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ABSTRACT

This thesis examines the possibility of using a heat pipe installed in the air conditioning
unit of a supermarket to increase the level of dehumidification of the inside air. This
dehumidification is expected to reduce the energy consumption of the refrigeration system
due to an improved efficiency of the heat transfer at the display case. This increase in
efficiency will be due to reduced frost buildup on the refrigeration coils. Chapter two
includes a physical and psychrometric analysis of the heat pipe, proving that for any
system where direct evaporation dehumidification is used, at any given time when
dehumidification is being performed, the addition of a heat pipe will increase the amount of
moisture being removed by the cooling coil.

For this thesis, a heat pipe was installed in a supermarket in Worcester,
Massachusetts. Over a period of the summer from the beginning of June to the end of
October, various air temperatures and relative humidities, refrigeration line temperatures,
pressures, and mass flows, and compressor power consumption were monitored for fifteen
minute periods. The monitoring period included two months before the installation and
three months after the installation to determine changes in the air system and refrigeration
system due to the presence of the heat pipe. Chapters two through five describe the
equipment, site and strategy used in the analysis. Chapter six describes the results of the
monitoring, and Chapters seven and eight give the results of the air system and
refrigeration system models. The systems were modelled using monitored data and
engineering equations to predict humidity levels and power consumption based on ambient
conditions.

The analysis was unique in that a heat pipe application had never been previously
studied in a Northeast location, since the mild summers made dehumidification less of an
issue than in Southern states. This study was also considerably more in depth than
previous studies (summarized in Chapter 2), for which savings estimates do not account for
large potential errors. This study concluded that potential savings estimates ( 0-8%
reduction in supply air humidity, -1% reduction in refrigeration power) were within
statistical error (9% for specific humidity, 4% for refrigeration power), and therefore
inconclusive. Further studies with superior equipment and modelling strategies are needed
to substantiate heat pipe dehumidification.

Thesis Supervisor: Leslie K. Norford
Title: Associate Professor of Building Technology
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Chapter 1 Introduction

As electric utilities become more competitive and environmental concerns necessitate

that steps be taken to preserve our natural resources, energy conservation has become one

of the most important tasks of society today. The field of demand side management

(DSM), has assumed a large role in reducing the amount of electricity generated each year.

DSM involves engineers, designers, and utility planners who work to try and improve

electrical efficiency where it is actually consumed. This usually occurs in the form of

equipment retrofits, equipment replacements, or new construction design using the most

energy efficient components. In this field, new technologies and advanced research have

allowed more creative methods of energy conservation to play a significant part of total

load reduction. One field of recent advancement involves reducing electricity consumption

in supermarkets.

Supermarkets consume a significant amount of energy due to lighting, air

conditioning, and refrigeration. The refrigeration of food, necessary to preserve freshness

and marketability, is a complex process which consumes nearly 40 percent of total

supermarket electricity consumption. A significant part of refrigeration electricity

consumption goes to defrosting refrigeration coils which have accumulated frost from

inside air. Previous studies have shown that dehumidifying inside air reduces the rate that

frost builds up on these coils, therefore reducing the cooling load and power consumption

of the refrigeration system. One method of dehumidifying inside air involves installing a

heat pipe in the air conditioning system. A heat pipe is a device which pre-cools air before

it enters the cooling coils, allowing the incoming air to reach saturation quicker which

allows cooling coils to remove more moisture. The other end of the heat pipe reheats the



post-coil air closer to supply conditions. The process is accomplished by alternating

evaporation and condensation of a liquid refrigerant contained within the heat pipe.

In this thesis, I analyze the issue of whether or not heat pipe dehumidification can

play a significant role in energy conservation in the Northeast. Most previous studies have

involved installations in the South, where dehumidification is an important issue due to the

long high humidity season. In the Northeast, and specifically New England, the summers

are milder and humidity levels are not as important an issue. Nevertheless, for

supermarkets any amount of dehumidification is important in increasing the efficiency of

the refrigeration system, as will be explained later in the thesis. To accomplish

dehumidification, I feel heat pipes are the best alternative due to the fact that they are

completely passive, requiring no energy input without significantly changing the existing

air conditioning system. Heat pipes, as opposed to dessicant dehumidifying systems, can

be retrofit into existing air conditioning units without changing setpoints or considerably

increasing the unit's energy consumption. Heat pipes do, however, create an additional

pressure drop in the airflow due to resistance, and if existing airflows are to be maintained,

the fan blower will require an adjustment, increasing its power consumption slightly.

While dessicant systems consume gas and electricity while in operation, heat pipes provide

free humidity reduction, which is important in a location where humidity reduction is

expected to be small.

The next five sections will further explain the consumption of energy in

supermarkets, the need for dehumidification, types of dehumidification, and finally a map

of how the remaining chapters will accomplish the analysis



1.1 Supermarket Energy Consumption

Supermarkets are increasingly becoming targets for DSM energy efficiency projects

in utilities' efforts to reduce electricity consumption and demand in the commercial sector.

According to estimates by the Electric Power Research Institute (EPRI), supermarkets

account for approximately ten percent of the total electricity consumption in the commercial

sector, which accounts for about thirty percent of all electricity use in the United States

(Blatt 1992). Typical supermarket energy consumption breaks down to about 40% for

refrigeration, 25% for lighting, 20% for heating, ventilation and air conditioning, and 15%

for miscellaneous. These figures will vary according to many factors such as climate, store

size, operating hours and equipment efficiency, but it is clear that attacking refrigeration

energy consumption is a good way to cut electricity costs.

Refrigeration energy consumption consists of three main components. A certain

portion of refrigeration energy is consumed at the display cases ( in the form of fan power,

case lighting, and anti-sweat heaters ), some energy is consumed by compressors, and a

smaller amount of energy is used by the condensers. For a typical multiplex refrigeration

system, compressor power represents 87% of overall refrigeration system energy

consumption (Walker et al 1989). For the site monitored in this thesis, this percentage is

not known, as only compressor power is monitored. The energy consumed at the display

cases is somewhat constant, as fan power and lighting do not vary with ambient conditions,

and anti-sweat heaters operate as a function of dew point temperature, which may or may

not be controlled. Condenser fan power is a function of outside temperature, as higher air

temperatures require increased fan power to provide adequate condensation. Compressor

power is a function of load conditions on the refrigeration circuit and ambient air

conditions. It is compressor power that would benefit the most from indoor air

dehumidification.



1.2 Need For Dehumidification

Humidity levels in supermarkets are a problem for three reasons. First, there is a

higher level of moisture introduction in supermarket buildings than most other buildings

due to the constant entering and exiting of customers, in part because the average person

emits about a half pound of water per hour through breathing and perspiration, and also

because infiltration due to constant opening of doors introduces moisture when outside

humidity levels are higher than indoor humidity levels. Second, high humidity levels can

cause mold, mildew, and frost on shelved, refrigerated, and frozen food products. Third,

moisture from indoor air makes its way into refrigerated food display cases, which causes

frost buildup on refrigeration coils, thereby reducing their efficiency. Although this is

usually only a problem during the summer, when outdoor humidity levels are substantially

higher than desired indoor humidity levels, it is this third problem that I will focus on.

Due to the extremely low temperatures of refrigeration coils, moisture in the air

surrounding them will condense and then freeze on the pipes. For any given air system

with a specific temperature and relative humidity there is a dew point temperature, lower

than the existing temperature, for which relative humidity is 100 percent. When an object

in this system is at a temperature lower than the dew point, the surrounding air reaches 100

percent humidity and further cooling results in condensation of moisture on the object. If

the object is lower than 32 degrees Fahrenheit, as is the case with many refrigeration coils,

the condensed water will freeze. The latent energy of freezing condensate is absorbed by

the refrigerant, requiring additional cooling. Also, as the ice builds up on the coils, it

creates both an added insulation (thereby reducing the heat transfer from the air to the

coils) and added surface area (which creates resistance to the airflow).

A typical multideck display case is shown in Figure 1. Cooling coils and circulation

fans are located below and behind the products. This set up provides three air curtains



protecting the merchandise from the ambient air. The innermost flow path (path 1),

contains the refrigeration coils. The fan forces air through the coils and out through the

top of the case, supplying cold air into the case. At the bottom of the case is an inlet duct

which draws the slightly warmed air into the fan based on negative pressure. The

secondary air curtain (path 2) serves as a buffer between the cold air curtain and the

ambient air curtain. The fan, located at the top of the case, draws air into the inlet duct and

blows it out through the top, just outside the cold air outlet. The ambient air curtain (path

3) simply draws air from above the display case and blows it out an outlet just out side the

secondary air curtain outlet. This air is not recirculated, but just allowed to spill out into the

aisle. The paths, though, are theoretical and there is substantial air mixing prior to the inlet

ducts. Because of this mixing, a significant amount of humid building air is drawn into

the cases (Bittner 1992).



fan

air outlets .

air inlets .. V

product 
cooling coils

fan

Figure 1. Section of a Typical Display Case

As this is an unavoidable problem, all refrigeration systems include a defrost cycle

during which the ice is allowed (or forced) to melt off the coils. There are three typical

types of defrost currently used. Off-time defrost shuts off the refrigerant flow and allows

the ice to warm up and melt. Electric heat defrost shuts off the refrigerant flow and blows

air warmed with an electric resistance heater over the ice. Hot gas defrost redirects hot

refrigerant gas out of the compressor back into the coils, heating the pipes and melting the

ice. All methods result in an undesirable warming of the display cases, and when the

defrost cycle is done the refrigeration system picks up an extra load to cool the case back

down to the desired temperature.



1.3 Tvoes of Dehumidification

There are three main methods used to dehumidify air in supermarkets. Direct

evaporation uses a cooling coil located right after the mixed air filters in the air

conditioning duct (Figure 2) The coil cools air past the saturation point to condense

moisture while evaporating the refrigerant. The cold, drier air is then heated through a

reheat coil section (usually hot gas out of the refrigeration compressor before the

condenser) to desired supply conditions.

filters

outside air

cooling coil reheat coil

air cooled past
the dew point

0
6 condensate

return air

Figure 2. Diagram of Direct Evaporation Dehumidification

Gas-fired dessicant dehumidification uses a dessicant wheel which absorbs moisture from

the mixed return air (Figure 3). The act of removing moisture passively from an air system

increases its temperature, so the air needs to be cooled down to desired supply conditions.

Sections of the dessicant wheel which have absorbed water need to be regenerated by

blowing 2500 air through it to dry out the absorbed moisture. This is usually

accomplished by gas heating outside air, blowing it through a section isolated in a separate



duct (accomplished by rotating the dessicant wheel), and dumping the wetter, cooler air

back outside. Regeneration heating coils are designed to heat air from 95 degrees to 250

degrees at about 2,500 cfm, which requires 418,500 Btu/hr of energy. This corresponded

to a moisture removal rate of 90 lbw/hr, which was described as typical for a 30,000 ft2

supermarket (Banks 1992). If the ambient air being used for regeneration is cooler, more

energy is needed. The rest of the energy used in the dessicant system is for the cooling

coils to bring the warm, dried air down to supply air temperature. This process is

somewhat energy intensive but reliable in dehumidifying. The third method, studied in this

thesis and explained further in Chapter 2, is heat pipe dehumidification.

We can use a psychrometric chart to describe the differences between the three

processes for typical design conditions (Figure 4). The dessicant process is represented

by the dashed line, and the evaporative and heat pipe process is represented by the solid

line. For a 30,000 cfm airflow and mixed air conditions of 70 degrees F and 70% RH

(point 1) and supply air conditions of 65 degrees F and 55% RH,The dessicant wheel

would need to remove moisture corresponding to a specific humidity drop of 0.004

lbw/lba.. At constant enthalpy, this action brings the air to point 2. Then, sensible cooling

corresponding to an enthalpy drop of 5.4 Btu/lba (714,690 Btu/hr) is needed to bring the

air to a dry bulb temperature of 65 degrees (point 4).
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For the same mixed air conditions, if only a cooling coil were used to condense

moisture, the air would need to be cooled to point 3. This corresponds to a enthalpy drop

of 9.8 Btu/lba (1,297,030 Btu/hr). The reheat to bring the air to point 4 can generally be

reclaimed from the refrigeration system for free. If a heat pipe were installed which had the

capability of providing 10 degrees of sensible pre-cooling and reheat, the air would

originally be cooled by the pre-cooling section of the heat pipe to point 1'. Then, the

cooling coil would need to provide an enthalpy drop of 7.4 Btu/lba (979,390 Btu/hr) to

bring the air to point 3. The reheat section of the heat pipe and free heat reclaim would

bring the air to the supply conditions at point 4. Therefore, using each of these three

methods to bring mixed air at point 1 to supply air at point 4 would necessitate the

following energy rates:

Direct Evaporation 1,297,030 Btu/hr

Dessicant Wheel 1,133,190 Btu/hr

Heat Pipe 979,390 Btu/hr

Therefore, provided the added resistance in the air system doesn't require an increase

in fan power corresponding to 153,800 Btu/hr, the most energy efficient method for

bringing the air from point 1 to point 4 is the heat pipe.

A study was done by the University of Wisconsin comparing the different types of

dehumidification for a typical supermarket in the Miami climate (Khattar 1992). The study

used TRNSYS, a dynamic simulation program that uses typical inputs and system

parameters to model the energy consumption of the HVAC and refrigeration systems. The

analysis assumed a 40,000 square foot supermarket with a 30,000 square foot sales area.

The original conditions, which the dehumidification systems were compared to, assumed a

conventional DX system in which the air was supercooled to condense moisture and then

reheated to supply conditions at 55% relative humidity. The output of the analysis was



yearly energy costs for the HVAC and refrigeration systems combined, including

electricity and gas costs.

The results of the simulation predicted that energy costs with this conventional system

would be $93,000 a year. If this system had used a dessicant wheel to accomplish 55%

relative humidity conditions, energy costs would come to $91,000 a year. Next, the study

analyzed total energy costs for reducing the humidity level to 40%. For the conventional

system, the costs come to $96,000 a year, meaning that the increase in air conditioning load

exceeded the reduction in refrigeration load due to dehumidification. The yearly costs of

the dessicant system decreased to $84,000, meaning that air system energy increases were

small compared to refrigeration savings. When the simulation was run with a heat pipe

installed to decrease humidity to 40%, the annual energy costs were estimated to be

$81,000, about $3,000 lower than the dessicant simulation

Although this simulation was run for a high humidity climate (Miami's high humidity

season is about ten months), it is expected that similar results (on a smaller scale) would

occur for a climate with a short humid season, such as that in the Northeast. It is for this

reason that supermarket energy managers, utility load planners, and energy engineers

would be interested in the effectiveness of heat pipe installations.

1.4 Analysis Summary

For the analysis we monitored various air temperatures and humidity levels,

refrigeration line temperatures and pressures, and compressor power consumption for

fifteen minute averages over most of the cooling season (June 2 through October 31). The

heat pipe was installed on August 2, which allowed us to compare pre-installation points

with post-installation points.



As a result of this analysis, we are able to predict reductions in inside relative

humidity due to the installation of a heat pipe based on outside weather conditions. We

also predict savings in the refrigeration system based on reductions in inside humidity

levels. This is accomplished by creating a model of the system for which inputs of

monitored data points result in outputs of indoor air conditions and refrigeration system

energy consumption. The conclusion will examine whether or not this method is a

successful way of determining the effectiveness of a heat pipe, and whether or not heat

pipes are an efficient tool for energy savings in the New England climate.

There will be six steps in this analysis, covered in the following eight chapters. The

conclusion will summarize the results of the process, as well as give suggestions as to how

future studies can be improved based on problems and successes of this thesis. The steps

are outlined below:

Step One. Chapter two will explain heat pipe dehumidification and why it was

chosen as a method of energy savings. First the heat pipe process will be explained, with a

physical description and examples of how they might be used in an installation. Then, a

summary of three previous studies will show how heat pipe analyses have been handled

before, and what kind of results to expect. Third, a psychrometric analysis will prove that

engineering equations back up the hypothesis that heat pipes are guaranteed to reduce

humidity levels for a given supply air temperature and ambient conditions as long as some

dehumidification is being performed. Finally, the effects of dehumidification on the

refrigeration cycle will be modelled based on an ideal Carnot cycle.

Step Two. This step, covered in chapters three and four describes the strategy that

was used to obtain the information necessary for the analysis. Chapter three describes the

method of analysis, explaining how monitored data will be combined with models based on



appropriate engineering equations in an attempt to predict refrigeration system energy

consumption based on ambient conditions. Chapter four describes the monitoring strategy,

including the site which is being monitored, what equipment was installed, and where the

sensors were located. This step is summarized at the end of chapter four.

Step Three. This step serves to describe the existing conditions of the building being

monitored. Since heat pipe performance varies based on air conditioning and refrigeration

system configuration, it is important that the results of this analysis be tied to this specific

setup. This chapter includes air conditioning unit description and specifications, as well as

the refrigeration system description.

Step Four This step, covered in chapter six, describes the measured data that was

presented to us by the monitoring contractor. For each point where temperature or relative

humidity was measured, sensor location and calibration are covered, as well as maintenance

or location problems associated with the data we received. For the refrigeration system

measurements, the location of sensors and plans on how the data are to be used are

discussed. The end of the chapter explains how monitored data met expectations and how

they will fit in to the system models.

Step Five. This step is the meat of the analysis, and is covered in chapters seven and

eight. Chapter seven combines the monitored data from step four with the air system

models in step one to predict supply air temperature and specific humidity based on return

air and outside air data compiled over the monitoring period. This is accomplished by

creating a spreadsheet model in which each step in the air conditioning unit is calculated

based on regressions of monitored data, psychrometric equations, and numbers derived in

the previous step. In the model, mixed air parameters are predicted based on return air,

outside air, and airflow measurements. Post-cooling coil air is predicted based on mixed

air and cooling load. Supply air is predicted based on post-cooling coil air and reheat. The



equations predicting supply air before and after heat pipe installation are compared to

determine to what extent the heat pipe further reduced humidity levels. These savings are

compared to potential margin of error to determine the statistical accuracy.

Chapter eight describes the loads in the refrigeration system, based on monitored data

and engineering equations. Data from monitored points and calculations are compared to

each other to determine a correlation between factors within the cycle and with ambient

conditions. Factors within the cycle are compared to attempt to relate temperatures,

pressure, and loads of adjacent stages in the cycle to each other, and are compared to

ambient conditions to attempt to predict variations in the cycle. The end of the chapter

summarizes the results and problems in relating the air system and refrigeration system

models, and in predicting refrigeration compressor power.

Step Six. The last step ties the models and data together to resolve the question of

whether or not the installation of the heat pipe actually generated any energy savings.

Chapter nine includes the energy analysis, in which monitored refrigeration compressor

power is examined to see if consumption was reduced. Also, the issue of air conditioning

fan power penalties is raised, as with the heat pipe comes added airflow resistance, and

should come with a fan power penalty. Finally, the unrealized energy savings are

discussed to show how the presence of the heat pipe warrants changes in the system which

will generate energy savings without compromising building operating conditions.

As a result of this analysis, it is hoped that there will be a better understanding of how

heat pipes can be effective in a mild summer climate such as the one in the Northeast, and

also how a successful analysis of an installation can be achieved by correcting problems

incurred in this and other studies.



Chapter 2 Heat Pipe Dehumidification

This chapter, as explained above in step one, will tell the reader more about how the

heat pipe works and what types of results to expect in this analysis. The section on

previous studies shows that, even for installations in high humidity climates, problems

associated with the complexity of estimating refrigeration system energy savings affect

conclusions attempting to justify heat pipe dehumidification. The psychrometric analysis

shows that the addition of the heat pipe not only lowers supply air specific humidity for a

given supply air temperature and cooling coil load, but also reduces the amount of heat

reclaim necessary. The refrigeration system analysis shows that, for evaporator load

reduction (which is expected with dehumidification), compressor load based on the Carnot

cycle decreases. The chapter summary addresses how these issues will affect the rest of

the analysis.

2.1 The Heat Pipe Process

A heat pipe is a sealed metal tube bent in a rectangular shape to be placed around a

cooling coil which is evacuated to an absolute vacuum and half filled with a liquid

refrigerant. The design is based on the principle that the liquid refrigerant will evaporate

when warm air is blown over it, and the vapor will condense when supercooled air is blown

over it. The condensation creates a negative pressure relative to the warm air side, which

draws the evaporated vapor from the warm air side. The lower section of the heat pipe is

tilted towards the warm air side of the cooling coil, so when the condensed refrigerant

reaches the bottom as a liquid, it settles on the warm air side of the cooling coil where it is

evaporated again. Several metal fins are attached to the pipe to increase the heat transfer



rate. The heat pipe kit is placed around the cooling coil it is being applied to, with the pipe

tilted so that the liquid end settles on the pre-cooling side (Figure 5).

cooling coil

flow of
refrigerant
vapor

airflow

liquid
refrigerant

Figure 5. Heat pipe and cooling coil section

heat pipe

When the heat pipe system is in use, mixed return and fresh air entering the cooling

section first passes through the pre-cooling side of the heat pipe. The warm air is cooled

down as it evaporates the refrigerant in the heat pipe. The evaporated refrigerant rises to

the other end of the heat pipe, flowing around the cooling coil to the re-heat side. If the air

entering the heat pipe is close to saturation, it is possible that there would be some latent

cooling (in the form of condensation on the heat pipe) after sensible cooling to 100 percent

humidity. The cooled air now enters the cooling coil, where the heat transfer of the coil

provides initially some sensible cooling, and after saturation provides latent cooling in the

form of moisture removal. This cool air at high relative humidity leaves the cooling coil

and passes over the re-heat end of the heat pipe, where it receives heat as it condenses the

refrigerant vapor. The energy gain across the re-heat section of the heat pipe is identical to



the energy loss across the pre-cooling end. The air leaving the condensing end of the heat

pipe is at a slightly higher dry bulb temperature and a significantly lower absolute humidity

than if the heat pipe were not present. The heat pipe is completely passive, requiring no

energy input. The flow of the refrigerant is completely driven by alternating evaporation

and condensation. A psychrometric description of this process is show below in section

2.3.

Although heat pipes have been installed in many different types of buildings, they are

used in different ways in supermarkets than in office buildings. In office buildings,

designers take advantage of the fact that comfort levels for humans are as dependent on

humidity levels as temperature levels. For lower humidity levels, the cutoff point for what

is considered a comfortable temperature is higher than the cutoff point for higher humidity

levels (Olgyay 1963). Heat pipes are installed in these applications to reduce humidity

levels so that supply air can be cooled to a higher temperature. The higher the temperature

of the supply air, the less cooling is needed, and the air conditioning system runs at a lower

level during the cooling season. For supermarkets, heat pipes are installed to reduce

humidity levels while keeping supply air temperature the same. The savings are not

realized in the air conditioning system, but in the refrigeration system, where reduced inside

humidity levels have the effect of reducing the load on refrigeration coils. Because the

equipment where energy is to be saved is not connected to the system where the heat pipe

is installed, it becomes a difficult problem to calculate the effects of having a heat pipe

installed.

The first study of a heat pipe supermarket installation for which savings were

calculated was conducted by the Georgia Power company in July of 1989. Another

evaluation of an installation was sponsored by the Duke Power Company in 1991.



Another study was performed by ASHRAE involving six different installations in 1992.

All three of these studies will be discussed in the next section.

The heat pipe used in our installation was manufactured by Heat Pipe Technology of

Alachua, Florida. Figure 6 shows a photograph of the heat pipe used in the installation.

The refrigerant used is R22, the pipes are made of copper, and the fins are continuous plate

aluminum. The heat pipe was factory assembled in four sections, two pre-cooling sections

and two re-heating sections. The kit was designed to transfer 205,630 Btu/hr of energy,

corresponding to a sensible pre-cooling and reheat of 5.7 degrees Fahrenheit at the same

air mass flow.

2.2 Previous Heat Pipe Studies

An analysis of the successes and problems of three earlier studies should give insight

into how my study could be improved. The first heat pipe study was sponsored by the

Georgia Power Company and the Electric Power Research Institute (EPRI) in 1989

(Keebaugh 1992). A heat pipe was installed in a 40-ton rooftop air conditioning unit at a

35,000 sq ft supermarket in Lithonia Georgia, and allowed to function for one full year.

The heat pipe was installed in July 1989, and the monitoring equipment was installed

August 1989. In this store, refrigeration energy represented about 39% of total energy

consumption. Inside air conditions were controlled by maintaining a 57 degree dew point,

corresponding to 75 degree dry bulb temperature and 55% relative humidity.

Approximately one month after the heat pipe was installed, the setpoint was changed to

maintain a 47 degree dew point (75 degrees dry bulb, 38% relative humidity). The study

used condensate removal as a benchmark for cooling coil condensation by measuring the

amount of water draining out of the cooling section during dehumidification. The

conclusion of the analysis is that, as shown in Figure 7a, condensate volume per kWh of



air conditioning compressor consumption seems to be lower without the heat pipe than

with the heat pipe, but the data seem to be too scattered to quantify the difference.

Refrigeration compressor demand and energy consumption was estimated as a function of

inside dew point and inside and outside dry bulb temperature (Figures 7b and 7c) for a

time period after the heat pipe was installed. . Although the study did not supply

regression coefficients and standard errors, it used the accuracy of this prediction equation

to show that the reduction in interior air humidity reduced refrigeration energy

consumption by about 24 kWh (1 percent) for every 1 degree drop in dew point.

The second study, conducted by the Duke Power Company, was completed in

December of 1991 (Abrams et al 1992). This study analyzed a heat pipe installation in a

24-hour, 33,000 square foot supermarket in Spartanburg, South Carolina. In this

supermarket, refrigeration accounted for 36% of overall energy consumption. Again, this

study focused on condensate removal efficiency in terms of lb/kWh compressor energy

consumption. For this study, conditions with and without the heat pipe were simulated by

disabling the heat pipe. This was easily accomplished by tilting the heat pipe in the other

direction, so the cold liquid settled on the other side of the cooling coil. With the heat pipe

tilted this way, the liquid refrigerant changed temperature with the cooled air and did not

evaporate, therefore providing no heat transfer. Figure 8a shows the data points for the

moisture removal efficiency with and without the heat pipe. As with the Georgia Power

study, the points show a lower efficiency without the heat pipe, but the results are not

quantifiable. The authors of this study attempted to predict daily refrigeration compressor

energy consumption as a function of average daily indoor dew point, and this scatter plot is

shown in Figure 8b. This plot includes points for every day in the year, including days

when no cooling or dehumidification was performed. A regression of these points resulted

in a savings estimate of 1.66% per degree dew point, with a standard error of 148 kWh per



day (about 7%). Over the course of the year, the simulation assumed a reduction of indoor

dew point due to the heat pipe of 10 to 12 degrees, resulting in an overall energy savings of

5.4% to 6.5% respectively. For additional energy savings, the store owners disabled the

anti-sweat heaters for five days and did not encounter any condensation problems while

saving approximately 350 kWh per day. The defrost cycles were timer activated and were

not reprogrammed for their analysis. However, changing defrost cycle times was included

in their recommendations for future energy savings.

The third study was performed by the Georgia Power Company and ASHRAE in

1992 (Hill et al 1993). Heat pipes were installed in six different locations, three in

Wisconsin, one in Pennsylvania, one in South Carolina, and one in Georgia. Refrigeration

energy consumption varied from 20% of total energy consumption at the Pennsylvania site

to 46% of total energy consumption at the Wisconsin site. For this study, indoor dry bulb

and dew point temperatures were monitored and compared to refrigeration compressor

power consumption, and the cooling coil moisture removal rate (in lb/kWh) was analyzed

before and after installation. The Pennsylvania site and two of the Wisconsin sites used

dual path air conditioning systems and the rest of the sites used single path systems. The

study claimed that moisture removal efficiency increased by 21% for the Pennsylvania site,

and that moisture removal comparisons were unable to be completed at the Wisconsin

sites. For the single path systems, the study claimed a 27% removal efficiency increase for

the South Carolina site, 18% for the Georgia site, and not found for the Wisconsin site. As

a conclusion, the study predicted a mean value of energy savings for all sites, which was

17.3 kWh per day per degree drop in inside air dew point (a mean relative savings of

0.65% of refrigeration energy use). Although the authors recommended that heat pipes

were not effective in dual path systems, they determined that the complexities of the



analysis prevented general or specific conclusions on the benefits of the heat pipe

installation.

Neither of these studies addressed many of the issues important in a heat pipe

analysis. All of the studies focused on measuring condensate removal at the cooling coil,

yet all of them determined that the results were not quantifiable. All of the energy savings

estimates were significantly smaller than total refrigeration consumption, yet none of the

analyses addressed errors in the estimates. Each of the three studies agreed that

dehumidification was accomplished by the presence of the heat pipe, yet none of them were

able to satisfactorily predict savings based on ambient conditions.

As was determined in this thesis also, complexities in combining air system estimates

with refrigeration system estimates make savings estimates inconclusive. Suggestions for

achieving a successful study will be addressed in chapter 10.



The Dinh Dehumidifier Heat Pipe

THE

DEHUMIDIFIERD'W HEAT PIPES

THE SPLIT SERIES
DESIGNED BY

Figure 6. Dehumidifier Heat Pipe Used in Worcester Installation
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2.3 Psychrometric analysis

To further explain how the presence of a heat pipe reduces humidity levels in the air,

this section will describe the process using psychrometric equations and models of the air

conditioning system with and without the heat pipe. The first part of this section explains

specific humidity, a variable used throughout the analysis which describes the ratio of the

mass of water vapor per unit mass of dry air in an airflow. The second part of this section

shows two examples of airflow in this air conditioning configuration, one with the heat pipe

and one without the heat pipe. By comparing the two examples, the reader can see how the

heat pipe reduces supply air specific humidity while maintaining the same dry bulb

temperature. The AC compressor power does not change, as the energy management

system controlling the compressor power is still receiving the same inside air temperature

as a control point, yet the amount of heat reclaim necessary to maintain the design supply

air temperature decreases due to the lower enthalpy of the supply air.

2.3.1 Specific Humidity

The specific humidity (or absolute humidity or humidity ratio) of an air system is

defined by the 1993 ASHRAE Fundamentals Handbook as the ratio of the mass of water

vapor to the mass of dry air. As opposed to relative humidity, which varies as dry bulb

temperature changes, specific humidity is independent of temperature.

For a supermarket application, comparing the specific humidity of the supply air and

the return air would give a good indication of how much moisture is removed from or

added to the air system as a function of the supermarket. Moisture can be removed from

the store mixed air by absorption, condensation, and most importantly, freezing on the

refrigeration coils. Moisture can be added to the system by customers, infiltration, or



evaporation (from produce, sinks, or other water sources. Specific humidity can be

calculated from dry bulb temperature and relative humidity using the following equations

(ASHRAE 1993):

W = 0.62198 * (pw I p-pw) (2.1)

W = specific humidity (lb water /lb air)

p = atmospheric pressure (psi)

pw = partial water vapor pressure (psi)

Pw = Pws * RH (2.2)

RH = relative humidity

pws=partial water vapor saturation pressure (psi)

pws=CO+C(T)+C2(T2 )+C3(T3 )+C4(T 4 )+C5(InT) (2.3)

T = dry bulb temperature (R)

The partial water vapor saturation pressure calculated in equation 2.3 is the saturation

pressure over water. The saturation pressure over ice is an equation similar to equation 2.3

with different constants. The saturation pressure over ice is important in determining the

buildup of frost on the refrigeration coils. The constants used in this equation can be

found in Appendix C-2. The measurement error in specific humidity calculations, as

shown in Appendix D, is 2.4%.



2.3.2 Air Conditioning System Models

The best way to understand how the heat pipe affects the dehumidification of the

airflow is to follow the process on a psychrometric chart. Figure 9 shows charts with the

path outlined from mixed air conditions to supply air conditions for typical design

conditions, a theoretical heat pipe design which provides 12 degrees of sensible cooling

and reheating, and a desired supply air temperature of 65 degrees (ASHRAE 1993). The

top graph simulates direct evaporative cooling without the heat pipe, and the lower graph

simulates direct evaporative cooling with a heat pipe. In both graphs mixed air conditions

occur at point A, corresponding to 75 degrees dry bulb and 55% relative humidity. In the

top graph, the cooling coil removes heat from the airflow dropping its enthalpy (Ah) to

point B. In the lower graph, the cooling section of the heat pipe pre-cools the air 12

degrees, bringing it to point B. The cooling coil then removes heat corresponding to the

same enthalpy drop (Ah), bringing the air to point C. Point C in this graph has a lower

specific humidity and dry bulb temperature than point B in the top graph, although they

both represent post-cooling-coil air conditions. In the top graph, reheat corresponding to a

sensible temperature rise of 15 degrees is needed to bring supply air (point C) to 65

degrees. In the lower graph, the reheat section of the heat pipe raises the air temperature 12

degrees to point D. From this point, only 10 degrees of reheat is needed to bring the

supply air to 65 degrees (point E). The specific humidity at this point is lower than in the

top graph by AW.

A psychrometric chart analysis for four different types of ambient conditions can

show what affect the heat pipe is expected to have. The above analysis was done for four

different mixed air conditions based on four climate types: hot and humid (80 degrees,

60% RH), warm and humid (70 degrees, 85% RH), hot and dry (80 degrees, 45% RH),

and warm and dry (70 degrees, 65% RH). These runs used the same supply temperature
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(65 degrees), same cooling coal load (Ah = 12 Btu/lb), and the same heat pipe cooling and

reheat load (3 Btu/lb). The results are in Table 1. In the table, the left column describes the

climate type (H/H = hot/humid, W/D = warm/dry), the column marked W is specific

humidity, and L/S is the latent/sensible cooling ratio for the cooling coil for each condition

in Btu/lb latent / Btu/lb sensible. What this showed was that the difference in specific

humidity drop was greater in humid climates than in dry climates, because the heat pipe has

a larger affect on the system when more dehumidification is being done.

Table 1. Psychrometric Analysis for Varying Ambient Conditions

Supply Air

Temp RH W Temp W w/o W with US w/o US with

(deg F) (lbw/lba) (deg F) heat heat heat heat

pipe pipe pipe pipe

H/H

W/H

H/D

W/D

On one extreme, if the combined cooling of the pre-cooling section of the heat pipe and the

cooling coil doesn't bring the air temperature to the saturation point, no dehumidification is

being done and the heat pipe is useless. On the other extreme, if the air entering the pre-

cooling section of the heat pipe is at saturation, then the heat pipe and the cooling coil are

providing entirely latent cooling, and the heat pipe provides its maximum possible

80 60% 0.0134 65 0.0085 0.0070 2.0 11.0

70 85% 0.0134 65 0.0072 0.0057 7.6 00

80 45% 0.0100 65 0.0066 0.0052 1.0 3.0

70 65% 0.0100 65 0.0054 0.0041 2.8 29.5



dehumidification. The rest of this section quantifies this analysis using energy balance

equations in examples. Example 1 is a simulation without the heat pipe, and example 2 is a

simulation with the heat pipe.

Example 1

One way of predicting the effect of the heat pipe is by performing an energy balance

with and without the heat pipe. Figure 10 shows a schematic of the duct before the heat

pipe was installed. In the figure, m represents the mass flow (lb/hr), h represents the

enthalpy of the moist air (Btu/lb), and q represents rate of heat extraction at the cooling coil

and insertion at the reheat coil (Btu/hr). For all points between heat exchangers calculated

heat flow (q') is described by the equation:

q'= mh (2.4)

filters cooling coil reheat coil

-p m2h2

outside air

mI hl

return air

m5h5

q6

q4

Figure 10. Energy Flows in System Without Heat Pipe



For each of the points, mass flow is calculated as the volumetric flow rate (v) divided by

specific volume (u) as described below:

m [lb/hr] = v [cfm] * 60 [min/hr] / u [ft3/lb] (2.5)

The specific volume is a function of dry bulb temperature in degrees Rankine (T) and

humidity ratio (W) as described below:

u [ft3/lb] = 53.352 [ft lb/lb R] * T [R] * (1+1.6078*W)/ (14.91*144 [lb/ft2]) (2.6)

Enthalpy of moist air is a function of dry bulb temperature and humidity ratio:

h = .240*T + W*(1061 + 0.444*T) (2.7)

For this example we will assume a supply airflow of 33,200 cfm and a return airflow of

28,700 cfm, resulting in the following airflows:

vi= 28,700 cfm

v2= 4,500 cfm

v3= v5= v7 = 33,200 cfm

We will also assume the following existing conditions:

Ti = 70 rhi = 45% W1 = 0.006974

T2 = 90 rh2 = 55% W2 = 0.016635

where the humidity ratios are calculated as a function of the temperatures and relative

humidities (rh).



Our desired supply conditions will be:

T7 = 65 rh7 = 55% W7 = 0.007178

The equation that will give us our mixed air conditions (m3h3) is an energy balance of the

outside air and return air:

mlhl + m2h2 = m3h3 (2.8)

ul = 13.3094 [ft3/lb]

therefore ml = 129,382 [lb/hr]

hi = 24.416 [Btu/lb]

u2= 14.0241[ft3/lb]

therefore m2 = 19,253 [lb/hr]

h2 = 39.914 [Btu/lb]

and m3h3 = 3,927,473 [Btu/hr]

and mixed air humidity ratio can be found by:

(W2 - W3)/(W3 - W1) = ml / m2 (2.9)

W3 = 0.0082253

Using the previous equations for m and h (2.5, 2.6, and 2.7), we can now solve for T3, and

then h3, knowing the product m3h3 and W3.

T3 = 72.6

h3 = 26.416



The cooling coil (q4) is designed for a capacity of 940,000 Btu/hr. The amount of heat

removal needed to bring the mixed air to saturation is proportional to the enthalpy

difference at constant humidity ratio and a temperature drop of 20.54 degrees (72.6 -

52.06 from the iteration shown for saturation temperature for W=0.008225 in Table 1 in

Appendix C-1).

Ah3-5 = 0.24*AT3-5 + W3*(0.444*AT3-5) (2.10)

Ah3-5 = 5.0046

From Table 1, the energy flow at this point is 3,310,278 Btu/hr, which is 617,195 btu/hr

less than point 3. Since the desired humidity ratio is 0.007178, the remainder of the

cooling must bring the air down to that level. Another iteration (Table 2 in Appendix C-1)

shows that this ratio at saturation can be achieved at 48.439 degrees. The energy flow at

this point (point 5) is 3,025,116 Btu/hr. Therefore, the total heat flow from the cooling coil

comes to q4 = 3,927,480-3,025,116 = 902,357 Btu/hr, which is within its capacity.

The final energy flow m7h7 can be calculated using equations 2.5, 2.6, and 2.7 and desired

conditions, and it comes to 3,537,899 Btu/hr. Therefore 512,783 Btu/hr of reheat is

required.

Example 2

Figure 11 shows a schematic of the duct with the heat pipe installed. In this case, m1hI,

m2h2, and m3h3 are the same conditions as before. The heat pipe provides the same

amount of heat flow removed before the cooling coil and added after the cooling coil. The



goal is to see, for the same amount of heat removal across the cooling coil, at what humidity

level and amount of reheat a 65 degree supply temperature can be provided.

filters cooling coil

-y m2h2

outside air

m1 h1

I return air

reheat coil

pipe q9

m5h5 m7h7

Figure 11. Energy Flows in System With Heat Pipe

With the heat pipe installed, point 3 still has the same characteristics:

W3 = 0.0082253

T3 = 72.6 [OF]

h3 = 26.416 [Btu/lb]

m3h3 = 3,927,473 [Btu/hr]

However, the heat pipe provides an initial 205,630 Btu/hr of cooling. This corresponds to a

Ah of 1.383 Btu/lb at m3=148,678 lb/hr. Equation 2.4 gives a temperature T5 = 66.9.



With this pre-cooling, the heat flow needed to bring the air to saturation at 52.06 degrees

(the same point that was found in Table 1) is only 411,565 Btu/hr. The cooling coil,

responding to the same ambient conditions as if the heat pipe were not present, will provide

the same heat removal as in Example 1, which was 902,357 Btu/hr. Therefore, the cooling

coil will provide 490,792 Btu/hr of extra heat removal at saturation.

At point 7, the energy flow will be 2,819,486 Btu/hr. Another iteration of saturation points

(Table 3), shows that this corresponds to about 45.7 degrees at saturation. The humidity

ratio, W7 = 0.006466 and the mass flow, m7 = 156,993 lb/hr.

At this point, the air enters the reheat section of the heat pipe, and is provided with 205,630

Btu/hr of heating. Since there was no latent cooling done by the heat pipe, the temperature

difference will be the same, 5.7 degrees. The air conditions leaving the cooling section will

be as follows:

W8 =0.006466

T8 =51.4 [OF]

h8 = 19.342 [Btu/lb]

m8h8 = 3,025,116 [Btu/hr]

The final supply condition m10h10 will have a dry bulb temperature of 65 degrees and a

humidity ratio W10 = W8 = 0.006466. Using equations 2.5, 2.6, and 2.7, this

corresponds to an energy flow of 3,453,295 Btu/hr. Therefore, the necessary reheat q9 can

be determined by the following equation:

m8h8 + q9 = mlOhlO

q9 = 428,179 Btu/hr



As was expected, the reheat needed to bring the over-cooled air to supply conditions is

84,604 Btu/hr less than what was needed without the heat pipe. The relative humidity at the

supply temperature in this example can be calculated as the ratio of the partial water

pressure divided by the partial water pressure at saturation:

RH1O = pw / pws (2.11)

pw = 0.153407 psig

pws = 0.309271 psig

Therefore RH 10 = 49.6%

This supply air relative humidity is less than in Example 1 by 5.4%. The reduction in

relative humidity will be greater if the heat pipe performs more cooling, allowing the

cooling coils to perform more latent heat removal. Our data showed that the heat pipe

provided about 7 degrees of pre-cooling at maximum cooling conditions and about 9

degrees of reheat. The difference is due to the fact that some latent heat removal done by

the pre-cooling section meant less sensible cooling (ASHRAE 1993).



Table 2. Example 1 variables

point T u W m h q EF

1 70 13.3094 .006974 129,382 24.416 3,159,018

2 90 14.0241 .016635 19,253 39.914 768,455

3 72.6 13.4013 .008225 148,642 26.416 3,927,473

4 -902,357

5 48.4 12.7718 .007178 155,969 19.396 3,025,116

6 1 1 1 1 512,783

7 65 13.1880 .007178 151,046 23.423 3,537,899

Table 3. Example 2 variables

point T u W m h q EF

1 70 13.3094 .006974 129,382 24.416 3,159,018

2 90 14.0241 .016635 19,253 39.914 768,455

3 72.6 13.4013 .008225 148,642 26.416 3,927,473

4 -205630

5 66.9 13.2578 .008225 148,677 25.033 3,721,843

6 -902357

7 45.7 12.6885 .006466 156993 17.959 2,819,486

4 205630

8 51.4 12.8317 .006466 156,401 19.342 3,025,116

9 _ _ _ 428,179,

10 65 13.1731 .006466 151,217 22.647 t3,453,295

T = dry bulb temperature [F]
u= specific volume [ft3 /lb]
W = humidity ratio
m= mass flow [lb/hr]
h = enthalpy [Btu/lb]
q = heat removal/addition [Btu/hr]
EF = Energy Flow [Btu/hr]



2.4 Refrigeration System Models

To further explain how dehumidification of inside air reduces the load on the

refrigeration system, this section includes an energy balance on the refrigerant as it flows

through the vapor compression cycle. The basis of the refrigeration system model will be

to show how reductions in evaporator cooling load (which is display case load) affect the

rest of the cycle, including compressor power. For this model, reductions in evaporator

load will be caused by increased heat transfer efficiency due to a reduction in the rate of

frost buildup on the cooling coils.

2.4.1 Energy Balance

For each of the components of the vapor compression cycle, an energy balance can

be performed by comparing enthalpy, mass flow, and work put into or taken out of the

refrigerant flow. Each point in the pressure vs enthalpy curve representing the refrigeration

cycle (Figure 12) is a state of refrigerant, and each path connecting two points is a change

in state, due to compression, condensation, expansion, and evaporation. The energy

balance associated with each change of state is given by four equations which will be used

later in the refrigeration system model (ASHRAE 1993):

Compression W = -(h2-hi)*m (2.12)

Condensation Q23 = -(h2-h3)*m (2.13)

Expansion h3 = h4 (2.14)

Evaporation Q14 = (hi-h4)*m (2.15)

where h is enthalpy, m is mass flow, and Q and W are energy. Compressor energy is

given as W, corresponding to work on the compressor, which is negative because work is

being taken from the compressor and added to the refrigerant



3 condensation 2

expansion
compression

4 evaporation 1'

Enthalpy

Figure 12. Pressure-Enthalpy Diagram for Vapor Compression Cycle

Evaporation, which in our study occurs at the display case, is an enthalpy gain to the

refrigerant at constant pressure (in an ideal cycle). The refrigerant enters the evaporator as

a low temperature, low pressure vapor and evaporates by removing heat from the air

flowing around it. It exits the evaporator as a saturated vapor.

The refrigerant, now at point 1, enters the compressor. Here the refrigerant is

compressed adiabatically ( at constant entropy ), becoming a high temperature, high

pressure, superheated vapor.

The refrigerant vapor, now at point 2, enters the condensing stage. There are

possibly two parts to the condensing stage. First, the vapor may be used for heat reclaim in

the air conditioning system. In a system like the one in our study, air is supercooled to

condense moisture, and then is reheated to desired supply conditions. A valve in the

refrigeration line between the compressor and the condenser diverts superheated vapor up



to the air conditioning system where it gives some of its heat to the air. The amount of heat

given varies depending on how much reheat is needed. This process reduces the

temperature, and therefore enthalpy of the refrigerant at constant pressure. The second part

of the condensing stage is the condenser, where the vapor is desuperheated and condensed.

Both reclaim and condensation (or only condensation at times when there is no heat

reclaim) reduce the refrigerant's enthalpy at constant pressure (in an ideal cycle), until it

leaves the condenser as a saturated liquid at high pressure.

From this stage (point 3), the refrigerant enters the expansion valve. This process

increases the refrigerant's volume while decreasing its temperature and pressure. This

occurs at constant enthalpy, as heat is neither added nor removed from the refrigerant.

Now, the supercooled liquid enters the evaporator at point 4, and the cycle is repeated.

2.4.2 Refrigeration System Model

For the purpose of this study, we will model the rack A refrigeration cycle on a

pressure versus enthalpy chart to determine what effect reductions on display case load

have on compressor and condenser power. Figure 13 shows the pressure versus enthalpy

chart for R-502 with lines of constant entropy and constant density. We will assume an

ideal cycle, although actual conditions may vary slightly due to entrance and exit pressure

drops.

To model this rack, we will use data taken during peak conditions which occurred on

July 10 at 6:00 pm. The refrigerant entered the compressor rack from the suction manifold

at 13.3 psia pressure and 84.9 Btu/lbm enthalpy, shown in the figure as point 1. From

there it traveled up the path of constant entropy until it reached the discharge pressure of

213.0 psia, at point 2. At this point the refrigerant has an enthalpy of 115 Btu/lbm. With a

single-compressor-per-circuit configuration, this path can be easily predicted using



compressor efficiency and manufacturers equations. For a multideck configuration such

as ours, this is impossible because there are several different types of compressors in the

rack, and they cycle on and off alternately during the course of the day based on load

needed. The condensation stage ended at the liquid manifold at 206.3 psia pressure and 36

Btu/lbm enthalpy. Then the refrigerant entered the expansion valve, where its pressure

dropped to 13.3 psia along the line of constant enthalpy.

For this situation, the enthalpy gain across the evaporator is 48.9 Btu/lbm, while the

enthalpy gain across the compressor is 29.1 Btu/lbm. The enthalpy drop which occurs in

the condensing section is equal to the combined enthalpy gains in the evaporator section

and the compressor, which is 78.0 Btu/lbm.

Considering similar ambient conditions, a theoretical reduction in display case load

corresponding to a reduction in enthalpy gain of 10 Btu/lbm would result in suction

manifold conditions described by point 1' on the figure. The compressor then compresses

the refrigerant, as it travels up the chart at constant entropy to the discharge pressure of

213.0 psia. At this point the refrigerant's enthalpy is 100 Btu/lbm. With the reduction in

display case load, the enthalpy gain from the compressor for this pressure increase is 25

Btu/lbm, which is less than the enthalpy gain from the compressor before the reduction

(115 - 85 Btu/lbm = 30 Btu/lbm). This means that the compressor needs to work less to

provide the same discharge pressure. Although the reduction in display case load due to

dehumidification of inside air is not expected to be this drastic for given conditions, this

model shows that this type of reduction results in compressor load reduction.
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Figure 13. Pressure vs. Enthalpy chart for R-502.
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Chapter 3 Method of Analysis

The goal of the project is to determine the effect on refrigeration system energy

consumption by dehumidification of inside air caused by installation of a heat pipe.

Another goal is to normalize energy savings based on outside air temperature and relative

humidity in a model that could be applied to any location. Therefore, the analysis will be

accomplished by monitoring air system and refrigeration line parameters ranging from

refrigeration compressor power to outside air temperature and relative humidity.

System Modelling. The first step in the analysis is to model the air system and the

refrigeration system based on an existing configuration. Using design conditions, it is

possible to predict supply air temperature and humidity using return air and outside air

parameters. Then we include the heat pipe in the model and see how supply conditions are

changed. The refrigeration system is modelled to show the heat gains and losses at

different points in the circuit. Then, with the introduction of the heat pipe and inside air

dehumidification, variations in display case load are introduced into the model to determine

their effect on compressor load.

Inclusion of Monitored Data. Monitored data are used to compare points in the

system that would be expected to be affected by each other, and to set up links between the

air system and the refrigeration system and within each system. For instance, variation in

outside air intake due to opening and closing of the dampers are predicted using the model

and monitored return, outside, and mixed air parameters. Temperature differences across

the heat pipe were monitored to aid in determining the actual energy transfer from air to

heat pipe and back during pre-cooling and re-heat. Mixed air specific humidity and supply

air specific humidity are compared to see exactly how much more water vapor is removed



from the air after installation. Supply air specific humidity is compared to return air

specific humidity and outside air specific humidity to determine what affect air circulation

through the supermarket has on humidity. Inside air and outside air parameters are

compared to various parts of the refrigeration circuit and then included in the model to

determine how much the heat pipe actually affected the refrigeration system, if at all.

Comi of Pre-installation and Post-installation Models. It is certain that

the installation of the heat pipe will produce lower supply air specific humidity levels than

if it weren't installed, as long as the air is cooled past saturation. Physically, this is because

the initial cooling of the air by the heat pipe decreases the amount of cooling coil load

which is sensible, therefore increasing the amount of cooling load which is latent (since

total cooling load is unaffected by the presence of the heat pipe). Whether or not the

supply air relative humidity is decreased depends on the amount of reheat added and the

supply temperature. By combining the model with monitored data, we can determine how

much the supply air specific humidity is reduced for a given mixed air specific humidity

level. This is accomplished by performing separate regressions using pre-installation data

and post-installation data and applying the equations to monitored data over the cooling

season. Inside air is modelled as a function of supply air, outside air, and time of day (as

customer traffic, and therefore moisture introduction, is a function of time of day).

The type of refrigeration system used is a multideck system in which three racks

(A,B,and C) containing multiple compressors draw refrigerant from a common suction

manifold and compress the refrigerant to be distributed to the condenser. The refrigeration

cycle for rack A is modelled using monitored data and thermodynamic equations. We vary

evaporator load in the model, simulating a reduction in frost buildup on the evaporator

(display case) coils, to determine its effect on the rest of the cycle. Compressor load is

modelled as a function of evaporator load, condenser load, outside conditions, and time of



day. Condenser load is modelled as a function of outside air conditions. Compressor load

is compared to monitored compressor power to determine their relationship. When

compressor power has been modelled as a function of evaporator load and outside air

conditions, evaporator load will be compared to inside air conditions from the air system

model. If there is a definite correlation between compressor power and inside air

conditions, and the difference between the pre-installation loads and the post-installation

loads are greater than potential calculation and monitoring errors, then savings will be

estimated. The set of equations applying to pre-installation conditions will be applied to

the whole monitored period, and then the post-installation equations will be applied to the

same period.

Prediction of Energy Savings. Energy savings will be estimated and compared to

monitored refrigeration compressor power changes. Energy savings are compared to

standard monitoring, calculation and regression errors to determine the statistical accuracy.

Scatter plots and regression analyses are performed using SYSTAT, a statistical

software package for use with MicroSoft Windows. Engineering calculations and time

graphs are performed using Lotus version 3.1 software. Two dimensional graphs are

configured using Sigmaplot graphics software.



Chapter 4 Monitoring Strategy

4.1 Monitoring Site Specifics

The site that was monitored is a supermarket located in Worcester, Mass. It was

chosen because the managers agreed through New England Electric System's Custom

Design program to have a heat pipe installed and monitored. They purchase their

electricity from the Massachusetts Electric Company (a subsidiary of NEES) under the G-

4 rate, which is a general time-of-use rate based on demand charges of $8.45/kW and

energy charges of $0.04283/kWh on-peak and $0.02558/kWh off-peak. The

supermarket's annual energy consumption for 1992 was 2,359 MWh and for 1991 was

2,361 MWh. The monthly billing demand in 1992 (which is the peak demand for the

month) ranged from 280 kW in January to 410 kW in June (see Figure 14). The total floor

space is 57,700 ft2 including about 39,000 ft2 of sales area.

4.2 Monitoring Equipment

Monitoring equipment was installed on June 2, 1993. Data were collected and stored

on a Campbell Scientific 21X Microdatalogger with a data multiplexer and modem. The

datalogger uses up to 16 differential channels of analog input. Up to 16 differential

channels can be multiplexed into one input channel. At this site, one Model AM32 Relay

Scanner was used to multiplex 32 points of input into two channels, and ten input channels

recorded direct measurements. One other channel was used to track panel temperature for

overheating, and one channel was used as a reference temperature input. Two input



channels were not used. Manufacturers level of accuracy for voltage measurements is

given as 0.05% of full scale range.

Relative humidity / temperature sensors are Omega HX10 Series transmitters. They

measure humidity using a thin film capacitor and temperature using a precision integrated

circuit. Manufacturers level of accuracy is given as ±2% for relative humidity and ±10F

for temperature.

Thermocouples are Omega Model FF-T-24-TWSH type T shielded wires with teflon

insulation. Pressure sensors are Omega PX602 Series transducers with a manufacturers

accuracy of ±0.4 %. Watt transducers are Ohio Semitronics GW5 Series using split-core

current transformers. Manufacturers level of accuracy is given as ±0.25%. A Kflow

Model number K-20 non-intrusive direct mass flow meter was used to measure refrigerant

flow. This device uses pulse counts (one pulse for each pound of refrigerant flowing) to

track mass flow. The pulse counts are based on the Coriolis effect, for which the

acceleration of flows through bends in piping oscillates over time, which deforms the

piping proportional to the mass flow. Manufacturer's level of accuracy is given as ±0.2%

±zero stability. Zero stability for the K-20 model is given as 0.004 lb/min. Calibration of

the sensors is addressed in chapter 6.

Aspen Systems Inc. of Marlborough MA bought and installed the monitoring

equipment. They downloaded monitored data by modem daily and delivered the data to us

monthly. The data were received in daily files in Lotus version 3.1 spreadsheet format, and

were copied onto hard drive as backup.
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4.3 Measurement Device Locations

For the air conditioning system, temperature and relative humidity sensors were

installed to determine air conditions at various points throughout the roof-top air

conditioning cabinet. Compressor power was also monitored to measure the level at which

the cooling coils were being used. A grid of temperature sensors was installed before and

after both the upper and lower cooling coils. Each grid contained four thermocouples,

located in the center of each quadrant before and after the coil. A diagram showing where

each sensor was located is shown in Figure 15. A schematic showing where all sensors are

located is on the next page in Figure 16.

TIN TOUT

I I
upper cooling coil

J20

Figure 15. Location of Thermocouples Before and After Cooling Coils
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Figure 16. Air Conditioning Unit and Refrigeration System Monitoring Locations.
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Since the return air vent was at floor level and the outside air vent was near the top of

the duct; and the cooling coils were located so close to these vents, there was expected to be

some temperature gradient over the area of the cooling coils. Figure 17 shows graphs of

the eight thermocouples located before the cooling coil during typical A/C operation. The

graphs show that the temperature gradient is not evident in the lower coil, but is visible

from the bottom of the upper coil (TIN_U 1 and TIN_U2) to the top of the upper coil

(TINU3 and TIN_U4). This is to be expected, since the amount of outside air coming in

is small compared to the amount of return air. Therefore, only the air near the top of the

duct would show any effects of outside air temperature.

After the installation of the heat pipe, a single thermocouple was installed outside the

pre-cooling side of the heat pipe and outside the reheat side of the heat pipe for each coil.

It was assumed that the temperature difference across the heat pipe was independent of

location, and that the difference monitored at one location could be applied to all other

locations. This, however, turned out to be a faulty assumption, as temperature differences

for these four locations varied considerably (section 7.3).

In addition to these locations, relative humidity / temperature sensors were installed to

monitor return air, outside air, supply air, and mixed air prior to the cooling section. Total

compressor power (for two compressor motors, one controlling the lower cooling coil and

one controlling the upper coil) was also monitored. Table 4 shows the list of all points

measured with description and range.

For the refrigeration system, compressor power for all three racks was monitored, as

well as line pressures and temperatures for rack A and circuit 4 (servicing a low

temperature, open coffin style frozen food display case) and refrigerant mass flow for

circuit 4. Circuit 4 evaporator suction and liquid pressures and temperatures were
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monitored to determine the refrigerant enthalpy, and combined with the mass flow to

determine display case (evaporator) load as shown by the equation below,

Display case load Q = m * (h2 - h1 ) (4.1)

m = mass flow (lb/hr)

h2=enthalpy of suction gas

h1=enthalpy of liquid

Compressor power and suction and discharge temperatures and pressures were

monitored for one minute intervals on July 22 between the hours of midnight to 8:30 am to

observe a more detailed performance of the defrost cycle. Defrost cycles and types vary

depending on location and evaporating temperature, and are listed in Table 5.

4.4 Summary

The points chosen to be monitored were selected based on all of the factors which

would be needed to model the airflow and refrigeration cycle with a limitation of input

channels available. The specific points to monitor were chosen by representatives of

NEES, Aspen Systems, the supermarket managers, and myself as a group. Monitoring

devices were chosen by Aspen Systems, who also performed the calibrations, sensor

maintenance, and data reduction. All regressions, psychrometric analyses, graphics, and

other data manipulation (including calculation of specific humidity, energy flows,

enthalpies, etc.) were performed by me. Ideally, we would have liked to have monitored

more points in the cross section of the mixed air and supply air flow, and more points

before and after the heat pipe, but in that case we would have needed another datalogger.

The depth of this analysis is much greater than any other I have read about, and the fact that

the results are still statistically inconclusive means that either this strategy is ineffective,



more advanced technology needs to be used with this strategy, or current technology is

incapable of providing a sufficient heat pipe analysis. These issues will be addressed in

chapter 10.



Description Type Start times Duration
MEAT C18 Hot Gas 04:00 AM 18 min

10:00 AM 18 min
04:00 PM 18 min
10:00 PM 18 min

MEAT C19 Hot Gas 05:00 AM 18 min
11:00 AM 18 min
05:00 PM 18 min
11:00 PM 18 min

FMTZ20 HotGas 08:00 AM 30 min
MEATWKIN 21 Hot Gas 01:00 AM 20 min

01:00 PM 20 min
POULWKIN C22 Hot Gas 02:00 AM 20 min

02:00 PM 20 min
DELMEAT C23 -Hot Gas 03:00 AM 18 min

09:00 AM 18 min
03:00 PM 18 min
09:00 PM 18 min

S/DELI C24 Off-cycle 04:30 AM 90 min
CHEESE C25 Off-cycle 02:30 AM 45 min

10:30 AM 45 min
06:30 PM 45 min

PROD C26 Off-cycle 01:00 AM 50 min
07:00 AM 50 min
01:00 PM 50 min
07:00 PM 50 min

FISH WALKIN Off-cycle 04:00 AM 60 min
04:00 PM 60 min

DEU WALKIN Off-cycle 03:00 AM 60 min
03:00 PM 60 min

BAKWKN C29 Off-cycle 06:00 PM 60 min
PRODWN Off-cycle 03:00 AM 60 min

07:00 PM 60 min
11:00 PM 60 min

MEAT PREP Off-cycle 05:00 AM 120 min
DELI 4' BAR Off-cycle 12:30 AM 60 min

04:30 AM 60 min
08:30 AM 60 min
12:30 PM 60 min
04:30 PM 60 min
08:30 PM 60 min

CHEESE C33 Off -cycle 11:00 AM 60 min
11:00 PM 60 min

BAKFRZ D35 HEAT 01:00 AM 45 min
07:00 AM 45 min
01:00 PM 45 min
07:00 PM 45 min

Table 5. Defrost Cycles and Types



Chapter 5 Building Operating Conditions

This chapter, as mentioned above in step three, serves to describe the existing

building conditions and air system and refrigeration system configuration. Heat pipe

dehumidification has different effects on different systems, and it is important to note that

the findings of this thesis apply to this building's configuration. The air conditioning

system is a single path, direct evaporative cooling system and the refrigeration system is a

multideck configuration with remote condensation. The sections of this chapter describe

the units in more detail.

5.1 Air Conditioning Unit

The air conditioning unit is a 77 ton Seasons 4 rooftop model, shown in Figure 18.

It includes a condensing section, a service vestibule, a return air plenum, an evaporator

section, a supply air blower section, auxiliary reheat, and a supply air plenum. The

condensing section contains counter-flow condensers with liquid sub-cooling, and direct

drive fans with pressure switches to provide floating head pressure control. The service

vestibule contains the compressors and electrical panels. The return air plenum receives

return air through the bottom and outside air from dampers located on the top half of the

wall opposite the service door. The evaporator section contains air filters and two cooling

coils, one each in the upper half and lower half, which are offset slightly. The blower

section contains heat-reclaim coils across the upper half of the duct with bypass dampers

on the lower half, and a centrifugal fan, controlled by a forty-horsepower open drip-proof

motor.
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5.1.1 Air Conditioning Specifications

There are two semi-hermetic compressors in the cooling section, manufactured by

Copelametic Discus, each using R-22 refrigerant. The first compressor serves the lower

cooling coils, and it is the first one activated when cooling is needed. When maximum

power has been reached and additional cooling is needed, the second compressor drives the

upper cooling coil. The cooling coils have a design capacity of 940,000 Btuh.

Compressor power is controlled through a CPC Intelligent Environmental Control panel

which monitors inside air dry bulb temperature and turns the compressors on and off

accordingly. The control setpoints change at night (12:00 am to 6:00 am) when less

cooling is needed. For the summer months the first compressor is designed to turn on

when the inside temperature reaches 72 degrees during the day (74 at night), and the

second compressor comes on when the temperature reaches 73 degrees during the day (75

at night). The second compressor shuts off when the temperature drops to 72 degrees (73

at night), and the first compressor shuts off when the temperature drops below 71 degrees

(72 at night). For each setpoint there is a delay of five minutes.

There are eight fans in the condensing section, each of which are 1-1/2 horsepower

operating at 1.4 kW. The fans are cycled to provide head pressure control when the

ambient temperature drops below the setpoint.

The supply air fan is a Barry Blower 40 inch centrifugal fan designed for 924 rpm

and 30,000 cfm of air supply. At 30,000 cfm, the fan generates a static pressure rise of 5.0

(in. water). During the months of April through October, the fan is on a schedule which

turns it on at 6:00 am and shuts it off at 11:59 pm. On extremely warm nights, the fan

comes on if the cooling coil compressors are activated.



Equipment specification sheets and fan curve can be found in Appendix B.

5.1.2 Airflow Measurements

The unit was designed for a total airflow of 30,000 cfm, with an outdoor air intake of

4,500 cfm. On August 2, 1993 just before the heat pipe was installed, HEC Energy

Services assisted in an air flow measurement test in the evaporator section of the duct just

before the reheat coils and bypass dampers. The test was accomplished by using a vane

anemometer, an instrument which uses rotating blades to measure distance covered by

moving air for a given amount of time. By traversing the entire area of the duct while the

blower was in operation, we were able to obtain an average velocity for the airflow, and

using cross sectional area we were able to calculate volumetric airflow. The test resulted in

an estimated airflow of 33,200 cfm as calculated below in Table 6.

Table 6. Airflow Measurements Performed August 2.

Feet measured

Seconds

Ft/Sec

Ft/min

CFM

Average of readings over upper half

Average of readings over lower coil

Total Airflow

9,918 cfm

23,304 cfm

33,200 cfm

Over heat Reclaim Coils - Upper Half Bypass Damper-Lower Half

Test 1 Test 2 Test 3 Test I Test 2

505 510 520 1000 1040

60 60 60 60 60

8.42 8.50 8.67 16.67 17.33

505 510 520 1000 1040

9789 9886 10080 22847 23761



On September 30 we measured the airflow through the outside air dampers during

fan operation using a velometer. A velometer is a device which covers inflow dampers and

channels the flow into a known cross-sectional area, and uses fan blades to measure air

speed. The device converts the air speed into volumetric flow using the given area. Airflow

through the upper damper was measured at 2550 cfm and through the lower damper was

measured at 2500 cfm, for a total of 5050 cfm.

5.2. Refrigeration System Description

The refrigeration system consists of three compressor racks and four satellite

compressors, remote condensers on the roof, and 35 individual display units. The system

was manufactured by Hussman Northeast in 1988. There are two compressor rooms, one

located behind the dairy storage room which houses compressor racks A and B, and one

behind the meat storage housing compressor rack C. Rack A includes five compressors

supplying eight low temperature circuits, Rack B includes four compressors supplying five

medium temperature circuits, and Rack C includes seven compressors supplying thirteen

medium temperature circuits. Compressors are manufactured by Copeland. All three

racks use R502 refrigerant and have a remote condenser. The condenser for rack A

contains two rows of three fans, designed for 318,000 Btuh of total heat rejection. The

rack B condenser has three fans and 229,200 Btuh of design heat rejection, and the rack C

condenser has two rows of four fans and 667,600 Btuh of design heat rejection. For a list

of design loads and evaporating temperatures see Tables 7 and 8.

Circuit 4 provides refrigeration for an open tub display case for frozen dinners and

juices. It was chosen for monitoring because of its low operating temperature and high



level of exposure to the indoor air. Circuit 4 is connected to rack A compressors which

supply the low temperature refrigeration for ice cream and frozen foods.

5.3 Summary

The end of this chapter concludes step three of the analysis. Since different

refrigeration configurations and quantities will result in different savings estimates, and

different air system will require different heat pipe designs, an extensive background of the

existing setup and operating conditions has been provided. The first three steps were

mainly used to set up the last three steps, which are the quantitative part of the thesis. The

analytic steps start with the introduction of the monitored data, and how it was used in the

analysis. Then the air system and refrigeration system are modelled and energy savings

are analyzed.



Table 7
Refrigerated display cases

ruit Circuit Design vap. isc.
no. desc. Load(Btu/hr) Temp Air temp.

4 frozen food 2 0 -2 -1
5 frozen food, - -
6 ice cream , - -

7 ice C1am, -1 -1
8 frozen food 242 T1 -5

9 rzen 24 -1 -5
0 frozen food (spare)

13 ~ ~ ~ dair 27W 21 3

uc (are-
meat cases 7 11 2=
meat cases 2 TF 2

2 frozen food 700 2 -0
2 deli43 20 3
25 cheese 1T8 20 3

roduce

33 cheese 7,98 235 30

Table 8
Refrigerated walk-in coolers and freezers

Circuit Design vap. Room
no. desc. Load(Btu/hr) Temp Temp.

2 ice cream , -2 -
3 ice cream , - -

meat storage 12
u ston e 8,W 18

sde9

31 meat rantion ,5



Chapter 6 Monitored Data

As was mentioned in Step 4, this chapter summarizes the data that were monitored

and calibrated by Aspen Systems. Each section corresponds to a monitoring location in

the air system, and circuit 4 and rack A in the refrigeration system. Sensor calibration is

addressed in this chapter, as well as sensor maintenance and problems associated with data

collection. For sensor calibration, several methods were used including ice water baths and

boiling water baths for thermocouples and saturated salt solutions for relative humidity

sensors. The original mixed air, return air, outside air, and supply air sensors were sealed

in a jar for a three day period before testing to determine their relative accuracies. Since the

supply air sensor was the only one that remained at the same location until the end of

testing, it was calibrated alone at the end of testing and the other sensors were calibrated

based on their relationship to the supply air sensor. The results are the source of

calibration for the temperature readings in each corresponding section. The graphs of all

air system calibrations and calibration equation derivations are included in Appendix E.

This chapter sets the stage for chapter 7, which includes the models, as it describes

the data which are being inserted into the models, and clarifies their accuracy. In general

the collection of data was not as successful as expected, due to many reasons which will be

discussed in the summary and in the Conclusions in chapter 10.

6.1 Return Air Temperature and Relative Humidity

The return air was included in the analysis for two reasons. By modelling mixed air

as a function of return air and outside air using known equations and airflows, we can

evaluate the accuracy of the sensors involved. Also, the return air is a good representation



of the inside air in its final mixed state. The inside air goes through many changes after the

supply vents, receiving heat and moisture from customers, losing moisture due to frost

buildup on refrigeration coils, and cooling down due to contact with display cases, before

entering the return duct. Although the exact relationship between return air and inside air

cannot be determined, a good indication that they are related can be seen by comparing AC

compressor power and return air temperature.

6.1.1 Return Air vs AC Compressor Power

Since the air conditioning compressor activates based on inside air dry bulb

temperature (which is also a function of location in the store, as the inside air is not

isothermal), trends in AC power should be seen in trends in return air temperature. This is

evident in Figure 19, a time line of return temperature and AC compressor power over a

typical four day period. At the beginning of the graph, the return air temperature is rising

as the first compressor is on full power. when the return air temperature reaches 68, the

second compressor kicks in, dropping the return temp. When the temperature drops below

66, the second compressor shuts off and the temperature rises again. This occurs

throughout the graph for daytime hours (6:00 to 23:30), corresponding to daytime EMS

setpoints of 73 for the second compressor to come on, and 72 for it to shut off. The first

compressor seems to turn on at the beginning of each day, and shuts off when the return

air temperature falls below 64. It then seems to turn on when the temperature rises above

66.
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Although this is not a quantifiable or exact relationship, the reoccurrence of these reactions

lead to the assumption that there is a relationship between return air and inside air.

6.1.2 Return Air Sensor Location and Calibration

The return air temperature and relative humidity sensors were installed at the return

air inlet to the rooftop air conditioning cabinet. The temperature sensor was checked

against a hand held thermometer for multiple three minute periods on June 14 and June 25.

The differences between readings and sensor measurements varied considerably, so this

calibration was considered unusable. A pre-installation test with all sensors in a sealed jar

for three days revealed that, for a temperature range of 70 degrees to 90 degrees:

TRTRNraw = TSUPPraw + 0.4 [F]

and given the supply air calibration (section 6.3), the calibrated results are:

T_RTRNcalibrated= T RTRNraw -5.8 [F]

Standard error = 0.857 [F]

On August 19 the relative humidity sensor was calibrated in a salt solution against

reference humidities of 75.5% and 11.3%. The resulting equation is as follows:

RH _RTRNcalibrated = 1.458*( RH_RTRNraw)-6.6

(R2 = 1.0)

These adjustments were applied to return air data before September 22. The replacement

sensors were calibrated on September 28 , which gave the relationships:

T _RTRNcalibrated = T _RTRNraw -3.1 [F]

RH _RTRNcalibrated = 1.351( RH_RTRNraw)-25.3



6.2 Mixed Air Temperature and Relative Humidity

The mixed air temperature and relative humidity sensors were located approximately

3/4 of the way from the floor of the duct to the roof, and between the air filters and the

cooling coil. In retrospect, it would be a better idea to use multiple sensors in a cross-

section for this location, but availability of resources at the time allowed only one sensor. It

was obvious from the data that there was an error with either the location, the sensor, or the

calibration (see below), as calibrated mixed air temperature readings were consistently

higher than both the return air and outside air readings. This issue is addressed in the next

chapter when mixed air is modelled.

6.2.1 Sensor Location

The mixed air temperature and relative humidity sensors were installed between the

air filters and the cooling coils. There is very little distance between the filters and the coils,

and also between the filters and return air plenum. Since the return air inlet is at the bottom

of the duct, and the outside air inlet is on the side and near the top of the duct, there is still

expected to be some cross-sectional variation in air temperature and humidity when the air

has reached the cooling coil. Therefore, the air is not completely mixed at the location of

the sensor, but we felt that a location after the filters and near the middle of the upper

cooling coil would give the most accurate data.

The original sensor was at this location until August 11, when it was used to replace

the failed sensor outside the air conditioning unit. The second sensor was installed at the

original location on August 11 and remained until the end of monitoring



6.2.2 Sensor Calibration

Calibrations resulting from data recorded in a sealed jar during a three day period

show that this sensor was reading 1.3 degrees lower than the supply sensor. Since the

supply temperature sensor, as shown below, reads 5.4 degrees higher than actual

temperature, the mixed air temperature sensor was reading 4.1 degrees higher than actual

temperature. This calibration was applied to mixed air temperature data before August 11.

The second temperature sensor was calibrated on September 28 and revealed that raw

temperature was 1.8 degrees higher than the reference temperature. This calibration was

applied to mixed air temperature data after August 11.

The original relative humidity sensor was calibrated only in a low RH salt solution on

June 1. It was assumed at that time by the monitoring contractor that a one-point

calibration would be sufficient, but it was later found that sensor error varied considerably

with humidity levels. Therefore, this calibration is determined to be inconclusive, and no

adjustments were made to data before August 11.

The relative humidity sensor installed on August 11 was calibrated on September 28

against reference relative humidities of 75.5% and 11.3 % and the following relationship

was discovered:

RH_MIXcalibrated = 1.351( RH MlXraw) - 25.3

(R2 = 1.0)

mixed air relative humidity data after August 11 was adjusted accordingly.

6.3 Supplv Air Temperature and Relative Humidity

The supply air temperature and relative humidity were monitored to track any

changes of the air being supplied to the store after the heat pipe was installed. Although



the temperature is not expected to change, the specific humidity calculated from

temperature and relative humidity is expected to decrease due to extra dehumidification.

The supply air temperature and relative humidity sensors were installed at the end of

the air conditioning cabinet, after the auxiliary heating coils. The original sensors remained

until the end of monitoring, and were calibrated on September 28. The temperature sensor

was calibrated against a reference temperature range of 52 degrees to 80 degrees. The

relative humidity sensor was calibrated against reference relative humidities of 75.5% and

11.3 %. As a result of the calibration, the following adjustments were applied to all supply

air data:

TSUPLcalibrated = 0.97(TSUPLraw) - 3.1 [F]

Standard Error = 0.857 [F]

RHSUPLcalibrated = 1.553(RHSUPLraw) - 1.4

(R2= 1.0)

Since the supply air sensor was included in the original sealed jar containing all of the

sensors, this calibration was combined with the relative relationship between this sensor's

readings and other sensors readings to calibrate the other sensors.

6.4 Outside Air Temperature and Relative Humidity

The outside air temperatures and relative humidities were the most important data

being collected, and they unfortunately resulted in the most trouble. Outside air conditions

were the key factor separating this analysis from other analyses, since milder conditions

during the cooling season in Worcester were expected to lessen the effect of

dehumidification. Accurate data were necessary to normalize savings as a factor of outside

temperature and humidity levels. Also, several factors including condenser power, mixed

air specific humidity, and inside air temperature and humidity (due to infiltration) are



expected to be a factor of outside condition, and regressions against accurate data would be

useful in predicting these parameters.

As is further explained in the next sections, outside air temperature and relative

humidity as they were recorded were insufficient for the analysis. Many periods of data

were removed due to poor readings. Bad readings were either due to poor location,

inadequate sensor protection, or general sensor failure. In order to obtain the most

complete outside air data for the entire monitoring period, dry bulb and wet bulb

temperatures for Worcester MA were obtained from the National Climatic Data Center in

Asheville, North Carolina.

6.4.1 Sensor Location and Maintenance

The temperature and relative humidity sensors used to measure outside air conditions

were originally placed just inside the outside air dampers in the return air duct. We had

originally been informed by the store's managers that the supply air blower operated 24

hours a day, seven days a week, and therefore this location would always be an inlet for

outside air, yet the sensors would be protected from rain and solar radiation.

During several of the early days of monitoring, the data for these points sharply

dropped at 11:30 pm to the levels of the return air data, and remained there until

approximately 6:00 am, when the data jumped back to expected conditions. After further

investigation, we determined that during these hours the supply air blower shut off, leaving

the air in the duct stagnant. Outside air was no longer being drawn in through the damper

and the sensors were reading return air conditions. Although the blower sometimes came

on over the course of the summer at night when cooling was needed, this never happened in

the first few weeks. As a result of this problem, the sensors were moved to outside the air

supply cabinet. Over the next several weeks, there occurred several problems related to



sensor location and performance. On some occasions, the sensors were heated due to

inadequate shielding for solar radiation and therefore read too high, sometimes as high as

160 degrees. When this happened, these data were deleted and the sensor was moved to a

location shaded from the sun. The sensor was relocated several times by an employee of

Aspen Systems, who determine over the course of several site visits that the sensor location

was either affected by sunlight, rain or wind (as this was originally at an inside location, the

sensor chosen was not protected for outside conditions), or measured air conditions that

were different than the air entering the inlet dampers. Because of this there are gaps in

recorded data, either due to relocation of the sensor or sensor failure. The weather station

data which were acquired to fill in these gaps will be discussed in section 6.4.3.

On August 11, the outside sensors were replaced with the original mixed air sensors.

On August 26, these sensors were replaced with sensors designed for outside conditions.

These sensors remained until the end of monitoring

6.4.2 Sensor Calibration

The original temperature sensor (used June 2 to August 10) was calibrated before

sensor installation and after removal. This sensor was calibrated against a dry bulb

thermometer over three minute intervals on June 14 and June 25. This comparison

produced inconsistent results, so the calibration was accomplished by comparing data

recorded with the supply temperature sensor when both sensors were placed in a sealed jar

for three days, This analysis showed that the outside air temperature sensor was reading

0.8 degrees lower than the supply air temperature sensor. Using the supply air sensor

calibration, the calibration for this sensor can be described as follows:

T _OUTcalibrated = 0.97( T SUPPraw) - 3.1 [F]

T _OUTcalibrated = 0.97(TOUTraw + 0.8) - 3.1 [F]



or TOUTcalibrated = 0.97( TOUTraw) - 3.9 [F]

Standard Error = 0.857 [F]

This calibration was applied to all data before August 10.

The temperature sensor used from August 11 to August 26 was the sensor used

previously for mixed air. This sensor failed from August 20 to August 27, showing

readings considerably different than local temperature readings, and these data were

deleted. Calibration of this sensor (section 6.2.2) showed that actual temperature was 4.1

degrees lower than measured temperature, so this calibration was applied to data for this

period.

The original relative humidity sensor was calibrated on June 14 and 25. Sensor

readings over separate three minute periods were compared to reference relative humidity

values obtained with a sling psychrometer. Results obtained with the sling psychrometer

varied considerably during the test period. This, combined with the small range of relative

humidity values represented in this test, resulted in an inconclusive calibration, and

therefore it was recommended that raw data be used.

The humidity sensor used from August 11 to August 26 was the sensor used

previously for mixed air. This sensor failed from 3:45 pm on August 20 to the end of

August 26, when the new sensor was installed. Data for this period were deleted. The

calibration for this sensor as shown above gave calibrated relative humidity by the equation

below:

RH _MlXcalibrated= 1.351( RH_MIXraw) - 25.3

(R2 =1.0)

This calibration was applied to data for the period when the sensor had not failed.

The calibration for the relative humidity sensor used from August 27 to the end of

monitoring resulted in the following equation:



RH OUTcalibrated = 1.406(RHOUTraw) - 29.7

6.4.3 Monitored Data vs. Weather Station Data

Because there are gaps in recorded outside temperature and relative humidity data, we

obtained hourly dry bulb and wet bulb temperature conditions for Worcester MA from the

National Climatic Data Center for the period of monitoring. Our goal was to compare

monitored data to weather station data to fill in blank areas. As outside temperature is used

as a controlled variable, a factor that affects the air system as well as the refrigeration

system, but is unchanged by installation of the heat pipe, it is important that the data be as

complete and accurate as possible. Figure 20 shows the results of the comparison of

weather station outside temperature data vs. monitored outside temperature data for June

through September. The diagonal lines on the graph are lines of unity, marking points

where the measured temperatures are equal.

The plots for July, August and September fall relatively close to the line, within a

margin of error of a few degrees. This may be due to sensor margin of error and

geographical distance between the weather station and the supermarket. The data for June

are more scattered, yet this is mainly due to the period when the sensor was located inside

the outside air damper and the supply blower was shut off, resulting in erroneous readings.

A regression applied to all data after the original outside air sensor was moved outside the

return air plenum shows that the standard error is 3.3 degrees F. When the equation of

mixed air conditions as a combination of return air flow and outside air flow is run with

design conditions (700F, 40% return, 900F, 30% outside), and then with a 3.3 degree error

added to the outside temperature, the difference is 0.7% (0.5 to 0.7 degrees) in mixed air

temperature. Therefore, since this error is within the sensor error given by the

manufacturer, we concluded that weather station dry bulb temperature could be directly
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inserted into missing data periods. (Note: since the weather station data are hourly, for

gaps in which data were filled in, there are still missing data corresponding to the fifteen

minute intervals between the hours.)

Weather station relative humidity was derived from dry bulb temperature and wet

bulb temperature using psychrometric equations given in the ASHRAE Handbook. Partial

water vapor saturation pressure for the dry bulb temperature and wet bulb temperature was

calculated using the equation described in section 2.3. Specific humidities for dry bulb and

wet bulb temperatures at saturation were calculated by the following equations:

Ws = 0.6219 8 (Pws / P-pws)

Ws = specific humidity at saturation for dry bulb

p = atmospheric pressure (psi)

pws = partial water vapor saturation pressure for dry bulb

W*s = 0.62198 (p*ws / P-p*ws)

W*s = specific humidity at saturation for wet bulb

p = atmospheric pressure (psi)

p*ws = partial water vapor saturation pressure for wet bulb

Specific humidity for the given dry bulb and wet bulb temperature can be calculated

as:

W = ((1093 - 0.556 t*)W*s - 0.240(t - t*)) / (1093 + 0.444 t - t*)

t = dry bulb temperature

t = wet bulb temperature

Therefore, the degree of saturation is u = (W/Ws) and the relative humidity can be

expressed as:



RH = u / (1 -(1 - u)(Pws 1p))

Figure 21 shows the relationship between monitored relative humidity and weather

station relative humidity for the first sensor (used June 2 through August 27) and for the

second sensor (used August 28 through the end of the monitoring period). It is evident

from looking at the graphs that there is a much less definitive correlation between

monitored and weather station relative humidity. A regression of this data, using only

points where both temperature and relative humidity for monitored and weather station data

are accounted for, shows that monitored relative humidity can be related to weather station

relative humidity as follows:

First Sensor

RH OUT mon = 0.062 + 0.702(RH OUT ws)

(R2 = 0.701)

Average Error = 0.078

Second Sensor

RHOUT mon = -0.122 + 1.191(RHOUT ws)

(R2 = 0.781)

Average Error = 0.086

When this error is applied to the model with the temperature error, the result is a

mixed air error of ±3.9% in specific humidity. This is a significant percentage, and this

issue will be further addressed in the next chapter when modelled mixed air conditions are

compared to monitored mixed air conditions.
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These equations were applied to weather station relative humidities to be filled in

where monitored data was missing.

6.5 Pre- and Post- Cooling Coil Temperature

The original grid of sensors installed before and after each of the cooling coils (see

Figure 15) remained until the end of monitoring, with the exception of TINL4, which was

the thermocouple located before the lower cooling coil on the top right corner of the grid.

This sensor was removed from this location on August 10 and installed outside as a

backup to record outside temperature while there was trouble with the outside sensor. This

sensor was re-installed at its original location on August 26 when new sensors were

installed for outside air. All sensors were calibrated in an ice bath and a boiling distilled

water bath on May 28 and August 2. On May 28, all thermocouples were calibrated in an

ice bath for 20 minutes, and read between 1.4 and 2.7 degrees low. On August 2, the same

test was performed, and the range of temperatures recorded was from 1 degree below to 1

degree above reference temperature. These results, added to the boiling water calibration,

gave the equation :

Tcalibrated = -1.4 + 1.024(Traw)

which results in a variation of no more than 0.2 degrees for the 50 degree to 70 degree

range. This error can be attributed to sensor error (±1 degree) so no additional changes

were made to raw data.

6.6 Circuit 4 Temperatures and Pressures

As mentioned before, Circuit 4 is a refrigeration line serving open-tub frozen-food

cases using compressors in rack A. The line comes off the liquid manifold from the

condenser, runs through the evaporators in the low temperature display cases, and enters



the suction manifold feeding the rack A compressors (see Figure 16 for a schematic).

Temperature and pressure sensors were installed after the liquid manifold before the

expansion valve and after the evaporators before the suction manifold. For the first few

weeks of the installation the temperature sensor located just after the liquid manifold was

found to be fluctuating significantly with the variation in mass flow through the circuit.

This was determined not to be a monitoring problem, but a result of fifteen minute average

readings. The temperature recorded for the fifteen minute average was not the temperature

of the refrigerant flowing through the circuit when the valve was open, but an average

between this temperature and whatever temperature was recorded when the valve was off.

As we were afraid that these fluctuations would be "double-counted" in the load equation

when mass flow is multiplied by temperature, the temperature sensor was moved to the

liquid manifold on June 28. In this case, the temperature measured is the actual

temperature of the liquid refrigerant when the mass flow is greater than zero. The mass

flow measuring device was installed before the expansion valve to assist in calculating

display case load. The fluctuations in flow measurements are simply due to the fact that

the number is a fifteen minute average, and that mass flow rates should be either maximum

or zero at any given instant.

6.7 Compressor Rack Temperatures. Pressures. and Power Measurements

Temperature and pressure sensors were installed at the suction manifold and in the

line leading from the compressors to the condenser for rack A. Power meters were

installed at the rack A power line and at the condenser fan power line, and also at the rack B

and rack C power line. The compressor rack power meters measure the combined power

consumption of all of the compressors. Although individual compressors cycle on and off



at different times, the power consumption of the whole rack should give a good indication

of the load on the system.

6.8 Summary

Although some of the problems encountered couldn't have been prevented at the time

of monitoring (if the supply fan was on 24 hours as originally expected, there theoretically

would have been no problems with the outside air sensor), some of them could have been

prevented. Relative humidity sensors, important in a dehumidification analysis, should

have required more care in calibration. All sensors should have been calibrated against a

low and high reference humidity before and after installation. The return air, mixed air, and

supply air temperature sensor locations should have been checked against cross-sectional

temperature readings to determine the relationship with the single reading and what the

average reading should have been.

A significant amount of data were deleted for all sensors. This was done by Aspen

Systems, when it was felt that recorded numbers were unreasonable and therefore

attributable to sensor error. With the exception of these gaps, the calibrated data should be

sufficient to now create an airflow model and a refrigeration system model. Furthermore,

data used from now on will be the calibrated monitored data, but will be referred to as

'monitored data'. Although it was determined that calibrated data is obviously in error in

some cases (as when supply air specific humidity is higher than mixed air specific

humidity), the models included in the next two chapters should provide further adjustments

needed to obtain reasonable results.



Chapter 7 Air System Model

The original method of analysis was to simply compare monitored supply air

humidity levels and mixed air humidity levels before and after installation. We expected

supply air specific humidity to be always either the same or lower than mixed air specific

humidity, and we expected the difference between the two to increase after the heat pipe

was installed. We planned to predict supply air specific humidity as a function of mixed

air humidity and cooling coil load with two different equations, one using pre-installation

data and one using post-installation data. Then we would apply the two equations to the

same data, and the difference between the results would determine how much more

dehumidification was accomplished by the heat pipe. When we became aware that, due to

sensor, calibration, and data collection errors, monitored data alone would not be sufficient,

we decided to combine data with engineering calculations to predict mixed air, and then

supply air conditions based on return and outside air temperatures and relative humidities.

We expected that the equations predicting supply air specific humidity would be different

with and without inclusion of the heat pipe. These two equations were then applied to the

same return and outside air data for the post-installation period to determine the amount of

extra dehumidification accomplished.

In this chapter, the first two sections relate to a spreadsheet model which was set up

to predict mixed air and then supply air conditions based on monitored inputs, and

engineering equations. The spreadsheet is set up so that the fifteen-minute data can simply

be copied to the appropriate columns in files which can accommodate a week's worth of

data. The calculated vs monitored graphs are derived from this spreadsheet. By relating

calculated to monitored data, pre- and post-installation calculations can be applied to data



from the whole cooling season. The third section analyzes the temperature difference

generated by the heat pipe, which, due to insufficient monitoring, is a rough estimate. The

fourth section summarizes the chapter.

As a result of the modelled analysis, specific humidity differences due to the

installation of the heat pipe are evident, but within statistical margin of error. This issue

will be further discussed in the conclusion.

7.1 Mixed Air

As mentioned above, monitored mixed air and supply air data are insufficient because

they show a higher supply air humidity than mixed air humidity. At this point it is not

certain whether or not the mixed air readings are in error, the supply readings are in error,

or both. It is definite if the return air and outside air sensors are accurate, that calculating

mixed air as a mixture of two moist air streams will be accurate (ASHRAE 1993). If the

calculated results follow the same trends as the monitored results with a constant

difference, it can be concluded that the mixed air sensors account almost entirely for the

error. If the difference between the two lines varies considerably, either of the three

sensors could be in error. If only the mixed air sensor is in error, a regression should give

an equation which can be applied to monitored mixed air specific humidity for all points.

7.1.1 Calculated vs Monitored

The mixed air specific humidity is a function of return air specific humidity, outside

air specific humidity, and return and outside air volume flows. For the model the airflows

used were the ones obtained from site measurements described in section 5.1.2. Supply

airflow is 33,200 cfm, outside airflow is 5,050 cfm, and therefore return airflow is 28,150

cfm.



The pre-installation mixed air temperature and specific humidity were calculated

using the first section of the spreadsheet for which input columns were return and outside

air monitored temperatures and relative humidities. The method used is the same as the

one described in chapter two. The calculated mixed air columns were compared to

monitored mixed air temperature and mixed air specific humidity (calculated from mixed

air temperature and relative humidity). Figures 22, 23, and 24 show graphs comparing

calculated and monitored mixed air temperature and specific humidity for three pre-

installation weeks, the first and second week in June and the fourth week in July. What

these graphs show, especially for specific humidity, is that monitored points follow very

closely the paths that are expected as a mixture of two moist air streams. Points where the

difference between the lines varies include times of the day when the supply fan was off,

which changed the airflow assumptions. Scatter plots comparing calculated and monitored

mixed air temperature and specific humidity when the supply fan was on are shown in

Figure 25. A simple linear regression gives the following equations:

C_MIXW = -0.001 + 1.492(MMIXW)

(R2 = 0.868)

C_MIXT = -7.494 + 1.111(M_MIX _T)

(R2 = 0.918)

C_MIX_W: calculated mixed air specific humidity

M_MIX_W: monitored mixed air specific humidity

C_MIX_T: calculated mixed air temperature

M_MIXT : monitored mixed air temperature
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Mixed Air Temperature - July Week 4
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The standard error for each of these equations is 0.0004 lbw/lba (5-10%) for specific

humidity and 0.6 degrees for temperature. Since sensor error for each of these variables,

as described in Appendix D, is 2.4% for specific humidity and 1 degree for monitored

temperature, the calculated differences for specific humidity is larger than manufacturer's

sensor error, and cannot be attributed to it. The calculated error for temperature is close to

sensor error, and therefore the uncertainty of this equation can be calculated as the root

mean square of the two uncertainties (see Appendix D), which is 0.8 degrees.

Figure 26 shows two graphs comparing monitored and calculated mixed air specific

humidity with monitored supply air specific humidity for the pre-installation period. The

top graph shows the two lines taken directly from monitored data. Although the lines in

the two graphs seem to fall into similar trends, the supply air specific humidity is always

higher than the mixed air specific humidity. This is impossible, since no moisture is

introduced into the system between these two points, and at the worst case the two should

be the same (no dehumidification). The lower graph shows the same comparison with the

mixed air specific humidity adjusted based on the calculated conditions described above.

Unfortunately, the supply air specific humidity is still higher than the mixed air specific

humidity, which means that there must be an error in the supply air readings.

Figures 27 and 28 show graphs of two typical post-installation weeks. Although

the graphs for the most part seem to follow similar trends, there is not the same obvious

linear correlation as there was in the pre-installation comparison. Since the mixed air

conditions should not be affected by the presence of the heat pipe, there must have been a

change in the parameters of the equation. The difference may be due to the fact that

outside relative humidity sensors failed during this period and may not have yielded

accurate results while they were functioning. This also may be due to a change in outside

air intake due to shifting of the dampers. Several times during the installation period and
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shortly after, the outside air dampers were opened and closed to measure intake over the

range of positions (1,260 cfm at closed position, and 5,500 cfm at fully opened position).

7.1.2 Error Analysis

The errors in monitored specific humidity, as shown in Appendix D, are 2.5%.

Therefore the maximum error in calculated vs monitored mixed air specific humidity

difference, for which the regression error ranges from 5% to 10%, is 12.5 percent

(±0.0005 for W=0.004). This is smaller than the difference between the monitored and

calculated mixed air specific humidity time lines, which was an average of 27.5 percent

(0.0014 lbw/lba), meaning that the difference cannot be attributed to statistical error.

The reasons for the errors could be either in the data collection or in the model

assumptions. The calibrations are all two point calibrations, which eliminates uncertainty in

that aspect, but relative humidity sensors were only calibrated once, and it is possible that

the readings over the course of the monitoring drifted from the calibrated results. Where

the trends in the two lines mimic each other exactly, the equations would not be the source

of the error, and the difference would probably stem from sensor readings which were

different than the calibration. Where the slopes in the two graphs are different (as in the

first few hours of August week 5 in Figure 27) the error is probably due to variations in the

equations parameters, such as outside air inflow. Since the source of the error at this point

is unknown, and the trends in the two lines do in fact mimic each other when the supply fan

is on, the difference is probably due to the mixed air sensors. If this were to be true, a

correction factor applied to monitored data would produce a line almost exactly along the

calculated line. Since this correction factor is unknown, and the engineering equations are

very reliable, we will accept the monitored return air and outside air temperatures and
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relative humidities for the analysis, and the calculated mixed air temperature and specific

humidity will be used for the rest of the spreadsheet model.

7.2 Supply Air

Since there is no way for air to escape or enter the airflow between the mixed air

sensor and supply air sensor (the air conditioning unit is well sealed), the temperature and

humidity difference can be easily computed using the known factors, cooling coil load and

heat reclaim. Although all of the factors in the cooling section were monitored, temperature

difference across the heat reclaim was not. For this analysis, the specific humidity of the

supply air was more important than the temperature of the supply air, and humidity would

not change across the heat reclaim. Therefore the specific humidity of the air after the

cooling coil can be calculated and compared to the specific humidity derived from the

supply air sensors. This process will give the same insight to the accuracy of the

monitored data outside of statistical errors as was found in the mixed air analysis.

This section is divided into three parts. The first part describes the process

accomplished by the spreadsheet for predicting supply air conditions. The second part

summarizes the analysis which attempted to relate the monitored temperature difference

across the cooling coils with compressor power. Based on the success of this analysis, for

future studies at this site, compressor power, usually an accurate measurement, can be used

to predict the temperature drop and subsequent cooling load (sensible if dew point is not

reached, sensible and latent if dew point is reached) across the cooling coils. The third part

completes the analysis by comparing pre-installation and post-installation conditions.
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7.2.1 Calculated vs Monitored

The supply air specific humidity should be a function of mixed air specific

humidity and cooling coil load. Heat reclaim and auxiliary reheat would affect supply air

temperature, but not its specific humidity (since reheat is a sensible gain). It would be

expected that the cooling coil would reduce the amount of moisture in the air by

condensation proportional to its load, and that the cooling coil load would be proportional

to the temperature drop across the coils. This would not be a consistent proportion,

however, since the temperature difference is expected to be smaller for a given load when

latent cooling is being performed. As is shown in the next section, the relationship does

not vary much from linearity, meaning that a consistent amount of latent cooling was

performed over the summer.

Since the supply air specific humidity derived from monitored data is higher than

the calculated mixed air specific humidity, it is obviously in error. By calculating the

specific humidity using the model and comparing the results with monitored data, it may be

possible to determine the source of the error. The spreadsheet model was extended to

calculate air conditions after the cooling coil based on the temperature difference measured

across the coil for the pre-installation period. Since the thermodynamic energy flow

equations are different for sensible and latent cooling, the calculations had to be

accomplished in two parts. Also, since the airflow is divided into two halves, and

condensation on the lower coil could happen while there was no cooling through the upper

coil, the analysis was split into four parts: upper coil sensible cooling, upper coil latent

cooling, lower coil sensible cooling, and lower coil latent cooling.

For the first step, the dew point temperature for the mixed air was calculated using

the following equations (ASHRAE 1993):
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Td = 79.047 + 30.5790a + 1.8893a2  (7.1)

a = ln(pw) (7.2)

pw = (p*W) / (0.62198 + W) (7.3)

W = specific humidity

p = atmospheric pressure [in. Hg]

pw = water vapor partial pressure [in. Hg]

The dew point temperature is the temperature at which condensation starts (100% relative

humidity) for a constant specific humidity. The statistical error, as calculated in Appendix

D, is 1.37 degrees F.

For the second step, the post-coil temperatures were calculated for the upper coil

and the lower coil using the monitored temperature difference and the calculated mixed air

temperature. If the post coil temperature for either section was greater than the dew point

temperature, there was no condensation and the specific humidity didn't change. If the

post-coil temperature was lower than the dew point temperature, then there was some

condensation and a drop in specific humidity, which was then calculated using the post-coil

temperature and 100% relative humidity. Although the air at this point would not be at

exactly 100% rh, the difference between the overall air flow and the air in contact with the

coils (which is at 100% relative humidity) is only in temperature and the specific humidity

is the same, Since resistances are the same for both coils, the airflow would split half

through the upper coil and half through the lower coil, so therefore the post-coil specific

humidity would be the average of the two calculated specific humidities. Due to the fact

that the air is only being heated between this point and the supply fan, this specific

humidity is the same as the supply air specific humidity.
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Figure 29 and 30 show graphs of calculated vs monitored supply air specific

humidity for July weeks three and four. As was expected, monitored humidity is higher

than what the model predicts. As with the mixed air comparison, the graphs seem to follow

similar trends except for periods at night when the blower is off. Figure 31 shows a scatter

plot of calculated vs monitored specific humidity for pre-installation times when the blower

is on (during the day and at night when cooling is needed). This graph also shows a

strong linear correlation. A regression gives the following equation:

CALSUPW = 0.0004 + 0.6849(MONSUPW)

(R2 = 0.929)

CALSUPW = calculated supply specific humidity

MONSUPW = monitored supply specific humidity

The standard error in this regression is 0.0002 (2-2.5%). Since the statistical error

for specific humidity is 2.5 percent, errors in the regression can be attributed to the sensors

as they are calibrated now.

7.2.2 Cooling Coil Load

As shown in Figure 32, the total power consumed by the two compressors has a

linear relationship with the sum of the temperature drops across the upper and lower

cooling coils. Summing the temperature drops is realistic because the lower compressor is

constant (at maximum) whenever the upper compressor is on, and the upper compressor

power is at zero whenever the lower compressor power is less than maximum. This is

evident from examining compressor power and temperature differences for June 19

(Figure 33). What this relationship doesn't account for, though, is the fact that when latent

cooling is being performed, the temperature difference across the cooling coil will be

different than if only sensible cooling is being performed. When moisture is being
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Figure 33. AC Compressor Power and Cooling Temperature Differences for June 19.

113



removed from the air, there will be a smaller temperature drop for a given load (as part of

the load is being used to remove the moisture), than when no moisture is being removed.

This accounts for some of the scatter in the graphs, which still is fairly well concentrated

due to the fact that there was not much latent cooling over the summer (as will be shown

later). A regression of data for before and after heat pipe installation, fixed at the origin,

gives the following equations:

Pre Installation

June TDIFF = 0.695(CMPAC)

(R2 =0.984)

July TDIFF = 0.691(CMPAC)

(R2 =0.983)

Post Installation

August TDIFF = .662(CMPAC)

(R2 =0.977)

September TDIFF = .682(CMPAC)

(R2 =0.988)

CMPAC = total compressor power

TDIFF=sum of temperature drops across lower and upper coils

After the heat pipe was installed, the average slope of the graphs decreases, due to

the fact that the cooling coil is performing more latent cooling and less sensible cooling.

Therefore, for a given compressor load there is a smaller temperature difference. This is

most evident in the cluster of data points which occur when the lower coil compressor is on

full power, around 30 kW. The cluster of points varies from 28 to 35 kW, due to the fact

that the reading is a fifteen minute average and includes times when the first compressor is

off for a small part of the time or the second compressor is on for a small part of the time.
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Before the heat pipe installation, this range of points corresponds to a range of temperature

differences between 19.5 degrees and 25 degrees. After the installation, the cluster ranges

from 17 degrees to 22 degrees, since more of the cooling load is latent.

There are several occasions where there is a significant temperature drop when

compressor power is zero. This situation occurs at night, when the fan blower is off.

When the building does not need cooling and the compressors shut off, the pipes remain

ool for a while and still generate a temperature drop. To calculate a more accurate analysis,

these data were excluded from the regression.

7.2.3 Pre-Installation Mixed Air vs. Supply Air

Figure 34 shows the graph of modelled mixed air and supply air specific humidity

as well as the graph of monitored mixed and supply air specific humidity for both the pre-

and post- installation period. For the pre-installation section of the modelled graph, supply

air is always equal to or slightly lower than the mixed air, which was expected. From this

graph it can be determined that not much dehumidification was performed during the pre-

installation period, as the lines do not vary by much. The average fifteen minute specific

humidity difference over this period is 0.0003 ± 0.00014 lbw/lba (the only uncertainties in

this specific analysis are in the engineering equations supplied by ASHRAE and in the

temperature sensors, which is 2% or 0.00014 for W=0.007, as explained in section IV of

Appendix D).

A regression analysis will allow us to predict supply air specific humidity for

calculated mixed air conditions. Since the supply air specific humidity is actually a

function of compressor load as well as mixed air specific humidity, it is necessary to

include it. Since compressor power has been already determined to have a linear

relationship with the temperature difference across the coil, it can be assumed that there is a
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relationship between compressor power and specific humidity difference (since specific

humidity is a function of temperature). A regression gives the following equation of

supply specific humidity as a function of mixed air specific humidity and compressor

power:

Pre Installation

SUPP SPH = 0.001187 + 0.827(MIX SPH) - 0.000012(CMPAC)

(R2 =0.909)

Standard Error of Estimate = 0.000257

This error, which falls in the range of 2.3% to 3.7%, is generally larger than the statistical

error (2.5%).

7.2.4 Post-Installation Mixed Air vs Supply Air

After installation of the heat pipe, as has been explained before, the difference

between supply air specific humidity and mixed air specific humidity is expected to

increase. The top graph in Figure 34 shows calibrated monitored mixed and supply

specific humidities. Immediately after the installation, the mixed air humidity jumps

considerably while the supply air humidity doesn't change much from the pre-installation

levels. The sensor which recorded mixed air temperature and relative humidity was moved

to record outside conditions and a new sensor was installed in the mixed air location. It is

probably a calibration error or a recording error which accounts for the jump.

The bottom graph shows a time line of modelled mixed and supply air specific

humidity levels before and after installation. To model post-installation conditions,

temperature drops across the pre-cooling section of the heat pipe were included in the

model. For this, the temperature of the air after the pre-cooling section of the heat pipe was

calculated by subtracting the monitored temperature drop for the lower coil and upper coil
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from the calculated mixed air temperature. A comparison of temperature differences

against mixed air temperatures showed that this temperature was never below the dew point,

meaning that only sensible cooling should be accounted for. Therefore, the specific

humidity of the air system did not change across the pre-cooling section. The temperature

drop across the cooling coils for the upper and lower section was then applied to this

cooler temperature, which increased the probability that the post-cooling coil temperature

was below the dew point. The specific humidity of this airflow was calculated in the same

manner as in the pre-installation model, resulting in supply air specific humidity levels

shown in the bottom graph in Figure 34. Figure 35 shows scatter plots of modelled supply

and mixed air specific humidity before and after installation. Data points along the straight

line (the line of unity) are times when there was no dehumidification and specific humidity

levels didn't change. Although there is little correlation between calculated and monitored

quantities below this line, it is evident that for a given mixed air specific humidity,

calculated supply air specific humidities are lower in the post-installation graph.

A multivariate regression will be based on the energy balance before and after the

cooling section given below:

Winm(H + CwTin) + mCaTin = a(CMPAC) + Woutm(H + CwTout) + mCaTout

W = specific humidity [lbw/lba]

m= mass flow of air [lba/hr]

H = heat of vaporization [Btu/lbw]

Cw=heat capacity of water [Btu/lbw OF]

Ca=heat capacity of air [Btu/lba OF]

a=coefficient relating compressor power (CMPAC) to energy removed [Btu/hr kW]
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Figure 35. Modelled Supply Air vs. Mixed Air Specific Humidity.
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The regression estimates calculated supply air specific humidity (Wout) as a function of

calculated mixed air specific humidity (Win), average temperature difference over all four

heat pipe sections, and AC compressor power results in the following equation:

Post Installation

SUPP SPH = 0.002704 - 0.636(MIX SPH) - 0.000069(AVETDIFF) -

0.000022(CMPAC)

(R2 =0.758)

Standard Error of Estimate = 0.000450

The reason the average temperature difference across all heat pipe sections was used as

well as the reason the error is so significant (nearly 7.5%), will be explained in the next

section.

7.3 Heat Pipe Temperature Differences

Because the heat pipe is a completely passive system, and because it only provides

sensible cooling and heating in this application, the temperature differences should be the

same across both pre-cooling sections and reheat sections. Due to limitations in input

channels in the datalogger, only one thermocouple was installed between each of the heat

pipe sections and the cooling coil, hoping that it would give a good representation of the

average temperature drop across each section. An analysis of the data, however, showed

that temperature differences varied considerably not only from the pre-cooling section to

the re-heat section, but also over the upper and lower coils.
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Figure 36 includes a graph for each of the four sections of the heat pipe, showing the

temperature differences across the coils as a function of time of day. For the pre-cooling

sections a positive number represents cooling, and for the re-heat sections a positive

number represents heating. During the day when the supply fan was supposed to be

continuously on, the lower coil shows relatively consistent (although different) temperature

changes while the upper coil shows a wide variation in temperature changes. For all of the

sections, temperature changes are abnormal during night hours (12:00 am to 6:00 am), and

fifteen minute time periods when the fan was on for part of the time (scattered data between

the maximum and zero). The only explanation for the variation is that temperature changes

are not independent of location, as was originally assumed. Heat pipes are designed for an

average temperature exchange, which is integrated over the entire cross-section. Using the

data from these four points only, it is unlikely that the true effect of the heat pipe can be

accurately predicted. As this is an important factor in modelling the post-installation

supply air specific humidity, there will probably be some inconsistencies in modelled

output. Since the heat pipe sections are of identical design, the most accurate temperature

representation we could arrive at is to apply the average fifteen minute temperature

difference for all four sections to the model.

7.4 Summary

Although by observation and reasoning the assumption that the installation of the

heat pipe must reduce supply air specific humidity levels has been proven, the physical

differences from before to after are too small to be considered as evidence. The statistical

sensor errors alone are larger than the predicted reductions, and regression errors

compound on the problem. Figure 37 shows the time line of the difference between the

pre-installation model and the post-installation model applied to post-installation data.
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Although the difference is almost always positive, the combined standard error of estimate

for these two calculations is 0.0007, and most of the calculated differences fall below this

line. For this application, the air system model therefore is inconclusive.
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Chapter 8 Refrigeration System Model

With the air flow model resolved, the next step is to model the refrigeration system

and attempt to relate the two. Due to limitations of resources and cost-cutting, it was only

feasible to monitor one rack of compressors and one circuit in that rack. Our decision of

which rack to analyze was based on the circuit we chose to monitor. We chose circuit 4 on

rack A, because it was serving a low temperature open coffin style case which required a

significant amount of refrigeration. Also, the effects of dehumidification of inside air

would be most evident in this type of case. which infiltrates a lot of inside air and quickly

condenses ambient moisture on the low temperature coils. As was explained in section 1.2,

frost buildup on the refrigeration coils decreases the efficiency for three reasons - one, the

ice serves as an added insulation which decreases the heat transfer from air to coils, two, the

ice buildup adds surface area to the coils, which adds resistance to the airflow through the

coils, and three, the latent heat of phase change due to freezing condensate creates an

unnecessary load on the system. ASHRAE equations provide helpful insight on the

energy balances in a Carnot cycle, but not on variations in the cycle which may be due to

varying ambient conditions.

It is expected that reducing the specific humidity of air in the display case will affect

all three of these factors. When there is less moisture per pound of dry air, there is less

condensation for a given dew point temperature, resulting in a slower rate of frost buildup.

Therefore, the heat transfer rate doesn't decrease as much, the surface area doesn't expand

as much, and the latent heat loss decreases because there is less water by mass to freeze.
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This chapter addresses both the energy balances and the variations in the cycle. The

first section models the display case load based on temperature and pressure measurements

in circuit 4. The second section analyzes the pressure variances in the rack A evaporator

and condenser sections, to show how this cycle varies from an ideal Carnot cycle (for

which pressures are constant for these sections). The final section shows the results of

numerous regression analyses attempting to link display case load and ambient conditions,

and display case load and compressor power and a summary of step five. Chapter nine

will address regression analyses linking compressor power to ambient conditions and the

energy consumption analysis.

8.1 Display Case Load

Display case load for circuit 4 was calculated using the gain in refrigerant enthalpy

across the evaporators and the measured mass flow. The pressure vs enthalpy path for the

circuit corresponds to points 3, 4 and 1 on the diagram of the Carnot cycle shown in

Figure 38. Point 3 on the figure corresponds to the location where the temperature and

pressure sensors were located after the liquid manifold. The refrigerant then enters the

expansion valve, where the pressure decreases at constant enthalpy to point 4. The

refrigerant enters the display cases and evaporates along the path from point 4 to point 1,

where it enters the suction manifold.

The flow of refrigerant in the circuit is controlled by a valve located at the opening

from the liquid manifold. When the circuit is shut off, the suction end of the circuit

continues to maintain a negative pressure, until all of the refrigerant has been drawn out of

the line. When refrigeration is needed in the circuit again, the valve is opened and the

negative pressure created by compressor suction draws refrigerant in from the liquid

manifold.
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The enthalpy of the refrigerant at point 3 before the expansion valve is a function

only of refrigerant temperature for a single state, condensed refrigerant. Properties of

saturated R-502 can be found in Appendix A-I for temperatures between 70 degrees and

125 degrees Fahrenheit. A regression of liquid saturation enthalpy as a function of

temperature using values taken from this table gives the following equation:

Enthalpy = 10.98322 + 0.22852(T) + 0.00038(T 2 ) [Btu/lbm] (8.1)

(R2 =1 .000)

Although the regression error is zero, the statistical error in this calculation based on sensor

error is 0.2%, as shown in Appendix D. Since this enthalpy doesn't change after the

expansion valve (point 4), it can be used in the calculation of display case load.

The enthalpy of the refrigerant at point 1 is a function of temperature and pressure.

The enthalpy quantities for superheated R-502 can be found in Appendix A-2 for

pressures between 10.34 psig and 20.26 psig. Figure 39 shows time lines of circuit 4

suction pressure from June 2 through September 18. What this figure shows is that for

the majority of the time, the pressure varies between 10 psi and 15 psi. The enthalpy

numbers from the tables show that enthalpy varies little over this range of pressures. If the

average enthalpy over the range of pressures between 10.34 psi and 15.98 psi is used (see

table 9) the margin of error will not be more than ±0.2%. Given this assumption, enthalpy

can be approximated as a function of temperature only, as shown in Figure 40. The

equation is given by:

Enthalpy = 78.668 + 0.158(T) [Btu/lbm] (8.2)

(R2 =0.999)

The statistical error for this equation is a function of raw temperature measurement and can

be expressed as 0.16/T (or 16/T %).

128



June psc4

al M W -26

July psc4

9 I

%'.2AI'~ %7~A~'~ %rn

H' I' Al~ p! Z7
S.,

August psc4

9

-j

rn~~~~~~~~~~~~~ 'b&,w9 "IA~1
&~A~~a~ -~I1M

1
M~ L .~

Figure 39. Circuit 4 Refrigerant Flow Suction Pressure.

129

. L

'Wil"



Pressure (sig) I Average |
Tern 10.341 ~15.9k 11.52 2 1274 13.36. 14.00| 14.65| 15.31) 15.98 13.09

0 78.824 78.793 78.762 78.73 78.698 78.664 78.631 78.596 78.561 78.525 78.68
10 80.385 80.356 80.327 80.297 80.266 80.235 80.203 80.17 80.137 80.103 80.25
20 81.959 81.932 81. 81.876 81.847 81.817 81.787 81.756 81.725 81.693 81.83
30 83.547 83.521 83.495 83.468 83.441 83.413 83.384 83.355 83.325 82.295 83.32
40[ 85.149 85.124 85.099 . 85.074 85.048 85.021L 84.994 84.967 84.938

I

Table 9. Enthalpy of R-502 over Circuit 4 Temperature and Pressure Ranges



R 502 Enthalpy vs Temperature
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0 10 20

Temperature
deg F

30 40 60

Figure 40. R-502 Enthalpy vs. Temperature for 10.34 psi - 15.98 psi.
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Mass flow was monitored over 15 minute averages for the length of the monitoring

period. The results of the monitoring show a wide range of values for 15 minute averages

between zero and the maximum values. By combining the data into hourly averages the

resolution is greatly improved, as can be seen in Figures 41 and 42.

Display case load was calculated by multiplying mass flow by enthalpy difference.

The statistical error, as determined in Appendix D, is a function of suction line temperature

and can be expressed as 0.4% + (0.16/Tsuct). As was explained earlier, the dominating

factor in changes in display case load outside of the defrost cycle is variations in case air

humidity. The case air humidity is a function of inside air humidity, which is a function of

supply air humidity and outside air humidity, as well as introduction of humidity (customer

perspiration, respiration). It is not certain to what extent outside air humidity affects inside

air (an entire report could be written on supermarket infiltration), but the difference between -

return air humidity and supply air humidity should give a good indication of the effect.

The difference between supply air and return air specific humidity should be based

on many factors. Moisture is introduced into the circulating air by people breathing and

perspiring, which is a function of store occupancy. The constant opening and closing of

doors allows humid outside air in if the building is not properly pressurized. Moisture is

condensed on refrigeration coils and then evaporated off during defrost cycles. Water

from sinks and hoses may work its way into the air system. Despite these factors, a

comparison of supply air and return air and display case load may give some indication of

whether or not the differences are related to the rate of frost buildup, and subsequently

display case load. The calculated load was compared to supply air specific humidity and

return air specific humidity using scatter plots for the months of June through September.

These graphs are shown in Figure 43 as a comparison of display case load for on-peak

hours (between 8:00 am and 8:00 pm, when load should be affected the most) against
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specific humidity difference between supply air and return air. What these graphs show is

that there seems to be very little correlation between display case load and humidity levels.

What this means is either that changes in humidity are too subtle to affect this set of

display cases, other factors affecting display case load (inventory, store occupancy,

evaporator efficiency, defrost control) outweigh humidity differences, or monitoring errors

of all the points involved cloud the actual relationship.

Theoretically there should be a noticeable relationship between display case load and

ambient conditions. Further analysis shows that the daily range of circuit 4 liquid

refrigerant temperatures (measured before the display cases) follows a similar pattern as

the range of daily outside temperatures. The top left graph in Figure 44 shows the daily

range of refrigerant temperatures and the top right graph shows outside temperatures. The

bottom graphs show temperature time lines over the course of the day for every day in

July. Both graphs follow a sinusoid curve, with the refrigerant graph lagging the outside

air graph by about six hours. However, attempted regressions comparing liquid enthalpy

(a function only of refrigerant temperature) to outside temperature and a sine curve of time

(R2 =0.273) and outside temperature with a time shift of six hours (R2 =0.251) produced

unfavorable results. The reasons for lack of correlation are the same as the ones explained

above for the comparison with specific humidity.
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8.2 Refrigeration Line Pressures

For an ideal vapor compression circuit, pressure remains constant through the

condensing and compression stages. In actual applications, though, there are piping

entrance and exit pressure drops as well as friction line losses. This section analyzes these

losses as they occur in the monitored refrigeration cycle. With these losses quantified, it

will be possible to model the refrigeration system as a Carnot cycle with these differences

added.

Figure 45 is a scatter plot of the relationship between circuit 4 liquid pressure, located

after the liquid manifold before the expansion valve, and rack A discharge pressure, located

after the compressor. This shows that discharge pressure remains relatively constant over

the range of circuit 4 liquid pressures above 50 psi and below 170 psi. When the liquid

pressure rises above 170 psi, the discharge pressure increases in a linear correlation. A

regression of this line for liquid pressure values over 170 psi gives the following equation:

Pliqc4 = -5.304 + 0.990(Pdis)

Standard error = 0.9415 + 0.004(Pdis)

Pliqc4 : pressure of refrigerant off liquid manifold [psi]

Pdis : pressure of refrigerant after compressor [psi]

The standard error for the range of 170 psi to 210 psi (the maximum and minimum

of this regression) is ±1.78 psi (about 1%). Equipment error (0.4%) is ±0.84 psi. What

the regression tells us is that the combined pressure losses across the condensing section

and through the liquid manifold valves come to 5.3 psi ±2.6 psi.
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The same analysis can be applied to the circuit 4 suction pressure and the suction

manifold pressure. These graphs are shown in Figure 46. The groups of points above 50

psi are monitored points during the defrost cycles, and are not included in this analysis. A

regression of the remaining points would tell us what the suction manifold entrance valve

pressure loss is. An analysis for the range between 10 psi to 20 psi (which excludes the

higher circuit 4 defrost cycle pressures) gives the following equation:

Psuctc4 = -0.548 + 0.981(PsuctA)

Standard error = 0.0137 + 0.001(PsuctA)

Psuctc4 : suction pressure of refrigerant in circuit 4 [psi]

PsuctA : pressure of refrigerant at rack A suction manifold [psi]

The standard error for the range of 10 psi to 20 psi is ±.03 psi (about 0.1%). Equipment

error (0.4%) is i0.08 psi. Therefore, the entrance loss is 0.5 psi ±0.1 psi.

8.3 Refrigeration Compressor Power vs Displav Case Load

At this point in the refrigeration model, the point 3 pressure (monitored) and enthalpy

(section 8.1), the point 4 enthalpy (same as point 3), the point 1 pressure (monitored) and

enthalpy (section 8.1), and the point 2 pressure (monitored) are known. The enthalpy

difference between points 4 and 1 (through the evaporator) is known for circuit 4, and on

the pressure-enthalpy chart the difference between this line and the line for all of circuit A

is a vertical drop characterized by the pressure drop calculated in the previous section (as

shown in Figure 47). If compressor power can be predicted using display case load, the

point 2 enthalpy can be modelled and the cycle will be complete.
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Figure 47. Pressure-Enthalpy Chart Showing Carnot Cycle with Suction Manifold
Pressure Drop

Compressor power for rack A was compared to display case load for circuit 4 both

before and after installation. Since all display case circuits start at the same liquid manifold

and empty into the same suction manifold, it is unrealistic that changes in any one circuit

would significantly affect compressor load, and therefore compressor power. It is

expected, though, that factors affecting the cooling load in a given circuit would similarly

affect load in the other same-temperature circuits served by that rack. Relationship of

amount and type of product being cooled can be expected to be different, but ambient

humidity and temperature, which should be a stronger factor in load, should be similar.

Due to the rack configuration, compressor power is not expected to fall in any

particular pattern, or relate very accurately to the other variables. There are two different

types of compressors in the rack, four 10-horsepower models and one 6-horsepower

model. The control of these compressors is linked to suction pressure. Different
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compressors are cycled on and off based on fluctuations in suction pressure, as

compressors are turned on when suction pressure increases.

Figure 48 shows scatter plots of rack A compressor power vs circuit 4 load both

before and after installation. There is clearly no definite relationship between these two

variables. One can only conclude that, for the majority of the time before installation,

display case load fell between 10,000 Btu/hr and 20,000 Btu,hr, a range for which

compressor power mostly fell anywhere between 25 kW and 33 kW. After installation,

there seems to be a greater grouping of points in this same range, but there also seems to

be an extension of points past 20,000 Btu/hr for which compressor power stays around 33

kW.

8.4 Summary

It is clear that this method of refrigeration modelling will not work for this

configuration, partly due to my naivete of refrigeration systems when deriving the original

strategy, but also due to insufficient monitoring points. It was originally planned that

modelling the refrigeration cycle would allow us to create a spreadsheet similar to the one

created for the air system, where temperature and pressure points could be input as

columns, enthalpy difference across the evaporator (display cases) would be input (similar

to the way temperature difference across the cooling coils was used in the airflow model),

and the output would be compressor load, which could be translated into power

consumption. Unfortunately, the lack of ability to relate compressor power to display case

load statistically would cause any model to be incomplete. For a rack configuration, it is

necessary to monitor power for each compressor individually, and to use manufacturers

equations for each compressor in conjunction with suction and discharge temperature and
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pressure to model the compression stage. Ideally, all circuits in the rack would need to be

monitored and modelled to calculate the total effect of the evaporation section.

Nevertheless, the air model showed that the changes in supply specific humidity

were small (and statistically inconclusive), so it is expected that by the time these changes

reached the display case refrigeration coils, they would be insignificant. Any savings, as is

discussed in section 9.4, would result from changes in the energy management system

reducing equipment power due to expected dew point reduction.
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Chapter 9 Energy Analysis

This chapter summarizes the final step in the thesis, the energy analysis. The

previous step showed that humidity reduction and display case load cannot be predicted

from monitored data and regression and engineering equations; this step will attempt to

recognize energy savings based on actual monitored power before and after installation.

The first section of this chapter analyzes refrigeration compressor power, and attempts to

normalize changes in consumption based on ambient conditions. Although defrost cycles

are timer activated, meaning that energy consumption for this function would not change as

long as the timer didn't change, an increase in heat transfer efficiency at the display case

due to dehumidification (explained in chapter 8), would cause compressors to cycle on less

often. Also, there would be less latent load of freezing condensate absorbed by the

refrigerant if moisture were accumulating less rapidly. The second section addresses the

issue of increased air flow resistance due to the presence of the heat pipe and how it affects

air conditioning unit performance. The third section looks at unrealized savings, which

would require changes to the existing system.

9.1 Refrigeration Compressor Power

The power measurements taken over the course of the monitoring period were the

combined power consumption of all of the compressors in a rack. In a multiplex

refrigeration system, the capacity of a compressor rack is designed for maximum

refrigeration load. When less refrigeration is needed, individual compressors cycle on and

off to provide adequate load. Factors which affect the load for a specific case type include

ambient temperature, inventory, type of product being refrigerated, and time of day. This
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fact turned out to be a major problem in the monitoring scheme. As will be shown later,

total rack energy consumption varied considerably from one fifteen minute span to the

next, and the variations could not be linked to any ambient trends. As was shown in the

previous chapter, compressor power could not be linked to trends in display case load

either. An analysis of trends in daily consumption (in kWh) may give a better look at what

affects consumption.

Daily energy consumption of rack A, rack B, rack C, and condenser fan energy

consumption for rack A is shown in figures 49 through 52. Compressor power for rack

B, the medium temperature rack, does not vary much from day to day, and from the

beginning of the summer to the end of the summer. The low and high temperature racks, A

and C, have significant daily changes in energy consumption, which seem to peak in July

and August and drop considerably towards the end of September.

Realized energy savings without changing building operating conditions are expected

to be small. The majority of potential savings are unrealized, as explained further in section

9.3. There will be a slight increase in efficiency in the display cases, as frost buildup

accumulates at a slower rate due to ambient dehumidification, but since the majority of the

defrost cycles are timer activated (including the one on the monitored circuit), there will be

no defrost cycle savings without a change in setpoints. An examination of compressor
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power before and after installation, which would give an indication of any efficiency

increases, is attempted below.

9.1.1 Daily Consumption

A regression analysis was performed comparing daily energy consumption of each

compressor rack in kiloWatt-hours to average outside temperature (Figure 53). What was

discovered is that the compressor power of each rack increased as outside temperature

increased, and that after the heat pipe was installed, compressor power was lower for a

given outside temperature. The regression equations are only accurate for rack C, and are

not so obvious for racks A and B. The resulting equations for compressor power in

kWh/day are as follows:

Pre-installation

CMPA power=3.871*(AVE TOUT) + 421.563

(R2 =0.696)

Standard error = 14.4 kWh/day

CMPB power=1.154*(AVE TOUT) + 112.180

(R2 =0.345)

Standard error = 8.8 kWh/day

CMPC power=8.334*(AVE TOUT) + 120.376

(R2 =0.776)

Standard error = 25.2 kWh/day
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Post-installation

CMPA power=2.175*(AVE TOUT) + 523.394

(R2 =0.479)

Standard error = 19.6 kWh/day

CMPB power=1.033*(AVE TOUT) + 119.527

(R2 =0.689)

Standard error = 6.0 kWhlday

CMPC power=7.113*(AVE TOUT) + 197.731

(R2 =0.856)

Standard error = 25.4 kWh/day

Figures 54, 55, and 56 show the relationship between daily energy consumption and

predicted consumption based on outside temperature for each of the racks. The top graph

in each figure shows actual and predicted consumption for the period from the beginning

of monitoring to the installation of the heat pipe. Missing sections in the actual

consumption line are due to sensor failure or maintenance, or bad data. The lower graph

shows actual and predicted consumption from the installation of the heat pipe to the end of

September; but it also shows what energy consumption would have been if it had followed

the predicted path from before the installation. This path, shown by the short dashed line,

assumes what energy consumption would have been if the heat pipe had never been

installed. This also assumes that none of the other potential factors affecting consumption

changed from pre-installation to post-installation. The section where pre-installation

predicted consumption is lower than post-installation predicted consumption reflects errors

in the predictions. For rack A, this line is noticeably higher than predicted consumption

using the post-installation equation up until the end of September, when the cooling season
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Figure 56. Rack C Actual and Predicted Energy Consumption.
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was winding down. For racks B and C, the difference is not as great but the line using the

pre-installation equation is higher than the one using the post-installation equation. This

analysis shows that although compressor energy consumption did not decrease much after

the installation of the heat pipe, consumption for a given outside temperature did decrease.

Table 8 below shows actual and predicted compressor total energy consumption for

the period before the installation, and actual, predicted, and without heat pipe predicted

energy consumption for the period after the installation until the end of September. Using

the regression equations, the total predicted kiloWatt-hour consumption after installation of

the heat pipe can be compared to what it would have been if the heat pipe wasn't installed.

Equipment errors are 0.25% for the power meter and ±1 degree for the temperature sensor.

Combined equipment and regression errors result in the following accuracies:

CMPA Pre = ±20.0 kWh/day

CMPB Pre = i10.4 kWh/day

CMPC Pre = ±35.3 kWh/day

CMPA Post = ±23.5 kWh/day

CMPB Post = 7.5 kWh/day

CMPC Post = i34.1 kWh/day

As shown on table 10, an estimated 426 kWh (8.5 kWh/day) was saved from rack A, 27

kWh (0.5 kWh/day) from rack B, and 130 kWh (2.6 kWh/day) from rack C due to the

installation of the heat pipe . Obviously, these estimates are well within calculation errors,

rendering them inconclusive.
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Table 10. Actual and predicted pre- and post- installation compressor energy
consumption.

June 4 to August 2 kWh

actual rack A consumption 38,196

actual rack B consumption 10,632

actual rack C consumption 38,150

August 11 to September 30

actual rack A consumption 29,323

predicted rack A consumption 29,321

predicted rack A consumption without heat pipe 29,747

actual rack B consumption 8,249

predicted rack B consumption 8,248

predicted rack B consumption without heat pipe 8,274

actual rack C consumption 29,277

predicted rack C consumption 29,277

predicted rack C consumption without heat pipe 29,406

9.1.2 Monitored Compressor Power vs Ambient Conditions

Another factor which is expected to affect compressor power other than outside

temperature is inside air dew point. Dew point is more important than dry bulb temperature

and specific humidity because it describes the actual temperature that moisture begins to

condense on the refrigeration coils. Dew point temperature was calculated using return air

temperatures and relative humidities as described above in section 7.2.1. Although return
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air is not an exact representation of inside air conditions (section 7.3), changes in dew point

should follow the same trends. Figure 57 shows a time line of inside dew point

temperature and outside dry bulb temperature for the pre-installation and post-installation

periods. Outside temperature is included because dew point varies considerably over time,

and to notice any reduction it is necessary to have a controlled variable to compare it to.

Excluding the last block of post-installation data, when sensor performance was

inconsistent, there is a wider gap between outside temperature and inside dew point. A

regression of these two variables was inconclusive, but the difference is visible. Further

analysis would be necessary to determine the actual reduction in dew point for given

conditions. A regression analysis of rack A compressor power (CMPA) vs inside dew

point and outside temperature results in the following equations:

Pre-Installation

CMPA = 15.41 + 0.08051(dewpt) + 0.1382(Tout)

Standard error = 0.6016 + 0.0133(dewpt) + 0.0059(Tout)

Post-Installation

CMPA = 18.85 - 0.01321(dewpt) + 0.140(Tout)

Standard error = 0.7254 + 0.0094(dewpt) + 0.0088(Tout))
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Statistical error in this calculation, shown in Appendix D, is ±0.25 kW pre-installation and

±0.16 kW post-installation. The standard error in the equations results in an accuracy of

±1.8 kW pre-installation and ±1.6 kW post-installation. Figure 58 shows a time line of

actual and predicted rack A compressor power demand for the four day period starting July

16. Figure 59 shows the same graph for the four day period beginning August 11 (the

first day of monitoring after the installation). As expected, there are sharp fluctuations in

actual compressor power for fifteen minute averages, which means that the compressors are

probably cycling too much. The line of predicted points seems like a good estimate of the

mean consumption for the period, but the calculation errors (38 kWh/day) outweigh the

accuracy and savings estimates.

Regression equations attempting to predict compressor power as a function of

evaporator load and condenser power (R2 =0.517) were inconclusive. Compressor power

as a function of outside temperature, relative humidity, and supply air specific humidity

(R2 =0.135), results in too significant an error (about 3.4 kW). Therefore, it would be

fruitless to attempt to model the refrigeration cycle based on data acquired for this

installation. Further measurements are necessary, in which individual compressor power

consumption, and display case air temperature and humidity and/or frost accumulation

could be additional variables in an analysis.

9.2 Air Conditioning Fan Penalties

To determine the effect of the heat pipe on air flow, it was necessary to perform the

same air flow analysis as was done before the installation (see section 5.1). Using the

same vane anemometer as in the first test, we measured the air flow at the reheat coil and
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by-pass damper on September 10. As a result of the test, we estimate the airflow to be

32,400 cfm (approximately a 2.4 percent decrease) as calculated in Table 11 below.

Table 11. Air Flow Measurements - September 10.

Feet measured

Seconds

Ft/Sec

Ft/min

CFM

Average of readings over upper half

Average of readings over lower coil

Total Airflow

8,645 cfm

23,741 cfm

32,400 cfm

This is a small difference from the pre-installation measurement (800 cfm = 2.4% of

33,200 cfm). The measurement error for the vane anemometer is estimated for this airflow

as 9,980 cfm (see Appendix D). Ideally a more accurate method would be used to measure

airflow before and after installation. The reason this device was used is that it was

originally expected that the heat pipe installers would measure airflow immediately before

and after installation. Unfortunately, they were unprepared to perform this measurement,
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Test 1 Test 2 Test 1 Test 2 Test 3

187 147 330 340 290

23.7 21.1 18.8 19.5 17.1

7.9 7.0 17.6 17.4 17.0
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and an alternate last-minute method became necessary. At that time a representative of

HEC Corp. was hired to make the measurement with a vane anemometer, the most accurate

device available within the time frame, and the original measurements were made. The fact

that the pre-installation measurement was so close to the post-installation measurement

means that reduction in airflow is statistically inconclusive.

However, on October 24 , we performed an air balancing test at the request of the

supermarket's managers to determine whether or not the store was running at positive air

pressure or not. Normally, the amount of outside air intake at the air conditioning unit is

sized to maintain a positive pressure in the building, to reduce the amount of infiltration. If

the air in the building is at a higher pressure than outside air, the opening of doors and

windows will lead to exfiltration, and not infiltration of humid outside air. For this test we

looked for infiltration through the front doors when the store was closed, the supply fan

was operating, and all entrances and exits to the store were closed. With the outside air

dampers fully opened, we observed that there was still a negative air pressure inside the

building, as air was leaking in through the crack between the front doors. This meant that

more than the volume of air drawn in through the outside dampers was leaking through

another location. After checking all exhaust fans, exits, and windows, we could not come

up with a noticeable leak. The only possibility was that air was being drawn in by

adjoining stores (a pharmacy and a liquor store abutted the supermarket on either side), but

this has not been proven. It was determined, though, that this was a problem before the

heat pipe was installed and therefore outside the scope of this project.

Although this resulted in no penalty for this installation, the potential penalty can be

calculated by the drop in airflow or air pressure in the duct, and fan curves for this fan.

The previous three studies, summarized in section 2.2, did not adjust the fan blower to

accommodate this added resistance. The Georgia power study made no mention of it,
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while the other two studies maintained the lower air flow rates, and concluded that there

was no compromise in building performance with the lower airflow.

9.3 Unrealized Energy Savings

The majority of energy savings associated with the installation of the heat pipe are

unrealized at this point. The main aspect of dehumidification is the potential for decreasing

the frequency of defrost cycles due to a decrease in average inside dew point. In order to

determine the extent to which defrost cycles could be changed, it would be necessary to

perform a mass flow balance, to determine the rate at which frost forms on the coils for a

given display case air temperature and humidity level. It would also be necessary to

analyze the infiltration of ambient air into the display case to determine the effect of

dehumidification of inside air. When these are accomplished, it can be estimated how

much frost forms on the coils for the existing defrost cycle period, and how long it would

take to accumulate the same amount of frost for dehumidified levels. Then the defrost

cycle could be adjusted accordingly. As this is an extremely difficult process, it is

recommended that the defrost cycles be changed to demand control through the EMS, by

which the heat transfer efficiency at the coils is monitored, and when it drops to a certain

point, the defrost cycle comes on. This will result in significant savings, which would

require further research to predict.

Another source of energy savings occurs in the anti-sweat heaters, which use hot air

to heat display case doors above the dew point when condensation starts to form. These

were not monitored due to the fact that it was expected that the heaters were monitored by

the store's engineers and this information would be supplied to us, which did not occur.

With a reduction in inside dew point, the anti-sweat heaters would need to work less often,

as the temperature at which 'sweat' would begin to form is lower. For the Duke Power
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study, anti-sweat heaters were completely disabled and approximately 350 kWh/day was

saved without condensation problems (Abrams et al 1992).

9.4 Summary

It can be determined from these results that any savings which may have occurred

due to an increase of efficiency at the display case were too small to quantify. Future

savings will be based on changes in how the refrigeration system operates, to make it more

efficient without compromising performance. With reductions in inside dew point caused

by dehumidification, it is recommended that the following changes be made to the

refrigeration system before the next cooling season:

Demand Defrost Control Defrost cycles can be controlled by monitoring refrigerant

temperature and pressure just before and after the display case. When the difference

between the enthalpy at these locations drops below a specified setpoint, it means that the

heat transfer from coil to air is insufficient and the defrost cycle should be activated. This

would assure that display cases would be defrosted only when necessary.

Deactivate Anti-sweat Heaters With a lower dew point in the building, the anti-sweat

heaters do not need to function as often as was originally designed. Anti-sweat heaters can

also be controlled by demand as with the defrost cycle recommendation, but judging by the

success of the deactivation in the Duke Power study (in a much more humid climate), it is

safe to assume that they can be completely deactivated.

Other energy saving features, such as multideck operation, are already in service or

would require further investigation to warrant a recommendation.
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Chapter 10 Conclusions

By analyzing the basic theory behind heat pipe dehumidification, which is the

alternate cooling and reheating of air due to evaporation and condensation of the refrigerant

contained within the heat pipe, it has been determined that if there is any dehumidification

performed by a cooling coil, there will be more dehumidification with a heat pipe installed.

For supermarket applications, it was determined that the heat pipe can reduce humidity

levels while keeping supply air dry bulb temperature the same, and reducing the amount of

heat reclaim necessary to bring the air to supply conditions after super-cooling (chapter 2).

With the inability of this study to accomplish the original goal of predicting energy savings

due to the installation of the heat pipe (relative to experimental uncertainties), the thesis

should not be used for its results, but rather for how it can assist further studies and justify

heat pipes qualitatively.

There are several ways that this study could have been improved, some I've learned

with experience, and some with further knowledge of refrigeration and air systems; these

will be discussed in the next section. For this application, it was shown that humidity

reduction and energy savings estimates are small, and a significant amount of energy

savings are unrealized at this point. Part of the conclusions of this report are

recommendations and results for the supermarket air system and refrigeration system;

these will be discussed in the following section. The other part of the conclusions is a

theoretical analysis that relates heat pipe heat transfer to inside dew point reduction and

uses the Duke Power study estimates to generate a normalized refrigerations system

energy savings for 1993 weather conditions.
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Conclusions of the Methods

Originally, the experiment was designed to use monitored data to track the airflows

and refrigerant flows in order to predict supply air conditions, display case load, and

subsequently compressor power consumption using only outside air temperature and

relative humidity as a variable. Points to be monitored were based on covering as many

stages in the air system and refrigeration system while keeping monitoring costs down.

Monitoring mass flow for example, usually an expensive process, was provided for one

location by the contractor at almost no cost due to the availability of a device from another

project. We felt then, and still feel now, that given one location the one we picked - in

circuit 4 after the liquid manifold - was the best. Ideally a mass flow meter would have

been installed after the compressor section also, to better predict compressor load, and

possibly in another circuit. For the air system, the final conclusion is the more temperature

readings the better, since the cross section of as. airflow is far from isothermal. Also, given

the dual-coil configuration of the cooling section, a more in-depth analysis of the difference

in airflows across the upper coil and lower coil might have reduced some of the calculation

errors.

Several factors forced us to change our method of analysis midway through the

project. One factor was the outside air intake. We were told at the beginning of

monitoring that the supply fan was on 24 hours a day, and a constant outside air intake was

maintained. Based on data examination (explained in chapter six), it was discovered that

the supply blower shut off at night, except for times when the night setpoints triggered the

air conditioning compressor when cooling was needed. Since the outside air sensors were

placed just inside the dampers to protect them from the elements, when the fan was not on

the sensors read return air conditions, because there was no airflow to draw in outside air.

The resulting sensor relocations and failures warranted an extra source for weather data,
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from a national service. Therefore, a new part of the analysis, in which weather station data

was integrated into monitored data (section 6.4.3) was added.

Another factor in changing the method was readings which did not make sense, as in

the calculations in which supply air specific humidity levels derived from monitored data

were higher than mixed air specific humidity levels (sections 7.1 and 7.2). As a result of

this discovery, it became necessary to create a model of mixed air conditions, post-cooling

coil conditions, and supply air conditions based on known psychrometric equations

combined with monitored data. This model, based on the one created in section 2.3,

concluded that supply air specific humidity levels did in fact decrease after installation of

the heat pipe for given mixed air temperature and humidity levels, but by a small enough

amount that savings were determined to be statistically inconclusive (section 7.4).

The refrigeration cycle was originally expected to be a small part of the analysis,

since variations in compressor power were expected to be a function of changes in ambient

conditions (as this was the method used by the previous studies to predict savings).

However, mainly due to the multideck configuration of the compressors (and partly due to

my lack of knowledge about refrigeration systems), any comparisons to ambient conditions

were inconclusive (sections 8.3 and 8.4). An attempt to model the refrigeration cycle based

on variations from the Carnot cycle which could be predicted were informative. The

unpredictability of the compressor rack power consumption, due to on/off cycles and

varying compressor types, led to the demise of the model (chapter 8).

The inside air conditions, in retrospect, deserved a more detailed analysis than was

provided in this study. The temperature recorded for the store's energy management

system (EMS) should have been hand checked several times against a hand held reader

over many different locations in the store. If this temperature reading were to be used in

the analysis, a relationship between this temperature, the average store temperature, and the
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temperature of the air inside the display cases should be used to relate supply humidity

levels to display case load. If the other studies concluded that reductions in airflow and

relative humidity went unnoticed (or without complaint) by store employees and customers,

this amount of reduction should be a separate energy saving measure in tandem with the

installation of the heat pipe.

With the above observances in mind, there are several recommendations for future

studies which will improve the results and savings estimates, which are listed below:

- Improved relative humidity data.

The accuracy of the sensor is vital to the accuracy of specific humidity, and a

2% error is too large for our purpose. As explained above, an accuracy of 0.2%

would have been satisfactory for our equations, but an accuracy of 1% at the most is

recommended. It is also recommended that relative humidity sensors be calibrated on

a regular basis against a high humidity salt solution and a low humidity salt solution.

- Increase number of monitoring locations

The minimum recommended locations should be:

Four temperature and relative humidity sensors per location - return air, mixed air,

supply air.

One temperature and relative humidity sensor - outside air.

Thirty two thermocouples around cooling coil - four each in a grid before and after

each heat pipe section.

Two power meters - compressors and fan blower.

One power meter per refrigeration compressor - all compressors.

Temperature and pressure sensors - at all four points in refrigeration cycle for at least

one circuit, and possibly all circuits in a rack.
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Air temperature - before and after display case coils (relative humidity, although it

would be helpful, is extremely difficult for sub-freezing temperatures).

Temperature and relative humidity - at least four indoor locations, supply area

(usually entrance), refrigerated food sales area, dry food sales area, return air area.

Power meters on anti-sweat heaters if possible.

Monitoring a minimum of these points with accurate instrumentation and

sufficient calibration will allow air system and refrigeration system models to be

accurate enough to predict humidity reduction and energy savings within error.

Conclusions of the Energy Savings

With the model, it was possible to predict daily total refrigeration compressor power

based on average daily temperature (section 9.1.1). By comparing equations using pre-

installation equations and post-installation equations, it was determined that daily savings

due to increased evaporation section efficiency were 9 kWh for rack A, 1 kWh for rack B,

and 3 kWh for rack C. Statistical errors for these predictions were 24 kWh/day for rack A,

8 kWh/day for rack B, and 34 kWh/day for rack C. Therefore, savings estimates cannot be

differentiated from possible sensor and regression errors. Regression errors account for

most of the statistical error (20 kWh/day for rack A, 6 kWh/day for rack B, and 25

kWh/day for rack C), so more accurate sensors would not have helped the study

significantly.

The spreadsheet model was able to predict supply air specific humidity using return

and outside air monitored temperature and relative humidity, temperature differences across

the cooling coil, temperature differences across the heat pipe, and psychrometric equations

(sections 7.2 and 7.4). The modelled difference for supply air specific humidity with and

without the heat pipe for given mixed air conditions is shown in Figure 37, and varies
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based on how much dehumidification is needed. The difference generally falls between 0

(for no dehumidification) and 0.007 lbw/lba. The statistical error for the analysis is 0.0007

lbw/lba, meaning that the reduction estimates are statistically inconclusive. It is expected,

though, that with more dehumidification (due to either more humid ambient conditions or a

heat pipe designed for a greater heat transfer), the savings estimates would be greater.

As was explained in section 9.3 with an estimated 350 kWh/day savings from ati-

sweat heaters, most of the energy savings are unrealized at this point. It is recommended

that, for the next cooling season, defrost cycles be controlled by demand setpoints, and

anti-sweat heaters be deactivated for display case doors. It is recommended that, along with

these measures, monitoring related to these functions be performed over the cooling

season. This would include monitoring inside dry bulb and dew point temperature, display

case air temperature, refrigeration line temperatures and pressures (similar to the points

monitored in this study) and individual compressor power.

Theoretical Savings Expectations

If we do a psychrometric chart analysis, using the energy drop across the pre-cooling

section of the heat pipe to predict drop in dew point, we can use the Duke Power study's

estimate of 1.7% savings per degree drop in dew point to determine the magnitude of what

range of savings we expect from our site.

Assuming the heat pipe removes 200,000 Btu/hr of energy from the air, this is also

the amount of extra latent and sensible energy removal being done by the cooling coil,

provided the latent/sensible cooling ratio without the heat pipe is above zero. If the cooling

coil provides the same amount of cooling as if the heat pipe weren't present, the heat pipe

simply shifts 200,000 Btu/hr of sensible load from the cooling coil to 200,000 Btu/hr of

latent and sensible load along the line of saturation. With a volumetric flow of 33,200 cfm,
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air with a dew point of 50 degrees would have a specific volume of 12.8 ft3/lb, and

therefore a mass flow of 155,625 lb/hr, and 200,000 Btu/hr would correspond to an

enthalpy drop of 1.4 Btu/lb, as shown below:

33,200 x (1/12.8) x 60 [cfm x lb/ft3 x min/hr] = 155,625 lb/hr

200,000 x (1/155,625) [Btu/hr x hr/lb] = 1.4 Btu/lb

Although the drop in dew point corresponding to this enthalpy drop varies on the

psychrometric chart along the line of saturation, an iteration using ASHRAE equations and

100% relative humidity, as shown in table 12, for temperatures starting with 50 degrees,

gives a temperature drop of 2.6 degrees (50 - 47.4). The table also shows that this drop

corresponds to a specific humidity drop of 0.0005 lbw/lba, which is within our statistical

error comparing calculated mixed air specific humidity and supply air specific humidity of

0.0007 lbw/lba, and therefore savings are expected to be statistically inconclusive. Using

Duke Power's savings estimates, the maximum drop in dew point would give 4.4% energy

savings for the refrigeration system. For a mean rack A compressor power of 28 kW, this

corresponds to 1.2 kW savings.

A quick analysis similar to the one used in the Duke Power study based on the

relationship between average daily inside dew point and average daily outside temperature

with and without the heat pipe will give us insight as to how much the heat pipe reduced

dew point. With this information, we can use the savings estimate of 1.7% per degree drop

in dew point and 1993 weather bin data to estimate savings for the 1993 cooling season.

Figure 60 in Appendix F shows a scatter plot of average daily inside dew point vs average

daily outside temperature both before and after heat pipe installation. The trend of post-

installation data (the solid circles) show that average dew points were lower than the pre-

installation data (hollow circles) for a given outside temperature. The lines on the graph are
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linear regressions for the two cases. For all points above 65 degrees outside temperature

(minimum cooling degree-day temperature), the post-installation line is lower than the pre-

installation line as described by the equation:

drop in dew point = -14.75 + 0.23(outside temp.)

As calculated previously, for this heat pipe design the maximum drop in dew point of

supply air is 2.6 degrees. For identical ambient conditions, the inside air dew point

difference would be no more than 2.6 degrees (the ratio of supply air dew point drop to

return air dew point drop can be no more than 1:1). Therefore the actual line representing

post-installation dew point drop would start at the pre-installation line, and continue along

the above equation until the difference between the lines was 2.6 degrees, then the post-

installation line would run parallel to the pre-installation line at a difference of 2.6 degrees.

Figure 61 shows weatherly bin data for 1993, showing how many hours of each

month the outside temperature was within a certain range. For the column marked (1), the

post installation regression of dew point and outside temperature was used to calculate dew

point for a bin average outside temperature. The column marked (2) gives the average dew

point drop due to the presence of the heat pipe based on the above equation, with a

maximum of 2.6 degrees. A regression of refrigeration compressor power vs outside

temperature with the heat pipe installed (from section 9.1.1) gives the quantities in the

column marked (3) as estimated compressor demand. The row at the bottom giving total

kWh savings was calculated based on a formula multiplying 1.7% times average dew point

drop for each temperature bin times total hours in each bin. The result is an estimated

kiloWatt-hour savings for each month. As is shown in Figure 61, annual savings for 1993

can be estimated as 6,700 kWh.
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Therefore, for this heat pipe design, savings are expected to be small (using the

estimates from the Duke Power study), and drops in specific humidity are expected to be

within our margin of error. As is shown in the error calculations for specific humidity in

Appendix D, the error based on manufacturers accuracies is dominated by the relative

humidity sensor error, so a more accurate sensor would lower the error to within the

expected savings range. The regression error, however, is 0.00045 lbw/lba, so in order for

the error to remain below 0.0005, the sensor specific humidity error must be below

0.000025 lbw/lba, corresponding to about 0.25% of average conditions. A relative

humidity sensor error of 0.2% will keep the specific humidity error below this level.

Summary

The importance of this thesis is that it is the most in depth study to date of

supermarket heat pipe applications. It has become evident that energy savings from other

studies could end up varying considerably from estimates, because the are so many

variables between the extra condensation on cooling coils due to the installation of the heat

pipe (which is proven given any dehumidification), and refrigeration compressor power

reduction. This process is one of many new, creative ways to expand the fields of energy

conservation in general, and demand side management in particular, to include non-

standard measures. As the buildings targeted for DSM become saturated with the most

energy efficient lighting, motors, and appliances, it is these custom measures which will

become the focus of DSM planning.
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TABLE I "FREON" 502 SUPERHEATED VAPOR-CONSTANT PRESSURE TABLES
AT SATURATION TEMPERATURE INTERVALS

' = w dimeu-, ru /I Ih li =/ ctha"PI., 11ia 1h N = 1100,07p1. lilt /(1 } F

SATURATION TEMPERATURE, *F
Sat. -20 19 -18 -17 Sat.

l Ipsiapig 
3., psit

TEMP. *F V H S V H S V H S V H S TEMP.'r
-20 13172 75,442 0.17178 - - - - - - - - - -20-10 .3543 16.996 0.17527 .3227 76958 017482 1.2919 76,919 0 11437 1.2619 16879 0.17391 -101.3911 18.561 0.17872 1.3587 78.525 0.17827 1.3273 78.488 0.17782 1.2966 78,451 0.17737 010 1.4274 80.137 0.18211 1.3944 80.103 0.18166 1.3623 80069 0.18122 1.3310 30.Q33 0.18077 1020 14634 81.725 0.18545 14297 81.693 0.18501 .3969 81.661 018457 1.3650 81 27 0.18413 20-30 14992 83.325 0.18876 1 .1648 83295 0 18832 1.4313 83,264 0 18788 1.3987 M3.233 018745 3040 1 5346 84.938 0.19202 1995 84.910 0.19158 L.4653 84.881 0.19115 1.4321 44.851 0 19072 40

50 1 5698 86.564 0.19524 15340 86.537 0.19481 14992 86.510 0.19438 1.4653 86,481 0 19395 5060 1 6048 88.203 0.19842 1.5683 88.178 0 19799 1.5328 88.151 0.19757 1.4982 88 124 0.19714 6010 16395 89.856 0.20157 16024 89.831 0,20115 1.5662 89.806 020072 1.5310 89.780 0.20030 7080 1.6741 91.521 0.20469 1.6363 91.498 0.20426 15994 91.474 0.20384 1.5635 91.450 020342 8090 17086 93.200 0.20777 16700 93.178 0.20735 1.6324 93.155 0.20693 1.5959 93.132 0.20651 90100 1.7428 94.892 0.21082 1.7036 94.871 0.21040 1.6653 94.849 0.20998 1.6281 94.827 0.20956 100110 1.770 96.598 0.21384 1.7370 96,578 0.21342 1.6981 96.557 0,21301 1.6602 96.536 0.21259 110120 18110 98.318 0,21683 1.7703 98298 0.21642 1.7307 98.278 0.21600 1.6922 98.258 0.21559 120130 1 8449 100.051 0.21980 1.8035 100.032 0.21938 1,7632 100.013 0.21897 1.7240 99.994 0.21855 130140 1.8786 101,797 0.22274 1.8366 101.779 0.22232 1.7956 101.761 0.22191 1.1558 101 743 0.22150 140150 1.9123 103.557 0.22565 1.8696 103.540 0.22523 1.8219 103.522 0.22482 .7874 103.505 0.22441 150160 1.9459 105.330 0.22853 1.9025 105.314 0.22812 1.8601 105.297 0.22771 1.8190 105.280 0.22730 160170 1.9794 107.117 0.23139 1.9353 107 101 0.23098 1.8923 107.085 0.23057 1.8504 107.069 0.23016 170180 2.0129 108 917 0.23423 1.9680 108.902 0.23382 1.9243 108.886 0.23341 1.8818 108.870 0.23300 280190 20462 110.730 0.23704 2.0006 110.715 0.23663 1.9563 110.100 0.23622 1.9131 110.685 0.23582 190200 2.0795 112.556 0.23983 2.0332 112.542 023942 1.9882 112.527 0.23901 1.9444 112.513 0.23861 200210 2 1127 114.395 0.24260 2.0658 114.382 024219 2.0201 114.368 0.24178 1.9756 114.353 0.24138 210220 2.1459 116.247 0.24534 2.0982 116.234 024493 2.0518 116.220 0.24453 2.0067 116.207 0.24412 220230 2.1790 118.112 0.24806 2.1307 118.099 0.24766 2.0836 118.086 0.24725 2.0378 118.073 0.24685 230240 2.2121 119.989 0.25077 2.1630 119,977 0.25036 2.1153 119.964 0.24996 2.0688 119.951 0.24955 240
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Sat. -16 -15 -14 ~13 Sat.
psia 32.16 33.41 3411 3445 pula
psi& a.0 is i 75.52 20.16 pSIg

TEMPf v H S V S V H S V H TEMP.*F
-10 1.2327 76.839 0.17346 .2042 76.797 0.17301 1.1766 76.755 0.17256 1.1496 76.712 0.17210 -10
0 1.2668 78.413 0.17692 1.2377 78.374 0.17647 1.2095 78.334 0.17603 1.1819 78.294 0.17558 010 1.3005 79.998 0.18033 1.2708 79.961 0.17989 1.2420 79.924 0.17945 1.2138 79886 0.17901 1020 1.3339 81.594 0.18369 1.3036 82.559 0.18326 1.2741 81.524 0.18282 V.2454 81.488 0.18239 2030 1.3669 83.201 0.18701 1.3360 83.169 0.18658 1.3060 83.135 0.18615 12767 83101 0.18571 3040 1.3997 84.821 0.19029 1.3682 84,790 0.18986 1.3375 84.758 0.18943 1.3076 84426 0.18900 40

50 1.4323 86.453 0.19357 1.4001 86.423 019309 1.3688 86.394 0.19267 23383 86.363 0.19224 5060 1.4646 88.097 0.19671 14318 88.069 0.19629 23999 88.041 0.19587 1.3688 88.012 0.19545 6070 1.A967 89.755 0.19987 1.4633 89.728 0.19945 14308 89.701 0.19903 1.3991 89.674 0.19861 /080 1.5286 91.425 0.20300 1.4946 91.400 0.20258 1.4614 91.374 0.20216 1.4292 91.348 0.20174 9090 1.5603 93.108 0.20609 1.5257 93.084 0.20567 L4920 93060 0.20526 2.4591 93.035 0.20484 80
100 1.5919 94.805 0.20915 1.5566 94782 0.208)3 1.5223 94.759 0.20832 1.4889 94.735 0.20791 100110 16234 96.515 0.21718 1.5875 96.493 0.21116 1.5525 96.470 0.21135 1.5185 96.448 0.21094 110120 16547 98.238 0.21517 16182 98.217 0.21476 15826 98.195 0.21435 1.5480 98.174 0.21394 120130 1.6859 99.974 0.21814 1.6481 99954 0.21773 1.6126 99.934 0.21732 1.5774 99.913 0.21692 130140 17170 101.724 0.22109 1.6792 101.704 0.22068 1.6424 101.685 0.22027 1.6066 101.665 0.21986 140
150 .1,90 103.486 0.22400 1.7096 103.468 0.22359 16122 103.449 0.22319 1.6358 13.430 0,22278 150160 1 789 105.263 0.22689 17399 105 245 0.22648 1 .019 105.227 0.22608 1.6649 105.208 0.22568 16010 1 p097 107.052 0.22975 1700 101.035 0.22935 L0314 10/017 0.22895 16938 10/.000 0.2Z854 17080 04 108.854 0.23259 L18002 108.838 0.23219 1.7609 108.821 0.23179 1.7227 108.804 4.23239 280190 1.6711 110.669 0.23541 1.8302 110.654 0.23501 1.904 210637 0.13461 1.7516 110.621 0.23421 190

0 19017 l 2.498 0.23820 .8602 112.482 0.23780 18197 112.467 0.23740 1.7803 112.451 0.23700 20010 ;323 114.339 0.24097 18901 114.324 024057 .8490 114 309 0.24017 1.8090 !;4294 0.23977 2102?0 1 5627 116.193 0.24372 9L99 116.178 U.24332 1873 116.164 0.24292 1.8377 116.149 0.24252 2202M0 9932 128.059 0.24645 14.197 118045 024605 1,9074 118.031 0.24565 18663 118.017 0.74525 230240 C0235 119.938 0.2.1915 19795 119925 0.24875 1.966 119.911 0.24836 2.8948 119.898 0.24796 240
50 0539 121.830 0.25184 2.0092 121.817 025144 1.9657 121.804 0.25104 1.9233 121.90 0-25065 250260 2842 123.734 0.25450 20388 123.721 0.25410 1.9947 23.708 0.25371 1.9517 123.695 0.25331 260270 2.1144 125.650 0.25714 2.0685 125.637 0.25675 2.0237 125.625 0.25635 1.9802 125.613 0.25596 270280 2.1446 127.578 0.25977 2.0980 127.566 0.25937 2.0527 1 127.554 0.25898 2.0085 127.542 0.25858 280290 2.1748 129.518 0.26237 2.1276 129.506 0.26198 2.0816 129.495 0.26158 2.0369 129.483 0.26119 290

300 2.2049 131.469 0.26496 2.1571 132458 0.26456 2.1105 131.447 0.26417 2.0652 31.436 0.26378 300

Table A-2. Freon 502 Superheated Vapor-- Constant Pressure Tables at Saturation
Temperature Intervals.
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TABLE I "FREON" 502 SUPERHEATED VAPOR-CONSTANT PRESSURE TABLES
AT SATURATION TEMPERATURE INTERVALS

voilum.ru ci l. II -rt-ouir. Ho, o/ v e -,wnp%, nui 't" rI
SATURATION TEMPERATURE, IF

Sat. -28 -27 -26 -25 Sat.
psia 16 71 -- 4' psia

Ps~g 3 psig
TEMP.F V H S V H S V S V H S TEMP. *f

-20 1.5979 75.739 0,17549 1.5593 75.705 0.17502 1.5218 75,670 0 17456 1.4853 75.634 0,17409 -0-10 1.6413 77.275 0.17894 1.6018 77.243 0.17848 1.5635 77.210 0.17802 1.5262 71176 0.17756 -100 1.6843 78.824 0.18235 1.6440 78.793 0.18189 1.6048 18.762 0.18143 1.5667 78.730 0.18098 010 1.7269 80.385 0 18571 1.6857 80.356 0.18525 IL6457 80.327 0 18480 1.6068 80297 0.18435 '020 1.7692 81.959 0.18903 1.7272 81 932 0.18857 1.6863 81.904 0 18813 1,6465 A1.876 0.18768 2030 1.8112 83.547 0.19230 1.7683 83.521 0.19185 17266 43495 0 19141 1.6860 83.468 0.19096 3040 1.8530 85.149 0.19554 1.8092 85.124 0.19509 1.7666 85.099 0.19465 1.7252 85.074 0.19421 40
50 1,8945 86.764 0.19874 1.8498 86.141 0.19830 1.8064 86.717 0.19786 1.7642 86.693 0.19742 5060 1.9358 88.393 0.20191 1,8903 88.371 0.20146 1.8460 88.348 0.20103 1.8030 88.325 0.20059 6010 1.9769 90.036 0.20504 1.9305 90.015 0.20460 1.8854 89.994 0.20416 1.8415 89.972 0.20373 7080 2.0178 91.693 0.20814 1.9705 91,673 0,20770 1.9246 91.653 0.20726 1.8799 91.632 0.20683 8090 2.0586 93.364 0.21120 2.0104 93.345 0.21077 1.9636 93.325 0.21034 1.9181 93.306 0.20990 90100 2.0992 95.049 0.21424 2.0502 95.031 0.21381 2.0025 95.012 0.21338 19562 94.993 0.21295 100110 2.1396 96.748 0.21725 2.0898 96.731 0.21682 2.0413 96.713 0,21639 L.9941 96.695 0.21596 110120 2.1800 98.462 0.22023 2.1292 98.445 0.21980 2.0799 98.428 0.21937 2.0319 98,410 0.21895 120130 2.2202 100.189 0.22319 2.1686 100.172 0.22276 2.1184 100.156 0.22233 2.0696 100.139 0.22190 130140 2.2604 101.929 0.22611 2.2079 101.914 0.22569 2.1568 101,898 0.22526 2.1072 101.882 0,22483 140150 2.3004 103,684 0.22902 2.2470 103.669 0.22859 2.1951 103.654 0.22816 2,1447 103.639 0.22174 150160 2.3403 105.453 0.23189 2.2861 105,438 0.23147 2.2334 105.424 0.23104 2.1821 105.409 0.23062 160170 2.3802 107.235 0.23475 2.3251 107.221 0.23432 2,2715 107.207 0.23390 2.2194 107.192 0.23347 170180 2.4200 109.030 0.23757 2.3640 109.017 0.23715 2.3095 109.003 0.23673 2.2566 108.990 0.23631 180190 2.4597 110.839 0.24038 2.4028 110.826 0.23996 2.3475 110.813 0.23953 2.2938 110.800 0.23911 190200 2.4993 112.661 0,24316 2,4416 112.649 0.24274 2.3855 112.636 0.24232 2,3309 112.624 0.24190 200210 2.5389 114.497 0.24593 2.4803 114,485 0.24550 2.4733 114.473 0.24508 2.3679 114.460 0.24466 210220 2.5785 116.345 0.24867 2.5190 116.334 0,24824 2.4611 116.322 0.24782 2.4049 116.310 0.24741 220230 2.6179 118.207 0,25138 2.5576 118.196 0.250% 2.4989 118.184 0,25054 2.4418 118.173 0.25013 230240 2.6574 120.081 0.25408 2.5961 120.070 0.25366 2.5366 120.059 0.25324 2.4787 120.048 0.25283 240250 2.697 121.968 0.25676 2.6346 121.958 0.25634 2.5742 121.947 0,25592 2.5155 121,936 0.25550 250260 2.7361 123.868 0.25942 2.6731 123,858 0.25900 2.6119 123.847 0.25858 2.5523 123.837 0.25816 260270 2.2754* 125.780 0.26206 2.7115 125.770 0.26164 2.6494 125.760 0.26122 2.5890 125.750 0.26080 270280 2.8146 127.704 0.26468 2.7499 127.694 0.26426 2.6870 127.685 0.26384 2.6258 127.675 0.26342 280290 2,8539 129.640 0.26728 2,7883 129.631 026686 2.7245 129.621 026644 2.6624 129.612 0.26603 290

Sat -24 -23 -22 -21 Sat.
psa 2743 28.06 Z3876 n." pslpsig 774 31A 440 7.65 psis

TEMP. * V H SVH8 . H S V V H S TEMP. -F
-10

10
20
30
40
50
60
10
80
90
100
110
120
130
140
ISO
160
1 70
180
190
700
210
220
230
240
250
260
270
280
290

1,4498
1. 4899
1,5296
1.5689
1.6079
1.6466
1.6850
1.7231
1.7611
1.7989
1.8364
1.8739

1.9483
1.9853
2.0221
2.0589
2.0956
2.1322
2.1687
2.2051
2.2415
2.2778
2.3140
2.3502
?.3863
2.4224
2.4584
2. 4944
2.5303
2.5662
2.6021

75,597
11.141
78.698
80.266
81.847
83.441
85,048
86.668
88.302
89.949
91 610
93.285
94,974
96676
98.392

100 122
101866
103.623
105,394
107.178
108976
110.787
112611
114.448
116,298
118.161
120.037
12 1.925
123 826
125 739
127665
129.602

0.17363
0.17710
0.18052
0.18390
0.18723
0.19052
0.19377
0.19698
0.20015
0.20329
0.20640
0.20947
0.21252
0.21553
0.21852
0.22148
0.22441
0.22732
0.23020
023305
0.23589
0.23870
0.24148
0.24425
0.24699
0.24971
0.25241
025509
025775
026039
0.26301
0 26561

1,4153
1.4546
1.4935
1.5321
1.5703
1.6082
1.6458
1.6832
1.7204
1.7574
1.7942
1.8308
1.8673
1.9036
1.9399
1.9760
2.0120
2.0479
2.0837
2.1194
2.1551
2.1906
2.2261
2.2616
2.2970
2.3323
2,3676
2.4029
2.4381
2.4732
2.5083
2.5434

75.559
77,106
78.664
80.235
81.817
83.413
85.021
86.643
88.278
89926
91.589
93,264
94 954
96657
98.374

100 105
101.849
103.607
105 378
107,163
108961
110.773
112,597
114.435
116.286
118.149
120.025
121.914
123815
125. 779
127.654
129.,592

0,17316
0.17664
0.18007
0.18345
0 18678
0.19008
0.19333
0.19654
0 19972'
0.20286
0,20597
0.20905
0.21209
0.215
0.21810
0.22106
0,22399
0.22690
0.22978
0.23264
0.23547
0.23828
0.24107
0.24383
0.24657
0.24930
0.25200
0.25468
0.25734
0.25998
0.26260
0.26520

1.3817
1.4203
1.4584
1.4%2
1,5337
1.5708
1,6077
1.6444
1.6808
1.7170
1.7531
1.7889
1.8247
1.8603
1,8957
1.9311
1.963
2.0014
2,0365
2.0715
2.1064
2.1412
21759
2.2106
2245?
2.2798
2.3143
2.3488
2 3833
2.4177
2.4520
2-4864

75.521 0.17270
17.070 017619
78.631 0.17962
80.203 0.18300
81.781 0.18634
83.384 0 18963
84.994 0.19289
86.617 0.1%11
88.253 0,19929
89.903 0.20243
91.567 0.20554
93.243 0.20862
94.934 0.21167
96.638 0.21468
98.356 0.21767

100.087 0.22064
101.832 0.22357
103.591 0,22648
105363 022936
107.148 0.23222
108,947 023505
110.759 0.23786
112,584 0.24065
114.422 0.24342
116.213 0.24616
118.131 0.24888
120.013 0 25158
121.903 0.25427
123.804 025693
125.718 025957
127.644 0.26219
129.582 026479

13490
1.3868
1.4243
1.4613
1.4981
1.5345
1.5701
1.6066
1.6423
1.6778
1.1131
1.7482
1,7832
1.8180
1.8528
1,8874
1,9219
1.9563
1.9906
2.0248
2.0590
2.0930
2.1271
2.1610
2.1949
2.2287
2.2625
2.2%3
23300
1.3636
2.3972
2.4308

75482
77034
78.5%
80.170
81.756
83.355
84.W7
86.591
88.229
89.880
91.544
93. 222
94.913
96.618
98.337

100.069
101,815
103.574
105,347
107.133
108.932
110.745
112.570
114.409
116.260
118.125
120.00?
I? 1,891123.793
125.707
127.633
129.572

0.17224
0.17573
0.17917
0.18255
0.18590
0.18919
0.19245
0.19567
0.19885
0.20200
0.20511
0.20819
0.21124
0,21426
0.21725
0.22022
0.22315
0.22606
0.22895
0.23180
0.23464
0.23745
0.24024
0.24301
0.24575
0.24847
0.25117
0.25386
0.25652
0.25916
0.26178
0.26438

-20-10
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140
10
60

170
180
190
200

213220
230:40
150
261
270
30

290
Table A-3. Freon 502 Superheated Vapor-- Constant Pressure Tables at Saturation
Temperature Intervals.
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SSUPPLEMENTAL $PECIFICATION SHEET

MODEL NUMBER GW5-006CX959

THIS MODEL HAS THE SAME SPECIFICATIONS AS MODEL GW5-006CX5

WITH THE FOLLOWING REQUESTED CHANGES.

SPECIFICATION CHANGES:
Input

Current Range: 0-37.5A
(Using the supplied, external, current transformers)

Over-Range: With linearity 45A
W/O damage 75A

Output
Scaling:

Accuracy:

0-5V a 0-30KW Input

1 0.25% F.S.

REMARKS:
Supplied with 2 pinees #13747 current transformers.

ALL SPECIFICATIONS LISTED FOR STANDARD MODEL NUMBER WILL APPLY EXCEPT

FOR CHANGES LISTED ABOVE.

OHIO SE MIT RONIC S, INC, T. LIyANOE,'04li7
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FLOW SENSOR SPECIFICATIONS

a Weffed Peft:316L Stainfess Steel & Hastsltoy' C.22
Non Wettoo Pans - 304 Steitess S4el

e Welding Procedures: Aulomatic tub wei,
no filler metals used

a Aoouracy: t 0.2% of rate t yo'o seab''ty vs'Jo
* Operating Temperature: .400'F (.240'C) to 400'F

(204*C)
0 Operating Pressure: 100 - 2000 psI (hlgher

ratings ealtable)
s Flow Range: From 0 . P5000/minute
9 Proces Conneclions: ANS.. DLN. Sanitary. NPT
a FM A C$A Approvall: K2 th'ough K10C - Cass I D 1.

Groups A, B. C. & 0. X260 throiCh K2$00. C'eii 1. Div
Groups C & 0. All flow sorots - Cass it, Oroucs E a V

9 CENBLEC Approvol; A11llow sensors - CENELEC EEN lb
Iib T2 

* -

* Trinsmitter Approval: Class I, D\v. 2, Groups A, 8. C. 0
* Oplions: Aupture disk, sooondery enclosures.

Insulation jcket and heal kil

FLOW SENSOR FEATURES
e ''sct nass flow mnseaauremont

* Density measuremenl
9 Non intrusive sensor in hermeioelly seaed 0ss
e Larger O.D, heavy wall sensor tubos
0 NO Mvif-; PA''.S, AD foullng or PIugg'ng

e Low pt'm e oron design

e LOw st'ess on 555o' tub*s
e Compipltory 'ndpndont of tomporaturo, prossure.

donsity, v'scosity flow Profile or air ensrinment

Model No. K2 KC) - 260 K600 X2600

Sizes: in./AN61 1601: 4" NPT N/2
mm/DIN: ONIS nNiS DNS ON25 ON
Typlosi Flow Range:
Ibs/min 0.2 O-PO 0.100 0250 000 02500
kg/min 0-1 0-909 0-d5 0113 0-22? 0-1130

Density Accuracy: g/cc 04015 L0 010 4:0.10 9.2222 1002
Zero Stabilily:

Ibs/min 00002 0 ON 0015 003 0.1 0.32
kg/mIn 00001 0012 0.007 0014 005 015

Ms -nN .Accuaacys k '%

SPECIFICATIONSt
SERIES 1200 TRANSMITTER

e Housing Matrist: Epoxy coaled o'ecsai lum1u1"
* Power i /230VAC. 50/60 H: r 10%. 24 VOC. 13 iiv'
e etmpersture Range: 20OF (-'C) to i40'F (80'C)
SNousinp Rating: NEMA 4 design
e Ares Rating Class 1. Division 11. Groups A. B. C & 0

USER INPUT & OUTPUT

* 2, 4.20 mA ouipuls
5 1 Irequancy/pulse output
6 R$ 232/465 Communications
e 2 relay ouiotis
* 2 status lines out
e 2 conistc closuro infts

SERIES 1200
TRANSMITTER FEATURES

e Mass flow
* Vo'umoltic flow
e Mesa & Volumetro iotalzatbon1
* Bl;hing (mull-moldo)
0 PID
e % Soilas/iUCulds/Mass
e Tom~porsiu'o
e Deritly
a Micro procossor bsind leCtronics
e Two lIne, 18 character each otsptsy
* Fut! system diagnost'cs display
* Kaybioar piogrammability
9 Keyboard selection and scaling of ail outputs
9 Omo bution soolng
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SSUPPLEMENTAL SPECIFICATION SHEET

MODEL NUMBER GW5-096EGX958

THIS MODEL HAS THE SAME SPECIFICATIONS AS MODEL CW5-006EG

WITH THE FOLLOWING REQUESTED CHANGES.

SPECIFICATION CHANGES:

Input
Current Range:

(Using the supplied, external, current tranaformers)
Over-Ranget (W/O damage)

Output
Scaling:

Accuracy:

0-100A

200A

4-2OmA a 0-80KW Input

* 0.25% F.S.

REMARKS;
Supplied with 2 pieces 013747 current Cransformora. .

ALL SPECIFICATIONS LISTED FOR STANDARD

FOR CHANGES LISTED ABOVE.

OHIO SEMITRONICS,

MODEL NUMBER WILL APPLY EXCEPT

11, %. 11 a. I A It & VIWIv I 9 , 444 m i l
I NC 0 PLACE AN ORDER*~.~~?~
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SUPPLEMENTAL SPECIFCATON .SHEET

MODEL NUMBER GW5-006CX957

THIS MODEL HAS THE SAME SPECIFICATIONS AS MODEL

WITH THE FOLLOWING REQUESTED CHANGES.

GW5-006CX5

SPECIFICATION CHANGES:
Input

Current Range:
(Using the supplied, external, current transformers)

Over-Range: With linearity
W/O damage

Output
Scaling:

Accuracy:

0-56A

65A
112A

0-5V - 0-45KW Input

1 0.25% F.S.

REMARKS:
Supplied with 2 pieces #13747 current traneformers.

ALL SPECIFICATIONS LISTED FOR STANDARD

FOR CHANGES LISTED ABOVE.

OHIO SEMITRONICS,

MODEL NUMBER WILL APPLY EXCEPT

INC.04 o T; "LACI AN ODE W
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Relative Humidity/
Temperature Transmitter

HX10 Series IM.

ow Diet Mount Design ideal
FPc HVAC Applications
3 Different Output
Connections Available
For Mounting Versatility
316 Stainless Steel,
NEMA 4 Enclosure
Protects Surface
Mounted Electronics
Cr 'pact Cylindrical
De;'gn Allows Easy
Mounting in Tight
Locations

" Two Standard 4.20 mA
or 1.5 V Outputs

so 2% RH, 0.60C Accuracy

The HX10 series t wo wre
tansme 's continuojsly measure
felative I."midity and temperatu'e of
vCt ai, and provide two eparale
8d simultaneous analog ot uls 01
420 mA or 1.5 Vde Houso in a

ItatesA8 steel. waelr light
ncilosurg, the HX10 mooots a-e
VO'y compact an lCe A'y sjiteo !or

4v mounting. For added ve'sa? 'ty
140 easy instal'at.on. ''ree common
COMICI'i coMbfg1rA 'ons a10
44v6 labincluong three loot lead
W S'9. Q;.ck disconnect o' t1/2' NPT

Speclficatiotns
input Vollago Range: 24VdC
nompAl (12 25Vd'.
RH Time Corstai:. '0 sf-:: 20 to
C0% RH; 60 er 90 lo 21% R

Repeatablutvy: tl a O5
Enclosure: 315 n' z s '
NEMA 4
Dimensions: 5 1. . 6 3 625 Di.
(130 x 16 1%
Weight: 0.6 !o 1270 gi

MEASUREMENT AANGES
Relative HumidIty: 5 ' 5
Temperature 32 '2' 2F
(0 to 10 'C)
ACCURACY
Relative HuildIty -2'r

Tomperature: ±1"? (0 5'CQ
RH Temperature Compensetlont:
.4 to ,.04F (.20 to 6-^C:
OUTPUTS
Current Oitpi Models: 4 to
20riA for 0 t I' R 4 32
2 12'-F (f t 10"*,
voltage Output Mooels: 1 o Svc:
'0' 0 to 100% RH 8a)(: 32 2' 2'
;0 to '00'C)
CONNECTIONS
HX11: 36 brt ood 8"C s eo'Ceo
cab e., PVC s-ealmilt
HX12: Bendix 4.0.ex PTO2A.6 4Z
'ret1g conne:0o' 0oO'ea
HX13: ." na e NPT '.n w -

36" b'a dIV s e aye

thee foot lead wires.
Yho HXi0 transmte's 1easuoe Nubr

'C'ty using a thn 1,m cAaac-to', Mode No. Prl-o Description
e'' 0 p-ecis on irmag-ated ci'cvtM$I ~eo'.e~s''e , 3~:~.a

$96 emo 'ai.re Relative11$@I:11 le'Viani ~,are H X 12V) 225 R-/Teroe'atore ll'ansr"., w;h Be'ldix 4-P I
W"01 atute compensatecl. 0

'o slee esh'llItr f p'o'.oc' i VIC '3 lae
.'si . , which :s eas;IyItAifhvll f' PTOOF.8.4S 24 ,'n~ eertd'x 0) co;inaCcF or kX12

v o' clea-irg. An
9'0;;te'd 24 Vd 1o17scp'kVd6 Vic f)owo7 hwop y i U2?4YI00 lkO 94V1.1. I000rt)A. 6rrflag'jV#O0 P"w

,'s th kX10 transm t'e's.~t~k tes' a'. PSUI.248 I0 Z4Vjc. 200ViA. trm;a lvf RewO' S.j- y
my be D:oceC anywnere In -- - W'.' * _ ..

WrHXI 1) 12 4.20 emA 'to o-oa sns3ao', "e O'

Ollig ,11010: il.,' 4 :r, vi"'a 00 I0mA okeIs. 3 OC' wea $205.
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Twisted/Shielded
Thermocouple Wire

Maintains Electrical
Ground from Probe
Sheath to Instrument

/ polyvinyl and Teflon
insulations Available
Complements OMEGA
Low Nolse Thermocouple
Probes and Connectors
Extension and
Thermocouple Grades
c'.istom Wire Designs
-,vallable

Consult Sales for Large
Quantity Discounts L - - -- -- - - --

4rmoooup I Orade
Teflon nulation

Ternocoupie 'Prico
MO Model No. Ca llPan 00
?o TT.J.20-TWSH J ' 760

TT-K-20-TWSH K 8'5
TT-T-20-TWSH T 750
TT-E-20.TW8H E 92J

'CS T.J.20S.TWSH ii1
TT.K-20$-TWSH K 1050
TT.T.20S-TWSH T 900
TT.E.20S.TWSH E 1110

14 TT.J.24-TWSH J 450
TT-K-24-TWSH t 525
TT-T-24-TWSH T 430
TT.E-24.TWSH $5

S.TT J24S.TWSN 540
TT.K.24S-TWSH K 630
TT-T-24S-TWSH T51
TT-E-24S-TWSH E 670

einslon Grade
yvinyl insulation

Theim ocoupl PIIce
O Model No. calibraton 1000' 1
6 EXPP.J-.6-TWSM 3 $420

EXPP-K-1o-TWSH K 615
EXPP-T-o-TWSH T 395
EXPP-E-16-TWSH E 625

S' EXPP-4-16S.TWSH
EXPP-K-163-TWSH
EXPP.T.16S-TWSH
EXPP.E-16S-TWStl
EXP-J-20-TWSH
EXPP-K-20-TWSH
EXPP-T-20-TWSH
EXPP-E-20-TWSH

VEXPP-J-20S-TWSH
EXPP-K-20STWSH
EXPP-T-20S-TWSH
EXPP-E-20-TWSH

,V0 **

K 995
T 665
E 10 -1
J 220
K 323 I
7 225
E33
j 345
K 545

E 560

Thormocouple Grade IN STOCK FOR
FE P Teflon insulation FAST DELIVERY!

1fhioucoP'e Price
.W M.d.. No. Clbration 1000'

20 FF.4.20-TWSH J $ 575
FF-K-20-TWSH K 695
FP-T-20-TWSH T 585
FF.J-20-TWSH E 71

?'05S FF.J.?OS.TWSI4
FF.K.20S.TWSH K 840
FF.T-20S.TWSH T680
FF.E-?QS.TWSM E __ 6

;4 F-21TWS:j 340
FF-K-24-TWSH K 395
F F.T.24.TWSHj 7 325
FF-E-24-TWSH C 425

FF-K-24S.TWSH K 475
FF-T-24S-TWSH 1 390

ExIensIon Grade PFA TenoN insvlalon Pso A1U'nie-

FEP Teflon Ins.jdalion COnSOn.JI so pric!"0

r - - - - -o-c--pTe~T -rce ~
AWO Mode, No. Cpitlbra llon 100

16 Fycr..1.TwSH 4 S725
F.XF.xV-15-TWSH K 1195
EXFF.T.16.TWSH T 685

6 EXF.E-16.TW$H 1225
' EXF-K-16S.TWSH 1430I EXFF.K.16S 'TWSH K 13

EXP-.T.18S-TWSH T 825
EXFF-E-16S-TWSH C.
EX9F.J-20-TWSH J 490
EXFP-K-20-TWSH K 590
EXFO-T-20-TWSM 405

ES EXFO-E-20-TWSH' 59

EXFF-K-20S-TWSH K 710
EXFF-T-20S-TWSH T 590

FF.20S-TWSH E 730

pre2e were ofso ' viCois A in oRad ,, S 0Noos onw9
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1MN NL M P'KISSUHE SENSOR
100 mV OUTPUT 3 YEAR 3.

EXCELLENT LONG TERM STABILIT Y WAftRANTY

PX602- PX612 Series --
15 PSI TO 20,000 PSI

From

$198
.- All Stainless Steel Case

Small and Lightweight
.- NEMA 4 Cable of

Connector Models

Ordering Exmper" pit:
OPAd S Motor $395
PX602-oooV s$19
PX612.1000v $275---

PTO'-I4$ Connocto-
(not include ) 124
P8.4 snubbr 510--

SPECIFICATIONS PX402
Excitation: 10 vdc (5to 10 vaC limits) connectof Cabie Styls

Output: 0 to 100 mV 0 10 Vdc 61yie
Senstivity: 10mViV
Input impedance: 15000 ohmS
Output impedance: 1COfl ch-ns

I -su\ton Aesistence; i0M ohms KlOHL IGH TED MODELS IN STOCK FOR FAST DELIVE RY!',0 Vd- -
Accuracy: 10 40/ 8FSt..
Hysteresis: t0 2% - -, ( "

A eoestablilty: 2 0-05% .,, '
Siebility: I 1%lyos' . - , , a-
Ze'o Balance: .1% --- _-_----_'_"'Ourebtltty: 100 nm1o' eyeces .0.....P2.5V $19 $226 0941$. DP205-S. DP350
Operating Tamp.: -55 to 195'117 0-30 Px 2.030V 19 225 0041S. D205-S, DP350
Compensated Temp.: -20 to 180 o'6 PX6 )2600V 98I 225 O.D41S. DP205$ P350

-rmal Effect: .,C4m/ FS.F Px )2.0e00V 198 225 D04 S. OP205-S DP350Span Eftect: .004% F$"P --- ...--- - -- 19 ..
*sf Pressure: 5 0 2000 PSI - 200%. '0.5' Px6( )2.1500V 198' 225 DPV.S. DC205-S DP350

C00 to 5000 . 1$0%; 7500 to 20000 0.200 PX6j 2.2000V 198 225 0P41-.S, DP205-S DP350e 1204 --. - -- - - --* 20 r-6- ': 12coov. . 2Ti5s 01141-S. OP205S. OP350lBurst Pressure: 15 to 2000 PSI a 800% - ' . . .... - 21 2 0
3000 to 20000 a 5o* 0-5: PX6 12.500OV 198 225 0041S. DP20S S 00350
Gsges: Th;n flm Do'ysitcon g 00 PX 2-iGV 225 DD -S. 09205.3 DD350Oleohragm: 17.4H stoss stee' --------- -- - -- - -

Case. 300 S -les eiess _,,. .. . .Px' J. K v 98 225 t S. 00205S. D 350
Presour# Connection: i5 to 000 P - ' PX6j2.- 0GV 196 225 0041S. DPS?7, -PO--
V. NPT, 15,000 and 20.000 PSI ; *P6-8 0 5 " ,PX1J2.5K 9 2)5 . S. DmS 080. !V Apinc fittog I-- -- _.--- -_-_-_ - - .- --

L .trical Connection: 30' braidet .. PXSJ2-7 SKGV 98 2 25 9 S OP7. DCu--'
"Id PVC Cab'* o' connec to' ' 0 A- PX6; 12OV 198 22aDP4 S. DP.'

Welght: 2.5 or Wthout cate 2'- ------- '"""-'-- - - - --- - - '---

Response tlvie: I me - - .-X -6)2-.2( GV l9 22 6 DP4.-S. DP8.DP1'0-t
Construction: Sealed until (exCeOl ,. = PX!0 -2.20KGV 98 5 DPOS OP87. DP;0-R1
PX60 2 s 500 PSI is ven'ed to room) '15.C0v a:: 420 00S'Moca:4 Sttptled V&n 'ema's AMINCO fitting.
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Appendix C : Constants and Variables For Equations
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Annendix CAi Saturated Air Tables

Temo BH W mass flow spec vol enthelpv Energy Flow
52.15 100 0.008252 154574 12.8870 21.4627 3317576

52.145 100 0.008251 154576 12.8869 21.4598 3317170
52.14 100 0.008249 154578 12.8867 21.4569 3316764

52.135 100 0.008248 154580 12.8865 21.4540 3316359
52.13 100 0.008246 154582 12.8864 21.4511 3315953

52.125 100 0.008245 154584 12.8862 21.4482 3315548
52.12 100 0.008243 154586 12.8861 21.4453 3315142

52.115 100 0.008241 154587 12.8859 21.4425 3314736
52.11 100 0.00824 154589 12.8857 21.4396 3314331

52.105 100 0.008238 154591 12.8856 21.4367 3313925
52.1 100 0.008237 154593 12.8854 21.4338 3313520

52.095 100 0.008235 154595 12.8853 21.4309 3313115
52.09 100 0.008234 154597 12.8851 21.4280 3312709

52.085 100 0.008232 154599 12.8850 21.4252 3312304
52.08 100 0.008231 154601 12.8848 21.4223 3311899

52.075 100 0.008229 154603 12.8846 21.4194 3311493
52.07 100 0.008228 154604 12.8845 21.4165 3311088

52.065 100 0.008226 154606 12.8843 21.4136 3310683
52.06 100 0.008225 154608 12.8842 21.4107 3310278
52.055 100 0.008223 154610 12.8840 21.4079 3309872
52.05 100 0.008221 154612 12.8839 21.4050 3309467

52.045 100 0.00822 154614 12.8837 21.4021 3309062
52.04 100 0.008218 154616 12.8835 21.3992 3308657

52.035 100 0.008217 154618 12.8834 21.3963 3308252
52.03 100 0.008215 154620 12.8832 21.3935 3307847

52.025 100 0.008214 154621 12.8831 21.3906 3307442
52.02 .. 100 0.008212 154623 12.8829 21.3877 3307037

52.015 100 0.008211 154625 12.8828 21.3848 3306632
52.01 100 0.008209 154627 12.8826 21.3819 3306228

52.005 100 0.008208 154629 12.8824 21.3791 3305823
52 100 0.008206 154631 12.8823 21.3762 3305418

51.995 100 0.008205 154633 12.8821 21.3733 3305013
51.99 100 0.008203 154635 12.8820 21.3704 3304608

51.985 100 0.008202 154637 12.8818 21.3675 3304204
51.98 100 0.0082 154638 12.8817 21.3647 3303799

51.975 100 0.008198 154640 12.8815 21.3618 3303394
51.97 100 0.008197 154642 12.8813 21.3589 3302990

51.965 100 0.008195 154644 12.8812 21.3560 3302585
51.96 100 0.008194 154646 12.8810 21.3532 3302181

51.955 100 0.008192 154648 12.8809 21.3503 3301776
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Appendix C-1. Saturated Air Tables

Temp
48.45

48.449
48.448
48.447
48.446
48.445
48.444
48.443
48.442
48.441

48.44
48.439
48.438
48.437
48.436
48.435
48.434
48.433
48.432
48.431

48.43
48.429
48.428
48.427
48.426
48.425
48.424
48.423
48.422
48.421

48.42
48.419
48.418
48.417
48.416
48.415
48.414
48.413
48.412
48.411

W.01
100 0.007181
100 0.007181
100 0.00718
100 0.00718
100 0.00718
100 0.00718
100 0.007179
100 0.007179
100 0.007179
100 0.007179
100 0.007178
100 0.007178
100 0.007178
100 0.007177
100 0.007177
100 0.007177
100 0.007177
100 0.007176
100 0.007176
100 0.007176
100 0.007176
100 0.007175
100 0.007175
100 0.007175
100 0.007174
100 0.007174
100 0.007174
100 0.007174
100 0.007173
100 0.007173
100 0.007173
100 0.007173
100 0.007172
100 0.007172
100 0.007172
100 0.007172
100 0.007171
100. 0.007171
100 0.007171
100 0.00717
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mass flow spec vo enthaloy Enerav Flow
155965 12.7721 19.4015 3025958
155965 12.7721 19.4010 3025882
155966 12.7720 19.4005 3025805
155966 12.7720 19.3999 3025729
155966 12.7720 19.3994 3025652
155967 12.7719 19.3988 3025576
155967 12.7719 19.3983 3025499
155968 12.7719 19.3978 3025422
155968 12.7719 19.3972 3025346
155968 12.7718 19.3967 3025269
155969 12.7718 19.3962 3025193
155969 12.7718 19.3956 3025116
155969 12.7717 19.3951 3025040
155970 12.7717 19.3945 3024963
155970 12.7717 19.3940 3024887
155971 12.7716 19.3935 3024810
155971 12.7716 19.3929 3024734
155971 12.7716 19.3924 3024657
155972 12.7715 19.3919 3024580
155972 12.7715 19.3913 3024504
155972 12.7715 19.3908 3024427
155973 12.7715 19.3902 3024351
155973 12.7714 19.3897 3024274
155974 12.7714 19.3892 3024198
155974 12.7714 19.3886 3024121
155974 12.7713 19.3881 3024045
155975 12.7713 19.3876 3023968
155975 12.7713 19.3870 3023892
155975 12.7712 19.3865 3023815
155976 12.7712 19.3859 3023739
155976 12.7712 19.3854 3023662
155977 12.7712 19.3849 3023585
155977 12.7711 19.3843 3023509
155977 12.7711 19.3838 3023432
155978 12.7711 19.383^ 3023356
155978 12.7710 19.3827 3023279
155978 12.7710 19.3822 3023203
155979 12.7710 19.3816 3023126
155979 12.7709 19.3811 3023050
155980 12.7709 19,3806 3022973



Appendix C-1. Saturated Air Tables

Temp RH W mass flow spec vo enthalov Energy Flow
45.7 100 0.006467 156992 12.6886 17.9610 2819735

45.699 100 0.006467 156992 12.6885 17.9605 2819661
45.698 100 0.006467 156992 12.6885 17.9600 2819588

45.697 100 0.006467 156993 12.6885 17.9595 2819514
45.696 100 0.006466 156993 12.6884 17.9590 2819441
45.695 100 0.006466 156994 12.6884 17.9585 2819367
45.694 100 0.006466 156994 12.6884 17.9580 2819294
45.693 100 0.006466 156994 12.6884 17.9575 2819220
45.692 100 0.006465 156995 12.6883 17.9570 2819147
45.691 100 0.006465 156995 12.6883 17.9564 2819074

45.69 100 0.006465 156995 12.6883 17.9559 2819000
45.689 100 0.006465 156996 12.6882 17.9554 2818927
45.688 100 0.006464 156996 12.6882 17.9549 2818853
45.687 100 0.006464 156997 12.6882 17.9544 2818780
45.686 100 0.006464 156997 12.6881 17.9539 2818706
45.685 100 V006464 156997 12.6881 17,9534 2818633
45,684 100 0.006463 156998 12.6881 17.9529 2818559
45.683 100 0.006463 156998 12.6881 17.9524 2818486
45.682 100 0.006463 156998 12.6880 17.9519 2818412
45.681 100 0.006463 156999 12.6880 17.9513 2818339

45.68 100 0.006462 156999 12.6880 17.9508 2818266
45.679 100 0.006462 157000 12.6879 17.9503 2818192
45.678 100 0.006462 157000 12.6879 17.9498 2818119
45.677 100 0.006462 157000 12.6879 17.9493 2818045
45.676 100 0.006461 157001 12.6878 17.9488 2817972
45.675 100 0.006461 157001 12.6878 17.9483 2817898
45.674 100 0.006461 157001 12.6878 17.9478 2817825
45.673 100 0.006461 157002 12.6878 17.9473 2817752
45.672 100 0.00646 157002 12.6877 17.9467 2817678
45.671 100 0.00646 157003 12.6877 17.9462 2817605

45.67 100 0.00646 157003 12.6877 17.9457 2817531
45.669 100 0.00646 - 157003 12.6876 17.9452 2817458
45.668 100 0.006459 157004 12.6876 17.9447 2817384
45.667 100 0,006459 157004 12.6876 17.9442 2817311
45.666 100 0.006459 157004 12.6875 17.9437 2817238
45.665 100 0.006459 157005 12.6875 17.9432 2817164
45.664 100 0.006458 157005 12.6875 17.9427 2817091
45.663 100 0.006458 157006 12.6875 17.9422 2817017
45.662 100 0.006458 157006 12.6874 17.9416 2816944
45.661 100 0.006458 157006 12.6874 17.9411 2816870
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Appendix C-2. Constants Used in Analysis

CO= -10440.4

C1= -11.2946669

C2= -0.02700133

C3= 0.12897060 x 10-4

C4= -0.2478068 x 10-8

C5= 6.5459673
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Appendix D. Uncertainties in Variables and Equations
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In this appendix, the issue of uncertainties and errors in measurement, equations, and

regressions will be addressed. The errors calculated in this section are to be used

throughout the thesis, and will be referred to therein. Uncertainties in sums, differences,

products, and quotients are calculated using the following equations (Taylor 1982):

Measured X (measured)X = X best ± 8X

Z=X+Y,Z=X-Y 8Z=8X+BY

Z=XY, Z= X/Y Sz/z= SX/X + 8Y/Y

Z=aX 8Z= aSX

Z=Xn SZ/Z = nSX/X

Z = f(X) 8Z=(dZ/dX)SX

I. Measured Data

For monitored measurements, the manufacturers errors for the sensors are:

8T = ±10 F Temperature

SRH/RH = +2% Relative Humidity

SP/P = ±0.4% Pressure

SM/M = ±0.2% Mass Flow

II. Psychrometeric Variables

Specific Humidity: W = 0.62198 (pw / p-pw) [lb water/lb air] (2.1)

p = atmospheric pressure (psi)

pw = partial water vapor pressure (psi)

Error: 6W/W = 0. 6 2 19 8 (Spw/pw + Sp/p +6Pw/Pw)
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= 0.62198( 2% + 2%) [8p/p=0]

= 2.5%

Pw = Pws x RH

RH = relative humidity

pws=partial water vapor saturation pressure (psi)

Error : 8pw/pw = 8pws/pws + 6RH/RH

= 0.02% + 2%

= 2%

Pws=CO+CJ(T)+C2(T2)+C3(T3)+C4(T4)+C5(lnT)

T = dry bulb temperature (R)

Error: 8pws/pws = Cj (6T/T)+2C2(6TIT)+3C3(8TT)+4C4(TT)+1IT(C5(8TT))

= (Cj+2C2+3C3+4C4+1IT(C5))(l1T)

Constants are found in Appendix C-2, error is a function of T

= -11.349(1/T) + 6.546(1T 2 )

which, for the range of T = 529.6 R - 579.6 R (50 F - 100 F) is

= 0.02%

Dew Point Temperature:Td = 79.047 + 30.5790a + 1.8893a2 [F] (7.1)

Error: 8Td = 30.57908a + 1.8893(2)8x
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= 30.5790(.04) + 3.7786(.04)

=1.37 [F]

a = ln(pw) (7.2)

Error: 8a = (1/pw) 8 pw

= Spw/pw =4%

pw = (p*W) /(0.62198 + W) (7.3)

Error: Spw/pw = Sp/p + SW/W + SW/W

-4% [Sp/p= 0]

W = specific humidity

p = atmospheric pressure [in. Hg]

pw = water vapor partial pressure [in. Hg]

III. Refrigeration System Equations

The enthalpy of the refrigerant before the expansion valve can be expressed by the

following equation:

Enthalpy: h = 10.98322 + 0.22852(T) + 0.00038(T 2 ) [Btu/lb] (8.1)

(R2 = 1.000)

T = dry bulb temperature (F)

Error: Sh/h = 0.22852(ST/T) + 0.00038(2)(6T/T)

= 0.22926(1/T)
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Since the temperature range falls between 80 F - 110 F, and the value of the error is

small enough not to vary much between these points, it can be estimated as 0.002, or 0.2%.

and for the enthalpy of the refrigerant after the evaporator:

Enthalpy: h = 78.668 + 0.158(T) [Btu/lb] (8.2)

(R2 =0.999)

T = dry bulb temperature (F)

Error: Sh/h = 0.158(8T/T)

= 0.158(1/T)

so the error for the display case load (evaporator load) is:

Display Case Load; Q = m (h2 - h,) [Btu/hr] (4.1)

m = mass flow (lb/hr)

h2 =enthalpy of suction gas (Btu/lb)

h1=enthalpy of liquid (Btu/lb)

Error: 8Q/Q = Sm/m + 8h2/h2 + Shi/h1

= 0.2% + (0.16/T2 + 0.002)

= 0.4% + (0.16/T2)

IV. Section 7.1.1 Calculated vs Monitored Mixed air

The equation comparing calculated mixed air temperature to monitored mixed air

temperature has an error (0.6 degree) which is close to the sensor error (1 degree),

therefore the uncertainty is the root mean square, or the square root of the sum of the
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squares of the deviations divided by the number of deviations. For two deviations the

equation looks like this:

RMS =-V[(6Tl) 2 +(8T 2 )2 ] / 2

which for STl=0.6 and 8T2 =1, RMS = 0.8 degrees

V. Section 7.2.3 Calculated Mixed air vs Supply air

The uncertainties in this analysis occur in the calculation of dew point, and the

monitored temperature difference across the cooling coils. Since the dew point is not a

factor in the calculation, but a checkpoint for what equations will be used, it is only a factor

when the calculated post-cooling coil temperature is closer to the dew point than the

statistical error. Since this rarely occurs, it can be ignored. Since the error in temperature

difference is twice the error for one sensor, the error for specific humidity is the same

calculated above with twice the temperature error. Yet since that error is dominated by the

error in the relative humidity sensor, the difference is small (the difference between 2.02%

and 2.04%), and the estimate of 2% can be used

VI. Section 9.1.2 Rack A Compressor Power vs Dew Point and Outside Temperature

The regression equations for pre-installation and post-installation compressor power

result in the following equations:

Pre-Installation

CMPA = 15.41 + 0.08051(dewpt) + 0.1382(Tout) [kW]

Post-Installation

CMPA = 18.85 - 0.01321(dewpt) + 0.140(Tout) [kW]
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Pre-installation error: SCMPA = 0.08051 (STd ) + 0.1382(8T)

= 0.08051(1.37) + 0.1382(1)

= 0.25 [kW]

Post-installation error : SCMPA = 0.01321(8Td) + 0.140(8T)

= 0.16 [kW]

VII. Section 9.2 Air Conditioning Fan Penalties

The accuracy of the volumetric airflow measurement can only be approximated using

the measurement errors of its parts, as the flow was measured using a vane anemometer, a

device which uses fan blades to measure distance traveled by the air in feet (with an error of

±1 foot). A stopwatch was used to time the readings (with an error of ±0.1 second), and

the cross-sectional area was used with these readings (error of ±.01 ft2 ) to calculate cfm.

However, there are other, unmeasurable errors associated with this calculation, since the

method was to have one person inside the duct, transversing the whole area with the meter

while another person outside starts and stops the stopwatch at a verbal cue. Therefore,

there are potential errors relating to possible differences in starting times, stopping times,

and areas covered by the metering person. The metering error can be calculated as follows:

Error: SCFM/CFM = 6(velometer)/velometer + 6(stopwatch)/stopwatch x 60+

6(area)/area

which, for the upper half, comes to 1/167 + (0.1/22.4)60 + .01/19.38 = 0.274 =

27.4%
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and for the lower half, 1/320 + (0.1/18.5)60 + .01/19.38 = 0.324 = 32.4%

giving an airflow estimation of 32,400 ± 9.980 cfm
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Appendix E. Sensor Calibrations
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TEMPERATURE CALIBRATION FOR T SUPL

90

sop

75
70

65

-60 ' -

55

50
50 60 70 80 90

REFERENCE T (F)

AVERAGE TREF-T SUPL - -5.36189

Regression Statistics

Multiple R 0.99092
R Square 0.981923
Adjusted R 0.98183

Standard E 0.857105

Observatio 196.

Anal is of Varience

Dr m of sques mean squeer F Significence F

Regression 1 7741.568 7741.568 10538.06 SE-171
Residual 194 142.518 0.734629
Total 195 7884.086

Coefficients tenderd Error t Statistic P-vlue Lower 95% Upper 95%

Intercept -3.08728 0.6 8 2 2 73 -4.525 1.05E-05 -4.43291 -1.74166
x1 0.968422 0.009434 102.6551 1.1E-171 0.949816 0.987028

CORRECTION FOR ALL DATA

ACTUAL T SUPL - 0.97(MEASURED T SUPL) - 3.1 F
OR ACTUAL T SUPL - MEASURED T SUPL - 5.4 F
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RELATIVE HUMIDITY CALIBRATION FOR RH RTRN

- RH RTRN - - RHREF -- RH RTRN -RHREF

100
90
80
70
60
50
40
30
20
10
0

AT RHREF -75.5 AVERAGE (RHREF - RH RTRN) - 19.223226
AT RHREF -11.3 AVERAGE (RHREF - RH RTRN) - -0.967083

Repression Statistics

Multiple R 0.999839
R Square 0.999677

Adjusted R Square 0.999665
Standard Error 0.588321

Observations 55

Analysis of Variance

dIi m of Squares Men Square F Significance F
Regression 2 55736.55 27868.28 80516.2 1.70882E-91
Residual 52 17.99825 0.34612
Total 54 55754.55

Coefficients tandard Error f Statistic P.value Lower 95% Upper 95%

Intercept -44.5976 11.61239 -3.84051 0.0003251 -67.899501 -21.29561
x1 0.564929 0.172513 3.27471 0.00185 0.21875722 0.9111006
x2 1.450276, 0.004366 332.1652 4.46E-91 1.441514648 1.4590372

CORRECTION FOR DATA UP TO 16:45 ON 9/22/93

ACTUAL T RTRN - MEASURED T RTRN - 5.8 F

ACTUAL RH RTRN - 0.565'( T RTRN ) + 1.450*(MEASURED RH RTRN) - 44.6
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ALTERNATE CORRELATION WITH NO TEMPERATURE DEPENDENCE

Regression Statistics

Multiple R 0.999805

R Square 0.999611

Adjusted R Square 0.999603
Standard Error 0.640017
Observations 55

Analysis of Variance

di m of Squares Mean Square F Significance F
Repression 1 55732.84 55732.84 136059.3 4.81796E-92
Residual 53 21.70994 0.409622
Total 54 55754.55

Coefficients tanderd Error I Statistic P-value Lower 95% Upper 95%

Intercept -6.57379 0.170078 -38.6516 4.92E-41 .6.91492369 -6.232657
x1 1.458202 0.003953 368,8622 1.56E-93 1.450272402 1.4661308

CORRECTION FOR DATA UP TO 16:45 ON 9/22/93

ACTUAL RH RTRN - 1.458'(MEASURED RH RTRN) -6.6



TEMPERATURE CALIBRATION FOR T MIX
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REFERENCE T (F)

AVERAGE TREF -T MIX - -1.76643

Reression Statistics

Multiple R 0.991826

R Square 0.983719
Adjusted R 0.983635

Standard E 0.806442

Observatio 196

Analysis of Variance 1

di m of Squares Mean Square P ignificance F
Regression 1 7623.334 7623.334 11721.93 2E-175
Residual 194 126.1675 0.650348

Total 195 7749.501

Coefficients tendard Error t Statistic , Pvalue Lower 95 % Upper 95%

intercept -7.93945 0.670412 -11.8426 9.95E-25 -9.26168 -6.617221
x1 1.093329 0.010098 108.2679 4.1E-176 1.073412i 1.113246

CORRECTION FOR DATA FROM 8/11/93

ACTUAL T MIX - 1.09*(MEASURED T MIX) - 7.9
OR ACTUAL T MIX - MEASURED T MIX - 1.8

210



RELATIVE HUMIDITY CALIBRATION FOR RH MIX

6 RH MIX RIHREF RH MIX --- RHREF
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70 75 80

AT RHREF - 11.3 AVERAGE (RHREF - RH MIX) - -13.1336
AT RHREF -75.5 AVERAGE (RHREF - RH MIX) = -6.98785

Regression Statistics

Multiple R 0.99968

R Square 0.999359

Adjusted R Square 0.999353
Standard Error 0.81541

Observations 196

Analysis of Variance

df m of Squares Meen Square F gnificence F
Regression 2 200128.7 100064.4 150496.8 0

_ Residual 193 128.3245 0.664894
Total 195 200257

Coefficients tenderd Error I Statistic P-value Lower $5% Upper 95%

Intercept -19.4224 0.616183 -31.5205 1.82E-78 -20.6377 -18.2071
x1 0.061553 0.009896 6.219728 2.97E-09 0.042034 0.0810719
x2 1.103764 0.002024 545.2788 0 1.099772 1.1077566

CORRECTION FOR DATA FROM 8/11/93

ACTUAL RH MIX - 0.062*( T MIX ) + 1.104*(MEASURED RH MIX) - 19.4
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ALTERNATE CORRELATION WITH NO TEMPERATURE DEPENDENCE

Regression Statistics

Multiple R 0.999615

R Square 0.999231
.Adjusted R Square 0.999227

Standard Error 0.891095
Observations 196

Analysis of Variance

df m of Squares Meen Square F ignificence F

Regression 1 200103 200103 252002.7 5.1E-304
Residual 194 154.0459 0.794051
Total 195 200257

Coefficients tenderd Error I Statistic Pva/ue Lower 95% Upper 95%

Intercept -15.6724 0.138979 -112.769 1.6E-179 -15.9465 -15.39834
x1 1.105011 0.002201 501.9987 2.3E-305 1.10067 1.1093528

CORRECTION FOR DATA FROM 8/11/93

ACTUAL RH MIX - 1.105'(MEASURED RH MIX)- 15.7
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RELATIVE HUMIDITY CALIBRATION FOR RH SUPL

9 RH.SUPL 0 RHREF -0-- RH.SUPL - RHREF

is4-isemansmam O OeO-.e--mmm

70 75 80

AT RHREF -75.5 AVERAGE (RHREF - RH SUPL) - 26.04517
AT RHREF a 11.3 AVERAGE (RHREF - RH SUPL) - 3.102617

Regression Statistics

Multiple R 0.999826

R Square 0.999653

Adjusted R Square 0.999649
Standard Error 0.600291
Observations 196_

Analysis of Varience
di m of Squares Mean Square F Significance F

Regression 2 200187.5 100093.7 277768.3 01
Residual 193 69.5475 0.36035
Total 195 200257

Coefficients tandrd Error r Statistic P-value Lower 95%: Upper 95%

Intercept -14.8029 0.453899 -32.6129 6.79E-81 -15.6982 -13.9077
x1l 0.206438 0.006892 29.95177 7.02E-75 0.192844 0.2200324
x2 1.54064 0.002126 724.678 0 1.536447 1.5448329

CORRECTION FOR ALL DATA

ACTUAL RH SUPL = 0.206*( T SUPL) + 1,541(MEASURED RH SUPL) - 14.8
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____ALTERNATE CORRELATION WITH NO TEMPERATURE DEPENDENCE_____

___________ Repression Statis tics ______

Multiple R 0.999019
R Square 0.998038
Adjusted R Square 0.998028
Standard Error 1.422971

Observations 196

Analysis of VerIance_________________

fd m of Squae Mean Square F ignificance F
Regression 1 199864.2 199864.2 98705.84 1.4E-264
Residual 194 392.8203 2.024847
Total 195 200257

Coefficients andr r tttistic Pvlue Lower 95% ipper 95%

Intercept -1.3736 0.167493 T8.20092 3.15E-14 *1.70394 .1.043258
X1 1.55303 0.004943 314.1749 IE-285 1.543281 1.5627796

CORRECTION FOR ALL DATA

ACTUAL RH SUPL a1,553*IMEASURED RH SUPL) - 1.4 ____ ____
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ORIGINAL SENSOR (START OF TESTING TO 8/11/93)

RELATIVE HUMIDITY CALIBRATION FOR RH.OUT
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RELATIVE HUMIDITY CALIBRATION FOR RHOUT

--- RH_OUT - RHREF RH _OUT - RHREF

70 75 80

AT RHREF - 75.5 AVERAGE (RHREF - RH OUT) - 1.112135
AT RHREF - 11.3 AVERAGE 1RHREF - RH OUT) - .18.2625

Regression Statistics -

Multiple R 0.994887

R Square 0.989801

Adjusted R Square 0.989695

Standard Error 3.253059
Observations 196

An!al .f Variance

df m .f Squares Mean Square P Significance F
Regression 2 198214.6 99107.31 9365.3 6.7E-193
Residual 193 2042.402 10.5824

Total 195 200257

Ceiiets tederd Error tSaiic Prealue Lowe' 95% Upper 95 %

Intercept -58.3383 2.370599 -24.6091 1.03E-61 -63.0139 -53.66267
x1 0.472106 0.03799 12.42695 1.71E-26 0.397176 0.5470352
x2 1.382704 0.010483 131.8952 1.3E-192 1.362027 1.4033807

CORRECTION FOR DATA FROM 16:15 on 8/27/93

ACTUAL RH OUT = 0.472*( T OUT ) + 1.383'(MEASURED RH OUT) - 58.3
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ALTERNATIVE CORRELATION WITH NO TEMPERATURE DEPENDENCE

Regression Statisics

Multiple R 0.990778

R Square 0.98164

Adjusted R Square 0.981546
Standard Error 4.353356
Observations 196

Analysis of Varience

di m of Squares Mean Square S ignificance F

Regression 1 196580.4 196580.4 10372.7 2.3E-170
Residual 194 3676.632 18.95171
Total 195 200257

Coefficients tandard Error f Statistic P-value Lower 95% Upper 95%

' Intercept -29.7276 0.755986 -39.323 1.19E-94 -31.2186 -28.23663
x1 1.405931 0.013804 101.8464 5E-171 1.378705 1.4331565

CORRECTION FOR DATA FROM 16:15 on 8/27/93

ACTUAL RH OUT = 1.406'(MEASURED RH OUT) - 29.7



Appendix F Figures for Annual Savings Estimates
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Average daily inside dew point vs average outside temperature
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Figure 60. Pre- and Post-installation Daily Average Dew Point vs Average Outside
Temperature
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Weatherly Sin Data - Boston Massachusetts 1993

-T ..... ... .- A.-hJ'y. ..1. 2 3 .. . .. . . . . . . ......r..
95 99 97 48.3 2.6 118.741 0 0 0 0 0 0 7 0 0 0 0 0 7

90 94 92 47. 2.6 116.591 0 0 0 0 1 0 20 7 5 0 0 0 33
85 89 87 47.2 2.6 114.440 0 0 0 0 9 1 48 29 13 0 0 0 100
80 84 82 46.6 2.6 112.2906 0 0 0 0 17 16 87 81 22 0 0 0 22
75 79 77 46.1 2.6 110.1404 0 0 0 1 31 48 119 121 42 6 2 0 370
70 74 72 45.5 1.8 107.990 0 0 2 11 46 76 174 159 81 16 8 0 57
65 69 67 45 0.7 105.84 0 0 2 18 75 126 199 200 142 47 13 0 82

........................ .... a ur ....... 9 ~ 7 5 97 ~ 6 ~ '~ 1

[11 Average inside dw point, based on post-mnstal.ation curve fit
[2] Average drop in inside dew point due to heat pipe, based on comparison of pre-instaflation and post-installation data
{3] Refrigeration sy'stem compressor power consumption as a function of outside temperature
[4] KWh savings based on 1.7% kW reduction per I degree drop in dew point




