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Abstract 

This paper describes and demonstrates a method for on-line hydraulic state prediction in urban 

water networks. The proposed method uses a Predictor-Corrector (PC) approach in which a 

statistical data-driven algorithm is applied to estimate future water demands, while near real-time 

field measurements are used to correct (i.e., calibrate) these predicted values on-line. The 

calibration problem is solved using a modified Least Squares (LS) fit method. The objective 

function is the minimization of the least-squares of the differences between predicted and 

measured hydraulic parameters (i.e., pressure and flow rates at several system locations), with 

the decision variables being the consumers’ water demands. The a-priori estimation (i.e., 

prediction) of the values of the decision variables, which improves through experience, facilitates 

a better convergence of the calibration model and provides adequate information on the system’s 

hydraulic state for real time optimization. The proposed methodology is demonstrated on a 

prototypical municipal water distribution system. 

 

1. Introduction 

The integration of near real-time hydraulic data with computer simulations for on-line 

operation and control of large-scale urban water distribution systems can be used in a variety of 

applications ranging from real-time optimization of pump and valve settings for efficient power 

management; to the detection and quantification of leaks.  Such a system can also be used for the 

implementation of water security systems and for the prediction of system performance during 

emergency events (e.g., pollution events, main pipe rupture, or significant fire).  
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Over the last 10 years, computer simulation models of water networks have been widely 

used by water systems operators (Walski et al. 2003). In conventional practice, model calibration 

is carried out off-line (USEPA 2005) using a short-term (e.g., one week) sample of hydraulic 

data (e.g., based on a limited set of flow rate and pressure measurements within the network). 

Thereafter, uncertain system parameters (e.g., water demands and pipe roughness) are adjusted 

until an acceptable match is achieved between the model outputs and physical observations. 

Ormsbee (1989) and Lansey and Basnet (1991) were among the first to develop formal 

optimization methods for determining the uncertain system elements. Datta and Sridharan 

(1994), and Reddy et al. (1996) used the regression approach in which parameter uncertainties 

were estimated as part of the calibration process. Greco and Del Giudice (1999) used a 

“sensitivity matrix” to minimize the least squares differences between observed and predicted 

values, and Lingireddy and Ormsbee (1998) developed a calibration method using Artificial 

Neural Networks (ANN). More recently, Kapelan et al. (2007) used the shuffled complex 

evolution metropolis (SCEM-UA) global optimization algorithm to solve a least-squares-type 

calibration problem where both calibration parameter values and associated uncertainties were 

considered in a single optimization model run. 

 

The current research uses a Genetic Algorithm approach following methods developed by Savic 

and Walters (1995); Wu and Simpson (2001); Kapelan et al. (2002); Wu et al. (2002); Walski et 

al. (2006); and Clark and Wu (2006). 

 

Overall, the main limitation of all off-line calibration procedures is that they approximate the 

unknown parameters using a short-term sample of hydraulic data. The calibration results may 

represent the system hydraulics during the short period of the sampling procedure but they are 

not expected to accurately represent the system conditions for the full range of operational 

conditions that can occur. In the case of water demands this issue is even more critical, since 

water demands have dynamic/stochastic pattern variations which fluctuate with time-changing 

economic and demographic characteristics and may even show trends with local climatic 

conditions (Maidment and Miaou 1986; Kenward and Howard 1999; Zhou et al. 2000). In 

principle, much more realistic predictions can be achieved by updating the hydraulic state-
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estimation using continuous on-line hydraulic measurements, provided by a sensor network 

installed on the distribution system.  

  

There have been several recent studies that have assimilated on-line measurements into hydraulic 

state estimation models. Davidson and Bouchart (2006) propose proportional and target demand 

methods.  These are two techniques for adjusting estimated demands in hydraulic models of 

water distribution networks to produce solutions that are consistent with available Supervisory 

Control and Data Acquisition (SCADA) data. The two techniques assume that pipe resistances 

and SCADA data are accurate and that the combination of SCADA data and demand estimates 

produce over-determined problems. Nodal demands are regarded as stochastic variables which 

fluctuate about an estimated mean value. The method of weighted least squares is used to obtain 

solutions that satisfy all of the constraints imposed by SCADA data with adjusted nodal demands 

that most closely resemble the estimates. The methods are intended for use in real-time modeling 

but are limited to quasi-steady state flow.  

 

Shang et al. (2006) presented a predictor-corrector method, implemented in an extended Kalman 

filter to estimate water demands within distribution systems in real-time. A time-series ARIMA 

model is used to predict the water demands based on the estimated demands at previous steps. 

The predictions are corrected using measured nodal water heads or pipe flow rates. As noted by 

the authors, the proposed methodology is in a preliminary stage and aimed mainly to study the 

impact of spatial correlation between demand forecast errors on demand estimations. The 

methodology is demonstrated on EPANET example 3, having 59 demand nodes, through three 

simulation studies with 20 pressure, 20 flow rate, and 40 flow rate sensors. The main conclusion 

was that the model performances depend on sampling design, measurement uncertainty, demand 

forecast error and the spatial correlations among the demand forecast errors. Although only 

preliminary results were presented, the study provided a modeling framework and mathematical 

tools for further implementations on more complex case studies.  

 

In this study, a Predictor-Corrector (PC) approach which integrates a limited number of 

continuous hydraulic observations with a computer simulation model is implemented to 

continually predict the hydraulic state of a real urban water supply comprised of 10550 demand 
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nodes. The M5 Model-Trees algorithm (Quinlan 1992) is used to forecast future water demands 

for a rolling planning horizon of 24 h ahead, and Genetic Algorithms (Holland 1975) are used to 

correct (i.e., calibrate) these predicted values in real-time. Thereafter, at each subsequent time 

step, the corrected outputs of previous iterations are used as inputs for the prediction model. This 

a-priori estimation of the calibration parameters values, which improves through experience, 

facilitates a better and quicker convergence of the calibration procedure towards the optimal 

solution of the problem and provides adequate information on the system’s hydraulic state for 

real time operation and control.  

 

2. Methodology 

Model definitions and assumptions  

1. Calibration Parameters: The calibration parameters used in this study are the variations in 

water demands (i.e., defined as demand multiplication factors; see next paragraph for a full 

description of this parameter). The demand multiplication factors (DMFs) are calibrated at each 

time step of the overall process. Other uncertain variables are less dynamic and their values are 

assumed to be constant for a certain period of time. It is assumed that valve and/or pump settings 

are known inputs, while pipe roughness coefficients are calibrated off-line using conventional 

procedures (with complete supplementary information on pipe diameter, material type, and age). 

 

2. Demand Multiplication Factors (DMFs): The baseline demand (Dbase) of each consumption 

node is a deterministic value that usually equals to the average daily demand (i.e., average daily 

demand is calculated from monthly or quarterly meter readings and billing records). The patterns 

in demand on a finer time scale are described by Demand Multiplication Factors (DMFs). For 

each short-term time step in the demand pattern, the relevant DMFs are multiplied with the 

baseline demands of the consumption nodes to obtain the actual water consumption (i.e., Dt = 

Dbase×DMFt ; where Dt is the actual nodal demand at time step t and DMFt is the demand 

multiplication factor at the same time step). It is assumed that the min-max DMFs boundaries are 

0 and 3, respectively; previous publications (Walski et al. 2003; Jonkergouw et al. 2008) have 

shown that these min-max boundaries provide acceptable estimates for hourly basis demand 

multiplication factors. 
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3. Calibration parameters grouping: There are thousands of unknown parameters in a typical 

urban water system and only a relatively small number of direct measurements available. This 

creates an ill-posed, underdetermined problem which leads to non-unique solutions. This can be 

overcome by grouping the unknown parameters. Grouping is based on the assumption that water 

customers in a given area of the system will have the same characteristics and will not need large 

adjustments to achieve calibration (Wu et al. 2002; Walski et al. 2006). The main advantage of 

‘grouping’ is that the size of the problem is reduced - making it possible to find unique solutions 

to the optimization problem. In this study, the consumption nodes were grouped based on spatial 

analysis of the system and each group of consumption nodes is assigned its own set of demand 

multiplication factors. 

 

4. Time step: the method developed in this study is general and can be adjusted to a wide range 

of time-step intervals so that even frequent continuous sensor measurements can be used in the 

model. The current analysis uses a fixed one hour time step in order to match the frequency of 

available hydraulic data. 

 

5. Time cycle:  The common approach (Shang et al. 2006, Alvisi et al. 2007, and Ghiassi et al. 

2008) for the time-series forecasting of water demands relies on direct identification of patterns 

existing in the archived system data. It has been observed that water demand patterns usually 

follow a 24-h cycle. This cycle is called the Diurnal Demand Pattern (DDP) and is used by many 

urban water utilities to plan the system operation one day ahead (i.e., to schedule pump operation 

and plan tank storage). Weekend demand patterns often differ from weekday patterns and usually 

follow a 168-h (1 week) cycle. In this study, daily and weekly demand cycles were used, so that 

the DMFs at each time-step are predicted based on previously calibrated DMFs from past hours 

24, 25, 168, and 169. 

 

Predictor-Corrector Model 

The predictor-corrector loop process starts at t=169 hr, after performing an off-line calibration 

procedure for the first 168 h (1 week) of the collected data; the aim of this off-line calculation is 

to generate initial values for the input data-set of the prediction model; no a-priori information on 

the first 168 h DMFs values is available except of the min-max boundaries which are 0 and 3, 
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respectively. At t=169 h the prediction-correction process (Fig. 1) is initiated. The following 

paragraphs describe the model steps: 

 

1. DMF prediction: DMFs values of each group of demand nodes are predicted using the M5 

Model Trees algorithm, with the inputs being the calibrated DMFs from past hours t-24, t-

25, t-168, and t-169  

 

2. EPANET simulation: the system hydraulics are simulated using the steady-state mode of 

EPANET, with the predicted DMFs as inputs; the hydraulic simulation outputs are nodal 

pressures and pipe flow rates 

 

3. On-line hydraulic data integration: pressure and flow measurements (from a set of in-line 

sensors) are inserted to the model at the current time step 

 

4. DMF correction/calibration: a calibration problem is formulated and solved using Genetic 

Algorithms. The objective function is the minimization of the differences between 

predicted and measured hydraulic parameters (i.e., pressure and flow rates at the measured 

locations), with the decision variables being the consumers’ water demands (i.e., the 

Demand Multiplication Factors - DMFs). A modified Least Squares fit method (the Huber 

function) which takes into account noisy measurements is implemented to solve the 

optimization problem 

 

5. DMF delay: the calibrated DMFs are being delayed for 24, 25, 168, and 169 h before 

being used as inputs in the prediction model 

 

• Steps 1 to 5 are repeated at each subsequent time step 
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The basic building blocks of the predictor-corrector model (e.g., M5 Model Trees algorithm and 

Genetic Algorithms) are described in the following paragraphs. 

 

M5 Model Trees algorithm (Quinlan 1992) 

The M5 model trees algorithm (Appendix A give a more comprehensive description of 

the methodology) builds rule-based predictive models using a top-down induction approach. The 

tree is fitted to a training data set by recursively partitioning the data into homogeneous subsets 

based on its attributes. Thereafter, the tree is constructed with all training cases being predicted 

by the tree leaves (i.e., each leaf is a linear regression model that can explain the remaining 

variability of each homogeneous subset). In order to simplify the tree structure, and thus to 

improve its ability to classify new instances, the tree is then pruned from the bottom-up by 

quantifying the contribution of each attribute to the overall predicted value and removing those 

Predicted DMFs at t 
P*

i, t; Q
*
j, t Pi, t; Qj, t 

Calibrated 

DMF at t 

2. Simulator (EPANET): 

EPANET steady-state simulation 

inputs at t: 

1. System physical components and 

customers baseline demands 

2. Boundary conditions: reservoirs’ 

and tanks’ water levels at t 

3. Pumps and valves settings at t 

4. Predicted DMFs at t 

 

EPANET steady-state simulation 

outputs at t: 

1. Simulated pressures at t:  P*
i, t 

2. Simulated flow rates at t: Q*
j, t        

i = node index,                                     

j = pipe index 

 

Fig. 1: predictor- corrector loop for Demand Multiplication Factors (DMFs) prediction at the t
th
 time step 

4. Corrector/ calibrator 

(Genetic Algorithms): 

Minimize the differences between 

measurements (Pi, t; Qj, t) and EPANET 

simulated outputs (P*
i, t; Q

*
j, t) using a 

modified Least Squares (LS) fit 

method, with the decision variables 

being the DMFs at t  

Forecast model inputs:  

1. Calibrated DMFs t-24 
2. Calibrated DMFs t-25 
3. Calibrated DMFs t-168 
4. Calibrated DMFs t-169 

 

Forecast 

model output: 

Predicted 

DMFs at t 

1. Predictor (M5 Model Trees algorithm): 

 

1. Measured pressures 

at t:  Pi, t 

2. Measured flow 

rates at t: Qj, t                             

i = node index,              

j = pipe index 

3. On-line hydraulic data 

(Sensor network): 

Calibrated DMFs t-24, t-25, t-168, t-169 

Delay calibrated 

DMFs in 24, 25, 

168, and 169 

hours 

5. Input delay 
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attributes that add little to the model. At the last stage, a smoothing process is performed to 

compensate for the sharp discontinuities that will inevitably occur between adjacent linear 

models at the leaves of the pruned tree. 

 

As observed in previous studies (Solomatine and Xue 2004, Bhattacharya et al. 2007, and Ould-

Ahmed-Vall et al. 2007), Model Trees have several advantages compared to other data-driven 

techniques such as Artificial Neural Networks (ANN), Support Vector Machines (SVM), and 

Regression Trees:  Their accuracy is similar to that of both ANN and SVM and much better than 

that of Regression Trees; they are interpretable to users (in contrast to ‘black-box’ ANN and 

SVM models) and hence can provide insights to prevent sources of inefficiencies; and they are 

much faster in training compared to all other methods.  

 

Genetic Algorithms (GA) (Holland, 1975) 

Genetic Algorithms are heuristic combinatorial search techniques that imitate the 

mechanics of natural selection and natural genetics of Darwin’s principles of evolution. The 

basic idea is to simulate the natural evolution mechanisms of chromosomes (represented by 

string structures), involving: selection, crossover, and mutation. This is accomplished by creating 

a random search technique that combines survival of the fittest among string structures with a 

randomized information exchange. A typical form of a genetic algorithm involves three main 

stages: 1) Initial population generation: the genetic algorithm generates a bundle of strings 

(termed population, or generation), with each string (chromosome) being a set of values of the 

decision variables/optimization parameters. 2) Computation of string fitness: the genetic 

algorithm evaluates each string’s fitness (i.e., the value of the objective function that corresponds 

to each string).  3) Construction of a new generation: the genetic algorithm establishes the next 

generation by performing selection, crossover, and mutation.  The process of selection involves 

choosing strings (chromosomes) from the current population for reproduction according to their 

fitness values.  Crossover involves the partial exchange of information between pairs of strings; 

and mutation is the random change in one of the string locations. The genetic algorithm 

parameters are the population size, the mating and mutation rates, and the number of generations. 
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Calibration Problem Objective Function 

The objective of the calibration process is to match the computed and measured sensor node 

data (pressure and/or flow rates), taking into consideration possible noise in the measurements. 

In this application, calibration is achieved by minimizing a modified least-squares of differences 

function known as the Huber function (Huber 1973). The Huber function implementation to the 

hydraulic state estimation problem is described as follows: 

1. The differences (i.e., residuals) between modeled and observed pressures and flow rates at 

each time step, at sensor node i - are defined as ��,��  and ��,��  respectively 

2. The Huber function of each residual R is defined  as 

                      �	 ��,�� 
� �� 
 ��� 	 ��,�� 
� ���,                  � ��,�� 
� �� � �
����,�� 
� �� � �� ��,           � ��,�� 
� �� � ��                                               (1)       

where h is a predefined value that represent the tolerance to noise in measurements; for small 

residuals (|�| � �) that represent low to zero values of noise in sensor measurements, the 

Huber function minimizes the usual least squares function (i.e., l2 norm approximation), for 

large R (|�| � �) that represent high values of noise in sensor measurements, it minimizes a 

linear penalty function which is relatively insensitive to noise (i.e., l1 norm approximation) 

3. The overall calibration problem objective function to be minimized at each hydraulic time-

step t is defined as 

                                            ∑ �	 ��,�� � ������ ∑ �	 ��,�� ������                                                    (2) 

where i is the sensor nodes index, Np is the total number of pressure sensors, and NQ is the 

total number of flow rate sensors 

• In this application the value of h in each sensor node at each time-step is equal to the average 

of all previous time-steps sensor node residuals multiplied by a factor of 2. 

 

3.  Results 

The predictor-corrector approach developed in this study was tested against the real input 

data of Network 2 (Fig. 2) of the “Battle of the Water Sensor Networks (BWSN): A Design 

Challenge for Engineers and Algorithms” (Ostfeld et al. 2008). The network corresponds to an 

anonymous but real water distribution system comprising 12,523 nodes, two constant head 
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sources, two tanks, 14,822 pipes, four pumps, five valves.  The system was subject to highly 

variable demand patterns over a period of 934 hours (~39 days). Hydraulic simulations for this 

system are considered valid for this entire duration. The original EPANET input file was 

downloaded from the University of Exeter Centre for Water Systems (ECWS) web-site 

(http://www.exeter.ac.uk/cws/bwsn).  

 

 

 

 

The current application assumes that continuous in-line data are available from 10 

pressure and 5 flow rate sensors (Fig. 2).  The nodal flow and pressure records from these 

locations were generated by the EPANET model using real input data for the system. The 

reservoirs and tank water levels were considered as known inputs.  The analysis considers 10 

demand zones (i.e., 10 groups of demand nodes; see Fig.3) based on a spatial analysis of the 

system. It is expected that the consumption nodes in each zone will follow the same demand 

pattern and each nodal base demand at each zone will be multiplied with the same DMF. 

Therefore, the number of decision variables to be calibrated/corrected at each time-step is equal 

to 10.  

 

The total running time on a DELL PC (2.66 GHz, 3.0 GB of RAM) of the GA calibration 

process (i.e., with a GA population of 48 ‘chromosomes’ and 30 GA generations) is about  5 

minutes and the total running time of the data driven prediction process is less than 10 seconds. 

Fig. 3: demand nodes groups on a plane grid 

of the system  

y (ft)  

x (ft)  

Fig. 2: Network 2 with the sensor nodes 

locations  
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Base Run: Demand Multiplication Factors (DMFs) prediction accuracy 

Following previous data-driven models implementations (e.g., Solomatine and Xue 2004 and 

Bhattacharya et al. 2007), about 33% of the data (from t = 680 to 934 hrs, corresponding to a 

total of 254 hrs) was used for cross validating the model predictions. The predictive ability of the 

model can be evaluated with several prediction metrics. In this application the following 

commonly used metrics were applied to evaluate the fit between predicted (p) and actual (a) 

values: 

1. Correlation Coefficient (CC): measures the degree of correlation between predicted and 

actual values; it ranges from -1 to 1, with 1 corresponding to an ideal correlation: 

                                                       �� 
 �
 !",#$%&%'                                                               (3) 

where Cov(p,a) is the covariance between p and a; and σp, σa are their standard deviations 

2. Root Mean Squared Error (RMSE): RMSE is a frequently-used measure of the 

differences between values predicted by a model or an estimator and the values actually 

observed; it ranges from 0 to infinity, with 0 corresponding to ideal fit: 

                                             �()* 
 +∑ !",-#, $./,01 �                                                          (4) 

 where pi and ai are the predicted and actual values of case i; and N is the number of cases 

3. Mean Absolute Error (MAE): MAE is similar to RMSE, except it uses absolute error 

values instead of the squared errors; it ranges from 0 to infinity, with 0 corresponding to 

ideal fit: 

                                                   (2* 
 ∑ |",-#,|/,01�                                                            (5) 

 where pi and ai are the predicted and actual values of case i; and N is the number of cases 

4. Root Relative Squared Error (RRSE):
 
RRSE value is relative to what it would have been 

if a naive predictor had been used. More specifically, this simple predictor is just the 

average of the actual values; it ranges from 0 to infinity, with 0 corresponding to ideal fit:                    

                                            ��)* 
 + ∑ !",-#, $./,01∑ !#,-#'3 $./,01                                                          (6)                                       
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where pi and ai are the predicted and actual values of case i; aav is the mean of the 

observed data; and N is the number of cases 

The accuracy of the 10 zones DMF predictions is summarized in Table 1:  

Zone index CC RMSE MAE RRSE 

1 0.87 0.05 0.06 0.16 

2 0.89 0.06 0.06 0.18 

3 0.92 0.04 0.05 0.18 

4 0.85 0.06 0.06 0.18 

5 0.85 0.06 0.06 0.18 

6 0.86 0.06 0.07 0.17 

7 0.91 0.07 0.06 0.16 

8 0.92 0.05 0.06 0.16 

9 0.87 0.04 0.05 0.15 

10 0.92 0.04 0.05 0.15 

 

 

The results indicate that the predictor – corrector model has relatively good predictive accuracy 

for all 10 demand zones according to all four metrics.  All of the DMFs were predicted with a 

correlation coefficient exceeding 0.85 with mean absolute error below 10%. Figures 4 to 6 show 

the improvement achieved in the predictor-corrector model predictions through experience, as 

demonstrated on one of the system demand nodes (e.g., Junction 7631). In this example, the 

correlation coefficient (CC) is used as the characteristic measure of predictive accuracy. The data 

set of results from t = 169 – 934 hrs was divided into 3 segments (∆t1 =169 - 424 hrs; ∆t2 =425 - 

679 hrs; and ∆t3 = 680 to t=934 hrs).  Figure 4 shows a correlation coefficient, CC = 0.66 for 

time period ∆t1.  This low value is  explained by insufficient input data for the Model Trees 

predictor in forecasting future DMFs. For the second (Fig. 5) and third (Fig. 6) time periods, with 

the increase in training data, there is an improvement in the predictor-corrector performances that 

is refelected in higher correlation coefficients, CC = 0.85 and 0.92, for periods ∆t2 and ∆t3, 

respectively.  

 

 

 

Table 1: Predictive metrics for DMFs in 10 demand zones from base run  
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T (hrs) 

Fig. 4: Comparison between predicted and actual DMFs for time period 1; 

DMF 

DMF 

period ∆t1 (169 - 424 hrs): CC = 0.66 

Fig. 5: Comparison between predicted and actual DMFs for time period 2; 

period ∆t2 (425 - 679 hrs): CC = 0.85 

Fig. 6: Comparison between predicted and actual DMFs for time period 3; 

T (hrs) 

DMF 

T (hrs) 

period ∆t3 (680 - 934 hrs): CC = 0.92 
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Comparison between on-line and off-line calibration model performance 

Since the main hypothesis of this study is that on-line hydraulic-state prediction models 

are more accurate than off-line calibration models in representing the hydraulic state of the water 

system, the predictive accuracy of the proposed predictor-corrector analysis must be compared 

with reference results from off-line calibration.  The off-line reference result are based on a 

calibration using the same pressure and flow records for a one-week period (∆t0 = 0 – 168 hrs). 

The off-line calibration process was much more intensive then the on-line model (200 GA 

iterations instead of 30, with a GA population of 120 decision variables’ strings instead of 48) 

and resulted in a relatively high fit for the DMF’s during the calibration time period.  

The predicted Demand Multiplication Factors (DMFs) for time period 3 (680 - 934 hrs) 

were used together with EPANET analyses to calculate unknown hydraulic outputs (e.g., flow 

rates; flow directions; and nodal pressures).  Thereafter, these parameters, which represent the 

hydraulic state of the water system - were used to evaluate and compare the predictions accuracy 

of the on-line and off-line models.  

1.  Flow rate prediction 

The statistical evaluation of the predicted flow rates includes 5 ranges of predictive 

accuracy (i.e., within 5, 10, 15, 20, and 25 % of the actual flow rates for two groups of pipes: 1) 

pipes with diameters less than 24’’ which correspond to more than 80% of the network length 

and 2) medium and large pipes with diameter greater than 24”  The statistics are computed for all 

the pipes in the system (e.g., 15000 pipes) throughout time period 3 (i.e., over a period of 254 

hrs); such that the total number of flow rates considered  is 3.76x10
6
 (14822x254).  The results 

for pipe groups 1 and 2 are shown in Figures 7 and 8, respectively.  The proposed predictor-

corrector model outperforms the off-line calibration process and provides significantly better 

estimates of flow rates for both sets of pipes.  The predictions are generally much more accurate 

for the medium and large pipes (group 2, Figure 8) than for the small diameter pipes (group 1, 

Figure 7).  For the medium and large diameter pipes, the predictor-corrector model is within 5% 

of the actual flow rates for 68% of the samples and within 25% for 95% of the sample population 

(Fig. 8).  For the smaller pipes the 5% and 25% accuracy rates drop to 48% and 86% of the 
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population.  In contrast, the off-line calibration is only within 5% of the actual flow for 22% of 

the small pipes and 43% of the medium to large pipe sample population. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fraction of 

total sample 

population 

(%)  

Flow rates categories (%) 

20 % Within:    25 % 15 % 10 % 5 % 

Fig. 7: Comparison of estimated and measured flow rates using the predictor-

corrector and off-line calibration methods small pipes (with diameter less than 24”) 

Fraction of 

total sample 

population 

(%)  

Flow rates categories (%) 

20 % Within:    25 % 15 % 10 % 5 % 

Fig. 8: Comparison of estimated and measured flow rates using the predictor-corrector 

and off-line calibration methods for medium and large pipes (diameter greater than 24”) 
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The proposed predictor-corrector model correctly estimated the flow direction for 100 % 

of the sample population of 114822 pipes from t = 680 to 934 hrs while the off-line calibration 

was accurate for 97% of the actual flow directions in the system.  The main conclusion from the 

above is that flow directions are less sensitive to variations in the DMFs (at least for this 

reference pipe network) as both the on-line and off-line models were able to provide very 

accurate estimations of this parameter. 

2.  Pressure prediction 

The statistical evaluation of nodal pressures considers 7 ranges of predictive accuracy 

(i.e., ± 2, 4, 6, 8, 10, 12 and 14 psi of the actual pressures).  The statistics are computed for all 

the nodes in the system (e.g., 12523 nodes) through time period 3 (t = 680 - 934 hrs); 

corresponding to a total sample population of 3.81x10
6
. It can again be observed that the 

proposed predictor-corrector model provides significantly better estimations for the pressures 

than the off-line calibration process.  In this case, 87% of the samples are estimated within 4psi 

using the predictor-corrector scheme compared to 42% using the off-line calibration. 

  

 

 

 

Fraction of 

total sample 

population 

(%)  

Pressures categories (psi) 

12 psi Within:    14 psi 10 psi 8 psi 6 psi 4 psi 2 psi 

Figure 9: Comparison of predictive accuracy for nodal pressures using the 

proposed predictor-corrector scheme and an off-line calibration process  
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Effect of Demand Zone selection 

The Authors have carried out a sensitivity analysis to evaluate how the partition of the 

system into demand zones can affect performance of the predictor-corrector model.  Figure 10 

shows a revised partition of the network into 20 demand zones. In order to keep the problem 

slightly over-determined, the number of the sensor locations was increased to 25.  In order to 

comply with the increase in the number of decision variables in the calibration problem, the 

genetic algorithm parameters were altered to 60 iterations with a population of 96 decision 

variable strings (vs. 30 and 48, respectively, used in the base run). 

 

 

 

 

 

 

 

 

 

 

The correlation coefficients for the DMF’s in the 20 zones DMF are summarized in Table 2:  

Zone index CC Zone index CC 

1 0.88 11 0.85 

2 0.86 12 0.88 

3 0.83 13 0.87 

4 0.89 14 0.78 

5 0.84 15 0.89 

6 0.88 16 0.92 

7 0.88 17 0.91 

8 0.86 18 0.86 

9 0.93 19 0.86 

10 0.92 20 0.87 

 

Y (ft) 

X (ft) 

Fig. 10: Sensitivity analysis using 20 demand zones for the reference pipe network  

Table 2: Correlation coefficients of DMFs for the 20 zone model of the network  
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The average correlation coefficient for the entire system (CC = 0.87) is slightly lower than that 

obtained in the base run (average CC = 0.89) but requires much higher computational effort (e.g., 

about double the total running time of the base run) making it not worthwhile to change the 

demand zones selection used in the base run. Although, the revised partition of the network into 

20 demand zones need not necessarily improve the predictive accuracy of the model (at least 

using CC values) this process of testing different system partitions is important as it may 

improve the model performances. As a conclusion of the sensitivity analysis, grouping demand 

nodes into demand zones requires high level of judgment based on good knowledge of the 

system structure. Therefore, if Geographical Information System (GIS) data of the municipality 

is available, then it is advisable to incorporate it in the demand zone selection procedure and to 

test the model performances with several system partitions.  

4.  Summary 

This paper has presented and demonstrated a Predictor-Corrector (PC) model for on-line, 

hydraulic state prediction of urban water networks.  The method uses a statistical data-driven 

algorithm (M5 Model Trees algorithm) to estimate future water demands, while near real-time 

field measurements are used to correct (i.e., calibrate) these predicted values on-line. The 

calibration problem is solved using Genetic Algorithm with a modified Least Squares (LS) fit 

method (Huber function) to account for noisy measurements. The a-priori estimation (i.e., 

prediction) of the decision variables values, which improves through experience facilitates a 

better convergence of the calibration model towards the optimal solution of the problem; and 

provides adequate information on the system’s hydraulic state for real time optimization. Future 

research efforts will focus on the implementation of the developed methodology on large scale 

urban water system using physical data from an in-situ sensor network. Additional efforts will 

focus on the ability to detect anomalies such as leakage and burst events in real time. The 

integration of water networks aggregation methods to reduce the computational time required for 

the calibration process will also be explored. 
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Appendix A: Model Trees Construction using the M5 Algorithm  

(Quinlan 1992) 

Suppose we have a set of T training cases. Each case is specified by its value of a fixed set of 

attributes and has an associated target value. The aim is to construct a model that relates the 

target values of the training cases to their values described by the input attributes. The 

performance of the model will generally be measured by the accuracy with which it predicts the 

target values of unseen cases (cross-validation data set). Fig. A1 illustrates a set T which is 

described by two input attributes (x1, x2) and one target attribute (y): 

 

 

 

 

 

 

 

 
Fig. A1: Set T - described by 2 input attributes (x1, x2) and 1 target attribute (y)  

T 
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In this tree based model, the set T is either associated with a leaf, or some test is chosen that 

splits T into subsets corresponding to the test outcomes. The same process is applied recursively 

to the subsets. This persistent division often produces over-elaborate structures that must be 

pruned back (i.e., this process is described by the following steps). 

Step 1: Building the Initial Tree  

The standard deviation of the target values of cases in T is computed. Unless T contains very few 

cases (e.g., three examples or less) or their values vary only slightly (e.g., 5% of the standard 

deviation of the class values of the original set of examples), T is split on the outcome of a test. 

Every potential test is evaluated by determining the subset of cases associated with each 

outcome; let Ti denote the subset of cases that have the i-th outcome of the potential test. If we 

treat the standard deviation sd(Ti) of the target values of cases in Ti as a measure of error, the 

expected reduction in error (SDR) as a result of this test can be written as:  

                               
i i

i

1
S D R  =  sd  (T )  -  T   sd  (T )

 T  
∑                                             (A1) 

After examining all possible tests, the model tree chooses one that maximizes this expected error 

reduction (SDR). At this step an initial model tree has been grown and a multivariate linear 

model is constructed for the cases at each node of the model tree using standard regression 

techniques. Fig. A2  illustrates this process on the data set T introduced in Fig. A1. 

 

 

 

 

 

 

 

 

 

Fig. A2: model tree construction based on the data set - T 
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After that, the tree is transferred into a simple set of If-Then rules that simplify the tree structure 

and make the tree internal structure interpretable to users. Fig. A3 illustrates this process on the 

data set T introduced in Fig. A1. 

 

  

 

 

 

 

 

 

 

Step 2: Pruning the Tree 

 At the second step, the over-elaborated model tree structure is simplified, and pruned bottom-up 

- and thus its ability to classify new data sets (i.e. cross validation data) is improved. The 

simplification of the model tree is performed mainly by removing variables that contribute little 

to the model; in some cases the algorithm removes all variables, leaving only a constant.  

Step 3: Smoothing 

The smoothing process is performed to compensate for the sharp discontinuities that will 

inevitably occur between adjacent linear models at the leaves of the pruned tree, particularly for 

some models constructed from a smaller number of training examples. In smoothing, the 

adjacent linear equations are updated in such a way that the predicted outputs for the neighboring 

linear input equations are becoming close in value.  

 

 

Fig. A3: model tree transformation into an If-Then set of rules 

demonstrated on sub-set Y6 

ε α β 

 

δ 

Rule 6: 

If α ≤ x1< β and δ ≤ x2< ε Then 

y6 = a6x1+b6x2+c6 


