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Abstract

The venerable theory of electrokinetic phenomena rests on the hypothesis of a dilute solution
of point-like ions in quasi-equilibrium with a weakly charged surface, whose potential relative
to the bulk is of order the thermal voltage (kT/e ≈ 25 mV at room temperature). In nonlinear
electrokinetic phenomena, such as AC or induced-charge electro-osmosis (ACEO, ICEO) and
induced-charge electrophoresis (ICEP), several Volts ≈ 100 kT/e are applied to polarizable sur-
faces in microscopic geometries, and the resulting electric fields and induced surface charges are
large enough to violate the assumptions of the classical theory. In this article, we review the
experimental and theoretical literatures, highlight discrepancies between theory and experiment,
introduce possible modifications of the theory, and analyze their consequences. We argue that,
in response to a large applied voltage, the “compact layer” and “shear plane” effectively advance
into the liquid, due to the crowding of counter-ions. Using simple continuum models, we pre-
dict two general trends at large voltages: (i) ionic crowding against a blocking surface expands
the diffuse double layer and thus decreases its differential capacitance, and (ii) a charge-induced
viscosity increase near the surface reduces the electro-osmotic mobility; each trend is enhanced
by dielectric saturation. The first effect is able to predict high-frequency flow reversal in ACEO
pumps, while the second may explain the decay of ICEO flow with increasing salt concentration.
Through several colloidal examples, such as ICEP of an uncharged metal sphere in an asym-
metric electrolyte, we show that nonlinear electrokinetic phenomena are generally ion-specific.
Similar theoretical issues arise in nanofluidics (due to confinement) and ionic liquids (due to
the lack of solvent), so the paper concludes with a general framework of modified electrokinetic
equations for finite-sized ions.
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1. Introduction

1.1. Nonlinear “induced-charge” electrokinetic phenomena

Due to favorable scaling with miniaturization, electrokinetic phenomena are finding many new
applications in microfluidics [1, 2, 3], but often in new situations that raise fundamental theo-
retical questions. The classical theory of electrokinetics, dating back to Helmholtz and Smolu-
chowski a century ago [4], was developed for the effective linear hydrodynamic slip driven by an
electric field past a surface in chemical equilibrium with the solution, whose double-layer voltage
is of order the thermal voltage, kT/e = 25 mV, and approximately constant [5, 6, 7, 8, 9, 10].
The discovery of AC electro-osmotic flow (ACEO) over micro-electrodes [11, 12, 13] has shifted
attention to a new nonlinear regime [14], where the induced double-layer voltage is typically sev-
eral Volts ≈ 100 kT/e, oscillating at frequencies up to 100 kHz, and nonuniform at the micron
scale. Related phenomena of induced-charge electro-osmosis (ICEO) [15, 16, 17] also occur
around polarizable particles [18, 19] and microstructures [20, 21] (in AC or DC fields), as well
as driven biological membranes [22]. Due to broken symmetries in ICEO flow, asymmetric col-
loidal particles undergo nonlinear, induced-charge electrophoresis (ICEP) [15, 23, 24, 25]. Some
of these fundamental nonlinear electrokinetic phenomena are illustrated in Fig. 1.

A “Standard Model” (outlined below) has emerged to describe a wide variety of induced-
charge electrokinetic phenomena, but some crucial aspects remain unexplained. In their pioneer-
ing work 25 years ago in the USSR, which went unnoticed in the West until recently [15, 16],
V. A. Murtsovkin, A. S. Dukhin and collaborators first predicted quadrupolar flow (which we
call “ICEO”) around a polarizable sphere in a uniform electric field [28] and observed the
phenomenon using mercury drops [29] and metal particles [30], although the flow was some-
times in the opposite direction to the theory, as discussed below. (See Ref. [18] for a re-
view.) More recently, in microfluidics, Ramos et al. observed and modeled ACEO flows over
a pair of micro-electrodes, and the theory over-predicted the observed velocity by an order of
magnitude [11, 31, 32, 33]. Around the same time, Ajdari used a similar model to predict
ACEO pumping by asymmetric electrode arrays [12], which was demonstrated using planar
electrodes of unequal widths and gaps [34, 35, 36, 37, 38, 39], but the model cannot predict
experimentally observed flow reversal at high frequency and loss of flow at high salt concentra-
tion [38, 40, 41], even if extended to large voltages [42, 43]. The same model has also been
used to predict faster three-dimensional ACEO pump geometries [44], prior to experimental
verification [40, 45, 46, 47, 48], but again the data departs from the theory at large voltages.
Discrepancies between theory and experiments, including flow reversal, also arise in traveling-
wave electro-osmosis (TWEO) for electrode arrays applying a wave-like four-phase voltage
pulse [49, 50, 51, 52]. Recent observations of ICEO flow around metal microstructures [20, 21],
ICEP rotation of metal rods [53], ICEP translation of metallo-dielectric particles [25] have like-
wise confirmed qualitative theoretical predictions [15, 16, 23, 54, 55], while exhibiting the same
poorly understood decay of the velocity at high salt concentration. We conclude that there are
fundamental gaps in our understanding of induced-charge electrokinetic phenomena.

In this article, we review recent experimental and theoretical work in this growing area of
nonlinear electrokinetics, as well as some possibly relevant literatures from other fields, and we
consider a number of possible modifications of classical electrokinetic theory. Some of these
ideas are new, while others were proposed long ago by O. Stern, J. J. Bikerman, J. Lyklema,
and others, and effectively forgotten. We build the case that at least some failures of the Stan-
dard Model can be attributed to the breakdown of the dilute-solution approximation at large
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Figure 1: Examples of nonlinear electrokinetic phenomena, driven by induced charge (+, −)in the diffuse part of the
electrochemical double layer at polarizable, blocking surfaces, subject to an applied electric field E or voltage V . (a)
Induced-charge electro-osmosis (ICEO) around a metal post [15, 16, 20, 18], (b) induced-charge electrophoresis (ICEP)
of a metal/insulator Janus particle [23, 25], (c) a nonlinear electrokinetic jet of ICEO flow at a sharp corner in a dielectric
microchannel [26, 27], and (d) AC electro-osmosis (ACEO) over a pair of microelectrodes [11, 12].
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induced voltages. Using simple models, we predict two general effects associated with coun-
terion crowding – decay of the double-layer capacitance and reduction of the electro-osmotic
mobility – which begin to explain the experimental data. Our models, although incomplete, also
imply generic new ion-specific nonlinear electrokinetic phenomena at large voltages related to
atomic-level details of polarizable solid/electrolyte interfaces.

1.2. Scope and context of the article

We first presented these ideas in a paper at the ELKIN International Electrokinetics Sympo-
sium in Nancy, France in June 2006 [56] and in a letter, which was archived online in March
2007 [57] and recently published [58]. The present article is a review article with original
material, built around the letter, where its basic arguments are further developed as follows:

1. We begin with a critical review of recent studies of induce-charge electrokinetic phenomena
in section 2. By compiling results from the literature and performing our own simulations
of other experiments, we systematically compare theory and experiment across a wide range
of nonlinear electrokinetic phenomena. To motivate modified electrokinetic models, we also
review various concentrated-solution theories from electrochemistry and electrokinetics in
sections 3 and 4.

2. In our original letter, the theoretical predictions of steric effects of finite ion sizes in elec-
trokinetics were based on what we call “Bikerman’s model” below [59, 60], a simple
lattice-gas approach that allows analytical results. Here, we develop a general, mean-field
local-density theory of volume constraints and illustrate it with hard-sphere liquid mod-
els [61, 62]. In addition to the charge-induced thickening effect from the original letter,
we also consider the field-induced viscoelectric effect in the solvent proposed by Lyklema
and Overbeek [63, 64], in conjunction with our models for steric effects. We also consider
dielectric relaxation of the solution in large electric fields, which tends to enhance these
effects.

3. We provide additional examples of new electrokinetic phenomena predicted by our models
at large voltages. In the letter [57], we predicted high-frequency flow reversal in ACEO
(Fig. 10 below) and decay of ICEO flow at high concentration (Fig. 17). Here, we also
predict two mechanisms for ion-specific, field-dependent mobility of polarizable colloids
at large voltages. The first has to do with crowding effects on the redistribution of double-
layer charge due to nonlinear capacitance, as noted by A. S. Dukhin [65, 66] (Fig. 12). The
second results from a novel ion-specific viscosity increase at high charge density (Fig. 20).

4. We present a general theoretical framework of modified electrokinetic equations and bound-
ary conditions for concentrated solutions and/or large voltages in section 5, which could find
many other applications in nonlinear electrochemical relaxation or electrokinetics. .

In spite of these major changes, the goal of the paper remains the same: to provide an overview of
various physical aspects of electrokinetic phenomena, not captured by classical theories, which
become important at large induced voltages. Here, we focus on general concepts, mathematical
models, and simple analytical predictions. Detailed studies of some particular phenomena will
appear elsewhere, e.g. Ref. [67] on high-frequency flow reversal in AC electro-osmosis.

There have been a few other attempts to go beyond dilute solution theory in electrokinetics,
but in the rather different context of linear “fixed-charge” flows in nanochannels at low surface
potentials. The first electrokinetic theories of this type may be those of Cervera et al. [68, 69],
who used Bikerman’s modified Poisson-Boltzmann (MPB) theory to account for the crowding
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of finite-sized ions during transport by conduction and electro-osmosis through a membrane
nanopore. Independently, J. J. Horno et al. [70, 71, 72, 73] also used Bikerman’s model (albeit,
attributed to others [74, 75, 76] – see below) to analyze linear electrophoresis of colloids in a
concentrated electrolyte. Recently, Liu et al. [77] numerically implemented a more complicated
MPB theory [78, 79, 80] to predict effects of finite ion sizes, electrostatic correlations, and di-
electric image forces on electro-osmotic flow and streaming potential in a nanochannel. In these
studies of linear electrokinetic phenomena, effects beyond the dilute solution approximation can
arise due to nano-confinement, but, as we first noted in Ref. [60], much stronger and possibly dif-
ferent crowding effects also arise due to large induced voltages, regardless of confinement or bulk
salt concentration. Our goal here is to make a crude first attempt to understand the implications of
ion crowding for nonlinear electrokinetic phenomena, using simple mean-field approximations
that permit analytical solutions in the thin double-layer limit.

Similar models for double-layer charging dynamics are also starting to be developed for ionic
liquids and molten salts [81, 82, 83, 84], since describing ion crowding is paramount in the ab-
sence of a solvent. Kornyshev recently suggested using what we call the “Bikerman-Freise” (BF)
mean-field theory below to describe the differential capacitance of the double layer, with the bulk
volume fraction of ions appearing as a fitting parameter to allow for a slightly different density
of ions [81]. (An equivalent lattice-gas model was also developed long ago for the double layer
in an ionic crystal by Grimley and Mott [85, 86, 87], and a complete history of related models is
given below in Section 3.1.2.) The BF capacitance formula, extended to allow for a thin dielectric
Stern layer, has managed to fit recent experiments and simulations of simple ionic liquids rather
well, especially at large voltages [82, 83, 88]. However, we are not aware of any work addressing
electrokinetic phenomena in ionic liquids, so perhaps the mean-field electro-hydrodynamic mod-
els developed here for concentrated electrolytes at large voltages might provide a useful starting
point, in the limit of nearly close packing of ions.

As a by-product of this work, our attempts to model nanoscale phenomena in nonlinear elec-
trokinetics may also have broader applicability in nanofluidics [89, 90]. Dilute-solution theory
remains the state-of-the-art in mathematical modeling, and the main focus of the field so far
has been on effects of geometrical confinement, especially with overlapping double layers. The
classical Poisson-Nernst-Planck and Navier-Stokes equations provide a useful first approxima-
tion to understand nanochannel transport phenomena, such as charge selectivity [91, 92, 93, 94],
mechanical-to-electrical power conversion efficiency [95, 96, 97, 98, 99, 100], current-voltage
characteristics [101], and nonlinear ion-profile dynamics [102, 103], but in some cases it may
be essential to introduce new physics into the governing equations and boundary conditions to
account for crowding effects and strong surface interactions. Molecular dynamics simulations
of nanochannel electrokinetics provide crucial insights and can be used to test and guide the
development of modified continuum models [104, 105, 106, 107, 108, 109] .

We stress that there are other important, developing areas of nonlinear electrokinetics, which
are related, but outside the scope of this article. For example, we do not discuss the non-
linear electrophoresis of fixed-charge particles [110, 111, 66], which can result from surface
conduction [112, 113, 114, 115] (Du > 0) and advection-diffusion [110] (Pe > 0), although
we will analyze a different mechanism for field-dependent electrophoretic mobility for po-
larizable particles [65]. We also neglect nonlinear electrokinetic phenomena associated with
strong salt concentration gradients, such as second-kind “superfast” electrophoresis [116, 117,
118, 119, 120, 121], electro-osmotic fluid instability [122, 123, 124, 125, 126, 101], and
concentration-polarization shocks [102, 103], which can now be directly observed in microflu-
idic systems [125, 126, 101, 103] and porous bead packings [127, 128]. These effects result from
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“super-limiting” normal current into a polarized surface, membrane, or nanochannel, which de-
pletes the local salt concentration significantly and forces the diffuse charge out of equilibrium.
In such cases, dilute solution theory is likely to remain valid up to large applied voltages in the
regions of low ionic strength away from the surface, where the flow is mostly generated. In
contrast, our focus here is on metal structures and electrodes that do not sustain normal current,
e.g. due to AC forcing and insufficient voltage to trigger Faradaic reactions. As a result, the
applied voltage leads mostly to capacitive charging of the diffuse layer, and thus potentially to
the crowding of counter-ions attracted to the surface.

The article is organized as follows. In section 2, we review the standard low-voltage model
for induced-charge electrokinetic phenomena and its failure to explain certain key experimental
trends. We then review various attempts to go beyond dilute solution theory in electrochemistry
and electrokinetics and analyze the effects of two types of new physics in nonlinear electroki-
netic phenomena at large voltages: In section 3, we build on our recent work on diffuse-charge
dynamics at large applied voltages [129, 60, 130] to argue that the crowding of counterions plays
a major role in induced-charge electrokinetic phenomena by reducing the double-layer capaci-
tance in ways that are ion-specific and concentration-dependent; In section 4, we postulate that
the local viscosity of the solution grows with increasing charge density, which in turn decreases
the electro-osmotic mobility at high voltage and/or concentration and introduces another source
of ion specificity. Finally, in section 5, we present a theoretical framework of modified elec-
trokinetic equations, which underlies the results in sections 3-4 and can be applied to general
situations.

2. Background: Theory versus Experiment

2.1. The Standard Model
We begin by summarizing the ”Standard Model” of induced-charge / AC electrokinetics, used

in most theoretical studies, and bringing out some crucial experimental trends it fails to capture.
The general starting point for the Standard Model is the coupling of the Poisson-Nernst-Planck
(PNP) equations of ion transport to the Navier Stokes equations of viscous fluid flow. ICEO
flows are rather complex, so many simplifications from this starting point have been made to
arrive at an operational model [18, 11, 12, 16, 23]. For thin double layers (DL) compared to
the geometrical length scales, the Standard Model is based on the assumption of ”linear” or
”weakly nonlinear” charging dynamics [129], which further requires that the applied voltage is
small enough not to significantly perturb the bulk salt concentration, whether by double-layer
salt adsorption or Faradaic reaction currents. In this regime, the problem is greatly simplified,
and the electrokinetic problem decouples into one of electrochemical relaxation and another of
viscous flow:

1. Electrochemical relaxation. – The first step is to solve Laplace’s equation for the electro-
static potential across the bulk resistance,

∇ · J = ∇ · (σE) = −σ∇2φ = 0 (1)

assuming Ohm’s Law with a constant conductivity σ. A capacitance-like boundary con-
dition for charging of the double layer at a blocking surface (which cannot pass normal
current) then closes the “RC circuit” [129],

CD
dΨD

dt
= σEn, (2)
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where the local diffuse-layer voltage drop ΨD(φ) (surface minus bulk) responds to the nor-
mal electric field En = −n̂ · ∇φ. In the Standard Model, the bulk conductivity σ and diffuse-
layer capacitance CD are usually taken to be constants, although these assumptions can be
relaxed [42, 43, 131]. The diffuse layer capacitance is calculated from the PNP equations
by applying the justifiable assumption that the thin double layers are in thermal equilibrium;
see section 3.1. A compact Stern layer or dielectric surface coating of constant capacitance
CS is often included [12, 129, 42], so that only part of the total double-layer voltage ∆φ is
dropped across the diffuse layer “capacitor”,

ΨD =
∆φ

1 + δ
=

CS ∆φ

CS + CD
, (3)

where δ = CD/CS is the diffuse-layer to compact-layer capacitance ratio.
2. Viscous flow. – The second step is to solve for a (possibly unsteady) Stokes flow,

ρm
∂u
∂t

= −∇p + ηb∇
2u, ∇ · u = 0, (4)

with the Helmholtz-Smoluchowski (HS) boundary condition for effective fluid slip outside
the double layer,

us = −b Et = −
εbΨD

ηb
Et (5)

where Et is the tangential field, b = εbζ/ηb is the electro-osmotic mobility, ζ is the zeta
potential at the shear plane (= ΨD in the simplest models), and εb, ηb, and ρm are the per-
mittivity, viscosity, and mass density of the bulk solvent. Osmotic pressure gradients, which
would modify the slip formula [123, 124], are neglected since the bulk salt concentration is
assumed to be uniform.

Although this model can be rigorously justified only for very small voltages, ΨD � kT/e, in a
dilute solution [32, 16, 129], it manages to describe many features of ICEO flows at much larger
voltages.

There has been extensive theoretical work using the Standard Model, and it provides the ba-
sis for most of our understanding of induced-charge electrokinetics. In recent years, it has been
widely used to model nonlinear electrokinetic phenomena in microfluidic devices, such as ACEO
flows around electrode pairs [11, 31, 32, 33, 132] and arrays [12, 34, 44, 45, 46, 47, 133, 134],
traveling-wave electro-osmotic flows (TWEO) [49, 50, 52], ICEO interactions between dielectric
particles and electrodes [135, 136, 137, 138], ICEO flow around metal structures [15, 16, 20, 139,
140, 141, 142, 143] and dielectric corners [26, 27] and particles [16, 144, 145], fixed-potential
ICEO around electrodes with a DC bias [16, 146], ICEP motion of polarizable asymmetric par-
ticles [15, 16, 24, 23], collections of interacting particles [53, 54, 147, 148, 149], particles near
walls [150, 55], and particles in field gradients [23]. The Standard Model has had many suc-
cesses in describing all of these phenomena, but it also has some fundamental shortcomings,
when compared to experimental data.

One possibility is that the underlying PNP/NS equations and boundary conditions are physi-
cally accurate, but the thin-DL approximation introduces large mathematical errors. A number
of theoretical studies have allowed for arbitrary DL thickness in a dilute solution while solving
the linearized equations of ion transport and fluid flow in the regime of low voltages. This mod-
eling approach has been applied to ACEO [32] and TWEO [151] flows over electrode arrays
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and ICEP particle motion in uniform [152] or non-uniform [153] fields. For the model problem
of ICEO flow around a thick metal stripe on a flat wall in a parallel electric field [129, 146],
Gregersen et al. [143] have recently compared full numerical solutions of the Poisson-Nernst-
Planck (PNP) and Navier-Stokes (NS) equations with thin double-layer approximations in both
the linear regime (Standard Model) and the “weakly nonlinear” regime [129, 131] (including
tangential surface conduction, but not diffuse-layer salt adsorption, surface reactions, and bulk
concentration polarization, discussed below). For their model problem, they concluded that for
micron-scale electrodes, the (outer) boundary-layer approximations can over-estimate ICEO ve-
locities by 10% for thin double layers, and by 100% for double-layer thickness comparable to the
electrode height. These errors could be reduced by constructing uniformly valid approximations
for finite double layer thickness [154, 44] (adding double layer contributions and subtracting the
overlap), but the main point for us is that mathematical errors in thin double layer approxima-
tions (compared to full PNP/NS numerical solutions) vanish in the thin double layer limit and
are small (of order λD/L � 1) for typical experimental situations in microfluidics. In particular,
we cannot attribute the systematic and large (sometimes order of magnitude) discrepancies be-
tween theory and experiment discussed below to the thin double-layer approximation, especially
if the asymptotic analysis is done carefully, going beyond the leading-order low-voltage approx-
imation of the Standard Model. Instead, in this paper, we build the case that at least some of
the discrepancies may be attributable to the breakdown of the underlying PBP/NS equations of
dilute solution theory (and its boundary conditions), close to a highly charged surface.

2.2. Open questions

2.2.1. The “correction factor”
Low-voltage, dilute-solution theories in nonlinear electrokinetics tend to over-predict fluid

velocities, compared to experiments. A crude way to quantify this effect in the Standard Model
is to multiply the HS slip velocity (5) on all surfaces by a fitting parameter Λ, the “correction
factor” introduced by Green et al. [31, 33]. This approach works best at low voltages and in
very dilute solutions, but even in such a regime, we should stress that it is generally impossible to
choose Λ to fit complete flow profiles or multiple experimental trends, e.g. velocity vs. voltage
and frequency, at the same time. Nevertheless, one can often make a meaningful fit of Λ to
reproduce a key quantity, such as the maximum flow rate or particle velocity. Such a quantitative
test of the model has been attempted for a number of data sets [31, 33, 20, 132, 146, 67, 25, 55],
but there has been no attempt to synthesize results from different types of experiments to seek
general trends in the correction factor.

As a background for our study, we provide a critical evaluation of the Standard Model based on
Λ values for a wide range of experimental situations. In Table 1, we have complied all available
results from the literature. We have also added many entries by fitting our own Standard-Model
simulations to published data, for which no comparison has previously been done.

It is striking that Λ is never larger than unity and can be orders of magnitude smaller. We
managed to find only one published measurement where the Standard Model correctly predicts
the maximum of the observed flow (Λ = 1), from a recent experiment on ACEO pumping of
micromolar KCl by a planar, gold electrode array at relatively low voltage [41], but even in that
data set the model fails to predict weak flow reversal at high frequency and salt concentration
dependence (see below). Remarkably, there has not yet been a single ICEO experiment where
the model has been able to predict, or even to fit, how the velocity depends on the basic operating
conditions – voltage, AC frequency, and salt concentration – let alone the dependence on surface
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Reference Type of Flow Solution c0 V induced
max Λ ζmax eζmax/kT

Green et al. 2000 [31] ACEO electrode pair KCl 0.16mM 1.0 V 0.13 0.13 V 5.2
0.67mM 1.0 V 0.055 0.055 V 2.2
6.6mM 2.5 V 0.015 0.038 V 1.52

Green et al. 2002 [33] ACEO electrode pair KCl 0.16mM 0.5 V 0.25‡ 0.125 V 5
0.67mM 0.5 V 0.24‡ 0.12 V 4.8

Studer et al. 2004 [38] planar ACEO array KCl 0.1mM 1.41 V 0.18 0.25 V 10
Ramos et al. 2005 [50] TWEO electrode array KCl 0.16mM 0.5 V 0.05 0.025V 1

1.4V 0.026 0.036 V 1.44
Bown et al. 2006 [132] Disk electrode ACEO KCl 0.43mM 2.0 V 0.0025 0.005 V 0.2
Urbanski et al. 2007 [45] 3D ACEO array KCl 3µM 1.5 V 0.2∗ 0.3 V 12
Bazant et al. 2007 [41] planar ACEO array KCl 0.001mM 0.75 V 1∗ 0.75 V 30

0.003mM 0.88∗ 0.66 V 26.4
0.01mM 0.65∗ 0.49 V 19.6
0.03mM 0.47∗ 0.35 V 14
0.1mM 0.41∗ 0.31 V 12.4
0.3mM 0.24∗ 0.18 V 6.4
1mM 0.10∗ 0.075 V 3

Storey et al. 2008 [67] planar ACEO array KCl 0.03mM 0.75 V 0.667 0.5 V 20
Levitan et al. 2005 [20] metal cylinder ICEO KCl 1mM 0.25 V 0.4‡ 0.1 V 4
Soni et al. 2007 [146] fixed-potential ICEO KCl 1mM 9.0 V 0.005 0.045 1.8
Brown et al. 2000 [34] ACEO array NaNO3 0.1mM 1.7V 0.068∗ 0.115V 4.6

1.41V 0.062∗ 0.087 V 3.5
1.13V 0.071∗ 0.08 V 3.2
0.85V 0.079∗ 0.067 V 2.7
0.57V 0.076∗ 0.043 V 1.7
0.28V 0.081∗ 0.023 V 0.92

Urbanski et al. 2006 [40] ACEO array water ≈ µM 1.5 V 0.25∗ 0.375 V 15
1.0 V 0.5∗ 0.5 V 20

Gangwal et al. 2008 [25] Janus particle ICEP water ≈ µM 0.085 V 0.14† 0.012 V 0.48
Kilic & Bazant 2008 [55] NaCl 0.1mM 0.14† 0.012 V 0.48

0.5mM 0.105† 0.009 V 0.36
1mM 0.08† 0.007 V 0.27
3mM 0.048† 0.004 V 0.16

Table 1: Comparison of the standard low-voltage model of induced-charge electrokinetic phenomena with experimental
data (column 1) for a wide range of situations (column 2), although limited to a small set of aqueous electrolytes (column
3) at low bulk salt concentrations c0 (column 4). In each case, the nominal maximum induced double-layer voltage
Vmax is estimated (column 5). A crude comparison with the Standard Model is made by multiplying the predicted slip
velocity (5) everywhere by a constant factor Λ (column 6) for a given c0 and Vmax. In addition to Λ values from the cited
papers, we have added entries to the table, indicated by ∗, by fitting our own standard-model simulations to published
experimental data. Estimates indicated by ‡ assume a frequency-dependent constant-phase-angle impedance for the
double layer, and those labeled by † are affected by particle-wall interactions, which are not fully understood. In each
case, we also estimate the maximum induced zeta potential ζmax = VmaxΛ in Volts (column 7) and in units of thermal
voltage kT/e (column 8).
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and bulk chemistries. The greatest discrepancies come from ACEO pumping by a disk-annulus
electrode pair [132] (Λ = 0.0025) and fixed-potential ICEO around a metal stripe [146] (Λ =

0.005), both in millimolar KCl and at high induced voltages Vmax.
In Table 1, we have also used Λ to convert the maximum nominal voltage Vmax induced

across the double layer in each experiment to a maximum zeta potential ζmax = ΛVmax. The
range of ζmax is much smaller for Λ, but still quite significant. It is clear that ζmax rarely exceeds
10kT/e, regardless of the applied voltage. For very dilute solutions, the largest value in the
Table, ζmax = 0.75V = 30kT/e, comes from ACEO pumping of micromolar KCl [41], while
the smallest values, ζmax < 0.5kT/e, come from ICEP of gold-latex Janus particles in millimolar
NaCl.

The values of Λ and ζmax from all the different experimental situations in Table 1 are plotted
versus c0 andVmax in Fig. 2, and some general trends become evident. In Fig. 2(b), we see that
ζmax decays strongly with increasing salt concentration and becomes negligible in most exper-
iments above 10 mM. In Fig. 2(c), we see that ζmax exhibits sub-linear growth with Vmax and
appears to saturate below ten times times the thermal voltage (10kT/e = 0.25 V at room temper-
ature), or much lower values at high salt concentration. Even with applied voltages up to 10 Volts
in dilute solutions, the effective maximum zeta potential tends to stay well below 1 Volt. From
the perspective of classical electrokinetic theory, this implies that most of the voltage applied to
the double layer is dropped across the immobile, inner ”compact layer”, rather than the mobile
outer ”diffuse layer”, where electro-osmotic flow is generated.

This effect can be qualitatively, but not quantitatively, understood using the Standard Model.
Many authors have assumed a uniform, uncharged Stern layer (or dielectric thin film) of permit-
tivity εS and thickness hS = εS /CS , acting as a capacitor in series with the diffuse layer. Via
Eq. (3), this model implies

Λ =
1

1 + δ
, with δ =

CD

CS
=
εb

εS

hS

λD
=
λS

λD
, (6)

where λD is the Debye-Hückel screening length (diffuse-layer thickness), which takes the form

λD =

√
εbkT

2(ze)2c0
(7)

for a z : z electrolyte, and λS is an effective width for the Stern layer, if it were a capacitor
with the same dielectric constant as the bulk. Inclusion of the Stern layer only transfers the
large, unexplained variation in the correction factor Λ to the parameter λS (or CS = εb/λS )
without any theoretical prediction of why it should vary so much with voltage, concentration,
and geometry. Using these kinds of equivalent circuit models applied to differential capacitance
measurements [155], electrochemists sometimes infer a tenfold reduction in permittivity in the
Stern layer versus bulk water, εb/εS ≈ 10, but, even if this were always true, it would still be
hard to explain the data. For many experimental situations in Table 1, the screening length λD

is tens of nanometers, or hundreds of molecular widths, and the effective Stern-layer width λS

would need to be much larger – up to several microns – to predict the observed values of Λ � 1.
In contrast, if we take the physical picture of a Stern monolayer literally, then hS should be only
a few Angstroms, and λS at most a few nanometers, so there is no way to justify the model. As
noted in early papers by Brown et al. [34] and Green et al. [31] , it is clear that the effective
diffuse-layer voltage (or induced zeta potential) is not properly described by the Standard Model
under typical experimental conditions.
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Figure 2: General trends in the under-prediction of ICEO flow velocity by the Standard Model from Table 1, compared
with (solid and dashed) scaling curves, simply to guide the eye. (a) Log-log plot of Λ vs. c0 compared with the curves
Λ =

√
10−3mM/c0 (dashed) and = ln10(10mM/c0)/4 (solid); (b) log-linear plot and (c) log-log plot of ζmax vs. c0

compared with the curves eζmax/kT =
√

10mM/c0 (dashed) and = 5 ln10(10mM/c0) (solid); and (d) log-log plot of ζmax
vs. Vmax compared to ζmax = Vmax (solid). Points from the same experiment (varying concentration or voltage) are
connected by line segments.
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(a) (b)

Figure 3: Typical experimental data (included in the estimates of Table 1) for two different types of nonlinear, induced-
charge electrokinetic phenomena showing qualitative features not captured by the Standard Model, or the underlying
electrokinetic equations of dilute solution theory. (a) Velocity of ACEO pumping of dilute aqueous solutions of KCl
around a microfluidic loop by an asymmetric planar Au electrode array with the geometry of Refs [34, 38] versus AC
frequency at constant voltage, 3 Volts peak to peak (Vmax = 1.5 V), reproduced from Ref. [41]. The data exhibits
the unexplained flow reversal at high frequency (10 − 100 kHz) and strong concentration dependence first reported in
Ref. [38]. (b) Velocity of ICEP motion of 5.7 µm metallo-dielectric Janus particles versus field-squared at different
concentrations of NaCl in water at constant 1kHz AC frequency, reproduced from Ref. [25]. The data shows a similar
decay of the velocity with increasing bulk salt concentration, which becomes difficult to observe experimentally above
10mM, in both experiments.

2.2.2. Electrolyte dependence

In addition to overestimating experimental velocities, the standard model fails to predict some
important phenomena, even qualitatively. For example, ICEO flows have a strong sensitivity
to solution composition, which is under-reported and unexplained. Most experimental work has
focused on dilute electrolytes [34, 31, 156, 20]. (See Table 1.) Some recent experiments suggest a
logarithmic decay of the induced electro-osmotic mobility, b ∝ ln(cc/c0), with bulk concentration
c0 seen in KCl for ACEO micropumps [38, 41], in KCl and CaCO3 for ICEO flows around metal
posts [157], and in NaCl for ICEP motion of metallo-dielectric Janus particles [25]. This trend is
visible to some extent at moderate concentrations in Fig. 2(b) over a wide range of experimental
conditions, although a power-law decay also gives a reasonable fit at high salt concentrations.
Two examples of different nonlinear electrokinetic phenomena (ACEO fluid pumping and ICEP
particle motion) showing this unexplained decay with concentration are shown in Fig. 3.

In all experiments, such as those in Fig. 2, the flow practically vanishes for c0 > 10 mM,
which is two orders of magnitude below the salinity of most biological fluids and buffer solu-
tions (c0 > 0.1 M). Experiments with DC [158, 159] and AC [160, 146] field-effect flow control,
where a gate voltage controls the zeta potential of a dielectric channel surface, have likewise
been limited to low salt concentrations below 10 mM in a variety of aqueous solutions. Sodium
carbonate/bicarbonate buffer solutions have also been used in ICEO mixers with platinum struc-
tures [141], but experimental data was only reported at a low ionic strength of 2.5 mM after
dilution by water, and not for the original 1 M solutions. Remarkably, out of all the experimental
work reviewed in this section, we could not find any observations of induced-charge electroki-
netic phenomena at salt concentrations above 30 mM in water.
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The Standard Model seems unable to explain the decay of flow with increasing salt concen-
tration quantitatively, although it does aid in qualitative understanding. Substituting the Debye-
Hückel screening length for a binary z : z electrolyte in (6) we obtain

Λ =
1

1 +
√

c0/cc
∼

√
cc

c0
for c0 � cc (8)

where

cc =
kT
2εb

(
εS

hS ze

)2

=
εbkT

2(ze)2λ2
S

(9)

is a crossover concentration, above which the flow decays like the inverse square-root of concen-
tration. As noted above, it is common to attribute the theoretical over-prediction of ICEO flows,
even in very dilute solutions to a large voltage drop across the compact layer (δ � 1), but this
would imply a strong concentration dependence (c0 � cc) that is not observed. Alternatively,
fitting the compact-layer capacitance to reproduce the transition from dilute to concentrated so-
lution behavior (c0 ≈ cc, δ ≈ 1) would eliminate the correction factor in dilute solutions (δ � 1),
making the theory again over-predict the observed velocities. For example, such difficulties are
apparent in Ref. [55] where this argument applied to the data of Gangwal et al [25] for ICEP
motion of metallo-dielectric Janus particles (Fig. 3(a)).

Beyond the dependence on salt concentration, another failing of dilute-solution theory is the
inability to explain the experimentally observed ion-specificity of ICEO phenomena. At the
same bulk concentration, it has been reported that ICEO flow around metal posts [157], ACEO
pumping by electrode arrays [41] and AC-field induced interactions in colloids [161] depend on
the ions. Comparing experiments under similar conditions with different electrolytes or different
metal surfaces further suggests a strong sensitivity to the chemical composition of the double
layer, although more systematic study is needed. In any case, none of these effects can be cap-
tured by the Standard Model, which posits that the ions are simply mathematical points in a
dielectric continuum and that the surface is a homogeneous conductor or dielectric; all specific
physical or chemical properties of the ions, solvent molecules, and the surface are neglected.

2.2.3. Flow reversal
In many situations of large induced voltages, the Standard Model does not even correctly

predict the direction of the flow, let alone its magnitude. Flow reversal was first reported around
tin particles in water [30], where the velocity agreed with the theory [18, 28] sketched in Fig.
1a only for micron-sized particles and reversed for larger ones (90 − 400µm). The transition
occured when several volts was applied across the particle and reversal was conjectured to be
due to Faradaic reactions [30]. In this regime, reverse flows have recently been observed around
large (millimeter scale) copper washers and steel beads with flow patterns resembling second-
kind electro-osmosis [121] (see below); although the field was kept below the level causing
gas bubbles at the anodic side of the metal, copper dendrites (resulting from electrodeposition)
were observed on the cathodic side in dilute CuCl2 solutions, implying normal currents and
concentration gradients.

In microfluidic systems, flow reversal has also been observed at high voltage (> 2 V) and high
frequency (10-100 kHz) in ACEO pumping by 10µm-scale planar electrode arrays for dilute
KCl [38, 40, 41, 51], as shown in Fig. 3(b), although not for water in the same pump geome-
try [34, 40]. Non-planar 3D stepped electrodes [44] can be designed that do not exhibit flow
reversal, as demonstrated for KCl [45] and water [48], but certain non-optimal 3D geometries
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can still reverse, as shown in water [40]. In the latter case the frequency spectrum also develops
a double peak with the onset of flow reversal around 3 Volts peak to peak. In travelling-wave
electro-osmosis (TWEO) in aqueous electrolytes [49, 50], strong flow reversal at high voltage
has also been observed, spanning all frequencies [50, 51, 162], and not yet fully understood.

Flow reversal of ACEO was first attributed to Faradaic reactions under different condi-
tions of larger voltages (8-14 V) and frequencies (1-14 MHz) in concentrated NaCl solutions
(0.001 − 0.1 S/m) with a 100µm-scale T-shaped electode pair composed of different metals (Pt,
Al, Chromel) [163]. Indeed, clear signs of Faradaic reactions (e.g. gas bubbles from electrolysis
of water) can always be observed at sufficiently large voltage, low frequency and high concen-
tration [38, 163]. In recent TWEO experiments [162, 164], signatures of Faradaic reactions
(including pH gradients from electrolysis) have been correlated with low-frequency flow rever-
sal at high voltage and bulk electroconvection has been implicated [164] (see below). Under
similar conditions another possible source of flow reversal is AC electrothermal flow driven by
bulk Joule heating [165], which has been implicated in reverse pumping over planar electrode
arrays at high salt concentrations [166]. Closer to standard ACEO conditions, e.g. at 1-2 V and
50-100 Hz in water with Au electrode arrays, flow reversal can also be induced by applying a
DC bias voltage of the same magnitude as the AC voltage [167, 168, 169]. Reverse ACEO flow
due to “Faradaic charging” (as opposed to the standard case of “capacitive charging”) is hypoth-
esized to grow exponentially with voltage above a threshold for a given the electrolyte/metal
interface [163, 168], but no quantitative theory has been developed.

Simulations of the standard low-voltage model with Butler-Volmer kinetics for Faradaic reac-
tions have only managed to predict weak flow reversal at low frequency in ACEO [12, 42, 43]
and TWEO [52, 151]. In the case of ACEO with a planar, asymmetric electrode array, this effect
has recently been observed using sensitive (µm/s) velocity measurements in dilute KCl with Pt
electrodes at low voltage (< 1.5 V) and low frequency (< 20 kHz) [170]. Faradaic reactions can
also produce an oscillating quasi-neutral diffusion layer between the charged diffuse layer and
the uniform bulk, due to the normal flux of ions involved in reactions, and it has been shown
via a low-voltage, linearized analysis of TWEO that flow reversal can arise in the case of ions
of unequal diffusivities due to enhanced diffusion-layer forces on the fluid [151]. Recently, flow
reversal has been successfully predicted in TWEO by such a model allowing for bulk electro-
convection in regions of pH gradients from electrolysis reactions and compared to experimental
data [164]. However, the theory is still incomplete, and it seems that current models cannot
predict the strong (> 100µm/s), high-frequency (> 10 kHz) flow reversal seen in many ACEO
and TWEO experiments [38, 40, 51, 41]. Faradaic reactions generally reduce the flow at low
frequency by acting as a resistive pathway to “short circuit” the capacitive charging of the double
layer [42, 52], and diffusion-layer phenomena are also mostly limited to low frequency. Resolv-
ing the apparent paradox of high-frequency flow reversal is a major motivation for our study.

2.3. Nonlinear dynamics in a dilute solution

Dilute-solution theories generally predict that nonlinear effects dominate at low frequency.
One reason is that the differential capacitance CD of the diffuse layer, and thus the “RC” time for
capacitive charging of a metal surface, grows exponentially with voltage in nonlinear Poisson-
Boltzmann (PB) theory. The familiar PB formula for the diffuse-layer differential capacitance of
a symmetric binary electrolyte [6, 129],

CPB
D (ΨD) =

εb

λD
cosh

(
zeΨD

2kT

)
(10)
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was first derived by Chapman [171], based on Gouy’s solution of the PB model for a flat diffuse
layer [172]. It has been shown that this nonlinearity shifts the dominant flow to lower frequencies
at high voltage in ACEO [42] or TWEO [173] pumping. It also tends to suppress the flow with
increasing voltage at fixed frequency, since there is not adequate time for complete capacitive
charging in a single AC period.

At the same voltage where nonlinear capacitance becomes important, dilute-solution theory
also predicts that salt adsorption [129, 174, 131, 175, 176] and tangential conduction [131, 114]
by the diffuse layer also occur and are coupled to (much slower) bulk diffusion of neutral salt,
which would enter again at low frequency in cases of AC forcing. If concentration gradients have
time to develop, then they generally alter the electric field (“concentration polarization”) and can
drive bulk electroconvection [164], diffusio-osmotic slip [177, 8, 123] and in some cases, non-
equilibrium space charge and second-kind electro-osmotic flow [116, 118, 117, 124, 176] (if the
bulk concentration goes to zero, at a limiting current).

Bulk gradients in salt concentration may play a crucial role in induced-charge electrokinet-
ics, especially at voltages large enough to drive Faradaic reactions. Concentration polarization
has been demonstrated around electrically floating and (presumably) blocking metal posts in DC
fields and applied to microfluidic demixing of electrolytes [178]. In nonlinear electrokinetic
theory, diffusion-layer phenomena have begun to be considered in low-voltage, linearized anal-
ysis of TWEO with Faradaic reactions [151], and flow reversal of TWEO has been attributed
to bulk electro-convection in regions of concentration polarization, for asymmetric electrolytes
with unequal ionic mobilities [164]. Such effects could be greatly enhanced in the strongly non-
linear regime and as yet unexplored. Including all of these effects in models of induced-charge
electrokinetic phenomena presents a formidable mathematical challenge.

To our knowledge, such complete nonlinear modeling within the framework of dilute solution
theory has only begun to be accomplished in the case of ACEO pumping (albeit without Faradaic
reactions) in the Ph.D. thesis of Olesen [43] and the papers of Suh and Kang [175, 179] by
applying asymptotic boundary-layer methods to the classical electrokinetic equations in the thin-
double-layer limit. At least in this representative case, all of the nonlinear large-voltage effects
in dilute solution theory in the solution phase tend to make the agreement with experiment worse
than in the Standard Model [43]. The flow is greatly reduced and shifts to low frequency, while
the effects of salt concentration and ion-specificity are not captured. Similar conclusions have
been reached by a recent numerical and experimental study of fixed-potential ICEO for DC bias
of 9 Volts [146], where the correction factor is found to be Λ = 0.005 for the linear theory, but
only Λ = 0.05 if nonlinear capacitance (10) and surface conduction from PB theory are included
in the model (albeit without accounting for bulk concentration gradients).

On the other hand, Suh and Kang [179] have recently shown that the experiments of Green et
al. on ACEO over a symmetric electrode pair [33] can be better described by nonlinear dilute
solution theory (without surface conduction, but with oscillating diffusion layers), if the no-flux
boundary condition for ideally polarizable electrodes is replaced by a model of surface adsorption
of ions [175], using a Langmuir isotherm applied at the Stern plane [180, 181]. This approach re-
lies on the classical, but somewhat arbitrary, partitioning of the double layer into an outer diffuse
part (where “free” ions can drive fluid flow, governed by continuum equations of dilute solution
theory) and an inner compact part (where “adsorbed” ions cannot, described by boundary con-
ditions). It makes sense to describe ions that make contact with the electrode surface (breaking
free of their own solvation shells and penetrating that of the metal, i.e. jumping from the “outer
Helmholtz plane” to the “inner Helmholtz plane” [155]) via an adsorption boundary condition,
but the transition to dilute solution behavior is surely not so abrubt. Indeed, we will see that
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concentrated solution theories of the liquid phase can predict an effectively immobile compact
layer forming at high voltage and advancing into the solution.

Certainly, more theoretical work is needed on nonlinear dynamics of electrolytes in response to
large voltages, especially in the presence of Faradaic reactions, but we believe the time has come
to also question the validity of the underlying electrokinetic equations themselves. Based on
experimental and theoretical results for induced-charge electrokinetic phenomena, we conclude
that dilute solution theories may not properly describe the dynamics of electrolytes at large volt-
ages. In the following sections, we consider some fundamental changes to the Standard Model
and the underlying electrokinetic equations, while preserving the mean-field and local-density
approximations, which permit a simple mathematical description in terms of partial differential
equations. We review relevant aspects of concentrated-solution theories and develop some new
ideas as well. Through a variety of model problems in nonlinear electrokinetics, we make the-
oretical predictions using modified electrokinetic equations, which illustrate qualitatively new
phenomena, not predicted by the Standard Model and begin to resolve some of the experimental
puzzles highlighted above.

3. Crowding effects in a concentrated solution

3.1. Mean-field local-density approximations

3.1.1. Modified Poisson-Boltzmann theories
All dilute solution theories, which describe point-like ions in a mean-field approximation,

break down when the crowding of ions becomes significant, and steric repulsion and correlations
potentially become important. If this can be translated into a characteristic length scale a for
the distance between ions, then the validity of Poisson-Boltzmann theory is limited by a cutoff

concentration cmax = a−3, which is reached at a fairly small diffuse-layer voltage,

Ψc = −
kT
ze

ln
(

cmax

c0

)
=

kT
ze

ln(a3c0). (11)

where z is the valence (including its sign) and c0 the bulk concentration of the counterions. In
a dilute solution of small ions, this leads to cutoffs well below typical voltages for ICEO flows.
For example, even if only steric effects are taken into account, with e.g. a = 3 Å(for solvated
bulk K+ - Cl− interactions [182]), then Ψc ≈ 0.33V for c0 = 10−5 M and z = 1.

To account for the obvious excess ions in PB theory, Stern [183] long ago postulated a static
compact monolayer of solvated ions [155]. A similar cutoff is also invoked in models of ICEO
flows, where a constant capacitance is added to model the Stern layer and/or a dielectric coating,
which carries most of the voltage when the diffuse-layer capacitance (10) diverges. However, it
seems unrealistic that a monolayer could withstand most of the voltage drop in induced-charge
electrokinetic phenomena at a blocking surface (e.g. without dielectric breakdown [184]). In
any case, a dynamical model is required for a “condensed layer” that is built and destroyed as the
applied field alternates. As sketched in Fig. 4, the condensed layer forms in the diffuse part of the
double layer and thus should be described by the same ion transport equations. For a non-ideally
blocking surface, it may also be necessary to account for surface adsorption of ions (breaking
free of solvation shells) and Faradaic reactions (electron transfer) via compact-layer boundary
conditions (see below), but these should be applied to a model of the diffuse layer that allows for
the crowding of ions near the surface, which must occur to some degree with increasing voltage.
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Figure 4: Sketch of solvated counterions (larger green spheres) and co-ions (smaller orange spheres) near a polarizable
surface. (a) At small induced voltages, ΨD � Ψc, the neutral bulk is only slightly perturbed with a diffuse-charge layer
of excess counterions at the scale of λD. (b) At moderate voltages, ΨD ≈ Ψc, the diffuse layer contracts, as described by
Poisson-Boltzmann (PB) theory. (c) At large voltages, ΨD � Ψc, the counterions inevitably become crowded, causing
expansion of the diffuse layer compared to the predictions of the classical Gouy-Chapman-Stern model, sketched in (d),
which is based PB theory for point-like ions with a minimum distance of approach, the “outer Helmholtz plane” (OHP),
to model solvation of the surface.

17



A plethora of “modified Poisson-Boltzmann” (MPB) theories have been proposed to describe
equilibrium ion profiles near a charged wall. As described in recent reviews [60, 62, 185, 186,
187, 188, 189]), there are many possible modifications to describe different physical effects,
such as dielectric relaxation, electrostatic correlations and volume constraints. In this paper,
we focus on the simplest continuum models, which are based on the local-density and mean-
field approximations. In spite of various limitations discussed below, this class of models is
very convenient (if not required) for mathematical analysis and numerical simulation of time-
dependent nonlinear problems (based on modified Poisson-Nernst-Planck equations [130, 75,
176]).

The starting point for continuum modeling is a theory for the excess electrochemical potential
of an ion

µex
i = µi − µ

ideal
i = kT ln fi, (12)

relative to its ideal value in a dilute solution,

µideal
i = kT ln ci + zieφ, (13)

where ci is the mean concentration and fi is the chemical activity coefficient. (Equivalently, one
can write µi = kT ln(λi) + zieφ, where λi = fici is the absolute chemical activity [190].) In the
mean-field approximation (MF), the electrostatic potential φ in (13) self-consistently solves the
MPB equation,

−∇ · (ε∇φ) = ρ =
∑

i

zieci, (14)

where the source of the electric field acting on an individual ion is the mean charge density ρ,
rather than the sum of fluctuating discrete charges. Time-dependent modified PNP equations
then express mass conservation with gradient-driven fluxes [130], as described below.

In the asymptotic limit of thin double layers, it is often justified to assume that the ions are in
thermal equilibrium, if the normal current is not too large and the nearby bulk salt concentration
is not too low [154, 191], even in the presence of electro-osmotic flow [123, 124]. In terms of
electrochemical potentials, the algebraic system {µi = constant} then determines the ion profiles
ci in the diffuse layer, which lead to effective surface conservation laws [114]. In dilute-solution
theory (µex = 0), this procedure yields the Boltzmann distribution,

ci(ψ) = c0
i exp

(
−zieψ

kT

)
, (15)

where ψ = φ − φb is the potential relative to its bulk value φb just outside the double layer. For a
symmetric binary electrolyte (z± = ±z), substituting into (14) yields the standard form of the PB
equation

(εψ′)′ = −ρ(ψ) = 2c0ze sinh
( zeψ

kT

)
, (16)

from the Gouy-Chapman model of the double layer [172, 171], where ε is typically set to a
constant bulk value of εb (which we relax below). In that case, by scaling length to λD and the
potential to kT/ze, the PB equation takes the simple dimensionless form, ψ̃′′ = sinh ψ̃.

In concentrated-solution theories, the simplest and most common approach is based on the
local density approximation (LDA), where µex depends only on the local ion densities, in the
same way as in a homogeneous bulk system [60, 62, 185, 192, 193]. The choice of a model for
µex

i then yields a modified charge density profile ρ, differing from (16) with increasing voltage.
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In this section, we focus on entropic effects in bulk lattice-gas and hard-sphere models, where
µex

i depends only on the local ion concentrations, but not, e.g., explicitly on the distance to a
wall [106, 194] or non-local integrals of the ion concentrations [195, 196, 197], as discussed
below.

For any MF-LDA model, the equilibrium charge density can be expressed as a function of
the potential, ρ(ψ), but the Boltzmann distribution (16) is modified for non-ideal behavior, as we
now demonstrate. Here, we set the permittivity to its bulk value, ε = εb =constant, but below
we will extend the derivation for field-dependent dielectric response ε(E) in section 3.1.6. Given
ρ(ψ), we integrate the MPB equation (multiplied by ψ′) to obtain the electrostatic pressure, pe

and normal electric field ED at the inner edge of the diffuse layer,

pe(ΨD) =
1
2
εE2

D =

∫ 0

ΨD

ρ(ψ)dψ. (17)

From the total diffuse charge per unit area,

q = −sign(ΨD)
√

2εpe(ΨD), (18)

we then arrive at a general formula for the differential capacitance,

CD(ΨD) = −
dq

dΨD
= −ρ(ΨD)

√
2ε

pe(ΨD)
, (19)

which reduces to (10) in a dilute solution.

3.1.2. The Bikerman-Freise formula
Since most MPB models are not analytically tractable, we first illustrate the generic conse-

quences of steric effects using the oldest and simplest mean-field theory [183, 59, 198, 76, 60,
81]. This model has a long and colorful history of rediscovery in different communities and
countries (pieced together here with the help of P. M. Biesheuvel, Wageningen). It is widely
recognized that O. Stern in 1924 [183] was the first to cutoff the unphysical divergences of the
Gouy-Chapman model of the double layer [172, 171] by introducing the concept of a “com-
pact layer” or “inner layer” of solvent molecules (and possibly adsorbed ions) forming a thin
mono-molecular coating separating an electrode from the “diffuse layer” in the electrolyte phase.
The resulting two-part model of the double layer has since become ingrained in electrochem-
istry [155]. Over the years, however, it has somehow been overlooked that in the same ground-
breaking paper [183], Stern also considered volume constraints on ions in the electrolyte phase
and in his last paragraph, remarkably, wrote down a modified charge-voltage relation [his Eq.
(2’)] very similar to Eq. (24) below, decades ahead of its time. We have managed to find only
one reference to Stern’s formula, in a footnote by Freise [198].

Although Stern had clearly introduced the key concepts, it seems the first complete MPB
model with steric effects in the electrolyte phase was proposed by J. J. Bikerman in 1942,
in a brilliant, but poorly known paper [59]. (Bikerman also considered polarization forces
on hydrated-ion dipoles in non-uniform fields, discussed below.) Over the past sixty years,
Bikerman’s MPB equation has been independently reformulated by many authors around the
world, including Grimley and Mott (1947) in England [85, 86], Dutta and Bagchi (1950) in
India [199, 200, 201, 202], Wicke and Eigen (1951) in Germany [203, 204, 205], Strat-
ing and Wiegel (1993) in the Netherlands [206, 207, 74, 208], Iglic and Kralj-Iglic (1994)
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in Slovenia [209, 210, 211, 212], and Borukhov, Andelman and Orland (1997) in Israel and
France [76, 213, 214]. For an early review of electrolyte theory, which cites papers of Dutta,
Bagchi, Wicke and Eigen up to 1954 (but not Bikerman or Freise, discussed below), see Redlich
and Jones [215].

Unlike Bikerman, who applied continuum volume constraints to PB theory, most of these
subsequent authors derived the same MPB model starting from the bulk statistical mechanics
of ions and solvent molecules on a cubic lattice of spacing a in the continuum limit (MF-
LDA) where the concentration profiles vary slowly over the lattice. (More recently, “semi-
discrete” lattice-gas models have also been developed, which consist of discrete layers de-
scribed via mean-field approximations, without taking the continuum limit in the normal direc-
tion [188, 87, 216, 217].) While early authors were concerned with departures from PB theory
in concentrated electrolytes [59, 199, 205] or ionic crystals [85, 86], recent interest in the very
same mean-field model proposed by Bikerman has been motivated by a wide range of modern
applications involving electrolytes with large ions or biological molecules [74, 76, 213, 214],
polyelectolytes [218, 219, 220], polymeric electrolytes [221], electromagnetic waves in elec-
trolytes [75], electro-osmosis in nanopores [68, 69], electrophoresis of colloids [70, 71, 72, 73],
and solvent-free ionic liquids [81, 82, 84], in addition to our own work on dilute electrolytes in
large applied voltages [60, 130, 58].

In the present terminology, Bikerman’s model corresponds to an excess chemical potential

µex
i = −kT ln(1 − Φ) (Bikerman) , (20)

associated with the entropy of the solvent, where Φ = a3 ∑
i ci is the local volume fraction of

solvated ions on the lattice [62]. For now, we also assume a symmetric binary electrolyte, c0
+ =

c0
− = c0, z± = ±z, to obtain an analytically tractable model. As shown in Fig. 5(a), when a large

voltage is applied, the counterion concentration exhibits a smooth transition from an outer PB
profile to a condensed layer at c = cmax = a−3 near the surface. Due to the underlying lattice-gas
model for excluded volume, the ion profiles effectively obey Fermi-Dirac statistics,

c± =
c0e∓zeψ/kT

1 + 2ν sinh2(zeψ/2kT )
, (21)

where ν = 2a3c0 = Φbulk is the bulk volume fraction of solvated ions. Classical Boltzmann
statistics and the Gouy-Chapman PB model are recovered in the limit of point-like ions, ν = 0.

For a flat double layer, similar results can be obtained with the even simpler Composite Diffuse
Layer model of Kilic et al. [60] (also termed the “cutoff model” in Ref. [185]), where an outer
PB diffuse layer is abrubtly patched with an inner condensed layer of only counterions at the
uniform, maximal charge density. This appealingly simple construction requires assumptions
about the shape of the condensed layer (e.g. a plane), so its position can be determined only
from its thickness or total charge. Even if it can be uniquely defined, the cutoff model introduces
discontinuities in the co-ion concentration (which drops to zero in the condensed layer) and in
the gradient of the counter-ion concentration, although the same is also true of Stern’s original
model of the compact layer. In this work we focus on Bikerman’s model since it is the simplest
general model of steric effects that remains analytically tractable; unlike the cutoff model, it
predicts smooth ionic concentration profiles in any geometry and can be naturally extended to
time-dependent problems [130, 75].

Substituting the equilibrium ion distributions (21) into Poisson’s equation (14), we obtain
20
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Figure 5: (a) The equilibrium distribution of counterions in a flat diffuse layer for large applied voltages zeΨD/kT =

10, 20, . . . , 100 predicted by Poisson-Boltzmann theory (PB) and Bikerman’s modified theory (MPB) taking into account
an effective (solvated) ion size a, where ν = 2a3c0 = 0.001 is the bulk volume fraction of solvated ions. (b) The
diffuse-layer differential capacitance CD vs. voltage predicted by PB (10) (ν = 0) and MPB (25) (ν > 0), scaled to the
low-voltage Debye-Hückel limit ε/λD(c0).

Bikerman’s MPB equation,

(εψ′)′ =
2c0ze sinh(zeψ/kT )

1 + 2ν sinh2(zeψ/2kT )
, (22)

which has the simple dimensionless form (scaling length to λD, potential to kT/ze),

ψ̃′′ =
sinh ψ̃

1 + 2ν sinh2(ψ̃/2)
, (23)

extending the PB equation for a nonzero volume fraction ν of ions in the bulk solution. Integrat-
ing across the diffuse layer, the charge-voltage relation (18) takes the form,

qν = sgn(ΨD)2zec0λD

√
2
ν

ln
[
1 + 2ν sinh2

(
zeΨD

2kT

)]
(24)

which was probably first derived by Grimley [86] in a lattice-gas theory of diffuse charge in
ionic crystals [85], independent of Bikerman. Grimley’s formula has the same form as Stern’s
surprising Eq. (2’) noted above [183], but it has all the constants correct and clearly derived.
Recently, Soestbergen et al.[221] have given a slightly different formula approximating (24) that
is easier to evaluate numerically for large voltages, and applied it to ion transport in epoxy resins
encapsulating integrated circuits.

Although Stern and Grimley derived the modified form of the charge-voltage relation with vol-
ume constraints, they did not point out its striking qualitative differences with Gouy-Chapman
dilute-solution theory, noticed by several recent authors [60, 81]. This important aspect was ap-
parently first clarified by Freise [198], who took the derivative of (24) and derived the differential
capacitance (19) in the form

Cν
D =

ε
λD

sinh
(

ze|ΨD |

kT

)
[1 + 2ν sinh2

(
zeΨD
2kT

)
]
√

2
ν

ln
[
1 + 2ν sinh2

(
zeΨD
2kT

)] . (25)
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and pointed out that Cν
D decays at large voltages. This elegant formula, also derived by Kilic

et al. [60] and Kornyshev [81] (and Oldham [84] for the ionic-liquid limit ν = 1), predicts the
opposite dependence of Chapman’s formula (10) from dilute-solution theory, which diverges ex-
ponentially with |ΨD|. Since Chapman [171] is given credit in “Gouy-Chapman theory” for first
deriving the capacitance formula (10) for Gouy’s original PB model [172], we suggest calling
Eq. (25) the “Bikerman-Freise formula” (BF), in honor of Bikerman, who first postulated the
underlying MPB theory, and Freise, who first derived and interpreted the modified differential
capacitance. By this argument, it would be reasonable to also refer to the general MPB model
as ”Bikerman-Freise theory”, but we will simply call it ”Bikerman’s model” below, following
Refs. [68, 69, 62].

According to the BF formula (25), as shown in Fig. 5(b), the differential capacitance increases
following PB theory up to a maximum near the critical voltage ΨD ≈ Ψc, and then decreases as
the square-root of the voltage,

Cν
D ∼

√
zeεb

2a3|ΨD|
, (26)

because the effective capacitor width grows due to steric effects, as seen in Fig. 5(a). In stark
contrast, the PB diffuse-layer capacitance diverges exponentially according to Eq. (10), since
point-like ions pile up at the surface. Although other effects, such as compact layer compression
and specific adsorption of ions [188, 155] (discussed below) can cause the differential capac-
itance to increase at intermediate voltages, this effect is quite general. As long as the surface
continues to block Faradaic current, then the existence of steric volume constraints for ions im-
plies the growth of an extended condensed layer at sufficiently large voltages, and a concomitant,
universal decay of the differential capacitance. Indeed, this effect can be observed for interfaces
with little specific adsorption, such as NaF and KPF6 on Ag [222, 223] or Au [224, 225, 226].
(See Fig. 8 below for fits to simple mean-field models.) The same square-root dependence at
large voltage can also be observed in experiments [81] and simulations [82, 83] of ionic liquids
at blocking electrodes, with remarkable accuracy. We conclude that the decay of the double-layer
differential capacitance at large voltage is a universal consequence of the crowding of finite-sized,
mobile charge carriers near a highly charged, blocking surface.

The BF formula (26) also illustrates another general feature of double-layer models with steric
constraints, shown in Fig. 6: The differential capacitance at large voltages is independent of bulk
salt concentration, but ion specific through z and a. This prediction is reminiscent of Stern’s
picture picture [183] of an inner, compact layer of solvent molecules which carries the majority of
a large double layer voltage, compared the outer, diffuse layer described by dilute PB theory. This
picture is ubiquitous in electrochemistry [155], and first gained acceptance based on Grahame’s
famous experiments on mercury drop electrodes [227, 228, 188]. The significant difference,
however, is that the condensed layer forms continuously in the solution near the inner edge of
the diffuse layer due to ion crowding effects in a general model of the electrolyte phase, which is
not restricted to flat quasi-equilibrium double layers.

3.1.3. Hard-sphere liquid models
Although Bikerman’s model describes steric effects in a convenient and robust analytical form,

the bulk ionic volume fraction ν is best viewed as an empirical fitting parameter. For crystalline
solid electrolytes, its microscopic basis in a lattice model is realistic, but even then, the thinness
of the condensed layer, comparable to the lattice spacing at normal voltages, calls the continuum
limit into question. For liquid electrolytes involved in electrokinetic phenomena, it would seem
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Figure 6: Differential capacitance CD vs. voltage in Bikerman’s MPB model (25) with a = 4 Åfor ν values corresponding
to c0 = 1, 10, 100 mM. In contrast to Fig. 5(b), here CD is scaled to a single constant, ε/λD(1mM), for all concentrations.

more realistic to start with the “restricted primitive model” of charged hard spheres in a uniform
dielectric continuum [229] in developing better MPB models [61, 192, 62]. From this theoreti-
cal perspective, Bikerman’s lattice-based model has the problem that it grossly under-estimates
steric effects in hard-sphere liquids; for example, in the case of a monodisperse hard-sphere
liquid, the volume excluded by a particle is eight times its own volume [230, 231, 62]. Al-
though we focus on electrolytes at large voltages, it is also interesting to consider the MF-LDA
dynamics of charged hard spheres to model other systems, such as dense colloids [232, 233],
polyelectrolytes [234, 235], and ionic liquids [81, 82].

Various MF-LDA approximations of µex
i for bulk hard-sphere liquids can be used to develop

more sophisticated MPB models, which yield similar qualitative behavior of the diffuse-layer
differential capacitance [192, 62], due to the generic arguments given above. For example, the
Carnahan-Starling (CS) equation of state for a bulk monodisperse hard-sphere liquid corresponds
to the following excess chemical potential [236, 7],

µex
i

kT
=

Φ(8 − 9Φ + 3Φ2)
(1 − Φ)3 (Carnahan-Starling) (27)

Although this algebraic form precludes analytical results, it is much simpler to evaluate nu-
merically and incorporate into continuum models of electrokinetic phenomena than are more
sophisticated MPB approximations which go beyond the LDA, e.g. based on self-consistent cor-
relation functions [78, 79, 80, 237] or density functional theory [238, 239, 240], which require
solving nonlinear integro-differential equations, even for a flat double layer in equilibrium. As
shown in Fig. 7(b), the simple CS MPB model predicts capacitance curves similar to Fig. 6 with
Bikerman’s model, respectively, only with more realistic salt concentrations [62]. In particular,
the differential capacitance in Bikerman’s model ressembles that of CS MPB if an unrealistically
large hydrated ion size a (or large bulk volume fraction ν) is used, due to the under-estimation of
liquid steric effects noted above.
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In spite of similar-looking capacitance curves, however, there are important differences in the
ionic profiles predicted by the two models. As shown in Fig 5(a), in Bikerman’s model steric
effects are very weak until the voltage becomes large enough to form a thin condensed layer at
maximum packing. As such, the width of the diffuse layer at typical large voltages is still an order
of magnitude smaller than the Debye length λD relevant for small voltages. In contrast, steric
effects in a hard-sphere liquid are stronger and cause the diffuse layer to expand with voltage
as shown in Fig. 7(c). The widening of the diffuse layer reduces its differential capacitance,
but without forming the clearly separated condensed layer predicted by Bikerman’s model. As
shown in Fig. 7(d), the counterion density at the surface in the CS MPB model increases more
slowly with voltage as compared to the Bikerman model. These differences will be important
when we discuss the viscosity effects in Section 4.

An advantage of the hard-sphere approach to volume constraints is that it has a simple exten-
sion to mixtures of unequal particle sizes [241] which can be applied to general multicomponent
electrolytes [61, 62, 192, 235, 234]. According to the Boublik-Mansoori-Carnahan-Starling-
Leland (BMCSL) equation of state [242, 243], the excess chemical potential of species i in a
mixture of N species of hard spheres with different diameters {ai} is given by

µex
i

kT
= −

1 +
2ξ3

2a3
i

Φ3 −
3ξ2

2a2
i

Φ2

 ln(1 − Φ) +
3ξ2ai + 3ξ1a2

i ξ0 + a3
i

1 − Φ

+
3ξ2a2

i

(1 − Φ)2

(
ξ2

Φ
+ ξ1ai

)
− ξ3

2a3
i
Φ2 − 5Φ + 2
Φ2(1 − Φ)3 (BMCSL) (28)

where ξn =
∑N

j=1 Φ jan−3
j , Φ j is the volume fraction of species j, and Φ =

∑N
j=1 Φ j is the total

volume fraction of ions. Although this formula may seem complicated, it is an algebraic ex-
pression that can be easily expanded or evaluated numerically and thus is much simpler than
statistical theories based on integral equations [241, 186, 187]. The first BMCSL correction to
dilute solution theory is simply,

µex
i

kT
∼

N∑
j=1

(
1 +

ai

a j

)3

Φ j (29)

The BMCSL MPB model for asymmetric electrolytes predicts the segregation of ions of different
size and/or charge in the diffuse layer [62] and has been applied to adsorption phenomena in
polyelectrolyte layers [235, 234]. The broken symmetry between ions of different sizes is an
important qualitative effect, which we will show implies new electrokinetic phenomena at large
voltages, regardless of the model.

A word of caution: In spite of its mathematical convenience, the local-density approximation
is known to provide a poor description of confined hard-sphere liquids, even in equilibrium. For
example, it cannot capture density oscillations near a wall or two-point correlation functions of
hard spheres. These features can be approximated by various weighted density approximations
(WDA) in statistical mechanics, which redefine the local reference densities c̄i as averages over
the inhomogeneous densities ci with a suitable weight function [244, 245, 246, 247, 248, 189].
The non-local weighted densities are used in place of the local densities in chemical potential
expressions for homogeneous systems, such as (27) and (28) for hard spheres, and several pre-
scriptions for the weight function are available. (See section 5.2.) Non-local MF-WDA models
have been applied to electrolytes to quantify excluded volume effects involving ions and sol-
vent molecules [249, 195, 196, 197]. Recent Monte-Carlo simulations of hard-sphere counterion
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Ion dx (Å) ds (Å) dv (Å)
Li+ 1.20 7.64 4.2
Na+ 1.90 7.16 4.0
K+ 2.66 6.62 3.8
Cl− 3.62 6.64 3.6

Table 2: Comparison of the bare ion diameter in a crystalline solid, dx, with the effective solvated diameter ds in water
from bulk transport measurements (akin to a Stokes diameter) [252] and the “hard-sphere” diameter (akin to a collision
cross section) inferred from viscosity data dv in dilute aqueous solution [253] for some common ions used in nonlinear
electrokinetic experiments. The figure depicts an ion with its effective hard-sphere and solvation shells, in red and blue
respectively. Note that the effective sizes ds and dv in solution are much larger than the bare ion size dx and exhibit
different trends. In the text, we argue that the appropriate effective ion size a in our models of highly charged double
layers may be approximated by ds, and possibly larger.

profiles around a hard-sphere macro-ion have shown that LDA can perform even worse than
dilute-solution PB theory, while WDA theories are able to fit the simulations well [250]. Even
the simplest WDA, however, is a non-local continuum theory and thus requires solving non-
linear integral equations for the equilibrium densities, and integro-partial differential equations
for time evolution. Clearly, LDA-based partial differential equations are much better suited for
mathematical modeling, if they can capture enough of the essential physics in a given situation.

3.1.4. Interpretation of the effective ion size
In order to apply our modified electrokinetic equations, we stress that the effective diameter

of a solvated ion in various MF-LDA theories is not simply related to its bare atomic size and
can exhibit very different trends. Smaller bare ions tend to be more heavily solvated and there-
fore have larger effective diameters [251]. Effective solvated ion sizes depend on the size and
charge of the ions, the nature of the solvent, the ion concentration, and temperature – as well
as the mathematical models used in their definitions. Table 2 compares bare ionic diameters
in crystalline solids to effective solvated-ion diameters inferred from bulk properties [252] and
“hard-sphere” diameters inferred from viscosity measurements [253], both in aqueous solutions.
In these models used to interpret experimental data, the hard sphere radius is essentially a col-
lision size, whereas the the effective solvated radius is an effective size for transport properties,
similar to a Stokes radius. The effective solvated radius is generally larger than the hard sphere
value. Both are greatly exceed the bare diameter and exhibit roughly opposite trends with the
chemical identity of the ion.

What is the appropriate effective ion size a? Unlike the models used to infer the various ion
diameters in Table 2, our models seek to capture crowding effects in a highly charged double
layer, rather than in a neutral bulk solution (albeit still using MF-LDA theories). As such, it is im-
portant to think of crowded counterions of the same sign and not a neutral mixture of oppositely
charged ions (where our models reduce to the Standard Model in typical situations with dilute
electrolytes). Below, we will argue that the crowding of like-charged counterions in large elec-
tric fields leads to some different physical effects, not evident in the neutral bulk liquid. Among
them, we can already begin to discuss solvation effects. In the bulk, ions cannot reach very high
concentrations due to solubility limits, but a condensed layer of counterions cannot recombine
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Figure 8: Fitting of simple MF-LDA models of finite-sized ions to the experimental data of Valette (Fig. 3 of Ref. [222])
for the differential capacitance of the aqueous KPF6 | Ag double layer. For all curves, the electrode area is scaled by
a surface roughness factor R = 1.1, and the theoretical diffuse-layer capacitance CD from (19) is taken in series with a
constant Stern-layer capacitance CS = 125µF/cm2. The only other adjustable parameter in each panel is the effective
solvated ion size a. In (a), we use a hard-sphere radius of a = 4 Åin the Carnahan-Starling model (27), while in (b) we
use a lattice spacing of a = 11 Åin Bikerman’s MPB model (20)-(25).

and is unaffected by solubility (except for the possibility of electron transfer reactions near the
surface). Moreover, like-charged ions cannot easily “share” a solvation shell and become com-
pressed to the hard-sphere limit, since the outer surfaces of the polarized solvation shells have
the same sign and yield electrostatic repulsion. Therefore, we propose that the “ion size” in our
models is an effective solvated ion size at high charge density, which is much larger than the
bare crystalline and hard-sphere ion sizes in Table 2 and may also exceed the solvated ion size
inferred from bulk transport models. This physical intuition is borne out by the comparisons
between theory and experiment below for nonlinear electrokinetics, although we will not claim
to reach any quantitive molecular-level conclusions.

3.1.5. Comparison with experiments on blocking surfaces without ion adsorption
To illustrate these points, in Fig. 8 we fit our simple mean-field models to experimental data of

Valette [222] for the differential capacitance of a standard electrochemical interface with negligi-
ble surface adsorption of ions: aqueous KPF6 solution with single-crystal Ag electrodes. These
experiments and others were cited by Di Caprio et al. [192, 193] as motivation to develop mean-
field hard-sphere models for double-layer capacitance, but they concluded that “a quantitative
comparison with the experimental results is not possible at this stage”. Here, we proceed naively
to directly test the predictions of two simple theories. To model the liquid electrolyte, we use
the simplest CS and Bikerman MPB models, each of which has only one adjustable parameter,
the effective ion size a. To model the surface (and admittedly, to aid in the fitting), we introduce
two standard fitting parameters: (i) a ”surface roughness factor” RS multiplying the nominal
electrode area, and (ii) a Stern-layer capacitance CS in series with the diffuse-layer capacitance,
ostensibly to model the dipolar electrode solvation layer, since we already take into account the
crowding of finite-sized solvated ions. Unlike Valette [222], who adjusts RS for each measure-
ment, we choose a fixed value of RS = 1.1 for all the data, since this parameter should reflect
fixed surface profile variations at scales larger than the inner part of the double layer (where
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ion crowding occurs) and thus should not depend on concentration or voltage. Perhaps more
seriously, we assume a constant Stern capacitance CS for simplicity, in order to highlight what
nonlinear trends can be captured by the MPB liquid model alone. This is rather different from the
standard fitting procedure in electrochemistry dating back to Grahame [227, 155], which essen-
tially defines the compact-layer capacitance empirically to account for all effects not predicted
by the dilute-solution PB model of the diffuse layer.

First, we consider the CS excess chemical potential (27) for a hard-sphere liquid in the general
MPB formula for the differential capacitance (19). As shown in Fig. 8, a reasonably good fit is
obtained using CS = 125µF/cm2 and an effective ion diameter of a = 4 Å, comparable to the
various ion sizes (in particular for K+) inferred from completely different measurements. Near
the point of zero charge and in dilute solutions (< 100 mM), the modified theory reduces to the
Gouy-Chapman formula for a dilute solution (10), and we obtain an excellent fit of the data,
consistent with volumes of prior work in electrochemistry [227, 228, 188, 155]. At the highest
salt concentration (c0 =100 mM), the theory underestimates the capacitance, although this is
could be improved by adjusting CS for each salt concentration, as is commonly done. Of course,
it is more interesting for us to focus on the regime of large voltage, where ion crowding occurs
in the model. From Fig. 8(a) it is clear that the CS model cannot fit the fairly sudden decay
of CD beyond the maximum, although it predicts the qualitative loss of bulk salt concentration
dependence (due to the dominance of near-surface crowding effects, as described above). This is
due to the gradual onset of crowding effects for hard spheres in large fields, illustrated earlier in
Fig. 7.

Next, we fit Bikerman’s MPB model to the same experimental data by fixing the parameters
of the surface, RS = 1.1 and CS = 125µF/cm2, and varying only the ion-size parameter a. We
might expect a worse fit because the model (based on a lattice gas) has less statistical justification
in the liquid state, but the results in Fig 8(b) show a significant improvement in fitting the voltage
dependence, due to the more sudden onset of steric effects with increasing voltage versus the
CS model (Fig. 7). Overall, Bikerman’s model provides an impressive fit to the concentration
and voltage dependence of CD across the entire experimental range, considering that it has only
one adjustable parameter a to describe the liquid (and we added two more, RS and CS , for the
surface).

On the other hand, the excellent fit by Bikerman’s model in Fig. 8(b) is achieved with a sur-
prisingly large value for the effective ion size, a = 1.1 nm, at least twice the typical solvated
ion sizes in the bulk liquid from Table 2. Interestingly, very similar large values of a result from
fitting Bikernan’s model to completely different experiments on ACEO pumping by electrode
arrays [67], as discussed below. These results may point to correlation effects at high charge
density or other neglected effects (see below), which are fortuitously fitted well by Bikerman’s
model with an enlarged ion size.

It would be interesting to extend our capacitance analysis to electrolytes with little ion adsorp-
tion on Au surfaces [224, 225, 226], since gold surfaces are widely used in experimental studies
of induced-charge electrokinetic phenomena (including most of the entries Table 1). Given the
successful fit in Fig. 8(b), it would also be interesting to perform ICEO experiments using sil-
ver surfaces and KPF6 solutions or other electrolytes with similar capacitance behavior, showing
little surface adsorption of ions. By taking the differential capacitance from fitting independent
measurements, one can directly test other assumptions in the model, such as the HS slip formula
(or its modifications, derived below).
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3.1.6. Dielectric response in a concentrated solution
We close our discussion of mean-field models of ion crowding by briefly considering nonlinear

dielectric response. We have already mentioned that Bikerman, in his pioneering paper on effects
of finite ion size [59], also modeled the polarization of solvated ions by the local electric field,
in terms of induced dipoles. A related effect is the polarization of a Stern monolayer of solvent
dipoles on a metal electrode, which plays a major role in classical models of the compact inner
layer [228, 188]. This approach was extended by Macdonald and Kenkel [87, 216, 217] to also
describe the diffuse part of the double layer by postulating discrete layers of finite-sized dipoles
separating layers of ions, where each layer is treated by a mean-field approximation.

Closer in spirit to the continuous MF-LDA theories of this section, Abrashkin, Andelman and
Orland [254] recently derived a “Modified Dipolar PB” equation for a symmetric binary elec-
trolyte by considering an equilibrium lattice gas of both ions and dipoles of (the same) finite size,
thus generalizing Bikerman’s model (or its many reincarnations cited above, including Borukhov,
Andelman, Orland [76]) in a natural way to allow for a variable dipole density. In our notation,
their dipolar MPB equation takes the form

ε0ψ
′′ +

cd p0

a3

(
G(p0ψ

′/kT )
D

)′
=

2c0ze
a3

sinh(zeψ/kT )
D

(30)

where ε0 is the vacuum permittivity, cd is the bulk density of dipoles of moment p0 on a lattice
of spacing a given by cd + 2c0 = a−3, where c0 is the bulk salt concentration; the second term
describes solvent polarization as a generalization of the classical expression for a dilute solution
of dipoles (below), where the function

G(Ẽ) =
sinh Ẽ

Ẽ
L(Ẽ) =

cosh Ẽ
Ẽ

−
sinh Ẽ

Ẽ2
(31)

relates the nonlinear polarization to the Langevin function L(x) = coth(x) − 1/x, which arises
in the limiting probability distribution of a sum of independent, randomly oriented unit vectors
(also known as Rayleigh’s random walk [255]); the third term is the free charge density, where
the familiar PB expression (16) appears in the numerator; the effect of volume constraints enters
through a generalized “Bikerman factor”,

D = 2c0 cosh
( zeψ

kT

)
+ cd

sinh(p0ψ
′/kT )

p0ψ′/kT
(32)

which rescales both the solvent polarization and the free charge density. In the limit of linear
dielectric response, p0ψ

′/kT → 0, the dipolar MPB equation Eq. (30) reduces to Bikerman’s
MPB equation (22), where the permittivity has the effective bulk value

εb = ε0 +
cd p2

0

3kT
. (33)

In the limit of point-like ions and dipoles a → 0, Eq. (30) reduces to the PB equation with the
classical field-dependent permittivity,

ε(E) = ε0 +
cd p0

E
G

( p0E
kT

)
(34)

It would be interesting to develop this model further, test it against experiments, and eventually
apply it to electrokinetics. In its present form, however, the dipolar MPB theory defies the
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common wisdom in electrochemistry by predicting a large increase in permittivity in the inner
part of the double layer, due to a rise in the dipole density near the surface [254]. Perhaps
this discrepancy is due to the breakdown of the LDA [250] already noted above, and different
predictions might result from non-local WDA theories with dielectric relaxation [195, 249, 196,
197].

Based on half a century of fitting experimental capacitance data (with admittedly simple mod-
els), electrochemists have come to believe that that the local dielectric constant of an electrolyte
is generally reduced in the inner part of the double layer, due to the alignment of solvent dipoles
in the large local field (“dielectric saturation”) as in (34); more precisely, in aqueous solutions,
the compact Stern layer (defined as the inner part of the double layer not described by PB theory)
is inferred to have an effective permittivity εS smaller than that of bulk water εb by roughly an
order of magnitude, e.g. reduced from εb = 78ε0 to εS = 6ε0 [155]. This conclusion comes
mostly from fitting compact layer models with nonlinear dielectric response [227, 228, 188], but
also from some models assuming similar nonlinear dielectric properties in the diffuse layer.

Grahame [256] was perhaps the first to analyze the structure of the diffuse layer with a field-
dependent permittivity, using PB theory and the empirical form

ε(E) = εS +
εb − εS(

1 + (E/Es)2)m (35)

where m is an empirical exponent, conjectured to be in the range 0 < m < 2 to avoid overly sud-
den onset of dielectric saturation above the characteristic field strength Es. For any permittivity
model such as (35), where dielectric saturation sets in above a characteristic field strength Es, the
importance of variable permittivity in regions of diffuse charge is measured by the dimensionless
parameter

Ẽs =
Es

(kT/zeλD)
= Es

√
εb

2c0kT
=

√
ps

c0kT
(36)

which compares the critical electric field Es to the characteristic diffuse-layer field (at low volt-
age), E0 = kT/zeλD, where the screening length λD is defined using the bulk permittivity εb.
Equivalently, the dimensionless parameter Ẽ2

s compares the critical electrostatic pressure for di-
electric saturation, ps = 1

2εbE2
s , to the bulk osmotic pressure, c0kT . For Ẽs � 1, the diffuse layer

maintains a constant permittivity for typical voltages of order kT/ze.
To study effects of nonlinear dielectric response in the present context, we extend Grahame’s

analysis by deriving the differential capacitance of the double layer for any MPB theory with
an arbtirary field-dependent permittivity ε(E). Given the (non-Boltzmann) equilibrium charge
density profile ρ(ψ), we use Poisson’s equation (in the normal coordinate), − (εψ′)′ = ρ(ψ), to
write ρ(ψ)ψ′ = h(E)E′, where E = −ψ′ and h(E) = ε′(E)E2 + ε(E)E. Next, we integrate from
the bulk (ψ = 0, E = 0) to the inner edge of the diffuse layer (ψ = ΨD, E = ED) to obtain

H(ED) ≡
∫ ED

0
h(E)dE =

1
2

(
ε(ED)E2

D +

∫ ED

0
ε′(E)E2dE

)
=

∫ 0

ΨD

ρ(ψ)dψ = pe(ΨD) (37)

The electrostatic pressure at the surface pe(ΨD) must be non-negative, as is the function H(ED)
from its definition since ε > 0. Therefore, there are an even number of nonzero solutions to
the algebraic equation H(ED) = pe(ΨD), typically two for a monotonic ε(E), and we select the
physical solution by requiring that ED and ΨD have the same sign. (It can be shown that unique
solution exists if h(E)/E = ε+ ε′E > 0 for all E.) To derive the differential capacitance CD(ΨD),
we integrate Poisson’s equation across the diffuse layer (i.e. apply Gauss’ law) to obtain the total
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Figure 9: The effect of dielectric saturation on the differential capacitance of the diffuse layer, given by (38)-(40),
for (a) PB theory (ν = 0) and (b) Bikerman’s MPB theory with ν = 10−4. The field-dependent permittivity ε(E)
given by Grahame’s model (35) with m = 1

2 . The characteristic field strength for dielectric saturation Es is scaled to
E0 = kT/zeλD, where λD =

√
εbkT/2(ze)2c0 is the screening length based on the bulk permittivity.

charge density, q = −ε(ED)ED. Inserting ED(ΨD) from (37), we finally obtain a general formula
for the differential capacitance of the diffuse layer,

CD(ΨD) = −
ρ(ΨD)

H−1(pe(ΨD))
(38)

valid for any ρ(ψ) and ε(E), which reduces to (19) in the case of a constant permittivity, ε = εb.
It is instructive to consider Grahame’s model (35) with m = 1

2 , since it permits an analytical
solution for CD. In this case, we obtain the function

H(E)
E2

s
=

1
2
εS

(
E
Es

)2

+ (εb − εS )

1 −
√

1 +

(
E
Es

)2
 (39)

which can be inverted analytically by solving a quadratic equation for E2, taking a square root,
and choosing the physical solution as described above. Substitution into (38) then yields an
explicit formula for CD(ΨD) in terms of the charge density ρ(ΨD) and electrostatic pressure
pe(ΨD) at the surface, valid for any MPB model with field-dependent permittivity ε(E). For
example, in Bikerman’s model, these functions are given by

ρ(ψ) = −
2zec0 sinh(zeψ/kT )

1 + 2ν sinh2(zeψ/2kT )
and pe(ψ) =

c0kT
ν

ln
[
1 + 2ν sinh2

( zeψ
2kT

)]
(40)

where PB theory corresponds to the limit ν→ 0.
In Fig. 9, we show the effects of dielectric saturation on the diffuse-layer differential capac-

itance, using our analytical formula for Bikerman’s MPB theory. In all cases, the capacitance
shows a transition from low-field dependence with ε ≈ εb to a very similar high-field depen-
dence with ε ≈ εS , which differs only by a multiplicative factor εS /εb. The transition occurs
when the electric field strength at the surface reaches Es. Applying PB theory for low voltages,
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this happens at a transition voltage of roughly Ψ̃D = zeΨD/kT = 2 sinh−1(Ẽs/2), consistent with
the plots in Fig. 9. For PB theory, shown in (a), upon increasing the voltage, dielectric saturation
leads to a fairly sudden decrease in CD, followed by another exponential increase, corresponding
to the PB formula (10) with εb replaced by εS . This physical interpretation of dielectric satura-
tion followed by “electro-constriction” is also contained in classical models of the Stern layer,
which can lead to excellent fits of capacitance data for interfaces with little surface adsorption,
such as NaF at a mercury drop, although only for positive polarization [257, 228, 188]. Perhaps
the asymmetry with negative polarization not captured by PB theory with dielectric saturation,
which is also seen in NaF on silver surfaces [222, 223], and may be better captured by asymmet-
ric MPB models with different ion sizes. Here, we do not attempt such fitting, but simply discuss
our exact result for dielectric saturation in Bikerman’s MPB theory with one ion size.

As shown in Fig. 9(b), the shape of the theoretical capacitance curves depends on whether
dielectric saturation occurs at lower or higher voltage than ion crowding. If dielectric saturation
sets in first, then the transition εb → εS leads to second small peak at low voltage, separate from
the main peak corresponding to ion crowding; if crowding sets in first, then dielectric saturation
only causes the capacitance to drop more quickly at higher voltage. Overall, the effect of dielec-
tric saturation is similar to that of increasing the ion size. As noted below and in Ref. [67], this
effect may contribute to the artificially large ions sizes inferred from Bikerman’s model without
dielectric saturation, and allow more realistic, smaller ion sizes to be used.

It is interesting that so much structure in the differential capacitance can be predicted by sim-
ple mean-field models of the diffuse layer, without introducing a compact layer with additional
parameters to fit large voltage behavior. Indeed, various modified models of the diffuse layer al-
ready mimic the formation of a compact layer with increasing voltage, as ions become crowded
in an inner condensed layer where the local permittivity drops. The “Stern plane” or “outer
Helmholtz plane” effectively expands and contracts in response to the applied voltage, in ways
that may be captured by the same continuum equations describing the diffuse layer. Below in
section 4, we will argue that the viscosity increases in the condensed region, and thus the “shear
plane” also effectively moves in response to the voltage.

3.2. Implications for nonlinear electrokinetics

The cutoff and eventual decrease of diffuse-layer capacitance at large voltages for blocking
surfaces (without Faradaic reactions or adsorption of ions) is robust to variations in the model
and has important consequences for nonlinear electrokinetics. Here, we provide two examples
of induced-charge electrokinetic phenomena, where any MPB theory with volume constraints
is able to correct obvious failures of PB theory. As shown above, dielectric saturation only
enhances these effects, but as a first approximation we assume constant permittivity ε = εb

in our calculations. This is also consistent with theoretical estimates [63, 64] and atomistic
simulations [105] (at low voltages), which suggest that dielectric saturation in the diffuse layer is
weak compared to other effects. Our results suggest that incorporating crowding effects into the
electrokinetic equations may be essential in many other situations in electrolytes or ionic liquids,
whenever the voltage or salt concentration is large.

3.2.1. High-frequency flow reversal of AC electro-osmosis
Steric effects on the double-layer capacitance alone suffice to predict high-frequency flow

reversal of ACEO pumps, without invoking Faradaic reactions. Representative results are shown
in Fig. 10, and the reader is referred to Ref. [67] for a more detailed study. Numerical simulations
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Figure 10: (a) One period of an asymmetric array of planar microelectrodes in an ACEO pump studied in experiments [34,
38, 40, 41] and simulations with the low-voltage model [34, 35, 42, 44] with W1 = 4.2 µm , W2 = 25.7 µm, G1 = 4.5 µm
, and G2 = 15.6 µm. (b) The dimensionless flow rate versus frequency for different models. In the low-voltage limit
V � kT/e = 25 mV, low-voltage models predict a single peak (black dash-dot line). For a typical experimental voltage,
V = 100kT/e = 2.5 V, PB theory breaks downs and its capacitance (10) shifts the flow to low frequency (red dashed
line) and Stern capacitance is needed to prevent the capacitance from diverging. Accounting for steric effects (25) with
ν = 0.01 (solid blue line) reduces the shift and predicts high frequency flow reversal, similar to experiments [38, 41].

of a well studied planar pump geometry [34, 38, 40, 41] with the Standard Model in the linearized
low-voltage regime [11, 12, 35, 44] predicts a single peak in flow rate versus frequency at all
voltages. If the nonlinear PB capacitance (10) is included [42, 43], then the peak is reduced and
shifts to much lower frequency (contrary to experiments), due to slower charging dynamics at
large voltage [129, 131]. As shown in Fig. 10, the BF capacitance for Bikerman’s MPB model
of steric effects (25) reduces the peak shift and introduces flow reversal similar to experiments.

This result is the first, and to our knowledge the only, theoretical prediction of high-frequency
flow reversal in ACEO. The physical mechanism for flow reversal in our model can be easily un-
derstood as follows: At low voltages, the pumping direction is set by the larger electrode, which
overcomes a weaker reverse flow driven by the smaller electrode. At large voltages, however, the
more highly charged, smaller electrode has its RC charging time reduced by steric effects, so at
high frequency it is able to charge more fully in a single AC period and thus pump harder than
the larger electrode.

As shown in Fig. 11, the MPB model is able to reproduce experimental data for ACEO pump-
ing of dilute KCl rather well, including the dependence on both voltage and frequency. Through
Fig. 11, we compare simulations to experimental data at two different concentrations. In the
left column we show experimental data and on the right we show the corresponding simulations
using Bikerman’s MPB theory for the double later capacitance. As in experiments, the flow re-
versal arises at 10-100 kHz frequency and high voltage, without shifting appreciably the main
peak below 10 kHz frequency (which is hard to see in experiments at high voltage due to elec-
trolysis). This is all the more remarkable, since the model has only one fitting parameter, the
effective ion size a, and does not include any additional Stern-layer capacitance. As seen in 11
(a) and (b), the magnitude of the flow is over-estimated by a roughly a factor of two (Λ ≈ 0.4),
but this is much better than in most predictions of the Standard Model (in Table 1), which fail to
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Figure 11: (a) Velocity of ACEO pumping in 0.1mM KCl by a planar electrode array around a microfluidic loop versus
frequency at different voltages from the experiments of Studer et al. [38]. (b) Simulations by Storey et al. [67] of the
same flow using the Standard Model with Bikerman’s MPB theory (25) for the double-layer differential capacitance with
only one fitting parameter, a = 4.4 nm or ν = 0.01. Countour plots of ACEO pumping velocity contours in frequency-
voltage space for (c) 0.1 mM and (e) 1.0 mM KCl from experiments of Studer et al. [38], compared to simulations under
the same conditions using Bikerman’s MPB theory with ν = 0.01 in (d) and (f), respectively. Red indicates forward flow
and blue reverse flow. The solid contour lines show positive velocity contour and the dashed show reverse flow. The
heavy solid contour is the zero velocity contour in the simulations.
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predict flow reversal under any circumstances.
In spite of this success, we are do not claim a complete understanding of flow reversal in

ACEO. One difficulty with these results is that the effective ion size in Bikerman’s model needed
to fit the data is unrealistically large. For the simulations to reproduce the experiments we seem
to typically require ν = 0.001 − 0.01, which implies an overly small bulk ion spacing l0 =

(2c0)−1/3 = ν−1/3a, or overly large ion size a. For example, for the c0 = 0.1 mM KCl data shown
in Fig. 11 (a) and (b), we use a = 4.4 nm in the model, which is clearly unphysical. As noted
above and shown in Fig. 7, this can be attributed at least in part to the signficant under-estimation
of steric effects in a liquid by the simple lattice approximation behind Bikerman’s model.

Indeed, hard-sphere liquid models tend to improve the agreement betweeen simulation and ex-
periment, and this increases our confidence in the physical mechanism of ion crowding at large
voltage. Using the CS MPB model for monodisperse charged hard spheres in the same simula-
tions of ACEO pumping allows a smaller value of the ion size. For example, the 0.1 mM KCl
shown in Fig. 11 (a) can be fit by using a = 2.2 nm (instead of 4.4 nm for Bikerman), and
the magnitude of the velocity also gets closer to the experimental data (Λ ≈ 0.7). Assuming a
reduced permittivity in the condensed layer could further yield a ≈ 1 nm (≈ 10 atomic diam-
eters) [67]. This value is more realistic but still considerably larger than the bulk hydrated ion
sizes in KCl and NaCl. For the commonly used electrolytes in ICEO experiments (see Table 1),
the cation-anion radial distribution function from neutron scattering exhibits a sharp hard-sphere-
like first peak at 3Å, although the water structure is strongly perturbed out to the second neighbor
shell (up to 1nm), as if under electrostriction. Anion-anion correlations are longer ranged and
softer, with peaks at 5 Åand 7 Å, but unfortunately such data is not available for crowded like
charges within the double layer at high voltage. Perhaps under such conditions the effective
hard-sphere radius grows due to strong correlations, beyond the mean-field approximation.

We have already noted that similar over-sized ionic sizes are needed to fit electrochemical ca-
pacitance data with MPB models. (See Fig. 8, where a = 1.1 nm in Bikerman’s model yields
an excellent fit of capacitance data for KPF6 | Ag.) In the case of hard-sphere MPB models,
DiCaprio et al. have likewise concluded that, in spite of good qualitative predictions, effective
sphere radii over 1.2 nm are required to fit capacitance data [192]. The fact we reach similar con-
clusions in the completely different context of ACEO pumping suggests that various neglected
effects, in addition to dielectric saturation (section 3.1.6), may be extending the apparent scale
for crowding effects in MPB models, as discussed below.

Along with overly large ion sizes, another difficulty is that the simulated results in Fig. 11 (d)
and (f), are reproducing data from two different concentrations using the same value of ν = 0.01
in Bikerman’s MPB theory. Since the concentration varies between the two experiments by a
factor of 10, the simulations are using different values of the ion size, a: 4.4 nm at 0.1 mM and 2
nm at 1 mM. Physically, it would make sense to use the same ion size in the model regardless of
concentration. If we use the same ion size to fit data from both concentrations, the comparison
worsens significantly, representing one of the key difficulties of fitting model to experimental
data.

The simple steric models (without dielectric saturation) can thus provide good qualitative
agreement between the measured and predicted frequency responses. However, they can not
predict the proper frequency response as we change concentration and hold the ion size fixed. In
the model calculations, the frequency response at high voltage always shows regions of forward
and reverse flow. As concentration changes, features in the modeled frequency response (e.g.
forward and reverse peaks, crossover frequency) shift along the frequency axis as the RC charg-
ing time changes with concentration. Since the capacitance of the double layer is insensitive to
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bulk concentration at high voltage (see Fig. 6), the RC charging time depends on concentration
through the bulk resistance. Thus the location of peaks on the frequency response should vary
approximately linearly with concentration; experiments at high voltage indicate a much weaker
dependence. The difficulty in matching the frequency response of experiments to simulations
may be due to the neglect of Faradaic reactions and other effects discussed below.

At least at a qualitative level, changes in the double-layer charging time due to crowding
effects likely also play a role in the sensitivity of ACEO flow to the solution chemistry. For
example, flow reversal in our models is related to an ion-specific scale for crowding effects. In
cases of asymmetric electrolytes, there may also be two different frequency responses at large
voltages, one for positive and another for negative charging of the double layer. Perhaps this
effect is responsible for the double-peaked frequency spectrum of ACEO pumping in water with
non-planar electrodes at high voltage [40]. In multicomponent electrolytes, the situation is even
more complicated, since large voltages can induce segregation of different counterions, oppo-
site to PB predictions, e.g. with smaller ions condensing closest to the surface, even if the
larger ions have high bulk concentration or carry more charge. These effects can be predicted
by multi-component hard-sphere MPB models [62, 192, 193] consistent with x-ray reflectivity
measurements on mixed double layers [258, 259], so there is hope that applying such models in
our weakly nonlinear formalism for ACEO may also be fruitful.

3.2.2. Field-dependent electrophoretic mobility
In the classical theory of electrophoresis [8, 6], the electrophoretic mobility bep of a homoge-

neous particle with thin double layers is a material constant, given by Smoluchowski’s formula,

bep = b =
εbζ

ηb
. (41)

In particular, the electrophoretic mobility does not depend on the background field Eb or the
shape or size of the particle. These are partly consequences of the assumption of fixed surface
charge, or constant zeta potential. For polarizable particles, the theory must be modified to
account for ICEO flows [19], which produce a shape-sensitive ICEP velocity scaling as U ∝
εbRE2

b/ηb, where R is the particle size [15, 23, 24]. Transverse ICEP of metallo-dielectric Janus
particles in AC fields has recently been observed in experiments [25] up to fairly large induced
double-layer voltages EbR ≈ 15kT/e.

ICEP theories aimed at AC fields tend to assume zero total charge, but ICEO flows can also
alter the DC electrophoretic mobility of a charged, polarizable particle. In the limit of weak fields
Eb � kT/eR, A. S. Dukhin first showed that an ideally polarizable sphere with equilibrium zeta
potential ζ0 and radius R has a field-dependent electrophoretic mobility,

bep(Eb) ∼
εb

ηb

(
ζ0 −

3
8

C′D(ζ0)
CD(ζ0)

(EbR)2 + . . .

)
(42)

if the diffuse-layer differential capacitance is voltage dependent [65]. (Note that field-depedent
mobility is a general phenomenon [66] that can also arise for fixed-charge particles due to surface
conduction [111] or convection [110].) This general correction has only been applied in the
context of PB theory, Eq. (10), which predicts decreased mobility, ∆bep < 0 since dCD/dψ > 0
for ζ0 > 0. It has also recently been derived as the small field limit of a general PB analysis for
thin double layers by Yariv [145].

The basic physics of this nonlinear effect is illustrated in Fig. 12(a-b). If the double-layer
voltage varies enough to cause spatial variations in its differential capacitance, then counterions
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Figure 12: Field-depenent electrophoretic velocity U of an ideally polarizable, charged sphere of radius R with thin
double layers in a background field Eb. (a) In small fields, the mobility bep = U/Eb is set by the uniformly distributed
double-layer charge. (b) In large fields, Eb � kT/eR, the dipolar induced charge overwhelms the pre-existing charge and
alters bep, if cations and anions do not condense at the same density and must redistribute to conserve total charge. (c)
In PB theory, the unphysical collapse of point-like ions to the surface causes exponential decay of bep(Eb) via Eq. (44);
finite-size effects in Bikerman’s MPB model (Fig. 5) prevent this decay and lead to the opposite trend: increase of
mobility in large fields via Eq. (47).

37



aggregate with varying density (per area) around the surface of the particle upon polarization
by the applied field, and this nonlinearity breaks symmetry in polarity with respect to the mean
voltage. For example, if the positively charged part of the diffuse layer (relative to the mean
charge) is less dense (e.g. due to larger or less charged cations than anions), it will cover more
of the surface than the negatively charged part; cations are then more likely to dominate in
regions of large tangential field near the equator and thus make an enhanced contribution to the
electrophoretic mobility of the particle, regardless of its true surface charge. Other effects can
also be important (see below), but this one is particularly sensitive to MPB models for the double
layer.

Dukhin’s formula (42) can be derived from the general weakly nonlinear formalism of Refs.
[19, 23] for ideally polarizable particles with thin double layers (yielding the same result as
Ref. [65]). In the low-frequency or DC limit, the background field Eb causes nonuniform polar-
ization of the double layer around the particle to screen the bulk electric field E = −∇φ, which
thus solves Laplace’s equation ∇2φ = 0 with the effective boundary condition, n̂ · E = 0. If we
let φ0 denote the induced potential of the particle, relative to the background applied potential,
then ∆φ(r) = φ0 − φ(r) is the non-uniform voltage across the double layer, which enters the
electro-osmotic slip formula, either the HS formula (5) or one of its generalizations below. For a
sphere with HS slip, the electrophoretic mobility is simply bep = εbφ0/ηb.

The crucial step is to determine the particle’s potential φ0, after polarization of the double
layers, which generally differs from its initial equilibrium value, ζ0, due to nonlinearity of the
charging process. (This phenomenon, first noted by Dukhin [65], was overlooked in recent ICEO
papers [15, 16, 24, 23].) Using the mathematical formalism of Ref. [23], the potential of the
particle must adjust to maintain the same total charge Q, which can be related to the differential
capacitance of the double layer as follows:

Q =

∮ (∫ ζ0

0
CD(ψ)dψ

)
dA =

∮ (∫ φ0−φ(r)

0
CD(ψ)dψ

)
dA, (43)

for a given initial zeta potential ζ0, bulk polarization φ(r), and (total) double layer differential
capacitance, CD(ψ). For simplicity, we assume the diffuse layer carries all the double-layer
voltage, but a compact Stern layer can be easily included in Eq. (43) by replacing ∆φ with
∆φ/(1 + δ). Regardless of the particle shape, the assumption of a uniform, constant CD implies
φ0 = ζ0 = Q/(CDA) (where A is the surface area), and thus no impact of polarization on the
electrophoretic mobility in the case of a sphere [23]. With a nonlinear differential capacitance,
however, Equation (43) is a nonlinear algebraic equation for φ0, and thus bep, in terms of ζ0 and
Eb. In the geometry of a sphere, Dukhin’s formula (42) can be derived by asymptotic analysis in
the limit of small fields, Eb � kT/eR for any choice of CD(ψ) [19], and for some models exact
solutions and the large-field limit can also be derived [260].

Using this mathematical formalism with our MPB models, we predict that steric effects in the
electrolyte can signficantly influence the mobility of polarizable particles in large applied fields
and/or highly concentrated solutions. Here, we focus on new qualitative phenomena predicted by
the theory. (More details can be found in Ref. [260].) From Fig. 5 and Eq. (25), we see that the
mobility of a highly charged particle |ζ0| � kT/e can increase with the field squared in Dukhin’s
formula (42) since dCD/dψ < 0, which is the opposite prediction of PB theory. The mobility is
also clearly sensitive to the ionic species through CD.

The discrepancy with PB theory becomes more dramatic in a large applied field, Eb � kT/eR,
even if the particle is not highly charged |ζ0| ≈ kT/e. Previous authors have only considered weak
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fields [66, 65], so it was apparently not noticed until Refs. [145, 260] that PB theory (10) leads
to a surprising prediction, shown in Fig. 12(c): The mobility of a charged, ideally polarizable,
spherical particle vanishes exponentially in the limit Eb � kT/eR (=100 V/cm for R = 2.5µm),

bPB
ep ∼

3εb

ηb
sinh

( zeζ0

2kT

)
EbR e−3zeEbR/4kT , (44)

which is the large-voltage limit of an exact solution for the ICEP mobility of an ideally polariz-
able sphere with thin double layers in PB theory,

bPB
ep = 2

kT
ze

sinh−1
[
3zeEbR

4kT
sinh(zeζ0/2kT )

sinh(3zeEbR/4kT )

]
(45)

The mechanism for this seemingly unphysical effect is the massive overcharging of the diffuse
layer in PB theory at large voltages in Fig. 5(b), which causes the anti-symmetric induced charge
(not causing motion) to overwhelm the symmetric pre-existing charge (giving rise to mobility).
We view this prediction as another failure of PB theory, since we are not aware of any evidence
that polarizable particles lose their electrophoretic mobility so strongly in such fields, which
are routinely applied in electrophoresis experiments. (Note that kT/eR = 100 V/cm for a 5µm
diameter particle at room temperature.) The PB prediction of vanishing mobility is closely tied
to the unphysical pile-up of point-like ions near a highly charged surface in PB theory.

Indeed, the situation is completely different and more physically reasonable in any mean-field
theory with finite-sized ions, regardless of the model. Using our general MPB formula (19), the
mobility in large fields Eb � kT/eR can be expressed as

bep ∼
3εbEbR q(ζ0)

2ηb q
(

3
2 EbR

) (46)

and typically grows as bνep ∝
√

Eb. For example, in Bikerman’s model the BF formula (25) yields

bνep ∼
εb

ηb

√
3νkT EbR

4ze
. (47)

As shown in Fig. 12(c), the mobility bνep rapidly decreases in weak electric fields until PB theory
breaks down, and then gradually increases in larger fields [260]. Physically, steric effects prevent
overcharging of the double layer in PB theory, thus preserving the asymmetry of the initial charge
distribution.

A related general consequence is that asymmetry in the electrolyte, e.g. ions of different
effective sizes, can affect a particle’s electrophoretic mobility. Remarkably, an uncharged particle
can acquire a nonzero mobility in an asymmetric electrolyte in a large applied field (ζ0 = 0 but
bep , 0). An asymmetric field-dependence of the double-layer capacitance is enough to predict
such exotic effects on very general grounds.

As a first approximation for the weakly nonlinear regime using MPB theory, we simply postu-
late two different (homogeneous) ion sizes a± for positive and negative polarization of the diffuse
layer,

CD(ΨD) =

{
CD(ΨD; ν = ν+) for ΨD > 0
CD(ΨD; ν = ν−) for ΨD < 0 (48)

where ν± = 2a3
±c0 (or Φ± for hard sphere models). This may seem like a crude approximation, but

it is quite accurate for a binary electrolyte at large voltages since the diffuse layer mostly contains
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Figure 13: Electrophoretic mobility bep of an ideally polarizable sphere of total charge Q in an asymmetric binary z : z
electrolyte, scaled to b0

ep = εbkT/zeηb, in the weakly nonlinear limit of thin double layers. The case of an uncharged
particle Q = 0 is compared to those of total charge Q = ±Q0 where Q0 = εbkT/zeλD. Using the approximation (48), the
mobility is calculated with Bikerman’s MPB model (25) for an effective volume ratio (a−/a+)3 = 10 in two cases: (a)
high salt concentration with ν− = 0.1 and ν+ = 0.01 and (b) moderate salt concentration with ν− = 10−3 and ν+ = 10−4.
At small electric fields and/or low salt concentrations, the size asymmetry is irrelevant, and the predictions of PB theory
from Fig 12 are apparent; at large fields and/or low concentrations, the particle acquires an apparent positive charge, due
to the covering of more of the particle’s area by the larger cations, regardless of its true surface charge;

counterions of one sign; at low voltages, where all species are present in a dilute mixture, the
ion sizes play no role. Inserting (48) into (43) yields the results shown in Figure 13 for the
(weakly nonlinear) mobility of a charged, ideally polarizable sphere in a DC field. Interestingly,
at large voltages, positive or negative, the mobility tends to a |E| scaling, set by the ratio a+/a−,
independent of the total charge of the particle Q. We also see that an uncharged particle with
Q = 0 can still have a nonzero mobility, once nonlinear charging of the double layers sets in.

We stress that all the calculations of this paper consider the weakly nonlinear limit of thin dou-
ble layers, where the bulk concentration remains uniform and surface conduction is neglected.
As such, the trends we predict for PB and MPB models are meaningful at moderate voltages, but
may need to be significantly modified at large voltages for strongly nonlinear dynamics. More-
over, even in the weakly nonlinear regime, we will now argue that at least one more physical
important effect may need to be considered.

4. Viscoelectric effect in a concentrated solution

4.1. Mean-field local-density theories
4.1.1. Modified Helmholtz-Smoluchowski slip formulae

There is a considerable literature on electrokinetic phenomena at highly charged surfaces with
large (but constant) zeta potential [6, 5, 112, 113, 10]. In this context, it is well known that the
linear electrophoretic mobility departs from Smoluchowski’s formula at large surface potentials,
Ψ > Ψc, and decreases at large voltage, due to effects of surface conduction (large Dukhin num-
ber). Using PB theory for thin double layers, Dukhin and Semenikhin [112] derived a formula
for the electrophoretic mobility of a highly charged, non-polarizable sphere, which was famously
verified by O’Brien and White [261] via numerical solutions of the full electrokinetic equations
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for a dilute solution. This established the mathematical validity of the formula, but in this article
we are questioning the physical validity of the underlying equations at large induced voltages
and/or high salt concentrations.

As described in section 2, recent experiments on induced-charge electrokinetic phenomena
reveal a strong decay of electro-osmotic mobility with increasing salt concentration at highly
charged surfaces, which cannot be explained by the standard model, based on the HS formula
(5), even if corrected for strongly nonlinear effects perturbing the salt concentration. Continuum
electrohydrodynamics, however, does not require the HS formula, even for thin double layers,
but instead provides a general expression for the electro-osmotic mobility [6],

b =

∫ ΨD

0

ε

η
dΨ (49)

as an integral over the potential difference Ψ entering the diffuse layer from the bulk. This allows
us to derive “modified Helmholtz-Smoluchowski” (MHS) formulae for b(ΨD, c0, . . .) based on
general microscopic electrokinetic equations.

The standard way to interpret electrokinetic measurements is in terms of the effective zeta
potential,

ζe f f =
bηb

εb
, (50)

but we view this as simply a measure of flow generated in units of voltage, and not a physically
meaningful electrostatic potential. One can also use PB theory for the hypothetical “mobile” part
of the double layer to express the mobility in terms of an effective “electrokinetic charge” [10, 6],
e.g. using the Gouy-Chapman solution for a symmetric binary electrolyte,

qek = 2λDzec0 sinh
(

zeζe f f

2kT

)
(51)

which measures the observed flow in units of charge.
It is well known that the classical theory tends to overpredict experimentally inferred zeta

potentials (|ζe f f | < |ΨD| or |qek | < |q|), and the discrepancy is often interpretted in terms of a
“slip plane” or “shear plane” separated from the surface by a molecular distance d ≥ 0, where
the no-slip boundary condition is applied [262, 10]. If the low-voltage theory with ε = εb and
η = ηb is applied beyond this point, then ζe f f acquires physical meaning, as the potential of the
slip plane relative to the bulk. Behind the slip plane, the fluid is assumed to be “stagnant” with
effectively infinite viscosity, although it may still have finite ionic surface conductivity [10].

As in the case of effective hydrodynamic slip (d < 0) over hydrophobic surfaces [263, 264]
the slip-plane concept, although useful, obscures the true physics of the interface. In particular, it
has limited applicability to nonlinear electrokinetic phenomena, where the double layer responds
non-uniformly to a large, time-dependent applied voltage. We have already argued this leads to
signficant changes in the structure of the double layer, and clearly it must also have an impact on
its rheology. Without microscopic models of how local physical properties, such as viscosity and
permittivity, depend on local variables, such as ion densities or electric field, it is impossible to
predict how the effective electro-osmotic slip depends on the global double-layer voltage or bulk
salt concentration. This is also true in complicated geometries, such as nanochannels or porous
structures, where the concept of a flat “slip plane” is not realistic.
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4.1.2. The viscoelectric effect
Based on Eq. (49), there are good reasons to expect reduced mobility at large voltage, |ΨD| >

Ψc, compared to the HS formula, ζe f f = ΨD, based only on field-dependent properties of a polar
solvent [6]. As discussed in section 3.1.6, large normal electric fields in a highly charged double
layer can decrease the permittivity by aligning the solvent dipoles (“dielectric saturation”). The
local viscosity can also increase [265, 251], through viscoelectric thickening of a dipolar liquid
with polarization transverse to the shear direction.

Long ago, Lyklema and Overbeek [63, 64] (LO) proposed the first (and to date, perhaps the
only) microscopic electro-rheological model leading to an MHS slip formula. They focused on
the viscoelectric effect in water, which they estimated to be more important than dielectric satura-
tion for electrokinetics (consistent with recent atomistic simulations [105], albeit at low voltage).
Physically, they argued that, for typical electric fields in aqueous double layers, dielectric sat-
uration interferes more with the strongly cooperative rearrangements involved in viscous flow
than the weakly correlated dipole alignments contributing to reduced permittivity. To model the
viscoelectric effect, LO assumed a field-squared viscosity increase in PB theory,

η = ηb

(
1 + f E2

)
, (52)

and were able to integrate (49) to obtain an analytical (although cumbersome) MHS formula.
Physically, their model predicts that b saturates to a constant value at large |ΨD|, which decays
with increasing c0. The saturation in the LO model, however, is tied to the unphysical divergence
of the counterion concentration (and thus E) in PB theory, and thus should be revisited with
volume constraints and other effects.

It is straightforward to use the LO postulate (52) for the viscoelectric effect in our modified PB
models to obtain corresponding MHS slip relations, although the integration of (49) cannot be
done analytically. Numerical results for a typical case are shown in Fig. 14, using the value f =

10−15m2V−2 suggested by LO for water [63, 64]. It is interesting to note that this choice makes
all three models of double layer structure, PB, Bikerman MPB, and CS MPB, yield very similiar
electro-osmotic mobility versus voltage, in spite of completely different ion density profiles. The
reason is that the viscoelectric effect sets in so quickly with increasing voltage that the shear plane
is effectively still in the dilute, outer part of the diffuse layer, where all theories reduce to PB.
Indeed, as shown in the figure, more differences become apparent we if choose a smaller value,
f = 10−17m2V−2. The reduction in normal electric field due to crowding-induced expansion of
the inner diffuse layer leads to slower saturation of ζe f f compared to PB theory, especially in the
CS MPB model, since it has stronger steric effects than the Bikerman MPB model.

What this exercise shows is that the inner part of a highly charged double layer is effectively
frozen by field-dependent viscosity in a similar way regardless of the model for the diffuse-
charge profile. The LO model attributes this effect entirely to the solvent (water), independent
of the local diffuse charge density or ionic currents, but this hypothesis does not seem entirely
satisfactory. An implication is that water is effectively immobilized within a few molecular
layers of the surface near a charged surface, even if there is no added salt. This effect seems
to contradict recent experimental and theoretical literature on hydrodynamic slip [263, 1, 266,
264] which has shown that shear flow in water persists down to the atomic scale with a no-slip
boundary condition for smooth hydrophilic surfaces and with significant slip lengths (up to tens
of nanometers) on hydrophobic surfaces [267, 268, 269]. If the viscosity is a property of pure
water (as opposed to the local electrolytic solution), then the field dependence should also be
observable in the bulk, but we are not aware of any experiments or simulations showing that

42



0 5 10 15 20 25
0

5

10

15

20

25

ze!D/kT

ze
" ef

f/k
T

 

 
PB
MPB
CS

f = 10−15(m/V)2

f = 10−17(m/V)2

Figure 14: Modified Helmholtz-Smoluchowski (MHS) slip formulae assuming a charge-independent viscoelectric effect
in the polar solvent (52). This example assumes a bulk concentration c0 = 1 mM of z : z electrolyte using different
models of double-layer structure. The Lyklema-Overbeek (LO) model, based on Poisson-Boltzmann (PB) theory of
point-like ions, is compared to MHS slip with the Bikerman (MPB) and Carnahan-Starling (CS) modified PB theories,
using an effective ion size of a = 4 Å. The viscoelectric coefficient is set to the value f = 10−15m2V−2 suggested by LO
for water as well as a smaller value f = 10−17m2V−2, which reduces the viscoelectric effect.

bulk de-ionized water becomes rigid in fields larger than f −1 = 30V/µm. Of course, it is hard to
apply such fields in the bulk at low frequency, due to capacitive screening by the double layers
and Faradaic reactions, but the LO model is time-independent and should also apply at high
frequency where these effects are reduced.

Molecular dynamics (MD) simulations of electrokinetic phenomena in nanochannels gen-
erally imply a local viscosity increase close to a charged surface, although its origin and
mathematical description are not well understood. An early MD simulation of Lyklema et
al. [104] showed a stagnant monolayer of water, which could pass ions freely, with a sur-
face conductivity comparable to the bulk, but subsequent MD simulations of electro-osmosis
have shown motion of the liquid (both ions and solvent) down to the atomic scale near the
wall [105, 106, 194, 270, 107, 108, 109], albeit with an apparent viscosity often smoothly
increasing across the closest molecular layers. We are not aware of any MD simulations of
electro-osmosis in a large transverse voltage (� kT/e), but it seems that the presence of crowded
counterions near the surface (described in section 3) must affect the apparent viscosity, since the
liquid no longer resembles the pure bulk solvent.

4.1.3. Charge-induced thickening
A natural physical hypothesis, sketched in Figure 15, is that the crowding of counterions in a

highly charged diffuse layer increases the local viscosity, not only through the viscoelectric effect
of the bare solvent, but also through the presence of a large volume fraction of like-charged ions
compressed against the surface. For now, we neglect explicit field dependence, such as (52),
to focus on effects of large charge density. In a very crude attempt at a model, we consider an

43



electrolyte with solvated ions of finite size and postulate that ε/η diverges as a power law,

ε

η
=
εb

ηb

1 −  |ρ|ρ±j
αβ (53)

as the local charge density approaches a critical value, ρ±j , which generally must depend on the
polarity sign(ρ) = ± in an asymmetric electrolyte.

A natural choice is to postulate diverging viscosity (“jamming”) at the steric limit, ρ j = ρ±max =

|z±|ec±max. In that case, similar exponents α and β controlling the singularity also arise in the
rheology of dense granular materials [271]. If we also assume α = β = 1, then there are no new
fitting parameters,

ε

η
=
εb

ηb

(
1 −

|ρ|

ρ±max

)
(54)

since the steric constraints ρ±max come from the MPB model. In our original letter [57], we
considered only this postulate with Bikerman’s model for steric effects and thus assumed an
even simpler form,

ε

η
=
εb

ηb

(
1 −

a3|ρ|

ze

)
(55)

The resulting electrokinetic model is extremely simple in that it only involves one parameter
beyond dilute-solution theory, the effective ion size, a. As such, it lacks flexibility to fit multi-
ple sets of experimental data, but we will use it in our analytical calculations below to further
understand the general consequences of steric constraints.

The general model (53) also allows for other types of behavior. With ρ±j > ρ±max, there is a
finite maximum viscosity in the condensed layer, or effectively some flow behind the slip plane.
With ρ±j < ρ

±
max, the model postulates flow arrest at high charge density before the close-packing

limit is reached (and η = ∞ for |ρ| > ρ±j ). The new parameters ρ±j , α and β allow some flexibility
to fit experiments or simulations, in addition to the ion sizes a± from the MPB models above.

The arbitrary choice (53) is motivated by a number of possible physical effects:

• Jamming against a surface. In a bulk colloid [7], the maximum density corresponds to
random close packing at the jamming point [272], where the shear modulus becomes fi-
nite [273], diffusivity vanishes [274, 275, 276] and the viscosity diverges [271]. Molecular
dynamics simulations of soft disks in a periodic box have recently established a viscos-
ity divergence of the form (53) with α = 1 and β = 1.7 [271]. In an electrolyte, strong
electrostatic compression of solvated counterions against a (typically rough) surface may
cause some transient local jamming of the condensed layer, and thus increased viscosity
(and decreased mobility of individual ions) at high charge density.

• Electrostatic correlations. Condensed counterions at large voltages ressemble a Wigner
crystal [277, 278] (or glass) of like charges. Discrete Coulomb interactions [187, 279, 189]
may contribute to increased viscosity, e.g. through the attraction between a displaced ion
and its “correlation hole”, which effectively carries an opposite charge. (See Fig. 16.) We
are not aware of attempts to predict the rheological response of sheared Wigner crystals
or glasses, let alone discrete, correlated counterion layers, but we expect that electrostatic
correlations will generally contribute to charge-induced thickening in electrolytes and ionic
liquids.
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Figure 15: Sketches of finite-sized hydrated ions near a polarizable surface as in Fig. 4, showing the solution velocity u
profile in response to a tangential electric field. (a) At small induced voltages, the no-slip boundary condition holds at the
surface, and the effective electro-osmotic slip us builds up exponentially across the diffuse layer. (b) At large voltages,
crowding of hydrated ions increases the viscosity of the condensed layer, and the apparent slip plane “SP” (dashed line)
moves away from the surface with increasing voltage.
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Figure 16: Sketch of a physical mechanism for charge-induced thickening due to electrostatic correlations. A condensed
layer of solvated counterions (spheres) is confined against a highly charged surface by the normal electric field. Shear
of the fluid (arrow) causes an ion to leave its local equilibrium position in a Wigner-like crystal of like charges, but its
motion is inhibited by a strong attraction back to its oppositely charged ”correlation hole” (dashed).

• Solvent effects. Several molecular dynamics simulations of linear electro-osmosis (at low
voltages) have infered ≈ 5× greater viscosity within 1 nm of a flat surface [105, 106],
which grows with surface charge [270] and surface roughness [280] (but decreases with
hydrophobicity [108]). Dielectric saturation near a highly charged surface (section 3.1.6)
reduces the electro-osmotic mobility by lowering ε, but the aligning of dipoles leads to
collective interactions that can also increase η, i.e. the classical viscoelectric effect, at even
lower fields [63]. In the presence of crowded, like-charged counter-ions, frustrated solvation
shells and confined hydrogen-bond networks in water may further increase η. The latter
effect may be related to local electrostriction, which compresses the second hydration shell
around certain cations (K+ and Na+, also used in ICEO experiments, Table 1) [182].

Of course, this electrohydrodynamic model is rather simple. In general, we expect that ε and
η will depend independently on both the local field E and the solution composition. We have
already mentioned the different physical effects affecting ε and η in a pure dipolar solvent, and
the situation only becomes more complicated with large ion densities. In order to model general
phenomena such as diffusio-osmosis or surface conduction, it is necessary to provide separate
functional forms for ε and η, since these variables no longer only appear as the ratio ε/η. In that
case, we would propose viewing (53) as a model for η with ε = εb fixed, since molecular dynam-
ics simulations of electro-osmosis predict smaller changes in permittivity than in viscosity near
a charged surface, even within a few molecular diameters [105, 106]. This is also analytically
convenient because variable ε is a major complication in MPB models, although progress can be
made as shown in section 3.1.6. Finally, our neglect of explicit field-dependence such as (52),
in favor of charge-density dependence (which is more closely related to our modeling of crowd-
ing effects), does not affect the modeling of quasi-equilibrium double layers, since the dominant
normal field can be expressed in terms of the charge-density, and vice versa, in any MPB model.
In more general models, however, it may be important to also include a field-dependent visco-
electric effect.

Our basic picture of charge induced thickening is consistent with prior models for the increase
of viscosity with salt concentration in neutral bulk solutions [265, 251, 253]. Traditionally,
the viscosity of electrolytes has been described empirically using the Dole-Jones correlations
[281, 282, 283], but more recent theories based on molecular models take a more fundamental
approach. Like our hypothesis, these models also postulate infinite viscosity as the hard sphere
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solvated volume fraction approaches unity [253]. In a neutral bulk electrolyte, such high volume
fractions are never reached due to limits of solubility, though a factor of ten increase in viscosity
has been observed for some systems at high salt concentration [284]. The effective hard-sphere
diameters (see Table 2) inferred from these viscosity models may also have relevance for our
models, although there is an important difference: We neglect crowding effects in a neutral bulk
solution and focus instead on crowding of like-charged counter-ions. As discussed above, at
high charge density in a large electric field, various physical effects could significantly increase
the viscosity compared to what would be observed in a neutral solution at the same concentra-
tion. Moreover, solubility limits are not relevant for like-charged ions, so higher concentrations
approaching packing limits can more easily be reached, as we have postulated in response to a
large voltage.

Regardless of the specific form of our model, its key feature is that the concentrated solution
of counterions near a highly charged surface is thickened with voltage, compared to the bulk,
although it can still flow slowly. This picture is consistent with molecular dynamics simulations
of electro-osmosis [105, 106, 270, 108, 280, 285], which do not observe a truly stagnant layer,
even at low surface potentials. As sketched in Fig. 15, from a macroscopic point of view, there is
an apparent slip plane separated from the surface, which depends on the ion density profiles and
thus external conditions of voltage and bulk solution composition. At low voltage, near the point
of zero charge, there is no change in the local viscosity, aside from any pure solvent interactions
with the surface, e.g. due to hydrophobic or hydrophilic effects (which we neglect). At high
voltage, the crowding of counterions leads to thickening and an apparent movement of the slip
plane away from the surface. Without a microscopic model, it would not be possible to predict
this dependence or derive a functional form for fitting.

The picture of a thin layer near the surface with different electro-rheological properties also
appears in models of electrokinetics with porous or soft surfaces [286, 287], which build on the
Zukowski-Saville [288, 289] and Mangelsdorf-White [290, 180, 181] theories of the “dynamical
Stern layer”. In these models, ions are allowed to move within a flat Stern monolayer, while the
diffuse layer is described by the standard electrokinetic model. Recently, López-Garcia, Grosse
and Horno have extended these models to allow for some fluid flow in a thicker dynamical sur-
face layer, and this allows more flexibility in fitting (linear) electrical and electrokinetic measure-
ments [291, 292]. In the case of a flat surface with an equilibrium double layer, this is similar to
our picture, if the surface layer is ascribed a higher viscosity, but in our model there is no need
to postulate a sharp plane where properties of the solution change. Instead, by modifying the
electrokinetic equations everywhere in the solution, its electro-rheology changes continuously as
a function of local contiuum variables.

The concept of charge-induced viscosity increase may be widely applicable in nano-scale
modeling of electrolytes, in conjunction with modified theories of the ions densities. The general
modified electrokinetic equations are summarized in section 5. Now, let us consider generic
consequences of this hypothesis for electrokinetic phenomena with thin double layers and make
some explicit calculations using Eq. (53).

4.2. Implications for nonlinear electrokinetics

4.2.1. Electro-osmotic slip at large voltages in concentrated solutions
To describe electro-osmotic flows with thin double layers, we can use our microscopic models

to derive modified Helmholtz-Smoluchowski (MHS) slip formulae, which depend nonlinearly
on double-layer voltage (or surface charge) and bulk salt concentration. Such predictions could
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Figure 17: MHS slip formula (59) using Bikerman’s model with ion size a = 4Åand charge-induced thickening (53)
with α = 1 = β = 1 at different bulk concentrations, c0 = 1µM, 1 mM, and 1M. The viscosity is postulated to diverge
either at a mean ion spacing a j = a (solid curves), in which case the condensed layer in Fig. 5(a) is effectively rigid, or
at a j = 0.9a (dashed curves), in which case it flows with a large, but finite viscosity.

perhaps be directly tested experimentally by field-effect flow control of electro-osmosis in mi-
crofluidic devices [158, 159, 160], if a nearly constant double-layer voltage could be maintained
along a channel and then varied systematically for different electrolytic solutions. Alternatively,
one could compare with molecular dynamics simulations of electro-osmotic flow in nanochan-
nels with oppositely and highly charged walls, leading to large induced double-layer voltages.

A general MHS slip formula — If we assume ε = εb in Eq. (54) with α = β = 1 (an arbitrary
choice for analytical convenience), then for any MPB model with |ρ±max| < ∞ we can integrate
Eq. (49) obtain an MHS formula for the effective electro-osmotic slip outside the double layer,

ζe f f = ΨD ±
pe(ΨD)
ρ±j

= ΨD ±
q(ΨD)2

2εbρ
±
j

(56)

where ± = sign(q) = −sign(ΨD) and pe(ΨD) and q(ΨD) are given by (17) and (18), respectively.
This simple and general expression reduces to the HS formula (ζe f f = ΨD) in the limit of point-
like ions (ρ±max → ∞) and/or small voltages (ΨD � kT/e). At large voltages, |ζe f f | is always
reduced, depending on how the model for µex

i imposes volume constraints or other contributions
to the excess chemical potential.

In any MPB model, such as Bikerman’s, where counterions (±) form nearly uniform con-
densed layers with c± ≈ c±max and η � ηb from Eq. (53), the apparent zeta potential (56) either
saturates to a constant,

ζe f f ∼ Ψ±c = −
kT
z±e

ln
(

c±max

c0

)
(57)
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if the condensed layer is stagnant (ρ±j = ρ±max) or switches to a slower linear dependence

ζe f f ∼ ΨD −

1 − a±j
a±

3 (Ψ±D − Ψ±c
)

(58)

if the condensed layer has a finite viscosity, as shown in Fig. 17. The former case (57) ressembles
the logarithmic concentration dependence of equilibrium zeta potential observed in many mi-
crofluidic systems [262], as well as the decay of ICEO flow noted above. The latter case allows
for intermediate behavior between strong saturation of ζe f f ∼ Ψ±c and the HS limit ζe f f = ΨD.

MHS slip with Bikerman’s model — The reduction of ζe f f arises in different ways depending
on the diffuse-layer model. In Bikerman’s model for a symmetric electrolyte [57], the limiting
behavior is reached fairly suddenly. In that case the integral (55) can be performed analytically
to obtain a simple formula:

ζνe f f = ΨD ±
kT
ze

(a j

a

)3
ln

[
1 + 4a3c0 sinh2

(
zeΨD

2kT

)]
, (59)

illustrated in Fig. 17. For a rigid condensed layer, this model predicts a simple logarithmic decay
of ICEO flow with concentration, Eq. (57). If the condensed layer has a large, but finite viscosity,
the decay is slower and more complex via Eq. (58). A general feature of even these very simple
models is that ICEO flow becomes concentration-dependent and ion-specific at large voltages
and/or high salt concentrations, through z±, a±, a±j ,and c0.

It is interesting to compare Eq. (59) to the only previous MHS formula of Lyklema and Over-
beek [63, 64], based on the viscoelectric effect (52) in the context of PB dilute-solution theory.
As shown in Figures 14 and 17, the two formulae make similar predictions of saturation of the
zeta potential with voltage with a j = a, but our formula (59) is simpler and more amenable to
mathematical analysis, as illustrated below. (In contrast, the LO formula takes several lines to
write down in closed form [64].) The parameter a is also more constrained on physical grounds,
to be of order the hydrated ion size, than the empirical viscoelectric constant f . Qualitatively,
the LO formula based on PB theory does not offer any explanation of the experimental fact that
ICEO flows depend on the particular ions, even in different solutions of the same ionic valences,
{zi} (such as NaCl and KCl), although we do not claim that our Bikerman MHS formula correctly
captures any specific trends.

MHS slip in a hard-sphere liquid — As noted above, hard-sphere liquid models show qual-
itative differences with Bikerman’s lattice-based model, beyond just allowing the use of more
realistic, smaller effective ion sizes. As shown in Fig. 7, steric effects are stronger in a hard-
sphere liquid. The ion density approaches close packing as the voltage is increased much more
slowly with the Carnahan-Starling model when compared to Bikerman’s model, as shown in
Fig. 7(d). When the CS model is used to compute the effective zeta potential with ρ±j = ρ±max and
α = β = 1 in Eq. (53) as shown in Fig. 18, the effective zeta potential does not saturate as with
Bikerman’s model, and the layer continues to flow until extremely high voltages are reached,
albeit much more slowly than in the classical HS model without charge-induced thickening.

However, at this time we have no reason to assume that α = β = 1 in Eq. (53). The crucial
exponent controlling the viscosity divergence is β. If we set β = 4, then the divergence is fairly
strong as shown by the dashed curves in Fig. 18. Here, we find a strong saturation of ζe f f , similar
to what is predicted by Bikerman’s model (Fig. 17), which more easily forms a condensed layer.
A range of possible MHS slip behavior is possible with a given MPB model for the ion density
profile, depending on the precise postulate for charge-induced thickening.
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Figure 18: Effective zeta potential ζe f f versus diffuse-layer voltage ΨD at different bulk concentrations using the
Carnahan-Starling MPB model for charged hard spheres of diameter a = 4 Åfrom Fig. 7. The concentration are
c0 = 1µM, 1 mM, and 1 M from top to bottom. The solid curves use the MHS slip formula (53) with α = β = 1
and ρ j = ρmax, and the dashed curves change to β = 4.

It is important to note that the CS equation was never intended to be used at high volume
fractions and only fits the homogeneous chemical potential in the liquid state for Φ < 0.55.
From Eq. 27 and Fig. 7(d) we see that the chemical potential diverges as Φ→ 1, but the physical
maximum for random close packing for bulk hard spheres is Φ ≈ 0.63 [272, 273, 271], which is
exceeded in the CS MPB theory already at 1 volt across the diffuse layer. Moreover, crowding in
the double layer occurs against a hard wall, which removes geometrical degrees of freedom and
thus reduce the accessible local volume fraction for random close packing of hard spheres [293],
and induces correlations not captured by the LDA [250]. It is therefore not clear what the proper
value of ρ±max should be to control our postulated viscosity divergence. The development of
accurate models of the local rheology of highly charged double layers should ideally be guided
by molecular theories and simulations. We simply give a range of examples to show what kind of
qualitative behavior can be predicted by various simple MPB/MHS models, which are suitable
for macroscopic theory and simulation of electrokinetic phenomena.

Comparison to compact-layer models. For completeness, we briefly discuss how the general
liquid-state models we develop above compare to the traditional approach of dividing the double
layer into two parts, a flowing diffuse layer and a rigid compact layer, and assuming a constant
viscosity and permittivity everywhere, leading to the HS formula. First we consider the classical
Gouy-Chapman-Stern model which postulates an uncharged dielectric monolayer of solvent of
constant effective thickness λS in contact with a diffuse layer of point-like ions obeying PB
theory. The nonlinear charge-voltage relation [129],

Ψ = ΨD + 2
kTλD

zeλS
sinh

(
zeΨD

2kT

)
, (60)

then implies that only a logarithmically small diffuse-layer voltage ΨD contributes to the zeta
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Figure 19: Compact layer effects in traditional HS slip theory assuming a thin dielectric coating between the surface and
the diffuse layer, whose importance is controlled by the parameter δ = λS /λD(c0) = CD(c0)/CS defined in Eq. (6). Both
PB (dot-dash curves) and Bikerman’s MPB (solid curves) models are considered for the diffuse layer. The zeta potential,
equal to the diffuse-layer voltage ζ = ΨD, is plotted versus the total double layer voltage Ψ at different values of the bulk
salt concentration c0 (labeled) for δ = 0.1 in (a) and δ = 10 in (b).

potential at large total voltage Ψ applied to the double layer,

ζ = ΨD ∼
kT
ze

ln
 εbΨ2

2kTλ2
S c0

 [1 − kT
zeΨ

+ . . .

]
. (61)

This HS model also predicts that the zeta potential decays logarithmically with concentration and
somewhat resembles our MHS models, as shown in Figure 19.

Although the thin-dielectric compact-layer hypothesis leads to some reasonable predictions, it
is not fully satisfactory either. As noted above, the saturation of zeta depends on the pileup of
point-like ions, albeit reduced by transferring most of the voltage to the compact layer. This can
be avoided by using an MPB model with steric constraints, such as Bikerman’s model, together
with a Stern layer and HS slip. As shown in Fig. 19(a), this tends to reduce the Stern-layer
effect, since the diffuse layer is able to carry more voltage due to its reduced capacitance. With
increasing δ, however, the Stern layer always carries most of the voltage, and the difference
between PB and MPB models on HS slip with the Stern model is eventually lost, as shown in
Fig. 19(b) for δ = 10.

This exercise shows that some concentration and voltage effects on slip can be captured by
the classical Stern model and HS slip formula, but we are left with the same general criticisms
made above for charging dynamics. The model places most of the large voltage across a region
for which no detailed physical model is assumed, without attempting to account for liquid-state
properties, salt concentration, surface roughness, liquid-surface interactions, etc. It is also not
clear that a hypothetical Stern monolayer of solvent could withstand several Volts, while leaving
a dilute diffuse layer with a small voltage, and some model for dynamical effects in response to
applied voltages should be required.

We have already seen in section 2 that the classical model is unable to predict all the trends in
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nonlinear electrokinetics. Except in the case of a true dielectric coating (e.g a native oxide on a
metal electrode), it seems more physically realistic to discard the classical concept of the com-
pact layer (defined as the inner region where PB theory does not apply) and instead ascribe all
of the double layer response to the dynamics of the liquid state, except perhaps for the dielectric
response of a true Stern monolayer solvating the charged surface. An appropriate modified the-
ory of the liquid can approximate the traditional properties of the compact layer through strong
molecular interactions, as sketched in Fig. 15. At least in this work, we have shown that it is
possible to describe a variety of nonlinear effects in charging dynamics and electro-osmotic flow
at large voltages and/or large salt concentrations without resorting to lumping the errors from
dilute solution theory in a hypothetical compact layer outside the continuum model. Perhaps a
more accurate theory would combine the ideas of this paper for the liquid phase with boundary
conditions representing a compact interfacial phase, along the lines of the dynamical Stern layer
model [288, 290, 291, 292].

4.2.2. Ion-specific electrophoretic mobility
We have already noted that induced-charge electrokinetic phenomena are sensitive to the so-

lution composition in our models, via both the nonlinear capacitance and the effective zeta po-
tential. There are some surprising, general consequences, which are well illustrated by ICEP of
an uncharged metallic sphere. It has been predicted using low-voltage models [15, 23, 24] and
observed [294, 25] that asymmetric polarizable particles in a uniform field have an ICEP velocity
scaling as E2

b, but it is widely believed that linear velocity scaling, U = bepEb, implies nonzero
total charge. For non-polarizable particles with thin double layers, this is the case, unless the par-
ticle has both asymmetric shape and a non-uniform charge density [295, 296]. For polarizable
particles, our models predict that a nonzero mobility bep can result simply from broken symmetry
in the electrolyte, even for a perfectly symmetric particle.

Consider an ideally polarizable, uncharged sphere of radius R in an asymmetric binary elec-
trolyte with ions of unequal effective sizes a± and charges z±e, subject to a uniform DC back-
ground field Eb. The first effect to consider is the shift in the potential φ0(Eb) of the particle
(relative to the applied background potential) due to its asymmetric nonlinear capacitance, since
the induced charge (which must integrate to zero) is more dense on one side than the other, as
shown in Fig. 20. As noted above, this already yields a nonzero mobility with the HS formula,
bep = εbφ0/ηb.

The effect of zeta saturation (57) provides a different dependence on the solution composition,
which dominates in large fields, Eb � kT/eR. Since |φ0(Eb)| � EbR, the change in polarity
of the induced charge occurs near the equator, around which there is only a narrow region with
|ζe f f | < |Ψ

±
c |. In this limit, therefore, we approximate one hemisphere with uniform ζe f f = Ψ+

c
and the other with Ψ−c , which yields the ion-dependent mobility

bep ∼
1
2
εb

ηb

kT
e

ln
[

(a3
+c0)1/z+

(a3
−c0)1/|z− |

]
(62)

The apparent zeta potential from a DC electrophoresis measurement ζep = ηbbep/ε, tends to a
constant of order ≈ kT/e, independent of Eb and R. In a z : z electrolyte, the limiting value

ζep ∼
3
2

kT
ze

ln
a+

a−
(63)

is set by the size ratio a+/a− and does not depend on the bulk concentration c0. With equal sizes
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Figure 20: Mechanisms for DC electrophoretic motion U of an uncharged metallic sphere in an asymmetric electrolyte
(62) due to saturated ICEO flow (57) in a large field Eb � kT/eR. (a) Larger cations (below) in a z : z electrolyte
(a+ > a−, z+ = |z− |) pack at lower density than smaller anions (above) and thus cover more of the sphere, but produce
less slip due to greater crowding. (b) Divalent cations (below) cover less area and also produce less slip than monovalent
anions of the same size (a+ = a−, z+ > |z− |). In both examples, the sphere has an apparent positive charge (U > 0).

a+ = a− = a, the limiting apparent zeta potential

ζep ∼
1
2

kT
z̄e

ln(a3c0) (64)

is set by harmonic mean of the valences, z̄ = z+z−/(z+ + z−), if z+ + z− , 0.
An interesting feature of this nonlinearity is that the limiting mobility is set by properties of

the electrolyte and is independent of the true charge of the particle. As sketched in Fig. 20, the
induced viscosity increase alone causes the neutral sphere to have an apparent charge whose sign
is that of the ions which condense at a lower potential (larger z and/or larger a). For consistency,
however, we should also include the nonlinear capacitance effect, which can act in the opposite
direction, making the apparent charge that of the ions which pack less densely (smaller z and/or
smaller a). As shown in Fig. 21, it turns out that the nonlinear capacitance effect is stronger and
determines the sign of the apparent charge of the particle in large fields and/or high salt concen-
trations. Nevertheless, the charge-induced thickening effect significantly reduces the mobility in
this regime and introduces a strong decay with salt concentration.

By now, it should be clear that ICEP of charged, asymmetric, polarizable particles can have
a very complicated dependence on the solution chemistry in large electric fields and/or high salt
concentrations. We must stress again that we do not include strongly nonlinear effects such as
surface conduction and salt adsorption by the double layers, so the predictions of this paper only
pertain to moderate voltages and thin double layers in the weakly nonlinear regime. Nevertheless,
we already see some interesting new qualitative features predicted by the modified models. Our
examples also show that the electrophoretic mobility of a homogeneous polarizable particle need
not provide a reliable measure of its total charge, contrary to common wisdom.
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Figure 21: Electrophoretic mobility of an ideally polarizable sphere of total charge Q in an asymmetric electrolyte with
(a−/a+)3 = 10 from Fig. 13 with HS slip (dashed curves) compared to the same calculations redone with MHS slip (59)
for (a) high salt concentration ν− = 0.1 and ν+ = 0.01 and (b) moderate salt concentration ν− = 10−3 and ν+ = 10−4.
Charge-induced thickening has the opposite effect of nonlinear capacitance, since it gives more weight to smaller and/or
more highly charged counterions in determining the electrophoretic mobility. This significantly reduces the apparent
charge of the particle at large fields and/or high salt concentrations, but not enough to change its sign.

4.2.3. Concentration dependence of AC electro-osmosis
Next we revisit the weakly nonlinear analysis of ACEO pumping by adding the effect of

charge-induced thickening via the MHS slip formula (59) in a symmetric electrolyte. In Fig.
22 we show predictions of an ACEO pump including steric effects (Bikerman) and the simplest
MHS, Equation 59 with a j/a = 1. In interpreting these data, it is useful to remember that our
simple model predicts the effective zeta potential to be the same as the voltage across the double
layer up to a critical voltage whereafter the effective zeta potential saturates, see Fig. 17. At high
frequency, there is insufficient time for the double layers to fully charge and therefore the cutoff

voltage is not reached and the slip is uneffected. At low frequency and high volatge, the double
layers fully charge and the saturated zeta-potential severly limits the flow. Thus the MHS model
acts as a high-pass filter for electroosmotic slip. This effect can be seen in Fig. 22 as the ion
size decreases (thus the cutoff voltage increases). The upper dashed curve, given the physical
interpretation of the model would require an ion size of 0.1 angstroms at 0.1 mM concentration.
For more realistic ion sizes (at 0.1 mM and a = 3 angstroms, ν = 7 × 10−6) we find that the
viscoelectric effect essentially eliminates the prediction flow reversal from Bikerman’s model.
To date we have not successfully predicted flow decay with concentration and high frequency
reversal in ACEO with a single, unified model though work continues in this direction.

Figure 23 shows results applying the MHS model, (59), to the ACEO pumps of Urbanski et
al [40]. We see a decay in the maximum flow velocity with concentration that is reminiscent
of experiments, Fig. 3, when we view the data in dimensionless form. Figure 23 (a) shows the
dimensionless frequency response as we change concentration as in the experiments using a fixed
ion size of 4 nm. As with the predictions of flow reversal in ACEO, it seems that the ion size that
best fits the experiments is an order of magnitude larger than we would expect. The simulated
data show the promise of a simple charge-induced thickening model to predict decay of flow with
concentration. It is interesting to note that at the relatively low voltage of these experiments (3
Vpp ≈ 1 Vrms) there is no flow reversal predicted even when the viscoelectric effect is relatively
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Figure 22: Frequency response of ACEO pumping with MHS slip and Bikerman’s model of steric effects. Data are shown
in dimensionless form where frequency is scaled by the RC time of the equivalent circuit and the velocity is scaled by
εV2/ηL0 [42]. The values of ν = 2coa3 used in (59) are 0, 10−10, 10−6, 10−4, and 10−2, from top to bottom. Even at the
extremely low values of ν, this model of charge induced thickening essentially removes the prediction of reverse flow.
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Figure 23: Predicted frequency response of the ACEO pump of Urbanski et al [40] from Fig. 3(a) with an MPB double-
layer model also accounting for MHS slip with charge-induced thickening. In (a) we show the dimensionless frequency
response of the pump as we change concentration (C = 0.001, 0.003, 0.01, 0.03, 0.1 0.3, 1, and 10 mM from top to
bottom). In (b) the same data are plotted in dimensional form. The model of charge-induced thickening uses a constant
ion size of 4 nm. The response is computed with the Bikerman model using a constant value of ν = 0.01, though no
high-frequency flow reversal is predicted at this voltage.
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weak, contrary to the experimental observations.
We show the data in dimensional form in Figure 23 (b) for a direct comparison to experiments.

We again see one of the key discrepancies which occurs in all models be they based in classical
electrokinetic theory or based on the modified models presented here. All the models assuming
blocking electrodes predict that the features in the frequency response are strongly concentration
dependent, while the data show relative insensitivity to concentration. As discussed in Section
3.2.1, we hypothesize this discrepancy is due to neglect of Faradaic reactions though this remains
an area for future study.

These simple models are capable of reproducing at least in qualitative way the general ex-
perimental trends of ACEO. The Standard Model which does not account for charge induced
thickening does not predict a strong flow decay as concentration is increased as all ACEO ex-
periments have shown. We should also emphasize that our models are surely oversimplified, and
various neglected effects, such as specific solvent-mediated forces or electrostatic correlations
can effectively increase the range of crowding effects (to allow the use of realistic ion sizes) and
change their form in ways that may improve the ability to fit experimental data.

5. Mathematical modeling of electrokinetics in a concentrated solution

5.1. Nanoscale physics

The fundamental difficulty in modeling all electrokinetic phenomena is that complex
molecular-scale phenomena at the electrified interface give rise to macroscopic fluid motion.
The modified models above attempt to take into account some new physics – steric effects for
finite-sized ions and charge-dependent visco-electric effects - but these are just simple first steps
away from dilute-solution theory in electrokinetics. In this section, we develop a general theo-
retical framework for modeling electrokinetic phenomena in concentrated solutions (including
large applied voltages in dilute solutions).

We begin by discussing various neglected effects in our models above that might need to be
incorporated into the general theory, some of which were anticipated (qualitatively) by J. J. Bik-
erman decades ago [297, 298]. In some sense, what we are attempting is to model part of the
“compact layer” in microscopic detail using the same continuum equations that describe the
“diffuse layer” and the bulk electrolyte. The hypothetical partitioning of the interface between
diffuse and compact parts has become entrenched in electrokinetics and had many successes,
at least in describing linear phenomena with non-polarizable surfaces of fixed charge. In such
cases, it usually suffices to define an effective slip plane, which marks the sharp transition from
a dilute solution to a stagnant [262, 10] or dynamical [288, 290, 291, 292] compact layer, whose
fixed position can be fit to electrokinetic measurements. At large induced voltages or concen-
trated solutions, however, we believe it is necessary to describe the nanoscale rheology of the
liquid in more detail, since it is otherwise not clear how to shift the effective shear plane with
voltage or concentration, as sketched in Fig. 15. As in prior work, it may still be useful to main-
tain the theoretical construct of a separate ”compact layer” via effective boundary conditions on
the continuum region, but crowding effects, which vary with the local electric field and ionic
concentrations, should also be included in modified electrokinetic equations.

The following are some nanoscale physical effects, other than volume constraints and vis-
coelectric effects (in the local density approximation), that we have neglected or included only
heuristically, which may be important in nonlinear electrokinetics and other situations discussed
below. In some cases, simple continuum models are available but have not yet been applied to
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electrokinetic phenomena as part of a coherent theoretical framework. Setting the stage for such
modeling is the goal of this section.

• Electrostatic correlations. To our knowledge, all mathematical models in electrokinetics
are based on the mean-field approximation, where each ion only feels an electrostatic force
from the mean charge density of all the other ions In reality, ions are discrete charges that
exert correlated forces on each other, which become especially important with increasing
valence [187, 186]. The breakdown of the mean-field approximation for multivalent ions
can lead to counterion condensation on the surface, effectively leading to a correlated two-
dimensional liquid (or glass) resembling a Wigner crystal of like charges in the limit of
strong coupling [279, 189].

In addition to this effect, a promising direction for continuum modeling (discussed below)
may be to build on MPB equation of Ref. [299], which describes the effective restoring
force acting on an ion that tries to fluctuate from its local electrostatic equilibrium position
(in a one-component plasma [189]), only to be drawn back toward its correlation hole.
We conjecture that this effect may not be so important at very high charge densities in large
applied voltages, where simple crowding becomes dominant and flattens out any oscillations
in the charge-density profiles. Some evidence comes from recent molecular simulations of
the double-layer capacitance of ion liquids [83], which verify the square-root scaling of
MPB theory with steric effects discuss above.

On the other hand, electrostatic correlations may be crucial for the dynamics of highly
charged double layers under mechanical shear stress, which to our knowledge has never
been studied. We have conjectured above that the correlation hole interaction may effec-
tively enhance the viscosity of the solution and lead to charge-induced thickening. Electro-
static correlations may also effectively increase the critical length for crowding effects, and
we have noted elsewhere that the Bjerrum length `B = e2/4πεbkT is at the same scale as
the effective ion size required in our steric MPB models of ACEO, especially if corrected
for reduced permittivity in large field [60, 130, 67]. The electrostatic correlation length λc

(defined below) is approximately λc = z2`B for a z : z electrolyte, so ion-ion correlations are
particularly important for multivalent ions.

The relative importance of corrections to mean-field theory due to electrostatic ion-ion cor-
relations is controlled by the dimensionless parameter,

δc =
λc

λD

=
`Bz2

λD
=

(ze)2(2c0)1/2

4π(εbkT )3/2 (z : z electrolyte) (65)

which grows with bulk salt concentration like
√

c0, as the Debye screening length shrinks.
The Bjerrum length in bulk water is `B ≈ 7 Å, so we expect strong correlation effects
on electrochemical transport and electrokinetics when λD > 7z2 Åwhich is 7 Å, 1.4 nm,
and 2.8 nm for monovalent, divalent, and trivalent ions, respectively. The condition of
“intermediate coupling” δc = O(1) is met in many concentrated aqueous solutions, so it
may be necessary to include correlation effects in theories of nonlinear electrokinetics and
double-layer charging dynamics. Below, we discuss a possible modification of Poisson’s
equation [299], which could provide a starting point.
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• Specific ion-ion interactions. In addition to entropic effects such as hard-sphere repul-
sion and long-range electrostatic forces, ions can interact via more complicated short-range
forces, due to direct molecular interactions or solvent-mediated effective forces. DiCaprio
et al. [193] recently expressed the excess free energy density of an electrolyte as the sum
of a hard-sphere entropic contribution (e.g. the CS model above, or its generalization to
polydisperse mixtures) plus the first, quadratic terms in a Taylor expansion in the ionic
concentrations. In our theoretical framework, the latter corresponds to an additional linear,
enthalpic contribution to the excess chemical potential

µex
i = kT

∑
j

ai jc j (specific ion-ion interactions) (66)

where the coupling coefficients ai j (with units of volume) are assumed to be concentration
independent. These terms effectively ”soften” the hard-sphere interactions by introducing
further short-range forces. For example, if aii > 0 (or < 0), then like-charged ions ex-
perience an additional repulsion (or attraction) within a volume aii, and this increases (or
decreases) the effective hard-sphere radius for crowded counterions. (More complicated
concentration-dependent enthalpic terms have also been postulated for ions intercalated in
crystalline solids in rechargeable battery electrodes [300]. ) Specific interactions may also
contribute to dynamical friction coefficients between different ionic species, e.g. leading to
off-diagonal elements in the mobility tensor (see below), which could be important in large
ac fields [176] where oppositely charged ions must quickly pass each other upon polariza-
tion reversal.

• Ion-surface correlations. Just as ions in the liquid phase can have short-range interactions
with each other, beyond the mean-field electrostatic force and hard-sphere repulsion, so too
can they have specific interactions with molecules comprising a phase boundary, such as
a solid wall. The simplest of these result from hard-sphere ordering and solvent-mediated
forces which produce correlations near the flat wall. Molecular simulations taking into
account the solvent (beyond the primitive model) reveal strong density oscillations near a
surface [301, 105, 106], and we have already discussed how non-local WDA theories can
capture hard-sphere aspects [244, 245, 195, 249, 196, 197, 250, 189]. Solvent-induced lay-
ering can also be described by local continuum MPB models, by simply adding an effective
external potential Vw(x) to the excess chemical potential [106, 194, 108],

µex
i = Vw(x) = −kT ln

(
ρs(x)
ρb

)
(67)

which can be expressed in terms of the statistical density profile (pair correlation function)
ρs(x) of the solvent molecules near the wall, relative to their bulk density ρb [301]. Contri-
butions to the effective ion-wall potential Vw(x) can also arise from other effects, such as the
polarizability of ions [302] and “cavitation forces” due to disruption of hydrogen bonding
networks in water [303, 304]; these effects have been studied for water/gas interfaces, but
could also be important at solid metal surfaces.

Stern’s original model of a solvation monolayer separating ions from the surface [183] can
be viewed the simplest model of type (67) to account for excluded volume, since he essen-
tially postulated an infinite chemical potential Vw(x) for ions in the monolayer. Of course,
it is more realistic to allow for smooth oscillations in the ion-wall correlation function over

58



several molecular diameters, but at least Stern’s model is easily incorporated into a boundary
condition [129, 154] (see below).

• Surface heterogeneity. Discrete surface charges contribute to electrostatic correla-
tions [279], but chemical heterogeneities can also play an important role in the structure
of the double layer and electrokinetic phenomena [305, 306]. In the context of PB theory,
the effect of surface roughness on the differential capacitance of the double layer depends
on the correlation length of the roughess relative to the Debye length [307, 308]. With
finite-size ions, roughness could have a much stronger effect, not only on capacitance, but
also on slip generation. Molecular dynamics simulations of electro-osmosis over atomically
rough surfaces have revealed departures from PB theory [280], but large induced voltages
have yet to be studied. Given the arguments of the previous section, the charge-induced
viscosity increase is likely to be enhanced by roughness, since the electrostatic compression
of hydrated ions against molecular scale asperities should thicken the fluid and make the
apparent ion size seem larger.

• Specific adsorption of ions. Another effect we have neglected is the specific adsorption of
ions, which break free of solvation and come into direct molecular contact with a surface,
as already included by Stern [183] in his model for the isolated equilibrium diffuse layer
based on a Langmuir adsorption isotherm. Much more refined surface adsorption models
have been developed since then, especially to describe the colloid chemistry of oxidic ma-
terials [309]. Because specific adsorption of ions, and thus the surface charge, is a direct
function of the ion concentration within the diffuse layer directly next to the interface, the
close approach of two colloidal particles and the overlap of their respective diffuse layers
leads to surface-charge modulation, or so-called “charge regulation” [310, 305]. For identi-
cal interfaces approaching one another, the surface charge will be reduced, and in the limit
of touching Stern (adsorption) planes, the surface charge will become zero. Charge regula-
tion of different interfaces (hetero-interaction) leads to the sum of the two interfacial charge
densities to approach zero when the interaction distance is reduced, an effect which can be
so strong that for amphoteric materials (i.e., those that can be both positive and negatively
charged) it will lead to the inversion of the surface charge on one of the interfaces. Simulta-
neously, the force-distance curve can be highly non-monotonic with for instance repulsion
at contact and at sufficient separation, but with an electrostatic attraction at intermediate
separation [310].

Ion adsorption effects are begining to be considered in electrokinetics and may be partic-
ularly important in nonlinear electrokinetics, due to the large driving force for desolva-
tion in large applied voltages. Effects of specific ion adsorption on the equilibrium surface
charge of metal electrodes as function of surface potential [311] and on the electro-osmotic
flow in a microchannel between electrodes have been considered by Duval [312]. Adsorp-
tion is an important mechanism of ion specificity of electrokinetics with hydrophobic sur-
faces [313, 304]. In the present context of induced-charge electrokinetics, we have already
highlighted the recent work of Suh and Kang [175, 179] incorporating surface adsorption
of ions in models of ACEO flow.

In electrochemistry, the effect of specific ion adsorption is widely invoked to explain the
increase of differential capacitance of the double layer at high voltage observed in many
experimental situations, since the distance between plates of the equivalent capacitor effec-
tively shrinks from the “outer Helmholtz plane” to the “inner Helmholtz plane” (Fig. 24),
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Figure 24: Sketch of the double layer near a blocking electrode at high voltage. Solvated counterions (green) are crowded
in the inner region and smoothly transition across the outer diffuse region to a dilute solution with solvated anions
(orange). An ion can break free from its solvation shell and adsorb on the surface (black), thereby moving from the outer
Helmholtz plane (OHP) to the inner Helmholtz plane (IHP)

and a number phenomenological models are available [155, 314]. Some results combining
specific adsorption with MPB models of the diffuse layer are in Ref. [260]. Of course, at
very large voltages with steric effects included, the differential capacitance at blocking elec-
trodes must eventually decrease, once the IHP and OHP both become saturated with ions,
as we have argued above. This regime of universal square-root decay is often inaccessible
at low frequency due to Faradaic reactions, but our modeling of ACEO flow reversal above
suggests that it can be probed at high frequency.

• Normal current and Faradaic reactions. Faradaic electron-transfer reactions can affect
local surface potentials and ion concentrations, and thus also electro-osmotic flows over
electrodes. This effect has recently been studied by Duval et al. [312, 315, 316, 317] in the
context of nonlinear streaming potentials over electrodes in the presence of a redox couple
in solution. Reversible redox couples, in particular, can greatly reduce streaming potentials
over electrodes due to conduction that results from bipolar electrolysis [316], and this effect
can be isolated using an indifferent supporting electrolyte [317]. These studies are based on
the standard Butler-Volmer equation, with reactions driven by the full double layer voltage
(rather than just the compact part [318]) and a Frumkin correction based on dilute-solution
theory, so some modifications may be required for large applied voltages (see below).

Most models for induced-charge electrokinetics assume blocking surfaces in order to focus
on capacitive double-layer charging and simple ICEO flow. As noted in section 2, however,
there is growing evidence that Faradaic reactions play a major role, especially at low fre-
quency and high voltage (as in Fig. 11). This leads to normal currents, which can perturb the
equilibrium structure of the double layer. Lacoste et al. [22] have recently noted that reverse
ICEO flows can arise even at low voltages in a mean-field theory of biological membranes
passing a normal ionic current, in the Helmholtz limit of a thick dielectric layer (δ → ∞).
Since this limit corresponds to a large “correction factor” in the Standard Model as inferred
from most experiments (see section 2), it may be that non-equilibrium double-layer struc-
ture in the presence of Faradaic reactions is involved in the low-frequency, high-voltage
flow reversal in ACEO and TWEO, in addition to effects of diffusion-layer electroconvec-
tion [151]. Below, we note that the mathematical description of Faradaic reactions may also
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need to be modified for large voltages or concentrated solutions.

In the next section, we summarize a general mathematical framework for the dynamics of elec-
trolytes and ionic liquids, which naturally allows the incorporation of some of these effects.

5.2. Modified electrokinetic equations

5.2.1. Continuum modeling approaches
Until now we have focused on situations with thin double layers and integrated over the

double-layer structure to obtain modified effective boundary conditions on the quasi-neutral bulk
fluid, namely the MPB differential capacitance in section 3 and MHS slip in section 4. In this
section, we summarize the modified continuum electrokinetic equations corresponding to these
models, which could be applied to arbitrary geometries with thin or thick double layers in non-
linear electrokinetics. A few examples of this approach been developed for linear electrokinet-
ics [68, 69] and electrochemical dynamics [130, 221]. Such modified continuum equations aim
to capture more of the essential physics of nanoscale electrokinetics, while remaining much sim-
pler and widely applicable than brute-force molecular dynamics [104, 105, 106, 107, 108, 109]
or more complex statistical approaches [319, 320, 77], and could have broad applicability beyond
the problems considered here.

We have made the case for modified electrokinetic equations based on experimental and the-
oretical arguments in nonlinear electrokinetics, but similar issues also arise in other fields. We
have already noted that Bikerman’s model has recently been adapted to model the double layer
in ionic liquids [81, 82, 83], but mainly to predict the differential capacitance for use in RC
circuit models. We are not aware of any attempt to describe electrokinetics or non-equiilibrium
dynamics of ionic liquids, so our general approach below may have some relevance, in the limit
of very high salt concentration, approaching a molten salt. Steric effects in polyelectrolytes have
also been described by Bikerman’s model [220] as well as the CS and BMCSL hard-sphere
models [235, 234], and this is another interesting area to consider electrokinetics with crowding
effects.

Even in the more familiar context of electrolytes, there has been a recent explosion of interest
in nanofluidics [89, 90], since the high surface-to-volume ratio of nanochannels amplifies the
importance of transport phenomena occurring in confined geometries, effectively inside double
layer. In recent years, the classical electrokinetic equations for a dilute solution have been used
extensively (and exclusively) to model nanochannel phenomena such as ion selectivity [91, 92,
93, 94] and mechanical-to-electrical power conversion [95, 96, 97, 98, 99, 100], but quantitative
agreement with experiments often requires fitting ”extra” compact-layer properties. Modified
electrokinetic equations with additional physics might improve theoretical predictions without
relying as much on adjusting boundary conditions.

As noted in the introduction, Liu et el. [77] have recently considered correlations and crowd-
ing effects in steady nanochannel transport via a continuum MPB theory, based on more com-
plex statistical thermodynamical models than those considered here [78, 79, 80]. This approach
incorporates more physics than we have considered above, but this comes at the expense of sacri-
ficing some generality and mathematical simplicity, since it assumes equilibrium charge profiles
and requires numerical integration of coupled integral equations to determine the self-consistent
charge density in Poisson’s equation. Nonlinear integral equations for ion profiles or correlation
functions also result from other statistical approaches [241], such as the hyper-netted chain and
related models [186, 187], and statistical density functional theory [319, 239, 321]. For hard-
sphere models, perhaps the simplest theories of this type are based on the weighted-density ap-
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proximation [250], as discussed above. In spite of many successes, however, all of these methods
require significant effort to solve numerically, even in simple situations, while their underlying
physics remains relatively simple (e.g. charged hard spheres). As such, it may be more fruitful
to apply modern computers to molecular dynamics simulations with more realistic interatomic
forces than to solve non-local continuum models numerically.

Twenty years ago, in the context of fitting double-layer capacitance data, Macdonald con-
cluded that “integral-equation statistics treatments are too complicated and too limited... to be of
practical usefulness”, while lattice-gas models may be “entirely adequate to describe the diffuse
layer” [188]. Although computational advances have made integral-equation approaches more
feasible today, we believe that simple mathematical descriptions are still useful, if not necessary,
to model non-equilibrium dynamical phenomena. Therefore, we focus here on local continuum
models with finite-size ions, following Cervera et al. [68, 69]. We will also mention a simple
non-local WDA, which could serve as a first correction to the LDA in the general theory.

5.2.2. Electrochemical transport
We now present a general modeling framework based on electrochemical potentials, which

applies to non-equilibrium situations and includes the simple cases considered above. In princi-
ple, one could start with the full theory of non-equilibrium thermodynamics of multicomponent
systems [322, 323], but we develop a simpler phenomenological theory for electrokinetics in an
isothermal concentrated solution. Our general starting point is to postulate a MF-LDA contin-
uum model for the electrochemical potential of an ion of species i (possibly including a solvation
shell, depending on the model), decomposed into ideal, electrostatic, and excess contributions as
follows:

µi = kT ln ci + zieφ + µex
i (x, {c j}, φ) (68)

The thermodynamic meaning of µi is the Gibbs free energy difference upon adding a particle
of species i (and replacing other particles or empty space) within a continuum element, viewed
as a local open system in quasi-equilibrium with the reservoir of nearby elements. Its gradient
−∇µi acts as a mean “thermodynamic force” on each particle, driving the system toward local
equilibrium. In (68), we have defined µex

i as the excess chemical potential of ion i relative to
a dilute solution, expressed in terms of local continuum variables, such as the position x (e.g.
distance from a surface), ionic concentrations {c j} and their gradients (to approximate non-local
contributions), electrostatic potential φ and field E = −∇φ, etc. The fundamental significance
of electrochemical potentials is emphasized by Newman [190], who also questions validity of
the mean electrostatic potential φ at the molecular level in a multi-component concentrated so-
lution. Nevertheless, it is necessary to separate long-range electrostatic forces from short-range
chemical interactions to develop continuum equations for electrokinetics, so we proceed with the
phenomenological decomposition in (68). From this perspective, we can view µex

i = kT ln fi as
defining the chemical activity coefficient fi in terms of the mean-field approximation for φ.

In principle, the excess chemical potential µex
i can be derived from microscopic statistical mod-

els or by fitting to molecular dynamics simulations or experiments. For example, throughout this
article, we have focused on two simple MF-LDA models of µex

i for steric effects of excluded vol-
ume for solvated ions, namely Bikerman’s lattice-based model (20) and the Carnahan-Starling
hard-sphere-liquid model (27). Above in this section, we noted some other possible contribu-
tions. Simple MF-LDA models are also available for specific solvent-mediated ion-wall interac-
tions (67) and ion-ion interactions (66).
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More complicated effects of statistical correlations can also be included in µex
i by making it

a non-local functional of the ion density-profiles. The simplest prescription of this type is the
weighted density approximation (WDA), where µex for a bulk homogeneous liquid is evaluated
with local reference concentrations c̄i in place of ci, which are obtained by non-local averaging
of the nearby inhomogeneous concentrations,

c̄i(r) =

∫
w(|r − r′|)ci(r′)dr′. (69)

Several methods to construct the weight function w(r) are available for general liquids [244, 245,
246, 248, 189] and have been applied in equilibrium MF-WDA electrolyte simulations [249,
195, 196, 197, 250]. For hard-sphere liquids, the simplest and most natural choice for w(r)
is the hard-sphere indicator function, w = 3/(4πa3

i ) for r < ai and w = 0 for r > ai, which
turns out to be quite successful, so it would be interesting to try to include this particular WDA
in electrokinetic models, as a first correction to the LDA. This WDA leads to realistic density
oscillations near a surface without the need to fit an empirical wall potential (67) in the LDA. On
the other hand, LDA models are much simpler to implement numerically and allow analytical
progress, while any non-local continuum model may be intractable for dynamical problems or
complicated geometries.

In non-equilibrium thermodynamics [322, 323, 190], the mass flux densities Fi are obtained
from the phenomenological hypothesis of linear response:

Fi = ciu −
∑

j

Li jc j∇µ j (70)

where f j = −c j∇µ j is the thermodynamic force density (force/volume) acting on species j and Li j

is the (symmetric, positive definite) Onsager mobility tensor converting these forces into mean
drift velocities in the frame moving with the mass-averaged velocity u. The mobility tensor is
related to the diffusivity tensor by the Einstein relation, Di j = Li jkT , and is usually assumed
to be be diagonal, Di j = Diδi j, but this can only be justified for a dilute solution. In a highly
concentrated solution, the mobility tensor (or its inverse, the friction tensor) may have significant
off-diagonal elements [322, 323].

The Onsager mobility in (70) is generally take to be a constant (i.e. linear response), but in
highly concentrated and dissipative liquids, there may be nonlinear concentration dependence.
Various models for glassy relaxation [275, 274] and granular flow [276] have postulated a power-
law decay of the mobility,

Li j = L0
i j

(
1 −

Φ

Φc

)p

(71)

as the particle volume fraction Φ approaches the jamming or glass transition Φc, respectively.
The crowding and compression of counterions against a highly charged surface by a large, time-
dependent normal electric field may cause a similar, temporary decrease in mobility very close to
the surface. Such a nonlinear effect on ion transport would be consistent with the charge-induced
viscosity increase proposed above.

With the fluxes defined by (70), the differential form of mass conservation is

∂ci

∂t
+ ∇ · Fi = ri (72)
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where ri is the reaction rate density for production (or removal) of ion i, which is usually (but not
always [257]) set to zero for electrolytes. With these further assumptions, the modified Nernst-
Planck equations take the general form [130],

∂ci

∂t
+ ∇ · (ciu) = ∇ ·

{
Di

[
∇ci + ci∇

(
zieφ + µex

i

kT

)]}
(73)

5.2.3. Electrostatics
The system of modified PNP equations [130] is usually closed by making the mean-field ap-

proximation, in which the electrostatic potential self-consistently satisfies Poisson’s equation

−∇ · (ε∇φ) = ρ =
∑

i

zieci (74)

where ρ is the mean charge density. The permittivity ε of a polar solvent like water is usually
taken as a constant in (74), but numerous models exist for field-dependent permittivity ε(|∇φ|),
such as (34) or (35), discussed in section 3.1.6. The classical effect of dielectric saturation
reduces the permittivity at large fields due to the alignment of solvent dipoles [155, 256, 228,
188], although an increase in dipole density near a surface may have the opposite effect [254].
The permittivity can also vary with temperature, due to Joule heating or reactions, but here we
only consider isothermal systems.

We are not aware of any attempts to go beyond the mean-field approximation (74) in dynam-
ical problems of ion transport or electrokinetics. This would seem to require a simple contin-
uum treatment of correlation effects, ideally leading to a general modification of (74). Recently,
Santangelo [299] derived a simple modified PB equation accounting for ion-ion electrostatic
correlations in a one-component plasma [189] near a charged wall in the relevant regime of “in-
termediate coupling”, δc = λc/λD = O(1), which suggests modifying Poisson’s equation with an
additional term, (

λ2
c∇

2 − 1
)
∇ · (ε∇φ) = ρ (75)

where λc is the electrostatic ion-ion correlation length, set by the balance of thermal energy and
Coulomb energy in the dielectric medium. Physically, the extra term roughly accounts for inter-
actions between an ion and its correlation hole during thermal fluctuations. The higher derivative
of the correction term introduces the possibility of oscillations in the ion densities at the scale of
the correlation length. (It also requires additional boundary conditions, discussed below.) The
relative importance of the correction term in (75) is measured by the dimensionless parameter
δc = λc/λD introduced above, which takes the form δc = z2`B/λD for a z : z electrolyte. Since
δc = O(1) for concentrated aqueous solutions (and increases if local permittivity decreases), cor-
relation effects could be important in electrokinetics, and Santangelo’s equation may provide a
useful starting point for analysis. For ionic liquids, correlation effects are even more important,
since the diffuse layer shrinks to the molecular scale (δc � 1).

5.2.4. Electrochemical hydrodynamics
To determine the mass-averaged solution velocity, u, we enforce the conservation of linear

momentum
ρm
∂u
∂t

+ ∇ · T = f (76)

where ρm is the total solution mass density (which can be set to its bulk value in most cases),
T is the hydrodynamic stress tensor (arising from mechanical friction), and f =

∑
i fi is the
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thermodynamic force density (acting on all the ions, independent of fluid flow). The nonlinear
inertial convection term u · ∇u could be added to (76), but it is typically negligible in nonlinear
electrokinetics due to a very small Reynolds number. For the stress tensor, the first approximation
is the Newtonian form, T = pI − T(v) with contributions from the dynamic pressure p (to satisfy
incompressibility, ∇ · u = 0) and the viscous stress tensor,

T (v)
i j = η

(
∂ui

∂x j
+
∂u j

∂xi

)
. (77)

As explained in section 4, there may be significant local changes in viscosity near a highly
charged surface. For example, the following empirical form combines the viscoelectric effect
(52) and charge-induced thickening (53),

η = ηb

1 −
 ρρ±j

2
−β (

1 + f E2
)γ
. (78)

For simplicity, one could typically set γ = 0, since E tends to grow with ρ in a similar way, via
the MPB equations, as noted above. Alternatively, one could set β = 0, but that removes any
explicit dependence on the effective ion sizes or other modified interactions.

The thermodynamic force f, which acts as a source of momentum in (76), can be simplified,
if we assume small departures from local thermal equilibrium. We also neglect heat transfer and
assume isothermal conditions. In that case, the Gibbs free energy density, g =

∑
i ciµi, varies as

δg = δp0 +
∑

i

µi δci + ρ δφ =
∑

i

(ciδµi + µi δci) (79)

where p0 is the hydrostatic pressure. Taking the variation between adjacent continuum elements,
we obtain

−f =
∑

i

ci∇µi = ∇p0 + ρ∇φ (80)

which is a form of the Gibbs-Duhem relation [322, 190], adapted for an isothermal charged
system. Note that p0 includes the osmotic pressure that balances concentration gradients, which
takes the form, kT

∑
i ci, in a dilute solution upon inserting (13) into (80). In a concentrated

solution, the osmotic pressure can take a more complicated, possibly non-algebraic form, but its
gradient should still uphold the local Gibbs-Duhem relation(80) near thermal equilibrium.

Since we assume incompressible flow, we can insert (80) into (76) and absorb p0 into the
dynamical pressure p. In this way, we arrive at the familiar form of the unsteady Stokes equation,

ρm
∂u
∂t

+ ∇ · T = fe (81)

with an electrostatic force density, fe = −ρ∇φ. The unsteady term ∂u/∂t in (81) is often over-
looked, but it can be important in nonlinear electrokinetics, e.g. for oscillating momentum bound-
ary layers and vortex shedding in response to AC forcing [16, 43].

The Stokes equation (81) is the standard description of fluid mechanics at low Reynolds num-
ber, which is normally applied in to a dilute solution, but we see that it also holds for an isother-
mal, concentrated solution near equilibrium, regardless of the form of µex

i . In their theory of
non-equilbrium thermodynamics, De Groot and Mazur [322] instead assert (81) as the funda-
mental expression of momentum conservation, where the ”external” or ”long-ranged” force fe
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acts as the source of momentum flux in a continuum element, whose internal ”short-ranged”
forces are described by T. Here, we show the equivalence of starting with (76) based on the full
thermodynamic force f for a concentrated solution and deriving (81) as the quasi-equilibrium
limit, where only the external (electrostatic) force fe produces momentum. In this limit, which is
consistent with the assumption of linear response (70) for the mass fluxes, all other the ”chemi-
cal” interactions in f − fe only contribute to the (osmotic) pressure.

Non-equilibrium thermodynamics can be extended to account for the electrical polarizability
of a concentrated solution [322]. For a linear dielectric medium with variable permittivity ε, the
electrostatic force density can be expressed in the familiar form, fe = −∇ · T(e), where

T (e)
i j = ε

(
EiE j −

1
2
|E|2δi j

)
(82)

is the Maxwell stress tensor [324]. As noted above, in polar solvents, the permittivity should gen-
erally decrease in large fields. Various phenomenological models for ε(E) can be incorporated
into the theory of electrokinetics for concentrated solutions, but they complicate analysis and can
introduce seemingly unphysical oscillations or singularities in the concentration profiles [260]
and are perhaps best avoided, or included only heuristically in the boundary conditions.

5.3. Modified boundary conditions
5.3.1. Electrostatic boundary conditions

For Poisson’s equation in the mean-field approximation (74), the electrostatic boundary con-
ditions at a dielectric surface require continuity of the tangential electric field Et and equate the
jump in normal electric displacement εE across the interface to the free charge qS (which is re-
lated to the equilibrium zeta potential) [324]. For a low-dielectric surface with a fixed surface
charge density, the internal electric field can often be neglected, yielding the standard boundary
condition,

ε n̂ · ∇φ = qS . (83)

Alternatively, for a metal surface, one can simply fix the potential φ = φ0 or allow for a thin
dielectric layer (or compact Stern layer) on the surface through the mixed boundary condi-
tion [154, 27, 144, 22],

∆φS = φ − φ0 = λS n̂ · ∇φ −
qS

CS
, (84)

where λS = εhS /εS is an effective thickness of the layer, equal to the true thickness hS by the
ratio of permittivities of the solution ε and the layer εS , and CS = εS /hS is its capacitance. The
boundary condition can also be generalized for voltage-dependent surface capacitance, which
makes the surface-layer voltage drop ∆φS a nonlinear function of the normal electric field [154].
When applying (84) to a metal electrode, one can set qS = 0 to model the Stern layer as a thin
dielectric coating of solvent molecules [228], while specific adsorption of ions would lead to
qS , 0.

The preceding boundary conditions can be imposed on the mean-field Poisson equation (74),
but the modified equation for electrostatic correlations (75) introduces a fourth derivative term
and requires one more boundary condition on each surface. Charge conservation requires the
following boundary condition

n̂ ·
[(
λ2

c∇
2 − 1

)
ε∇φ

]
= qS (85)

where brackets indicate the jump across the boundary. For consistency with the derivation of
(75), Santangelo sets the second term (jump in mean dielectric displacement) to zero and thus
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equates the surface charge to the jump in the curvature of the field [299]. For an insulating
surface of fixed charge density, this would imply replacing (83) with two boundary conditions

n̂ · ∇φ = 0 and n̂ · λ2
c∇

2 (ε∇φ) = qS (86)

For a metal surface with a compact Stern layer modeled as a thin dielectric coating (with a
uniform electric field), we would replace (84) with

φ − φ0 = λS n̂ · ∇φ and n̂ · λ2
c∇

2 (ε∇φ) = qS . (87)

This mathematical model provides an interesting opportunity for analysis of correlation effects
in electrochemical dynamics and electrokinetics, although it is only a first approximation.

5.3.2. Electrochemical boundary conditions
Standard boundary conditions for the concentration fields equate normal ionic fluxes with

surface reaction rates
n̂ · Fi = Ri({ci}, φ, {µi}, . . .), (88)

which vanish for inert ions (Ri = 0). The flux boundary condition can also be generalized for
a dynamical Stern layer, which supports tangential ionic fluxes [288, 290, 291] or adsorption of
ions [180, 181, 175, 179], although some effects of this type are already captured by the modified
electrokinetic equations, as noted above. The reaction rate Ri may describe surface adsorption,
in which case there is an auxiliary equation for the surface concentration,

∂cs

∂t
+ ∇s · Fs = Ri, (89)

where the second term allows for surface diffusion. If the kinetics of this reaction are fast (large
Damkoller number) and surface transport is slow (small Dukhin-Bikerman number) compared to
bulk transport, then the reaction is in quasi-equilibrium. In that case, the surface concentration
cs is given by an adsorption isotherm, which equates the surface and nearby liquid chemical
potentials, µs = µi. For example, the popular Langmuir isotherm follows from a lattice-gas model
of the surface adsorption sites, µs = kT ln[cs/(cmax − cs)], with dilute solution theory for µi. The
reaction rate Ri may also describe Faradaic electron-transfer reactions, such as electrodeposition
(which also involves an adsorption step, and resulting motion of the metal surface) or redox
reactions (which alter the charge of ions remaining in the liquid region).

The proper mathematical description of electrochemical reaction kinetics is complex and not
fully understood [155]. The standard model in electrochemistry is the Butler-Volmer equation,
usually applied across the entire double layer under conditions of electroneutrality [190]. Ap-
plying an analogous expression at the molecular level has better theoretical justification and in-
troduces the ”Frumkin correction” for diffuse-layer voltage variations [325]. See Ref. [318] for
a recent review. For example, for the redox reaction R ↔ O + ne−, this model asserts Arrhenius
kinetics for the forward (anodic) and backward (cathodic) reaction rates,

R = kacRe−αOne∆ΦS /kT − kccOeαRne∆φS /kT , (90)

where ka and kc are rate constants for the anodic and cathodic reactions, cR and cO are concen-
trations of species R and O, and αR and αO are transfer coefficients defined below (αR + αO = 1)
. The bias voltage ∆φS can be interpreted as the Stern-layer voltage in models of the type we
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have considered here [191, 326, 327, 318]. This approach has been used to model ACEO [42]
and TWEO [151] at reacting electrode arrays in dilute solutions. It is straightforward to include
nonlinear differential capacitance of the Stern layer, CS (∆φS ), as well [191], but more significant
modifications may be needed for concentrated solutions and large voltages.

For consistency with our theoretical framework based on non-equilibrium thermodynamics,
the reaction rate should properly be expressed in terms of the electrochemical potentials [328],

R = k0

(
e(µR−µ

ex
TS )/kT − e(µO−µ

ex
TS )/kT

)
, (91)

where µR and µO are the complete electrochemical potentials of the reaction complex in the
reduced and oxidized states, and µex

TS is the excess electrochemical potential in the transition
state, and k0 is an arbitrary rate constant (which can be set by shifting µex

TS ). The Butler-Volmer
equation (90) follows from dilute-solution theory (µex

R = µex
O = 0) and a purely electrostatic

model for the activation barrier which is a linear combination of the electrostatic energy of the
reduced and oxidized states, weighted by the transfer coefficients:

µex
TS = Ea + αRqRφ + αO(qOφ − neφ0) (92)

where Ea is a composition-independent activation energy barrier, absorbed into the rate constants
ka and kc, and qR and qO = qR + ne are the charges of the reduced and oxided states. The general
expression (91) can be derived from statistical transition-state theory in a hypothetical local open
system, and it contains a variety of possible non-electrostatic influences on the reaction rate, via
the excess contributions to the chemical potentials. This approach was recently introduced in
the context of ion intercalation in rechargeable-battery materials, where the chemical potential
in the electrode, and thus the reaction rate, depends on gradients in the ion concentration [300].
Steric effects were also recently considered in the context of fuel-cell membranes [327], and a
form of (91) was effectively applied. In nonlinear electrokinetics, it may also be necessary to
consider more general forms of the reaction rate in (91), whenever the voltage is large enough to
invalidate the dilute-solution approximation close to the surface.

5.3.3. Hydrodynamic boundary conditions
Until recently, almost all theoretical studies in electrokinetics have assumed the no-slip bound-

ary condition for the liquid velocity, u = U, where U is the velocity of the surface. With the emer-
gence of microfluidics [1], the phenomenon of hydrodynamic slip has been studied extensively
in simple, Newtownian fluids [263, 264, 266] and interpreted in terms of the Navier boundary
condition [329],

∆u = u − U = b n̂ · ∇u, (93)

where the slip ∆u is proportional to the shear strain rate via the slip length b. Flow past smooth
hydrophilic surfaces has been shown to be consistent with the no-slip hypothesis, but b can reach
tens of nanometres for hydrophobic surfaces [267, 268, 269] or even several microns over super-
hydrophobic textured surfaces with trapped nanobubbles [330, 331, 332, 333, 334].

The study of electrokinetic phenomena in the presence of slip was perhaps first pursued by
the group of N. V. Churaev [335, 336]. For electro-osmotic flow in a microchannel, Kiseleva
et al. [335] considered the effect of exponentially varying viscosity η(x) near a wall, increasing
toward a hydrophilic surface or decreasing toward a hydrophobic surface, and Muller et al. [336]
studied the impact of the slip boundary condition (93), which enhances the flow by a factor
(1 + b/λD) at low voltage [264]. This enhancement of electro-osmosis was recently analyzed and
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demonstrated by Joly et al. [108] via molecular dynamics simulations and extended to diffusio-
osmosis by Ajdari and Bocquet [337]. (The permittivity may also vary near a hydrophobic
surface, and this also can affect particle interactions [338].) The possibility of slip-enhanced
(linear) electro-osmotic flows has generated considerable excitement in nanofluidics [100, 339],
but so far it has only been analyzed with the classical electrokinetic equations and the simple,
purely viscous boundary condition (93).

We suggest using a modified Navier slip boundary condition [340],

∆u = M (T · n̂), (94)

where T · n̂ is the total normal traction on the surface due to short-range forces (force/area) and
M is an interfacial mobility tensor (velocity×area/force), which is non-diagonal for anisotropic
surfaces. For an isotropic, impermeable surface, the mobility matrix is diagonal, M = MI, with
zero elements for normal flow, and then Eq. (93) is recovered from (94) with b = Mη.

Using these models, it would be interesting to study the competition of viscoelectric effects
(78) and hydrodynamic slip (93) or (94) in nonlinear electrokinetic phenomena at polarizable,
hydrophobic surfaces in large applied voltages and/or concentrated solutions. The simple low-
voltage amplification factor (1 + b/λD(c0)) associated with (93) increases with concentration and
becomes appreciable when the diffuse-layer thickness becomes smaller than the slip length, so
hydrophobic surfaces may counteract the effect of increasing viscosity very close to the surface
and allow induced-charge electro-kinetic phenomena to be observed at higher concentrations and
voltages. On the other hand, these predictions depend sensitively on the location of the slip plane
where the hydrodynamic boundary condition is imposed, and how it relates to the compact-layer
plane (OHP, Stern plane, reaction plane, etc.) where the electrochemical boundary conditions
are imposed, especially in the concentrated-solutions models. For example, we have seen that
charge-induced thickening reduces the flow in the diffuse layer, but this can be counteracted by
hydrodynamic slip if the slip plane lies closer to the surface than the thickened region, due to the
amplification of viscous stress on the slip plane. We pose the effect of hydrodynamic slip in a
highly charged double layer on a metal surface as an interesting open question for future work.

5.4. Thin double layers and diffusion layers

The modified electrokinetic equations and boundary conditions above may be useful in model-
ing nanoscale electrokinetic phenomena, e.g. taking into account steric effects of finite ion sizes,
but at larger scales, where the double layers become thin, matched asymptotic expansions can
be used to systematically integrate out the diffuse layer and derive effective boundary conditions
on the quasineutral bulk. First, we briefly summarize the results in the typical situation where
the voltage is not strong enough to drive the double layer out of equilibrium or fully deplete the
bulk salt concentration, due to diffusion limitation. In that case, the ion transport equations (72)
remain unchanged in the bulk, but Poisson’s equation (74) is replaced by the condition of elec-
troneutrality,

∑
i zieci = 0. The fluid equations are also unchanged, and bulk viscosity variations

can usually be neglected.
As noted above, chemical potentials are approximately constant (or ”quasi-equilibrium” holds)

in the normal direction across a thin double layer. For the ionic concentrations, the boundary
conditions then take the form of surface conservation laws [114],

∂Γi

∂t
+ ∇s · F(s)

i = n̂ · Fi − Ri, (95)
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where Γi(ΨD, {ci}) is the excess concentration of species i per unit area, ∇s·F(s)
i (ΨD, {ci}) is the sur-

face divergence of the integrated tangential flux in the diffuse layer, n̂ ·Fi is the normal flux from
the bulk, and Ri(ΨD, {ci}) is the Faradaic reaction rate density at the surface, evaluated in terms of
the bulk variables, which thus includes the Frumkin correction. See Ref. [114] for expressions for
Γi and F(s)

i using Bikerman’s model, neglecting convective fluxes, and Refs. [154, 326, 341, 318]
for expressions for Ri for Faradaic reactions in a dilute solution, neglecting tangential transport.
Equation (95) generalizes the RC boundary condition (2).

Integrating over the diffuse-layer also yields a “first kind” effective slip boundary condition
for the bulk fluid velocity,

us = b(eo) Et −
∑

i

b(do)
i kT∇t ln

ci

c0
, (96)

where the first term describes electro-osmosis driven by the bulk tangential field with
b(eo)(ΨD, {ci}) given by (49) and various approximations above. The second term describes
diffusio-osmosis in response to tangential bulk salt concentration gradients [342, 112, 177, 8,
123]. The diffusio-osmotic mobilities b(do)

i (ΨD, {ci}) can be systematically derived from the full
transport equations above in the limit of thin double layers, following the asymptotic analysis of
Prieve et al. [177] or Rubinstein and Zaltzman [123, 124]. Simple expressions can be derived for
dilute solution theory, such as

us =
εb

ηb

ζEt − 4
(

kT
ze

)2

ln cosh
( zeζ
4kT

)
∇t ln

c
c0

 (97)

for a dilute z : z electrolyte, where c = c+ = c− is the quasi-neutral bulk salt concentration.
(Equivalent forms are in Refs. [177, 123], and this corrects a missing factor of 4 in Eq. (111) of
Ref. [115].). More cumbersome expressions, which are not expressible in terms of elementary
functions, result from modified equations with volume constraints [260]. Similar asymptotic
methods can also express the effective slip boundary condition in terms of bulk electrochemical
potential gradients, {∇tµi}.

In our many examples of induced-charge electrokinetic phenomena with blocking surfaces,
we have assumed “weakly nonlinear” dynamics [129, 131], where the bulk concentration is
not significantly perturbed. Under “strongly nonlinear” dynamics at large voltages, even with
blocking electrodes [129, 343, 344, 174, 176, 175, 179], strong bulk concentration gradients
can develop, and the other terms in Equations (95) and (96) become important [112, 123, 124].
Although steric effects generally reduce the importance of surface conduction (smaller Dukhin-
Bikerman number) compared to dilute solution theory since there are not nearly as many ions in
the double layer [60], diffusio-osmosis, concentration polarization, and diffusion-layer electro-
convection [151] are affected less and could be significant. In addition to Faradaic reactions,
other sources of normal ion flux, such as salt adsorption by the diffuse-charge layers and Lang-
muir adsorption of ions on the surface, can also produce time-depedent diffusion layers (thicker
than the diffuse charge layer, but thinner than the bulk region) oscillating at twice the frequency
of the AC forcing, although these layers are weakly charged and may not have a large effect on
the effective fluid slip [175, 179, 176]. All of the problems we have considered above should
be revisited in the strongly nonlinear regime to better understand the predictions of the modified
electrokinetic equations, but this is beyond the scope of the paper.

As noted in section 2, the effects of Faradaic reactions or other mechanisms for normal ionic
flux are still poorly understand in nonlinear electrokinetics, even for thin double layers. Normal
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currents can disturb the quasi-equilibrium structure of the double layer, even at small currents
(in the Helmholtz limit δ → 0), and lead to seemingly reverse ICEO flows [22]. Concentration
gradients can also develop due to normal ionic fluxes under diffusion limitation. If the bulk salt
concentration approaches zero, at a limiting current, the quasi-equilibrium diffuse layer expands
into a non-equilibrium space charge layer and drives second-kind electro-osmotic flows [113]
and hydrodynamic instability [122, 124]. The classical electrokinetic equations suffice in that
case, since the decreasing concentration only helps to validate dilute solution theory. In the
case of induced-charge electrokinetic phenomena, however, the strongly nonlinear regime is just
beginning to be explored and may require modeling with modified electrokinetic equations.

6. Conclusion

We have provided a critical review of recent work in nonlinear “induced-charge” electroki-
netics, comparing theory to experiment for the first time across a wide range of phenomena to
extract general trends. In doing so, we were naturally led to question the theoretical foundations
of the field and develop modified equations for electrokinetics in concentrated solutions at large
voltages. These equations may find applications in diverse areas of electrochemistry and fluid
mechanics. A crucial aspect of this effort was to survey microscopic models of electrolytes from
different fields, where convection and charge relaxation are neglected. Our experience shows the
importance of integrating knowledge across scientific communities. For example, we managed
to find seven independent formulations of Bikerman’s model (1942) from 1947 to 1997 and two
rediscoveries of Freise’s capacitance formula (1952) in 2007, each leading to separate literatures
without any cross references (section 3.1.2).

We have argued that many new nonlinear phenomena can arise at large induced voltages, and
we focused on three that could play a major role in induced-charge electrokinetics: (i) Crowding
of counterions against a blocking surface (Fig. 4) decreases the differential capacitance (Fig. 5),
which may explain high frequency flow reversal in ACEO pumps (Fig. 10) and imply ion-
specific mobility of polarizable particles in large fields (Fig. 12); (ii) a charge-induced viscosity
increase upon ion crowding (Fig. 15) reduces the effective zeta potential (Fig. 17), which implies
flow decay with increasing concentration and an additional source of ion-specificity (Fig. 20);
(iii) Each of these effects is enhanced by dielectric saturation of the solution in large electric fields
(Fig. 9). To illustrate these phenomena, we have derived extensive analytical formulae based on
simple models in the mean-field and local-density approximations (MF-LDA), including lattice-
gas and hard-sphere models for steric effects of finite ion sizes, as well as various postulates of
charge-induced thickening leading to modified electro-osmotic slip formulae.

We have also developed a theoretical framework for electrokinetics based on non-equilibrium
thermodynamics in a concentrated solution (section 5). Although motivated by induced-charge
electrokinetics, these general equations and boundary conditions could find applications in many
other areas involving nanoscale electrochemical transport. Our examples of MF-LDA models
focusing on the effects above should be refined and extended in future work, e.g. to account for
various solvent effects, specific adsorption of ions, and Faradaic reactions, and we have reviewed
some of the relevant literature for guidance. Especially for multivalent ions, it may be necessary
to go beyond the MF approximation to account for electrostatic correlations, which we alter
the inner double-layer structure and could contribute to charge-induced thickening. A proper
description of volume constraints may require going beyond the LDA, especially very close to a
surface, to account for short-range correlations and related density oscillations.
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Legend has it that Wolfgang Pauli once said,“if God made materials, then surfaces are the
work of the Devil”. At end of this study, it is tempting to draw the same conclusion, given
the complexity of possible phenomena occurring at large surface potentials and our inability
to devise a single model to predict all the experimental data. We remain optimistic, however,
that simple, predictive models will follow from improved nanoscale understanding of the double
layer.

Our study raises an important general question for continuum modeling, “Where should the
continuum region end and give way to a boundary condition?”. This question has received much
attention recently in the context of hydrodynamic slip, but the situation is much more compli-
cated for electrochemical relaxation and electrokinetic phenomena. The pioneering papers of
Stern [183] and Bikerman [59] introduced two opposing, general perspectives, which provide
the historical context for our work. Stern first proposed describing the outer “diffuse part” of
the double layer with dilute solution theory, while lumping any discrepancies into an empirical
boundary condition on the inner “compact layer”. Bikerman then showed that a similar finite-size
cutoff of dilute-solution theory could instead be obtained by modifying the bulk equations for a
concentrated solution, without ajdusting the boundary condition. By the latter half of the century,
Stern’s approach became widely adopted through simple empirical models for the compact layer,
and Bikerman’s paper was essentially forgotten.

We have argued that Bikerman’s perspective should be revisited, especially for extreme con-
ditions of large applied voltage, salt concentration, and/or frequency, since otherwise it is not
clear how compact-layer boundary conditions should change to describe a dynamical region of
nonlinear response near the surface. Bikerman’s perspective also applies more easily to non-
trivial nanoscale geometries, where the classical concepts of “Stern plane” and “slip plane” are
less well defined. We have shown that simple continuum equations for ion crowding, dielectric
saturation, and viscoelectric response all predict that the compact layer and slip plane both ef-
fectively advance into the solution with increasing surface charge, but without the need to define
these empirical concepts. On the other hand, Stern’s perspective remains attractive for mathemat-
ical modeling, since it preserves simple equations for the fluid domain and lumps complicated
molecular details into boundary conditions, so perhaps a combined approach is needed. Cer-
tainly, true surface effects, such as specific adsorption and Faradaic reactions, require effective
boundary conditions, consistent with any modifications of the bulk equations (section 5.2).

In our opinion, it remains a grand challenge to describe double-layer structure, electrochemi-
cal relaxation, and ICEO flow at a polarizable surface over vast parameter ranges, from 10 mV
to 10 V in voltage, 0 to 100 kHz in frequency, and 1 µM to 1 M in ionic strength, using a simple
– but not over-simplified – mathematical model, amenable to analytical results (in idealized lim-
its) and numerical simulations (for typical experimental situations). The upper extremes of these
conditions correspond to a new regime for the theory of electrokinetic phenomena, where counte-
rions become crowded during time-dependent relaxation and flow near a highly charged surface.
Nanoscale experiments and molecular dynamics simulations will be crucial to further develop
and validate various theoretical postulates. If properly validated, we believe that modified math-
ematical models can advance our understanding and better predict experimental observations.
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