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We report the first reconstruction in hadron collisions of the suppressed decays B� ! Dð! Kþ��ÞK�

and B� ! Dð! Kþ��Þ��, sensitive to the Cabibbo-Kobayashi-Maskawa phase �, using data

from 7 fb�1 of integrated luminosity collected by the CDF II detector at the Tevatron collider.

We reconstruct a signal for the B� ! Dð! Kþ��ÞK� suppressed mode with a significance of 3.2

standard deviations, and measure the ratios of the suppressed to favored branching fractions RðKÞ ¼
½22:0� 8:6ðstatÞ � 2:6ðsystÞ� � 10�3, RþðKÞ ¼ ½42:6� 13:7ðstatÞ � 2:8ðsystÞ� � 10�3, R�ðKÞ ¼ ½3:8�
10:3ðstatÞ � 2:7ðsystÞ� � 10�3 as well as the direct CP-violating asymmetry AðKÞ ¼ �0:82�
0:44ðstatÞ � 0:09ðsystÞ of this mode. Corresponding quantities for B� ! Dð! Kþ��Þ�� decay are

also reported.

DOI: 10.1103/PhysRevD.84.091504 PACS numbers: 13.25.Hw, 11.30.Er, 14.40.Nd

The measurement of CP-violating asymmetries
and branching ratios of B� ! DK� [1] decay modes
allows a theoretically clean extraction of the phase
� ¼ argð�VudV

�
ub=VcdV

�
cbÞ of the Cabibbo-Kobayashi-

Maskawa (CKM) quark-mixing matrix VCKM, a fundamen-
tal parameter of the standard model [2]. In these decays the
interference between the first-order tree amplitudes of the
b ! c �us and b ! u �cs processes leads to observables
that depend on their relative weak phase �, their relative
strong phase �B, and the magnitude of the amplitude ratio
rB [3]. These quantities can all be extracted from data by
combining several experimental observables. This can be
achieved in several ways, using a variety of D decay
channels [4–6]. An accurate knowledge of the value of �
is instrumental in establishing the possible presence of
additional nonstandard model CP-violating phases in pro-
cesses where higher-order diagrams are involved [7,8]. Its
current determination has a relative uncertainty, dominated
by statistical uncertainties, between 15 and 20%, depend-
ing on the method [9].

A promising class of processes consists of B meson
decays that are a coherent superposition of the color
favored B� ! D0K� followed by the doubly Cabibbo
suppressed decay D0 ! Kþ��, and of the color sup-
pressed B� ! �D0K� followed by the Cabibbo favored
decay �D0 ! Kþ��. The magnitude of the two amplitudes
is comparable, allowing for large CP-violating asymme-
tries sensitive to the phase �. The following observables
can be defined [5]:

RðKÞ¼BðB�!½Kþ���DK�ÞþBðBþ!½K��þ�DKþÞ
BðB�!½K��þ�DK�ÞþBðBþ!½Kþ���DKþÞ;

R�ðKÞ¼BðB�!½K����DK�Þ
BðB�!½K����DK�Þ;

AðKÞ¼BðB�!½Kþ���DK�Þ�BðBþ!½K��þ�DKþÞ
BðB�!½Kþ���DK�ÞþBðBþ!½K��þ�DKþÞ;

where B� ! ½Kþ���DK� is the suppressed (sup) mode
and B� ! ½K��þ�DK� is the favored (fav) mode. In the

approximation of negligible CP violation in D decays and
negligible D0- �D0 mixing, whose effects were shown to be
small in Ref. [10], these quantities are related to the CKM
phase � by the equations [5] R ¼ r2D þ r2B þ 2rDrB cos��
cosð�B þ �DÞ, R�¼ r2Dþr2Bþ2rDrBcosð�Bþ�D��Þ,
and A ¼ 2rBrD sin� sinð�B þ �DÞ=R, where rD ¼
j AðD0!Kþ��Þ
AðD0!K��þÞ j and �D is the corresponding relative strong

phase. The smallness of the product of branching fractions
for these suppressed final states (Oð10�7Þ) has been a
strong limitation to their use in � determinations.
Evidence for the suppressed B� ! DK� channel has
only recently been obtained by the Belle Collaboration
[11]. The large production rate of B mesons available at
hadron colliders offers a unique opportunity for improving
the experimental determination of the angle �.
Measurements of branching fractions and CP-violating
asymmetries of B� ! DK� modes in less suppressed final
states of theDmeson (CP-even modes K�Kþ and ���þ)
have already been performed in hadron collisions [12].
However, the small decay rates along with large potential
backgrounds from misidentified favored decays, which
only differ for the identity of the final particles, make the
reconstruction of suppressed modes in hadron collisions
significantly more challenging.
In this paper, we describe the first reconstruction of

B� ! DsupK
� modes performed in hadron collisions,

based on data from a total integrated luminosity of
7 fb�1 of �pp collisions at

ffiffiffi
s

p ¼ 1:96 TeV, collected by
the upgraded Collider Detector (CDF II) at the Fermilab
Tevatron. We report measurements of RðKÞ, R�ðKÞ, and
AðKÞ for those modes. We also report measurements re-
lated to the corresponding D�� modes, since measurable,
albeit smaller, �-dependent asymmetries may also be
found in these modes [9]. The maximum possible value
of the asymmetry is Amax ¼ 2rBrD=ðr2B þ r2DÞ, where rB
can be rBðKÞ or rBð�Þ. Taking into account the CKM
structure of the contributing processes, we expect that
rBð�Þ is suppressed by a factor jVcdVus=VudVcsj � tan2�C
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with respect to rBðKÞ, where �C is the Cabibbo angle,
and we assume the same color suppression factor for both
DK and D� modes. Using rBðKÞ ¼ 0:103þ0:015

�0:024 [9],

rBð�Þ � 0:005 [9], and r2D ¼ ð3:80� 0:18Þ � 10�3 [13],
we expect AmaxðKÞ � 0:90 and Amaxð�Þ � 0:16.

CDF II is a multipurpose magnetic spectrometer sur-
rounded by calorimeters and muon detectors, and is de-
scribed in detail elsewhere [14–17]. The resolution on
transverse momentum of charged particles is �pT

=pT ’
0:07%pT=ðGeV=cÞ, corresponding to a typical mass reso-
lution of 18 MeV=c2 for our signals. The specific ioniza-
tion energy loss dE=dx of charged particles can be
measured from the charge collected by a gaseous drift
chamber, the central outer tracker (COT), and provides
1:5� separation between pion and kaon particles for p >
2 GeV=c. Candidate events for this analysis are selected by
a three-level online event-selection system (trigger). At
level 1, charged particles are reconstructed in the COT
by a hardware processor, the extremely fast tracker
(XFT) [18]. Two oppositely charged particles are required,
with transverse momenta pT 	 2 GeV=c and scalar sum
pT1 þ pT2 	 5:5 GeV=c. At level 2, another processor, a
silicon vertex trigger (SVT) [19], associates r-� position
measurements from an inner silicon detector with XFT
tracks. This provides a precise measurement of the track
impact parameter d0, the transverse distance of closest
approach to the beam line. The resolution of the impact
parameter measurement is 50 �m for particles with pT of
about 2 GeV=c, including a � 30 �m contribution due to
the transverse beam size, and improves for higher trans-
verse momenta.

We select B hadron candidates by requiring two SVT
tracks with 120 
 d0 
 1000 �m. To reduce background
from light-quark jet pairs, the two trigger tracks are re-
quired to have an opening angle in the transverse plane
2� 
 �� 
 90�, and to satisfy the requirement Lxy >

200 �m, where Lxy is defined as the distance in the trans-

verse plane from the beam line to the reconstructed
two-track vertex. The level 1 and 2 trigger requirements
are then confirmed at trigger level 3, where the event is
fully reconstructed in software.

The events collected by the trigger are further selected
by searching for a pair of oppositely charged particles
compatible with a two-body D decay. The invariant mass
MD of the pair is reconstructed for both pion and kaon
assignments of particle identities. Events are accepted for
the analysis only when one of the possible masses is
compatible with the nominal D mass 1:8495
MD

1:8815GeV=c2, and the alternative combination,
MSWðDÞ, is outside a veto region of 1:8245 
 MSWðDÞ 

1:9045 GeV=c2 around the nominal D mass. The D can-
didate is then combined with a negatively charged particle
in the event with pT > 0:4 GeV=c to form a B� candidate.
A three-dimensional kinematic fit of each decay candidate
trajectory is performed by constraining the two tracks

forming the D candidate to a common vertex and to the
nominal D mass; the D candidate and the remaining track
to a separate vertex; and the reconstructed momentum of
the B� candidate to point back to the primary �pp interac-
tion vertex determined from other tracks in the event.
The events are then divided into two nonoverlapping

samples, nominally classified as favored or suppressed,
according to the relative charge of the B candidate with
the decay product of the D that has been classified as the
kaon. The veto requirements applied to the D mass recon-
structed with the alternative particle assignment remove a
large fraction of the background of favored decays from the
sample classified as suppressed, and vice versa, ensuring
no overlap between the samples and a complete symmetry
of the selection, which is a crucial aspect of the analysis.
The small residual contamination of each sample from
events with an incorrect identification of D decay products
is accounted for as part of the inclusive background B� !
Dð! XÞ��, where X are modes other than K� (see be-
low). A further veto is applied to the invariant mass formed
by the track from the B candidate and the oppositely
charged track from the D candidate, again requiring it to
be incompatible with the D meson mass, using the same
range as the first veto. This requirement suppresses the
contamination from tracks from real B decays that have
been incorrectly labeled as D decay products, and is ap-
plied symmetrically to both samples. A further suppression
of this background is achieved by requiring that the trans-
verse distance between B and D decay vertex is greater
than 100 �m. This has the additional effect of reducing
contamination from nonresonant three-body decays of the
type Bþ ! hþh�hþ, in which all tracks come from a
common decay vertex, and where h indicates eitherK or�.
Additional requirements are applied to the following

observables: the impact parameter dB of the reconstructed
B candidate relative to the beam line; the isolation of the B
candidate IB [20]; the goodness of fit of the decay vertex
�2
B; the significance of the B hadron decay length

LxyðBÞ=�LxyðBÞ; the angle 	 between the three-dimensional

momentum of the B candidate and the three-dimensional

decay length; �R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2 þ�
2

p
between the track from

the B hadron and the D meson; the cosine of the angle
between the D and the flight direction of the B, in the B
meson rest frame, cos��D; the difference of the kaon proba-
bility [21] values of the tracks forming the D to discrimi-
nate kaon-pion pairs from pion-pion and kaon-kaon pairs,
��. The threshold values for all these requirements, and
for the allowed D mass window mentioned above, were
determined by an unbiased optimization procedure, max-
imizing the quantity NS=ð1:5þ

ffiffiffiffiffiffiffi
NB

p Þ [22], with no use of
simulated signal. The signal NS is defined as the expected
rate of suppressed B� ! Dsup�

� events. We take advan-

tage of our large sample of favored B� ! Dfav�
� decays,

using it as a model for the kinematical and particle iden-
tification properties of the suppressed decay by simply
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considering the swap in sign. The resulting requirements
are the following: LxyðBÞ=�LxyðBÞ > 12, dB < 50 �m,

�2
B < 13, IBðcone ¼ 1Þ> 0:4, IBðcone ¼ 0:4Þ> 0:7, 	<

0:15, �R< 1:5, j cos��Dj< 0:6, �� >�1. After applying
all the above selection criteria, the invariant mass of each
B� ! Dh� candidate is evaluated using a nominal pion
mass assignment to the particle h� coming from the B
decay. Figure 1 shows the distributions for B� candidates.

With the help of large simulated samples of B mesons,
we determine that the only modes contributing non-
negligible backgrounds are B�!Dð!XÞh�, B�!
D�0��, with D�0 ! D0�=�0, nonresonant B� !
K��þ��, and B0 ! D��

0 lþ�l. The large contribution of

B� ! Dð! KþK�Þh� reported in Refs. [11,23] is
strongly suppressed by our selection, since we reconstruct
the D mass in the K� mass hypothesis.

We use an extended unbinned maximum likelihood fit,
exploiting mass and particle identification (PID) informa-
tion to statistically separate the B� ! DK� and B� !
D�� signals, the combinatorial background, and the phys-
ics backgrounds. PID information on the track from the B
decay is incorporated in the kaon probability observable
[21]. The extended likelihood function is defined as L ¼Q

iP iLi, where i runs over the favored and suppressed
modes, positive and negative charges. The Poisson distri-

bution P i is equal to
�

Ntot
i

Ntot
i ! e

��, where Ntot
i is the number of

events of each subsample and � is the expected mean
value. The individual likelihood components have the fol-

lowing structure: Li ¼
QNtot

i
r

P
j fjPjðMr; �rj�rÞ, where f

and PðMr; �rj�rÞ are the fractions and the probability
density functions of the signal and background modes,
and �r are other free parameters of the fit, a mass scale
parameter with respect to the nominal B mass and a scale
factor multiplying the width of the shapes of the B� !
Dð! Kþ��Þh� signals. The fit is simultaneously per-
formed on the favored and suppressed samples. Common
parameters are the exponential function for the combina-
torial background, whose normalization and slope are de-
termined by the fit; the functional expression for signal and
background modes; and the ratio between B� ! D�0��
and B� ! D�� fractions. The numbers of events and the
fractions of signal and background are determined by
the fit and the observables are extracted from them. We
tested on simulation that our fit does not exhibit any
significant bias.
The shape of the mass distribution assigned to each

signal and physics background has been modeled using
simulated events including the effect of final state QED
radiation and parametrized with different functions.
Systematic uncertainties are assessed by varying the values
of those function parameters within their errors.
A large sample of D�þ ! D0ð! K��þÞ�þ decays is

used to calibrate the average dE=dx response of the detec-
tor to kaons and pions, using the charge of the pion in the
D�þ decay to determine the identity of the D decay prod-
ucts. The shape of the � distribution is calibrated within
our own sample, by using kaons and pions from the decay
of theDmeson in the favored sample. Uncertainties on the
calibration parameters are included in the final systematic
uncertainty of A, R, and R�, taking into account the full
correlation matrix of the parameters characterizing the
shape of the � distribution [24].
The B� ! DK� and B� ! D�� event yields obtained

from the fit to the data are reported in Table I. Fit projec-
tions on the invariant mass distributions are given in Fig. 1.
They provide a consistent description of the observed
distributions in the data. We find evidence for a signal in

TABLE I. B� ! DK� and B� ! D�� event yields obtained
from the fit to the data. Only statistical uncertainties are quoted.

D mode Bþ ! D�þ B� ! D�� Bþ ! DKþ B� ! DK�

K��þ (favored) 9882� 103 9892� 103 694� 39 767� 41

Kþ�� (suppressed) 24� 9 31� 10 29� 9 3� 8
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FIG. 1 (color online). Invariant mass distributions of B� ! Dh� for the suppressed mode (bottom meson on the left and antibottom
on the right). The pion mass is assigned to the charged track from the B candidate decay vertex. The projections of the common
likelihood fit (see text) are overlaid.
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the B� ! DK� suppressed mode with a significance of
3:2�. The significance is evaluated by comparing the
likelihood-ratio observed in data with the distribution ex-
pected in statistical trials. Several distributions are gener-
ated corresponding to different choices of systematic
parameters. The quoted significance corresponds to the
distribution yielding the most conservative p value.

The raw fit results are then corrected for the reconstruc-
tion efficiency , due to different probabilities of Kþ, K�,
�þ and �� to interact with the tracker material. We use

previous measurements of ðKþÞ
ðK�Þ¼1:0178�0:0023ðstatÞ�

0:0045ðsystÞ and ð�þÞ
ð��Þ¼0:997�0:003ðstatÞ�0:006ðsystÞ

[25]. We extract ðK��þÞ
ðKþ��Þ¼0:998�0:015ðstatÞ�

0:016ðsystÞ from our own sample of favored B� ! D��
decays.

Systematic uncertainties are determined by repeating the
fit changing the mass and the dE=dx model (Table II). The
dominant contribution is the uncertainty on the B� !
Dð! XÞ�� shape. This is the largest physics background,
and it lies under the signal peak.

In summary, we find evidence for the B� ! Dð!
Kþ��ÞK� suppressed mode with a significance of 3.2
Gaussian standard deviations. We measure the ratios of
the suppressed ð½Kþ���DK�=��Þ to favored
ð½K��þ�DK�=��Þ branching fractions RðKÞ ¼ ½22:0�
8:6ðstatÞ � 2:6ðsystÞ� � 10�3, RþðKÞ¼½42:6�13:7ðstatÞ�
2:8ðsystÞ��10�3, R�ðKÞ ¼ ½3:8� 10:3ðstatÞ �
2:7ðsystÞ� � 10�3 and Rð�Þ ¼ ½2:8� 0:7ðstatÞ �
0:4ðsystÞ� � 10�3, Rþð�Þ¼½2:4�1:0ðstatÞ�0:4ðsystÞ��
10�3, R�ð�Þ ¼ ½3:1� 1:1ðstatÞ � 0:4ðsystÞ� � 10�3 as
well as the direct CP-violating asymmetries

AðKÞ ¼ �0:82� 0:44ðstatÞ � 0:09ðsystÞ;
Að�Þ ¼ 0:13� 0:25ðstatÞ � 0:02ðsystÞ:

The observed asymmetry AðKÞ deviates from zero by 2.2
standard deviations.
These measurements, performed here for the first time in

hadron collisions, are in agreement with previous measure-
ments from BABAR [23] and Belle [11] with comparable
uncertainties. These results can be combined with other
B� ! DK� measurements to improve the determination
of the CKM angle �.

We thank the Fermilab staff and the technical staffs of the
participating institutions for their vital contributions. This
work was supported by the U.S. Department of Energy and
National Science Foundation; the Italian Istituto Nazionale
di Fisica Nucleare; the Ministry of Education, Culture,
Sports, Science and Technology of Japan; the Natural
Sciences and Engineering Research Council of Canada;
the National Science Council of the Republic of China;
the Swiss National Science Foundation; the A. P. Sloan
Foundation; the Bundesministerium für Bildung und
Forschung, Germany; the Korean World Class University
Program, the National Research Foundation of Korea; the
Science and Technology Facilities Council and the Royal
Society, UK; the Institut National de Physique Nucleaire et
Physique des Particules/CNRS; the Russian Foundation for
Basic Research; the Ministerio de Ciencia e Innovación,
and Programa Consolider-Ingenio 2010, Spain; the Slovak
R&DAgency; the Academy of Finland; and the Australian
Research Council (ARC).

[1] D indicates D0 and �D0, and the charge conjugate state is

implied throughout the paper, except in formulas and

sentences where both are mentioned explicitly.
[2] M. Kobayashi and T. Maskawa, Prog. Theor. Phys.

49, 652 (1973); N. Cabibbo, Phys. Rev. Lett. 10, 531
(1963).

[3] rB is defined as the magnitude of the amplitude ratio

of the suppressed process b ! u over the favored process

b ! c, rB ¼ jMðb!uÞ
Mðb!cÞ j. Since the suppressed transition is

associated with the B� ! �D0K� decay and the favored

transition with B� ! D0K�, rB corresponds also to

jMðB�! �D0K�Þ
MðB�!D0K�Þ j. In the text we will distinguish between

rB of the kaon, rBðKÞ, and of the pion, rBð�Þ. The

definitions for the pion are analogous to the definitions

for the kaon.
[4] M. Gronau and D. Wyler, Phys. Lett. B 265, 172

(1991); M. Gronau and D. London, Phys. Lett. B

253, 483 (1991).

TABLE II. Summary of systematic uncertainties.

Source Rð�Þ Rþð�Þ R�ð�Þ RðKÞ RþðKÞ R�ðKÞ Að�Þ AðKÞ
dE=dx model <0:0001 <0:0001 <0:0001 0.0001 0.0003 0.0001 <0:01 <0:01
B� ! Dð! XÞ�� shape 0.0004 0.0004 0.0004 0.0025 0.0026 0.0026 0.01 0.09

Other backgrounds <0:0001 <0:0001 <0:0001 0.0006 0.0006 0.0005 <0:01 0.02

Efficiency <0:0001 <0:0001 <0:0001 0.0003 0.0009 0.0001 0.01 <0:01
Total 0.0004 0.0004 0.0004 0.0026 0.0028 0.0027 0.02 0.09

MEASUREMENTS OF BRANCHING FRACTION RATIOS . . . PHYSICAL REVIEW D 84, 091504(R) (2011)

RAPID COMMUNICATIONS

091504-7

http://dx.doi.org/10.1143/PTP.49.652
http://dx.doi.org/10.1143/PTP.49.652
http://dx.doi.org/10.1103/PhysRevLett.10.531
http://dx.doi.org/10.1103/PhysRevLett.10.531
http://dx.doi.org/10.1016/0370-2693(91)90034-N
http://dx.doi.org/10.1016/0370-2693(91)90034-N
http://dx.doi.org/10.1016/0370-2693(91)91756-L
http://dx.doi.org/10.1016/0370-2693(91)91756-L


[5] D. Atwood, I. Dunietz, and A. Soni, Phys. Rev. D 63,
036005 (2001); D. Atwood, I. Dunietz, and A. Soni, Phys.
Rev. Lett. 78, 3257 (1997).

[6] A. Giri, Y. Grossman, A. Soffer, and J. Zupan, Phys. Rev.
D 68, 054018 (2003).

[7] R. Fleischer, Phys. Lett. B 459, 306 (1999); R. Fleischer
and J. Matias, Phys. Rev. D 66, 054009 (2002).

[8] I. Dunietz, R. Fleischer, and U. Nierste, Phys. Rev. D 63,
114015 (2001).

[9] D. Asner et al. (Heavy Flavor Averaging Group),
arXiv:1010.1589.

[10] Y. Grossman, A. Soffer, and J. Zupan, Phys. Rev. D 72,
031501(R) (2005).

[11] Y. Horii et al. (Belle Collaboration), Phys. Rev. Lett. 106,
231803 (2011).

[12] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 81,
031105 (2010).

[13] K. Nakamura et al. (Particle Data Group), J. Phys. G 37,
075021 (2010).

[14] D. E. Acosta et al. (CDF Collaboration), Phys. Rev. D 71,
032001 (2005).

[15] A. Sill, Nucl. Instrum. Methods Phys. Res., Sect. A 447, 1
(2000).

[16] A. Affolder et al., Nucl. Instrum. Methods Phys. Res.,
Sect. A 526, 249 (2004).

[17] CDF II uses a cylindrical coordinate system in which � is
the azimuthal angle, r is the radius from the nominal beam
line, and z points in the proton-beam direction, with the

origin at the center of the detector. The transverse plane is
the plane perpendicular to the z axis.

[18] E. J. Thomson et al., IEEE Trans. Nucl. Sci. 49, 1063
(2002).

[19] B. Ashmanskas et al., Nucl. Instrum. Methods Phys. Res.,
Sect. A 518, 532 (2004); L. Ristori and G. Punzi, Annu.
Rev. Nucl. Part. Sci. 60, 595 (2010).

[20] Isolation is defined as IB ¼ pTðBÞ=ðpTðBÞ þ
P

ipTiÞ,
where pTðBÞ is the transverse momentum of the B candi-
date, and the sum runs over all other tracks within a cone
in the 
�� space around the B flight-direction. Its value
is typically higher for bottom-flavored hadrons than for
random track combinations.

[21] The kaon probability is defined as � ¼
dE=dxmeas�dE=dxexpð�Þ
dE=dxexpðKÞ�dE=dxexpð�Þ , where dE=dxmeas is the measured
specific energy loss of the track and dE=dxexp is the
expected energy loss; � has an average value of 1 for
kaons and 0 for pions.

[22] G. Punzi, in Proceedings of the Conference on Statistical
Problems in Particle Physics, Astrophysics and
Cosmology (Phystat), Menlo Park, 2003, edited by L.
Lyons et al. , eConf C030908, MODT002, p. 79.

[23] P. del Amo Sanchez et al. (BABAR Collaboration), Phys.
Rev. D 82, 072006 (2010).

[24] P. Garosi, Ph.D. thesis, University of Siena [FermiLab-
Thesis-2011-31, 2011 (unpublished)].

[25] D. E. Acosta et al. (CDF Collaboration), Phys. Rev. Lett.
94, 122001 (2005).

T. AALTONEN et al. PHYSICAL REVIEW D 84, 091504(R) (2011)

RAPID COMMUNICATIONS

091504-8

http://dx.doi.org/10.1103/PhysRevD.63.036005
http://dx.doi.org/10.1103/PhysRevD.63.036005
http://dx.doi.org/10.1103/PhysRevLett.78.3257
http://dx.doi.org/10.1103/PhysRevLett.78.3257
http://dx.doi.org/10.1103/PhysRevD.68.054018
http://dx.doi.org/10.1103/PhysRevD.68.054018
http://dx.doi.org/10.1016/S0370-2693(99)00640-1
http://dx.doi.org/10.1103/PhysRevD.66.054009
http://dx.doi.org/10.1103/PhysRevD.63.114015
http://dx.doi.org/10.1103/PhysRevD.63.114015
http://arXiv.org/abs/1010.1589
http://dx.doi.org/10.1103/PhysRevD.72.031501
http://dx.doi.org/10.1103/PhysRevD.72.031501
http://dx.doi.org/10.1103/PhysRevLett.106.231803
http://dx.doi.org/10.1103/PhysRevLett.106.231803
http://dx.doi.org/10.1103/PhysRevD.81.031105
http://dx.doi.org/10.1103/PhysRevD.81.031105
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1103/PhysRevD.71.032001
http://dx.doi.org/10.1103/PhysRevD.71.032001
http://dx.doi.org/10.1016/S0168-9002(00)00166-2
http://dx.doi.org/10.1016/S0168-9002(00)00166-2
http://dx.doi.org/10.1016/j.nima.2004.02.020
http://dx.doi.org/10.1016/j.nima.2004.02.020
http://dx.doi.org/10.1109/TNS.2002.1039615
http://dx.doi.org/10.1109/TNS.2002.1039615
http://dx.doi.org/10.1016/j.nima.2003.11.078
http://dx.doi.org/10.1016/j.nima.2003.11.078
http://dx.doi.org/10.1146/annurev.nucl.012809.104501
http://dx.doi.org/10.1146/annurev.nucl.012809.104501
http://dx.doi.org/10.1103/PhysRevD.82.072006
http://dx.doi.org/10.1103/PhysRevD.82.072006
http://dx.doi.org/10.1103/PhysRevLett.94.122001
http://dx.doi.org/10.1103/PhysRevLett.94.122001

