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In this brief report, we show that in a one-dimensional insulating system with periodic boundary conditions,
the coefficient of the θ term in the effective theory is not only determined by the topological index∫

i
∑

α∈occ 〈ukα| ∂

∂k
|ukα〉 dk. Specifically, the relative position between the electronic orbitals and the ions also

alters the coefficient, as one would expect when one identifies −eθ/2π as the polarization. This resolves a paradox
when we apply our previous result to the Su-Shreiffer-Heeger model, where the two ground states related by
a lattice translation have θ differed by π . We also show that the static dielectric screening is the same with or
without boundaries, in contrast to comments made in our previous paper.

DOI: 10.1103/PhysRevB.84.113111 PACS number(s): 03.65.Vf

I. INTRODUCTION

In our previous paper,1 we argue that in a setting without
boundaries the topological insulator in one dimension (1D)
and three dimensions (3D) can still be characterized by a θ

term in the effective theory, which in turn gives measurable
consequences. Specifically, in 1D there is a term (eθ/2π )E in
the effective Lagrangian, where −eθ/2π is usually identified
as the polarization P , by comparing the term with the energy
density (−P · E). For noninteracting systems, θ is given by

θ =
∫

i
∑
α∈occ

〈ukα| ∂

∂k
|ukα〉 dk. (1)

We have shown that this term results in a constant electric field
θe/2π in the bulk, provided that the electric field is confined
in one dimension.

This observation, however, seems puzzling when one con-
siders the well-known Su-Schreiffer-Heeger (SSH) model.2 If
we consider spinless electrons, the two ground states in this
model will have the effective θ term with θ that differs by π . A
naive application of Eq. (1) suggests that the two ground states
have different electric fields. On the other hand, the two states
are related by a lattice translation of a (where the doubled
unit cell is of a period 2a) and are physically identical. They
thus cannot have different electric fields. In this report we will
resolve this issue.

Another related conceptual problem is whether the static
electric field can be screened in a setting without boundaries.
Intuitively, one might imagine that the dielectric screening
comes from the accumulated charges at the two ends. Without
boundaries these charges are absent, and there seems to be
no way to screen the electric field. We will, however, show
in the following that the electric field in the bulk is screened
by the dielectric constant, in the same way as if there are
boundary charges. There are two ways to understand the effect.
One way is to take the screening effect into account from the
start, by including the dielectric constant in our formalism.
This way, we then can derive that it is εE that is quantized in
integer multiples of e with a shift of −θe/2π . We can consider
instead the feedback of the generated electric field to the θ term
separately, which is more intuitively like a “screening” effect.
In this case we find that the shift in the quantization of E is
still given by θ , but the effective θ is shifted back a little bit

by the finite electric field it generates. The two descriptions in
the end give the same ground-state electric field.

In Sec. II we look into the SSH model and verify the
topological index of the ground states. We then explain how
we can resolve the apparent contradiction. In Sec. III we
explain the dielectric screening effect in the 1D setting without
boundaries.

II. SSH MODEL, TOPOLOGICAL INDEX, AND STATIC
ELECTRIC FIELD

The SSH model is given by the following Hamiltonian in
1D:2

H =
∑
i,σ

[−t + (−1)i�]c†iσ ci+1σ + h.c. (2)

� takes either positive or negative values for the two ground
states, which spontaneously break the lattice translation
symmetry. Suppose we plug in the wave function

ψk = ak

∑
i∈odd

c
†
i |0〉 exp(ikxi)+bk

∑
j∈even

c
†
j |0〉 exp(ikxj ). (3)

The Hamiltonian can be put into a matrix form:

Hk

(
ak

bk

)
= [−2t cos(ka)σx + 2� sin(ka)σy]

(
ak

bk

)
. (4)

σx and σy are Pauli matrices and a is the lattice spacing.
Notice that Hk is not periodic in π/a; nevertheless ψk is
periodic (up to a phase.) When we apply a small electric
field, the coupling enters via Peierls substitution and directly
results in Hk → Hk+eA, where A is the spatial part of the
gauge field. At half filling, where the system is insulating,
following our previous discussion, we can calculate the Berry’s
phase accumulated when we adiabatically turn on the electric
field until the system reaches the state related to the initial
state by a large gauge transform of winding number one,
A → A + 2π/eL3 (hereafter when we write “the Berry’s
phase” we refer to the Berry’s phase of this procedure):

θBerry =
∫ π/2a

−π/2a

i 〈uk| ∂

∂k
|uk〉 dk, (5)
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with |uk〉 = ( ak

bk
), and we choose the phase convention such that

ψk is periodic in k. If we take xn = na, we can parametrize
our solution as

|uk〉 = exp

[
isgn(�)f (k)

2
(σz − 1)

] (
1
1

)
, (6)

with

tan[f (k)] =
∣∣∣∣�t

∣∣∣∣ tan(ka). (7)

The important thing here is to notice that f (k) = 0 at k = 0
and f (k) = ±π/2 at k = ±π/2a. We therefore have

θBerry = sgn(�)
π

2
(8)

for each spin.
If we consider the spinful case as in the original SSH model,

the total Berry’s phase is 2θBerry, and they differ by 2π from
each other for the two ground states, implying that both would
have the same properties. However, since θ = π for both states,
we would naively predict that there is a electric field E ∼ ±e/2
in both states. This prediction seems rather unlikely. For the
spinless case, the situation is even worse, as θ differs by π

between the two states, generating a different static electric
field. Yet, the two states are related by a lattice translation of
a and should be physically equivalent.

These paradoxical observations can be resolved, if we
realize that the charged ions can also have a Berry’s phase.
It is somewhat surprising in the sense that the ions are
considered to be stationary localized charges and behave rather
trivially. To see how the Berry’s phase comes about, we
have to recall how the Berry’s phase is properly defined. In
order to define the Berry’s phase when the state adiabatically
transforms into another state, which is related to the original
state by a large gauge transform, we first have to identify the
two states as two different descriptions of the same physical
state.1 Therefore they have to correspond to the same physical
state up to a definite phase. Consider a Bloch wave function
ψk(x) = uk(x) exp(ikx); under the large gauge transform of
winding number one, it becomes

ψk(x) → ψ̄k(x) = ψ(x) exp(−i2πx/L)

= uk(x) exp[i(k − 2π/L)x]. (9)

L is the size of the lattice. Without loss of generality, let us
identify the two wave functions (that is, to assume that the two
wave functions describe the same physical state with identical
phases):

uk(x) exp(ikx) ∼ uk(x) exp[i(k − 2π/L)x]. (10)

For consistency, this identification should stay the same for
any uk(x).

Now let us shift both wave functions by x0:

ψ ′
k(x) = uk(x − x0) exp[ik(x − x0)]

= [uk(x − x0) exp(−ikx0)] exp(ikx)

≡ u′
k(x) exp(ikx). (11)

ψ̄ ′
k(x) = uk(x − x0) exp[i(k − 2π/L)(x − x0)]

= u′
k(x) exp[i(k − 2π/L)x] exp(i2πx0/L) (12)

We can regard u′
k(x) as the periodic part of some other wave

function. Therefore, with the identification Eq. (10), we must
have

ψ ′
k(x) ∼ u′

k(x) exp[i(k − 2π/L)x] = ψ̄ ′
k(x)e−i2πx0/L. (13)

That is, following the same identification, the translated wave
function is identified with the translated gauge transform with
an additional phase φ = (−2πx0/L).

This phase shows up in the calculation of the Berry’s phase:

θ ′
Berry =

∫ π/a

−π/a

i〈u′
k|

∂

∂k
|u′

k〉dk

= θBerry + 2π

(
x0

a

)
. (14)

The extra Berry’s phase is compensated by the extra phase
in Eq. (13), after summing over (L/a) states in the Brillouin
zone.

This “noninvariance” of the identification under translation
arises from the fact that the gauge transform does not commute
with translation. The discussion above shows that this Berry’s
phase for a single charged wave function is not a physical
quantity. It depends on how one identifies the wave functions
related by a large gauge transform; however, for a given
identification, the wave functions are identified differently
when they are translated.

Nevertheless, the total phase difference in the identification
for a product of single-particle wave functions when the state
is translated by x0 equals Nφ, where N is the total charge. For
a charge-neutral system, the total Berry’s phase is therefore
invariant under the translation of the whole system. Since the
translation changes the position of the ions, the Berry’s phase,
or the coefficient of the θ term, is not determined only by the
“topology” of the occupied bands but also reflects their relative
position to the ionic lattice. A translation of only the electrons
or only the ions will result in a different Berry’s phase and a
different ground-state electric field.

Let us now return back to the original problem. In the
spinless case, the ions should have the same density as the
electrons, which is half a charge per unit cell. If the ions are
localized, they would have a 2a period. For the two degenerate
ground states, the ionic states are related by a shift of a. Now
that we know that a half-period shift of the ions will also give
a Berry’s phase differed by π , the total Berry’s phase is indeed
the same for the two ground states.

One might wonder how this argument applies for a
jelliumlike ionic state. The translated ions can look very similar
to the original state, and it seems paradoxical for them to have
such different Berry’s phases. Here we argue that, despite the
similarity in the density profile, since we only have one ion per
two lattice spacings, the translated state is always very different
from the original state, as long as the ions are localized.
This is most evident from the single-particle perspective. The
center-of-mass positions of the ions must differ by 2a, and the
product wave function is different if we shift it by a. On the
other hand, if one thinks about the opposite (unphysical) limit,
where the ions are completely delocalized and are described
by plane waves, to get rid of any 2a periodicity, the ionic state
then becomes gapless, and the Berry’s phase procedure does
not apply. We thus conclude that for an inert ionic lattice with
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FIG. 1. (Color online) (a)–(d) Spinless case. (a) One of the
electronic “ground states,” without considering the ions. It is predicted
in this state that there is a −e/4 static electric field. (b) The other
ground state, without changing the lattice. Evidently the two states
are different. (c) The other ground state with ions shifted. Now the
physics is identical to (a). Even though we draw point-like ions here,
the argument actually works for any charge distribution, including
jellium as a limiting case. (d) If the ions are at the lowest-energy
positions, the ground-state electric field is zero. (e) For the spinful
case, a simple consideration would show that this configuration will
have a zero-ground-state electric field.

one ion per two lattice spacings, it can only be 2a periodic,
and a translation of a gives a different state, with a Berry’s
phase differed by π .

When we derive Eq. (8), it is as if we implicitly assume the
ions are setting right at xn = 2na (so that they do not contribute
to the Berry’s phase.) If we place the ions at the places where
most electrons are, xn = sgn(�)1/2a + 2na, the total Berry’s
phase for both ground states is zero. Figure 1 summarizes the
result.

For the spinful case, since the number of ions is doubled, the
difference between the Berry’s phases of the two states is also
doubled. The lattice contribution for the two states therefore
differs by 2π , which implies that shifting the lattice by a does
not change the ground-state property, as expected. To get the
correct expression for θ , however, we still have to consider the
ionic contribution to the Berry’s phase. The π Berry’s phase we
obtained earlier does not include the ionic contribution, which
is equivalent to assuming that they are placed at xn = 2na,
with two ions at the same site. If we shift half of the ions by a,
forming the usual lattice with period a, the total Berry’s phase
will again be shifted by π , and there will be no ground-state
electric field.

Closing this section, we note that, if we view θ as the
polarization,3,4 it seems almost trivial to say that it must
depend on the ionic lattice. Nevertheless, prior to this work it is
unclear how one recovers this dependence on the ionic lattice
with periodic boundary conditions, along with Eq. (1). Our
argument thus provides a simple picture, which complements
the conventional view of polarization with open boundary
conditions. It is especially helpful with unit cell doubling, as,
in the conventional view, the termination of the crystal with a
doubled unit cell complicates the problem.

III. DIELECTRIC SCREENING

In a one-dimensional world, an electric field with magnitude
e/2 is huge. In a topological insulator with θ = π , it is thus
natural to ask whether the generated electric field can somehow
be screened to lower the total energy, with periodic boundary
conditions. In addition, if the electric field is not screened, it
then becomes an universal signature of the one-dimensional
topological insulator. With open boundary conditions, the
static electric field is screened by the dielectric constant.
This screening corresponds to a net displacement between
the electrons and the ions. With periodic boundary conditions,
no charges are accumulated from such displacement; however,
from the discussion in the previous section, we now know that
this displacement changes θ . We therefore are set to answer
the question whether the screening with periodic boundary
conditions is the same as with open boundary conditions.

We first start from an effective theory with a built-in
dielectric constant:

L1D = −ε

4
(Fμν)2 + eθ

2π
εμν∂μAν = ε

2
E2 + eθ

2π
E. (15)

Let us again write down the q = 0 sector of the partition
function following our previous paper:1

Zq=0 ∝
∫ 2π

0
dφ

∫ ∞

−∞

d�

2π

∑
m,n

〈φ + 2πm|�〉 〈�|

× exp

(
−βLe2

2ε
�2

)
|�〉 〈�|φ + 2πn〉 ei(m−n)θ . (16)

Again, φ is the initial value of eÃ1(q = 0). Note that we now
choose � to be the eigenvalue of the operator εẼ1(q = 0)/eL,
hence the factor of ε in the denominator of the exponent. Notice
that, with the modified Lagrangian, it is now εẼ1(q = 0)/eL
that is conjugate to eÃ1(q = 0). Therefore,

〈φ + 2πm|�〉 = exp[i(φ + 2πm)�] (17)

remains unchanged.
Now we can follow through the same calculation, realizing

that it is � that is quantized. The ground-state electric field,
following the same argument, should instead be

E = − θe

2πε
, − π < θ < π. (18)

This matches the situation with open ends. The ground-state
electric field is thus screened as well with periodic boundary
conditions and does not take a universal value.

On the other hand, one should also be able to start from the
vacuum and understand the screening as a dynamical effect.
In the last section, we have found that θ shifts by 2π as we
shift the electronic wave function by a lattice period. It is
thus intuitive to think that the electrons will shift a little bit,
responding to the electric field generated from the θ term and
make θ smaller. Here we are going to show that this intuitive
picture gives precisely the same effect as above.

From the point of view of the charges, θ is the Berry’s
phase when the system slowly transits from its ground state to
another state, which is related by a large gauge transform. In the
adiabatic limit, we derive that the phase is just the topological
index. However, since the θ term in turn predicts that there
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is a finite electric field in the ground state, the procedure is
actually far from the adiabatic limit, and there can be some
extra dynamical phases.

Instead of calculating the dynamical phases in detail, let us
switch and suppose we already have the effective theory, with
parameters θ and ε. From the effective theory point of view,
the accumulated phase in the presence of a finite field is just
the first derivative of the electronic action with respect to the
electric field. This gives

θBerry = θ + 2π

e
(ε − 1)E. (19)

We then proceed with the quantization of the gauge field in a
vacuum with this modified θBerry:

E = −θBerrye

2π
= − θe

2π
− (ε − 1)E, (20)

and we recover the same result as in Eq. (18). This calculation
matches our intuition that the wave function can adjust itself
a little bit (a compromise between a rigid shift and the ionic
potential, characterized by the dielectric constant ε) to reduce
the electric field.

We have to note that the second treatment does not work at
finite temperature, as witnessed by the different quantization
of the electric field in the two methods. At finite temperature,
the electric field fluctuates from the average value. Once the
electric field fluctuates around, it would be wrong to identify
the contribution from the dielectric constant as a phase, instead
of an energy. Nevertheless, one can still expect that treating it
as a phase should give correct ground-state properties at zero
temperature. Physically this is because in the ground state the
partition function is dominated by the states with the average
electric field. When one calculates the phase accumulated
when the gauge winding increases with a fixed electric field,
there is no real distinction between the contribution from the
geometric Berry’s phase and the dynamical phase.

IV. SUMMARY

In this report, we clarified two issues about the
ground-state electric field in one-dimensional topological
insulators.

We showed that in a unit-cell doubled system, it is
possible for two states related by a lattice translation to have
a different topological index characterizing the electronic
band structure. It is still a topological index in the sense
that we cannot smoothly change from one state to another
without breaking the discrete symmetry (in the SSH model,
the inversion symmetry.) However, since the translation of
ions also changes the Berry’s phase, the two states are
physically equivalent. With the ions placed properly, there
will be no θ term in the effective theory and no ground-
state electric field. For a tight-binding model without unit-
cell doubling and when the electron orbitals are always
tied to the ions, such as the topological insulator in 1D
defined under charge conjugation, the topological index of
the electronic band does give a ground-state electric field,
and the topological state and the trivial state are intrinsically
different.

We also showed that, unlike our previous comment, the
electric field is not perfectly quantized in a system without
boundaries. The screening effect can be either viewed as a
change of the quantization of the static electric field in the
presence of the dielectric constant or as a shift of θ in the
presence of the field it generates.
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