
MIT Open Access Articles

Chirality dependence of coherent phonon 
amplitudes in single-wall carbon nanotubes

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Nugraha, A. et al. “Chirality Dependence of Coherent Phonon Amplitudes in Single-wall 
Carbon Nanotubes.” Physical Review B 84.17 (2011): n. pag. Web. 2 Mar. 2012. © 2011 American 
Physical Society

As Published: http://dx.doi.org/10.1103/PhysRevB.84.174302

Publisher: American Physical Society (APS)

Persistent URL: http://hdl.handle.net/1721.1/69578

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/69578


PHYSICAL REVIEW B 84, 174302 (2011)

Chirality dependence of coherent phonon amplitudes in single-wall carbon nanotubes

A. R. T. Nugraha,1 G. D. Sanders,2 K. Sato,1 C. J. Stanton,2 M. S. Dresselhaus,3 and R. Saito1

1Department of Physics, Tohoku University, Sendai 980-8578, Japan
2Department of Physics, University of Florida, Box 118440, Gainesville, Florida 32611-8440, USA

3Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
(Received 7 July 2011; revised manuscript received 18 October 2011; published 11 November 2011)

We simulate the ultrafast dynamics of laser-induced coherent phonons in single-wall carbon nanotubes
(SWNTs). In particular, we examine the coherent phonon amplitude of the radial breathing mode (RBM) as
a function of excitation energy and chirality. We find that the RBM coherent phonon amplitudes are very
sensitive to changes in excitation energy and are strongly chirality dependent. We discuss how the SWNT
diameter changes in response to femtosecond laser excitation and under what conditions the diameter of a given
SWNT will initially increase or decrease. An effective-mass theory for the electron-phonon interaction gives a
physical explanation for these phenomena.
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I. INTRODUCTION

Single-wall carbon nanotubes (SWNTs), with their unique
physical properties, have been an exciting material for study.1–5

In particular, SWNTs provide a one-dimensional (1D) model
system for studying the dynamics and interactions of electrons
and phonons, which strongly depend on the SWNT geomet-
rical structure as characterized by its chiral indices (n,m).1

With rapid advances in ultrafast pump-probe spectroscopy,
it is now possible to monitor photoexcited SWNT coherent
phonon lattice vibrations in real time.6–10

In pump-probe spectroscopy, femtosecond laser pump
pulses rapidly generate photoexcited electron-hole pairs (exci-
tons) in the excited states of the SWNT sample. The electron-
hole pairs couple to phonons, causing the SWNT lattice to
vibrate. The vibrations are coherently driven by electron-
phonon (or more precisely exciton-phonon) interactions.11 The
coherent phonon vibrations are observed as oscillations in ei-
ther the differential transmission or the differential reflectivity
(�T/T or �R/R) in the delayed probe pulse as a function
of the probe delay time. After Fourier transforming �T/T or
�R/R with respect to time, we obtain the coherent phonon
spectra as a function of phonon frequency. Several peaks found
in the coherent phonon spectra correspond to specific coherent
phonon modes. Typical SWNT phonon modes observed in
coherent phonon spectra are similar to those found in Raman
spectra since the electron-phonon interaction plays a role in
both coherent phonon excitation and Raman spectroscopy. For
example, using coherent phonon spectroscopy we can observe
both the radial breathing mode (RBM) and the G mode, which
have also been seen in Raman spectroscopy.6–8

Recent experiments have given us some hints that the coher-
ent phonon intensity for a particular SWNT strongly depends
on the excitation energy, although the systematic behavior
related to the SWNT types is not yet well understood.9,12

In a previous study, Sanders et al.13 calculated coherent
phonon intensities for the RBM phonons of two nanotube
families, namely, the type-I [mod(2n + m,3) = 1] and the
type-II [mod(2n + m,3) = 2] semiconducting SWNTs, and
found that the coherent phonon intensity in type-I nan-
otubes was generally larger than that in type-II nanotubes.
However, the results were limited to a small number of

SWNT chiralities. It is thus necessary to verify the trends by
examining more SWNT species. A detailed physical reason
for the chirality-dependent coherent phonon intensity is also
missing. Moreover, it was recently noticed that some SWNTs
start their coherent RBM vibrations by initially expanding
their diameters, while others start their RBM vibrations by
initially shrinking their diameters.12,14 Since this phenomenon
depends on the nanotube type, it is important to examine the
k-dependent electron-phonon interaction. We take this issue
as the main focus of the present paper.

We focus on the coherent phonon amplitude instead of its in-
tensity because the amplitude can give phase information that
is not obtainable from the intensity. For instance, from the am-
plitude, we can tell whether the diameter of a specific SWNT
in the coherent RBM will initially expand or contract at a given
excitation energy. In Sec. II, we explain the method adopted
to calculate the coherent phonon amplitudes, where we have
used and modified a computer package developed in a previous
study by Sanders et al.13 Here we mainly study the (11,0)
and (13,0) semiconducting zigzag nanotubes as examples for
discussing the excitation and chirality dependence of the RBM
coherent phonon amplitudes. We note that the electron-phonon
interaction plays an important role in determining the phase
or sign of the RBM coherent phonon diameter oscillations,
and hence determines whether the SWNT diameter initially
expands or contracts. This discussion is covered in Sec. III,
in which the RBM electron-phonon interaction in SWNTs
is derived in an effective-mass theory. Although the main
examples studied in this work are semiconducting SWNTs,
the theory is also valid for metallic SWNTs,15 since it is
shown in Sec. IV that the chirality dependence of the coherent
phonon amplitude between different nanotube types has the
same origin. As a guide for experimentalists, in Sec. IV we also
present the RBM coherent phonon amplitudes for 31 SWNTs
with diameters in the range of 0.7–1.1 nm. The RBM coherent
phonon amplitudes are mapped as a function of (n,m) for
optical transition energies E11 or E22 found within 1.5–3.0 eV,
where i in Eii denotes the optical transitions between the ith
valence and ith conduction subbands.16 Mapping the coherent
phonon amplitudes and initial phases as a function of tube
diameter should be a useful guide for predicting the initial
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direction of the SWNT coherent RBM lattice vibrations. A
summary and perspectives for future research are given in
Sec. V.

II. COHERENT PHONON AMPLITUDES

A. Calculation method

To calculate the SWNT coherent phonon amplitudes, we
use a computer program developed in previous work,13 which
obtains coherent phonon amplitudes by solving a driven
harmonic oscillator equation derived from the Heisenberg
equations of motion.17 In this program, we incorporate
SWNT electronic energies and wave functions obtained from
an extended tight-binding (ETB) calculation,18 the phonon-
dispersion relations and corresponding phonon modes,19 the
electron-phonon interaction matrix elements,20 the optical
matrix elements,21 and the interaction of carriers with an
ultrafast laser pulse.

As noted by Sanders et al.,13 only q = 0 phonon modes are
coherently excited if the pump laser spot size is large compared
with the size of the nanotube. For coherent phonons to be
excited, it is necessary for the pump pulse to have a duration
shorter than the phonon period (so that the pump pulse power
spectrum has a Fourier component at the phonon frequency). In
a simple forced oscillator model neglecting oscillation decays,
the coherent RBM phonon amplitude Q with frequency ω

satisfies a driven oscillator equation,13

∂2Q(t)

∂t2
+ ω2Q(t) = S(t), (1)

subject to the initial conditions Q(0) = 0 and Q̇(0) = 0. Here
S(t) is the driving function, which depends on the photoexcited
carrier distribution function and is given by13

S(t) = −2ω

h̄

∑
μk

M
μ

el-ph(k) δf μ(k,t), (2)

where M
μ

el-ph(k) is the k-dependent RBM electron-phonon
matrix element for the μth cutting line1,22,23 (the 1D Brillouin
zone of a SWNT) and δf μ is the net photogenerated electron
distribution function with a pump pulse pumping at the Eii

transition energy as obtained by solving a Boltzmann equation
for the photogeneration process. The photogeneration rate
in the Boltzmann equation depends on the excitation laser
energy13 and it also contains the electron-photon matrix
element Mop for the case of light polarized along the tube
axis, so that we have the proportionality

δf μ ∝ Mμ
op. (3)

In a typical calculation, the necessary inputs are the
excitation energy Elaser and the chiral index (n,m). For a
given excitation energy, we solve Eq. (1) for a specific SWNT
to obtain the coherent RBM phonon amplitude oscillating
at the RBM frequency. Unless otherwise mentioned, we
use the same common input parameters for the pump-probe
setup as those used in Ref. 8, i.e., we excite the RBM
phonons with a single 50 fs laser pulse, where the pump
fluence is taken to be 10−5 J/cm2, and the FWHM spectral
linewidth is assumed to be 0.15 eV. Here we do not have
to consider excitonic effects because we will not discuss

the peak positions or line shapes of the coherent phonon
spectra. For such discussions, the excitonic effects cannot
be neglected since the Eii energies are shifted from those
calculated within a single-particle picture.11,24 In the present
paper, however, we can plot M

μ

el-ph(k) as a function of k and
show that our treatment is reasonable. Consideration of only
the electron-phonon interaction instead of the exciton-phonon
interaction is acceptable because the exciton size in k space
is much smaller than the width of the electron-phonon matrix
elements. For example, based on a calculation from our exciton
program,24 the exciton size in k space for the (11,0) nanotube
at the E22 transition is about 0.043π/T , while the width of
the electron-phonon matrix element at the same energy is
about 0.4π/T , where T is the unit cell length. The exciton
size in k space is only about 10% of the width of the
electron-phonon interaction. The exciton-phonon interaction
is given by integrating M

μ

el-ph(k) in k space weighted by
the exciton wave function.25 Therefore, the electron-phonon
interaction is approximately constant as a function of 1D k for
this small-k region, i.e., the size of the exciton wave function.
In fact, the value of the exciton-phonon interaction is on the
same order as the electron-phonon interaction.25

B. Calculation results

In Fig. 1, we plot the coherent RBM phonon amplitude
Qm in an (11,0) nanotube at an early time, along with the
absorption coefficient as a function of Elaser. Here Qm can
be imagined by roughly defining Q(t) = Qm cos ωt , where
the origin of time is now indicated by the first maximum
(minimum) of Q(t) found after t = 0 for a positive (negative)
coherent phonon vibration. Therefore, in this definition, Qm >

0 and Qm < 0 correspond to the tube diameter expansion
and contraction, respectively [cf. the Q(t) plots in Ref. 13].
From Fig. 1, we see that the pump light is strongly absorbed
at the Eii energies. The resulting increase in the number of
photoexcited carriers increases the coherent phonon driving
function S(t) in Eq. (2) and thus enhances the coherent phonon
oscillation amplitude near the Eii transitions. Note that at
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FIG. 1. The coherent RBM phonon amplitude Qm for an (11,0)
zigzag tube as a function of laser excitation energy Elaser. For clarity,
Qm is plotted in units of 0.0259 Å. A positive (negative) sign of
the vibration amplitude denotes a vibration whose initial phase
corresponds to an expanding (shrinking) diameter. The absorption
coefficient versus Elaser is shown for comparison with the Qm

behavior.
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E11 the amplitude has a negative sign, indicating that the
tube diameter initially shrinks and oscillates about a smaller
diameter, while at E22 and higher energies (e.g., E33 or E44)
the tube diameter initially expands and oscillates about a
larger diameter. According to a common concept based on
the Franck-Condon principle, solid lattices usually tend to
expand in the presence of ultrafast carrier photoexcitation since
the electronic excited states are antibonding states. When an
electron is excited, it will try to find a new equilibrium position
at the minimum of the excited antibonding state energy. This
minimum energy is located at a larger coordinate than that of
the ground state, and thus the lattice expands. However, this is
not always the case for RBM coherent phonons in the SWNT
system, where the tube diameter can either expand or contract
depending on the excitation energy.

In order to understand this phenomenon, we consider the
magnitude and phase of the oscillation amplitude Q(t) driven
by S(t) in Eq. (2). First, since δf ∝ Mop as in Eq. (3), the
magnitude of oscillations should be proportional to the product
of the electron-phonon and electron-photon matrix elements:

|Q| ∝ |Mel-ph||Mop|. (4)

Second, according to Eq. (2) and noting that δf μ(k) is usually
positive for most cases of interest (i.e., no gain in the system),
the initial phase of Q(t) is determined only by the sign of
M

μ

el-ph(k) summed over all cutting lines μ and all k points.
The unique values of |Mel-ph| and |Mop| for a fixed selection
of energy and (n,m) then determine the excitation energy and
chirality dependence of the coherent phonon amplitudes.

Let us discuss the type dependence of coherent RBM
phonon amplitudes by comparing two semiconducting zigzag
nanotubes of different families and types. In Fig. 2, we plot the
electron-phonon matrix elements for RBM coherent phonons
in the (11,0) (type-I) and (13,0) (type-II) nanotubes as a
function of the 1D wave vector k. The k dependence of
M

μ

el-ph(k) for the RBM phonon is shown for the first two
cutting lines, for E11 and E22. As can be seen in the figure,
both positive and negative values of M

μ

el-ph(k) are possible.
Also, according to Eq. (2), if we pump near the Eii band
edge, the electron distributions would be localized near k = 0
in the 1D Brillouin zone of the zigzag nanotubes, for which
the kii points for the Eii energies lie at k = 0. Therefore, the
positive (negative) values of S(t) at the E22 (E11) transition
energy are determined by the negative (positive) values of
M

μ

el-ph(k) near k = 0. For the two nanotubes, the signs of
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FIG. 2. (Color online) RBM electron-phonon matrix elements
of (a) (11,0) and (b) (13,0) zigzag nanotubes within the ETB
approximation.

the electron-phonon matrix elements differ at E11 and E22.
The reason is that for type-I and type-II nanotubes the E11

and E22 cutting line positions with respect to the K point in
the 2D graphene Brillouin zone are opposite to each other.22

Depending on the cutting line positions relative to the K point,
the corresponding M

μ

el-ph(k) for a given cutting line is negative
in the region to the right of the K point and positive in the
region to the left.26 This will be proved in the next section
using an effective-mass theory developed by Sasaki et al.27

From this argument, we predict that the type-I (type-II) zigzag
nanotubes will start their coherent RBM phonon oscillations
by initially decreasing (increasing) the tube diameter at E11,
while at E22 the behavior is just the opposite, as shown in
Fig. 2.

III. ANALYSIS OF THE ELECTRON-PHONON
INTERACTION

Since the electron-phonon matrix element determines the
initial lattice response of the SWNTs, we further decompose
Mel-ph into its electron and hole components for each SWNT
in order to understand which component gives a significant
contribution to the ETB matrix element Mel-ph. This electron-
phonon matrix element for the photoexcited electron is
basically a sum of conduction band c and valence band v
electron-phonon matrix elements, which represent the electron
and hole contributions, respectively,20,26,28

Mel-ph = Mc
el-ph − Mv

el-ph

= 〈c|Hel-ph|c〉 − 〈v|Hel-ph|v〉, (5)

where Hel-ph is the SWNT electron-phonon interaction
Hamiltonian.

In Fig. 3, we plot the electron and hole components of Mel-ph

in the ETB model as a function of the 1D wave vector k. If
we compare the contributions from each component, we see
that in the (11,0) tube the electron (hole) component gives a
larger contribution to Mel-ph at E11 (E22). On the other hand,
in the (13,0) tube, the hole (electron) component gives a larger
contribution to Mel-ph at E11 (E22). We can analyze these results
within an effective-mass theory.27 Using the effective-mass
theory, we can obtain a simple analytical expression explaining
the sign of the SWNT electron-phonon matrix elements, which
can then be compared with the ETB results.
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FIG. 3. (Color online) Electron and hole components of the ETB
Mel-ph shown by solid and dashed lines, respectively, for (a) (11,0) and
(b) (13,0) zigzag nanotubes, as a function of k. The matrix elements
for E11 and E22 are shown in black and red, respectively.
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(a) (11,0) (b) (13,0)

FIG. 4. (Color online) Cutting lines for (a) (11,0) and (b) (13,0)
zigzag nanotubes near the graphene K point. Black and red solid lines
denote the E11 and E22 cutting lines, respectively, while the dotted
lines correspond to higher cutting lines. The angle �(k) is measured
counterclockwise from a line perpendicular to the cutting lines, with
the positive direction of the line to the right of the K point. Here �(k)
is shown for a k point on the E22 cutting line for both SWNTs. The
difference between the type-I and type-II families can be understood
from the position of the E11 or E22 cutting lines relative to the K point
(Ref. 22).

In a nearest-neighbor effective-mass approximation, the
RBM Hel-ph for an (n,m) SWNT with a chiral angle θ and
diameter dt can be written as27

Hel-ph = 2sr

dt

(
gon − goff

2 ei3θ

− goff

2 e−i3θ gon

)
, (6)

where gon (goff) is the on-site (off-site) coupling constant.
Here sr = √

h̄/2MωRBM is the phonon amplitude for the RBM,
where ωRBM is the phonon frequency and M is the total mass
of the carbon atoms within the unit cell. To obtain Mel-ph in
Eq. (5), we adopt the following two wave functions:

	c = eik·r
√

2S

(
e−i�(k)/2

e+i�(k)/2

)
, 	v = eik·r

√
2S

(
e−i�(k)/2

−e+i�(k)/2

)
, (7)

for conduction and valence states, respectively, which are
suitable near the graphene K point.27 In Eq. (7), S is the surface
area of graphene and �(k) is an angle at the K point measured
from a line perpendicular to the cutting lines (see Fig. 4). By
inserting the wave functions in Eq. (7) into Eq. (5), we obtain

+〈c|Hel-ph|c〉 = sr

dt
{−goff cos[�(k) + 3θ ] + 2gon}, (8a)

−〈v|Hel-ph|v〉 = sr

dt
{−goff cos[�(k) + 3θ ] − 2gon}, (8b)

and thus

Mel-ph = sr

dt
{(−2goff cos[�(k) + 3θ ]}. (9)

From Eqs. (8a) and (8b), it is clear that the electron and
hole contributions to Mel-ph are simply distinguished by the
off-site and on-site interactions. These equations are thus
qualitatively consistent with the results in Fig. 3. According to
the density-functional calculation by Porezag et al.,29 we adopt
the off-site coupling constant goff = 6.4 eV and the on-site
coupling constant gon = 17.0 eV, which are calculated for the
first-nearest-neighbor carbon-carbon distance.27 However, gon

has no effect on the electron-phonon matrix element since
it vanishes in Eq. (9). A more accurate treatment for the
effective-mass theory should consider the asymmetry between
the valence and conduction bands.30 Within the present model,
we do not consider such an asymmetry since the chirality
dependence of the electron-phonon matrix element can readily
be described by the cos[�(k)] term, which will give a positive
or negative sign in front of goff .

In Fig. 5, we then plot the matrix elements of Eq. (9)
for the (11,0) and (13,0) nanotubes, where the on-site term
(gon) disappears and only the off-site term (goff) contributes
to Mel-ph. It can be seen that the effective-mass theory [see
Figs. 5(a) and 5(b)] nicely reproduces the ETB calculation
results near kii = 0 [see Figs. 2(a) and 2(b)]. However, the
first-nearest-neighbor effective-mass model cannot reproduce
the ETB matrix element results at k far from kii = 0. We can
see this since at E11 and E22 the Mel-ph are almost symmetric
around Mel-ph = 0 in Figs. 5(a) and 5(b) but are not symmetric
in Figs. 2(a) and 2(b). In Fig. 5(c), we show Mel-ph for the
(11,0) tube within the ETB model considering interactions
up to the fourth-nearest neighbors. Based on this figure, we
consider that the exact Mel-ph analytical expression at k far
from the kii should take into account the longer-range electron-
phonon interactions. Nevertheless, the first-nearest-neighbor
effective-mass theory has already given physical insight into
the k-dependent Mel-ph, and considering the approximation
up to the fourth nearest-neigbors is sufficient to converge the
Mel-ph values.

For the zigzag nanotubes, Eq. (9) also explains the depen-
dence of Mel-ph on the cutting line (or k) position. Let us
take the examples in Fig. 4, in which we show the cutting
lines for the (11,0) and (13,0) nanotubes. The E22 cutting line
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FIG. 5. (Color online) RBM electron-phonon matrix elements of (a) (11,0) and (b) (13,0) nanotubes calculated within the effective-mass
theory using goff = 6.4 eV. In (a) and (b), the matrix elements near k = 0 are comparable with the results in Fig. 2. (c) shows the matrix
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for the (11,0) [(13,0)] tube is to the right (left) of the K point,
giving a positive (negative) cos[�(k)] and thus a negative
(positive) Mel-ph for the E22 transition. According to Eq. (2),
the negative (positive) Mel-ph corresponds to the initial increase
(decrease) of the tube diameter. In this way, the chirality
dependence of the coherent phonon amplitude is simply
determined by the electron-phonon interaction. However, we
should note that this simple rule does not work well for E33

and E44, as can be seen in Fig. 1. For instance, the coherent
phonon amplitude at E33 has the same sign as that at E22

although their cutting line positions are opposite to each other
with respect to the K point. The reason for the breakdown of
this simple rule is that the cutting lines for E33 and E44 are
far from the K point so that the wave functions of Eq. (7) are
no longer good approximations. In this case, the ETB wave
functions are necessary for obtaining the coherent phonon
amplitudes.

IV. GUIDE FOR EXPERIMENTALISTS

To consider the more general family behavior of the RBM
coherent phonon amplitudes, we recalculated Qm using the
ETB program for 31 different SWNT chiralities with diameters
of 0.7–1.1 nm and for photoexcitations at Eii in the range
1.5–3.0 eV. The results are shown in Fig. 6. Note that, in
addition to the semiconducting SWNTs, we also give some
results for metallic SWNTs. It is known that the densities of
states for Eii in metallic SWNTs are split into lower EL

ii and
higher EH

ii branches, except for the armchair SWNTs.16 Here

FIG. 6. (Color online) The lattice response of SWNTs with
diameters in the range 0.7–1.1 nm is mapped onto the unrolled
graphene lattice specifiying the tube chiralities (n,m). In this map
Qm is expressed in terms of

√
h̄/2MωRBM. Red and blue colored

hexagons denote the SWNTs whose vibrations start by increasing
or decreasing their diameters, respectively. For clarity, the shrinking
tubes (blue colored hexagons) are also specified by underlining their
(n,m). The laser excitation energies are selected within the range
1.5–3.0 eV. For each (n,m) tube, the corresponding Eii (in eV) found
within this energy region is listed on each hexagon with the label Eii .
The calculated results for the (7,4) and (6,6) nanotubes are not shown
in this figure because their EL

11 > 3.0 eV and the (6,6) tube gives a
negligibly small Qm.

we consider Qm in metallic SWNTs only at EL
11. The cutting

line for EL
11 is located to the right of the K point. We can see in

Fig. 6 that all the metallic SWNTs start vibrations by increasing
their diameters at EL

11. The reason is the same as in type-II
nanotubes, where the cutting lines for the E11 transitions are
located to the right of the K point, giving a negative Mel-ph

(hence a positive Qm) as explained within the effective-mass
theory. On the other hand, at EH

11, the nanotubes should start
their coherent vibrations by decreasing their diameters. In the
case of armchair nanotubes, for which EL

11 = EH
11, we expect

that no vibration should occur because the two contributions
from EL

11 and EH
11 should cancel each other.

For semiconducting nanotubes, we see that most of the type-
I (type-II) nanotubes start vibrating at E11 by decreasing (in-
creasing) their diameters and at higher energies by increasing
(decreasing) their diameters. In a few cases, e.g., (7,6), (9,5),
and (10,5) nanotubes, the deviation from this rule might come
from the 3θ term in Eq. (9), especially for the near-armchair
nanotubes where θ approaches π/6. As mentioned previously,
we consider that in the case of armchair nanotubes, for example
the (6,6) nanotube, which is metallic, the coherent phonon
amplitude becomes small because of the trigonal warping
effect.16 The exclusion of both excitonic and environmental
effects may also be a reason for this deviation because the
Eii transition energies are also shifted to some extent.24,25

Nevertheless, our results should stimulate further work by
experimentalists to check for consistency with this prediction.

V. CONCLUSION

We found that the excitation and chirality dependence of the
coherent phonon amplitudes in SWNTs originate mostly from
the electron-phonon matrix elements. By examining typical
tubes with chirality (n,m) of type-I and type-II SWNTs,
respectively, we found that the nanotubes can start coherent
RBM vibrations by either expanding or shrinking their diam-
eters depending on the sign of the electron-phonon interaction
in the SWNT system, where the Mel-ph values can either be
positive or negative near the K point. The magnitudes of the
coherent phonon amplitudes are estimated to be proportional
to |Mel-ph||Mop|. In the future, the effective-mass theory can
be extended to accommodate longer-range interactions so that
the behavior of the coherent phonon amplitudes at the higher
transitions, e.g., E33 and E44, can be explained. In future
studies incorporating excitonic effects, the exciton-photon
and exciton-phonon matrix elements can be used to replace
the electron-photon and electron-phonon matrix elements.
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