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Abstract

Despite the great achievements obtained with fast-field and parabolic equation mod-
els, normal mode programs still remain a very efficient, simple and practical tool for
describing ocean acoustics in range-independent environments.

Numerical implementations of wave-theory solutions for range-dependent acous-
tic problems can be classified as: normal-mode techniques (adiabatic or coupled
modes); parabolic-approximation techniques (narrow- or wide-angle parabolic equa-
tions solved by split-step or finite-difference techniques); and finite-element/finite-
difference solutions of the full wave equation.

The mode techniques provide approximate field solutions if implemented in the
adiabatic approximation, while complete wave theory solutions can be obtained by
including full mode coupling.

Parabolic approximations to the elliptic wave equation have been extensively stud-
ied over the past 10 years([15], [23]). The advantage of using a parabolic wave equa-
tion is that it can be efficiently solved by noniterative forward marching techniques.
However, any form of the parabolic equation is an approximate wave equation derived
under the assumptions of: (1) forward propagation only, and (2) that energy is prop-
agating within a limited angular spectrum around the main propagation direction.

The last category of models based on finite-difference and finite-element solutions
of the full wave equation([22]) is well suited for providing solutions for propagation in
general range-dependent environments. The existing codes, however, are extremely
computer intensive.

My thesis focuses on a two-dimensional two-way coupled modes model, and then
expend it to a three-dimensional coupled modes model for two-dimensional, range-
dependent waveguides. Numerical examples of two-dimensional and three-dimensional
problems are presented, and comparisons with the results from analytical solution, as
well as from COUPLE are also considered.
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Chapter 1

The Method of Normal Modes

1.1 Introduction

Normal modes method is a widely used approach in underwater acoustics. First,

we develop the theory for a point source in a horizontally stratified, fluid medium,

illustrating the dependency of the technique of separation of variables and Sturm-

Liouville theory. We then apply the normal modes method to the ideal waveguides,

i.e., a waveguide with a soft top and a hard bottom, or a waveguide with a soft top and

a soft bottom. Next, we apply the normal modes method to the Pekeris waveguide,

which consists of a homogeneous fluid layer bounded above by a soft top and below

by a higher velocity, homogeneous fluid half-space. In this case, the modal field is

composed of both discrete and continuous spectra, and the continuous spectrum can

be approximatted by a sum of discrete modes, which are referred to as improper

modes (or virtual modes, leaky modes). Finally, we derive the modal field for the

case of a line source in plane geometry. See [11] and [14] for a more detailed discussion

about the method of normal modes.
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1.2 A Point Source in a Horizontally Stratified,

Fluid Medium in Cylindrical Geometry

We consider a point source with cylindrical coordinates (0, z,) in a horizontally strati-

fied medium with density p(z) and sound speed c(z), as shown in Fig. 1-1. We assume

the waveguide involves a pressure-release (soft) surface at z = 0 and a perfect rigid

(hard) bottom at z = D.

pressure-release surface

z=0

z= D

r

p(z) c(Z)

Source (0,z,)

xvater

V

Figure 1-1: Geometry of a point source in a horizontally stratified, fluid medium.

The Helmholtz equation of this problem is[14]

Or Or ,I
C2 (Z)

First, we seek a solution of the unforced equation of Eq. (1.1), i.e.

rr Or O

9(1 Op~ _2

+ p(z)-- +p(z) (P

Using separation of variables, we substitute p(r, z) = 4b(r)I(z) into Eq. (1.2), and

18

J(r)J(z - z')

27rr
(1.1)

(1.2)

,

+ 1 09P
+ Z p) z p(z) Oz f



divide through by 4(r)4T(z), we have

I [Id r d )]+ I p(z) (Id4)+ W = 0. (1.3)
<D _r dr dr T dz p(z) dz c2 (Z)

Each component of Eq. (1.3) is equal to a separation constant, denoted by km, thus

we obtain the depth-separated equation

d [1 dqfm(z) I+[W2 2
p(z) + [ -Z) _ km] Im(Z) = 0. (1.4)

dz p(z) dz c()

The modal equation Eq. (1.4), together with boundary conditions

soft surface: 'J'm(0) = 0, (1.5)

rigid bottom: d=Im(Z) 0, (1.6)
dz z=D

is a proper Sturm-Liouville problem, with weighting function w(z) =

The main properties of a proper Sturm-Liouville problem are as follows:

1. The eigenfunctions m(z) satisfy a Sturm-Liouville equation on the interval

0 < z < D. At the endpoints z = 0 and z = D, Im(z) satisfy one of the

conditions listed below:

(a) Diichlet1

(b) Neumann2

(c) periodic, i.e., p(O) = p(D), Tm(0) = Jm(D), and d-

dz z0 dz z=D

'For a soft, or pressure-release, boundary S, the pressure vanishes on the boundary:

PIS = 0.

This condition is also known as a Dirichlet boundary condition([11, p. 33]).
2For a hard boundary S, the normal velocity, i.e., the derivative of the pressure normal to the

boundary, vanishes on S:

= 

b 0.

n S
This condition is also known as a Neumann boundary condition([11, p. 33]).

19



(d) mixed boundary conditions of the type AT'Im(z) + BdTm(z) = 0, where Adz

and B are real constants.

2. The modal equation has an infinite number of solutions which are like the modes

of a vibrating string. The modes are characterized by a mode shape function,

known as eigenfunctions, 'JWm(z), and a horizontal propagation constant, known

as eigenvalues, krm.

3. TI',(z) has m zeros in the interval [0, D].

4. The eigenfunctions are orthonormal with respect to the weighting function

w(z) = ', i.e.,

w (z)Im(z)I,(z)dz= p (z),(z)dz
0 fo p (Z)

=nm,

where 6nm is the Kronecker delta.

5. The eigenfunctions Im(z) constitute a complete set in the sense that an arbi-

trary function f(z) can be expanded in terms of them:

f(z) = ZCm Tm(Z),

where cm are the coefficients of the expansion.

6. The eigenfunction Im(z) satisfy the completeness relation:

E W (ZO) '1!*(ZO)JTm (Z) = E 1 X*(OXMZ
m )= (zo) (z)m(z)

=6(z - zO).

This property can be easily proven with Property 5.

20



We represent the pressure field as

00

p(r, z) = S4m(r)TIm(z),
m=1

and substitute this into Eq. (1.1), then we obtain

0r1 d ( d4m(r) X'm(Z) + 4<m(r) P(z)+ 1( z)
dT m(z)

dz)

_ (r)6(z - z')
27rr

Inserting the depth-separated equation, Eq. (1.4), into Eq. (1.8), we obtain

drdrA y h op ra o

A p ply the op erator 
D( ) 1 x , z z

iD - pr ) (z)dz,

to Eq. (1.9), we obtain the range-separated equation,

1 d d[r (r)
r dr L dr

6(r)6(z - z') (1.9)
27rr

+ k 2b4(r) (r)Qn(Z,)
21rrp(z,)

(1.10)

The solution to Eq. (1.10) is

<T (r) =(Z,)Ho(krnr)

Thus we obtain the pressure field

00

p(r, z) = <bm(r) Pm(z)
m=1

= Z1 'm(zs)xI'm(z)H('Nkrmr). (1.12)

In the far field (krmr > 1), we can substitute the asymptotic form for the Hankel

21

(1.7)

+ (z 'm(
c2 (Z)

z)]

(1.8)

T'm(z) + krm2Dm(r)Tm(z)}



function,

into Eq. (1.12), and obtain

p(r, z) : e-'Z4
p(z) V/8r

(1.14)0 0 m ( z ) I ( z ) e ik r m r

M=1 /krm

1.3 Normal Modes for the Ideal Waveguides

1.3.1 Normal Modes for a Homogeneous Fluid Layer with a

Soft Top and a Hard Bottom

We consider an ideal waveguide with a homogeneous water layer bounded by a soft

top and a hard bottom, the depth-separated equation, Eq. (1.4), becomes

d2
qJm(Z) 

+
dZ2 + 2 k 2 Im ( Z ) = 0 , (1.15)

with boundary conditions

q'm(0) = 0,

d'Im(z)

dz z=D

(1.16)

(1.17)=0.

Since

kM =k-krm

2c

Eq. (1.15) is therefore

H " (z) ~ e -ei -, (1.13)

d24'm(Z)
dz2 + km m(Z) = 0.

22
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The general solution to Eq. (1.18) is

TJ (z) = A sin(kzmz) + B cos(kzmz), (1.19)

satisfying the boundary condition at surface, xI'(O) = 0, we obtain B = 0, and the

boundary condition at z = D leads to

Akzm cos(kzmD) = 0,

thus

kzmD= (m-

and we obtain the eigenvalues

krm = k 2 _ km

1 r2} '
m = 1,2,...

m = 1, 2,...

The eigenfunctions are given by

'Jm(z) = A sin(kzmz),

where A can be obtained by the orthonormal property,

D D p( (z)dz =
p (Z) m

ID1-A 2 sin2 (kzmz)dz
o p

A2 D

which leads to

A = p

23
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thus the normalized eigenfunctions are

Tm(Z) = sin(kmz),

where

kzm =m m = 1,2, ...

The pressure field is therefore

p(r, z) = Z
4p(z.) E 'I'm(Zs)

4
'm

m=1

Number of propagating (in range) modes

The propagating modes have real eigenvalues,

krm = k2 -k2m

so,

kzm < k,

inserting in kzm = (m- and k = !, we have

1 r 27r
(m - ) 

thus, we get the number of propagating modes

2D 1 [2D]A = + A~ for D > .

where [x] rounds x to the nearest integer towards infinity.

For long-range propagation, we can obtain a good approximation to the total field

24

(1.21)

00 , 2 sin (kzm z ) sin (kzm z)H l1 (krm r)

Ssin(kzmz,) sin(kzmz)H31 (krmr).
M=1

(1.22)

(1.23)

7 r

2 ,D

(z) HOl)(kmr)



by retaining the propagating modes only.

1.3.2 Normal Modes for a Homogeneous Fluid Layer with a

Soft Top and a Soft Bottom

We consider a waveguide with a homogeneous water layer bounded by a soft top and

a hard bottom, the depth-separated equation is

d2'Jm(Z) + k 2 I'm(Z) 0, (1.24)
dz 2  zm

with boundary conditions

T"m(0) 0, (1.25)

TJm(D) 0. (1.26)

The general solution to Eq. (1.24) is

'P m(z) = A sin(kzmz ) + B cos(kzmz).

The boundary condition at surface, 'I'm(0) = 0, leads to B = 0.

condition at bottom leads to

The boundary

Asin(kzmD) = 0,

thus

kzmD = mir, m = 1,2,..

So we obtain the eigenvalues

krm ='Vk 2 _ k2m

=k2(- m = 1, 2, ...
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The eigenfunctions are

T, (z) = CDsin(kzmz), (1.28)

where
m7r

kzm = D , m = 1, 2,...

The pressure field is

p(r, z) = Tm(z,)Tm(z)H ) (kmr)
4p(ze) m ) H

Zsin(kzmz,) sin(kzmz)H(1)(kmr) (1.29)

Number of propagating (in range) modes

The propagating modes have real eigenvalues,

krm = k 2 - k2

so,

kzm < k,

insert in kzm = m- and k = , we have

7r 27r

thus, we get the number of propagating modes

M =D .(1.30)

where [x] rounds x to the nearest integer towards infinity.

By comparing the results of these two ideal waveguides (waveguide with a hard

bottom or a soft bottom), we find they have the same function forms of eigenfunctions

(in kzm) and pressure field, while different eigenvalues krm and kzm, as well as mode

shapes, which is due to the different boundary condition at the bottom.
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1.4 Eigenvalue Equation for a Homogeneous Fluid

Layer Bounded by Arbitrary Horizontally Strat-

ified Media

Suppose that we have a homogeneous fluid layer bounded above by a horizontally

stratified media with plane wave reflection coefficient Rs and below by a horizontally

stratified media with plane wave reflection coefficient RB, as shown in Fig. 1-2. We

can determine the eigenvalues by eigenvalue equation.

z=O

z=h

R

RR

Figure 1-2: Homogeneous fluid layer bounded
media with plane wave reflection coefficients Rs

by arbitrary horizontally stratified
and RB.

The eigenfunction im(z) can be written as the sum of a down-going plane wave

dm(z) and an up-going plane wave xRm(z),

Im(Z) =dm(Z) + 'um(z)

=Ameikzmz + Bme-ikmz, (1.31)

where Am, Bm are arbitrary constants to be determined by the boundary conditions

(cf. Fig. 1-3).
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z=O 
-

-

z

t,,(Z) YI (z)
waer .C

Z=h A.

bo in p C, > C

Figure 1-3: Up-going part and down-going part of eigenfunction.

The contribution of mode m to the pressure field is

pm(r, z) =amIm(z)1m(r)

=am["Ifum(z) + '!dm(z)]<m(r)

=pum(r, z) + pdm(r, z),

where

Pum(r, z) = am Tum(z)4m(r),

Pdm(r, z) = am'F (Z)m (r),

thus, with incident angle Om = tan- 1(rm),

Rsm -pdm(r, z)

Pum(T, z) z=O

_+ dIm(Z)

'Ium(z) z=O

(1.32)
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RBm =Pum(r, z)

Pdm(r, Z) z=h

_Jlum(Z)

'ldm(Z) z=h

B j -2kzmh (1.33)
Am

Multiply Eq. (1.32) by Eq. (1.33), we get the eigenvalue equation,

RsmRBm = e-i 2 kzmh,

or,

RsmRme 2 kmh 1. (1.34)

From above we see that both Rsm and RBm correspond to incident angle Om = tan-1(rr),

while not vertically incident Om = 0.

If we write Rs, and RBm as

Rsm =RsmIe ,

RBm IRBmI e 4Bm,

then Eq. (1.34) becomes

IRsmI IRBmI ei(2 k.mh+Osm+OBm) = 1. (1.35)

Furthermore,the plane wave reflection coefficient for the case of reflection from a

homogeneous fluid half-space is ([11])

R m cos 0 - 2- sin 2 0

mcosO+ \n 2 - sin2 '

where 0 is the incident angle, m = L, n = -k = -, and n is called the index of
rrk ti

refraction.
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Now let us use the eigenvalue equation to find the eigenvalues for ideal waveguides.

1. A homogeneous fluid layer with a soft top and a hard bottom

Soft top is characterized by Rs = -1 = e-i, and hard bottom is characterized

by RB = 1, thus the eigenvalue equation (1.35) gives

e i(2 kzh-7) = 1,

and therefore

2kzmh -7r = 2(m - 1)7r, m = 1,2, ...

so we obtain
1 r

kzm = (M -)-
2 h'

M = 1, 2,...

and

k_ = yk 2 - k

2. A homogeneous fluid layer with a soft top and a soft bottom

In this case, Rs = -1 = e-" and RB = -1 = e-i", the eigenvalue equa-

tion (1.35) gives

ei(
2 kzmh-7r- 1,

which leads to

2kzmh - 27r = 2(m - 1)7r, M = 1, 2, ...

so we obtain

kzm M = 1, 2, ..

and

krm /k 2 k 2
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1.5 Normal Modes for the Pekeris Waveguide

The Pekeris waveguide consists of a homogeneous fluid layer with a pressure-release

top and a homogeneous, higher velocity halfspace bottom (cf. Fig. 1-4). The Pekeris

waveguide is of particular interest in ocean acoustics because it embodies many of

the fundamental features of acoustic propagation in shallow water.

water p,C

Z=h

bottom p1C > c

Figure 1-4: Pekeris waveguide.

From section 1.3 we have known that, when the waveguide has impenetrable

boundaries, the solution consists totally of a sum of discrete sums. In this section,

we will see that for the Pekeris waveguide, which has one penetrable boundary, the

solution consists of both discrete and continuum sets due to the total internal reflec-

tion.

The top of the Pekeris waveguide is a pressure-release surface, which is charac-

terized by R, = -1 = e--ir, and the plane wave reflection coefficient at the bottom

is

R.m mcos 0m - n2- sin2 M

m cos Om+ n2 - sin2 M

For angles of incidence 0
m < 6 c, where 0, is the critical angle corresponding to

total internal reflection,

Cl
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we have sin 0m < n, and

I m = mcos 0, - fn2l- sin2 Om
ILBmI

m cos 0, + fl2 - si 29m

#Bm = 0,

so, the eigenvalue equation (1.35) gives

RBmI ei(2 k2mh2) -- 1

Since |RBmI < 1 for Om < 0c, so kz, must be complex, violating the condition that

eigenvalues are real for a proper Sturm-Liouville problem. Thus, Om < 0, corresponds

to an improper Sturm-Liouville problem.

However, for angles of incidence 0m > 0, since sin Oc = n, we have sin _ >n,

thus
m cos Om - i Vsin2 -- n2

RBm =M
mcosOM +i sin2 0m n

so,

IRBm|=1,

and

OBm = -2tan 1 [ m n2
M Cos OM

so, the eigenvalue equation (1.35) gives

ei( 2 kzmh-r+<OBm) = 1, (1.36)

which implies that kzm are real and associate with a proper Sturm-Liouville problem.

Thus we can see, for plane wave reflection from a higher velocity half-space, the

critical angle 0, delineates two distinct regimes (cf. Fig. 1-5):

1. For angle of incidence 0 > 0c, due to total internal reflection, the reflection

coefficient has magnitude RBI = 1, corresponding to a proper Sturm-Liouville

problem, and discrete modes (trapped modes, proper modes).
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z=O

\ continuous:
spectrum

discret\ 6 ( water PX
spectrum

69
Z=h

bottom p C1 > c

Figure 1-5: Angular regions for the discrete modes and continuous modes.

2. For angles of incidence 0 < 0, we have IRB < 1, corresponding to an improper

Sturm-Liouville problem, and continuous modes(leaky modes, improper modes).

The total field is the superposition of the fields for these two angular regimes,

p(r, z) = pt(r, z) + pc(r, z),

where p(r, z) is the total field, pt(r, z) and pc(r, z) are the contribution of the trapped

and continuous modes, respectively.

1.5.1 Proper Modes of the Pekeris Waveguide

Eigenvalue equation for the proper modes

For 0, O> ,, we have

ei(
2 kzmh--<+<m) _1,

where
5 Bm = -2tan 1 l(Vsin2 Om - n2

mcos m
(1.37)

thus we have

2kzmh - Ir + OBm = 2(m - 1)7r, m = 1,2,...
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and therefore we obtain the eigenvalue equation,

kzm[(m )r- -Bm], (1.38)
h .~n 2 )r-2 nII

and

krm = N/k 2  k2m,

where #Bm is given by Eq. (1.37).

Eigenfunction of proper modes

For the modes that are perfected trapped in the Pekeris waveguide, the eigenfunc-

tion can be determined as below (cf. Fig. 1-6):

water pC

1P. (Z) til. (Z)

Z=h RB

bottom p) Ci > c

Figure 1-6: Eigenfunctions in water and bottom.

For 0 < z < h,

Tm(Z) =Xdm(Z) + 'um(Z)

=ameikzmz + bme-ikmz (1.39)

where am, bm are arbitrary constants to be determined by boundary conditions.

For pressure-release surface, we have

Tm(0) = 0,
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so, Eq. (1.39) gives

am + bm = 0 ==> bm = -am,

thus, in the water, we have

4'm(z) =am(eikzmz - e-ikzmz)

=2 iam sin(kzmz)

=Am sin(kzmz).

For z > h,

Tm(z) - Bmeiklzmz,

since kizm = k- k m, and ki < krm for discrete modes, so, kizm = ik - k ,

and

J m(z) = Bme-v m -- k"z = Bme-y" ,

where Ym = /km - k?.

Thus, the eigenfunctions can be written as:

Tm(z) ={Am sin(kzmz), 0 < z < h (1.40)
Bme-Z , z > h

With orthonormal property of Im(z), we can show that (See Appendix A)

(h sin(2kzmh) 1 sin2 (kzmh)
Am v2 + Ikz P, (1.41)

.p2kzm l 1 m J

Bm Am sin(kzmh)e (1.42)

Thus, with Eq. (1.40), Eq. (1.41), and Eq. (1.42), we can calculate the eigenfunction

of the discrete modes. In Fig. 1-7, we show the first four eigenfunctions (calculated

by C-SNAP with input file listed in Appendix B).

From Fig. 1-7 we can see the fact that the rate of exponential decay in the bottom

decreases with increasing mode number for trapped modes. This is because the
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z=O

m=1 m=2 m=3 m=4

z=h

Figure 1-7: Eigenfunctions of the first 4 modes of the Pekeris waveguide with
c = 1500 m/s, p = 1.0 g/cm3 ,c = 1800 m/s, p = 1.5 g/cm3 , no absorption, at
frequency = 50 Hz.
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decaying rate of mode m, i.e., /m =/krm - ki, decreases with increasing mode

number for trapped modes (krm > k1 ). As mode number continues increasing, the

oscillatory behavior takes the place of the exponential decay, which corresponds to

the leaky modes (cf. Fig. 1-8).

leaky modes trapped modes

k 4k3 k, 2  kl s wLavenunmber

k, k
C,

Figure 1-8: Illustration of locations of eigenvalues and wavenumbers in water and in
bottom.

From Fig. 1-8 it is clear that:

1. For trapped modes, the eigenvalue krm > ki, so kizm=/ - k m = jv/k k - kU =

tYm, and thus eiklzmz- e-Imz, i.e., the wave decays exponentially in z direction

for z > h, so the energy is trapped in water layer.

2. For leaky modes, the eigenvalue krm < kj, so kizm /k - km, and thus

eiklmz is oscillatory, which means the energy leaks into the bottom.

Pressure-field of trapped modes

Having found the eigenfunctions, we can calculate the pressure-field contributed

by the trapped modes by

.Mt

pt(r, z) =pZ) Im(z,)4'm(z)H(1 )(krmr)
4p(zs) =

where Mt is the maximum number of the trapped modes.

Determine the number of the trapped modes Mt

According to Fig. 1-5, the trapped modes are in the region Om > Oc, so we have

sin Om > sin 0, (1.43)

recall that
C

sin , = -,
C1
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and

sin0m = krm

so Eq. (1.43) leads to

k -l

i.e.,
k 2 - k C2

k 2  c2

so,

S 1 - , (1.44)

insert in eigenvalue equation, Eq. (1.38), we get

1 r - I ) # Bm 27r c2

which leads to

1 OBm 2h C2

m<- + -- 1--
-2 27r A c

- 7r < Bm <0

1 2h 2
S+ 1 -- 2 (1.45)
2 A

thus we obtain

M I= + i-- j, (1.46)

where [x] rounds x to the nearest integer towards infinity.

From Eq. (1.46), we can see as c1 -- oc, Mt reduces to the number of propagating

modes with hard bottom, i.e., Eq. (1.23)

For a given ratio L, the number of trapped modes in the Pekeris waveguide is

smaller than the number of propagating modes in the wageguide with hard bottom

because of the more constrained angular regime for perfect reflection in the Pekeris
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waveguide.

1.5.2 Improper Modes of the Pekeris Waveguide

We have known that 0
m < 0, corresponds to an improper Sturm-Liouville problem. In

order to evaluate the contribution of the modal continuum to the field in the Pekeris

waveguide, we introduce a hard boundary at a finite distance from the surface(cf.

Fig 1-9). We solve the related proper Sturm-Liouville problem shown in Fig. 1-9 and

examine the limit of the solution as the thickness of the lower layer becomes infinite

(H -> oc). We will thereby arrive at the solution of the original, improper posed

Sturm-Liouville problem.

ptessure-relestw surface

z = T
z

Z=~h -

//

water PC

Y/W (z) '.(z)

Y"(Z) Y/. (Z)

bottom p1 C > C

z=h+H

Figure 1-9: The proper Sturm-Liouville problem which, in the limit of infinite H,
leads to the solution of the improper Sturm-Liouville problem shown in Fig. 1-4.

39



The eigenfunction for the configuration in Fig. 1-9 is (See Appendix C):

Im(z) = Am sin(kzmz),

Bmeikzm(h+H) cos kizm[z - (h + H)],

0 < z < h

h < z < h + H

Bm = Am sin(kzmh) eikzm(h+H)
cos(k1zmH)

Am [1 (h sin(2kzmh)
p 2 Akzm

1 sin2 (kzmh) H

P1 COS2 (k1zmH) 2

1
+ 4

1

sin 2kizmH)]

The eigenvalue equation is (See Appendix C):

tan(kzmh)tan(kizmH) = pikzm (1.48)
pklzm

In the limit p -+ p, ci ---* c, we have ki= k and kizm = kzm= vk / km=

/k- k L, the eigenvalue equation (1.48) is therefore

tan(kzmh)tan(kzmH) = 1, (1.49)

which leads to

cos(kzmh) cos(kzmH) - sin(kzmh) sin(kzmH) = 0,

i.e.,

cos kzm(h + H) = 0,

thus,

kzm(h + H) = (m - )7r

1 r
kzm (m=H -,

M = 1, 2, ...

im = 1, 2, . .
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We see this result is the same as the eigenvalue equation in the ideal waveguide with

hard bottom at depth (h + H).

With Eq. (1.49) and Eq. (1.50), we can simplify the eigenfunction (1.47) for p, -+

p, C1 -- > C.

1 sin2 (kzmh) H

p1 cos2( kz7 H) 2

sin 2kzmH 2

4kzm

1 - cos 2kmh

1 + cos 2kzmH

insert in kzm = (m - ___

1 - cos(2m - 1)7r h

1 + cos(2m - 1)7rhH

1 - cos(2m - 1)7r(1 - H)

1 + cos(2m - 1)7r H

1 + cos(2m - 1)rhH

1 + cos(2m - 1)7rhH

=1,

sin 2kzmH = sin 2 [(m - ) J H
2 h+HI

=sin(2m - 1)7r H
h +h H

= sin [(2m - 1)ir(1 -

= sin 2kzmh,
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Am = -(h
p 2

sin 2kzmh

4kzm ) +

since

(1.51)

sin2 kzmh

cos 2 kzmH

and

h
h+H



so we have

1
Am h - 1sin 2k,,mh I H I sin 2kimh -2

2p p 4kzm p 2 p 4kzm .

2p
h+H'

thus for 0 < z < h, we have

xJm(z) =Am sin(kzmz)

= 2 sin(kzmz),
h+H

and

Bm =Am sin(kzmh) e-ikm(h+H) (1.52)
cos(kizmH) '

_ 20pH sin(kzmh) e-ikzm(h+H)
h+H cos(kzmH)'

thus for h < z < h + H, we have

TIm(z) =Bneikzm(h+H) cos klzm[z - (h + H)]

2p sin((kzmh) e-ikzm(h+H eikm(h+H) Cos kzm [z - (h + H)]
h+ H cos(kmH)

insert in kzm = (m - 1)
22p+

h +H sin(kzmz).

Thus we can see the eigenfunction Eq. (1.47) takes a unique form,

2p
''m(Z) h+ H sin(kzmz), for 0 < z < h + H,

as pi -- p, c1 -- c. This result is the same as that of the ideal waveguide with hard

bottom at depth (h + H).

Having obtained the eigenvalues and the eigenfunctions, we can write the normal
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mode solution for this proper Sturm-Liouville problem,

p(r, z) = 4p(z) T .. (Z') Im(Z)H,01 (krmr). (1.53)

For H > h, it can be shown ([11, p. 157]) that the sum in Eq. (1.53) becomes

an integral, and the final result for the modal continuum pc(r, z) has the form (when

both the source and the receiver are in water)([11, p. 157]):

(1.54)pc(r, z) ~ i p1 f k sin k~z sin kzz H( (k r)dkz,
2? , k Biz 2 pZ b kz) 2 7~p JO 1 sin2 kzh + -'k co 2 kzh]

where the path of integration C is shown in Fig. 1-10.

In kz
A

Rekz
CB

Figure 1-10: Path of integration CB

modal continuum part of the solution
in the complex kz-plane associated with the
to the problem shown in Fig. 1-4.

A leaky mode decomposition

The continuum field in Eq. (1.54) can be decomposed into leaky modes, with the

eigenvalue equation (See Appendix D)

(1.55)cot kzmh - i pkizm
pi kzm'
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and the final result for the continuum field by leaky modes is (See [11, p. 162])

V2 1 z 0Cpc(r, z) ~ r2h e E

m=Mt+1

k () ik')r
sin k(O)z, sin k(O) ze p9)12 , e

Vk m()r

m = 1, 2,. . .

2 (())2
k (0) k m(0) 2

1 A - V + kZM1ZM 0

From Eq. (1.56) we can see the exponentially decaying term
pkm s t

e plhkk , so as the

leaky modes propagate along the waveguide, they lose energy into the bottom.

1.5.3 The Total Field in the Pekeris Waveguide

The total field in the Pekeris waveguide is composed of discrete and continuum modal

contributions,

p(r, z) = pt(r, z) + pc(r, z).

With increasing range, the trapped modes tend to dominate the total field because

of the exponentially decaying factor in the leaky mode field.

A general derivation can be found in Chapter 4 in [14].

1.6 A Line Source in a Horizontally Stratified Fluid

Medium in Plane Geometry

The Helmholtz equation for a line source in a horizontally stratified fluid media (cf.

Fig 1-11) is ([14, p. 275])

5x2 + p (p) z+ c2 (z)P = -6(x)(z - z). (1.57)
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kM = h



xz=0

Line source (Oz,)

IF

z=h

bottom

1-11: A line source located at (x, z) = (0, z,) in a horizontally stratified fluid
(plane geometry).

We seek a solution in the form

(1.58)p(x, z) = E m(X) m(Z),

where 'I'm(z) are eigenfunctions of the depth-separated equation

p(Z) 
d dIm(z)] + F2() - k~m 2 m(Z) = 0, (1.59)

Insert Eq. (1.58) and Eq. (1.59) into Eq. (1.57), we obtain

[d2 <(X) 'I (z) + km m(X)Vm(Z)] = -6(x)j(z - zS), (1.60)

apply the operator f xP() ,4(z)dz to Eq. (1.60), we obtain the equation for 4%(x),

d2 (% (x) + k 2 n( 7 (x) =-(X)'F(Zs) (1.61)
dzp(z 8 ) (.1

We can solve ODE (1.61) by the endpoint method (See Appendix E), and obtain

the solution
i eikxnixl

4% (X) = X1Fn(Zs) e k~
2p(z,) kxn

(1.62)
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Thus we obtain the final solution of Eq. (1.57),

(x, = (Z) e)ik mlxl

2p(z,) Z'Im(zs)qIm kxmm
(1.63)

1.7 Transmission Loss

1.7.1 Definition

In underwater acoustics, the field is traditionally expressed in terms of transmission

loss, defined as

TL(r, r.) = -20 logo Pr, r) ,
Po(i)

(1.64)

where r is the location of the field point, r, is the location of the source, pO(l)

is the pressure produced at a distance of im from the same source in an infinite,

homogeneous medium with sound speed c(r,) and density p(r.).

1.7.2 po(l) of a Point Source and a Line Source

1. po(r) of a point source

For a point source in an infinite, homogeneous medium,

eikor
po(r) = 4rr (1.65)

where ko = - is the wavenumber at the source depth. So,

Ipo(l)I = -.47r

2. po(r) of a line source

For a line source in an infinite, homogeneous medium, po(r) satisfies([14, p.

276])
I d d2 0r 6(r)
r (r dr)) + kopo(r) rrdr dr r

(1.66)
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The solution of Eq. (1.66) is

po(r) H )(kor),4

where ko ~ is the wavenumber at the source depth.
CO

Thus, we have

Ipo() = I HO(ko).

1.7.3 Coherent and Incoherent Transmission Loss

274])

If we represent the field as p(r, z)

* Coherent transmission loss

= <1)m(r) I1m(z), then
m

TLcoh(r, z) = -- 20 log 0 < 

( E m(r) (z) ,
e Incoherent transmission loss

TLinc(r, z) = -20 log,() [P Ip(l) 1

For example, for a point source case, in the far field, we have

<bm()=)meikrmr

p(z8 ) 8 rr krm

1po(1)|=

47

([14, p.

and

<bm (r) m(Z)|2

417r
,



thus,

TLcoh(r, z) = - 20 logo ( m (r)T(z)

=-20 logo 4r Fm(zs),Dm(z) e ]
p (z)/8I Er vlkrmE l2r eikrmr1

-20 log1 o - !m(ZS)Pm(Z) I , (1.67)
P(Z) r m k

and

TLin =-20 logo r

= -20 loglo 47 Wm(z9)1Fm(z) ekm

(z,) v/8--

1 7r eikrmr 2

=-20 logo - IPM(z,)W z) . (1.68)
-Z) l r j m )m(Z) ekrm

Note that we can not drop off the term eikrmr in Eq. (1.68) because krm is complex.

The incoherent transmission sums up the modes with a uniformly distributed

random phase, so it is particularly useful when the detailed interference structure

presented by the coherent summation of modes is not physically meaningful and a

smoothed result is preferred. For example, for shallow-water problems, where the

modes are bottom-interacting, since the bottom properties are usually poorly known,

the interference pattern predicted by a coherent transmission loss is not always phys-

ically meaningful. In this case, incoherent transmission loss is appropriate.
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Chapter 2

Two-Dimensional Coupled Modes

in a Two-Dimensional Waveguide

In Chapter 1, we presented the normal modes solutions to the range-independent

problems. In this chapter, we will extend them to range-dependent problems.

In this chapter, we first develop the two-way coupled modes model, followed by a

description about the decoupling of stepwise coupled modes algorithm (COUPLE) by

Evans[8]) . Then we explore two simplifications, i.e., single-scattering approximation

and one-way coupled modes model. Next, we show how to modify C-SNAP to an

approximate two-way model. In the last section of this chapter, we will present some

numerical examples.

2.1 Coupled Modes Method

Following the derivation by Evans([8]), we begin by dividing the range axis into a

number of segment (cf. Fig. 2-1), and approximate the field as range-independent in

each segment. The interface conditions are used to "glue" the normal modes solutions

in each segment together.

If we neglect the continuous spectrum, the solution in segment j can be represented
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segment 1 segment j segment

1 a' t a f

z, pointt sour~e

Figure 2-1: Range-segmentation for coupled-modes formulation.

as([14])
M

9zP(r, z) Z[aif1(r) + Im2 (r)] I'j(z), (2.1)
m=1

where ri- 1 < r < r, and

H13(r) HLA (k3mr)
M H(1)(kj mr-1)'

H0~k r)
(22() = k r

M H (2)(kj ri-1)'

are Hankel functions of order zero, types one and two that are normalized at r ri-1.

The case j = 1 is special with r - 1 = r1, kim are horizontal wavenumbers (eigenvalues)

in segment j, IjM(z) are eigenfunctions in segment j.

For k3mr > 1, we use the asymptotic representation of Hankel functions,

H74 (k rmr) 2 ei(k mr-),
irkrmr

H(2)(kmr)~ 2 ei(krr)
rkrmr
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M HO) (k-rmri-1)

H2H(r) =HP 2 (k"mr)
H 2 )(krmri-1)

r_ -_ ikjm (r-ri-1) T 

H )

e _ M
r

i- k ~mgr,,' 1 ) = H23 (r).
r

We will use the asymptotic representations, Eq. (2.2) and Eq. (2.3),

(2.2)

(2.3)

throughout

the remainder of this chapter.

Impose continuity of pressure at the interface between segment j and segment

j + 1, i.e., at r =r,

j+1(ri, z) = P (ri, z), (2.4)

insert in Eq. (2.1), and we notice that

H11 = 
1 eikjm(ri-r3)

H2+1(r) i-r)
HF23+ (r3) - 3 e- irir-1

thus, Eq. (2.4) gives

1m +M(z) [a- H1j(ri) + bMH2j(ri)]4' (z),
m=1

(2.5)

Apply the operator

1

p+1(z) +

to Eq. (2.5), we have

j+1 + +1

where

f[aH1j (i) + bm'H2j (r')]C011,

M=1

1
I+ '(z) P+ (z) F (z)dz.
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so we get

M

=aj+l +1
M=1

(2.6)

(2.7)03 . - jIM -



Eq. (2.6) can be written in matrix:

aj+1 + W+1 = C3 (Hi3 a- + H2.b), (2.8)

Where a' and Wa are column vectors containing the coefficients a- and b , respec-

tively, and

21

-Mi1

02

02

. C1M

0 2M

... 0MM-

HI and H2' are diagonal matrices,

H11

H1'=

0

H1

0

H1

H2ji

0

We next impose continuity of radial particle velocity at the interface between segment

j and segment j + 1, i.e., at r = ri,

vrj 1(ri, z) = vI,(ri, z), (2.9)

since

1 Op
Or',
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and, with asymptotic representation of Hankel function, we have

1- r1 e ikirm(r-r
_ r [ r-[ ri( )r +

Ta-1
ik m ezk (rril) for large r

r

similarly,

DH2 (r) ~- -ik3 H23 (r),ar r for large r

Thus, Eq. (2.9) gives

1 M

pil ) kj+1[ajl 4i3-+]4i+1(z)
(Z m M M

Apply the operator

We get

M [1
kj1[jl- b =+1 S- kim [ainH1~(r') - Ii'H2()]] pi F--(zIz)z~z

rl 1 ~~M=1 rMMM )WZ

or,
M

+ b [a3H1i(rTy) - biH2(r)1C ,
m=1

where

Of J3z) +'(z)Tj(z)dz.

Eq. (2.11) can be written in matrix

aj+1 _ g 1 = C .(H13 a3 - H2b3),

53

DHl.(r)
Dr

r~~ ~km] ikjrm(rrj')

M

p()M=1
- bIH2j (ri)](.(z),

(2.10)

(2.11)

(2.12)

f(-)'Pj+1(z)dz,



where

O3 =[Of3M1

011 012 ... $1M 1
021 022 .. 2M (213. .. .(2.13)

CM1 02 ... M_

Combine Eq. (2.8) and Eq. (2.12), we get

aj+1 = (( + C)Hlaj + !(C - C)H2jb,

-+1 = (O - Oj)Hla + !(Ci + C3)H2Wb,

Thus, we obtain an explicit expression for aj+1 and +',

b[ 1 R4 R [ 1
. .J , (2.14)

ajt1 R32 R31 a

where

2i = C( 3 )HP3,

R3 = !(C-- )H2,
- 2 - )(2.15)

R3 = !(C3 - O3)H1,

R34= (Ci + 6j)H2 .

In addition, the unknown coefficients satisfy the radiation condition bN = 0 where

segment N is the last segment (cf. Fig. 2-1), and the source condition([14])

1 j 1)11 Ho") (klmrl)
am = )I(zs)H (krmr1) + bH r), m=1, ... ,M (2.16)

m 4p(z, ) MmH(2 (kl rl)'

We can rewrite Eq. (2.16) in matrix form,

a' = d + Db, (2.17)
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where

4p(z8 )

H '1 (k,1r')
H (2)(kllrl)

D=
HO 0(k' ri1

H 2) (klmrl)_

In fact, dm can be determined easily by equaling the outgoing component and the

range-independent solution in the source region.The outgoing component is

P.Ut(r, z) = a H11(r) i1(z)

a'm

= H l(kl mr) Mi(z),

and the range-independent solution in the source region is

Pindep(r, z) = (z,)x,(z)H(1(k.1r),
4p(zs) m

Equal Eqs. (2.18) and (2.19) and we have

al 1 i
M H) (k ri) 4 p(z,) '

(2.18)

(2.19)

so,

al =__ (z )H((klmrl) = dm.
4p(z,)

Having obtained all the coefficients a-, b, we may obtain the pressure field in

segment j by

p3(r, z)= [akHlj(r) +bH2j(r)]'Pj(z)

=T3 (z)[H13(r)a3 + H23 (r), (2
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where VI(z) is a row vector,

(Z) = [ ).(z) )

Hl(r) and H23(r) are diagonal matrices.

To deal with the same problem with a line source, slight modifications are needed.

For x > 0, we represent the pressure field in segment j as

M

ps(x, z) = Z [ai Eli (x) + biE2i (x)]'Pj(z), (2.21)
mn=1

where xi-1 < x < xi, and

ik3,mx

E1(x) = ek(x-x)
eik- xi- 1'

-ik7 x

E2-1(x) =e =m e -ikx3m (X -XP'
M e-ik-Xmx-'

After imposing continuity of pressure and continuity of radial particle velocity at the

interface between segment j and segment j + 1, i.e., at r = ri, we get the same

expression for aJ+1 and bj+l, Eq. (2.14). While d for line source has different form,

dm =(Z) e x
1

2p(z8 ) m kxm

2.1.1 Approximate Coupled Modes

The full two-way coupled modes formulation allows for interactions between each

segment in range and as a result leads to a global problem rather than a marching

type of solution provided by, for instance, the parabolic equation. Computation time

can be reduced by neglecting these multiple interactions, usually with only a minor

degradation in accuracy.

An efficient marching implementation of coupled modes can be done in several

ways with different degrees of accuracy([20]). Next we introduce two frequently used

approximations.
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1. Single-scatter approximation

Single-scatter formulation treats each interface in range as an independent pro-

cess thus neglects the higher-order multiple-scattering terms. We have known

the matching at the interface r = ri is

L i [Ri R1 Fb'1J [R4 Rj L(2. (2.22)
aj+1 R32 R-' a'

For the single-scatter approximation, the incoming wave in the left segment,

i.e., ai is assumed to be given. Initially,

a' = d,

where

dm (z')H (k r ),
4 p(z,)

and we require that the solution is purely outgoing in the right segment, i.e.,

W+1 = 0. Solving for the backscattered amplitudes bi yields

W = -R4 Ra3. (2.23)

Therefore, the forward-scattered amplitudes aj+l are given by

+ (R, - R3R34-R )aj, (2.24)

which is an explicit equation for the forward-scattered field.

2. One-way approximation

One-way approximation neglects both the back-scattered amplitudes in the right

segment b+1 and b in the left segment. Thus from Eq. (2.22) we have

aj+1 = R-a . (2.25)
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Note that from Eq. (2.15) we know the one-way approximation Eq. (2.25),

involves both pressure matching and velocity matching.

2.1.2 Matching Methods in One-Way Models

Porter, Jensen and Ferla([20]) presented several matching methods in one-way models.

Here we make a brief review of those matching methods.

Fig. 2-2 shows a stair-case representation of a sloping bottom. The important

interfaces with strong impedance contrasts are the horizontal interface Ih and the

vertical interface Iv along the stair steps.

cpu, c",)j c")Y+1

Figure 2-2: Stair-step representation of a sloping interface.

While conditions at horizontal interfaces (continuity of pressure and vertical par-

ticle velocity) are accurately implemented in finding the range-independent solution

in each segment, the vertical interfaces Iv are treated very loosely in one-way models.

The full-interface condition (continuity of pressure and horizontal particle velocity) at

vertical interface Iv cannot in general be satisfied within the framework of a one-way

solution.

As suggested by [20], next we consider which type of approximate interface condi-

tion should be used in one-way solutions in order to improve accuracy. Some guidance
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can be gained by examining a 1-D wave equation. Thus we consider a problem with

c(x) being the sound speed and p(x) being the density as a function of axial distance

x. For such a 1-D problem, the 3-D Helmholtz equation

pV(-(IVp) - p=0
p C2

reduces to
d l dp w 2

dx p dx C2(X)
(2.26)

where p(x) is the acoustic pressure and w is the frequency of the time-harmonic source.

For slowly varying p(x), the WKB approximation to p(x) is given by ([20], [2])

(2.27)p(x) - Ao p(x) kx) eifispds
po k(x)

whereAO, po and ko is respectively amplitude, density and wavenumber at x = 0.

We now consider the results obtained by a piecewise constant discretization. Thus,

as illustrated schematically in Fig. 2-3, the medium is approximated by a sequence

of N segments with both sound speed and density constant within a segment.

j j+1

Ai Bi

4-~ A19

Aj+1 Bj+1

Figure 2-3: Discretization of the 1-D wave equation.
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The solution in the jth segment can then be written as the sum of a right- and

left- traveling wave as follows:

p3 (x) = Aieik- (x-x 3 ) + Bie-iki(xx-x), (2.28)

where xi and xj+l are the endpoints of the jth segment and ki is the wave number

in that segment. We next consider the effect of several possible interface conditions.

A. Pressure-matching

In this case, we assume that Bi = 0 for each segment, so

p'(x) = Aie ik-(xx),

matching pressure at x = xj+1 leads to

Ajeik -(x+'-x) - Aj+leikj+l(xj+1-xj+)

denote Axi = xj+1 -j, then we obtain

Aj+1 = Aie iki AxJ, (2.29)

which implies

AN AN-1eikN-1AXN-1

(AN-2 ikN-2AXN-
2 ikN-lAXN-1

=AeikAxo *eik'Ax' *-eikN-lAXN-1

N-1
i E kdxj

=A'e -0 . (2.30)

Now taking the limit as the number of segments goes to infinity yields:

p(x) = AOeik()ds (2.31)
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By comparing Eq. (2.31) and Eq. (2.27), the pressure-matched solution shows a

constant amplitude, while the WKB amplitude varies in proportion .

B. Velocity matching

Again, we assume Bi = 0 for each segment. Matching -/p at each interface leads

to

Akik.(xj*- ') = AJ+likj+leikj+'(x+1 x-3+) 1
p> 7pi+

1'

thus we obtain
AJ~l- pi+1 k x

A Aj+1 = A k 1  eik- (2.32)

which implies

N-1 +1 ki
AN =A 0 N k eik-7 x

j=0

PN ko i Ek0Ax3

=Ao N (2.33)

Now taking the limit as the number of segments goes to infinity yields

p(x) = A 0 P k ei xk(s)ds.
p0 k(x)

Once again, the phase factor is correct while the amplitude incorrect.

C. Reduced-pressure matching

We still assume Bi = 0, matching p/\,/p at each interface leads to

Ajeik3(xi 1
~x3 ) Aj+leikj+l(xi+1-xj+l)

thus we obtain

Aj+1 - A' e ,kJLAx3 (2.35)
pa
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which implies

N-1 +
AN 0 11 ikAxI

j=1
N-1

pN ii'kiAx3
Ao e 0 O (2.36)

Again, taking the limit as the number of segments goes to infinity yields

p(x) = A' P(X)ekS) (2.37)

Thus, by matching reduced pressure, we correct for the errors due to density

variation but not for those due to the change in sound speed.

D. Impedance matching

It is evident that some additional correction is needed to account for the effect

of variations in k(x), i.e., of variations in sound speed c(x). As suggested by

Westwood and Collins ([5]), we match p/'p- across interfaces. (We refer to this

matching method as impedance matching although it actually involves the square

root of the material impedance.)

We still assume Bi = 0 in each segment, impedance matching at each interface

implies
Aieiki-z2+1 x3) Aj+ieiki+i(x3+1 1 +)

thus we obtain

Aj+1 =Aj C eik Ax3

A1 k piki k
P= A e . (2.38)
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Taking the limit as the number of segments goes to infinity yields

p~)= A0 kO ) i fo' k(s)dsp(x) = p0 kx(x) ' (2.39)

which agrees precisely with the energy conserving WKB result.

E. Single scatter

The single-scatter result is obtained by treating each pair of segments as an inde-

pendent problem, thus neglecting the higher-order terms resulting from multiple

scattering (reflection and transmission) at other interfaces.

In the left segment, we allow both an incident right-traveling wave with coefficient

Ai and a reflected left-traveling wave with coefficient B. In the right segment, we

allow only an outgoing transmitted wave with coefficient Aj+'1 . The two unknowns,

B and Aj+, permit us to impose both continuity of pressure and particle velocity:

Aj+1 =Aieik Ax' + BieikJAx3 (2.40)

Aj+1 B(Ale' Bie- ) (2.41)
jp ki+1

solving for Aj+l, we obtain

A -+1 A' 2ek Ax (2.42)
1+ Of'

which implies
N-1 2eik3 

Ai(

AN0
=0 + ki

It can be shown ([20], [3]) that

p~))Ak) i fo k(s)dswhih= A's pr (x) t (2.44)

which is precisely the WKB result.
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Summary of results:

The results of these various interface conditions are summarized as follows:

ei f k(s)ds p matched

p(x) ko ei f k(s)ds L/p matched
po k(x) dx

p) e f k(s)ds -- matched

px-) 0 eV/ ~~8 P m
p(x) ko eifk(s)ds - matched/single scatter/WKB

0 k(x_) r_

Comparing these forms we see that the pressure matched solution shows serious

deficiencies for moderate density variation. Velocity matching is also a poor choice,

however, reduced-pressure matching corrects entirely for the density effect. If c(x)

varies much less than p(x) the reduced-pressure matching would correct most of the

error. A further improvement may be obtained using the impedance matching or the

single-scatter approximation.

For one-dimensional problems, the impedance matching and the single-scatter ap-

proximation corrects for sound speed changes as well as density changes across inter-

faces. However, for two-dimensions some complications arise, and matching p/%/e or

single-scatter approximation does not entirely resolve the energy conservation prob-

lem.

2.1.3 Implementation of Coupled Modes in Ideal Waveguides

For ideal waveguide with a homogeneous water layer bounded above by a pressure-

release surface and below by a rigid or soft bottom, we may obtain analytical repre-

sentation for the coupling matrixes O and C&.

Due to the homogeneous water layer, both 01 and CO depend on the integral

D

I = j +(z)Tj(z)dz, (2.45)
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where D = min(D', Dj+l), Di and Dj+l are the water depth in segment j and j + 1,

respectively.

For ideal waveguides (rigid or soft bottom), eigenfunctions take the form

'Im(Z) = sin(k2p z),

thus, the integral in Eq. (2.45) becomes

/D
x~j~zffsin kz~dz

D2p si ( mz) sin(kV1z)dz

1
sin a sin /3= 1[cos(a - 3) - cos(a + 3)J

2
2P 1 [D D

cos(k3m - kzt")zdz - cos(kjm + k*')zdz
VD1D2 2 J fo

* When kjm kiz ,

I [D - 2. sin(2kzmD)].
VD1D2 2 kizm

* When kim / kj+1l,

I- = sin(kim- k+t1 )D 1 sin(km + kjz+t)Dl
VD 1 D2 Lkzm - k- kzm + kit 1

2.2 The Decoupling of Stepwise Coupled Modes

In this part, we will show the decoupling algorithm used in the program COUPLE([8]).

COUPLE is a program that performs a stepwise coupled modes ([7], [14]) calculation

of the two dimensional underwater acoustic field with a vertical array of harmonic

point sources in cylindrical geometry or with a line source in plane geometry. The

method of eliminating the instabilities in COUPLE is similar to the invariant embed-
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ding approach used for wavenumber integration ([14, p. 227]).

2.2.1 Numerical Problem of the Traditional Two-Way Cou-

pled Modes Method

The modes coupling equation may be written as

aj+1 a .
j = 1, 2,..., N - 1

where R' is the 2M x 2M matrix containing the block submatrices R-, R-, R and

R- - R_4
[R_'

thus, we have

bN

aN

R33R 1 _

=R N-1 bN-1
a N-1

=RN-1RN-2 ... R1

S4

S 2

S3l

Si ,

b1

al

bl

al
(2.47)

where S is a product of the matrices Ri, j = N - 1, N - 2, .. . , 1,

S=RN-1R N-2 1

so,

bN = 4 b1+S3a1 ,

66

(2.46)

(2.48)



The radiation condition bN = 0 implies that

S4 b + S3a' = 0, (2.49)

Combine Eq. (2.49) with the source condition

a' = d + Db, (2.50)

we can obtain the equation for b,

b =-(S 4 +S 3D)-S3 d (2.51)

Known b, a' is obtained by Eq. (2.50). Having obtained b and a', the rest of the

coefficients, b and ai for j = 2,. . ., N are obtained from Eq. (2.46). The resulting

coefficients are substituted into Eq. (2.20) to give the stepwise coupled mode solution.

The traditional two-way coupled modes method described above is simple but

may encounter numerical problems, when propagation is carried out over many wave-

lengths. The matrix S is a product of the matrices R3, j = N - 1,...,1. Each of

the Ri contains exponentially growing and decaying factors resulting from the nor-

malized Hankel functions in Eq. (2.1). The growing and decaying factors are coupled

by different basis(mode coupling) at the stepwise depth variations. It is not always

possible to evaluate the inverse of the matrix S 4 + S3 D in Eq. (2.51), because both

S 4 + S3 D and SAd may be too large to obtain a meaningful solution for b. This

difficulty with the traditional two-way coupled modes method suggests that we should

attempt to decouple the growing and decaying solutions. This is the motivation for

the decoupling algorithm.
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2.2.2 Decoupling of Stepwise Coupled Modes

Define the 2M x 1 column vector xi as

then matrix-vector recursion in Eq. (2.46) becomes

(2.52)

A fundamental matrix solution of Eq. (2.52) is a 2M x 2M matrix Xi with linear

independent columns that satisfies the matrix recursion

X-+1 = R3X, (2.53)

Define the transformation

(2.54)

where T' = I and Tj+1 is found by the modified Gram-Schmidt orthogonalization([21])

of the columns of R'Tj for j = 1, . .. , N - 1. This decomposition has the form

RT3 =T3+lU, (2.55)

where Tj+1 is unity and Uj is upper triangular. Substituting Eq. (2.54) and Eq. (2.55)

into Eq. (2.53),

Tj+1yj+1 =RjTjYj

=Tj+1 UY3,

so we obtain the matrix recursion for the new unknown matrix Yi,

Y+1 = UjY3, (2.56)
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U3 in Eq. (2.56) is upper triangular, partition it as

Ui-[Bi 
Ci

0 E3

and partition Y' as

3 =

j Y43 Y

then Eq. (2.56) leads to

yj+1 yj+1 B C' Y4 Y3

Yj+1 yj+l 0 E' Y2  Y1

thus we have

Yj-- B'Y'+ C3Y3, (2.57a)

Yi+1 =B'Y' + C'Y 1', (2.57b)

Yj+ 1 =Ej3Y/, (2.57c)

Y/j+1 =EjYlj. (2.57d)

It is apparent that Y+1 and Y2 + 1 are decoupled from Y? and Y/. The original

unknowns are not decopled but they can be obtained from the new decoupled un-

knowns using Eq. (2.54). It turns out([8]) that Eq. (2.57) can be solved without the

numerical problems encountered in solving Eq. (2.53).

A matrix solution of Eq. (2.57) will be generated as follows. Let Y = 0 and

Y1 = I. Then Eq. (2.57c) implies Y2 = 0 for j = 1,..., N, so Eq. (2.57c) is not

explicitly needed. From Eq. (2.57d) we may obtain Y?+ 1 in the remaining region in

the outgoing direction for j = 1,... , N - 1.

Having found Y 1N, choose Y4N and Y3N to satisfy the radiation condition in the

last region, which requires the ingoing components(first M rows, which corresponds

to the coefficients bi) of the matrix XN _ TNyN are identically zero.
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Let TN be partitioned as

N 3N
T [=T4 T3

N T1N

then

XN NYN T4 T3 Y4N 0 Y3N 4 Y4N NY3N+TN 1

T T1NJ y N Ny4 N N N+TNyN

so the first M rows of XN are zero leads to

TNY4N = 0, (2.58)

and

T4 3 3 1N = 0 (2.59)

To satisfy Eq. (2.58), we may choose Y4N = 0, thus together with Y2' = 0, for

j = 1, ... ,N, Eq. (2.57a) implies that Y = 0 for j = 1,..., N, which means, like

Eq. (2.57c), Eq. (2.57a) is not used explicitly.

From Eq. (2.59), we get

yN 1'NY = -4N) -1 3 1N1

thus we can solve Eq. (2.57b) for Yj' in each remaining segment in the ingoing direc-

tion with decreasing j = N - 1,..., 1.

The solution to Eq. (2.57) just obtained(i.e., Yi for j = 1, . . . , N) is multiplied

by Ti to obtain the general matrix solution of Eq. (2.53) that satisfies the radiation

condition in segment N. Thus any vector solution of Eq. (2.52) satisfies the radiation

condition in segment N can be written as

= ai = T'Y3c, (2.60)
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where c is an arbitrary 2M x 1 vector.

If c =C2 then
C1

[ 0 - ..

Y c= L 0 yj[i

= 3 ,1 (2.61)

thus we have

N bN

N N

=T NyNc

Tf N N 3N4T T3 1Y3c 1 (2.62)
TN TN YN j
TNYNC1 + T3 1Nc 1
TYNC 1 + [ 1Ny 1N

insert in Eq. (2.59)

0

TNYNC1 + TfYiN

so we can see, the radiation condition bN = 0 is already satisfied. We can get c1 with

the source condition.
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In the first segment,

X1 _ bl = T1 Y'c

insert in T = I

=Y 1c

Eq. (2.61)

[Y 1 
insert in Y = I

[3c1]

so, al = c,, and bl = Yci, insert into the source condition,

a' =d+Db,

we have

thus, we obtain ci,

ci = d + DY3
1 c1 ,

Ci = (I - DY31)-1d.

Having found ci, we may obtain al and bl from Eq. (2.63), and the remaining

coefficients a' and W7 , for j = 2,..., N, are obtained from Eqs. (2.60) and (2.61).

2.2.3 Comparison of the Traditional Two-Way Coupled Modes

Method with the Decoupling Algorithm

To make the comparison, it is helpful to introduce the reflection matrix for segment 2

through segment N. The reflection matrix relates the incoming (reflected) coefficients
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to the outgoing (incident) coefficient in segment 1.

For the decoupling algorithm, since al = ci, and bl = Y3
1ci, which leads to

bl = Yal, the matrix Y3
1 is the reflection matrix for segment 2 through N, denoted

as

Rd = Y31,

the coefficient a' is found by

a' = (I - DRd)d. (2.65)

For the traditional two-way coupled modes method, the source condition and the

radiation condition imply that

bi = -S3 1 S3 a1 ,

thus the reflection matrix is given by -SL 1 S 3 , denoted as

RH = -SZ13,

the coefficient a' is found by

al = (I - DRt)d. (2.66)

Comparing Eq. (2.65) and Eq. (2.66), we see that the only difference is the way

the reflection matrix is computed.

We expect, from physical consideration, that the reflection matrix is well behaved

and small in most applications. There should be no problem in computing the re-

flection matrix if the calculation is arranged correctly. The calculation of Sz 1S 3 can

be difficult since, although SZ'S3 is well behaved, both S4 and S3 can contain very

large matrix elements. The decoupling algorithm is a better way of computing the

reflection matrix since it avoids this calculation.

A comparison based on computational and storage requirements is also needed.
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The steps in the traditional two-way coupled modes method:

(1) For j = 1,..., N - 1, find and store R'; accumulate the product S.

(2) Solve Eq. (2.51) for b and compute al using the source condition.

(3) For j = 1, ... , N - 1, read R; generate aj+1 and W+1.

The steps in the decoupling algorithm:

(0) Let T, = I and Y Il

(1) For= 1,..., N -1, find R'; orthogonalize R'T' to find Tj+1 and U'; compute

Y'+ 1 using Eq. (2.57d); store Tj+'1 , B', C', and Y?+l

(2a) Solve Eq. (2.59) for Y3 and store it.

(2b) For j= N - 1, ... , 1, read B', C', and Yj; solve Eq. (2.57b) for Yl; store Y3j.

(2c) Solve Eq. (2.65) for c1 = a' and compute bl = Y3
1al.

(3) For j = 2, ... , N, read T', Y/, and Yj; generate a' and b using Eqs. (2.60) and

(2.61).

We see from the lists above that the decoupling algorithm involves more steps

than the traditional two-way coupled modes method. It takes more time to run the

decoupling algorithm than the traditional two-way coupled modes method. At the

same time, the decoupling algorithm requires about twice as much as storage as the

traditional two-way coupled modes method.

2.3 C-SNAP: Coupled SACLANTCEN Normal Mode

Propagation Loss Model([10])

2.3.1 Introduction

In ocean environments where either the water depth, the sound-speed profile, or

the bottom composition vary significantly over the propagation path, sonar perfor-

mance predictions cannot be satisfactory addressed without taking into account the
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range-dependent properties of the environment. Though several numerical models

are currently available for solving propagation problems in range-dependent environ-

ments, they tend to be quite sophisticated and their correct use requires considerable

skill on the part of the model user. C-SNAP is built with the main objective of being

particularly easy to handle and competitive in terms of execution time with the ex-

isting parabolic equation algorithm C-SNAP code is written in standard Fortran and

thus can be easily implemented on a personal computer.

C-SNAP has the following properties:

(a) The code incorporates a reliable algorithm for the automatic selection of the

vertical grid spacing to be used for accurately matching the solution all in range.

(b) It bypasses the calculation of mode coupling matrices and compute the mode

coefficients in a new segment by projecting the pressure field onto the new mode

set.

(c) To preserve accuracy, an energy-conserving matching condition(impedance match-

ing) is implemented at the coupling interfaces.

(d) The SACLANTCEN range independent normal mode program SNAP([12}) was

taken as the main building block on top of which range-dependent features have

been added.

2.3.2 Program Overview

The Mathematical Model

From 1.2, we know the normal mode representation of the acoustic pressure pro-

duced by a harmonic point source in a horizontally stratified medium is given by the

following expression:

00
P(r7 Z) = 4pz) n'(zs)q/m(z)H('N(km (2.67)
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In C-SNAP, we use the large-argument asymptotic approximation of the Hankel func-

tion and neglect the contribution of the continuous spectrum. With M indicating the

largest-order discrete mode of the problem, we come to the following expression:

. M eikrmr

p(r, z) = PZ 8 __r Em (z3)Qm(z) . (2.68)

The numerical method employed to find the mode amplitudes(Im) is based on the

finite difference algorithm in combination with an inverse iteration technique. The

eigenvalue(krm) may be successively refined over a sequence of meshes and finally

extrapolated to yield the solution of an infinitely dense mesh, thus resulting as an

improved estimate of the continuous problem([19]).

Loss mechanisms such as volume attenuation in the water column, bottom absorp-

tion, shear, and scattering from surface and bottom boundaries are included int the

imaginary part of the eigenvalue krm. They are computed through a perturbational

approach.

The range-dependent case is solved by generalizing the one-way formulation of the

range-independent solution as follows:

(a) Subdividing the propagation path in a sequence of range-independent segments,

with sloping bottoms treated by the staircase approximation. Environmental

properties for the various range subdivisions are obtained through a linear inter-

polation in range between adjacent profile inputs.

(b) Finding the normal modes, the eigenvalues and the associated properties in the

first segment and computing the pressure field as in the range-independent case

until the interface to the next segment is reached.

(c) The mode set pertaining to the next segment is computed and the pressure field

to the left of the interface is projected onto the new mode set. The resulting mode

coefficients (excitation coefficients) are then used to carry on the computation of

the pressure field in the new segment. This procedure is repeated for each new

segment.
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Similar to the one-way approximation described in 2.1.1, C-SNAP neglects the

backscattered amplitudes W' in all segments. Thus the pressure field in segment j is

(r, z) =Za (2.69)
m=1 AH (krmri-1)

and in the first segment(j 1) as a special case we set r 1 -- r1 , and define the

mode coefficient as

al = z _F1(z )H(1)(k,.r1). (2.70)
4p(z.)

Also, to preserve accuracy, the interface condition which is suggested by Collins

and Westwood([17]), and implemented in a PE code, is implemented in C-SNAP([16]).

This approach, which we will refer to as an impedance matching, consists in matching

across each interface.

By observing that at the beginning of each interface the ratio of the Hankel func-

tions is always equal to one, the impedance matching at the interface r = r- yields

1 a1 M H (kmr) (Z)
pJ+l(z)ci+9(z) __ 1  i() pl(z)cj(z) M H1 HO'(kJmrj-1)

(2.71)

By applying to Eq. (2.71) the operator

J Wi+(z)
(-) dz,
fpi+l(z)

We obtain

+1 i . HM (kjnrs) Tjz) +(z) +1al a- VH(1 )( )7() i (Z) dz, 1 1,...,
M=1 HO(1(kir'mrj-1) piZ)p+1W+(z)

insert in Eq. (2.69)

r 1,3+1(z)
PJ (r, z) I dz, 1 = 1, ... , Mj+1 (2.72)

S(pr (z)p+l (z) ain blr

Eq. (2.72) is the expression evaluated at each interface by C-SNAP. It only requires
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the pressure field over depth to the left of the interface and the eigenfunction in the

new range segment.

In C-SNAP, the Hankel functions are replaced with their large-argument asymp-

totic representation. Other interface conditions such as pressure-matching and reduced-

pressure matching([20]) are also obtained from C-SNAP and may be convenient in

comparing results with different models.

The Environmental Model

As shown in Fig. 2-4, the different segments used to describe the range-dependent

environment are treated as a half-space subdivided into three main layers consisting

of a water column of depth Ho, a sediment layer of thickness H1 , and a semi-infinite

homogeneous subbottom. The sound speeds co in the water column and ci in the

sediment layer may vary with depth, while density (po, p1) and volume attenuation

(0, f1) are kept constant within the two layers. The subbottom is treated as a solid

with depth independent properties: c2 is the compressional speed, P2 the density, 02

the compressional attenuation, c2, is the shear speed and /32, the shear attenuation.

Furthermore, the sea surface and the seafloor are treated as rough boundaries, with

so and s, indicating the rms wave height.

The environment between any two input profiles is approximated by a series of

range-independent segments with a sloping bottom being described by a staircase

approximation. In Fig. 2-5 we show a case with distinct slopes at both the water-

sediment and sediment-subbottom interfaces. The symbols P1 , P2 , and Pm denote

the location of the different input profiles used to represent the range-dependent

environment, S1, S2 , and S,, are the range-independent segments used for representing

a sloping bottom via a staircase approximation, rl, r2 , and r, are the positions of

the interfaces between adjacent segments where the mode coupling is performed.

The number of range subdivisions between any consecutive input profiles (P, P+i)

is controlled by an input parameter. The environmental properties in each of the

resulting segments are obtained through linear interpolation in range.

In the case of a sloping bottom, the interpolation to compute the sound-velocity

78



profile in the water and/or in the sediment layer is performed after the shallowest

sound-velocity profile is extended with data points from the deepest one. Also, these

data points are adjusted through a parallel shift in order to match the last point in the

shallowest sound-velocity profile. Care should be taken to ensure that this technique

is adequate to describe the expected environment.

so

HO CO (4 p0D, f00

WATER

H1 c1 (z), p1, -1 1 SEDIMENT

c2S' 132S C c21 P21 P2

SUBBOTTOM

Figure 2-4: Propagation media handled by C-SNAP.
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Figure 2-5: Stair step approximation of sloping bottom environment.

2.4 An Approximate Two-Way Model

From section 2.3, we know C-SNAP is a one-way coupled modes model, with impedance

matching to preserve accuracy. We may approximate a two-way coupled modes model

based on C-SNAP.

2.4.1 Introduction

We take two steps to build an approximate two-way model. In the first step, we

march forward with single-scatter approximation; in the second step, beginning with

the backscattered component from the rightmost interface, we march backward with

one-way approximation. Each time an interface is crossed, the new mode amplitude

b is added to the old one generated by the single-scatter matching in the first step,

and the sum is used to carry on the backward propagation until the source region is

reached. Refer to Fig. 2-6.

In the approximate two-way model, we use the left interface to normalize HI func-

tion, while use the right interface to normalize H2 function. With this normalization
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Figure 2-6: Illustration of an approximate two-way coupled modes model.

of H1 and H2 functions, the outgoing and incoming decaying modes are illustrated

in Fig. 2-7.

,-1

Figure 2-7: Outgoing and incoming decaying modes with HI n
interface while H2 normalized at the right interface.

Thus the field in segment j is represented as

p.(r, z) = [a"H1 (r) + b H2-(r)]j.(z)
m

)rmalized at the left

(2.73)

where

r e ikjm(r-rj-')
r i

r
3 -ik'
re rm(r-ri)

for point source
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H1(r) eikj(r-r-1)

H2j(r) e-ikr-(r-ri)

for line source

2.4.2 Formulas of Single-Scatter Approximation in the For-

ward Marching Process

With the new normalization method, the results of the single-scatter approximation

in the forward marching process are presented below (Refer to Fig. 2-8).

Figure 2-8: Geometry for forward marching process.

After imposing continuity of pressure and continuity of radial particle velocity at

the interface between segment j and segment j + 1, i.e., at r = ri, we get

b = -(C + Cb 1 (Ca - Cj)Hlj(rj)aj

aj+1 (= C + Cg)H1j(rj)aj + I(Ci - Cl)
(2.76)

where

C[l,m] J +1(z)(z)dz
Ca[1 n]fPjil(Z) 1i (Z4M(Z

C ,7n] = kj z) Tz +1(z) T(z)dz

(2.77)

(2.78)

and the initial mode amplitude is

a = d,

where

' T' (z,)H '(kl mr'),{ 4p(z () M 0rm

for point source

for line source
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2.4.3 Formulas of One-Way Approximation in the Backward

Marching Process

We apply one-way approximation in the backward marching process (Refer to Fig. 2-

9). After imposing continuity of pressure and continuity of radial particle velocity at

Figure 2-9: Geometry for one-way approximation.

the interface between segment j and segment j + 1, i.e., at r = ri, we get

I= (C+ 1 + Cd+1 ) - H2+ 1(r) - &+1
2

where

Ci+1, m] = J ij(z)T '(z)dz

Cj+'[l, m] = I p+(z) 'I(z)Tj'I(z)dz

2.4.4 Modify C-SNAP to an Approximate Two-Way Model

The original C-SNAP has three matching options, i.e., pressure matching (MATCH

1), reduced-pressure matching (MATCH 2) and impedance matching (MATCH 3).

We add to C-SNAP the fourth matching option, i.e., MATCH 4, which includes a

forward marching process applying single-scatter approximation followed by a back-

ward marching process applying one-way approximation, and gives an approximate

two-way result.

Appendix E contains some of the notifications we took when we modified the

one-way C-SNAP to a two-way coupled modes model.
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2.5 Numerical Examples

The issue of establishing reference solutions for range-dependent ocean acoustic prob-

lems was addressed within the Acoustic Society of America (ASA). Special sessions at

two consecutive ASA meetings were dedicated to this problem, and relevant bench-

mark problems were identified and solved([13]).

What we present in this part are solutions of several problems generated with

the two-way C-SNAP code and comparison with other numerical codes, for example,

COUPLE.

2.5.1 Propagation in an Ideal Waveguide

As indicated schematically in Fig. 2-10, the waveguide consists of a 200 m water layer

bounded above by a pressure-release surface and below by a rigid bottom. The source

is located at 100 m and the receiver is located at 100 m. The frequency is 50 Hz. We

may obtain the analytical result from the formulas in section 1.3.1. The analytical

result and result by two-way C-SNAP (MATCH 4) are shown in Fig. 2-11. The input

file for C-SNAP is listed in Appendix H.

As seen from Fig. 2-11, the accuracy control' should be set to the highest level

(NMESH 4) to obtain an accurate result for ideal problems. Otherwise (NMESH 1,

2 or 3), the eigenvalues computed by C-SNAP are not accurate enough.

'NMESH arg [10]: Number of subsequent meshes used to refine the wavenumbers. To get a
reasonable balance between execution time and accuracy the default choice for NMESH is 1, as
in most cases the solution obtained from a single mesh is already sufficiently accurate. A good
choice for higher accuracy is "NMESH 4". The ratio between the number of mesh points in any two
consecutive meshes is roughly 1/3. Consequently, a ratio of 2 will exist between the first and fourth
mesh.
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Figure 2-10: Flat geometry for ideal problem.
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Figure 2-11: Comparison of analytical result and result by C-SNAP with NMESH 1
and NMESH 4.

85

-o
F-

- Analytical result
C-SNAP (MATCH 4, NMESH 4)
C-SNAP (MATCH 4, NMESH 1)1

AV

O km
0211

2kmn



2.5.2 Propagation in a Waveguide with a Cosine-Bell Shaped

Ridge

In this example, the computations were based on a cosine-bell shaped ridge described

by a simple cosine-bell([6]),

(X) (a/2)[1+ cos (27r(x - xo)/w)], Ix - xo| <w/2

0, ix - xoj > w/2

(2.79)

where a is the height and w is the width of the ridge. We choose a = 50 m, w = 100

m and x0 = 250 m in this example. The constant sound-speed in water is 1470 m/s.

The bottom is rigid, with initial depth 200 m. We compute propagation loss for a 25

Hz line source in plane geometry located 250 m away from the center of the ridge and

the source depth is 30 m. The geometry of this example is illustrated in Fig. 2-12.

Geometry
n,

20-

40 -

60 -

80-

100

400 600
x(m)

800 1000 1200

Figure 2-12: Geometry of the cosine-bell shaped ridge problem.

This problem requires accurate representation of the near field, which means we
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must include many evanescent modes. Due to the problem of stability, we apply the

analytical solutions for eigenvalue and eigenfunction in our two-way model described

in section 2.4. The results from one-way model (single-scatter) and two-way model are

shown in Fig. 2-13. In Fig. 2-13(b), interference between incident and backscattered

fields is clearly visible in the region between the source and the ridge.

one-way resul (|p). fre=25Hz, SD=30m 0.3 two-way restA (pi), fre=25Hz. SD=30m 0.3

20 20

40 0U5 0.25

40.1 40

160 6.0

180 180

.00 200 300 4 000 7 0 00 0 0 200 100 20 300 4 5 00 7 00 000 100 1100 1200 0

(a) (b)

Figure 2-13: Transmission loss for cosine-bell shaped ridge problem from (a) one-way
(single-scatter) (b) two-way.

2.5.3 Upsiope Propagation in a Wedge-Shaped Waveguide

As one of the ASA benchmark problems, the geometry for the wedge problem is

given in Table 2.1 and graphically illustrated in Fig. 2-14. The environment consists

of a homogeneous water column (c =1500 m/s, p =1.0 g/cm3) limited above by a

pressure-release fiat sea surface and below by a sloping sea floor. The water depth

at the source position is 200 m decreasing to zero at a distance of 4 km from the

source with a slope of approximately 2.860. Accurate field solutions are sought for a

25 Hz source placed at middepth (100 m) and for two receivers at 30 m and 150 m

depth, respectively. As seen from Fig. 2-14, the selected depths provide samples of

the acoustic field in the water column as well as in the bottom. The points in range

where the two receivers cross the water/bottom interface is 3.4 km for the shallow

receiver and 1.0 km for the deep receiver.
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Table 2.1: Benchmark problems associated with a wedge-shaped waveguide.

1. BENCHMARK WEDGE PROBLEMS

Accurate solutions are invited for upslope acoustic propagation in a wedge with the
geometry described below. The parameters of the problem are listed below, includ-
ing a three choices of bottom boundary condition (pressure release, case I and two
penetrable bottoms, case II and III). The wedge geometry is shown in Fig. 2-14.
Parameters common to all three cases.

wedge angle Oo = 2.86'
frequency f = 25 Hz
isovelocity sound speed in water column c1 = 1500 m/s
source depth = 100 m
source range from the wedge apex = 4 km
water depth at source position = 200 m
pressure-release surface

Case I: pressure-release bottom.
This problem should be done for a line source parallel to the apex i.e., 2-D geometry.

Case II: penetrable bottom with zero loss.
sound speed in the bottom c 2 = 1700 m/s
density ratio P2/P1 = 1.5
bottom attenuation = 0 dB/A

This problem should be done for a point source in cylindrical geometry.
Case III: penetrable lossy bottom.

As in case II except with bottom loss = 0.5 dB/A.

OUTPUT

Plots should be presented on overhead transparencies of propagation loss versus range
measured from the source to the apex. The scaling should be as shown. It is important
to conform to this format for the purpose of comparison. The dB scale of propagation
loss should cover exactly 50 dB. The start and end points of this 50-dB scale should
be chosen to ensure that the results are entirely contained in the plot. Propagation
loss is defined for the present purpose as

PL = -10 log, (Intensity at a field point)
0 (Intensity at one meter away from source)

Receiver depths
Case I: 30 m
Case II and case III: 30 and 150 m
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Figure 2-14: Wedge geometry for test problems 1, 2 and 3.

Three different bottom boundary conditions are considered:

Case 1: Perfectly reflecting pressure-release bottom. This is an idealized wedge

problem for which an independent reference solution can be formulated. The problem

should be solved in plane geometry (line source) with a radiation condition applied

at the left boundary.

Case 2: Penetrable lossless bottom. This is a slightly idealized ocean acoustic

problem where attenuation in the bottom has been neglected. The bottom is a

homogeneous fluid half-space with a compressional speed of 1700 m/s and a density

of 1.5 g/cm'. As is customary in ocean acoustics, this problem should be solved for

a point source in cylindrical geometry.

Case 3: Penetrable lossy bottom. This is a more realistic ocean acoustic problem

where a wave attenuation of 0.5 dB/A in the bottom has been included. Otherwise

parameters are the same as in case 2.

Case 3 is the most realistic ocean acoustic problem (lossy penetrable bottom).

However, some numerical codes only handle lossless media, and case 2 (lossless pen-

etrable bottom) was therefore included as an alternative test problem. Case 1 (per-

fectly reflecting bottom) was chosen simply because an analytic reference solution

can be formulated for the pressure-release wedge. Moreover, since sound propagating

towards the wedge apex will be completely backscattered due to the reflecting bound-
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aries, this test problem is an ideal benchmark for a full two-way solution of the wave

equation.

CASE 1: WEDGE WITH PRESSURE RELEASE BOUNDARIES

Buckingham and Tolstoy ([4]) presented an analytical solution for this ideal problem

(See Appendix G), we may use that analytical solution as a reference.

Instead of trying to figure out the correct handling of the pressure-release bottom

boundary condition for C-SNAP, we apply a Matlab code to fulfill the approximate

two-way method described in section 2.4, in which we use the analytical expressions for

eigenvalue and eigenfunction as in section 1.3.2. Fig. 2-15(a) shows the transmission

loss calculated by the approximate two-way method, compared with the reference

provided by Buckingham and Tolstoy ([4]). Fig. 2-15(b) shows an extended view

of the field in Fig. 2-15(a) over the range 0-1 km. From Fig. 2-15 we can see the

two-way C-SNAP results are in excellent agreement with the reference solutions by

Buckingham and Tolstoy ([4]).

C i fra_=25 Hz, Zs=100 m, Zr=30 m, 100 modes

Sing le scater

-5 -- Analytical Solutio -

-20 -

-251-
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(a)

--25 Hz, 100 m. Zr=30 m, 100 modes
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- -- Analytical Solution
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Figure 2-15: Transmission loss for benchmark problem 1 case 1, for a receiver depth
of 30 m and frequency of 25 Hz from (a) 0-4 km (b) 0-1 km.
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CASE 2: WEDGE WITH PENETRABLE LOSSLESS BOTTOM

Test case 2 is a wedge-shaped homogeneous ocean (1500 m/s) overlying a homoge-

neous fast bottom with a speed of 1700 m/s, a density of 1.5 g/cm3 , and an attenua-

tion of 0.0 dB/A. These bottom properties result in perfect reflection for waterborne-

energy incident at angles up to the critical angle of 280 (discrete mode spectrum),

while energy incident at steeper angles (continuous mode spectrum) is subject to in-

creasing reflection loss with angle, with a maximum loss of approximately 12 dB per

bounce at normal incidence.

Fig. 2-16 shows the solution of one-way C-SNAP (MATCH 3) and that of two-

way C-SNAP (MATCH 4). From Fig. 2-16 we see one-way C-SNAP and two-way

C-SNAP give almost the same results in this case. Fig. 2-17 shows the solution of

two-way C-SNAP (MATCH 4) and that of COUPLE. In this case, both C-SNAP

and COUPLE compute 90 modes, 3 proper discrete modes and 87 improper modes.

The comparison of COUPLE and C-SNAP results without attenuation loss from the

sediment layer shows excellent results for both receiver depth at 30 m and receiver at

150 m. The input files of C-SNAP and COUPLE are listed in Appendix I.

-40 -40
-N-yCSAP (MATCH 4) 1~-yCSA MTH4
m ay C-SNAP MATC H .SZ I C-NPMATCH1)

-55 -6--55

.-60 -4--0

-5 - - -0

-70 -70-

-75 -75 -

-80 - 80

-85 -8 -

-90 -90
0 05 1 15 2 25 3 35 4 0 0.5 1 15 2 25 3 35 4

%Wne (km) %Wne (km)

(a) (b)

Figure 2-16: Comparison of result from one-way C-SNAP with impedance matching
(MATCH 3) and two-way C-SNAP (MATCH 4) for problem 1 case 2 (a) receiver at
30 m (b) receiver at 150 m.
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Figure 2-17: Comparison of result from two-way C-SNAP (MATCH 4) and COUPLE
for problem 1 case 2 (a) receiver at 30 m (b) receiver at 150 m.

CASE 3: WEDGE WITH PENETRABLE LOSSY BOTTOM

This is a more realistic ocean acoustic problem where a bottom attenuation of 0.5

dB/A has been included. Otherwise, the parameters are the same as in Case 2.

Stable numerical results were obtained by including 90 modes and by subdividing

the slope into 200 stair steps. Fig. 2-18 shows the results from one-way C-SNAP with

impedance matching (MATCH 3) and from two-way C-SNAP (MATCH 4). They are

almost the same in this case. Two-way C-SNAP (MATCH 4) solutions for case 3 are

compared with COUPLE results in Fig. 2-19.

The propagation loss plots for the two receivers presented in Fig. 2-19 show excel-

lent results for the receiver at 30 m but not as good for the receiver at 150 m. This

fact is explained in [10] as below:

" (in C-SNAP)The eigenfunctions are obtained through algorithms which use

real arithmetic and their solution becomes approximate in the presence of loss.

To get the exact solution, complex calculations should be used instead, at the

expense of a less robust algorithm and more CPU time.

" While the influence of bottom loss on the waterborne modes is practically in-

significant (water is a relatively low loss region), the opposite occurs for the
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bottom-bounce modes as they have a large oscillatory size in the bottom layer.

Though these bottom-bounce modes usually carry little energy, they are es-

sential for mode coupling. The effect of inaccurate bottom-bounce modes in

range-independent environments is rarely observed as no mode coupling is re-

quired and these modes decay rapidly out in range.

* While the 30 m receiver hits the bottom only at a range of 3.4 km, the 150 m

receiver will lie in the sediment (lossy layer with the pressure field represented

by the bottom-bounce modes) starting at at a range of 1 km, which is exactly

the range where the agreement deteriorates.

The input files of C-SNAP and COUPLE are listed in Appendix J.
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Figure 2-18: Comparison of result from one-way
(MATCH 3) and two-way C-SNAP (MATCH 4)
30 m (b) receiver at 150 m.

1.5 2
Rang. (k.m)

2.5 3 3.5 4

(b)

C-SNAP with impedance matching
for problem 1 case 3 (a) receiver at

2.5.4 Downslope Propagation in a Wedge-Shaped Waveguide

The geometry of this problem is illustrated in Fig. 2-20. The initial water depth is

100 m and increases linearly to 1000 m at a range of 4 km, resulting in a downslope

wedge with an angle of 12.70. The sound speed in the water column is 1500 m/s,

while in the bottom the sound speed is 1700 m/s, the density is 2 g/cm 3 and the
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Figure 2-19: Comparison of result from two-way C-SNAP (MATCH 4)
for problem 1 case 3 (a) receiver at 30 m (b) receiver at 150 m.

attenuation is 0.5 dB/A. We compute propagation loss for a 25 Hz

plane geometry located at 50 m depth. We introduce a false-bottom

m, and allow for a maximum of 160 modes in the propagation field.

0 4km

and COUPLE

line source in

at depth 4000

50 m 100 Hz source

e=1 500 m/s I
P 1 qCn1

3

z

Figure 2-20: Wedge geometry for downslope propagation.

We illustrate in Fig. 2-21 the comparison of the propagation loss over the water

column obtained from one-way C-SNAP with impedance matching (MATCH 3) and

two-way C-SNAP (MATCH 4). The difference between one- and two-way C-SNAP

94

2.5 3 3.5

-ZI aC-SNAP(MTCH4)

0

100
M

I I bb

4 4 0 0.5 1 1.5 R 2g(k )



results is seen to be approximately 2 dB from range 0.5 km to 2.5 km. The input file

for two-way C-SNAP is listed in Appendix K.

a

-10

-15

-20

-25

-30

-35

-40

-45 -

-50-

-55 -

0 0.5 1 1.5 2
Range (km)

2.5 3 3.5 4

Figure 2-21: Coupled mode results for the 12.70 wedge from two-way C-SNAP
(MATCH 4) and one-way C-SNAP with impedance matching (MATCH 3).

2.5.5 Deep Water Propagation over a Seamount

Here we test the model along a 200 km deep-water track where the range dependence

is obtained through a combination of upslope and downslope environments so as to

build an idealized seamount. The environment is illustrated in Fig. 2-22. The initial

water depth is 5000 m. The seamount is located around 100 km away from the source,

with a width of 40 km and a height of 1000 m. The source depth is 100 m and the

frequency is 50 Hz.

We limit in this problem the modal starting field to retain only those modes which

are water borne. The contoured propagation losses versus depth and range is shown

in Fig. 2-23(a). The result for a single source/receiver combination is shown in Fig. 2-

23(b). From Fig. 2-23(b) we see the one- and two-way C-SNAP results are almost
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Figure 2-22: Schematic of the seamount problem.

the same in this case. The input file for Fig. 2-23(a) from the two-way C-SNAP is

listed in Appendix L.
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Figure 2-23: Transmission losses of the seamount problem (a) Two-way C-SNAP filed
versus depth and range for the seamount problem (b) Coupled mode results for the
seamount problem from two-way C-SNAP (MATCH 4) and one-way C-SNAP with
impedance matching (MATCH 3).
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Chapter 3

Three-Dimensional Scattering in a

Two-Dimensional Waveguide

In Chapter 2, we developed a two-way coupled modes model, which can handle two-

dimensional problems involving a point or line source. In this chapter, we extend

the two-way coupled modes model to three-dimensional problems involving a point

source in a waveguide in which the acoustic properties vary with depth and range (one

of the horizontal Cartisian coordinates). Problem of this type are representative of

backscattering from extended features such as ridges. Sketch of the basic waveguide

for this problem is shown in Fig. 3-1. After Fourier transforming out the cross range

(the other horizontal coordinate), the three-dimensional wave equation reduces to a

two-dimensional wave equation in which the wave number depends on the separation

constant.

Several methods have been developed for this problem. For example, Fawcett and

Dawson([9]) presented a model using boundary integral equation method (BIEM),

Orris and Collins([18]) presented a model using parabolic equation (PE) method, etc.

3.1 Theory

Following the derivation in ([9]), we work in Cartesian coordinates x = (x, y, z), where

x is the range, y is the cross range, and z is the depth below the ocean surface. The
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point source
ridge Y

Figure 3-1: Sketch of the basic waveguide model.

sound speed c, density p, and attenuation /3 are assumed to vary with x and z but

not y, i.e., the waveguide is two-dimensional.

The Fourier transform pair

A(x, ky, z) = p(X, z)eiYkydy, (3.1)

(3.2)p(x, y, z) = J (x, ky, z)e-iykYdky,

will be used in developing our three dimensional model.

The three dimensional Helmholtz equation is

02p &2 p &2p W 2

+ + z2 + P = -6(x - X,)(y - y8)6(z - z),

where x, = (x8, YS, zS) is the location of the point source.

(3.3)
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Apply operator f_ 0 (.)eYkvdy to Eq. (3.3). Since from Eq. (3.1), we have

02 _ 2 fOO
Ox2  ~-~]__peivkody

-oo 2eiyk Ydy,
=100 O9 2

similarly, we have

a 2P 002e iyk Ydy.
aZ2 10 az

While from Eq. (3.2), we have

2  1 02 0 0 Pe--k) dk

12. j13(-iky)2e-yk dky

0 (- )e- ik dky,

which leads to

-k 2 1 eiYkYdy.

Thus, after transforming, Eq. (3.3) becomes

02p + 2 + ( - k 2)p = -6(x - X,)J(z - zs)eiysky. (3.4)

For simplicity, we assume x, = Ys = 0.

For each specified value of ky, Eq. (3.4) is a two dimensional Helmholtz equation

with a line source, the equivalent wavenumber is

1We notice that kzm, IIm (z) are independent of ky. This is because the depth-dependent problem,

Cd2
q, (z) 2mjm(Z) = 0

is k iZd (3.5)
B.C.

is independent of ky.
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2
k'2 =2- -

=(k m +k 2+ k m) k2

=k m +k2m. (3.6)

From section 1.6, we know the solution for Eq. (3.4) is

ikxmxP(x, ky, z) =emz)mz

2
k2 =k'2 -k 2 =- -k=k) 2 -k2

2p(z.) k -

where (02 = - k=m are the eigenvalues of the two-dimensional problem (k 0).

After the pressure p(x, ky, z) has been computed for a sequence of k, values, the

solution p(x, y, z) can be computed from the inverse Fourier transform Eq. (3.2),

p(x,y,z) = ji(xkyz)e-sk dky. (3.8)

From Eq. (3.7), we can see the integrand of Eq. (3.8) is singular at k = km

3.2 Implementation of the Numerical Integration

of the Inverse Fourier Transform

After the pressure P(x, k, z) has been computed for a sequence of ky values, the solu-

tion p(x, y, z) can be computed from the inverse Fourier transform Eq. (3.2). However,

the Fourier spectrum (x, kt, z) of p(x, y, z) has (integrable) singularities on the real

k axis at the eigenvalues of the two-dimensional problem, i.e., at k = kl 2 . In order
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to use an inverse Fourier transform along the real line, the integral must be sampled

very finely in ky to obtain accurate results. Because of numerical problems associ-

ated with integrating through these singularities with the inverse Fourier transform,

it will prove advantageous to compute the spectrum for complex values of ky and use

contour integration for the inversion process ([9]). Along such a contour which avoids

the singularities in the complex plane, the integrand is analytic, and so more suitable

for contour integration.

Specifically, the wave number is taken along the contour C in ky plane described

by the function

ky = s + ie tanh(6s), -00 < s < 00

where E is a measure of the distance by which the contour avoids the singularities, and

6 governs the slope of the contour at the coordinate origin. Contour C is illustrated

in Fig. 3-2.

k.
Y1

k,=F tanh(8 k )

-- - -- -

k - plane

Figure 3-2: Sketch of the integration contour used for the Fourier inversion.

103

(3.9)

I--11



From Eq. (3.9), we have

Re {ky} =s,

Im{ky} =Etanh(Js),

(3.10)

(3.11)

so, Eq. (3.9) is equivalent to

kyj = E tanh(6ky,),

and

dk, =ds + ie[6sech2 (6s)]ds

=[1 + icdsech2 (6s)]ds, (3.

where we used the formula

tanh'(x) = sech 2 (x).

A brief review about the hyperbolic function tanh(x) is listed in Appendix M.

Thus along contour C, the inverse Fourier transform Eq. (3.2) becomes

p(x, y, z) f Pe-iykYdk,

00j(k,(s))e-iyky(s) [1 + iE6sech2 (Js)]ds. (3.1

We denote

I = j (ky(s))e-iyk (s) [1 + ie6sech2 (6s)]ds, (3.1

from Eq. (3.9), we have

12)

13)

4)

ky(-s) = - s + iE tanh(-Js)

= - s - iE tanh(6s)

(3.15)
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so, ky(s) is an odd function of s. From Eq. (3.7), we know P(ky) is even of ky, so,

P(k,(-s)) = P(-ky(s)) = P(ky(s)). (3.16)

Thus, the integral in Eq. (3.14) becomes

I =j (k,(s))e-iykv()[l + io6sech2 (6s)]ds

U= -s

= JP(ky(-u))e-iyky(-u) [1 + icosech2 (-6u)]du(-1)

insert in Eqs. (3.15) and (3.16)

= j (ky(u))eiyky(U)f1 + iMosech2 (6u)]du.

So, the inverse Fourier transform Eq. (3.13) becomes

p(x, y, z) 1 [1j+ j 1]P(k,(s))e-iky(s)[1 + ic6sech2 (6s)]ds

1U j'P(ky(s))(eykv(s) + e-iyky(s))[1 + iEosech2 (6s)]ds

0'j (ky(s))2cos(yky(s))[1 + iE6sech2 (s)]ds. (3.17)

From Eq. (3.17) we see that we need to care about only the contribution from the

region s = Re(ky) > 0 to evaluate the integral in Eq. (3.17), and obtain the inverse

Fourier transform.

In implementation, it was found([9]) that suitable values of e and 6 could be

determined as follows. The rightmost singularity on the positive real ky axis occurs

at k = k()(w), where kn is the eigenvalue of the mth mode with k, = 0. And for

increasing Re(k.) > kD, the integrand decays exponentially, which can be seen from

Eq. (3.7). Integrations were carried out to Re{ky} = kymax = 1.4ki (w) typically. The

value E = kymx./250 was used. For the examples in this chapter, the ky integrations

employed a trapezoidal rule on the interval 0 < Re{ky} kym,, using Nk, = 513

points. The value of 6 was chosen so that the argument of the tanh function was
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unity at the sixth ky step, i.e., 6 = (6Aky)- 1 , where Aky = kymax/(N, - 1).

3.3 Numerical Examples

In this section, we consider several examples. The first one is a range-independent

problem with which we want to check our three-dimensional coupled modes model.

The second one is a cosine-bell shaped ridge problem. We use analytical solutions for

eigenvalues and eigenfunctions for both of these two examples.

3.3.1 Check Our Three-Dimensional Coupled Modes Model

with a Range Independent Waveguide

The waveguide consists of a 200 m depth homogeneous water layer bounded above

by a pressure-release surface and below by a rigid bottom. The sound speed in water

is 1500 m/s. The point source is located at (x, Ys, z) = (0 m, 0 m, 100 m), and

the frequency is 50 Hz. Fig. 3-3 shows transmission loss versus range (r-axis in the

two-dimensional model while x-axis in the three-dimensional model) at a depth of

100 m, from two-dimensional model and three-dimensional model. As observed, the

two-dimensional and three-dimensional solutions are in perfect agreement.

3.3.2 Pressure Field in a Waveguide with a Cosine-Bell Shaped

Ridge at the Bottom

In this example, we consider a two-dimensional waveguide with a cosine-bell ridge

on the ocean floor. The water depth is 200 m and sound speed is 1470 m/s in the

homogeneous water layer.

The planar upper surface is taken as free to model an open ocean surface, while

the rigid bottom surface contains a simple cosine-bell shaped ridge model with a total

width of 100 m and height of 50 m, centered on x = 250 m. A 30-Hz point source is

situated at (X, y, zS) = (0 m, Om, 50 m).
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Nky=513, MAXMOD=30, c=1500., fre=50Hz,SD=100., RD=100.
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Figure 3-3: Results for a range-independent problem from our two-dimensional model
and three-dimensional model.
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Figs. 3-4, 3-5 and 3-6 show the modulus of the pressure field in three horizontal

planes, i.e., they contain the values p(x, y, z)I, 0 m < x < 850 m, 0 m < y < 600 m,

at the depths z = 35, 65, 135 m. These depths are, respectively, slightly above

the source, slightly below the source, and slightly above the ridge. In all these three

figures, and especially the third, interference between incident and backscattered field

is clearly visible in the region between the source and the ridge.

ip(xy)|, 3D coupled mode, point source, fre=30Hz, SD=50m, zr=35m 10
0

100, .

200 2

E300 1.5

400 1

500 0.5

600 i
100 200 300 400 500 600 700 800

x(m)

Figure 3-4: p(x, y, 35)1, fre = 30 Hz, SD = 50 m.

Fig. 3-7 depicts the behavior of the pressure field in the vertical plane. Once

again, interference between right-going (incident) and left-going (reflected) waves is

visible between the source and the ridge.

This example is solved successfully by Fawcett and Dawson ([9]), and our results

are consistent with those presented in paper [9].
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Figure 3-6: p(x, y, 135)|, fre = 30 Hz, SD = 50 m.
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Figure 3-5: p(x, y, 65)1, fre = 30 Hz, SD = 50 m.
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cIr. 3D counled mode. Doint source, fre=30Hz, SD=50m, yr=O. my

.5

0.5

0 100 200 300 400 500 600 700 800
x(m)

Figure 3-7: p(x, 0, z)I, fre = 30 Hz, SD = 50 m.
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Chapter 4

Conclusion and Future Work

In this thesis, we investigated the coupled mode solution in range-dependent waveg-

uides. Based on C-SNAP, which is a one-way coupled modes model, we developed

a two-way coupled modes model. This model works for two-dimensional problems,

i.e., for problems with a point source in cylindrical geometry, or problems with a line

source in plane geometry. The environment may be range-dependent, consisting of

a series of horizontally stratified fluid filled regions. Each of the regions consists of

a water layer and a sediment or bottom layer. The two-way C-SNAP is written in

standard Fortran. An equivalent two-way coupled modes model written in Matlab is

also developed, in which analytical solutions for eigenfunctions and eigenvalues are

applied. This model works only for ideal waveguides which consist of a homogeneous

water layer bounded above by a pressure-release surface and below by a rigid or soft

bottom.

With Fourier transform based on a sequence of two-dimensional problems, we

extend the two-dimensional coupled modes model to an three-dimensional model.

This method can serve to model acoustic scattering from ridgelike bathymetry, or

surface features such as ice ridges, in a realistic ocean waveguide model.

Until now, the three-dimensional model, which is based on the two-dimensional

coupled modes model written in Matlab, can solve problems for ideal waveguides only.

Next, we will apply the two-way C-SNAP to solve the two-dimensional problems in

the three-dimensional model. In addition, we will try to use our three-dimensional
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model to solve problems with more complicated waveguides.
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Appendix A

Eigenfunction of Proper Modes in

the Pekeris Waveguide

We write the eigenfunction as

m(z) = {m:sin(kzmz), 0 < z < h

Bme-,Ymz,7 z > h

To determine Am and B, we apply

1. Continuity of pressure at z = h.

2. Orthonormal property of Jm(z).

Thus we have

Am sin(kzmh) = Bme-h-h -- > Bm = Am sin(kzmh) ye-h,{ 00 (Z)dZ = f '[Am sin(kzmz)] 2dz + f, - [BmeYmz] 2 dz = 1.
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So,

-A sin2 (k,,Z)dz + -BIe-2 mZdz

1 h1=A 2 sin 2(kzmz)dz + - Al 2sin2(kamh)e 2^/mh

1 A2 h 1 sin(2kzmh)]

p m.2 2 2kzm
2 1 ( sin(2kzmh))

mA12p 2kzm

O 0

e- 2ymzdz

A 2

+ "m sin2 (kzmh)
Pi 2-y,

+ IL sin 22(kzmh)2p1 m I
=1,

thus we obtain

1 sinI-(h - ir
p

and

Bm = Am sin(kzmh)eC-h
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Appendix B

Input File of C-SNAP for Fig. 1-7

FLAT, IDEAL WAVEGUIDE WITH PRESSURE-SURFACE AND HARD BOTTOM

50.
1 80 80
100, 0
100. 0. 0. 0.

0. 1500.
100. 1500.

3900. 1.5 0.0
0. 1800.

3900. 1800.
1.5 0.0 1.0E10
0. 0.
100.0 0. 0. 0.4

0. 1500.
100. 1500.

3900. 1.5 0.0
0. 1800.

3900. 1800.
1.5 0.0 1.OE10
0. 0.

MATCH 4
NMESH 4
!OPTMZ
TLRAN,COH,PLT
XAXIS 0., 4.0, 12., 1.
YAXIS 40. 90. 7.5 10.
0. 4.0 0.005
25. 50.

1 ! REG 1

0 1 REG 2
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Appendix C

Eigenvalue and Eigenfunction for

the Configuration in Fig. 1-9

For 0 < z < h(cf. Fig. 1-9),

Im(Z) =Wdm(Z) + Ium(Z)

=ameikzmz + bme-ikzmz.

since Im(O) = 0, thus bm = -am, so

IJm(Z) =am2i sin(kzmz)

=Am sin(kzmz).

For h < z < h + H,

'm(Z) =Adm(Z) + Tum(Z)

=cmeikizmz + dme-iklzmz

insert in hard boundary condition at z = h + H,

d4'm(z)

dz z=h+H
- 0
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we have

dm = C ei2kzm(h+H)

so, Eq. (C.3) becomes

JIm(z) =cmeikizmz + Cmei
2

kjzm(h+H) e-ikzmz

=cmeikzm(h+H) {eikizmfz-(h+H)] + e-ikzm[z-(h+H)I}

=cmeikjzm(h+H)2 cosklzm[z - (h + H)]}

=Bmeikl1m(h+H) cos {kizm[z - (h + H)]}.

Thus, we can write the eigenfunction as

m (Z) = Am sin(kzmz),

Bmeikzm(h+H) Cos{klzm[z - (h + H)},

0 < z < h

h < z < h + H

Apply continuity of pressure and continuity of normal component of particle veloc-

ity at z = h, we can obtain the eigenvalue equation. Together with the orthonormal

property of im(z), we can determine Am and Bm.

With continuity of pressure at z = h, we have

Am sin(kzm h) = Bmeikzm(h+H) cOS(kizmH), (C.6)

with continuity of normal component of particle velocity, we have

1 1
- Amkzm cos(kzmh) - Bmeikzm(h+H)klzm sin[-klzmH]
P P1

1
Bmkizmeiklzm(h+H) sin(klzmH).

P1

Divide Eq. (C.6) by Eq. (C.7), we have

ptan(kzmh) P1
kzm k12m tan(kizmH)'

(C.7)
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or,

tan(kzmh) tan(k1zmH) - pikzm
pklzm

Eq. (C.8) is the eigenvalue equation for the configuration in Fig. 1-9.

With orthonormal property of Jm(z), i.e., fo j2) m(z)dz = 1, we have

A2 sin2 (kzmz)dz +
o p

sin 2kzmh +
Akzm .I

h

2
A,

p

h+H 1
-B~ne

2 ik1m(h+H) C0S 2
{kizm[z -

h P1

B 2ikizm(h+H)

Pi

~ H sin 2k1zmH

2 4kzm I

insert in Bm = A sin(kzmh) e-ikizm(h+H)
mcos(k;iH)

1 2 sin2 (kzmh)
P1 i mcos2 (k1.H)

sin 2kmh ) sin2 (kzmh)

4kzm Pi cos2(kinH)

H sin 2k1zmH

2 4k1zm

I sin 2klzmH
-+ )24kzm

2 1 h

=1,

so we obtain

sin 2kzmh 1 sin2 (kzmh) H

4kzm P1 COS2 (kizmH) 2

sin 2klzmH)~
+ )z

and

Bm = A sin(kzh) e -ikizm(h+H)
cos(kizmH)
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(h + H)]}dz

h

2

sin 2kzmh]

4kzm IP

Am = -(h
p 2

-
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Appendix D

Eigenvalue Equation for the Leaky

Modes in the Pekeris Waveguide

The eigenfunction of the leaky modes can be written as(cf. Fig. D-1)

Ti(z) = sin kzmz,

Bmeiz-, )

0 < z < h

z > h

z=0

I water JC
Y". (Z) g/(z)

z=h

bottom P1, C, > c

ip/a(z)

Figure D-1: Eigenfunction for leaky modes in the Pekeris waveguide.

Apply continuity of pressure and continuity of the normal particle velocity at

z h, we can obtain the eigenvalue equation.
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Continuity of pressure at z = h gives

Am sin kzh = Bmeikizmh.

Continuity of normal particle velocity at z = h gives

1 1
- Amkzm cos kzmh = -Bmikzmeiklzmh
P Pi

Divide Eq. (D.1) by Eq. (D.2), we have

--L tan(kzmh) '
kzM iklzm

Cot(kzmh) = pkizm
pi kzm
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Appendix E

Solve Eq. (1.61) with Endpoint

Method

E.1 Endpoint Method

The endpoint method ([11]) is a powerful method to construct the one-dimensional

Green's function F(x, xo) which satisfies

Po(x) d2F O) P dr(x, o) + P2 (X)F(x, o) = -6(x - XO), (E.1)

on the interval a < x < b and homogeneous boundary conditions or the Sommerfeld

radiation condition at the two ends x = a and x = b. The Green's function 1F(x, O) is

constructed from linearly independent solutions Ua(x) and Ub(X) of the homogeneous

version of Eq. (E.1) which satisfy the boundary conditions at x = a and x = b,

respectively.

IF< (X, O)= -yUa(X)Ub (O), a < x < x(
= X O (E.2)

F>(XXO) = --Ua(XO)Ub(X), O < x < b

where

C = Po(Xo)W,
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and the Wronskian W is

Ub(XO)
Ua(XO)'U,'(XO)

U'(Xo)
- U'(XO)Ub(XO).

Next, let us show the derivation of Eq. (E.2).

We write the solution of Eq. (E.1) in the form

r(x, xo) AUa(X)Ub(XO),

AUa (Xo)ub(X),

r7(x, xo) satisfies the boundary conditions at the two ends x = a

J(x, xo) is continuous at x = xo.

Integrate Eq. (E.1) from X0 - e to Xo + C, and let E -+ 0, we have

lin XO+E d 2 dx + lin XO+( dx +E --IO O dX 2 6I+ PixdW odx
-0~~E

XO+E

=- fJ 6(x - xo)dx.

6o- +

XQ -E

and x = b, and

XO+f

lim P2 (x)F(x, xo)dx

XO-E

(E.4)

Because JF(x, xo) is continuous at x = xO, so both the second term and the third

term are zero, and

X2+E

lim Po(x)d2(X, o)x =Po(xo) lim
i-+O J dX2 6_+0

X0--C

[dF(xo + E, xo) _ dJ(xo - c, xo)
dx dx J

Insert in Eq. (E.3)

=Po(xo) lin [Aua(xo)u'(xo + e) - Au'(xo + E)Ub(XO)]

=Po(xo) [AUa(XO)U'b(XO) - Au'(Xo)ub(Xo)],
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So, Eq. (E.4) yields

Po(xo) [Aua(xo)u'(xo) - Au'(Xo)ub(xo)] = -1,

thus,
-1

PO(XO) [Ua(XO)U'(XO) - U'(XO)Ub(XO) Po(Xo)W'

where

W = Ua(XO) Ub(XO)

n'(xo) U' (xo)

Insert Eq. (E.5) into Eq. (E.3), we obtain the Green's function Eq. (E.2).

E.2 Apply the Endpoint Method to Solve Eq. (1.61)

To solve the ODE
d2<(%(x) +

dx2 (E.6)k 2 (X) = - 6(X)XP,,(Z,)

p(z")

p(z,) d2 bn (x)

x9n(z,) dX2
p (Z) k nbn(x) = -6(x),
'I'(z8)

Po(x) = , P1(x) = 0, P2(x) - (Z) kn,

ub(x)==e !

W= Ua(0) Ub(O)

U'(0) U'(0)

1 1

-ikxn ikxn

=2ikx,,
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i.e.,

we have,

and

XO = 0,

Ua(x) =e- ,



C =Po(O)W = p(zs) 2ik

Thus, we obtain the solution:

for x < 0,

~nQT) = ha(X)Ub(0)

'I'(z8 ) 1

p(zs) 2ikxn

for x > 0,

n~~x) = "(0) Ub(X)

''(zs) 1 ikxnx

p(zs) 2ikxn

the uniform solution is
i eiknx

(n W) = Pn (Z,) ek.X
2p(z,) kxn
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Appendix F

Notifications in Modifying the

One-Way C-SNAP to a Two-Way

Coupled Modes Model

F.1 Square Root Problem

In our two-way coupled modes model, we use the square root with a nonnegative

imaginary part, to be consistent with the exponential term

eikr -- e (a+iOr _ eiare--r ' > 0

in representing the outgoing field.

In Matlab, the function SQRT returns a complex number with nonnegative imag-

inary part, for example,

>> sqrt(-1)

ans =

0 + 1.00000000000000i

>> sqrt(3+i)

ans =

1.75531730182443 + 0.28484878459314i

127

I11-1. 1



While in Fortran, the result of CDSQRT(x) has a value equal to the square root of

x. A result of type complex is the principal value, with the real part greater than or

equal to zero. When the real part of the result is zero, the imaginary part is greater

than or equal to zero. To make sure that the returned number has a nonnegative

imaginary part, we use a function, CDSRT.F, from the project COUPLE.

COMPLEX*16 FUNCTION CDSRT(Z)
C
C THIS FUNCTION PROVIDES A SQUARE ROOT WITH A
C NON-NEGATIVE IMAGINARY PART.
C
CHS H. SCHMIDT, 14.APR.87. CHANGED TO WORK CORRECTLY FOR
CHS SMALL NEGATIVE IMAGINARY PART OF THE ARGUMENT BY MOVING
CHS THE BRANCH CUT TO THE NEGATIVE IMAGINARY AXIS.
C

IMPLICIT REAL*8 (A-H,O-Z)
COMPLEX*16 Z,U,W

C
CHS IF (DREAL(Z) .LE. 0.00) THEN
CHS CDSRT=DCMPLX(O.0DO,1.ODO)*CDSQRT(-Z)
CHS ELSE
CHS CDSRT=CDSQRT(Z)
CHS END IF
C

U=CDSQRT(Z)
W=DCMPLX(-1.0DO,O.ODO)
IF(DIMAG(U) .LT. 0.00) U=W*U
CDSRT=U

C
RETURN
END

F.2 Option OPTMZ in C-SNAP

The function of the option OPTMZ is explained by [101 as below:

This code word may be used to limit the maximum number of modes which are

propagated out in range. The criterion consists in removing, starting from the highest

order mode, all the modes that cumulatively contribute for a minor fraction only of

the total field, namely at a level corresponding to the round off error of the numerical

scheme. The advantage is a speed up of the code.

However, the function of OPTMZ conflicts with the algorithm we applied in our

two-way coupled modes model. So, never use this option to run two-way coupled

modes model.
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Appendix G

An Analytical Solution for

Benchmark Problem 1, Case 1

In this part we review the analytical solution given by Buckingham and Tolstoy

([4]) for benchmark problem 1, case 1, which is the two-dimensional, "ideal" wedge

problem: The acoustic field is required in a wedge, with pressure-release boundaries,

which contains a line source parallel to the apex.

Fig. G-1 shows the geometry of the wedge and the cylindrical coordinates used in

the analysis. The medium is a homogeneous fluid, the line source is parallel to the

apex, and the boundaries are plane, pressure release surfaces.

G.1 The Analytical Solution

As suggested by ([4]), the velocity potential is found to be the following sum of

uncoupled normal modes:

2 0
F = 0 I (r, r') sin(vm9) sin(vm'), (G. 1)

m=1

where 0o is the wedge angle, r and r' are the ranges of the receiver and source from

the apex of the wedge, 0 and 0' are the angular depths of the receiver and source
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R

Figure G-1: Coordinates of the source, Sx and receiver, Rx, in the ideal wedge. The
wedge angle is Oo and the radial distance between the source and receiver is R.

measured about the apex, and
7r

Pm = M (G.2)

The mode coefficients in Eq. (G.1) are

Im (r, r') = f 2 k2 Jm(pr)J,,(pr')dp, (G.3)

where k is the wavenumber of the source radiation and Jm( ) is a Bessel function of

the first kind of order vm. When the result (G.3) is substituted into Eq. (G.1), the

final expression for the field is found to be

1(r, r', of') = E Jm(kr<)Hl?(kr>) sin(vm9) sin(vm9'), (G.4)

where r< = min(r, r'), r> = max(r, r'), and H2( ) is the Hankel function of the first

kind of order vm.

To calculate the transmission loss (TL), we have to find the reference velocity

potential. The velocity potential of the field generated by a line source in an infinite

medium is

,1(R) = iH()(kR), (G.5)
4
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where R is the radial distance from the source to the field point and H(')( ) is the

Hankel function of the first kind of order zero. With R set equal to 1 m, the normalized

field in the wedge is

A - IT(r, r', 0, 0')

and the transmission loss in dB is

TL = 20 logo (A). (G.7)

This expression was evaluated for a fixed receiver depth as a function of horizontal

range from the source to the apex.

G.2 The Computations

Full details of the parameter values for benchmark problem 1 are listed in section 2.5.3,

and the source/receiver configuration in the wedge is illustrated in Fig. 2-14. Some

parameters to evaluate Eq. (G.4) for benchmark problem 1 are listed below:

0= tan-1 ( 200) 0.049958(rad)
4000
100

0' = tan-1 ( )10 0.024995(rad)
4000

Vm =m 62.9m
00

27rf 27r x 25
1500. 0.104720(m- 1 )

r,=r' = 1002 + 40002 ~ 4001.2(m)

As described in [4], problem arises as calculating HL4 )(kr>) for fixed kr> as vm 

oo, because

H 8) (X) - Jvm (X) + iYvm(X)

where X = kr>. For a fixed value of X, as vm - oo, Jm (X) -+ 0 while Ym (X) -- oo.

Thus for large v, HU) (X) is an infinite value.

However, from Eq. (G.4) we see, as m - 00, Jm(kr<) - 0, and H2) (kr>) -+
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0+ioo, so the product of Jm (kr<) and H,2(kr>) may be a finite value. Thus, instead

of evaluating JUm (kr<) and HS2 (kr>) respectively, we apply the Debye asymptotic

expansions for large Urn to evaluate Jvm(kr<)H2(kr>).

Debye's Asymptotic Expansion ([1]):

If a is fixed and positive and v is large and positive, then

J(vsecha) -ev(tanh a-a) EUk (coth a)
v/27rv tanh a k=1 V

Y,(vsecha) __ev(a-tanh a) f. + Z )kuk (coth a)
Yvv1ca ~ -{ +k-)* , }

vrv tanh a k=1 v

where

uo(t) = 1,

ui(t) = (3t - 5t3)/24,

u 2 (t) = (81t2 - 462t4 + 385t6 )/1152,

etc.

When vmn is large (when the value of Ym drops below -1010), we use the Debye

asymptotic expansion with the first two terms, and evaluate Jm (kr<)H(2(kr>) as

below,

kr< = vlmsechai -=> a, = asech( kr

kr> = vrnsecha 2 = a2 = asech( kr,
uM

and then

JVm(Oi)Hv2( 2 ) =JVm (ai)[Jm(a 2 ) + tYvm(& 2 )]

=Jum(&i)Jvm(a2 ) + iJvm(a)Ym(a 2 )
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where

JVmk&1)Um~j2)=
27

x

Jvm (ci)YmG7X 2 ) = -

m(tanh al -a, +tanh a2-a2)

rUm tanh 1 tanh a2

ul(coth ai) + u2(coth ai)
1+ + 2 }1

evm(tanh ai -al+a 2 -tanh a2)

1TUmtanhajtanha 2

ui(coth a,) u2 (coth ai)
Urn 2/m2

+ ui(coth a 2 )
Urn

u- (coth a2)

UrM

u2(cothoa2 )
Vm

u2(cotha2 )
m

In the benchmark problem 1, from the formulas in Section 1.3.2, we may find the

number of propagating modes,

2D
M =[ A

D = 200, A = c= 150 = 60f 25

2 x 200

S60

=6.

Moreover, the eigenfunction at source depth are

qf M (zs) = P sin(kzmz,), for m = 1,2, ...

where kzm = _, z, = 2 -2 kzmz, = mz, m = 1, 2,..

m = 2n, n =1,2, .. ., we have

S2n(Zs) = sin(m 7)

= sin(n7r)

=0,

thus we can see, only odd-order modes are excited, so only mode 1, 3 and 5 will

propagate through the wedge. However, in the near field, many more modes should
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be included to achieve acceptable accuracy.

G.3 Results

Fig. G-2(a) shows the transmission loss calculated from Eq. (G.7) for benchmark

problem 1 case 1. We use 100 modes to generating this result.

Fig. G-2(b) shows an extended view of the field in Fig. G-2(a) over the range 0-1

km.

fre=25 Hz, Z=100 m, Zr=30 m, 100 modes fre=25 Hz, Zs=100 m Zr=30 m 100 modes

0 0

-5 -0

0 ~Aj~j ~-10

-20 - - 2-0 -I-

25 -2

-30 -30

-35 - - 35 -

-40- -40

-45 -- -45 -

o os 1 1.5 2 2.5 3 3.5 4 0 0.1 0.2 03 0.4 0 .5 0).6 0. 08O' 090 05Range From UneSource (km) 3 5 - -0 1 0 3 Rarg eFrom UeSouro (km) 0 8 0

(a) (b)

Figure G-2: Transmission loss for benchmark problem 1 case 1, calculated from
Eq. (G.7) for a receiver depth of 30 m and frequency of 25 Hz from (a) 0-4 km
(b) 0-1 km.
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Appendix H

Input File of C-SNAP for Fig. 2-11

FLAT, IDEAL WAVEGUIDE WITH RIGID BOTTOM

50.
1 100 100
100, 0
200. 0. 0. 0.

0. 1500.
200. 1500.

3800. 1.0E20 0.0
0. 1.0E5

3800. 1.0E5
1.0E10 0.0 1.0E5

0. 0.
200.0 0. 0. 0.4

0. 1500.
200. 1500.

3800. 1.0E20 0.0
0. l.OE5

3800. 1.0E5
1.OE10 0.0 1.0E5
0. 0.

MATCH 4
NMESH 4
!PLANE
!OPTMZ
TLRAN,COH,PLT
XAXIS 0., 4.0, 12., 1.
YAXIS 40. 90. 7.5 10.
0. 4.0 0.005
100. 100.

I REG 1

0 I REG 2
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Appendix I

Input Files for Fig. 2-16 and

Fig. 2-17

I.1 Input File of C-SNAP for Fig. 2-16 and Fig. 2-

17

WEDGE-SHAPED WAVEGUIDE

25.
1 90 90
100, 0
200. 0. 0. 0.

0. 1500.
200. 1500.
3800. 1.5 0.

0. 1700.
3800. 1700.
1.5 0.00 1.OE10
0. 0.

0.0 0. 0. 4.0
4000.0 1.5 0.

0. 1700.
4000.00 1700.
1.5 0.00 1.OE1O

0. 0.
MATCH 4
NMESH 4
!PLANE
!OPTMZ
TLRAN,COH,PLT
XAXIS 0., 4.0, 12., 1.
YAXIS 40. 90. 7.5 10.
0. 4.0 0.005
100. 30.
100. 150.
100. 180.

9 !REG 1

0 REG 2
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1.2 Input File of COUPLE for Fig. 2-17

ASA Benchmark Wedge, Galerkin
4000. 25.0 1.0 1.5 0.0
1700.0 00.
90 0 0 0 0 0
1 100.0 0.0
2 30.0 120.0
0.01 4.01 0.01
2 50 0 0
0.01
0.0
200.0
200.0
3000.0
4000.0
4.00
0.0
0.01
0.01
3000.0
4000.0

500 200.0 2 3
1500.0 .0 1.0
1500.0 .0 1.0
1700.0 .0 1.5
1700.0 .0 1.5
1700.0 2.5 1.5
0 0.01 2 3
1500.0 .0 1.0
1500.0 .0 1.0
1700.0 .0 1.5
1700.0 .0 1.5
1700.0 2.5 1.5

0
0

0
0
0

procedure, 90 modes, 500 steps
!HB,FREQ,ROHW,ROHB,DBPWL
!CB,CW
!M,NATENIEIG,NDPTHIGE0M,IREFL
!NSDEP,ZSMIN,ZSINC
!NDEP,ZMIN,ZINC
!RMIN,RMAX,RINC
!N, IPRT, IOUT,MAMP

0 !RANGEIRLIN,DPTH,NPW,NPBIREIG
!DEPW,SVPW,DBPWLW,RHOW

!DEPB,SVPB,DBPWLB,RHOB

!DEPW,SVPW,DBPWLW,RHOW

!DEPB,SVPB,DBPWLB,RHOB
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Appendix J

Input Files for Fig. 2-18 and

Fig. 2-19

J.1 Input File of C-SNAP for Fig. 2-18 and Fig. 2-

19

WEDGE-SHAPED WAVEGUIDE
1
25.
1 90 90
100, 0
200. 0. 0. 0.

0. 1500.
200. 1500.

3800. 1.5 0.5
0. 1700.

3800. 1700.
1.5 0.5 1.OElO

0. 0.
0.0 0. 0. 4.0

4000. 1.5 0.5
0. 1700.

4000. 1700.
1.5 0.5 1.0E10

0. 0.
MATCH 3
NMESH 4
!PLANE
!OPTMZ
TLRAN,COH,PLT
XAXIS 0., 4.0, 12., 1.
YAXIS 40. 90. 7.5 10.
0. 4.0 0.005
100. 30.
100. 150.
100. 180.

8 ! REG 1

0 ! REG 2
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J.2 Input File of COUPLE for Fig. 2-19

ASA Benchmark Wedge, Galerkin
4000. 25.0 1.0 1.5 0.5
1700.0 00.
90 0 0 0 0 0
1 100.0 0.0
2 30.0 120.0
0.01 4.01 0.01
2 50 0 0
0.01 250 200.0 2 3
0.0 1500.0 .0 1.00
200.0 1500.0 .0 1.00
200.0 1700.0 .5 1.5
3000.0 1700.0 .5 1.5
4000.0 1700.0 2.5 1.5
4.00 0 0.01 2 3 0
0.0 1500.0 .0 1.00
0.01 1500.0 .0 1.00
0.01 1700.0 .5 1.5
3000.0 1700.0 .5 1.5
4000.0 1700.0 2.5 1.5

procedure, 90 modes, 250 steps
!HB,FREQ,ROHW,ROHB,DBPWL
!CB,CW
!M,NATEN,IEIG,NDPTH,IGEOM,IREFL
!NSDEP,ZSMIN,ZSINC
!NDEP,ZMIN,ZINC
!RMIN,RMAX,RINC
!N,IPRTI0UT,MAMP

0 !RANGE,IRLIN,DPTH,NPW,NPBIREIG
!DEPW,SVPW,DBPWLW,RHOW

!DEPB,SVPB,DBPWLB,RHOB

!DEPW,SVPW,DBPWLW,RHOW

!DEPB,SVPB,DBPWLB,RHOB
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Appendix K

Input File of C-SNAP for Fig. 2-21

DOWNSLOPE WEDGE, 12.7 degrees

25.
1 160 160
10, 0
100.0 0. 0.

0. 1500.
100. 1500.

3900. 2.0 0.500
0. 1700.

3900. 1700.
2.0 0.50 1.0E10

0. 0.
1000.0 0. 0.

0. 1500.
1000. 1500.
3000. 2.0 0.500

0. 1700.
3000. 1700.
2.0 0.50 1.0E10
0. 0.

!OPTMZ
NMESH 4
MATCH 4
PLANE
TLRAN, COH , PLT
XAXIS 0., 4., 16., 1.0
YAXIS 10 60 10 10

0. 4.0 0.004
50. 50.

0.0 8 Reg 1

4. 0 !Reg 2
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Appendix L

Input File of C-SNAP for

Fig. 2-23(a)

DEEP WATER PROPAGATION OVER A SEAMOUNT, REDUCED PRESSURE MATCHING
1
50
1 62 100
100 0

5000.0 0.0 0.0
0.0, 1536.00

200.0, 1528.00
700.0, 1502.00
800.0, 1500.00
1200.0, 1497.00
1500.0, 1497.00
2000.0, 1500.00
3000.0, 1512.00
4000.0, 1528.00
5000.0, 1545.00

0.
1.0, 0.1, 2000.0
0.0 0.0
5000.0 0.0 0.0

0.0, 1536.00
200.0, 1528.00
700.0, 1502.00
800.0, 1500.00

1200.0, 1497.00
1500.0, 1497.00
2000.0, 1500.00
3000.0, 1512.00
4000.0, 1528.00
5000.0, 1545.00

0.
1.0, 0.1, 2000.0
0.0 0.0
4000.0 0.0 0.0

0.0, 1536.00
200.0, 1528.00
700.0, 1502.00
800.0, 1500.00

0

80

100

-1 I Profile 1

5 I Profile 2

! Profile 3
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1200.0,
1500.0,
2000.0,
3000.0,
4000.0,

1497.00
1497.00
1500.00
1512.00
1528.00

0.
1.0, 0.1, 2000.0
0.0 0.0
5000.0, 0.0 0.0

0.0, 1536.00
200.0, 1528.00
700.0, 1502.00
800.0, 1500.00
1200.0, 1497.00
1500.0, 1497.00
2000.0, 1500.00
3000.0, 1512.00
4000.0, 1528.00
5000.0, 1545.00

0.
1.0, 0.1, 2000.0
0.0 0.0
!LARGE
MATCH 4
NMESH 1
!OPTMZ
TLRAN,COH,PLT
XAXIS 0, 200, 16, 40
YAXIS 60, 120, 10, 10
0 200 0.1
100. 0.1
100. 5000.

120. 0 ! Profile 4
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Appendix M

Hyperbolic Tangent Function

tanh(x)

M.1 Definition

tanh(X) = sinh(x)
cosh(x)

ex _ e-- ex + e-X

2 2

M.2 Asymptotic Perperties

1. As x -+ oo,

er -o0
tanh(x) - e + 0

exr + 0

2. As x -+ -oo

tanh(x) --+ = -1.o + -

M.3 Special Points

At x = 0,

tanh() = 0 1+ 0.
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M.4 Symmetry Property

Since
e- - e

tanh(-x) = e-x + e - tanh(x),

tanh(x) is an odd function of x.

M.5 Derivative

(ex + e-)(ex + e-) - (ex - e-X)(ex - e-X)

(ex + e-x) 2

2ex2e-x

(ex + e-X) 2

4

(ex + e-2) 2

sechx 1 2
cosh x ex + e-x

=sech 2X.
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M.6 Shape of Function y = tanh(x)

The shape of function y =

C

CU

2-

0 - - - - -- - - - - - - - - - - - - - - - -

1

-10
-10

tanh(x) is shown in Fig. M-1.

-8 -6 -4 -2 0 2 4 6 8 10
x

Figure M-1: Shape of function y = tanh(x).

147

-



148



Bibliography

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with

Formulas, Graphs and Mathematical Tables. Appl. Math. Ser. No. 55. National

Bureau of Standards, Washington, DC, 1972.

[2] C. M. Bender and S. A. Orszag. Advanced Mathematical Methods for Scientists

and Engineers. McGraw-Hill, New York, 1978.

[3] H. Bremmer. The W.K.B. approximation as the first term of a geometricaloptical

series. Comm. Pure Appl. Math., 4:105-115, 1951.

[4] M.J. Buckingham and A. Tolstoy. An analytical solution for benchmark problem

1: The "ideal" wedge. J. Acoust. Soc. Am, 87:1511-1513, 1990.

[5] M. D. Collins and E. K. Westwood. A higher-order energy-conserving parabolic

equation for range-dependent ocean depth, sound speed, and density. J. Acoust.

Soc. Am, 89:1068-1075, 1991.

[6] Trevor W. Dawson and John A. Fawcett. A boundary integral equation method

for acoustic scattering in a waveguide with nonplanar surfaces. J. Acoust. Soc.

Am, 87:1110-1125, 1990.

[7] R. B. Evans. A coupled mode solution for acoustic propagation in a waveguide

with stepwise depth variations of a penetrable bottom. J. Acoust. Soc. Am., 74,

1983.

[8] Richard B. Evans. The decoupling of stepwise coupled modes. J. Acoust. Soc.

Am., 80(5), November 1986.

149



[9] John A. Fawcett and Trevor W. Dawson. Fourier synthesis of three-dimensional

scattering in a two-dimensional oceanic waveguide using boundary integral equa-

tion methods. J. Acoust. Soc. Am, 88:1913-1920, 1990.

[10] C.M. Ferla, M.B. Porter, and F.B. Jensen. CSNAP: Coupled SACLANTCEN

normal mode propagation loss model, SACLANTCEN SM-274. Underwater Re-

search Division.

[11] George V. Frisk. Ocean and Seabed Acoustics. PTR Prentice Hall, 1994.

[12] F.B. Jensen and Ferla C.M. SNAP: The SACLANTCEN normal-mode acous-

tic propagation model, SACLANTCEN SM-121. NATO SACLANT Undersea

Research Center, La Spezia, Italy, 1979. [AD A 067 256].

[13] F.B. Jensen and C.M. Ferla. Numerical solutions of range-dependent benchmark

problems in ocean acoustics. J. Acoust. Soc. Am, 87:1499-1510, 1990.

[14] Finn B. Jensen, William A. Kuperman, Michael B. Porter, and Henrik Schmidt.

Computational Ocean Acoustics. AIP Press, American Institute of Physics, 1993.

[15] D. Lee. The state-of-the-art parabolic equation approximations as applied to

underwater acoustic propagation. Rep. TD-7247, Naval Underwater Systems

Center, New London, CT, 1984.

[16] Collins M.D. A split step pade6 solution for the parabolic equation method.

Journal of the Acoustical Society of America, 93:1-7, 1993.

[17] Collins M.D. and E.K. Westwood. A higher order energy conserving parabolic

equation for range-dependent ocean depth. Journal of the Acoustical Society of

America, 89:1068-1075, 1991.

[18] Gregory J. Orris and Michael D. Collins. The spectral parabolic equation and

three-dimensional backscattering. J. Acoust. Soc. Am, 96:1725-1731, 1994.

[19] M.B. Porter and Reiss E.L. A numerical method for bottom interacting ocean

acoustic normal modes. Journal of the Acoustical Society of America, 77, 1985.

150



[20] M.B. Porter, F.B. Jensen, and C.M. Ferla. The problem of energy conservation

in one-way models. J. Acoust. Soc. Am, 89:1058-1067, 1991.

[21] M. R. Scott and H. A. Watts. Computational solution of linear two-point bound-

ary value problems via orthonormalization. SIAM J. Numer. Anal., 14, 1977.

[22] Ralph A. Stephen. Solutions to range-dependent benchmark problems by the

finite-difference method. J. Acoust. Soc. Am, 87:1527-1534, 1990.

[23] David J. Thomson. Wide-angle parabolic equation solutions to two range-

dependent benchmark problems. J. Acoust. Soc. Am, 87:1514-1520, 1990.

151


