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Abstract 

A new meso-scale modeling technique for the thermo-mechanical behavior of metallic glasses is 

proposed.  The modeling framework considers the shear transformation zone (STZ) as the 

fundamental unit of deformation, and coarse-grains an amorphous collection of atoms into an 

ensemble of STZs on a mesh.  By employing finite element analysis and a kinetic Monte Carlo 

algorithm, the modeling technique is capable of simulating glass processing and deformation on 

time and length scales greater than those usually attainable by atomistic modeling.  A thorough 

explanation of the framework is presented, along with a specific two-dimensional 

implementation for a model metallic glass.  The model is shown to capture the basic behaviors of 

metallic glasses, including high-temperature homogeneous flow following the expected 

constitutive law, and low-temperature strain localization into shear bands.  Details of the effects 

of processing and thermal history on the glass structure and properties are also discussed.   

Keywords:  

metallic glass, shear bands, micromechanical modeling, activated processes, shear 

transformation zone 
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1. Introduction 

Amorphous metals exhibit a rich diversity of deformation behavior, with significant differences 

from classic crystalline deformation behavior [1, 2].  For example, at high homologous 

temperatures amorphous metals behave as super-cooled liquids and display homogeneous 

deformation that is Newtonian over a broad range of low stresses.  At somewhat higher stresses 

their rheology becomes Non-Newtonian, but follows an exponential stress dependence rather 

than the power-law common to crystalline metals.  On the other hand, at low temperatures and 

high stresses, amorphous metals deform in a highly inhomogeneous fashion where plastic strain 

tends to localize into nano-scale shear bands that encourage catastrophic failure.  

Central to understanding this diverse behavior in amorphous metals are the deformation 

mechanisms that act on a microscopic level. The ‘shear transformation zone’ (STZ) proposed by 

Argon [3] has emerged as a useful mechanistic picture in which the unit process of deformation 

is a collective motion of a few atoms that rearrange to achieve a characteristic shear strain, o , 

under an applied shear stress, as shown in Figure 1.  The STZ is viewed as a stress-biased, 

thermally activated event, permitting simple rate laws for STZ activation to be written in terms 

of state variables, including stress, temperature, and local structural order parameters such as free 

volume [4].  One advantage of defining a unit STZ process in this way is that by appropriately 

modeling the dynamics of these events, one may overlook the local details of individual atomic 

motions, while still capturing the fundamental physics of deformation.  For example, by 

assuming that STZs operate independently of one another, one can readily calculate the average 

behavior of STZs in the system.  This approach yields an analytical solution for the steady-state 

flow law of a homogeneously deforming amorphous metal, with a hyperbolic-sine stress 

dependence that is commonly seen in experiments [1, 5].   

On the other hand, the more complex and interesting behaviors associated with shear localization 

and fracture, for example, require the collective action of many STZs, which may no longer be 

assumed to operate independently of one another.  In this situation, the rate law for STZ 

activation must be supplemented with details of how STZs interact, and how their operation 

redistributes stress and free volume in the system [4].  Without a priori knowledge of STZ 

interactions, there is as yet no clear connection between local atomic motions and the 

macroscopic deformation behavior of amorphous metals undergoing shear localization [6].   
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A further difficulty for modeling strain localization in amorphous metals is that the process 

involves time and length scales that span many orders of magnitude.  For example, local atomic 

motions, including STZ activation, occur on a timescale of about 10
-12

 – 10
-11

 s, while shear band 

formation occurs over periods of 10
-5

 – 10
-3

 s in experiments [7, 8].  Similarly, shear band 

thickness is usually found to be of order 10
-8

 – 10
-7

 m [9, 10], with typical shear offsets that can 

be much larger, 10
-6

 m or greater [11, 12]; both of these values are much larger than the size of 

an STZ at ~ 10
-10

 – 10
-9

 m [13, 14].   These facts suggest that shear band formation involves a 

slow cooperative process involving a great many STZs. 

This disparity in time and length-scales creates difficulties for clean experimentation, and even 

more for modeling the full range of glass behaviors under experimentally relevant conditions.  

For example, molecular dynamics simulations exquisitely track atomic motion [15-25], but are 

intrinsically limited to small length scales, and more importantly, to very short time scales.  This 

restricts their ability to capture large-scale events that occur on long time scales, including glass 

formation by cooling from the melt at experimental rates.  Although shear localization is seen in 

many atomistic simulations of amorphous systems [24, 26-31], it generally requires very driven 

systems that cannot be easily compared to experiments.  On the other hand, continuum 

simulations have the ability to access much larger system sizes and longer time scales through 

the development of constitutive relations and the use of finite-element analysis (FEA) [32, 33].  

These models are especially powerful for modeling complex geometries with realistic boundary 

conditions, but they are limited by the constitutive relationships on which they are constructed, 

which can only capture the specific physics that they have been designed to model. 

In order to access deformation behavior intermediate to these two modeling techniques, there is a 

need for meso-scale models based upon an ensemble of characteristic events such as the STZ.  A 

coarse-graining approach of this type [6] was proposed by Bulatov and Argon [34], who 

developed a lattice STZ model in which each lattice element represented a single potential STZ.  

The activation or shearing of any single STZ led to the redistribution of stress and strain in the 

system, which in turn affected the rate of activation for subsequent STZ operations.  The 

selection of STZs for activation and the time evolution of the system were controlled through a 

kinetic Monte Carlo algorithm [34-36].  This model reproduced both homogeneous and 

inhomogeneous modes of deformation and accessed significant time-scales.  One clear limitation 
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of this model, however, involved the use of a fixed lattice geometry, which cannot capture the 

spatial evolution, or shape change, of the system.  In addition, Bulatov and Argon’s use of 

Green’s functions to determine the stress and strain distributions in the system improved 

computational efficiency, but limited their ability to model complex geometries and stress states.  

The purpose of this paper is to develop a new meso-scale modeling technique that we term “STZ 

dynamics” modeling.  This approach considers STZ activation as a stochastic, stress-biased, 

thermally activated event which obeys a specific rate law, and uses the kinetic Monte Carlo 

method to control the evolution of the system.  We employ FEA to solve the elastic strain 

distribution in the system, by which the STZs communicate with one another.  In this manner, 

we are able to access longer time and length scales than those associated with atomic motions.  

Our model takes its inspiration from the lattice model of Bulatov and Argon [34], but expands 

upon it in the sense that our use of FEA permits arbitrary shape changes, complex geometries 

and boundary conditions, greater freedom in the definition and activation of STZs, and a close 

connection to experimental conditions.  In this paper, we present our basic methodology, and 

then proceed to develop a specific two-dimensional implementation as a demonstration of the 

method.  We explore the thermal response and effects of processing, the rheological nature of 

deformation at high temperatures, and shear localization at low temperatures.  Lastly, a 

compilation of data from many simulations is used to construct a deformation map for a model 

metallic glass. 

2. Modeling Framework 

2.1 Shear Transformation Zones 

We model an amorphous material as an elastic continuum consisting of an ensemble of potential 

STZs defined on a mesh.  In essence, we substitute a continuum mesh for collections of atoms, as 

shown schematically in Figure 1.  We treat the shearing of an STZ as an Eshelby inclusion 

problem [37], as proposed by Argon in his calculation of the activation energy barrier for 

shearing of an STZ [3, 38].  In this approach, an STZ undergoes a stress-free strain 

transformation, after which both the STZ and surrounding matrix elastically accommodate the 

transformation strain.  The activation energy barrier as determined by Argon [3, 38] is 



 5 

  
 

 
   

  oo

o

T
T

F 

















 22 ˆ

2

1

19

12

130

57
















. (1) 

where the first term represents the strain energy of an STZ sheared by the characteristic shear 

strain, o  (which is of order ~0.1).  The second term represents the strain energy for a temporary 

dilatation to allow the atoms to rearrange into the sheared position where   (of order ~1) 

represents the ratio of STZ dilatation during transformation to the characteristic shear strain o .  

The third term represents the energy required to freely shear an STZ, with ̂  equal to the peak 

interatomic shear resistance between atoms.  The material properties   and  T  respectively 

represent Poisson’s ratio and the temperature-dependent shear modulus of both the STZ and 

surrounding matrix.  Finally, the STZ volume is given by o  with the product oo   equal to 

the activation volume of the STZ. 

In our approach, the finite element mesh and the definition of the STZs on the mesh are selected 

with the following characteristics in mind:  

 The geometrical shape of the STZ in the mesh should resemble that observed in 

simulations and models, roughly spherical in three dimensions or circular in two [3, 14, 

25, 39, 40]. 

 Each individual STZ should be represented by a sufficient number of elements to 

accurately resolve the stress and strain distributions in the mesh. 

 Elements that belong to one STZ should be able to participate in other potential STZs, 

just as atoms may participate in various different STZs. 

One simple implementation that achieves these criteria in two dimensions is a triangular mesh 

with STZs bound to the nodes and elements of the mesh.  For example, STZs may be centered on 

nodes of the mesh, and incorporate a number of surrounding elements extending radially 

outwards.  This is illustrated in Figure 2a where 6, 24 and 54 element STZs are defined on a 

central node and include respectively, one, two and three elements extending radially outwards. 

Alternatively, STZs may be centered on a single element and incorporate elements extending 
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radially outwards.  An example is shown in Figure 2a for a 13 element STZ extending one 

element radially outwards to include elements which share common nodes.  The details of the 

STZ definition become important in the accuracy of stress and strain field calculations, and will 

be discussed in a later section.  Finally, while in principle one might define an ensemble of STZs 

with different characteristic volumes, o , based on the local size of the elements included in 

each potential STZ, the simplest approach is to assign a single value of o  to all the STZs in the 

mesh, as we shall do in the present implementation. 

The last desired STZ characteristic that is satisfied by the STZs defined on the triangular mesh is 

that elements in the mesh will be able to participate in multiple STZs.  Provided that STZs 

comprise  more than a single element, this condition is naturally achieved, as illustrated in Figure 

2b, where 3 potential STZs, each of 13 elements, are highlighted on an irregular triangular mesh.  

At any given time step, the elements in the overlap region between potential STZs B and C can 

participate in either event (and others not shown). 

2.2 Kinetic Monte Carlo 

The activation rate law of a single potential STZ is given by 
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where s  is the STZ activation rate, F  is the local energy given in Equation 1 for an STZ 

shearing in the fashion shown in Figure 1.  The local shear stress and temperature are represented 

by   and T, respectively. Boltzmann’s constant is given by k and o  represents the attempt 

frequency along the reaction pathway, which is of the order of the Debye Frequency.  

The activation rate defined in Equation 2, however, only gives the rate for an STZ attempting to 

shear in one direction.  In two dimensions, the rate for an STZ attempting to shear in N different 

directions around a circle is given by 
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where max  is the maximum in-plane shear stress and   is the angle to the current stress state in 

Mohr space for the given STZ.  If Equation 3 is simplified and the discrete summation is 

converted to a continuous integral by letting N go to infinity, we have 
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which evaluates to a modified Bessel function of the first kind, of order zero 
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Equations 4 and 5 integrate the value of the shear stress as we traverse the circle in Mohr space 

for the given value of the shear stress as defined by    sinexp max   for   on the interval [0°, 

360°).  Thus, Equations 4 and 5 are able to determine the rate for shearing a single STZ in a 

continuum of directions around a circle, based upon the local stress and temperature of the STZ.  

The form of Equation 5 is especially convenient for evaluating the integral computationally.   

The kinetic Monte Carlo (KMC) algorithm [34, 41, 42] can be used to evolve an ensemble of 

STZs governed by Equations 1 and 5, where each STZ may experience a different local 

temperature and stress state, by repeating the following steps:  

1. Calculate and form a list of activation rates, is , for each of the i = 1…N STZs in the 

ensemble, based on the current state of the system. 

2. Calculate the cumulative activation rate, Ts , for all STZs and normalize each individual 

rate by Ts , 

  Tii ss   (6) 

 such that 

  1
i

i . (7) 
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3. Generate two random numbers, 1  and 2 , uniformly distributed on the interval [0,1). 

4. Update the elapsed system time with the residence time for the current configuration 

calculated according to 

  Tst 
1ln . (8)  

5. Select a single STZ by first defining the cumulative fraction of STZ rates up to and 

including the rate of STZ j by 

  
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j

i

ij

1

 , (9) 

and then using the random number, 2 , to find the STZ which satisfies 

 kk   21  . (10) 

When listed in a successive fashion, 2  falls on the subinterval k  in the list of 

normalized STZ rates, as illustrated in Figure 3a. 

6. To select the angle at which to shear the STZ, we first define the value  , which 

represents the magnitude by which 2  overlaps the subinterval of the selected STZ, k , 

as illustrated in Figure 3b, 

 12  k . (11) 

The overlap,  , is then used to determine the integration limit which satisfies the 

equality  
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The integration limit    from Equation 12 and the angle to the current stress state   can 

then be used to define the angle of shear in real space, relative to a state of pure shear, by 
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   2  . (13) 

7. Apply a shear shape distortion to the selected STZ of the form 
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and subsequently calculate the stress and strain distributions of the new configuration. 

The KMC algorithm can be repeated for an arbitrary number of STZ operations and is efficient 

because every iteration guarantees a transition.  The stochastic nature of the processes will 

produce a realistic outcome if the rates governing the individual events are correct.  

While most of the steps listed above are standard to any KMC algorithm, steps five and six 

deserve further explanation.  In the list of normalized STZ rates of Figure 3a, some subintervals 

are larger than others, since some STZs experience higher stress than others.  Strictly speaking, 

such STZs experience higher values of : 

  
kT

o 0max 



 , (15) 

which governs the STZ activation rate (cf. Equation 5) and dictates the width of the subinterval 

i .  Thus, when selecting the STZ with the random number 2 , the larger subintervals have a 

higher probability of being selected, giving preference to events that occur on shorter time scales. 

The value of  also impacts the choice of the STZ shearing angle, as a result of the exponential 

dependence of  in Equation 4.  This is illustrated by the non-uniform subintervals in Figure 3b.  

A more accurate representation of this effect can be seen by calculating the values of   as 

determined for different ratios of   where the integral Equation 12 is evaluated from 0 to    for 

a range of    on the interval [0°, 360°).  The result is plotted as a function of the integration limit 

   in Figure 4a, where the arrows on the plot point from smaller to larger values of   (i.e., from 

states of lower stress/higher temperature to states of higher stress/lower temperature).  It can be 

seen that for small values of   the curve is linear, meaning that a random number will uniformly 
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select the angle   ; at high temperatures or low stress levels there is no preference for the 

shearing direction of the STZ.  For large values of  , however, the trend in Figure 4a is 

sigmoidal, and most randomly selected numbers will preferentially select shearing angles near 

90°— the angle of maximum shear in Mohr space. Thus, at low temperatures and/or high 

stresses, the local stress state biases the STZ into shearing in the direction of maximum shear.    

This is illustrated for the case of uniaxial tension in Figure 4b, where 2   because   is 

zero.  Several potential shear shape distortions are shown beneath Figure 4a to illustrate how the 

integration limits relate to each distortion.  At very high values of   the preferred shear shape 

distortion is in the direction of the uniaxial tension (shear at 45° to the tensile axis) providing 

maximum extension for a single STZ activation.   

2.3 Finite Element Analysis 

With an ensemble of STZs defined on the mesh and the KMC algorithm to evolve the system, 

there remains only the matter of identifying the local states of these potential STZs, i.e., the local 

stress and temperature that will govern their activation.  In our model, FEA is used to determine 

the stress and strain distributions in the system at every KMC step.  When an STZ is to be 

activated or sheared, an increment of strain, as given in Equation 14, can be applied to the 

elements belonging to that STZ and the FEA solver can then recalculate the stress and strain 

distributions.   

For all the simulations discussed in this paper, we employ the commercial finite element package 

ABAQUS
®
 as our FEA solver, with plane-strain quadratic triangular elements.  We apply the 

STZ shearing strains through the use of ABAQUS User Subroutines, and since all plasticity 

occurs through these local STZ shape change events, we only require a linear elastic solver to 

determine the stress and strain fields.  For simplicity in this paper, we require the entire system to 

have a uniform temperature distribution. 

We explore the issue of mesh resolution by considering the shearing of a single STZ located in 

the center of a triangular mesh.  The analysis is performed with eight different STZ definitions, 

seven centered on a node and including from one to seven elements along the STZ radius, as well 

as a 13 element STZ centered on an element; some of these STZ definitions are shown in Figure 

2a.  In each of the eight cases, the STZ is sheared in a variety of different directions to obtain a 
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measure of error on the calculation.  As this situation closely resembles the Eshelby inclusion 

problem [3, 37], we use the analytical solution obtained by Eshelby for shearing of a circular 

long fiber in a matrix (plane strain) as a point of comparison.  The percent error of the 

calculation relative to the Eshelby solution (based on the total system strain energy) is plotted in 

Figure 5 as a function of the size of the STZ relative to the mesh.  As these data show, 

convergence is achieved quite quickly, with STZs containing 13 or more elements exhibiting 

about 1.5% error or less.  However, each time the number of elements along the STZ radius is 

doubled, it quadruples the number of elements required to simulate the same system size, and 

thus roughly quadruples the computational time; accordingly, we identify the 13 element STZ as 

a reasonable compromise between accuracy and computational speed.  All the computations 

described in the remainder of this paper are carried out with 13-element STZs defined on an 

irregular triangular mesh, as schematically illustrated in Figure 2b.  (For comparison, we also 

conducted many simulations using the 6-element STZs, which gave the same results as those 

provided in this paper for the 13-element STZs, both in a qualitative and quantitative sense.) 

It is important at this point to discuss mesh distortion that can occur through severe deformation, 

which leads to errors in the solutions of the stress and strain distributions.  This problem can be 

circumvented by periodically checking for distortion of the mesh and remeshing if necessary, 

which requires mapping the elastic fields onto the new mesh.  Solution mapping can contribute 

to error accumulation as well, so it is important to take care that the error accumulated by 

solution mapping is smaller than that accumulated by simply ignoring the mesh distortion.  In 

this paper, we limit our discussion to cases in which the mesh distortion was sufficiently low that 

there is no concern about the solution accuracy.  However, remeshing is, in general, an important 

aspect of our modeling approach, especially for situations involving localization. 

2.4 Material Properties 

Our model requires several material properties including Poisson’s ratio,  , and the temperature 

dependent shear modulus,  T  which is defined relative to its value, o , at T = 0 K as  

    T
dT

d
T o


  . (16) 
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For the sake of simplicity, we neglect the abrupt changes in modulus which are experimentally 

observed near the glass transition temperature, and assume the linear relationship above to be 

valid over the range of temperatures considered in this paper.  The Debye temperature, D , of the 

material, which is related to the Debye frequency, is required for the rate calculations.  Finally, 

two geometrical properties of the STZs are required; the STZ volume o and the number of 

atoms in that volume based upon the material chemistry.  In this paper we have used material 

properties derived from experiments on Vitreloy 1, Zr41.2Ti13.8Cu12.5Ni10Be22.5, as listed in Table 

1.  In addition, we take the value of ̂ , from Equation 1, to be equal to the athermal shear stress. 

3. Model Output 

To demonstrate the ability of this modeling framework to simulate the wide range of behaviors 

exhibited by glasses, we perform a series of simulations on a plane strain 2-D irregular triangular 

mesh based on 13-element STZs.  Using the material properties from Table I, this domain has 

approximate dimensions of 27.6 nm wide by 45.8 nm tall.  In all cases the mesh is subjected to 

boundary conditions in which top and bottom surfaces are constrained in the y-direction and the 

bottom left node is fixed.  

In order to implement the framework in a computationally efficient manner, we have integrated 

several different software packages and coding languages.  MATLAB
®

 is used as a wrapper to 

control and call the different packages and processes; MySQL
®

 is used for efficient data storage 

and data recall; Python is used to interact with ABAQUS CAE; Fortran is used to code the User 

Subroutines in ABAQUS; and C++ is used to post process the ABAQUS output files.  Finally, 

the parallel processing capabilities of ABAQUS are employed to reduce the computation time of 

the simulations. 

3.1 Thermal Response and Processing 

We begin by first studying the effects of processing of a metallic glass by applying various 

thermal loads in the absence of external forces, and allowing the system to relax through 

sequential STZ operations.  Two types of thermal response tests are performed: (i) equilibration 

(relaxation of the glass) at a fixed temperature, and (ii) cooling simulations where the glass is 

relaxed over a finite time determined by an applied cooling rate in the range 10
1
 to 10

4
 K/s.  All 
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the thermal response simulations are started from a system which is first equilibrated at a 

temperature of 1000 K which is just above the melting temperature of Vitreloy 1 at 993 K [5].   

We begin by first examining the results of our equilibration simulations.  Figure 6a shows the 

characteristic relaxation curves obtained in these simulations, where the instantaneous elastic 

strain energy density in the system is plotted as a function of time.  The use of a semi-log scale 

permits all the equilibration curves to be presented on a single figure, but renders it difficult to 

clearly observe that each of the systems has actually reached an equilibrated state.  An example 

demonstrating the convergence to a steady-state value is shown in the inset of Figure 6a, for the 

simulation at 400 K; all of these simulations show a similar convergence when plotted on linear 

time scales or as a function of the KMC time steps.   

In Figure 6a, all of the data shown are for equilibration at temperatures below the 1000 K starting 

state, and thus all the simulations shown involve an energy reduction.  However, the steady-state 

is independent of prior history, and the equilibrated elastic strain energy density is in fact a 

simple function of temperature.  We find that the elastic strain energy density is proportional to 

the temperature with a slope of 5.27x10
-4

 eV/nm
3
·K.  This linear trend is shown over a small 

range of temperatures in Figure 6b, but remains linear for the range of temperatures simulated in 

this paper, and in principle remains linear to 0 K.   

We now turn to the data obtained in the fixed cooling rate simulations, which are shown in 

Figure 6b.  Here each curve represents the average of three simulations at the same cooling rate, 

and plots the average elastic strain energy of the system as a function of temperature.  As 

expected, the cooling experiments tend to track the equilibrium condition reasonably closely at 

first, until the temperature falls below a certain point; with further cooling the elapsed time of 

each KMC step rises quickly, and the system becomes kinetically trapped.  The magnitude of 

relaxation achieved is greater for the slower cooling rates, in which a larger number of STZ 

operations are allowed. 

It is interesting to note that the KMC approach, by permitting arbitrarily long time scales, can 

yield states not seen in experiments or other simulations.  For example, our equilibrium elastic 

strain energy density trend in Figure 6b differs from prior suggestions that the energy associated 

with the fluctuations of atomic level stresses should depart from linearity for values below the 
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glass transition temperature, Tg [17, 19, 43].  While such a departure from linearity is clearly 

possible when short time scales produce kinetically metastable structures (as in our cooling 

simulations in Figure 6b), the KMC algorithm allows the system to visit states that wouldn’t be 

accessible on reasonable time scales, e.g. 10
30

 s (cf. Figure 6a).  Thus, in our equilibrated 

structures we observe a linear reduction of system energy as temperature decreases well below 

gT . 

3.2 High Temperature Rheology 

The high-temperature deformation of a metallic glass provides a convenient validation point for 

our model, since at sufficiently high temperatures (small ), thermal energy dominates STZ 

activation, the local stress state becomes less important, and STZs are expected to act essentially 

independently of one another.  Under such conditions, an analytical expression for the glass 

rheology is possible.   

In the classical one-dimensional model, STZs may shear either forward or backward, and 

combining the rates of these two processes yields the following hyperbolic-sine stress dependent 

phenomenology in the steady state [3, 44]: 
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where   is the shear strain rate.  This approach is readily expanded to a two-dimensional case 

where STZs can shear in any direction in the plane, which is more relevant for comparison with 

our model.  In this situation the average strain rate is found by considering the contribution of 

strain from shear in STZ in any direction around the orientation circle.  The derivation is very 

similar to that used to obtain Equation 4, and yields: 
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where I1 is a modified Bessel function of the first kind, of order one.  Equations 17 and 18 

predict remarkably similar strain rates for the same temperature and stress, with only subtle 

differences between them.  For example, at low stresses, Equation 18 predicts a slightly faster 
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strain rate (by a factor of ~2.2 at 50 MPa and Tg) because the extra degrees of freedom allow 

STZs that shear at off-angles to contribute to the forward strain rate.  At high stresses, however, 

the extra degrees of freedom in Equation 18 actually predict a slower strain rate (by a factor of 

~0.27 at 1 GPa and Tg) than Equation 17 because the off-angle STZ shearing events predict a 

slower strain rate than having all forward flips as in the one-dimensional model. 

We study the rheological behavior of our simulated glass over a range of stresses at different 

constant temperatures near and above 623 K, the glass transition temperature of Vitreloy 1 [5].  

We explore deformation in three different classes of structures: 

 Equilibrated structures which are first equilibrated without an applied load at the test 

temperature, followed by application of a load at the same temperature. 

 Cooled structures which are cooled from the equilibrated structure at 1000 K at a rate of 

10 K/s to 300 K (cf. Figure 6b), prior to the application of a load at a different 

temperature. 

 Unequilibrated structures which comprise an undeformed mesh, free from any prior STZ 

operations, with no internal stress distribution prior to loading at the test temperature. 

In all cases, temperature and stress (in a loading state of pure shear, with displacement along the 

x-axis) are fixed at constant values, and the KMC algorithm evolves the system through 

sequential STZ operations.   

Typical shear strain-time data for the three different structures are shown in Figure 7a, for a load 

of 400 MPa at 623 K.  The responses for the cooled and equilibrated structures are very similar, 

exhibiting almost instantaneously a constant steady-state strain rate. On the other hand, the 

unequilibrated structure exhibits a significant transient region, during which the structure is 

developing the beginnings of a steady-state internal stress distribution that permits more rapid 

deformation; the first few STZ operations are large perturbations in the unequilibrated system, 

and require longer times to occur.  After the conclusion of the transient, however, the steady-

state strain rate is essentially the same as that seen in the other two structures.  The deformation 

in all the structures is also uniform, or homogeneous in nature, as expected.  An illustration of 

the observed deformation is provided for the unequilibrated structure at a time intermediate to 
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the final deformation, with the magnitude of the STZ strains shaded, which can be seen in the 

inset of Figure 7a.  All the high temperature deformation tests showed a similar uniform 

distribution of STZ strains and homogeneous deformation. 

The steady-state strain rates of all three structures are plotted as a function of the applied load in 

Figure 7b, for a variety of test temperatures.  As expected based on our above discussion, we see 

that all three structures exhibit similar rheology in the steady-state condition.  What is more, the 

shape of the datasets in Figure 7b is typical of homogeneous glass flow, exhibiting weakly rate-

dependent near-Newtonian flow at low stresses, and a gradual increase in rate sensitivity with 

increasing stress.  The predictions of Equations 17 and 18 are also plotted in Figure 7b, both of 

which agree closely with the simulation results without the use of any adjustable parameters; this 

close agreement suggests that the assumption of independent STZ operation is well-founded at 

these temperatures near the glass transition. We also observe that while the two-dimensional 

model of Equation 18 does provide somewhat improved predictions in some cases, the simpler 

one-dimensional model of Equation 17, with its classical hyperbolic-sine stress dependence, 

provides surprisingly accurate results with an error on average ~5% smaller than Equation 18.  

3.3 Low Temperature Deformation 

We now consider deformation of the same three structures at two temperatures, 300 and 400 K, 

well below the nominal glass transition temperature of Vitreloy 1 at 623 K.  Typical strain-time 

data are shown in Figure 8a for the three different structures loaded at 1 GPa and 300 K, where it 

can be seen that once a certain strain level is achieved, all three structures exhibit about the same 

strain rate.  However, the three different structures exhibit very different initial responses to the 

applied load, where the cooled structure shows no transient region, the equilibrated structure 

shows a small transient region and the unequilibrated structure once again shows a very 

significant transient region.  The lack of a transient in the cooled structure can be attributed to the 

higher strain energy density that is frozen into the system, which is ~2.5 times greater than the 

strain energy density in the equilibrated structure.  Thus in comparing the cooled and 

equilibrated structures, the higher stresses in the cooled structure make it more readily able to 

deform than the equilibrated structure which requires a transient region to initiate rapid 

deformation.   
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The significant transient region in the unequilibrated structure can again be attributed to the 

development of an internal stress distribution that facilitates deformation, where the first STZ 

operations represent large perturbations to the system that require a long time to occur.  What is 

more, these first few STZs are spatially clustered, as shown in Figure 8b, and ultimately 

assemble into the nucleus of a shear band as in Figure 8c.  Once this assemblage of STZs spans 

the specimen as in Figure 8c, the stress state of the system is sufficiently perturbed to permit 

rapid shearing on this plane, which accumulates strain quickly as in Figure 8d. 

At low temperatures and high loads (large λ), a glass generally deforms inhomogeneously with 

the majority of plastic strain confined to very localized volumes, exactly as seen in the example 

of Figures 8b-d.  However, while this behavior was observed in the unequilibrated structure, the 

equilibrated and cooled structures deformed in a homogeneous fashion with no sign of 

localization in over 40 unique simulations, despite identical loading conditions.  This 

homogeneity (or lack of inhomogeneity) in the equilibrated and cooled structures can, we 

believe, be attributed to the system size; the small physical size of the simulation cell falls in the 

reported range of the width of a fully developed shear band at 10
-8

 – 10
-7

 m [7, 8].  This may 

simply be too small to allow a shear band to develop in the complex stress field of an amorphous 

solid.  The localization of the stress and strain distributions which give rise to shear banding 

requires a perturbation of sufficient size.  In the unequilibrated structure, the perturbation is 

provided by thermal activation of the first few STZs, which generate stress and strain 

distributions of a large magnitude in an otherwise stress free mesh.  Subsequent STZs are 

strongly biased by the perturbation, leading to the autocatalytic assembly of a shear band as in 

Figures 8b-d.  However, in the systems with pre-existing structural noise, a single STZ operation 

does not provide a sufficient perturbation to trigger shear banding, because stresses of similar 

magnitude are already distributed through the system; a larger perturbation is apparently 

required, involving multiple STZ operations.  In a small system such as ours, the probability for 

observing a perturbation of sufficient size is reduced.  The role of large stress fluctuations 

inhibiting inhomogeneous deformation has been explored previously in Ref. [45] with a different 

model, and similar physics may be at work here. 

In future work we will explore in more detail the conditions required to cause localization in 

these simulations.  In addition to issues of scale, we also intend to incorporate local state 
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variables, including structural parameters (such as free volume) and local temperature; these will 

permit additional perturbations in the local state and are known to generally lead to (or influence) 

localization [4].   

3.4 Deformation Map 

As a final illustration of the general capabilities of this model, we assemble in Figure 9 a 

deformation map derived from simulations on the unequilibrated structure.  The map includes: 

 Contours of steady-state strain rate as a function of temperature and stress, for rates 

ranging from 10
-10

 to 1 s
-1

.  The material response at strain rate values much slower than 

10
-10

 s
-1

 are assigned as nominally “elastic”; these data points are marked by an x rather 

than a square. 

 Local values of the strain rate sensitivity, m, defined as 

  




ln

ln

d

d
m  . (19) 

As the stress is increased, the value of m decreases from unity (Newtonian flow), and 

trends toward zero, which is associated with non-Newtonian flow and instabilities [46].   

 Regions to denote which samples deformed in a homogeneous manner and which 

samples deformed in an inhomogeneous manner. 

The general features of the deformation map match well with expectations for metallic glasses 

[1, 44].  With the ability to reproduce the basic features of deformation of glass, we anticipate 

that the present STZ-dynamics model will be able shed new light on more obscure details of 

deformation that are not captured on the deformation map.  

4. Conclusions  

We have developed a new meso-scale modeling technique for the mechanical behavior of 

metallic glasses, based on shear transformation zone dynamics.  The important features of this 

modeling framework include the following: 
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 A model material is coarse-grained and mapped onto a mesh to form an ensemble of 

shear transformation zones (STZs), which are the fundamental units of plastic 

deformation. 

 Finite element analysis and a kinetic Monte Carlo algorithm are used together in this 

model, the former to permit STZs to interact via their stress and strain fields, and the 

latter to permit time evolution of the ensemble.   

The result is a model that can access significantly larger time and length scales than those 

typically available via atomistic modeling, with complex geometries and boundary conditions.  

These larger time and length scales are necessary to understand how microscopic deformation 

leads to macroscopically and experimentally observed behaviors. 

We have presented a specific implementation of the modeling technique in two dimensions, to 

model a metallic glass over a range of thermal conditions and mechanical loads.  Salient results 

from this exercise include the following: 

 In equilibrium, there is a linear relationship between the stored elastic strain energy 

density and temperature.  Cooling the system at a finite rate leads to a deviation from 

equilibrium and the entrapment of a kinetically metastable state with higher stored elastic 

strain energy density. 

 Deformation of the system at high temperatures and at a constant load leads to steady-

state strain rates regardless of the processing history (pre-existing internal stress 

distributions), although the processing history can affect the transient approach to steady-

state.  The steady-state rheology conforms well to simple analytical models that assume 

independence of STZs from one another.  Both Newtonian and non-Newtonian flow are 

observed, in line with expectations. 

 While deformation at high temperatures is observed to be homogeneous, at low 

temperatures inhomogeneous flow (i.e., shear banding) is observed in initially noise-free 

(unequilibrated) structures.  In such systems, the first STZs that operate provide a 

perturbation that leads to autocatalytic shear band assembly.  In contrast, systems with a 
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thermal/processing history with significant pre-existing internal stress distributions 

deform in a homogeneous manner. 

With the results obtained from numerous simulations, we assembled a deformation map for 

metallic glasses that is in line with expectations from the literature.  It is expected that our STZ 

dynamics model can be applied to understand more subtle details of glass deformation under 

complex boundary conditions and at large scales.  
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Figure Captions 

Figure 1 a) ‘shear transformation zone’ or STZ, where several dozen atoms shear ineastically 

under an applied shear stress; b) an idealization of an STZ on a continuum mesh. 

 

Figure 2 a) Representation of several possible STZ definitions on a triangular lattice. b) Irregular 

triangular mesh with 13-element potential STZs highlighted and denoted by A,B and C; B and C 

show how individual elements in the mesh can be activated by different STZs. 

 

Figure 3 Schematic of the kinetic Monte Carlo STZ selection procedure: a) shows how the 

random number 2  can be used to select a single STZ for activation from a list of normalized 

individual STZ rates, I ...,, 321  and  b) illustrates the determination of the overlap,  , 

between 2  and j  (as defined in Equation 11), which selects the angle of shear of the STZ. 

 

Figure 4 a) Evaluation of Equation 12 as a function of   , in degrees, for several different values 

of  . The arrows point from smaller to larger values of  , illustrating the drive for the system to 

shear at the angle of maximum shear for large values of  . b) Illustration of the shearing of an 

STZ for different values of   for a state of pure tension, where the different STZs have been 

lined up under part a) to illustrate how the value of   influences the probability of observing 

each type of shear event. 

 

Figure 5 Plot of the percent error between the strain energy determined by FEA methods and the 

Eshelby solution, as a function of the size of the STZ.   

 

Figure 6 a) Plot of elastic strain energy density as a function of elapsed time for simulated 

equilibration of a metallic glass at different temperatures.  The semi-log scale allows comparison 

of the different simulations but obscures the convergence of the value to a steady-state, which is 

shown in the inset for linear axes. b) Plot of elastic strain energy denstiy as a function of 

temperature for simulated cooling of a metallic glass at different rates (10
1
, 5×10

1
, 10

2
, 5×10

2
, 

10
3
, 5×10

3
, 10

4
 K/s), where each curve represents the average of three simulations.  In addition, 

the equilibrium cooling curve is plotted for comparison, which remains linear to room 

temperature and in principle to 0 K. 

 

Figure 7 a) Typical strain-time data for the three different structures deformed at high 

temperatures (in this case 400 MPa and 623 K), which exhibit similar steady-state strain rates 

and overall shear strain.  A snapshot is provided for the unequilibrated structure at the marked 

point, where the inset shows the physical deformation along with the magnitude of the plastic 

STZ strains, which are shaded.  b) Steady-state homogeneous flow data for several high 

temperature simulations of the three structures, plotted along with the predicted strain rates of 

Equations 17 and 18. 

 

Figure 8 a) Typical strain-time data for the three different structures deformed at low 

temperatures (in this case 1 GPa and 300 K), which exhibit similar steady-state strain rates and 

overall shear strain, although they exhibit different transients. Markers b), c) and d) correspond 

to snapshots of the unequilibrated structure at different times during deformation, illustrating the 
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localization that proceeds formation of an elementary shear band.  Marker e) corresponds to a 

single snapshot of the equilibrated structure near the end of loading illustrating the homogeneous 

nature of the deformation. 

 

Figure 9 A deformation map for Vitreloy 1 constructed from data obtained from loading the 

unequilibrated structure over a range of loads and temperatures.  The colored lines represent 

contours of different steady-state strain rates, where strain rates slower than 10
-10

 s
-1

 are 

considered to be elastic and are marked with an ‘x’. Other data points are shaded according to 

their respective strain rate sensitivity, m, as indicated by the color bar above the map.  Further 

regions marked as Newtonian (lightly shaded) and non-Newtonian are differentiated.  Samples 

which deformed inhomogeneously are marked in a darkly shaded region while the rest of the 

samples deformed homogeneously. 

 

 

 

Table 1 List of material properties for Vitreloy 1, Zr41.2Ti13.8Cu12.5Ni10Be22.5 

Property Value Reference 

o  37 GPa [47] 

dTd  – 4.0 x 10
-3

 GPa/K [47] 

  0.352 [47] 

D  327 K [48] 

o  0.8 nm
3
 [13] 

# Atoms in o  42  
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Figure 1 a) ‘shear transformation zone’ or STZ, where several dozen atoms shear ineastically 
under an applied shear stress; b) an idealization of an STZ on a continuum mesh. 
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Figure 2 a) Representation of several possible STZ definitions on a triangular lattice. b) Irregular 
triangular mesh with 13-element potential STZs highlighted and denoted by A,B and C; B and C 
show how individual elements in the mesh can be activated by different STZs. 
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Figure 3 Schematic of the kinetic Monte Carlo STZ selection procedure: a) shows how the 
random number 2ξ  can be used to select a single STZ for activation from a list of normalized 
individual STZ rates, Iηηηη ...,, 321  and  b) illustrates the determination of the overlap, η′ , 
between 2ξ  and jη  (as defined in Equation 11), which selects the angle of shear of the STZ. 
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Figure 4 a) Evaluation of Equation 12 as a function of θ ′ , in degrees, for several different values 
of λ . The arrows point from smaller to larger values of λ , illustrating the drive for the system to 
shear at the angle of maximum shear for large values of λ . c) Illustration of the shearing of an 
STZ for different values of ω  for a state of pure tension, where the different STZs have been 
lined up under part b) to illustrate how the value of λ  influences the probability of observing 
each type of shear event. 
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Figure 5 Plot of the percent error between the strain energy determined by FEA methods and the 
Eshelby solution, as a function of the size of the STZ.   
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Figure 6 a) Plot of elastic strain energy as a function of elapsed time for simulated equilibration 
of a metallic glass at different temperatures.  The semi-log scale allows comparison of the 
different simulations but obscures the convergence of the value to a steady-state, which is shown 
in the inset for linear axes. b) Plot of elastic strain energy as a function of temperature for 
simulated cooling of a metallic glass at different rates (101, 5×101, 102, 5×102, 103, 5×103, 104 
K/s), where each curve represents the average of three simulations.  In addition, the equilibrium 
cooling curve is plotted for comparison. 
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Figure 7 a) Typical strain-time data for the three different structures deformed at high 
temperatures (in this case 400 MPa and 623 K), which exhibit similar steady-state strain rates 
and overall shear strain.  A snapshot is provided for the unequilibrated structure at the marked 
point, where the inset shows the physical deformation along with the magnitude of the plastic 
STZ strains, which are shaded.  b) Steady-state homogeneous flow data for several high 
temperature simulations of the three structures, plotted along with the predicted strain rates of 
Equations 17 and 18. 
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Figure 8 a) Typical strain-time data for the three different structures deformed at low 
temperatures (in this case 1 GPa and 300 K), which exhibit similar steady-state strain rates and 
overall shear strain, although they exhibit different transients. Markers b), c) and d) correspond 
to snapshots of the unequilibrated structure at different times during deformation, illustrating the 
localization that proceeds formation of an elementary shear band.  Marker e) corresponds to a 
single snapshot of the equilibrated structure near the end of loading illustrating the homogeneous 
nature of the deformation. 
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Figure 9 A deformation map for Vitreloy 1 constructed from data obtained from loading the 
unequilibrated structure over a range of loads and temperatures.  The colored lines represent 
contours of different steady-state strain rates, where strain rates slower than 10-10 s-1 are 
considered to be elastic and are marked with an ‘x’. Other data points are shaded according to 
their respective strain rate sensitivity, m, as indicated by the color bar above the map.  Further 
Regions marked as Newtonian (lightly shaded) and non-Newtonian are differentiated.  Samples 
which deformed inhomogeneously are marked in a darkly shaded region while the rest of the 
samples deformed homogeneously. 
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Table 1 List of material properties for Vitreloy 1, Zr41.2Ti13.8Cu12.5Ni10Be22.5 

Property Value Reference 
oμ  37 GPa [46] 

dTdμ  – 4.0 x 10-3 GPa/K [46] 
ν  0.352 [46] 

Dθ  327 K [47] 

oΩ  0.8 nm3 [13] 
# Atoms in oΩ  42  
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