resolving the local inter-
actions is O(m]?x n?), which is the memory required for the

computation of the MTM of the motif discretized using the
largest number of panels [see (9)]. On the other hand, resolving
the global interactions requires storing the MTMs of all motifs
for a total memory of only O(Zi\f‘” ny), since in general the
MTMs are very sparse (an example will be presented in the re-
sult section). Typically, a total of 100 transition matrices, corre-
sponding to 100 different kind of motifs, can be stored in 2 GB
of RAM. Notice that the actual number of instantiations of such
motifs in the design configurations can be orders of magnitude
larger than the number of kinds of motifs without any signifi-
cant increase of the memory requirement.

E. Comparison Versus Other Hierarchical Algorithms

Compared to the HFRW [7] (which is a FRM-MTM algo-
rithm), our new algorithm avoids using the computationally ex-
pensive FRW to compute the MTM of each motif. Such com-
putations are expensive since they involve geometrical manip-
ulations. As mentioned previously, our algorithm does not in-
volve any of the FRW geometrical manipulations. Similar to the
HFRW algorithm, our BEM-MTM uses the MTMs to resolve
the global interactions. On the other hand, the main advantage
of using the HFRW is that it can handle edge-defined variations
extremely efficiently, whereas the BEM-MTM can only handle
topological variations.

The main difference between our algorithm and the standard
BEM hierarchical methods ([4], [5]) is that our algorithm
resolves the global interactions without assembling/solving any
expensive linear systems. Instead, our algorithm resolves the
global interactions using random walks to simulate the Markov
Chains. For large structures, such random walk methods are
significantly more efficient than solving large linear systems
of equations. In addition, BEM-MTM fully exploits the local
nature of the capacitance extraction problem. Moreover, the
BEM-MTM can efficiently extract the capacitance of a very
large number of topologically different configurations con-
structed from the same set of motifs (see Section III).

Compared to approximate hierarchical algorithms [6], [11]
and window based techniques [24], [25], which all rely on some
form of approximation to achieve computational efficiency, our
BEM-MTM algorithm is exact. In general, one of the main ad-
vantages of our BEM-MTM is that it exploits the local nature
of the capacitance problem to achieve computational efficiency
without the need to introduce approximations. In particular, the
random walk simulation of the Markov chain exploits the fact
that most of the capacitance of a wire is determined by the
nearby interactions, since paths connecting a conductor to its
immediate neighbors are typically very short and are computed
extremely efficiently.

G. Comparison Versus the Standard FRW

There is apparent similarity between the proposed algorithm
and the standard FRW [26], since the latter relies on first de-

termining a transition domain, then making a transition from
inside of the transition domain to its boundary, and repeating
such process until the path terminates at a conductor surface
with known potential. However, there exist a variety of funda-
mental differences between the two algorithms. Foremost, in the
FRW the notion of transition domains is restricted. Indeed, in
the standard FRW [26] a transition domain is a domain that in-
cludes no conductors and must have homogeneous media. In
the generalized FRW [16] the transition domains are allowed
to include nonhomogeneous media, however, they are not al-
lowed to include any charged conductors. Such constrains typi-
cally result in small transition domains. On the other hand, in the
BEM-MTM the notion of transition domain is generalized to be
basically any closed domain. Indeed, by this new definition, the
transition domain is now allowed to include complex dielectric
structures, floating potential metal fills and even charged con-
ductors. Such generality allows for declaring a whole predefined
motif as a single transition domain.

Another difference is that due to the large constrains on what
is defined as a transition domain in the FRW, the transition prob-
ability matrix is available in closed form and does not need to be
numerically computed. Even in the generalized FRW, since the
domain is relatively constrained and small in size, computing
the transition matrix numerically is a trivial task. In our algo-
rithm since the transition domains are large and general, the
MTMs must be computed numerically. However, since the do-
mains are predetermined by the set of motifs available in the
fabric-aware design methodology, the MTMs can be precom-
puted only once for a given technology and then reused for all
walks in all design configurations that use those motifs.

The most important difference is that in the FRW the transi-
tion domains are overlapping and are constructed online along
the way of the path. Most of the computational time is spent on
the geometrical manipulations required to determine the dimen-
sions of the transition domains. In the BEM-MTM algorithm,
the transition domains (which actually coincide with the design
motifs) are non-overlapping, and are predetermined (rather than
recomputed at each step). Therefore, the BEM-MTM algorithm
does not require any geometrical manipulations. Indeed, in the
BEM-MTM the walk, which starts and terminates at conductor
surfaces and proceeds only on interfaces between motifs, is fully
implemented using only numerical manipulations without the
need for determining any transition domain or any other geo-
metrical manipulations.

To summarize, our algorithm could be interpreted as an
extremely generalized FRW in which the domains are prede-
termined, nonoverlapping, and large. The transition probability
matrix is computed once by using a discretization-based
solution to a given PDE. In terms of implementation, all
FRW-related geometrical manipulations are removed and only
the underlying Markov chain is very efficiently simulated using
random walks.

III. FABRIC-AWARE EXTRACTION

The most important advantage, and in general the main mo-
tivation behind using the BEM-MTM algorithm, is that it offers
a very efficient algorithm to extract the capacitance of a very
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Algorithm 2 BEM-MTM for all configurations
: for each motif kind do

1

2:  compute the MTM

3: end for

4: for each desired capacitance matrix row C(/,:) do

5. repeat

6: Make a random walk step starting from conductor 7

7: if step reached a point on the interface between motifs
then

8: for each configuration do

9: use MTMs to walk on interfaces and terminate

on a conductor or configuration boundary

10: add —(; to appropriate capacitance

11: end for

12: else {step reached a conductor}

13: add —(j; to appropriate capacitance

14: end if

15: C(I1,1) < C(I,I) + Gy

16:  until convergence achieved

17:  divide C(/,:) by the total number of walks
18: end for

large number of configurations constructed by different arrange-
ments of a given set of motifs. Indeed, since in our BEM-MTM
resolving the global interaction is cheaper than computing the
local interactions, we can afford to repeat such a computation
for a very large number of different configurations without sig-
nificantly increasing the complexity of our algorithm. Further-
more, the majority of paths (corresponding to the self term and
the strong coupling terms) terminate in the motif containing the
target conductor and do not even have to be continued. Con-
sequently, such paths are computed only once and are shared
among all different configurations without the need for any re-
computations. This in turn explains our observation that the
BEM-MTM exploits the local nature of the capacitance extrac-
tion problem.

Algorithm 2 summarizes the steps of our proposed approach
for 3-D capacitance extraction of a large number of configura-
tions constructed by different recompositions of a set of motifs.
Recall that if we have Nt motif instantiations then there are
O(Nr!) possible different configurations.

Since all configurations are constructed from the same set of
Ny < Np motifs, the Ny, motif MTMs can be precomputed
separately as shown in Step 2. The complexity of this part of
the algorithm depends linearly on the number of different kinds
of motifs O(N,y), and does not depend on the total number of
configurations, O(Nr!). Step 6 in Algorithm 2 is independent
of the configuration structure, and therefore it is implemented
once per motif and reused for all configurations. This step is very
efficient since it involves only generating one random variable
and choosing a corresponding point on the domain boundary or
a conductor surface.

The remaining part of each path depends on the particular
recomposition of the motifs, therefore it must be executed sep-
arately for each configuration. Since this part of the algorithm
does not involve any geometrical manipulations it is extremely
cheap. Consequently, the bottleneck of the algorithm is Step 2,
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Fig. 7. Cross section in the structure of example IV-A. Motifs’ boundaries
are identified on the cross-section by solid lines. Empty motifs at the boundary
(shown only partially) are used to mimic the infinity boundary condition.

and the complexity of our algorithm is almost completely inde-
pendent of the total number of configurations.

IV. RESULTS

Unless otherwise stated the reported results are obtained
using our own Matlab implementations of the corresponding
algorithms on a Intel Duo CPU at 2.4 GHz with 2 GB of
memory. Unless otherwise stated, all floating random walk re-
lated results have been obtained by using a total of one million
random walks, i.e., N,, = 106.

A. Accuracy Validation

The first example validates the accuracy of the proposed al-
gorithm. A cross section of the 3-D geometry for this example
is shown in Fig. 7, and is composed of 12 conductors. The ge-
ometry was assembled using four different motifs. In addition,
empty motifs are added at the boundary (shown only partially
in Fig. 7) to mimic the infinity boundary condition. In order to
verify the accuracy of our approach, we extracted the capaci-
tance between a target conductor in motif 1 (see Fig. 7) and all
the other 11 conductors using both our BEM-MTM and the stan-
dard BEM method. Using 2 x 106 paths, the BEM-MTM is 10x
slower than the standard BEM and obtained for all extracted ca-
pacitances a 0.1% accuracy compared to the BEM method.

B. A Small 3-D Fabric-Aware Extraction Example

In this example we use the same motifs used in Fig. 7 (from
the previous example IV-A) to construct a total of 4! = 24 dif-
ferent configurations, corresponding to all possible different re-
compositions of the four internal motifs. The capacitance ma-
trices of each of the configurations are computed using both our
BEM-MTM and the standard BEM. All the values of the com-
puted capacitances for each configuration are within 0.5% of
the values computed using the standard BEM. The total time to
compute the capacitance matrices of all 24 configurations using
our BEM-MTM is about (12 x) the time required to compute the
capacitance matrix of just one configuration using the standard
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Fig. 8. A five layers, 209 conductor structure. Each layer is treated as a motif.

BEM. This corresponds to a 2 x speedup. The reason we did not

obtain large speed-up ratios is that this example is small.

C. A Large 3-D Example

In this subsection we demonstrate that the BEM-MTM can
treat large 3-D structures very efficiently. The example under

consideration is a five layer structure (Fig. 8). Two of such layers
contain 100 cubic shaped conductors arranged ona 10 x 10 grid.

The size of the conductors is 100 nm. These small conductors

represent “metal fill,” i.e., small floating potential conductors in-

serted in empty regions of the layout to facilitate the planariza-

tion. Each of the other three layers contain 3 parallel long wires
of dimensions 100 nm X 1400 nm x 100 nm. The wires are
separated by 100 nm. Each of the five layers is 300 nm thick
and has a unique dielectric constant. Each layer is treated as a
motif. We recompose such motifs to construct a total of 120 dif-
ferent configurations. Notice that every configuration includes
a total of 209 total conductors. Four different capacitances are
extracted from each configuration.

The time required to compute the MTMs of the five motifs is
approximately 6 min. The largest MTM is of dimensions 1536
x 1636, and is 95% sparse (Fig. 9). The computational time re-
quired to solve all possible 120 configurations is 15 min. Using
the HFRW [7] to compute the capacitance of all 120 configu-

rations requires 30 min. Running a standard boundary element
method hierarchical algorithm (HBBEM) on all 120 configura-
tions requires about 600 min. Running the standard FRW on the
same example would require an estimated 1800 min. Running
FastCap (C code) on the same set of 120 configurations with
the same 5% accuracy requires a total of 270 min. Hence, our
Matlab BEM-MTM is 1.5 x faster than HFRW,! 20x faster than

Matlab HHBEM, 9 x faster than C-code FastCap and 60 x faster
than the standard FRW.
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Fig. 9. A typical sparsity pattern of the MTM for a motif including 100 cubic
conductors.
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Fig. 10. The MTM corresponding to the largest motif of example IV-D.

D. A Very Large Example

In this example we extract the capacitances of a 3-D, 10-layer
very large structure. Each layer is composed of 20 parallel long
conductors and has a unique dielectric constant. Each layer was
assembled using 4 motifs, resulting in a total of 40 motifs. On
average, each motif is discretized using 4000 unknowns. The

time used to compute the complete capacitance matrix for all

INotice that the HFRW requires 15 min to compute the different MTMs and
15 min to do the subsequent extraction. Our BEM-MTMS provides only 2.5 X
reduction in computational times required to compute the MTMs, since the mo-
tifs in this example are very dense and can therefore be efficiently computed
using the FRW.

motifs is less than 50 min. The average transition matrix is about
99% sparse, which means that storing all the transition matrices
requires less 0.2 GB of memory. Fig. 10 shows the sparsity pat-
tern corresponding to the MTM of the largest domain. Using the
computed MTMs we extract the capacitance of a total of 1000
randomly generated different configurations in 45 min, which
corresponds to slightly less than the time required to compute
the MTMs. When using the HFRW [7] to compute the capaci-
tance of all 1000 configurations 495 min are required (450 min
to compute the MTMs and 45 min to extract the capacitance
of the configurations). Hence, our algorithm provides 5x re-
duction in computational time. Due to large memory require-
ments (more than 4 GB), this example cannot be solved using
our implementation of the standard hierarchical algorithms [4],

[5] (which rely on assembling/solving a linear systems of equa-
tions).

825
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V. CONCLUSION

In this paper, we have presented a hierarchical extraction al-
gorithm for computing the 3-D capacitances of a large number
of layout configurations that, although topologically different,
are all assembled from the same layout motifs. Our BEM-MTM
algorithm uses the boundary element method to efficiently com-
pute a MTM for each motif. The motifs are connected together
to form a large Markov chain. Such a chain is then simulated
very efficiently using random walks. Consequently, our algo-
rithm avoids the main complexity of standard hierarchical algo-
rithms by not relying on assembling/solving linear systems to
resolve the global interactions. Furthermore, our approach does
not rely on approximations and trade-off between accuracy and
computational efficiency. The main advantage of our algorithm
is its extreme efficiency in extracting the capacitance matrix of a
large number of configurations constructed by different recom-
positions of the same set of motifs. We have observed that its
complexity is almost independent of the number of configura-
tions. In particular, in a large example, the total time required
to compute all the capacitance matrices of 1000 different 3-D
configurations is only two times the time required for solving a
single configuration. This is equivalent to a 500x speedup.

REFERENCES

[1] T. Jhaveri, V. Rovner, L. Pileggi, A. J. Strojwas, D. Motiani, V.
Kheterpal, K. Y. Tong, T. Hersan, and D. Pandini, “Maximization of
layout printability/manufacturability by extreme layout regularity,”
J. Micro/Nanolithography, MEMS MOEMS vol. 6, no. 3, p. 031011,
2007.

L. Liebmann, “DFM, the teenage years,” Design Manufacturability

Through Design-Process Integration 11, vol. 6925, p. 692502, 2008.

S. Banerjee, P. Elakkumanan, L. W. Liebmann, J. A. Culp, and M.

Orshansky, “Electrically driven optical proximity correction,” in SPIE

Conf., Apr. 2008, vol. 6925.

[4] W. Yu, Z. Wang, and J. Gu, “Fast capacitance extraction of actual 3-D
VLSI interconnects using quasi-multiple medium accelerated bem,”
IEEE Trans. Microwave Theory Tech., vol. 51, no. 1, pp. 109-119, Jan.
2003.

[5] T. Lu, Z. Wang, and W. Yuc, “Hierarchical block boundary-element

method (hbbem): A fast field solver for 3-d capacitance extraction,”

IEEE Trans. Microwave Theory Tech., vol. 52, no. 1, pp. 10-19, Jan.

2004.

L.J. Jiang, B. J. Rubin, J. D. Morsey, H. T. Hu, and A. Elfadel, “Novel

capacitance extraction method using direct boundary integral equation

method and hierarchical approach,” in Electrical Performance Elec-

tron. Packag., Oct. 2006, pp. 331-334.

T. El-Moselhy, I. Elfadel, and L. Daniel, “A hierarchical floating

random walk algorithm for fabric-aware 3-D capacitance extraction,”

in IEEE/ACM Int. Conf. Computer-Aided Design, Nov. 2009.

J. R. Phillips, J. K. White, and A. Member, “A precorrected-FFT

method for electrostatic analysis of complicated 3-D structures,” IEEE

Trans. Computer-Aided Design Integr. Circuits Syst., vol. 16, pp.

1059-1072, 1997.

[9] K. Nabors and J. White, “Fastcap: A multipole accelerated 3-D capac-
itance extraction program,” IEEE Trans. Computer-Aided Design In-
tegr. Circuits Syst., vol. 10, no. 11, pp. 1447-1459, Nov. 1991.

[10] W. Hackbusch, “A sparse matrix arithmetic based on H-matrices. Part
I: Introduction to H-matrices,” Computing vol. 62, no. 2, pp. 89-108,
1999.

[11] W. Shi, J. Liu, N. Kakani, and T. Yu, “A fast hierarchical algorithm
for 3-D capacitance extraction,” in Proc. 35th Annu. Design Automat.
Conf., New York, 1998, pp. 212-217.

[12] R. Jiang, W. Fu, J. M. Wang, V. Lin, and C. C. P. Chen, “Efficient
statistical capacitance variability modeling with orthogonal principle
factor analysis,” in Proc. 2005 IEEE/ACM Int. Conf. Computer-Aided
Design, Washington, DC, 2005, pp. 683—690.

[2

—

3

[t

[6

—_

[7

—

[8

[t}

[13] Z.Zhu andJ. White, “Fastsies: A fast stochastic integral equation solver
for modeling the rough surface effect,” in EEE/ACM Int. Conf. Com-
puter-Aided Design 2005, Nov. 2005, pp. 675-682.

[14] H. Zhu, X. Zeng, W. Cai, and D. Zhou, “A spectral stochastic collo-
cation method for capacitance extraction of interconnects with process
variations,” in /EEE Asia Pacific Conf. Circuits Syst., Dec. 2006, pp.
1095-1098.

[15] T. El-Moselhy and L. Daniel, “Stochastic integral equation solver for
efficient variation-aware interconnect extraction,” in Proc. 45th ACM/
IEEE Design Automat. Conf., Jun. 2008, pp. 415-420.

[16] T. El-Moselhy, I. Elfadel, and L. Daniel, “A capacitance solver for in-
cremental variation-aware extraction,” in /[EEE/ACM Int. Conf Com-
puter-Aided Design, Nov. 2008, pp. 662—669.

[17] Z. Ye, Z. Zhu, and J. Phillips, “Incremental large-scale electrostatic
analysis,” IEEE Trans. Computer-Aided Design Integrated Circuits
Syst., vol. 28, no. 11, pp. 1641-1653, Nov. 2009.

[18] A.E.Ruehli, Circuit Analysis, Simulation, and Design.
The Netherlands: North Holland, 1986.

[19] J. Gu, Z. Wang, and X. Hong, “Hierarchical computation of 3-D inter-
connect capacitance using direct boundary element method,” in Proc.
Asia South Pacific Design Automat. Conf., 2000, pp. 447-452.

[20] H. Qian, S. Nassif, and S. Sapatnekar, “Power grid analysis using
random walks,” IEEE Trans. Computer-Aided Design Integrated
Circuits Syst., vol. 24, no. 8, pp. 1204-1224, Aug. 2005.

[21] H. Qian and S. S. Sapatnekar, “Hierarchical random-walk algorithms
for power grid analysis,” in Proc. 2004 Asia South Pacific Design Au-
tomat. Conf., 2004, pp. 499-504.

[22] P.-Y. Huang, C.-K. Lin, and Y.-M. Lee, “Hierarchical power delivery
network analysis using Markov chains,” in IEEE Int. SOC Conf., Sep.
2007, pp. 283-286.

[23] J. Kemeny and J. Snell, Finite Markov Chains, ser. Univ. Series Un-
dergrad, Math,. New York: VanNostrand, 1969.

[24] M. Beattie and L. Pileggi, “Error bounds for capacitance extraction via
window techniques,”, IEEE Trans. Computer-Aided Design Integrated
Circuits Syst., vol. 18, no. 3, pp. 311-321, Mar. 1999.

[25] F. Yu and W. Shi, “A divide-and-conquer algorithm for 3-D capaci-
tance extraction,” in Int. Symp. Quality Electronic Design, 2004, pp.
253-258.

[26] Y. L. Coz and R. Iverson, “A stochastic algorithm for high speed ca-
pacitance extraction in integrated circuits,” Solid-State Electron. vol.
35, no. 7, pp. 1005-1012, 1992.

Amsterdam,

Tarek El-Moselhy received the B.Sc. degree in
electrical engineering in 2000 and a diploma in
mathematics in 2002, then the M.Sc. degree in
mathematical engineering, in 2005, all from Cairo
University, Cairo, Egypt. He received the Ph.D.
degree in electrical engineering from Massachusetts
Institute of Technology, Cambridge, in 2010.

He is a postdoctoral associate in the Department of
Aeronautics and Astronautics at Massachusetts Insti-
tute of Technology (MIT). His research interests in-
clude fast algorithms for deterministic and stochastic
electromagnetic simulations, stochastic algorithms for uncertainty quantifica-
tion in high dimensional systems, and stochastic inverse problems with em-
phasis on Bayesian inference.

Ibrahim (Abe) M. Elfadel received his under-
graduate education at the Ecole Centrale des Arts
et Manufactures, Paris, France, on a scholarship
from the French Government. He received the Ph.D.
degree from Massachusetts Institute of Technology,
Cambridge, in 1993.

He is a Senior Scientist in Electronic Design
Automation at the IBM Systems and Technology
Group. Prior to this position, he was a Research
Staff Member in Design Automation at IBM Re-
search. He joined IBM in 1996 after stints in the
telecommunication industry with KDD Research and Development Laborato-
ries, Saitama, Japan, the medical device industry with Masimo Corporation,
Irvine, CA, and as a visiting scientist with the MIT Research Laboratory
of Electronics. Between 2000 and 2004, he was on the faculty of Columbia
University as an Adjunct Associate Professor of Electrical Engineering. His
current research interests are primarily in VLSI layout electrical extraction,



EL-MOSELHY et al.: A MARKOV CHAIN BASED HIERARCHICAL ALGORITHM FOR FABRIC-AWARE CAPACITANCE EXTRACTION 827

circuit and interconnect analysis, computational electromagnetics, and device
compact modeling. His past R&D work includes contributions to statistical
image modeling, adaptive signal processing, neural networks, model-order
reduction, circuit optimization, and transmission line macromodeling. He is
the holder of 45 issued and pending U.S. patents and the author of numerous
refereed publications and internal reports.

Dr. Elfadel is the recipient of an IBM Outstanding Technical Achievement
Award for his contributions to the automation of VLSI interconnect modeling,
analysis, and optimization, and an IBM Research Division Award for his con-
tributions to timing-driven VLSI circuit optimization. He is also the recipient
of six IBM Invention Achievement Awards for his contributions to IBM’s IP
portfolio in his various areas of technical expertise. His other awards include an
ACM Technical Leadership Award from the Special Interest Group on Design
Automation, and a “Certificate of Recognition for Technology Innovation” from
the Society of Technology in Anesthesia. He served on the Technical Program
Committees of several conferences, including the International Conference on
Computer-Aided Design and the European Design Automation and Test Con-
ference. He also served as the Chair of the Professional Interest Community on
Design Automation at IBM Research.

Luca Daniel received the Laurea degree (summa cum
laude) in electronic engineering from the Universita
di Padova, Italy, in 1996, and the Ph.D. degree in elec-
trical engineering from the University of California,
Berkeley, in 2003.

He is an Associate Professor in the Electrical
Engineering and Computer Science Department of
the Massachusetts Institute of Technology (MIT),
Cambridge. His research interests include accel-
erated integral equation solvers and parameterized
stable compact dynamical modeling of linear and
nonlinear dynamical systems with applications in mixed-signal/RF/mm-wave
circuits, power electronics, MEMs, and the human cardiovascular system.

Dr. Daniel received the 1999 IEEE TRANSACTIONS ON POWER ELECTRONICS
best paper award, the 2003 ACM Outstanding Ph.D. Dissertation Award in Elec-
tronic Design Automation, five best paper awards in international conferences,
the 2009 IBM Corporation Faculty Award, and 2010 Early Career Award from
the IEEE Council on Electronic Design Automation.



