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ABSTRACT

This study is concerned with the development and analysis of a formal
model for a computing device composed of two-level finite state inter-
acting elements allocated in an unbounded K-dimensional grid: the
distributed hierarchical automata. The model is used as the main tool
for the study of three types of epigenetic control processes in the
genetic apparatus of procaryotes: Initial Activation Processes, Com-
posite Processes, and Construction Processes; and also, for the devel-
opment of a structural identification algorithm for determining dynamic
characteristics of epigenetic processes in the basis of observed experi-
mental data.

Thesis Supervisor: Alan S. Willsky
Title: Associate Professor of Electrical Engineering & Computer Science

-2-



DEDICATED TO MY PARENTS

Scxiomon arnd Hitdt Kohn



ACKNOWLEDGEMENTS

The research carried out in this thesis could not have been accom-

plished without the support and guidance of Professor Alan S. Willsky.

I sincerely acknowledge his patient, and sometimes trying efforts

during the preparation of this thesis.

I would like to thank Professor Sanjoy K. Mitter, not only for his

knowledgeable advice during the preparation of this thesis, but also for

his friendship during my stance at M.I.T. The interaction with Prof.

Mitter, not only as his student and Graduate T.A., but as a friendly ear,

is one of the most profitable events of my academic experience.

Professor Timothy L. Johnson, who first introduced me to the wonder-

ful world of biological systems, had a definite influence on my education,

not only during the research of this thesis, but also throughout my col-

laboration with him in several biologically-related projects at the Elec-

tronic Systems Laboratory.

I want to thank Dr. Gail Willsky, of Harvard University, for her

helpful advice during my research, and most of all for agreeing to dis-

cuss genetics in a systems' context and at my level of understanding.

The outcomes of these discussions are reflected, in part, in the organi-

zation and context of Chapters 2 and 3 of this document.

I would like to thank Professor Michael Arbib, of U. Mass. at Amherst,

for his helpful comments and discussions on several aspects of distributed

automata, some of which were considered in this thesis.

-3-



During my stance at M.I.T., my (unconscious) tendency of defeating

any form of administrative order was, fortunately, not successful. I

thank, for that, two friends; Mr. Richard A. Osborne at the Electronic

Systems Laboratory and Ms. Marilyn Pierce of the E.E. Graduate Office.

I also want to acknowledge the profitable interaction with my fellow

students at E.S.L. In particular, my friends Poh Kam Wong, Wing Hong Lee,

Edward Chow and Demosthenes Teneketzis of the "night-shift" which con-

stituted a forum in which many problems of the world were solved; and

my friends of the "day-shift" Stephen Marcus, Jack Liu, Robert Washburn

and Steve Young for a friendly ear to many, sometimes not totally coher-

ent, ideas in system theory.

I want to thank Professor Leonard A. Gould, my academic counselor,

for his friendship and for his advice during my years at M.I.T.

Finally, I want to thank all my friends at E.S.L., in particular,

Barbara Peacock who typed several versions of this thesis and who matched

my procrastinating index with hers, so that within the two of us a re-

sonant delay was accomplished; to Arthur Giordani for a beautiful set of

figures and many cigarette-chatting moments; to Maria Monserrate for a

daily ration of Spanish; and, to all the others which space does not

allow me to list here.

I would like to thank Susan for many things, in particular, for

adapting herself to an unusual time schedule.

-4-



Last, but not least, I want to thank my parents, to whom this thesis

is dedicated, for their unrestrictive moral support and many other

things.

The research for this thesis was conducted at the M.I.T. Electronic

Systems Laboratory with partial support provided by NSF under Grants

ENG77-0777 and ENG 76-02860.

-5-



TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION 8

1.1 Outline of the Study 8

1.2 Fundamental Characteristics of the Model 10

1.3 Contributions of the Study 22

2. GENERAL STATEMENT OF THE PROBLEM 27

2.1 Outline of the Epigenetic Control Problem 27
in Procaryotes

2.2 Description of the Concept of Distributed
Dynamics and Neighboring Interaction 59

2.3 Scope and Aims of the Study, Fundamental
Assumptions and Experimental Data Base 66

2.4 Summary 83

3. BASE MODEL FOR EPIGENETIC CONTROL MECHANISMS
IN PROCARYOTES 85

3.1 Outline of Modeling Strategy 85

3.2 Classification of Elements of the Model
According to Function as Information
Carriers 103

3.3 Incidence Diagram of Dynamic Interaction
Among the Elements of the Classes 110

3.4 State Aggregation of the Base Model 216

3.5 Examples 226

3.5.1 The Lac Operon 227

3.5.2 A 3-Operon Eigen Cycle 256

-6-



CHAPTER

4. FORMAL MODEL FOR EPIGENETIC CONTROL MECHANISMS:
THE DISTRIBUTED HIERARCHICAL AUTOMATON

4.1 Formulation of the Model

4.2 Basic Characteristics of DHA's

4.2.1 Local Properties of DHA's

4.2.2 The Concepts of Behavior and
Display

4.3 Realization Theory of DHA's

4.4 Algorithmic Computation of a Covering DHA
for a Given Finite Family of DHA's

4.5 Process Control in DHA's

5. SIMULATION STUDY OF EPIGENETIC CONTROL MECHANISMS

5.1 Computer Implementation of DHA's

5.2 Structural Identification of Epigenetic
Processes in the Context of DHA's

6. SUMMARY, CONCLUSIONS AND FUTURE RESEARCH

6.1 Summary

6.2 Conclusions

6.3 Critique and Future Research

BIBLIOGRAPHY

APPENDIX A.l

APPENDIX A.2

APPENDIX A.3

-7-

PAGE

262

262

280

280

306

309

331

344

399

399

429

449

449

451

453

456



1, INTRODUCTION

1.1 Outline of the Study

The present study is concerned with the development and analysis of

a formal model that represents the information-dynamics mechanisms of the

genetic apparatus in procaryotic cells; that is, the mechanisms that

accompany the processes by which elements (chemical entities such as pro-

teins, metabolites, metallic ions, etc.) in the cell experience struc-

tural transformations in a coordinated fashion.

We will concentrate our effort on the information-based mechanisms

in the genetic apparatus known as epigenetic control mechanisms. We

briefly describe these mechanisms next.

By epigenetic control mechanisms we mean the collection of rules

(based on physical and organizational principles) that govern the be-

havior of the cell as a biological system. Although this definition is

by no means universally accepted, (see for instance, Rosen [11) it con-

veys at an admittedly too general level, for the moment, the scope of

our study. From those rules, we will extract a classification of the

elements of the genetic apparatus according to their role in the con-

trolled behavior of the cell, and a set of "canonical" dynamic inter-

actions among elements of the different classes of this classification.

The main criterion in the classification is to abstract those properties

that determine the behavior of elements as information carriers in the

genetic activity of the cell; and on the basis of this classification,
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and the associated canonical interactions, develop a model in terms of

which some aspects of regulation and modulation in the cell, directly

dependent on the genetic structure, can be analyzed. In particular, we

are interested in the following:

- controlled protein synthesis and repression processes;

- catalysis and inhibition in chemical reactions that occur

in the intra-cellular space;

- genetically controlled response to environmental changes.

In principle, all the processes in the cell are determined by the

structural characteristics of the elements that participate in them (in

fact, this is one of the fundamental assumption in theory of develop-

mental biology; see Wolpert [2]). However, for many studies, at the

cellular level, it is sufficient to abstract some properties of the dyna-

mics of the elements and model the elements (accordingly) as items pos-

sessing those properties without considering their physical structure.

This strategy is followed in the study of epigenetic control mechanisms

outlined above.

We conclude this outline by mentioning that, as in any study of

physical phenomena by means of mathematical models, we have made certain

idealizations concerning the physical characteristics of the processes

we are modeling. We will explicitly state these whenever they arise in

our study and evaluate their effects (restrictions) on conclusions that

are derived from the study of our model.

In addition, in the development of the model, we have used certain
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assumptions about the physics of the processes under study, that are

still the subject of controversy. Whenever these arise, we will outline

the experimental evidence on which they are based, and attempt to qualify

their significance in our model.

Occasionally, we will use the model to test assumptions about the

system it represents, or at least to predict the consequences of these

assumptions and/or to aid in suggesting experiments by which the validity

of these assumptions can be tested.

We close this introduction by noting that this research should be

considered as an initial step towards building a foundation and developing

research aids (i.e., models) on which further study in the field can be

based.

1.2 Fundamental Characteristics of the Model

The methodology that we will follow in our study of epigenetic pro-

blems, is based on the development of a model that captures some important

features of the genetic system of procaryotes. In a somewhat abstracted

setting, some of the principal features of our model of epigenetic control

processes in procaryotes are as follows:

1. There is no central controller that regulates the dynamics of

the system and consequently, the flow of information is carried

out via the decentralized interaction among elements of the

system.

2. Coordination of activities in the system is implicit in the

rules of operation of its elements.
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3. The dynamics of the system is determined by the dynamics of

each of its elements. In turn, the dynamic behavior of every

element in the system depends only on the dynamics of a finite

number of elements physically close to it in the informational

space. That is, there are not actions-at-a-distance among

elements of the system.

4. All the control actions required for the proper operation of

the system are generated within the system and carried out by

interaction among its elements.

Equivalently, the system is hierarchically closed [5]; that is, all

the control actions, such as response to environmental changes (different

metabolites), immunological responses, etc., are generated within the

system itself. This charactetistic, is, from the control point of view,

the main distinctive feature between procaryotes and eucaryotes ([ 3]).

Now we list and sketch briefly some of the distinctive features of

the elements that form the building blocks of our system; as we shall

see, these features plus the system properties listed above, constitute

the basic criterion for the development of the formal model. These fea-

tures have been established by abstracting observed physical and/or

operational traits of the elements of the system.

1. The number of elements composing the system is finite and

remains finite during the life span of the system, but this

number is arbitrarily large.

2. Each element can exhibit only a finite number of informational
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states1 ; in particular, every element can exhibit a distin-

guished informational state whose information is "no informa-

tion is carried by the element at this time".

3. Only finitely many of the elements of the system are in non-

dormant state at every time.

4. At any time, the evolution of the state of an element depends

solely on the state of neighboring elements, where for the

moment, neighboring elements means a set of elements that

are physically close to the element in question. We will make

this concept more precise later on (see Sections 3.1 and 4.1).

5. The elements are allocated in a coordinated space that we will

call the informational space, with exactly one element per

coordinate, and all the elements have null-volumetric extension

in this space (i.e., the elements are simply points in the

space).

6. The information content of the state of any element in the

system, at all times can be decomposed into two items: struc-

ture and intensity. The structure part of the state contains

information about the dynamic status of the element at this

time and its identity (i.e., the type of element according

to the classification mentioned above). The intensity carries

The concepts of information dynamics, informational state, etc. used in

this outline are given in an intuitive fashion. Their formal meaning
will be discussed in terms of the model in Chapter 3.
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information about the element, concerned with its function in

the system (e.g., an element representing a catalytic protein

will carry in its intensity component of the state, informa-

tion about its catalytic condition; for instance, which reac-

tants are catalyzed by the protein (see Section 3.3). Any

type of element in the system can exhibit only a finite number

of different structures and intensities in its state.

The state decomposition mentioned in the last paragraph is one of

the cornerstones in our criteria for model development. Its significance

will be emphasized in many parts throughout this study. See Sections 2.1,

3.1 and 4.1 for examples.

7. Finally, we will assume that the system, and consequently its

elements, are located in an unbounded space with a coordinate

system as mentioned before, and that the availability of ele-

ments for allocation in such a space is arbitrarily large.

The above list of traits is included in order to indicate the uni-

fying modeling philosophy to be used as we develop models for each system

element.

Based on the previous informal description of the important attri-

butes of the system, we now outline the model for this study whose char-

acteristics are determined on the basis of those attributes. We will

see in Chapter 3 that these attributes correspond to physical or opera-

tional characteristics of the elements of the genetic apparatus.
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Our model is composed of 3 classes of elements:

1. Genetic elements

2. Chemical elements

3. Virtual elements.

The genetic elements are further classified into 3 categories:

a) Genetic storage - which as its name indicates, represents the

DNA of the cell. We assume that the information contained in the DNA

is organized in indivisible units called operons ([6)), which precisely

represent the information contained in the operons of the cell. When-

ever an element represents a gene that is "on" we will assume that the

whole operon to which this gene belongs is active. Since operons are

constituted by sets of linked (although not necessarily adjacent) genes,

we believe that for the purposes of this initial operational studythis

assumption is adequate (see Lewin [6] for some justification from the

biological point of view for this assumption).

b) Transcriptors - this category consists of polycistronic

M-RNA's. They are simply copies of the operons of the genetic storage

category. For our purposes, transcriptor elements are included in the

model because the most important control action of the genetic apparatus

is carried out at the transcriptional level [7], (i.e., repression and

induction).

c) Protein synthesizers - these elements are a representation of

the elements in the cell responsible for, or that participate in, the

synthesis of proteins. These include ribosomes, tRNA's with and without
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the respective amino acid attached to it, and regulation proteins. (In

this study we will not consider structural proteins.) The model for the

The chemical elements class is also divided into 3 categories:

a) Genetically regulated chemical elements - these elements repre-

sent chemical components that interact (receive information) with the

protein-synthesizer category. In other words, elements whose dynamics

are regulated and/or modulated by regulation proteins. An example of

these elements are the chemical elements of the lac-operon [41].

b) Non-genetically regulated chemical elements - in this category

we include elements which participate in processes that are not regulated

by the synthesis of proteins, that is, triggered as a response to parti-

cular states of the system. In short, the elements of this category

represent chemical components which participate in chemical reactions

which are not caralyzed (or modulated or inhibited) by regulation pro-

teins. Notice that this does not imply that those reactions are not

catalyzed by proteins. In fact, most of them are catalyzed by proteins,

but these proteins are synthesized constitutively (Watson [8]); that is,

irrespective of whether or not the reactants (or products) of the reac-

tions they catalyze are present in the system. We note that from the

biochemical dynamics point of view, the elements of this category are

-16-



analogous to the ones classified in a); however, from the information

dynamics point of view they are quite different. For instance, regula-

tion of chemical processes by competitive or constitutive inhibition does

not involve responsive synthesis of proteins, but rather the control

action is implicit in the interaction of the elements involved in the

process. Another example of a control mechanism involving elements of

this category is allostery. By allostery, we mean the control of a chemi-

cal process in the genetic apparatus by another chemical process whose

elements do not directly have an affinity for the elements of the pro-

cess to be regulated. The actual control is achieved via one or more

chemical elements (called allosteric elements) which do possess affinity

for elements in both processes (see Jacob and Monod [31]). In short,

allostery is a form of indirect control. We will consider several as-

pects of allosteric epigenetic control in our study, in terms of the for-

mal model.

c) Environmental elements - this is a third category of the class of

chemical elements. In this category we include all the elements that

enter the cellular space from the environment. As mentioned before, these

include metabolites (which belong to the class of chemical elements) and

phages which have genetic apparatus or rather genetic storage and use

the synthesis elements of the host for synthesizing proteins.

The two classes of elements of the model discussed above contain

elements that are abstractions of physical components actually present

in the system (the genetic apparatus). In the third class of elements,
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we do not represent physical elements of the system, but rather some

very important control actions that are characteristic of the genetic

apparatus; hence, the name virtual element class.

The class of virtual elements is divided into two categories:

a) Feedback mechanisms - as its name indicates, these elements

represent feedback actions in the genetic apparatus. Since these feed-

back actions often involve processes with elements physically located

in non-neighboring spots in the system and yet, the dynamics of these

elements (as can be seen experimentally) is linked. We include virtual

elements in our model to represent this linkage (interaction) while

preserving the neighboring interaction criterion discussed previously.

However, the objectives of this classification go far beyond a sim-

ple modeling criterion. We hope that the analysis of the dynamics of

these virtual elements, in terms of the model, will shed some light into

the operation of non-neighboring element interactions, a study that is

the object of current study in genetic research (see Ptashne, et al [9]).

b) Clocks - these elements represent time-coordination actions in

the system. Since procaryotes are, from the genetic point of view,

autonomous systems, the timing of the different processes must be gen-

erated within the system itself. This timing includes a hierarchy in

the dynamics of processes, which, as we shall show in the present study,

is responsible for the coordinated activity of the system despite the

absence of a central controller. In particular, we are interested in

incorporating into our model elements that represent the mechanisms for
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the coordination of the utilization of elements whose availability in

the system is limited (this type of time coordination is studied in

connection with many other different types of systems (see for instance

Gallager, et al [101 under the heading Dynamic-conflict free-resource

allocation). The study of biological clocks has occupied a central

position in theoretical biology research for many years (Prigogine [11]).

Nevertheless, many of their basic characteristics (from the operational

and physical point of view) are poorly understood. It is our purpose

in this study to find and analyze some of these characteristics in

connection with the role of clocks in epigenetic control problems.

In the previous paragraphs we have given an outline of the classifi-

cation of the elements of the system as a preliminary step in the modeling

process. The next step that we follow is the determination of the so-

called diagram of incidence of the different categories of elements in

the system [12].

The diagram of incidence for our model is a flow chart in which the

boxes represent categories of elements and the arrows represent infor-

mation flow (see Figure 1). This diagram establishes the basis for the

formulation of interaction relation among elements in the system. It

also establishes the criterion for model aggregation that will be used

in this study.

By model aggregation we mean a procedure for determining the appro-

priate dynamic characteristics of a typical element of each of the

classes of elements described previously. The classification of elements

-19-



discussed above is based on the function of these elements in the system

as information carriers. Thus, although two elements of the same cate-

gory have very different biochemical characteristics (for instance, two

different proteins of the Protein synthesizers category catalyze differ-

ent reactions) their behavior as information carriers is similar, and

therefore they can be modeled with elements that have the same dynamic

structure from the information point of view, with the only possible

difference between them being the number of different states that each

one of them can attain.

The last paragraph outlines the modeling strategy we will follow

for representing elements of the system:

1. For each category we develop a finite number of typical

elements (from the information-dynamics point of view).

The structure of any element in a category is identical

to one and only one of the typical elements of that category.

We will refer to the typical elements of a category as the

types of that category.

2. The dynamic-interaction characteristics among types, are con-

strained by the information flow chart among elements of

different categories (or among elements of the same category)

as indicated in Figure 1. No other interactions are allowed.

The next step in the modeling process, is to determine the dynamic

structure of the types in the model; that is, the evolution of their

state in time. Clearly, since our model represents a physical system,
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we want a causal representation 6f this evolution. Further, the evolu-

tion of the state of an element in any place in the system is determined

by its interaction with elements located in its neighborhood. For these

reasons we model the types (and thus, the elements) as finite-state out-

put automata ([13]) with the states of neighboring elements as inputs.

We note that the elements of the model are assumed to be allocated in

a coordinated space (one element per coordinate) that we referred to

previously as the information space. Thus, the neighborhood elements

of a given element are those elements located in neighboring coordinates,

a concept that will be made explicit in terms of the formal model. Mo-

dels of this type have been studied in computer science under the name

of cellular automata (Codd [22]). As it is usual in automata based

models, the time variable takes discrete values (i.e., 0,1,2,...).

From the discussion in the last paragraph, it is clear that the

dynamics of an element is completely specified once we define the state

transition function of the element.

In our case, the state transition function of an element is a func-

tion that, given the present state of the element and the present states

of its neighboring elements, computes the state one unit of time ahead.

Since the state of an element is composed of two parts (structure

and intensity) the state transition function must be decomposable into

two functions: one that computes the next structure part of the state

given the present state and inputs, and another that computes the next

intensity part of the state in terms of the present state and inputs.
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This is the fundamental criterion for the construction of the transition

functions for each of the types of the model.

For illustrative purposes only Figure 2 shows the state diagram,

i.e., the graph of the transition function of a hypothetical type in the

model. We note the distinction between structure (dashed line boxes)

and intensity parts of the states.

With the construction of the transition function for each type, the

so-called base model [12] is completed. In this model we have a descrip-

tion of its elements (in our case the types) and the way they interact

dynamically, so that in principle,we can study the characteristics of

the system in terms of the model. The task is termendously difficult,

because in order to describe global dynamic characteristics of the system

(as is required, for instance in the study of controlled metabolic chains

(14]) we have to study the evolution of each element in the model. Due

to the nature of our informational space (i.e., recall that it is un-

bounded) this is extremely difficult. For this and other reasons that

will become apparent as we progress in this study, a formal (i.e., mathe-

matical) model is developed on the basis of the base model outlined above.

We call the procedure followed in the development of such a formal model

a realization of the model.

1.3 Contributions of This Study

Our goal is to study some operational aspects of the information

dynamics in the genetic system of procaryotes. In particular, our empha-

-22-



sis is in the control aspects of the processes that regulate and modulate

those operational characteristics. We will look at these control mechan-

isms in the setting or an epigenetic description of the elements that

participate in this process and their characteristic interaction that

determines their ability to respond in coordinated fashion to different

environmental conditions.

The methodology we use in our study can be summarized in the

following steps:

(i) Development of a base model for these mechanisms based on an

analysis of the operative characteristics of the elements that

participate in these processes. We concentrate our effort on

those characteristics that involve transformation or storage

of genetic information (see Chapters 2 and 3).

(ii) We define a finite set of distinguishing characteristics and

classify the genetic elements according to these characteris-

tics (see Sections 3.1 - 3.4). This step involves an aggre-

gation procedure which consists of defining, for each class of

elements, a model typical of this class.

(iii) In this step, we develop a formal methematical model, based on

the base model, which preserves most of the important operative

characteristics of the base model such as the fact that the

dynamics of processes in the genetic apparatus are distributed

in the cellular space, the control of these processes is not

the responsibility of a central control entity, and the ele-
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ments oarticipating in these processes share a common hierar-

chical structure.

This model is the distributed hierarchical automaton (DHA) whose

main features are described in Chapter 4.

The DHA model we have developed seems to be new and we show it pos-

sesses properties that allow its analysis and construction with effective

i.e., algorithmic procedures (see Sections 3.5 and 5.1). In particular,

the realization problem of DHA is carried out with an algebraic pro-

cedure that is a generalization of the corresponding procedure for fin-

ite state machines. To our knowledge, this is the first time such an

approach has been attempted for distributed automata. Similarly, the

determination of the universal type; that is, the simulation of a DHA by

another DHA (the covering DHA (see Section 4.4)) is carried out by an

algorithmic procedure (whose objective is to obtain a single module cap-

able of emulating any of the modules of the DHA it is simulating). Last,

but not least, three kinds of control problems and their solutions, for-

mulated on DHA's involving processes such as construction and process-

global regulation are new (see Section 4.5).

(iv) This step involves the implementation of the model developed

in step (iii) as a computer program (see Chapter 5). This

program allows us to simulate the DHA and determine from these

simulations some additional properties and its computational

shortcomings as a research tool in the study of epigenetic

control processes. The program developed in this step incor-
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porates several novel ideas for simulation of large scale dynam-

ic systems (such as the DHA) such as the use of hashing func-

tions for storing and retrieving data for the simulation of the

dynamics of these systems.

(v) Finally, in this step, we use the program developed in the

previous step, and apply steps (i)-(iii) to a few chosen

genetic processes that actually occur in the cell in order

to evaluate both the performance of the model and methodology

in the study of practical problems, and to determine its

limitations in this respect.

We note that in the DHA for epigenetic control models we have made

several assumptions which are motivated by mathematical and computational

factors rather than physical factors - we mention a few - unboundedness

of the information space, finiteness and quantization of the state of the

types, discretization of the time scale, etc. We will use the application

examples of step (v), in part, to determine how severe these approxima-

tions are with regards to the usefulness of the model as a research tool

in epigenetic studies.

In synthesis, our accomplishment with this research effort was to

develop a model that allows us to do in-numero studies of several genetic

problems, to exhibit its usefulness as a research tool in the study of

those problems, and to determine its limitations in these tasks.

We conclude this section by mentioning that the construction of the

model object of this study was carried out with the fundamental goal of
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providing a flexible computational tool for studying a great variety of

epigenetic control processes rather than a particular process. With this

objective in mind we have developed a conversational algorithm so that

a user which may not be interested in the internal structure of the model,

but rather in its applicability, can proceed to use it with only a very

limited knowledge of how the model works, since the computation of the

model proceeds from biological characteristics requested by the construc-

tion program (Section 3.5) to the user. The translation of these charac-

teristics into operational code is automatic, and the outcome of the

simulation of the model is given to the user also in biological terms,

(see Sections 3.5 and 5.1).

We illustrate several characteristics of the model using as an

example the lac-operon system in E. coli. This system has the advantage

of being simple enough so that different aspects of the model can be

illustrated without obscuring them with the technical difficulties that

arise in a more complicated system. Also, this system has been widely

studied so that experimental data about its behavior is readily available

and we can correlate it with the corresponding behavior obtained from the

model.
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2. GENERAL STATEMENT OF THE PROBLEM

2.1 Outline of the Epigenetic Control Problem in Procaryotes

In this chapter we establish, in general terms, the aims and scope

of our study of epigenetic control processes in procaryotes.

As a preliminary step, we introduce some concepts of theoretical

genetics with emphasis on their interpretation in the context of our

study. Next, we formulate the objective of our study, subdivide it into

three subproblems and discuss the justification of this classification.

We conclude this chapter with a brief description of the methodology

used in the analysis of the problem, and a critical assessment of the

advantages and limitations of our approach, as compared with other pro-

cedures and techniques that have been used in the past to study the

problem. (i.e., [1], [2]).

A generally accepted fact in modern biology states that biological

systems are formed by a finite set of different components, (this is

sometimes referred to as the modular principle [3]) whose dynamic inter-

action characterizes the dynamics of the system. In particular, pro-

caryotic cells1 are considered as systems composed of a finite number

of molecular species whose characteristics determine the dynamic be-

havior of the cell.

We note that molecules themselves can be thought of as dynamical

iProcaryotes are organisms composed of a single cell. (see Watson [20]).
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systems whose elements are the atoms that compose them; however, in

epigenetic studies it is customary to consider molecules as the basic

elements of the system under study.

The previous remark establishes the first important characteristic

of epigenetic studies, namely, that the building blocks of the system

are molecules.

From the physical point of view, the study of dynamics of ensembles

of molecules has evolved into an integrated body of techniques and prin-

ciples called macroscopic or phenomenological kinetics [4]. This name

is justified by the fact that it has its origins and inspiration in the

interpretation of experimental data at the compositional level of molar

concentrations of each of the molecules in the system, with respect to

a reference volume (e.g. the intracellular volume).

The macroscopic kinetics of a system of molecules is usually re-

presented by a set of coupled ordinary differential equations which

attempt to simulate the time-evolution of the molar concentrations of

the molecules in the system. Because of the relation that this model

has with our model of epigenetic mechanisms, we describe it briefly.

Lets assume that the system consists of N distinct types of

molecules of known initial concentration enclosed in a fixed volume

(thus, the system is isometric). With each type i of molecule in the

system a variable, x. (t), (t is the time variable) is associated.

Here, x. (t) represents the molar concentration of the i-th
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species at time t. We further assume that the system activity is char-

acterized by M chemical reactions among the N species of the system.

(We assume that both reactants and products of these reactions are part

of the N species in the system).

The macrokinetic model of a system of the type described above, is

derived by expressing the speed of increase or decrease in time of each

of the molecular species in the system as a function of some of the

molar concentrations in the system. In symbols,

x (t) =f 1(x (t)..xN(t)) i=l,...,N (1)

x. (0) = x.o, given
11

where the functions f., i=l,...,N are determined by a combination of

theoretical and empirical considerations such as mass balance and

observed reaction courses, and most important,by assuming reaction

mechanisms for each of the M reactions of the system. A particularly

popular example of this method of study is provided by the so-called

Michaelis-Menten model ([5], [6], [7]) which, although initially devel-

oped for studying enzyme-kinetics,has been generalized to represent a

large variety of molecular systems.

The objectives behind the methodologies of macroscopic kinetics

outlined above, is to establish physical and operational characteris-

tics of the system in terms of the mathematical properties of its con-

centration-dynamics model (i.e., a set of equations of the form of (1)).

-29-



The kinetic model is fit to experimental data about the system by

assigning values to a set of parameters in the equations of the model.

Among these, the most widely used are reaction constants and affinities.

Once the parameters of the system have been established, we can

describe important qualitative and quantative biochemical characteris-

tics of the system such as stability, reaction time constants, etc. by

examining the behavior of the model. Furthermore, we can use the model

to attempt to predict in terms of it, reaction-time courses for

different initial conditions than the ones under which the system para-

meters were found and with the aid of some (mostly empirical) additional

relationships we can predict the effect of variations in environmental

conditions (e.g. temperature) on the dynamics of the system.

The techniques of macrokinetic theory described above, have been

adapted for the study of functional operation of cellular and sub-

cellular systems by many researchers in the field. A sample of this

approach can be found in the works of Banks [8], Davidson [9], [10],

Goodwin [11] and Rosen [12], from the theoretical point of view, and,

Hood, Wilson and Wood [13] and Goodwin and Ziegler [14], from the ex-

perimental point of view.

Although macrokinetics has been found to be a useful tool in the

study of functional aspects of the genetic apparatus of procaryotes,

(e.g. Reiner [26]), it has important shortcomings in these tasks that

are worth discussing here, since they provide motivation for studying

these systems with a different modeling strategy.
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The first limitation, and in our opinion, the crucial one, was

already mentioned previously; namely, the fact that given the reactions

characteristic of the system (a piece of data that is not always avail-

able) we have to assume the reaction structure of the system in order

to obtain a model of the type described earlier. This, of course, means

that although the model derived in this fashion and the system coincide

in their behavior for a given set of initial-component molar concen-

trations, their dynamical structures1 may be widely different and con-

sequently functional, structurally-dependent properties of the elements

obtained on the basis of an analysis of the model are, at the very best

unreliable and frequently totally erroneous (Bartholomay [15]).

The reason behind this limitation, as pointed out by many authors

(e.g. Higgins [16], Rosen [12]) lies in the fact that given the reac-

tions characteristic of a system of molecules such as the genetic appar-

atus of a procaryote, the structure of the dynamics of the system, has

from the macrokinetic point of view, a great number (infinite, in fact)

of feasible reaction scheme structure models representing it.

We mention that biochemists ([15], [17]) are aware of this limita-

tion and have developed a new theory, called microkinetic theory, which

is based on quantum mechanics and whose main objectives are to study

the structure of the dynamics of systems of molecules by determining

the dynamic structure of each of these molecules in terms of the pro-

perties of the atoms that form them and the interaction-characteristics

between molecules as a consequence of these properties.

iThat is, the dynamical structure of the model and that of the system
it attempts to represent.
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In principle, given a system composed of N molecules such as the

one sketched earlier, if we can determine its microkinetic model (which

boils down to determining the Hamiltonian
1 operator of the system) we

can determine (up to the uncertainty level of the system) all the struc-

tural characteristics of its dynamics and therefore, the functional

roles played by each type of molecule in the system. However, micro-

kinetic models, even for the simplest system (e.g. a monomolecular-

single reaction system), are so complex from the mathematical and com-

putational points of view that even with considerable approximations

such as slater energy hypersurface approximations (Slater [18]),the

analysis of the functional characteristics of the model is very complex

if not impossible.

Nevertheless, microkinetics theory is a very promising area of

research and its application to the detailed study of genetic systems

will give, in the future, a better comprehension of the characteristics

of these systems. We point out that microkinetics theory has been used

successfully in the study of some morphogenetic properties of macro-

molecules2

A second limitation of macrokinetics in the study of genetic sys-

tems is related to the methodologies for gathering experimental data.

These techniques, with very few exceptions, require in-vitro experi-

1See Bartholomay [15].
2

See Turing [53].
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ments ([15]), in which only a small subset of the reactions of the

system are identified. The implicit assumption here is that the effects

of the rest of the system on the subset of reactions under experimenta-

tion, is negligible or at least can be phenomenologically accounted for.

It has, however, been experimentally proven in a number of cases (see

Lewin [19]) that in-vivo time-course behavior of subsystems of genetic

systems is very different from the in-vitro behavior of these subsys-

tems.

Finally, a third limitation, also related to the experimental tech-

niques of macrokinetics, involves the relation between the time and

spatial scales of these experimental techniques and the time-horizon

and spatial extent of the genetic system under study. These techniques

usually involve measurements that are carried out, not on an individual

cell or subsystem of a cell, but in aggregates of cells (cultures) or

subsystems, and the time-interval of measurement spans several genera-

tions ([20], [21]). These experimental conditions are required in order

to ensure statistical confidence of the measurements. However, the

objective of the experiments is to identify parameters of reactions

whose time constants are shorter by several orders of magnitude than

the time interval of a single generation. This implies that the re-

sultant parameters correspond to a smoothed average (over time and

space of the time-course of the system. Consequently, important struc-

tural variations of the system are not reflected in the resultant model.

(An example of this effect is analyzed by Holland [22], with respect to
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epistatic effects in catabolic repression.)

In the last paragraphs we have made a brief critical description

of some important aspects of macrokinetic and microkinetic techniques

with emphasis on their applicability and limitations to the study of

genetic systems. Our purpose in this exercise was to establish a frame

of reference for comparison purposes with our study of epigenetic con-

trol mechanisms in procaryotes which we will formulate next.

The first task towards the formulation of our problem consists of

defining what we mean by epigenetic control mechanisms. This is necess-

ary due to the fact that this terminology is used for designating dif-

ferent (although related) concepts in cellular genetics, population

genetics and cellular physiology (see for instance Waddington [23],

Goodwin [24], Kauffman [25] and Reiner [26]).

By epigenetic control mechanisms in the genetic apparatus we mean

a finite set of temporal and/or spatial interactions among the chemical

species (and organelles) present in the cellular space, by which the

activity of the cell is regulated and modulated, based on the informa-

tion stored in the genes of the cell.

Admittedly, the definition of the last paragraph is ambiguous and

perhaps too general; our purpose in the following paragraphs is to

qualify its major components by formulating, in general terms, the

methodology we use in this study, and discussing in terms of it, the

objectives of our research.

As in most studies in modern biology, ours is based on the develop-
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ment of a model of the genetic system of the procaryotic cell. The

fundamental characteristics of our model are the following:

1. The model is an ensemble of elements each one representing

a particular class of molecules in the system. The number of

different classes of elements in the model is finite.

2. The elements of the model in each class represent the function

of the respective class of molecules in the genetic apparatus.

That is, the time-course evolution of an element of the system

represents the activity of a molecule (or organelle) in the

system that fulfills a specific function in the cell (e.g.

genetic storage, catalysis synthesis of control-elements,

etc.).

The second set of characteristics motivates our choice of models

for the different classes of molecules in the apparatus:

3. A typical molecule in the system is represented by an element

whose dynamic structure is capable of processing finite

amounts of information (whose characteristics will be des-

cribed later). This information is provided dynamically to

the element by interaction with other elements of the model

and by its internal storage (i.e., an element has memory).

In this representation of molecules of the genetic apparatus, we

do not model their physico-chemical characteristics, but their function-

ality. (Of course, this functionality is determined by their physico-

chemical properties; but in the model these are not explicitly consid-

ered.)
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This modeling approach is based on one of the fundamental conclu-

sions achieved in a symposia in Villa Serbelloni (Italy) in the Fall of

1965 under the chairmanship of Waddington (see, Waddington [26a]). (The

objective of the symposia was to establish the basis for a coherent

development of theoretical biology as a scientific discipline.) The

alluded to conclusion was that biological system dynamics, in general,

and cells in particular, have, from the functional point of view, great

similarity with the evolution of computational processes in digital

computers. (In particular, the papers of Arbib [27], Fraser [28],

Lewontin [29], Burns [30], Wolpert [31] and others presented at the

symposia explore several variants of this analogy.)

Although we don't use this analogy as a working principle through-

out the development of our model, it certainly constitutes a frame of

reference to which we go from time to time to assess our results in a

computational context. For instance, in 3.) above we considered, at the

element level, the dynamic structure of an element as determined by its

observed (or assumed) operational characteristics and not its physical

properties (which determine those characteristics); this approach is commonly

taken in the study of computer systems in which a computational process

can be described by specifying a set of instructions (the program) and

the time evolution of the variables of the process (as determined by

the program) without any knowledge of how these instructions are physi-

cally implemented (e.g. see Engeler [32]).
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4. In addition to representing molecules (i.e., representing

their function), we must provide our model with a formal

description of the interactions among elements. Since the

elements represent classes of molecules, this amounts to

specify the mechanisms of information transfer between typi-

cal elements of the different classes and among two or more

elements of the class.

From the operational point of view, these mechanisms fulfill two

tasks: (a) they provide the means by which information is transferred

among elements of the model; and (b) they determine how an element se-

lects dynamically the elements with which it interacts.

Task(b)above requires for each element in the model to possess in-

ternal computation capability to perform the selection of the elements

with which it interacts.

5. In 3.) and 4.) we established some general properties of the

elements of the model without specifying where and how these

elements are spatially allocated. In studying the genetic

apparatus from an operational point of view, this issue is

of fundamental importance because the time-course of genetic

processes is determined by flow of information among the

elements participating in these processes (see Levin [34]

for an in-depth analysis of this aspect) and this flow is

accomplished by physical migration of molecules in the cellu-

lar space (e.g. mass-diffusion in the intracellular and extra-
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cellular spaces), and/or by wave-like propagation or dispersion

of disturbances (e.g. local pH variations in the intra-

cellular space, electric pulses in the cellular membrane, etc).

Thus, an adequate representation of the cellular space, from

the operational point of view, requires not only a coordina-

tized set to represent the physical space, but an effective

way for representing the information flow throughout the sys-

tem.

In other studies of operational aspects of epigenetic control

mechanisms ([24]), the information-flow is represented by defining sig-

nals which carry the information between the elements of the system.

In our study, we do not take this approach. Based on an analysis of

the operational model devised by Jacob and Monod [35], which have been

corroborated by many experiments ([36]), we represent information flow

in the model by well defined changes in time of the internal storage of

the elements (as we shall see; changes in the state of the elements).

In each element, these changes are functionally dependent, at each time,

in the information stored in the elements which are located in the

nearest-neighbor coordinates of this element, in a space whose coor-

dinates are defined in such a manner, that at any time, an element

allocated at a given point of the space, interacts with, at the most,

one element along each coordinate.

We note that under the representation of the space in which the

model operates, suggested above, there is no actual motion of the ele-

ments (for information transmission purposes) but rather, the informa-
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mation flow is simulated by dynamic changes of the state of the elements

of the model which are functionally dependent on the states of corres-

ponding neighboring elements.

We refer to the representation of the space of the model outlined

above, as the Informational space of the model.

6. The previous characteristics of the model refer to dynamic-

operational properties of the model; now, we state some pro-

perties of the model which refer to the control aspects of the

genetic apparatus.

Perhaps the most evident characteristic of the genetic apparatus

from the control point of view, is the absence of a central controller

(although there is a central storage of genetic information). The con-

trol activity of the genetic apparatus is carried out usually by sev-

eral processes more or less independent of each other, whose regulation

is accomplished by the local interaction (in time) of the elements

participating in the process.

A second characteristic of the genetic apparatus with respect to

its control activity, refers to the coordination1 of processes; this

task is also accomplished locally (i.e., at the element level); that is,

there is no central coordinator for the processes of the system. In

order to satisfy the requirement in our model, we must provide the ele-

IBy process coordination we understand a set of mechanisms by which two
or more processes time their interaction (see Chapter 4).
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ments with appropriate mechanisms so that the coordination of activities

is implicit in the resultant operational rules of the elements. These

rules are described later on in this section.

Finally, all the control actions for the operation of the system

are generated within the system and carried out by interaction among its

components. That is, there is no external controller.

7. One of the most important operational aspects of the genetic

apparatus, which has received a great deal of attention over

the last 10 years ([37], [38]), concerns the interrelation

between different processes which are being carried out

simultaneously by the system. It turns out that these pro-

cesses are well ordered with respect to at least two criteria;

time and structure (also called spatial organization). The

resultant classifications of processes according to these

two criteria are called time and structural hierarchies,

respectively. (see Pattee [37])

Process hierarchies play a very important role in the analysis of

control strategies in the genetic apparatus, as we shall show in terms

of our operational model in Sections 2.3 and 4.5. Here, we mention two

aspects of the dynamics of the system, which are critically dependent

on the hierarchization of the processes involved in these dynamics.

These are, resource allocation and coordinated response to environmental

disturbances.

By resource allocation we mean the dynamic distribution (sometimes
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called sequencing (Ziegler [391)) of elements of the system which parti-

cipate in more than one process and whose numbers might be in short

supply. (For instance, ribosomes are used in every protein synthesis

process, also, in some reactions, two or more elements compete for the

same substrate.) We will see that this allocation of elements is im-

plicit in the characteristics of the processes in the system and depends

on a hierarchical ordering of processes that we call time-hierarchy,

which is established as its name indicates, by time-dependent para-

meters which are associated with each process in the system.

In the coordinated response to environmental disturbances by the

genetic apparatus, it is common to have several processes, evolving

simultaneously, which do not interact among themselves during most of

their time-courses except at a specific instant of time, at which, they

interact through some of their elements. The mechanisms of this inter-

action will be analyzed in terms of the model, in Chapter 5, where we

will show that this coordination is a function of the time hierarchy

introduced in the last paragraph. (An example of this coordination can

be observed in the processes that form the metabolic cycle in the cell,

see Watson [331-)

In addition to a time-hierarchization of the processes that consti-

tute the response to a disturbance to the system, another ordering of

the processes that participate in its dynamics is observed. This or-

dering classifies the processes on the basis of their control action,

thus, it is called control hierarchy.
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In the control hierarchy a given process P is said to be of lower

hierarchy than a process P , if P in order to fulfill its function, re-

quires information from process P . The information from P to P is

transferred via interaction of some of the elements participating in

these processes.

We note that as characteristics of the genetic apparatus, both time

and control hierarchies have close analogs in digital computer systems.

The time hierarchy introduced above, corresponds to the on-line priority

assignments in parallel synchronous processes (see Stone [40]), while

the control hierarchy corresponds to the structured organization in

multilevel-process computers. (see Tannenbaum [41]). We take advan-

tage of this similarity when we translate the properties of the system

related to these hierarchies into our model.

8. One of the most remarkable properties of the genetic apparatus

is the fact that the structure of its dynamics changes as the

system evolves in time and space, as a function of its state.1

These changes are not just parameter changes, but they in-

volve the controlled construction of subsystems that perform

a preassigned task. In this study we refer to processes

whose control activity consists of the construction of sub-

systems on which processes are executed, as construction

The process of catabolite repression provides an example of this

characteristic (see Hayes [54]).
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processes. An obvious example of construction processes is

given by the controlled (as opposed to constitutive) synthe-

sis of proteins (see Lewin [6]).

The previous 8 attributes of the genetic apparatus and of our

modeling philosophy are the basis on which we have developed the opera-

tional model of epigenetic control mechanisms, the main subject of our

study.

The remaining part of this section is devoted to a description

of this model and a comparative analysis of its characteristics with

those of the macrokinetic model sketched before.

The microkinetic model, or rather, a particular representation of

it, will be used in Chapter 3 as the basis under which our operational

model is constructed.

The eight attributes are characteristic of the following opera-

tional principle known as the (reduced)1 dogma of cellular genetrics

(see Crick [42]).

DNA -MRNA - Protein_ _ Substrate

t t
Transcription Translation Catalysis

The dogma establishes the flow of genetic information in the system

and thus determines the operational characteristics of the control

mechanisms in the genetic apparatus.

The dogma presented here is a reduced version of the one commonly
accepted today in which DNA is modifiable under inverse transcription
from M-RNA.
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Briefly, the incidence-diagram above indicates that the control

actions of the genetic apparatus are executed by catalytic proteins

which are synthesized by a translation procedure under the direction

of a MRNA encoding of the amino acid residues forming these proteins,

and this MRNA molecule is transcribed from a specific locus of the DNA

of the cell.

The information flow suggested by the diagram above is not a

spontaneous process, but it is triggered by specific conditions in the

system (e.g. the presence or absence of a given metabolite(s)). Fig-

ure 1 gives the incidence-diagram of a simple epigenetic process in

which the information flow proceeds according to the dogma.

In Figure 1 OP. stands for an element representing the portion of

DNA of the cell coding for the ith operon' (see Figure 2). NP repre-

sents the element that carries on transcription (a protein called MRNA

polymerasa). MRNA. is the transcribed version of the operon, R is the

element that translates MRNA. into one or more proteins, represented

in the figure by PR. k=1,...,j. These proteins catalyze (or inhibit)
i,k

specific reactions which are denoted by RS k=l,...,j and whose
i,k

representations in terms of elements will be discussed in a moment.

Finally, TFM, represents the transcription control mechanism for

the ith operon. The TFM. has as its function to establish the opera-

tional interaction between the control metabolite element, the regu-

1In this study an operon is a set of genes under a common transcriptional
control. E lac operon. (see Lewin [36])-
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lator protein and the operon, as will be explained later. We note that

in contrast with the other elements in the epigenetic control mechanism

of the operon, TFM. does not represent a molecule, but a control action;

for that reason these elements, as well as other elements of analogous

characteristics that will be introduced throughout our study, are re-

ferred to as virtual elements.

Before passing to the description of the representations of the

reactions in terms of elements we digress for a moment to discuss the

meaning of the subindices of the different elements in Figure 1.

First, the subindex i in OP. indicates that this element repre-

sents the operon located in the ith address of DNA. It is well known

(see Watson [431) that every gene (and consequently every operon) occu-

pies a specific location in the DNA of procaryotes, therefore the map

Addresses - --.- Operons (2)

is 1-1 (in biology literature the set of addresses is called the locus

of the genes, see Hood, Wilson, Wood [13]).

Further, we shall assume that the number of different operons

(N in Figure 2) in a given cell under study is an invariant of the

system; therefore (2) is also onto.

The second subindex in PR. indicates that the corresponding
i, k

element is representing the kth protein coded by operon i. Since pro-

teins of a given operon are synthesized sequentially, this index carries

also time information as indicated in the diagram of events shown in
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t - 0 OP. is activated

- t- 1 MP interacts with OP.
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- t t2  Transcription of Code

of PR S

R starts synthesis of PR.

-t t 3- t t5  Transcription of Code

of PR., 2 ond S

R starts synthesis of PRi,2
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t t 3. Transcription of Code

of PR.. and S
R starts synthesis of PR..

t -t [t=n t3.
j

PR. 1 synthesis

is completed

PR 12 synthesis
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PR. . synthesis

is completed

[PR. interacts with RS.

t = PR1 is destroyed

,PR 2 interacts with RS,2

-t t 7PR is destroyed
7i,2

PR. . interacts-with RS.

-t t3  RS.. interacts with

3 + 1 TFM. -TFM. interacts with

t= t.+ 2 PR. OP

is destroyed Lt = tj + 3 OP is destroyed

Figure 3 Diagram of Events for the System of Figure 1
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Figure 3.

Figure 3 displays the important events in the evolution of the

epigenetic system of Figure 1. We note that we have idealized two

important aspects in the evolution. First, we have assumed that every

protein of the operon is not synthesized until its MRNA is completely

transcribed and second, any protein does not start its catalytic action

until completely synthesized. There is a considerable amount of experi-

mental evidence (e.g. Malkin and Rich [44], Lewin [36]) that in both

cases the action of these elements is initiared while their transcrip-

tion or synthesis are not completed. However, for the purposes of our

study these characteristics do not represent crucial operational pro-

perties and therefore these assumptions do not affect, significantly,

the results of this study.

Notice also that in Figure 3 we have indicated that MRNA. and

PR have finite life spans, a feature that has been experimentally
i,k

verifiedI and is clearly desirable for the epigenetic mechansim to

respond to actual conditions of the cellular environment it is regu-

lating.

Figure 4 illustrates the characteristics of a subset of the most

important reaction system structures that we consider in our model of

epigenetic mechanisms. We note that in each of the cases the reaction

1See Lewin [36].
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is assumed to be catalyzed by a protein. Although every reaction that

evolves under catalysis can evolve autonomously (with a much smaller

reaction constant), it is safe to assume (see Watson [33]) that in pro-

caryotic cells all the reactions evolve under catalysis.

The simplest reaction system is the one corresponding to the mono-

molecular irreversible reaction illustrated in Figure 4a. In our model,

we represent the evolution of this reaction by assuming initially that

two elements; A representing the reactant and PR representing the cata-

lytic protein, interact in a manner that will be explained later. As a

result of this interaction, element A becomes element B, the product of

the reaction.

The transformation of an element representing A into element B,

mentioned above, involves, as we shall see, a state transition of the

element. This transition is driven by the interaction with the element

representing PR. We note also from the figure that the element repre-

senting PR preserves its identity, a feature that is in accordance with

physical evidence. (see Bartholomay [45]).

In Figure 4b there is an illustration of the representation of a

monomolecular reversible reaction. No attempt is made in the figure to

represent timing of the events A+B or B+A only their occurrence. For
PR PR

the timing of this as well as other events of reversible nature in the

apparatus we will include in our model a class of elements which, as

with the transcription control mechanisms discussed previously, do not

represent molecules, but rather actions. In this case they represent
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time coordinating actions. We refer to these virtual elements as

clocks.

Figures 4c) and 4d) illustrate the basic aspects of biomolecular

irreversible and reversible reactions respectively. The representations

for these reactions follow similar patterns to their respective counter

parts for monomolecular reactions. They are explicitly included in the

model because as shown in Section 3.3, the behavior of the latter differ

radically from the behavior of the former, from the operational point of

view.

In Figure 4c) the symbol "0" indicates that the element has reached

a special state called dormant state whose meaning is no information is

carried by this element. We clearly need such an element to describe

what happens to elements in reactions with fewer products than reactants.

We think of some of the reactant elements as being "transformed" to the

product elements, while the other reactant elements "vanish" -- i.e.

they reach the dormant state. The dormant state and its meaning will

be discussed further in Chapter 3.

The representation of multimolecular reactions of the form,

m1A + ... + mA + - n1B1 + ... + n B (3)
PR

where m., k. < k, n. 1 < i < k, are stoichiometric coefficients, will

be carried out by expressing (3) as a sequence of reactions, each one

of them of one of the forms indicated in Figures 4a) - 4d). Aside

from the fact that this provides us with a manageable representation of
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very general reaction systems (i.e., reaction systems involving several

coupled reactions of the type (3)), it is frequently the case that reac-

tions of the form of (3) do evolve in steps of the type of Figures 4a)-

4d).

Finally, Figure 4e) illustrates an important type of reaction (some-

times called a ring or cycle) which, as we shall show, exhibits remark-

able oscillatory characteristics (the various elements appear and dis-

appear at constant time intervals). Reactions of this type will be

proposed in our study as the processes that provided the cell, and in

particular the genetic apparatus, with a time base for its control

actions. (Reactions of these and similar structures are sometimes

called biochemical clocks (Prigogine [461).)

Now, to complete our brief overview of the epigenetic control

mechanism depicted in Figure 1, we discuss some important characteris-

tics of the virtual element representing the transcription control

mechanism. It is well known (see Jacob and Monod [35]) that the opera-

tion of the mechanism depends on the characteristics of interaction of

two elements: the controlling metabolite (M) and the regulator protein

(P). Each one of them can operate according to one of two schemes

(see Figure 5). This implies that we must consider four possible types

of different transcription control mechanisms (TF,)4; as illustrated in

Figure 5.

According to the controlling metabolite (M), which in our example of

Figure 1 is one of the reactants or products of one of the reaction sys-

tems, (this provides the feedback), (TFM.) can be of one of two
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types; Inducible is M turns the transcription on,and Repressible if it

turns the transcription off. Notice that M is an input to TFM. (i.e.,

as we shall see its state is an input).

According to the regulatory protein (P), which need not be (and

usually is not) a protein of the operon (OP.) it is regulating, TFM.

can be one of the two types; Negative is P represses transcription when

present and Positive if P activates transcription when present.

Combining these two characterizations we obtain the four classes of

different transcriptional control elements as illustrated in Figure 5.

Examples of operons corresponding to Figure Sa) in E coli include lac

and gal operons, to Figure 5b) ara and mal, to Figure 5c) trip and his

(see Watson [33]). We could not find an example for an operon controlled

by a transcription mechanism corresponding to the representation of

Figure 5d); however, we find no reason from the operational point of

view for such an operon not to exist and we shall illustrate with a

hypothetical example, a case in which this type is the best type of

control (see Section 3.5.1).

In general, epigenetic control processes in procaryotes involve

several coupled operon systems as indicated in Figure 6, in which we

display a 3-operon system involving operons OP., OP. and OP . The
i 3 k

regulator protein of OP. is coded by OP. and its control metabolite
1 J

belongs to reaction system RSkl'

For operon OP transcription is regulated by protein PRk2 which

also regulates the transcription of OPk. The metabolite controlling OP
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belongs to RS.

Finally, operon OPk is regulated by a protein synthesized by itself

(as we shall see in Section 3.5.1 this implies that TFMk must be of

the repressor type), PRk,2 and controlled by a metabolite belonging to

RS. .
i,1

The last example illustrates the complexity of the structure of

epigenetic control mechanisms. We note that this complexity, measured as a

function of the number of elements evolved in the process, or the number

of links in the incidence diagram of the process is considerable even

for the case in which only a few operons are involved. The example of

Figure 6 also illustrates important operational properties that in

certain measure are generic to all epigenetic control processes. These

properties, known as self instructive catalytic properties were suggested

by Eigen [47] as the means by which global coordination of multiple

operon systems is achieved. In section 3.5.1 we will implement the

example of Figure 6 in terms of our model and in Chapter 4 characterize

algebraically its self instructive catalytic properties.

We note that, to our knowledge, the system of Figure 6 does not

correspond to any known "real life" epigenetic mechanism, but it pos-

sesses many of the characteristics observed in some of the operons

systems in E coli (Lewin [36]) and is simple enough so that these

characteristics can be studied with a reasonable sized model.

In the last paragraphs we have given a diagramatic description of

some characteristics of the epigenetic control mechanisms from the

operational point of view, with emphasis on the transcriptional con-
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trol. The overall structure of these controls, as suggested by Fig-

ures 1 and 6 is based on the model for the lac operon in E coli ori-

ginally proposed by Jacob and Monod [48], which has been shown to agree

with experimental data for other operon systems [36].

We note that the version of the model of Jacob and Monod given

above, on which our study is based, is an ensemble of specialized inter-

acting elements, some of them representing actual molecules that appear

in the cell and some representing activities rather than physical ele-

ments.

The dynamics of the system is represented by transformations in the

state of its elements and these transformations are driven by local

interactions among elements. This characteristic is in contradis-

tinction to the macrokinetic model discussed earlier in which the dy-

namics of the system are represented by assigning an intensive variable

(concentration) ' to each molecular species in the system and then, es-

tablishing,more or less phenomenologically, a set of mass-balance (and/

or energy balance) expressions for reaction-schemes among these mole-

cular species. These expressions are then used to write down the dy-

namic equations representing the evolution of the system, with the

implicit assumption that some of its important operational characteris-

tics will be captured by the model derived in this fashion.

1An intensive variable is defined at every point in the cellular space.
Thus for instance, we talk about the concentration of a protein and
assign to is a value at each point in the cellular space despict of the
fact that only a finite (integer) number of proteins can exist in the
space at any time. In our model, an element represents a molecule in
a specific location on the space, therefore we do not have intensive
variables describing the dynamics of the interaction between elements.
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In synthesis, in this section we have established a set of general

principles on which our modeling strategy is based. We have illustrated

diagramatically the interaction-structure among the elements that form

this model and have described some of the important operational charac-

teristics of these elements in relation to the molecules or epigenetic

actions they represent.

2.2 Description of the Concept of Distributed Dynamics and Neighboring
Interaction

This short section is devoted to the introduction of two fundamental

dynamic properties of the genetic apparatus in procaryotes, that have

determined in great part the structure of our model.

In ths last section we established that our model consists of an

ensemble of elements and the dynamics of the system is determined by

interaction (in time) of these elements in a coordinated space that we

called informational space. In this section, we will define this space

and describe how the elements of our model are allocated to it.

We assume throughout this study that the elements of the model

have null volumetric extension in the informational space. Since our

purpose is to study operational characteristics of epigenetic control

processes which are dependent on the functionality of the elements

participating in these processes, and not on the physical structure of

these elements, the assumption is not a limiting one.

Based on the previous assumption, we now explain how elements are

allocated in the informational space. The idea is to assign to each
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ordinate point of the informational space one and only one element.

For most of this study the informational space will be the cartesian

product of k copies of the integers (Z k) where k > 1, is an integer

chosen according to the criterion described in the next paragraphs.

The discussion above gives us an additional characteristic of the

model which can now be defined as an ensemble of interacting dynamic

elements (whose characteristics will be introduced in Chapters 3 and 4),

allocated in a k-dimensional grid. This is illustrated for k=2 in

Figure 1.

The dimension k of the informational space is chosen according to

the following criterion:

We consider epigenetic control processes of the type diagrama-

tically illustrated in Section 2.1 (Figures 2.1.1 and 2.1.6), and note

that any given element interacts directly with a finite number of ele-

ments at any time. (Interactions are indicated by the arrows joining

the elements.) For the purposes of analysis and to stick as close as

feasible to the characteristic of the genetic apparatus, it is con-

venient (but by no means necessary) that at any time t, the elements

interacting with a given element M to be allocated at this time in the

nearest-neighbor coordinates of the coordinates of M in the information-

al space. Our model has been developed according to this constraint.

That is, no interaction at-a-distance between elements is allowed.

We note that this requirement for the model, plus the fact that

at any point in the informational space we have a single element, imply

that the maximum number of interacting elements with a given element,
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at a given time t, in a k-dimensional informational space is 2k+l (that

is, including the element itself). Therefore, we choose k according to:

- criterion for choosing the dimension of the information space (k)

2k+l = maximum number of interacting elements at any time in

the epigenetic control mechanisms of the system under

study. A

Clearly, not every element in the model will interact with the

maximum number of its nearest neighboring elements (2k+l). Figure 2

shows a subset of the possibilities of nearest-neighbor interaction in

a 2-dimensional informational space.

It is easy to see that in a k-dimensional informational space,

there are 2 2k+ possible nearest-neighbor arrangements. We will see in

Chapter 3 that only a small subset of these have meaning in our model.

We now establish some important aspects of the elements of our

model which are consequences of the nearest-neighbor interaction re-

quirement.

As mentioned above, the dimension of the informational space is

chosen so that the maximum number of elements invloved in an element

interaction (2k+l) are nearest-neighbors in the space. This implies

that in any interaction which involves m < 2k + 1 elements, the corres-

ponding element must possess internal logic capable of choosing the

appropriate m elements with which it interacts. We will see in Chap-

ter 4 that this task is accomplished by a subsystem that forms part of
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every element of the model that we referred to as Input selector.

The input selector of an element is a device that selects as a

function of the state, one of the possible 2 2k+ nearest neighboring

arrangements that we refer to herein as neighborhood functions and

whose characteristics are described in Chapter 4.

In a given element, once the appropriate neighborhood function is

selected, the states of the corresponding nearest-neighbor elements

constitute the input that drives the element, as discussed in the last

section.

Finally, we note that the informational space we have chosen for

our model is unbounded and since at each of its points we have assigned

an element, the number of elements in our model is infinite. This

characteristic does not satisfy one of the constraints we established

in the last section, namely that the number of elements of the model is

finite.

We cope with this problem by demanding that each element of our

model be able to reach a distinguished state, called dormant state,

whose meaning is "no information is carried by the corresponding element

at this time". Then, we satisfy the finiteness requirement by de-

creeing that at any time, all but a finite number of elements in the

model are in dormant state. Thus, despite the fact that there is an

infinite number of available elements in the model, only finitely many

of them are in a state that carries nontrivial information.

In Chapter 4 we will see that the dormant state, in addition to
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the role described above, has the function of separating simultaneous

non-interacting epigenetic control processes in the informational

space.

We conclude this section with a brief introduction of a special

element in our model which simplifies our analysis.

We have seen in Section 2.1 that the model consists of ensembles

of elements classified1 according to their operational role in epigen-

etic control processes, and in this section we established that these

elements are allocated to points of the informational space. From the

analytic point of view, it is very difficult to determine properties of

such a model.

We cope with this difficulty by constructing an element capable of

simulating, in a precise sense to be given in Chapter 4, the behavior of

all the classes of elements in the model (e.g. elements representing

operons, MRNA's, proteins, transcription feedback mechanisms, etc). We

call this element the covering element.

Thus, if we assign to each point in the informational space a

covering element, by carefully setting it so as to simulate the appro-

priate element, we will have the same behavior in this model as we would

have in the model with the original elements; with the advantage that

now we are dealing with a single element at each point in the informa-

iIn Section 2.1 we describe this classification informally. A formal
description is given in Chapter 3.
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tional space.

2.3 Scope and Aims of the Study, Fundamental Assumptions and
Experimental Data Base

In this section we establish the objectives of our study, state

the formal procedure we follow to achieve these objectives and discuss

its limitations and the simplifying assumptions, about the operational

characteristics of the genetic apparatus, made throughout the develop-

ment of this formal procedure.

Our main objective is to develop an algebraic model that captures

the important operational features of the epigenetic control mechansim

introduced in Section 2.1, and on the basis of this model study the

dynamic characteristics of 3 types of epigenetic control processes in

procaryotes. These are

- Initial Activation Processes

- Composite Processes

- Construction Processes

A brief description of these processes is given next.

By initial activation processes we mean an epigenetic process which

starts with the activation Iof one or more operons at a given initial

time t=O, say. The process then evolves as in the example of Figure

2.1-1 without any further operon activations.

iThe corresponding elements representing the operons go from off con-
dition to on condition (see Figure 2.1-5).
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Composite processes are epigenetic control processes which during

their evolution interact at specific times with a main stream con-

trol process (perhaps a better description would be that those processes

merge at specific times with the main stream process). We will see

that the characterization of these processes can be accomplished natu-

rally in terms of our model. (see Section 4.5.2).

Each of the processes forming a composite process is an initial activa-

tion or composite process. In composite processes, the classification of pro-

cesses according to hierarchies mentioned in Section 2.1 plays a cru-

cial role in the analysis of process coordination, that is, how the

information of interaction times among processes is contained in the

processes themselves.

A construction process is an epigenetic control process whose

function is to construct the initial state of an initial activation

process which then evolves independently of the process that carried

out the construction.

By the initial state of an initial activation process we mean the

states of each of the elements in a scenario such as the one digra-

matically illustrated in Figure 2.1-7.

Construction processes are not only important for the role they

play in the genetic apparatus, but as we shall see in Sections 4.5 and

4.6, they constitute a very important analytic and computational tool

for the study of composite processes.
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In general, an epigenetic control process in procaryotes involves

processes of the 3 classes described above; thus, the study of these

prototypes of control processes constitutes a preliminary step on the

basis of which an effective methodology for the analysis of epigenetic

control processes can be built. We shall illustrate this assertion in

Chapters 3 and 5 with some examples.

The fundamental task in our main objective is to develop a mathe-

matical representation for the dynamics of our model. Since the model

dynamics is determined completely by the dynamics of its elements,

we must find a representation for them.

On several occasions in the last two sections we have referred

informally to the statel of the elements as the object that determines

its information-content at each time. It is therefore natural to ex-

press the dynamics of an element by the evolution of its state with re-

spect to time.

In this study, the state of every element in the model evolves in

discrete, equally spaced time intervals which, without loss of gener-

ality,we take as one unit in length. This, of course, constitutes an

approximation to the true nature of time in the dynamics of epigenetic

control processes. We will examine its consequences later in this

section. For the moment, we remark that time in our model is a

1A formal description of the state of the elements is given in Chapters

3 and 4. In Chapter 3 it is defined from an operational point of view.

In Chapter 4 a mathematical definition is given.
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variable taking values in the non-negative integers.

The evolution in time of an element M is characterized by two

functions. A function representing the input selector described in

Section 2.2 and a function, which given the states of the selected

nearest neighbor elements of M at time t, gives the state of the

element M at time t+l. This function is called the state transition

function.

The fundamental task in our modeling effort consists in finding the

transition function for each of the distinct types of elements that

participate in the 3 classes of epigenetic control processes defined

above, and from those, constructing the transition for the covering

element. This is carried out from an operational point of view in

Chapter 3 and then, in Chapter 4, a mathematical representation of

this function is proposed.

Figure 1 illustrates with a block diagram the general structure

of an element in our model. We note that in addition to the Input

selector and state transition functions, the element possesses a mem-

ory to store the state for one unit of time.

Now we mention a second simplifying assumption with respect to the

state of the elements of the model and assess its effects in our study.

We will assume that the number of different states that the element of

our model can attain is finite.

In principle, the finiteness of the number of states an element may

attain, can be justified from physical considerations, since the ele-
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ments of the model represent molecules, (or actions carried out by mole-

cules) and it is accepted that molecules as quantum-mechanical systems

can exhibit only a finite number of energetic states (the discrete eigen-

vectors of their Hamiltonian operator or combinations of them (pure-states

and mixed states respectively)). (see Calvert and Pitts 151]).

A typical organic molecule has several thousands of distinguishable

energetic states, and their transition structure determines its func-

tional characteristics. However, the operational status of the element

corresponding to relatively large subsets of energetic states is very

similar (i.e., a molecule in any of the many vibrational ground states

operates in essentially the same manner). Therefore, since the concern

of this study is with operational aspects of these molecules, our ele-

ment's states correspond to aggregated1 classes of energetic states

each one representing a functional status of the element.

The simplification discussed in the last paragraph makes the

modeling problem tractable (i.e., the number of different states to be

considered is reduced by 2-3 orders of magnitude (typically several

thousand states are aggregated into several states) at the expense

of losing some operational detail in the dynamical characteristics of

the elements. Unfortunately, since our strategy for constructing the

operational structure of the elements in the model does not include

This state aggregation is not homomorphic as opposed to the informa-

tional state aggregation to be introduced in Section 3.4 in which the

dynamics is preserved.

-71-



determining their energetic state structure, we cannot give a formal

procedure for evaluating the severity of our simplification.

In recognizing the importance of at least testing the limitation

of our model with respect to the simplifying aggregation procedure

introduced above, as well as other simplifying assumptions, we resort

to a heuristic procedure which involves a computer simulation program

of our model and a structural identification procedure on the basis

of expreimental data. Specifically, we will analyze several well-studied

biological examples to see if our model predicts behavior that is known

to be true from experimentation. These two aspects are discussed next.

The basic structure of the computer simulation program is shown

in Figure 2. The program consists of 7 functional blocks; two indepen-

dently addressable storage areas labeled buffer in and buffer out; and

3 computation blocks labeled decoding function, computation of next

state and encoding function.

At any time t of the simulation, and encoded' version of the state

of each element is stored in one of the memories, in an address which is

a function of its coordinates in the informational space. Only elements

in non-dormant states are stored.

For the purposes of illustration, let us assume that at time t,

the states of the non-dormant elements are stored in Memory 1. The

1The encoding is discussed in Chapter 5.
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simulation proceeds by bringing to buffer 1, in a preassigned order,

the encoded version of the states of a group of nearest-neighbor ele-

ments (2k+l elements see Section 2.2), of a given element M, they are

decoded, and the state of M corresponding to t+l is computed, encoded

and then placed in the buffer out. Next, the same procedure is re-

peated for another element until the buffer out capacity is exhausted;

then its contents are transferred to Memory 2. This procedure is re-

peated until all the states of the non-dormant elements at time t+1

are computed. This completes the simulation of one step (in time) of

the model, (referred to in the figure as 1-2 cycle).

Now, we have the states of the non-dormant elements corresponding

to t+l in Memory 2 and we are ready to compute the t+2-states and store

them in Memory 1 (2-1 cycle), following the same procedure outlined

above. Several technical aspects of this procedure such as parallelism

of the simulation to reduce computation time and the encoding and de-

coding operations are discussed in detail in Chapter 5; but the basic

characteristics of the simulation are implicit in the diagram of Fig-

ure 2.

Now we discuss the structural identification procedure. The first

most important ingredient in this procedure is the experimental data

base and how it is presented. Let us assume that we are studying an

epigenetic control process in which we have determined by any of several

possible experimental techniques [50], the identity of the n classes of

molecules that participate in its reaction systems and that from those
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m, (m<n) are proteins. Further, let us assume that the data about the

process is given as time-course concentrations for each of the n mole-

cules with respect to a basic volume (that we always assume is the

intra-cellular volume, a constant). Figure 3 gives two examples of the

way this data is presented (i.e., as concentration vs. time graphs).

As a first step in the processing data, the concentration vs. time

graphs are transformed into a new set of graphs in which the time axis

is a discretized version of the original time axis and the concentration

axis is a quantized version of the original concentration axis. Figure

4 illustrates these two operations for the examples of Figure 3.

The interval (time) of discretization, AT,is chosen by a criterion1

discussed in detail in Chapter 5. We mention here that this criterion

is determined as a function of the adjusted time horizon of the experi-

ment (T' in Figure 4) .

Now, before discussing how the transformed data is used in the

identification procedure, we need to introduce a third, very important

assumption which justifies the strategy adopted for this procedure.

Because of its importance, we have assigned a name to this assumption:

the closure assumption. The implications of the closure assumption are

iThe criterion under which AT is determined, is called the Nyquist sam-
pling-rate theorem (see Oppenheim and Schaffer [52]). This theorem
gives a constructive criterion for sampling a continuous function (e.g.
a concentration function) with sampling interval (AT) sufficiently
small such that the function can be reconstructed from its samples.

2The adjusted time horizon T' converts experimental data, usually mea-
sured over several cell generations to equivalent data over a single
generation.
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are analyzed from several points of view throughout this study. (In

Chapters 3 and 4, in terms of the model, and Chapter 5 from the simula-

tion point of view.) In the next paragraph we given an informal descrip-

tion of this assumption.

The closure assumption establishes that every epigenetic control

process evolves according to a structural arrangement of elements of the

type indicated in Section 2.1. See Figures 2.1.1 and 2.1.6). Further,

the reaction systems of these processes are of one of the forms indi-

cated in Figure 2.1.4 or can be decomposed into finite number of steps

of these forms.

The most important implication of the closure assumption with

respect to the structural identification procedure is that the epigen-

etic control process from which the data is a time-course observation is

of this type. Therefore, since the model has been derived on the basis

of these structural arrangements of elements, we should be able to re-

produce the quantized and discretized version of the data with the sim-

ulation procedure previously described.

Now we return to the description of the identification procedure.

The next step in the procedure is to guess the dimension of the appro-

priate informational space. This guess will be recursively updated

during the procedure (n the actual computer implementation of this

procedure the initial value of the dimension is always 3).

Once a choice of the informational space has been made, we pro-

ceed to assign elements representing the molecules present in the system
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at time T' to locations of the informational space (one location for

each molecule; for instance, for the molecule A in the example of Fig-

ure 4a, we assign 6 A-elements. The criterion for this assignment

follows from the closure assumption plus the nearest-neighbor require-

ment of our model and its technical aspects are given in Sections 5.2

and 5.3 in terms of two specific examples. We note here that in order

to satisfy the nearest-neighbor requirement, we may need to update the

guess of the dimension of the information space.

The next step consists of finding a set of state assignments for

the elements in the informational space such that any one of them,

when used as the initial state assignment for the simulation algorithm

outlined previously, will produce the state assignment constructed

above after one step of the simulation procedure. Now, any one of the

states assignment in this set is a candidate for the state assignment

of the elements participating in the process at time T'-1; from these

we choose one that corresponds to the experimental data at time T'-l.

Next, we repeat the procedure discussed above with the state

assignment corresponding to T'-1; that is, we construct a set of state

assignments of the elements such that one step of the simulation pro-

cedure will produce the state assignment corresponding to T'-l. From

this set we select a state assignment that agrees with the data at T'-2.

This procedure is repeated until an assignment of state is found

that corresponds to an initial activation process or to the main stream

process of a composite process.
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The outcome of the structural identification procesure, (if suc-

cessfully completed) 1 gives us a diagram of the organization of operons

and reaction systems for the process under study (i.e., a diagram of the

form of the ones given in Figures 2.1.1 or 2.1.6), with its correspond-

ing diagram of events.

Several important operations with respect to the identification

procedure are in order. First, the adjusted horizon T' corresponds

usually to several cycles of the epigenetic process; that is, the first

operon(s) to be activated in the process, an event corresponding to

time t=O in the time basis of the model, does not necessarily (and

usually does not) correspond to the initial time of the experimental

data. This does not impose any restrictions on the effectiveness of

the procedure because the halting condition is determined by a special

class of state assignments of the non-dormant elements of the model,

and not by time.

Second, we note that the experimental data is produced through

measurements on the process that are always of finite precision and

subject to environmental disturbances. These considerations are ig-

nored in the formulation of the procedure outlined above, where we have

made the implicit assumption that the data is error free. Fortunately,

the quantization operation tends to decrease these effects (see Sec-

tion 5.2).

1Since the structural identification procedure is not an algorithm it

may not terminate for some tasks.
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Third, in the construction of sets of feasible state assignments,

that is done recursively in the procedure, we have found that this task

can be effectively accomplished if we use a representation of the model

as a set of polynomial equations. This representation of the model

is developed in Section 4.6.

The effectiveness of the polynomial representation of the model

with respect to the identification procedure, lies in the fact that an

algorithm for computing the set of feasible state assignments at some

time t given the state assignment at t+l, can be implemented in this

representation as the procedure for finding the solution of a set of

polynomial equations. This algorithm is developed in Section 4.6.

It is important to note here that the set of equations corres-

ponding to a given step t in the identification need not have a solution.

If this is the case, it means that there is an error in the experi-

mental data in the time interval [t+l, T' ] or, the data corresponds

to a process in the genetic apparatus whose operational structure (i.e.,

time-space interaction of the elements participating in it) has not

been incorporated into the structures from which the model was derived

(see Section 2.1). In Sections 4.6.1 and 4.6.2 we develop generic

solvability tests for a class of polynomial equations which contain, as

special cases, the equations that appear in the identification procedure

in the backwards (in time) iterative construction of state assignments.

The product of the identification procedure is either the struc-

ture of the corresponding epigenetic control process, which is presented
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as an incidence-element diagram such as the ones displayed in Figures

2.1.1 and 2.1.6 together with the corresponding time-event diagram such

as the one given in Figure 2.1.3, or,"no structure that satisfies the

experimental data could be found". In both instances the procedure will

be shown to terminate in finite time (see Chapter 5).

We now leave this outline of the identification procedure and

conclude this section with a brief discussion of several additional

assumptions and simplifications made in the development of the model.

We note that with respect to time our model has synchronous dynam-

ics, that is, a state transition of all the elements in the informational

space, occurs simultaneously. At first sight, this characteristic does

not seem to correspond to the operational characteristics of molecules

in the cell whose collective dynamics is asynchronous with local syn-

chronous behavior only among molecules that interact with each other.

However, the synchronous behavior of the model is not a limitation in

its capabilities of simulating epigenetic control processes because we

can introduce asynchrony in these processes by means of the virtual

elements in the model labeled clocks. (see Section 2.1). Thus, for

example, in simulating the reaction system,

A + B + C + D
PR1

C + E + F

PR
2
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We will simulate the following

A + B + W + C + D
PR1

C + E + W + F

PR2

where Wi, W2 provide the appropriate time scaling between the two reac-

tions. Other instances of asynchrony are treated similarly.

Finally, we mention that our model assumes that the epigenetic

apparatus operates in error free manner that is mis-sense mutations in

the operons, errors in transcription or protein synthesis which are

phenomena that occur in the apparatus are not considered in our model.

We believe that for our purposes this is not a serious limitation be-

cause our main interest centers in using the model for studying wild

type operons and not their mutation mechanisms which seem to be of

stochastic nature, (see Holland [22]).

2.4 Summary

In this chapter we have described our goals in the study and out-

lined the strategy we follow in accomplishing them.

In summary these goals are:

-- Development of a model which captures some important operational

aspects of the dynamics of epigenetic control mechanisms in the genetic

apparatus of procaryotes, and that can be used to predict operational

behavior in their epogenetic control processes.

-83-



-- Analysis of 3 special types of epigenetic control processes

in terms of the model. These are:

- Initial Activation Processes

- Composite Processes

- Construction Processes

-- Development of a structural identification procedure whose objec-

tives are to provide the means for identifying some structural charac-

teristics of real epigenetic control processes from the operational

point of view and also, to test the capabilities of the model as a re-

search tool in genetics of procaryotes.

The most important characteristics of the model are:

-- The model is an ensemble of elements each one of them repre-

senting the functionality of a molecule or action in the genetic appar-

atus.

-- These elements are distributed in a k-dimensional grid and the

dynamics of each element is characterized by its state transition in

time as a function of the state of one or all of its nearest-neighbors

in the grid.

-- The time basis of the model is discrete and each of its elements

can exhibit only a finite number of distinct states.

-- At any time, only finitely many elements in the model are in a

useful state from the operational point of view.
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3. BASE MODEL FOR EPIGENETIC CONTROL

MECHANISMS IN PROCARYOTES

3.1 Outline of Modeling Strategy

In this chapter, we describe in detail the main operational charac-

teristics of our model, and establish the relation that exists between

them and the corresponding features of the genetic apparatus.

The outcome of this chapter is a more or less detailed verbal

description of the structure of the model and its dynamic character.

Following usual notation in modeling theory, (see Ziegler [16]) we call

this description the base model.

The modeling procedure is composed of the following four steps:

1. Classification of the components of the system according to

their function in epigenetic control processes.

2. Development of a typical representation for each class of

components. The resulting model-elements are called the

types of the system or simply types.

3. Development of the incidence-diagram of dynamic interaction

among elements of the classes. This diagram establishes for

each type, the types of the classes with which it interacts,

and the direction of this interaction. The diagram is con-

structed on the basis of an analysis of the functional inter-

action of the corresponding elements of the system.

4. Aggregation of the descriptive variables of the types (i.e.,
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the variables representing their states) in order to obtain a

simplified description of the model. In this step, we obtain

a computational representation of the types at the expense of

loss of detail in the description of processes in the genetic

apparatus by the model. In out study, we use a technique for

aggregation called homomorphic aggregation (see Aoki [ 11);

in it, the quality of the resulting representation is measured

by the cardinality of the kernel of the aggregation homomor-

phism which is described in Section 3.4.

Our goal is to obtain a model that can be used as a general tool

for investigating epigenetic control processes in procaryotes. In par-

ticular, we expect our model to provide an effective procedure for set-

ting out structural hypothesis about the epigenetic mechanisms respon-

sible for observed experimental data (i.e., structural identification of

these mechanisms, see Chapter 2). Therefore, we must provide the pro-

cedure above, with a routine for producing an aggregated model which is

unambiguous (i.e., well posed) with respect to the given experimental

data and that is as simple as possible from a computational point of

view.

With this objective in mind, we devise an iterative scheme for the

fourth step in the procedure. In it, each iteration computes an aggre-

gated set of types whose quality is lower than that of the previous

iteration (i.e., cardinality of the kernel of the corresponding homo-

morphism is higher that the one corresponding to the previous iteration).

-87-



This is illustrated with the diagram of Figure 1.

We note that by definition, homomorphisms preserve structure, in

our case, the structure of types. As mentioned in Section 2.3, the

structure of the elements of the model and consequently, the structure

of the types, is given by the one-step (in time) state transition func-

tion of the element (see Figure 2.3.1). In the remainder of this section

we introduce this function as well as the general structure of the state

of an element and justify it from a practical point of view. It is safe

to say that this function has determined in great part our modeling

strategy.

We start with a description of the state structure of an element.

Recall that an element is a representation of a molecule or an action

in the genetic apparatus, therefore, we analyze the operational charac-

teristics of the dynamic evolution of molecules to determine faithful

generic properties of this evolution. With this purpose in mind, we

digress briefly to outline the state structure of a typical organic

molecule from a microkinetic point of view (see Section 2.1). This will

give us the basis for the development of the operational state structure

of our model.

Figure 2 is a representation of the energetic state structure of

a typical organic molecule. The cirlces correspond to the eigenstates

of the Hamiltonian operator associated with the molecule. Each eigen-

state is associated with a unique energetic level, the eigenvalue of

the operator (discrete spectrum)but the converse is not true in general
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(this is called energetic degeneracy in the quantum chemistry litera-

ture, see Hanna [2]); that is, with a given eigenvalue there are, in

general, several eigenstates each corresponding to a unique arrangement

of electron orbits, electron suborbits and electron spin orbits in the

molecule. (This is called the Pauli exclusion principle; see Hanna [ 2].)

The state degeneracy alluded above has very important consequences

in the functional behavior of the molecule: i.e., a condition of state

transition indeterminancy from spectroscopic observations of the energe-

tic structure of the molecule, a fact that is reflected in the non-unique

operational behavior of the molecule's model when we aggregate energeti-

cally equivalent states.

The arrows joining the states represent allowable state transitions.

Each of these transitions is driven by energetic interactions with ele-

ments in the near environment of the molecule.1 We will not go into the

details of the mechanisms of interaction because they are not needed

for our purposes; it suffices to say that these mechanisms have been

extensively studied during the last 50 years and although some of their

aspects are not yet understood, the basic nature of these interactions

is known: they always involve the transfer of energy between the par-

ticipating molecules. See for example Calvert and Pitts [ 3 ], Byam [18],

Turro [4 ], Dickerson [3 ], Hanna [2 ], etc.

The interactions may be of several kinds, e.g., electromagnetic radia-

tion, chemical bond formation, transfer of molecular residues, etc.

But always, their effect can be represented as a flow of energy to or

from the molecule, or between groups of the molecule (radiation-less

transitions).
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As indicated in Figure 2, the energetic states are grouped into

several clusters each one of them corresponding to an energetically

observable condition of the molecule (from a spectroscopic point of

view). The ground state cluster, for instance, corresponds to the situ-

ation of lowest energy stored in the molecule.1 The cluster identified

as first exited state cluster (or 1st singlet in specrtoscopic litera-

ture) corresponds to the first exited group of states the molecule can

obtain when the environment provides the appropriate transition energy,

and so on.

Each cluster is composed of several states (in some molecules

several hundreds of them) whose energetic level differences are small

as compared with the intercluster energy levels. These states represent

different degrees of thermal exitation of the molecule,and transitions

among them are induced by small random local temperature gradients or

vibrations of the bounds of the molecular structure (see Turro [4 1).

From an operational point of view, the differentiation between

thermal states in a cluster is only secondary2 and therefore,in what

follows, we will aggregate them into a single state in such a manner that

inter-cluster state transitions are preserved. In this aggregation pro-

cedure,inter-clusted transitions are preserved provided that in each

cluster, the vibrational states are completely connected; that is,

By "energy stored" in the molecule we understand the energy capable
of doing work, that is the excess over the energy required by the
molecule to maintain a stable morphogenetic structure.

2However, we will use that state degeneracy alluded before to justify
a state transition indeterminancy that appears in the transition func-
tion of the types of the model.
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any state of the cluster can be reached from any other state in it by

an appropriate (finite) sequence of allowable state transitions. Fortun-

ately this is the case in most of the organic molecules on which spec-

troscopic analysis have been carried out.

If the vibrational states in a cluster are not completely connected,

we divide it into sub-clusters whose states are completely connected and

then proceed to the aggregation procedure.

Under the aggregation procedure defined above, the state diagram

shown in Figure 2 takes the form of Figure 3. This leads to a non-deter-

ministic state transition diagram. However, any nondeterministic auto-

maton can be simulated by a deterministic one (see Ginsberg [ 6]), and

thus in Chapter 4 we can define our mathematical framework using only

deterministic automata.

Now,we consider the interaction between two or more molecules in

terms of the interaction of their corresponding energetic state dia-

grams.

The dynamics of an ensemble of interacting molecules from the

energetic point of view, can be developed, in principle, following the

same pattern as the one outlined above for a single molecule; that is,

we find the Hamiltonian operator of the ensemble, determine its dis-

crete spectrum with associated eigenstates (the energetic states of the

ensemble) and finally, determine the allowable state transitions.

It is well known (see Hanna [ ]) that this procedure fails from

a practical point of view due to the impossibility of implementing an
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effective computation of the spectrum of the Hamiltonian. Thereforef

in practical spectroscopy, researchers have resorted to several approx-

imations, among them, the most popular are: perturbation-based approx-

imations (see for instance, Byam [18]) and heuristic-based approxima-

tions among which, the most successful one is Dendral which is built as

a recursive learning model (see Buchanan et al [ 7]). We will introduce

next a third approximation, based on some general functional considera-

tions about the energetic behavior of the interacting molecules in the

ensemble. This approximation, constitutes the cornerstone in the devel-

opment of the state structure for the types of our model.

The alluded approximation is based on two postulates:

-- A typical organic molecule has a highly selective chemical activ-

ity; that is, there are only a finite number of reaction systems (see

Chapter 2) in which the molecule participates. This is translated into

the fact that its energetic structure is not affected by most of the

other molecules that may be present in its near environment. (An im-

portant exception to this behavior is observed in Immunoglobulin and

several other macro-molecules with which we are not concerned in this

study (see Roitt [8 ]).

-- When a molecule (or action) does interact with other molecules

in its near environment and there is chemical affinity between them,

the interaction Hamiltonian (i.e., the Hamiltonian of the ensemble)
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is a function (in general non-linear) of the Hamiltonians of the indi-

vidual molecules. 1

The two postulates above, imply that the state diagram of a mole-

cule at a given time depends on the molecules in its near environment

and also the number of different state diagrams attained by the system

formed by the molecule and the different environments with which it

interacts, is finite. This assertion follows from the fact that if the

molecule does not interact with a particular environment, its Hamilton-

ian and its state do not change.

This suggests the following strategy for representing interacting

molecules from the energetic point of view:

-- Associate with each molecule a finite number of energetic state

diagrams each one corresponding to a molecular environment which is

chemically affine to the molecule (this is illustrated in Figure 4).

-- Determine the allowable transitions between the different state

diagrams of the molecule (dashed arrows in Figure 4). These transi-

tions are determined from a spectral analysis of the interaction Ham-

iltonian. We will not carry out this analysis here because it is not

needed for our purposes, which are to develop a state transition func-

tion for the elements of our model. However, we believe that the

iLet H be the Hamiltonian of the molecule in question and let H,..,H
be the Hamiltonians of the molecules in its environmment. H ,...,H

are operators in a normed vector space V. Then the interaction Hamil-

tonian is given by a function f:V+1 + V (H ,...,H 9 )f=H (see Baym

[ 1) f is continuous.
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structure outlined above has very promising computational characteristics

and can be used at an advantage over the other approximations mentioned

earlier, as a model for microkinetic studies. We will discuss some

aspects of this application in the conclusions of this study. For the

moment, we proceed to establish, in general form, the operational state

transition structure of the types of our model on the basis of the

energetic state structure described above. As a first observation, we

note that any operational status of a molecule is an energetic manifes-

tation.

We give an example to illustrate this fact. An element repre-

senting an operon must be capable of simulating each of the four possi-

ble transcriptional arrangements discussed in Section 2.1 (in particu-

lar see Figure 2.1.5). In any of these arrangements, the corresponding

operon, and consequently the element of the model representing operons,

can be in high energy status or low energy status depending on whether

the operon is on or off as discussed in Section 2.1.

Further, the ensemble formed by an operon element (OP. in the no-

tation of Section 2.1), a transcription feedback (TFM.), a regulatory

protein (P.) and a control metabolite (M.), operates according to pre-

cisely one of the four arrangements mentioned above. Therefore, as in

the energetic representation, we provide the element OP. with four

1operons with multiple controls are represented in our model as separate

operons, each one with a single transcriptional control.
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different transition structures, one for each of the possible arrange-

ments.

Finally, an operon element, once in ON condition transfers either

to a stand/by condition or to a reading condition depending on whether

an RNA polimerase is in its environment or not.

Based on the discussion above, an in analogy with the state struc-

ture outlined previously for the energetic representation, we propose

as an (partial) operational state structure for the operon the one shown

in Figure 5. As in the case of energetic state-representation of mole-

cules, we have two different entities in the diagram. The rectangles

which represent the different structures...i.e., the nearest environ-

ments with which the element (in this case an operon) interacts. The

different operational levels in each structure are called the Intensi-

ties. Thus, each operational state of the element is a composite of two

objects, therefore the state transition function must be decomposable

into two (coupled) functions: the structure transition function (which

we always denote by H) and for each structure, the intensity transition

function.

We have exhibited only one example (the operon example above), in

which this operational structure of the elements fits the functionality

of the corresponding molecules or actions in the genetic apparatus,

See note in Figure 5.
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however, in the next two sections, after classifying the elements of

the model we will show that this structure is also convenient for re-

presenting other elements and we will develop the specific representa-

tion for the types of each class.

We now establish the domains and ranges of the structure transition

function and the intensity transition functions.

We recall that the time base chosen for our model is the non-nega-

tive integers and that the state transition function of an element,

computes, given the states of a selected1 subset of nearest neighbors

of the element at time t, the state of the element at time t+l.

In the state representation introduced above, the set of distinct

states the element can attain, is a subset 2 of the cartesian product

of the sets of structures and intensities of the element.

In the energetic-state representation of a molecule a state transi-

tion is a manifestation of transfer of energy between the molecule and

its near environment. In this representation the flow of energy is

characterized in the element by a change in energetic level, and possi-

bly change in structure.

In the operational-state representation, to be introduced next, a

state transition is a manifestation of information-flow between a mole-

cule or an element representing an action, and its near-environment.

See section 2.3.
2We note that not all the pairs of structures and intensities are states
of the element, as can be easily inferred from the example of Figure 5.
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Physically, this information flow is a consequence of energy-exchange,

therefore it is reasonable to adopt a dynamic representation of infor-

mation-flow of analogous characteristics to the energetic-state repre-

sentation discussed previously.

In analogy with the energetic state representation of a molecule

discussed earlier, and based on the observation that the evolution of

the dynamics of a molecule, from a functional standpoint, always in-

volves flow of energy between the molecule and its near environment,

we propose the following generic representation for the state structure

of the elements of our model.

The operational representation of an element will be characterized

by-a transition in time of structure and/or intensity triggered by the

information flowing from the nearest neighbors of the element. This

information is carried by the intensities of those elements.

The representation of the state structure of an element suggested

above, takes the form shown in Figure 6. Figure 6 shows that the next

structure attained by the element is determined by the present structure

and the selected present nearest-neighbor subset of intensities. Simi-

larly, the next intensity of the element is determined by the present

structure and the selected present nearest-neighbor subset of intensi-

We recall from Section 2.3 (see Figure 2.3.1) that the selection of the
subset of nearest neighbors interaction with an element at any time is
carried instantaneously by the input selector function.
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ties.

In synthesis, the structure transition function H has as its domain

the cartesian product of the set of structures and the set of all se-

quences of intensities of length at the most 2k+l, where k is the di-

mension of the informational space, and as its range the set of struc-

tures.

Similarly, we define the domain of the intensity transition func-

tions (one for each structure) as the set of sequences of intensities

of length at the most of 2k+l, and as its range the set of intensities.

In the next sections of this chapter, we will show that the opera-

tional state structure of the elements of our model is a convenient

representation for the molecules and actions participating in processes

of control in the genetic apparatus, and in Chapter 4 an algebraic re-

presentation of this structure is developed and in terms of it, the

three (3) prototypes of epigenetic control processes, stated in Section

2.3 are analyzed.

3.2 Classification of Elements of the Model According to Function as

Information Carriers

In this section, we carry out a classification of the elements of

the genetic apparatus according to their function in epigenetic control

processes. The basic criterion for this classification is provided by

the reduced dogma (see Crick [19]) of procaryotic genetics, stated in

Section 2.1.
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According to the dogma, three (3) classes of operational elements

must be considered:

- Information Elements

- Transformation Elements

- Coordination Elements

Next, we discuss the most important characteristics of each of

them.

The class of information elements is formed by all elements of the

genetic apparatus involved in storage transcription and/or translation

of genetic information. The most important operational characteristic

of the elements in this class is that under interaction with other

molecules or actions, they preserve their identity. For example, an

operon does not change its identity under interaction with other ele-

ments; this is also true for MRNA's ribosomes and proteins.

The class of information elements is divided into three subclasses

these are:

- Genetic Storage Subclass

- Transcriptor Subclass

- Protein Synthesizer Subclass

The genetic storage subclass is composed of the different operons

in the system under study together with their addresses in the genetic

locus of the system under study (see Section 2.1).

The basic feature of elements in the storage subclass is determined

by the flow of information between these elements and the elements with
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which they interact. As can be inferred from the operational diagrams

of Figures 2.1.1 or 2.1.6, information always flows from an element of

the genetic storage subclass to the elements that interact with iti, and

no information flows in the opposite direction. In synthesis, in our

model, operons are assumed to be information invariant under inter-

action.

The transcriptor subclass is composed of two types of elements

transcriptors and transcriptees. The transcriptors are elements repre-

senting RNA polimerase molecules . An MRNA polymerase interacts with

an element of the genetic subclass (if it is in stand-by intensity);

see Figure 3.1.5). They trigger the transition of a transcriptee from

a passive state to an active state so as to represent the information

stored in the respective operon. In this interaction, also parti-

cipates an element representing the respective element of the trans-

cription feedback subclass which is described below.

We note that the transcriptor subclass is included in the model

because of the fact that the most important control mechanism in an epi-

genetic process occurs at the transcriptional level. (see Lewin [11])

The active transcriptee represents the MRNA encoding the respec-

iThis is an approximation. In actual procaryotic genetics there are

mechanisms for Inverse transcription (see Baltimore and Spector [10]),

but in this study we will assume that operons are not modifiable under

interaction.
2Although there is evidence that at least two external factors (in addi-

tion to RNA polymerase) are required for transcription in our model we

consider RNA-polymerase and all the required factors for transcription,

as a single element. (see Watson 19 1 for a discussion of these exter-

nal factors.)
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tive operon. It carries among other things, (see Section 3.3) the number

of different proteins encoded in the operon, and in interactive conjunc-

tion with an element of the clock-subclass discussed below, the time of

synthesis for each molecule.

The protein synthesizer subclass, as its name indicates, includes

all the elements representing proteins2 and elements involved in the syn-

thesis of proteins; that is, ribosomes.

A protein is represented in our model by a single element the timing

in the sequential synthesis of a protein (i.e., the incorporation of

appropriate tRNA residue) that we call time of synthesis is simulated as

the interaction of an element representing a ribosome with an element of

the clock subclass which stores the time of synthesis of the protein

under construction. The time of synthesis for each protein coded by the

operon is stored in the corresponding transcriptee, as indicated above.

Now, we define the elements in the transformation class.

These elements represent the molecules upon which the epigenetic

control processes act. They are the elements of the reaction systems

introduced in Chapter 2.

From the operational point of view, the transformation elements are

further classified into two subclasses:

See Section 3.3.
2The proteins that are represented in the protein synthesizer subclass are
those proteins whose synthesis is activated by a response to a transcrip-
tional control action in the cell, i.e., we exclude those proteins whose
synthesis is constitutive, i.e., independent on the conditions of the
intra-cellular environment (see Watson [ 91).
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- Genetically Controlled Subclass

- Non-genetically Controlled Subclass

The genetically controlled subclass is formed by the elements which

participate in reaction systems controlled by proteins non-constitutively

synthesized; that is, proteins whose synthesis is a (controlled) response

to specific conditions in the intra-cellular environment, e.g., the pre-

sence or absence of a particular metabolite.

The non-genetically controlled subclass is composed of those ele-

ments which participate in reaction systems regulated by constitutive

proteins. These systems, in general, are indirectly controlled by the

non-constitutive systems via local interaction with elements of the gene-

tically regulated subclass.

In using our model for analyzing a particular epigenetic control

process involving interaction1 of a subset of the operon systems of the

cell, all the transformation elements belonging to operon systems outside

of the process are considered as non-genetically controlled elements. We

remark that these elements affect the behavior of the process under study

because they utilize common elements (resources) such as ribosomes and

also possibly, the reaction systems of the processes interact with ele-

ments of the reaction systems of the other operons in the cell.

Finally, we describe the basic characteristics of the coordination

class of elements. These elements do not represent molecules, but con-

trol or coordination actions in the genetic apparatus of the cell; for

this reason, we refer to the elements of this class as virtual elements.

(see Chapter 2).

1This interaction evolves according to the element organization discussed
in Section 2.3 (Figures 2.3-1 and 2.3-6).
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The class of coordination elements is divided into two subclasses;

these are

- Transcription Feedback Subclass

- Clock Subclass

The transcription feedback subclass includes elements that carry

out the control of the transcription of operons in epigenetic processes

(see Section 2.1). These elements interact with elements of the trans-

formation class, and with elements of the protein synthesizer subclass

(i.e., regulator proteins) its denomination comes from the fact that in

some operons, the activity of the operon is controlled by the products

or (substrates) of its reaction system. As can be inferred from the

example of Figure 2.1-6, this is not always the case, but since the be-

havior of transcription feedback elements has the effect of transmitting

information from the transformation elements to the transcriptor elements,

this denomination is justified.

The clock subclass, as its name indicates, is composed of elements

whose function is to provide time-coordination in the dynamic interaction

of elements in epigenetic processes, in particular, clock elements are

used to represent asynchrony among subprocesses in a composite process

(as discussed in Section 2.3), to simulate time of synthesis for protein

elements and to establish time hierarchies of processes as will be ex-

plained in Chapter 4.

The classification of elements of the model according to the opera-

tional characteristics of the molecules or actions of the genetic appar-

atus they represent is summarized in the block diagram of Figure 1.
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3.3 Incidence Diagram of Dynamic Interaction Among the Elements of the
Classes

In this section we develop state diagrams for typical elements

(types) of each of the subclasses established in the last section. The

diagrams are obtained, for each type, from an analysis of the operational

characteristics of the corresponding element in the genetic apparatus.

The state diagrams alluded above are the core of our model. They

specify for each type the one-step (in time) structure and transition

functions; these are given, in tabular form, for each type. In addition,

an assignment of elements to a 3-dimensional information space is devel-

oped, and, on the basis of it, the input selector and neighborhood func-

tions for each type are determined.

We start with the development and analysis of the type of the genetic

storage subclass, a partical version of which was introduced in Section 3.1

for illustrative purposes.

Two major aspects are to be considered in the representation of the

dynamics of genetic storage elements (i.e., operons)

-- Control of the release of information

-- Information Transcription

The state diagram corresponding to the control of information release,

that is, the transcriptional control, was discussed as an example in

Section 3.1 (see Figure 3.1-5 and accompanying discussion).

We now proceed to describe the state structure of the portion of the

operon element involved in information transcription. Two questions must

-110-



be answered: What information is to be stored in the operon and how

this information is transferred to the element representing the m-RNA

polymerase. In order to answer these two questions, we consider simul-

taneously the representation of an ensemble composed of an element simu-

lating the operon (only the information transcription part of it), an

element simulating the M-RNA polymerase and the portion of the state

structure of an element representing M-RNA, which is involved in trans-

cription (the other part of the state structure of this element is in-

volved in protein synthesis and will be described later on in this sec-

tion).

Figure 1 shows a scheme of the information flow among the elements of

the ensemble defined above.

The information part of OP. carries the following items: a) The

number (n) of genes in OP., that is to say, the number of proteins coded

by OP.i and b) the length of each of these proteins.2 We represent this

information in the context of our model be assigning one structure for

each gene and a corresponding intensity whose value (an integer) repre-

sents the length of the respective protein.

Strictly speaking, a gene carries the code of a protein chain. A pro-
tein molecule is formed by one or more chains (see Lewin 111]). In our
model, we assume PR. k k=l,...,n to be "proteins" and simulate the for-
mation of a true protein from the chains composing it (when the protein
is composed of more than one chain) with chemically irreversible reaction
steps of the types discussed in Chapter 2.

2In our study, we assume the length of a protein chain to be a positive
integer which is functionally dependent of the actual number of amino-
acid residues forming the chain. A criterion for determining this num-
ber is described in Section 3.5.

-111-



(other elements)

Information-Flow Between Elements in Transcription

Figure 1

-112-



In Figure 2, T.k, k=l,...,n are positive integers, each a function
ijkr

of the number of residues that compose the message for the corresponding

protein, or rather, a function of the time that the M-RNA polymerase

takes in transcribing the corresponding protein (we will see that each of

these numbers will be taken in our model as the same time as that for the

synthesis of the corresponding protein PR, k=l,...,n).
Ilk'

Table 1 gives the part of the operon element structure transition

function concerned with information storage. The structure C is the

structure in the bottom of Figure 3.1-5. The numbers assigned2 to the

structures Gilki k=l, ...,n are chosen according to the following criter-

ion:

G. 0 k=l,... ,n V. in the model

G. > G, , if k > j (1)
i,k L,J

G. il C k=l,....,.n
i,k

The intensity transition functions for the type of Figure 2 are given

in Table,2.

1In the procaryotic cell, the transcription and synthesis times for a
given protein chain are not equal in general; however, with respect to
the time-horizon of the cell, these two times are of the same order of
magnitude (see Sampson 112] and Rosen 113]) with the synthesis time lar-
ger than the transcription time. In our model we assume these two times
to be exactly equal. This assumption does not affect significantly our
operational study of control mechanisms in the genetic apparatus because
locally the actions of a protein (catalysis in reaction systems and regu-
lation in TFM's) do not depend on wither of these two times. However,
this assumption introduces some distortion in the structural identifica-
tion problem (see Chapter 5).

2The criterion for assigning numbers to identify structures and intensi-
ties for each of the types is given as each type is introduced.
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Table 1

Structure Transition Function for Operon Element

Present Present Present Next
Structure Intensity Intensity Structure

(OP.) (OP.) (Clock) (OP.)

G. ,k
1

G. ,k

G. ,n

C

C

T. ,k

T. ,k

T. ,n
1

READ

SI by

T,T/T. ,k

T. ,k
1

T. ,n

0

0

G. ,k

1

G.,k+1

C

G. ,1

C

k=l, .. .n-l

Present Present Present Next
Structure Intensity Intensity Structure

(OP.) (OP.) (TFM.) OP.

C Siby INA* a,b,e, or d

C Siby A* C

*
INA and A are intensities of the transcription feedback mechanism ele-
ment. Its operational significance will be explained later in this sec-
tion.

*
a,b,e,d are the structures of the control part of the operon (see Fig-
ure 3.1-5 and companion discussion) these structures and their dynamics
will be discussed after the discussion of the state structure of the
TFM element which control their dynamics.

NOTE: For ease of readability we will herein write T. k, A. etc...
as T.,k., A.,k. etc... 1 k1

1 1 1 1
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Table 2

Intensity Transition Functions For Operon
(information part)

Structure G.,k k=l,...,n-1

Present Present Next
Intensity Intensity Intensity

(OP.) (Clock) (OP.)

T,,k T9 (T . k) T k

T.,k T.,k T.,k+l

Structure G. ,n

Present Present Next
Intensity Intensity Intensity

(OP.) (Clock) (OP 1

T.,n T34(T.,n) T.i, n

T. ,n T. ,n SIby

*
C (Control Part)

Present Present Present Next
Intensity Intensity Intensity Intensity

(OP.) (TFM.) (Clock) (OP

Siby INA any OFF

Siby A 0 ON

ON - READ

*
The control part will be discussed after introducing the state structure
of the TFM element. We include here this table as an aid for our dis-

cussion of the information part.

**
see Figure 3.4-5.
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The structure transition C has two intensities Sjby and READ. The

state (C, SIby) of the operon element indicates that the operon is inter-

acting with the corresponding TFM in active status (the state structure

of TFM will be described later in this section) and waiting for the ap-

propriate intensity of the nearest-neighborI time-of-synthesis clock

(the dormant intensity 0). When the intensity of the corresponding time-

of-synthesis clock becomes 0, the operon suffers a state transition from

(C, Sjby) to (C, READ) and the transcription cycle proceeds as indicated

above (see Tables 1 and 2).

Following the information diagram of Figure 1, we now pass to

describe the type representing the time-of-synthesis clock. The state

diagram of its type is shown in Figure 3 and its structure transition

function and intensity transition functions are given in Tables 3 and

4, respectively.

The type representing the time-of-synthesis clock has 3 structures:

count, synth, and the dormant structure (0) which was introduced earlier

(Section 2.3) and whose properties are discussed in Section 4.1. When

the clock is in the count structure, (so called because the clock, when

in this structure is counting elapsed time steps in the reading of the

operon by the m-RNA polymerase) at each step in time, it increases its

intensity by one (i.e., if at time t the intensity is T, at time t+l the

1See Figure 5 for relative allocation of operon elements and their time-
of-synthesis clocks, to the informational space.
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Table 3

Structure Transition Function for Clock Type

Present Present Present Next
Structure Intensity Intensity Structure

(Clock) (OP .) (Clock)

0 0 any Sby 0

0 0 S by count

count T / T.,k T., k count

count T = T. ,k T.,k synth

synth any T ,k = T.,k 0
S 1

for T every, Te l,...,TH I
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Table 4

Intensity Transition Functions for Clock Type

Structure 0

Present Present Next
Intensity Intensity Intensity
(Clock) (OP.) (Clock)

0 SIby 1

0 any / S iby 0

Structure Count

Present Present Next
Intensity Intensity Intensity
(Clock) (OP.) (Clock)

1

T/T H, T/ T ,k T .,k T+l
H 1

T.,k T.,k T ,k = T.,k

Structure synth

Present Intensity (Clock) Next Intensity (Clock)

Tspk k=l,..,TH0

*TH is the time horizon of the system.

-120-



intensity is T+l) until the intensity reaches the value T which is
i,k

the intensity assigned to the gene G (see Figure 2) under transcrip-
i,k

tion. This behavior is described by the intensity transition table of

structure count given in Table 4.

When the clock in structure count, reaches an intensity equal to

T (after T steps in time), a transition to the structure synth
i,k i,k

occurs. As indicated in Figure 3, for each intensity in count we have an

intensity in synth. The intensity Ts,k reached as indicated, is used by

the M-RNA polymerase type to mark the end of transcription of the gene

G (of OP.) just transcribed. This information is now registered in
i,ki

the element representing the M-RNA., which will be described in a moment.

We note that the clock remains in the synth step on 1 time step and then

returns to the dormant structure.

In the structure count, the number of intensities TH is equal to the

time horizon of the system under study, i.e.,

T = T (2)
H

where T1 was defined in Section 2.3.

In synthesis, the clock element is a counter. Each counting step

corresponding to a reading step of the corresponding operon. For each

step in the counting procedure, we have provided the element with a

corresponding intensity {T } which serves as a signal for marking the
s,k

completion of the transcription of a gene in the operon. The counting

procedure starts always with the clock element in state (0,0) (See Fig-
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ure 3) and is reinitialized after the completion of transcription of

each gene in the operon.

The state diagram of the element representing the M-RNA polymerase

is shown in Figure 4, the corresponding structure and intensity transi-

tion functions are given in Tables 5 and 6. The type has 4 structures

labelled Noop, Act, Motion and UMotion. When the type is in the Noop

structure and dormant intensity, the M-RNA polymerase is in an inactive

status. This inactive status is changed by a transition to the Act

structure (Act stands for active status) when the intensity of the operon

(OP.) under transcription is READ.

In the Act structure, the M-RNA polymerase type can be in one of two

intensities: s and Br. In s, (which stands for synthesis), the trans-

cription of OP. is proceeding; this condition does not change until the

intensity of OP. becomes s by indicating that a transcription of one

version of OP. has been completed. When this is the case the intensity

changes to Br (Br stands for Break). The functional objective of the

intensity break is to indicate to the M- RNA. type that the transcription

of one copy of a gene of OP. has been completed so that the last gene of

OP . to the M-RNA . type and the M-RNA polymerase type must separate from

each other (i.e., move apart by one unit in the informational space as

explained below). This separation involves two steps:

-- The type changes its structure to Motion (see Figure 4) and

to intensity R (which stands for Reset)
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Structure

Table 5

Transition Function for M-RNA Polymerase Type

Present Present Present Next

Structure Intensity Intensity Structure

(M.-RNA Pol) (M -RNA Pol) (OP .) (Neighbor 2) (M-RNA Pol)

Noop 0 set set

Noop 0 SIby Noop

Noop 0 READ Act

Act S T.,k k=l,...,n Act

Act S Siby Act

Act Br Si by Motion

Motion R any Motion

Motion 0 any Noop

*U Motion

1When M -RNA Pol is in downwards position
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Table 6

Intensity Transition Functions for M-PNA Pol. Type

Noop

Present Present Next
Intensity Intensity Intensity
(M-RNA Pol) (OP .) (Neighbor 2) (M-RNA Pol)

0 Siby 0

0 READ S

set 0

Act

Present Present Next
Intensity Intensity Intensity
(M-RNA Pol) (OP.) (Neighbor 2) (M-RNA Pol)

S T.,k k=1,...,n S

S READ Br

S Slby 0

Br Siby R

Motion

Present Intensity Next Intensity
(M-RNA Pol) (M-RNA Pol)

R 0
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Table 7

Structure Transition Function of M-RNA pol. for Upward Motion

Present Present Intensity Next
Structure Structure
(M-RNA Pol) Neighbor 0 Neighbor 1 Neighbor 2 Neighbor 4 (M-RNA Pol)

Noop 0 0 0 0 Noop

Noop 0 De 2  0 0 UMotion

Ulotion set De 0 0 Noop

UMotion -- -- -- set 3  Noop

Intensity Transition Function for Upward Motion (UMotion)

resent PNext
Intensity Intensity
(M-RNA Pol) Neighbor 1 Neighbor 2 Neighbor 4 (M-RNA Pol)

0 De 0 0 set

set De 0 0 0

0 -- -- set 0

1See Figure 5a for neighbor-numbering system.

2De is an intensity of the type M-RNA. and also the intensity of a vir-
tual element whose only state is (Dell De) (see Figure 5).

3This is the intensity of the M-RNA pol. element left behind when the

element does its downard-motion.
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-- When in structure Motion and type R, the M-RNA polymerase

changes its state (autonomously; see Tables 5 and 6) to

the state (Noop, 0), after a motion in the 2-direction in

the information space. In order to understand the mechan-

ics of this step we need to specify the relative positions

of the elements involved in transcriptional control of

our model. These positions are shown in a two-dimensional

projection of the (3-dimensional) information space illus-

trated in Figure 5.

The operons of the system under study are allocated in the z -axis

(z2 E 0) in the locations zi = 1, for operon 1 (OP1), z1 = 3 for operon 2,

z2 5 for operon 3 and so on. The corresponding clock elements are

allocated in coordinates (2,0), (4,0), (6,0), etc. The corresponding

M-RNA elements, M-RNA1 , M-RNA 2, M-RNA3 are allocated in the coordinates

(2,-l), (4,-l), (6,-l) and so on, and the other elements of Figure 1 are

allocated so as to preserve the nearest neighboring condition. With this

preliminary description, now we are ready to explain the reset motion.

Once the M-RNA polymerase has completed thle transcription of the MI-RNA.,

it moves downwards in the z2-direction so as to disattach itself from

This motion eliminates the nearest neighboring condition that existed
between M-RNA., OP., and M-RNA . The motion actually is simulated

i i pol
by a transfer of the state of the element to an element which i§ in
dormant state and allocated directly below the M-RNA polymerase ele-
ment in the z 2-direction. The former becomes the element representing

the M-RNA polymerase while the latter becomes an element in dormant state.
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both the operon under reading and the transcribed M-RNA. Notice that

that M-RNA-polymerase returns to the (Noop,O) state and thus it can

be reused again. In order for that to happen, it must do an upwards

motionI (in the z2-direction) the structure transition function of Table

5 is then completed with this motion, which is given in Table 7.

The upwards motion is triggered by M-RNA when the 14-RNA polymerase

is in intensity De. The functional significance of this will become

clear once we describe the state structure of the M-RNA type.

Before we pass to the discussion of the state transition structure

of the M-RNA type we stress an important point about element motion in

our model. Elements in our models are assigned to fixed locations in

the information space when motion of an element, such as the one dis-

cussed above for the M-RNA polymerase type, is required we simulate it

by a transfer of its present memory contents (i.e., its present state)

to the appropriate nearest-neighbor element (see footnote) this implies

that the state of that element is changed to the one of the element whose

motion is being simulated. This requires as set of conventions for state

transfers; these conventions are given in the form of a virtual element

towards the end of this section.

1The upwards motion is the symmetric counterpart of the downwards motion;
the M-RNA polymerase is allocated in a position with z 2-ordinate equal to

-2 and in state (UMOTION, SET) and suffers an autonomous transition to
(Noop,O) while moving upwards one unit in the z 2-direction.
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Now we consider the state transition structure of the M-RNA type.

A state diagram of this type is shown in Figure 6. The corresponding

structure and intensity transition functions are given in Tables 8 and

9, respectively.

The M-RNA type which is allocated in the informational space as

indicated in Figure 5 is not a nearest neighbor of the corresponding

operon. All the information corresponding to the proteins coded by the

operon, is transferred to the M-RNA element by the M-RNA polymerase

element which is a nearest neighbor of both the operon and the M-RNA

elements.

The M-RNA type has 4 structures labelled N, END, MARK, and DESTROY.

In the N structure the M-RNA type is in neutral condition. The type is

either inactive or following the transcription from an operon type (say

OP ) to the corresponding clock, as explained before. The intensity

during information transfer is the dormant intensity. When the clock

detects the completion of transcription of a gene (say (G ik), the

intensity of the clock becomes Tsk, for some k, and this triggers a

structure transition in the M-RNA type from N to END, and a corresponding

intensity transition from 0 to Ts,k, as shown in Tables 8 and 9.

We note that the only feature of our M-RNA elements for distinguishing

between different proteins consists of the times of synthesis {T., k.}.

When in structure END, and intensity Tsk, k=l,...,m, any intensity

of the clock in structure count, will cause the type to change it struc-

ture to MARK and intensity M. The operational object of this state is
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Table 8

Transition Function for M-RNA Type
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Structure

Present Present Present Present Present Next
Structure Intensity Intensity Intensity Intensity Structure

(M-RNA) (M-RNA) (Clock) (M-RNA Pol) (Ribosome) (M-RNA)

N 0 TT=l,.. .TH 0 any N

N 0 Tskk=l,. .M 0 any END

MARK M any Br cont MARK

MARK M any S cont N

MARK M any Br Decont Destroy

Mark 0 any 0 cont N

Destroy De any any any Destroy

END Tk k=l,. .T TT=l,. .TH any any MARK



Table 9

Intensity Transition Functions for M-RNA Type

Present Present Present Next
Intensity Intensity Intensity Intensity
(M-RNA) (Clock) (M-RNA Pol) (M-RNA)

0 0 0 0

0 T, T=l,...,TH 0 0

0 Tsk k=1,... ,M 0 Tsk

MARK

Present Present Present Next
Intensity Intensity Intensity Intensity

(M-RNA) (M-RNA Pol) (Ribosome) (M-RNA)

M Br cont 0

0 set cont 0

M any Decont De

M R cont M

Destroy

Present Next
Intensity Intensity

(M-RNA) (M-RNA)

De De

END

Present Present Next
Intensity Intensity Intensity

(M-RNA) (Clock) (M-RNA)

Tsk k=l,...M any M
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to inform the ribosome element that a protein has been transcribed, and

the length of the protein under synthesis1.

When in structure MARK, and intensity M, the M-RNA has completed the

transcription of a protein. If the operon under transcript has more

genes to be transcribed, the M-INA polymerase is in intensity Br and

if the ribosome is in the intensity count 2 , the transcription of the

next gene of the operon starts. This is simulated by a state transition

to the state (N,0) starting a new iteration of the cycle described in

the last paragraphs.

When in structure MARK, and intensity 0, if the M-RNA polymerase

is in set intensity, the M-RNA attains the state (N,O); that is, the

information about the last gene transcribed is "erased" 3 and the M-RNA

type is ready for the transcription of the next gene. On the other hand,

if the M-RNA polymerase is in the R intensity, the M-RNA moves downward

(along the z -coordinate) in the informational space disattaching itself
2

1We note that our model the transcription process and the corresponding
synthesis process of a given protein operate simultaneously, a condition

that is known to hold in the cell. (see Watson [ ]). That is, the
portion of M-RNA transcribed at a given point can drive a ribosome for

the synthesis of the corresponding chain.

2The operational significance of the intensity count of the ribosome type

is explained later.

3This operation has no corresponding behavior in the genetic apparatus
in which the operon is transcribed as a polycistronic M-RNA. However,
from the operational point of view, the important aspect is the sequen-

tial transcription of the genes of the operon and this is preserved in
the state transition convention described above.
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from its clock (see Figure 5). Finally, if the M-RNA type is in the

MARK structure and M intensity, and the ribosome is in the Decont1

2intensity, the next state of the type is (Destroy, De)2. This state

indicates that the M-PNA type has reached as irreversible status which

prevents it from feeding (via its intensity) any further information

to the ribosome type. This condition of the type simulates the destruc-

tion (by external agents or by degradation; see Lewin fill) of a poly-

cistronic M-RNA molecule after it has served as the template for the

synthesis of a number of proteins (see Section 2.3). Thus is the operon

(OP.) under synthesis is no longer fed by its corresponding transcrip-

tion feedback mechanism (TFM.), no further synthesis of its proteins

occurs. If the TFM. is still active3 the transcription cycle described

so far starts again.

Now, we will describe the ribosome type. In order to do this we first

provide a diagram of information flow for the ensemble of elements that

interact with the ribosome. This diagram is shown in Figure 7.

In Figure 8, the state diagram for the ribosome type is given. The

corresponding structure and intensity transition functions are given in

Tables 10 and 11, respectively. The allocation of ribosome elements to

1Decont is an intensity of the ribosome type which will be described be-
low.

2 The operational significance of intensity De was discussed before in

connection with the M-RNA .
pol

3As most other elements described so far, the TFM. has an inactive state

all the other states of this type are referred to as active.
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Table 10

Structure Transition Function of the Ribosome Type

1 The domain of structure TRANS has 5 arguments, i.e., TRANS Q5
Q is the set of intensities; however the structure transition
ted with TRANS depends only on 2 intensities, as indicated in

Q where
associa-
the table.
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Present Present Present Next
Structure Intensity Intensity Structure
(Ribosome) (Ribosome) (M-RNA.) (Ribosome)

INA 9=1,.. .,p 9=1,... ,p 0 9, 9=l,...

9 k=1,... ,p cont 0 k, =1,...,1p

9 9=1,...,p cont T k=1,... ,M 9, 9=1,... .p

S9=,... ,p cont Br , =1,...,p

9 9=1,... ,p-1 Br any INA -l 9, . ,p-l

p Br 0 TRANS

TRANS Decont De TRANS

TRANS Si 0 INA

TRANS Rl any TRANS



Table 11

Intensity Transition Functions of the Ribosome Type

INA Z=l,. .p.,p

Present Present Next
Intensity Intensity Intensity
(Ribosome) (M-RNA) (Ribosome)

any #0

0 cont

9.., k=1,... p-l

Present Present Next
Intensity Intensity Intensity
(Ribosome) (M-RNA.) (Ribosome)

cont 0 cont

cont T sk, some k=l,... ,M Br

Br M 2+1

P

Present Present Next
Intensity Intensity Intensity
(Ribosome) (M-RNA.) (Ribosome)

cont 0 cont

cont Tsk, some k=l,...,M Br

Br any Decont
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Table 11 (contd.)

TRANS

Present Present Intensity Next
Intensity Intensity
(Ribosome) Neighbor 51 Neighbor l1 Neighbor 3 Neighbor 4 (Ribosome)

De

De

De

De

De

De

De

Br

Br

De

0

0

Br

0

0,or Tsk

k=l,. . ,M

Br

De

0

De

Decont

cont

Decont

R

R

R

Si

Si

R

any#R

0

0

any

R1

Decont

Decont

Decont

Decont

Decont

Decont

Decont

Decont

Decont

Decont

R

Si

R1

R

R

Si

Si

Si

Si

cont

Decont

Decont

Decont

S

R

Si

0

0

anyWR ,S

0

0

any

R

Si

Si

R

S

any/R , S y

0

0

0

0

0

0

0

0

0

STOP

0

0

any/O

0

any

0

any

0

STOP

>ee Figure 5a for neighbor-numbering convention; and Figure 9

tive position of ribosome in informational space.
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cont

any/S
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the informational space is shown in Figure 9. (Note that all the acti-

vity here is in the z1-z3 plane as opposed to the z1-z2 plane used in

Figure 5.)

The ribosome element has 3 types of structures: INA., i=l,...,p,

, S=l,...,p and TRANS, where p 0 is the number of proteins a ribosome

can synthesize from a given M-RNA encoding before breaking. The struc-

tures of the first type present the ribosome in an inactive status and

ready for starting the synthesis of a protein. The structures of the

second type indicate that the ribosome is engaged in the synthesis of a

protein coded by the M-RNA element interacting with it. The structure

It is well known that the ribosome in the cell is composed of two sub-
units (see Watson 19 1) called the large subunit and small subunit; the
former carries the synthesis and the latter reads the nucleotides of the
M-RNA under synthesis. The two subunits are held together by a protein
called the "sticky point". In the cell, (see Lewin Ill]) there is usu-
ally a pool of ribosome subunits (presumably synthesized constitutively)
which are assembled together when the "sticky points" are synthesized by
a (presumably) regulated operon. A ribosome involved in synthesis suf-
fers from irreversible sequential "fatigue" (Katchalsky 120]), that is,
as more proteins are synthesized the likelihood of its subunits separa-
ting from each other increases. In our model of the ribosome, we simu-
late this fact by allowing each ribosome to synthesize p proteins before
Breaking. The number p is also the max. number of proteins from a given
polycistronic M,-RNA that we allow to be synthesized before the Mi-RNA is
destroyed. It should be noted that in our model at any given time only

one ribosome is interacting with the M-RNA element in contract to what
actually occurs in the cell, where many ribosomes are simultaneously
engaged in the synthesis of proteins with a single M-RNA molecule as
the Information carrier. However we simulate this fact by having a
battery of ribosomes moving over the RNA, so that as soon as one ver-
sion of M-RNA has been translated, another ribosome element is inter-
acting with it. We will illustrate in Chapter 5 with a Monte-Carlo
run example that, with this operational arrangement, the ratio of
#Proteins/# respective 16-RNA is about the same as that observed in the

sel(20 / 50).
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TRANS indicate that the ribosome is moving along a path parallel to the

z -axis (z -1, z 3 1), or, that the element is not available for
1 2 3

protein synthesis. We now proceed to explain the operational role of

these 3 types of structures and their corresponding intensities.

The structure INA,, i=l,...,p indicates, in addition to the readi-

ness of the ribosome type, the number of proteins synthesized by the

ribosome since it was activated. When a ribosome is in structure INA,

i=l,...,p 2<i:p, it means that is has synthesized i-l proteins in the

immediate past and is ready for the synthesis of the ith as soon as an

RNA element interacts with it. Each structure INA. has a single inten-

sity (i).

When the ribosome is in state (INA., i) i=l,...,p and the M-RNA in-

teracting with it is in intensity 0 a transition to state (i, cont)

occurs and the synthesis of the corresponding protein proceeds.

In each of the structures labelled i, i=1,...,p the ribosome can

attain one of two intensities: cont and Br (see Figure 8). When in

state (i, cont), l<i p the ribosome element is engaged in the synthesis of

a protein element. This state remains unchanged during the synthesis

step (which coincide with reading steps from the corresponding M-RNAk).

A state transition occurs when the intensity of the corresponding M-RNA

element reaches intensity Br (indicating the completion of the code of a

protein); the new state becomes (i, Br) which indicates completion of syn-

thesis of the corresponding protein element. We note that the synthesis

procedure discussed above proceeds sequentially until M -RNA element reaches
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intensity M, then the protein element "knows" its synthesis has ended.

When in state (i, Br) l<_i<p-l, the ribosome element suffers an auto-

nomous state transition to state (INA. , i+l) and the ribosome element
i+1

is ready for the synthesis of a new protein. When in state (p, Br) the

ribosome has already synthesized p proteins in a role and, as discussed

above, is unable to synthesize any more problems (breaking). In our model,

this condition is represented by a transition to state (TRANS, Decont) as

indicated in Figure 8.

The structure TRANS (whose mnemonics stand for transport) has 3

intensities: Decont, S1 and R1.

When in structure TRANS, the ribosome element is unable to synthe-

size proteins and is involved in a translation motion in the informational

space as indicated in Figure 8. In intensity R1 the translation motion

is carried one space unit at each time step in the positive direction of

the z1-axis. This motion continues until one of the following conditions

occurs:

a) An element representing an M-RNA in a nearest neighboring location

of the point in which the ribosome element is at present time, is in

0 or Ts,k, k=l,...,M intensities meaning that the M-RNA is under

transcription and a ribosome has not been made available for syn-

thesis (the corresponding ribosome element directly above the M-RNA

is in Decont intensity; see Fig. 9). In this situation a state

transition of the ribosome-element occurs (from (TRANS, R1 ) to

(TRANS, S1 )) which positions the ribosome element in the appropri-

ate nearest neighboring point of the M-RNA element (directly above
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it in the z 3-coordinate direction). When the ribosome is in

state (TRANS, S1) if the M-RNA element directly above is ready

for synthesis (i.e., in intensity{T s,k}) the ribosome element

expreiences a state transition to state (FNA, 1) and synthesis

starts as explained above This transition does not involve any

motion.

b) A ribosome element in a nearest neighboring point (see Fig-

ure 9) is in intensity Sl then the ribosome element changes its

state to (TRANS, S1 ).

c) An element in a nearest neighboring point of the ribosome ele-

ment is in the intensity STOP. In this case, the ribosome suffers

a state transition from (TRANS, R 1) to (TRANS, S ). The intensity

STOP belongs to an element allocated at a point (z 1, 1 1)2 in the

informational space; this element has no biological significance,

its objective is to serve as a barrier (or boundary) for the motion

of ribosome elements in the positive direction along the z1-axis.

When in structure TRANS and intensity Sl and when the neighboring

M-RNA is not ready for synthesis, the ribosome element is in translation

motion in the negative direction of the z -axis, one space unit at each

time step. This motion continues until one of the following conditions

occurs.

1As we shall see the intensity S indicates translation in the negative
1

direction of the z -axis.

2 112z > 3
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a') Condition a') is the symmetric of condition a) above (i.e.,

the ribosome is moving in the opposite direction of the z -axis).

The corresponding state transition is from (TRANS, S ) to (TRANS,

Rl).

b') Condition b') is a symmetric version of condition b). The

corresponding state transition if from (TRANS, S1) to (TRANS, R )

c') Condition c') is a symmetric version of condition c). The

element STOP (i.e., a virtual element whose only state is (STOP,

STOP) is allocated at some point (z 1, 1, 1) of the informational

space with z < 3.

In synthesis, the ribosome elements bounce back and forth along

the z -axis when not engaged in synthesis. The motion is stopped when

(1) a ribosome interacts with an M-RNA element which is in state (INA,

1), that is, ready for synthesis, or, (2) it finds an element STOP which

causes the motion to reverse direction.

We note that the ribosomes move in the z direction back and forward

between the two stop elements.

Now we describe the state structure of protein elements. Proteins,

as discussed in Chapter 2, have the operational purpose of modulating
1

By modulation of a reaction system we understand the caralytic action
of the protein. We assume that the speed of any reaction is zero in the

absence of its catalytic protein. This assumption is justified by the
fact that any organic reaction experiments an increase of several orders

of magnitude (i.e., sometimes by a factor of 10,000) in its reaction

speed in the presence of the appropriate catalytic molecule.
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reaction systems, or to serve as regulatory elements for activating or

deactivating transcription feedback mechanisms (TFM's) (see Section 2.1).

In our model, we consider 5 different classes of reaction systems and

one type of regulator protein, therefore we require 6 different types of

protein elements. The state structure of these 6 types is developed in

the following paragraphs.

Before we develop the state structure of the 6 types of protein

elements to be considered in this study we discuss briefly an idealiza-

tion about their synthesis and catalytic operational characteristics

that has been made in order to simplify their state structure. It is

well known (see Sampson [14) that proteins start their catalytic activity

while still under synthesis (i.e., a portion of the chain under synthesis

has already the ability of performing the catalytic role of the complete

chain1 ). However, in our model, the protein elements are assumed to

be inactive as catalytic or modulating agents until the sunthesis has

been completed. This assumption implies that the rates of the reaction

systems controller by these proteins are actually higher than the ones that

can be obtained from a simulation with the model2 ; but since reaction

rates (or reaction constants) are not parameters used in our state formu-

lation; this assumption does not seem to be critical.

See Lewin 1 1], for a discussion on the experimental evidence supporting
this fact.

2In Chapter 5 we will give a procedure for estimating reaction rates of a
system on the basis of a simulation of its dynamics with our model.
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The assumption described in the last paragraph, is needed for main-

taining consistency in the level of aggregation of the state structure

of protein elements with respect to the level of aggregation for the ele-

ments of the storage sub-class whose description was given earlier in

this section. An analysis of the level of aggregation in the model and

its implications is given in Section 3.4.

State diagrams for each of the six classes of proteins we consider

in our model are given in Figures 10-a through 10-f. The first 5 figures

correspond to proteins able to catalyze sets of one of the 5 canonical

reaction systems described in Section 2.1 (see Figure 2.1-4 and companion

discussion). In Figure 10-f a state diagram corresponding to protein

elements of regulator type (see Section 2.1) is given. Finally, in

Figure 11 we combine these six steps into a single element, which is the

type we use in our model for representing elements of the protein sub-

class in out model.

Figure 10-a gives the state representation of a protein element cap-

able of representing one of m (m>0) proteins of the type that controls

monomolecular irreversible reactions that is reactions of the form

A91k + BPk (3)

PR 
,

1The symbols A in (3) represent molecules. We will use these symb-ls

also to certain intensities of protein and chemical elements,
as discussed next.
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where A ,k is the reactant and B ,k is the product of the k k-th

reaction system associated with the 9-th operon of the system under

study (see Section 2.1) and PRkk is the protein coded for by the

k. -gene of the Z-th operon of the system.

Protein elements of the type described above have 4 classes of

structure transition functions: N , Select, {RS. I and the dormant
e i,k.

structure. In Ne the protein is in an inactive status (representing the

availability of amino acid residues for conforming any of a finite num-

ber of protein elements all of them being catalytic agents in irrever-

sible monomolecular reactions). In Select, the protein is under synthe-

sis, and as discussed previoulsy, unable to catalyze any reactions.

In structure RS. , the protein element represents the protein
1,k.

PR (i.e., the k.-th protein coded for by the ith operon (OP.),
i,k.11

which is assumed to catalyze the monomolecular irreversible reactions

Aik + B. ). Thus, the protein element is capable of represent-
1 . 1,k.

Pk.
1,k.

1

ing one of m different proteins. The set of structures RS. are
1,k.

also involved in the transport of protein elements from the synthesis

area in the informational space (z3 E 2, z2 E -1; see Figure 9) to the

catalysis area (i.e., a region in the informational space where inter-

action among protein and chemical elements occur. This region will be

m is an upper bound of the number of reaction systems in a hypothetical
system consisting only of monomolecular reaction systems.
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defined shortly), or to the 'transcriptional control area, if the protein

element represents a regulator protein. The dormant structure 0, repre-

sents the destruction of the protein as a catalytic element.

Before passing to discuss in detail the state of structure of the

protein element sketched above, we will give a brief description of pro-

tein elements of the second class, (i.e., proteins catalyzing monomole-

cular reversible reactions). These two classes of elements have similar

state structure and we will discuss their characteristics simultaneously.

A state diagram for this type is shown in Figure 10-b. As in the

case of monomolecular irreversible protein types, the state structures

have 4 kinds of structures labelled N , Select1, RS! and 0 (the
e 1 i,k.

dormant structure). The operational purpose of these structures are

analogous to the corresponding structures of monomolecular irreversible

protein elements. The protein elements of the second class modulate

one of a finite set of reactions of the form

A. + B. (4)
1,k. 1,k.

PR.
i,k.

Tables 12 and 13 give the structure and intensity transition func-

tions for protein elements of the two classes sketched above. Figure 12

illustrates the motion of the protein elements in the informational space.

When the monomolecular reversible (resp. irreversible) protein type

is in state (Ne, 0) (resp. (N e, 0)) and the ribosome element interacting

with it is in intensity cont (with the element allocation depicted in
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Table 12

Structure Transition Function for Protein Elements of Irreversible

(Reversible) Monomilecular Type

Present Present Present Present Intensity Next

Structure Intensity Intensity (Reactant (Product Structure

(Protein) (Protein) (Ribosome) Molecule) Molecule) (Protein)

Ne (Ne ) 0 cont -- -- select (select )

Ne (Ne ) 0 any/cont -- -- Ne(Ne )

j>T
select(select ) jfT.,k. cont -- -- select(select )

select(select ) j=T. ,k. Br -- -- RS,,k.(RS ,k.)

select(select ) Decont -- -- Ne(Ne

RS.,k.(RS!,k.) -- A.,k. -- RS.,k.(RS!,k.)
1 1 1 1 1 1 1 1 i

select(select ) T.,k. -- A,k -- RS.,k (RS ,k )

select(select ) T.,k. -- -- (Bi,k) -- (RS!,k )



Table 12 (contd.)

Protein Motion

Present
Structure
(Protein)

RS. ,k. (RS' ,k.)

RS. ,k.(RS! ,k.)

RS. ,k. (RS! ,k.)

RS.,k.(RS! ,k.)

RS. ,k. (RS! ,k.)
i 1 1 1

RS . ,k . (PRS!I ,k .)
1 1 1 1

Neighbor 0 Neighbor 1 1 Neighbor 2

Present Intensity

Neighbor 3 Neighbor 4 Neighbor 5 Neighbor 6

I 1 .1 1 t

A. ,k .

A. ,k.
I I

A. l,

A.,k . (A. ,k .,
lif l lB. ,k.)

A.,k. (A.,k.,

B f iB.,k.)
1 1

(A. ,k .) (A . ,k .,
1 1 1 1

B k.)

any

any

any

any

anyfstop

stop

any

# k.

,k!

any

any

any

any

any

any

any

REG

any

Afi A ,k.

(A.,k,FB,ok.)

ZAi Ak

(An,k,Bk

any

k' # k.

1 1

kitA34! =k.
i 1I

0 or A. ,k"

any

any

any

any

any

any

any

k. k!
1 1

A. ,k.

any

any

any

any

___________ I _________ I. _______ I _______ I ________ .L _______

M

any

any

A. ,k . (A.,k .1 1 1 1

B. ,k.)

jl A.,k'I
J J

(A.,k. ,B. ,k.)
J J J J

stop

stop

Next
Structure
(Protein)

O(0)

RS.,k! (RS!,k)

RS.,k. (RS!,k.)

select (select 1 )

RSkZ (RS' k,)

0(0)

0(0)

I I -- I



Table 13

Intensity Transition Functions for Protein Elements
of Irreducible (Reducible) Monomolecular Type

Ne (Ne1

Present Present Next

Intensity Intensity Intensity

(Protein) (Ribosome) (Protein)

o cont 1

0 any/cont 0

select (select )

Present Present Next

Intensity Intensity Intensity

(Protein) (Ribosome) (Protein)

j j=1,2,... cont j+l

j=T.,k. Br A.,k.

Decont 0
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Table 13 (contd.)

Present Present Intensity Next
Intensity Intensity
(Protein) Neighbor l Neighbor 2 Neighbor 3 Neighbor 4 Neighbor 5 Neighbor 6 (Protein)

I . . I.

A. ,k. (A. ,k.)
1 i 1 i

(B. ,k.)

1 1

stop

1 11

(B k . )

stop

stop

stopk

B. ,k. (B. ,k.)
1 1 1 1

A. ,k. (A. ,k.)
1 1 1 1

0

1 1 1 1

A. ,k! (A. ,k')(iri i i

A.,k'(A.,k.'

1 i 1 i

(A. ,k .)
1 i

A. ,k. (A. ,k.)
J J J J

De (De)

A. ,k. (A. ,k.)
J J J J

De (De )

0 (0)

T.,k.(A. ,k.)
1 1 1 1

A. ,k.
1 l

A. ,k.
1 i

A. ,k.
1 1

A. ,k.
i i

A. ,k.
i l

B. ,k .
1 1

A. ,k.
1 1

A. ,k.
1 1

A. ,k.
1 1

A . ,k .
1 1

De

B. ,k.
1 1

0

k =k.
1 1

A. ,k.
1 1

A.,k.
1 1

stop

A. ,k.
J J

REG

A. ,k.
J J

A. ,k.
J J

stop

stop

stop



Figure 9), the protein element suffers a state transition to state

(Select, 1) (resp. (Selecti, 1)). If the intensity of the ribosome

elements is still cont, the corresponding protein element suffers

successive state transitions to (Select, 2) (resp. (Select , 2)),

(Select, 3) (resp. (Select,, 3), and so on until, for some j, j=Tik.

the time of synthesis of and of the proteins simulated by the element.

This time of synthesis, as discussed previously, is detected by the pro-

tein element when the corresponding ribosome reaches intensity Br. At

this time, the protein suffers a state transition from (Select, Tik.

(resp. (Selec T. )) to state (RS. , A. ) (resp. (RS!
i ,k. 1,k. i,k i,k.

Aik. )).
1,

When in structure RS (resp. RS' ) and intensity A.
i,k. 1,k. 1,k.

(resp. (A or B ) the protein element attains one of several
i,k. i,k.

states depending on whether it is presently located in the synthesis or

catalysis1 areas of the informational space (these areas are indicated in

the diagram of Figure 12). In the catalysis area, (the points of the

informational space with loci z2 = 2, z3= 1), if the intensity of the

corresponding nearest-neighbor with z2 = 2, z3 = 0 and the same z1-ordin-

ate as the protein element is A. the intensity of the protein element
1,k.

changes to B. conversely, if the intensity of the reversible protein
i,k.

1We note that the protein elements "knows" its position in the several

regions (synthesis or catalysis areas or the path in between) of the

information space by the intensities of its nearest neighbors as ex-

plained above.
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element is B and the intensity of the element at z2 = 2, z3 = 0 and
i,k.23

the same z 1-ordinate as the protein element is B. then the protein
1,k.

element changes to Ai.

If the intensity of the nearest neighbor at z2 = 0, z3 0 and some

z of a protein element in the catalysis area is any other than Ai ,k

say kk (representing the chemical element AP,k ) the protein inten-

sity changes to that of its nearest 3-neighbor (see Table 13) while that

of its nearest 1-neighbor becomes A. ; that is, the protein element is
1,k.

transported one unit in the positive direction along the corresponding

z -ordinate, (z E 2, z E 1). This translation ends if and when the
1 2 3

protein element interacts with a chemical element in the correct inten-

sity (i.e., A. ), allocated in its 5-neighbor, z2 = 2, z 3 = 0 and some

zl, or it finds an element in state (STOP, STOP) in that location, as

indicated in Table 13.

When in structure RS (resp. RS' ) and intensity A. and,
i,k. 1,k. 1,k.

the protein is in the synthesis area (see Figure 12) -and its 2- and

4-neighbors are in intensity 0 or the intensity of the 4-neighbor is

A. = A., (i.e., the intensity corresponding to the previously
ik. 1ki -1 i

synthesized protein of OP.), the intensity of the protein element suffers

an intensity transition to 0 while that of the 4-neighbor becomes A. .
1,k

Thus, effectively, the protein element has effected a translation in the

positive direction of z2 (i.e. it is now allocated on z2 = 0, z3 = 2 and

the same z -ordinate as that of OP., as shown in Figure 12).
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When the protein element is in state (RS., Aik) (resp.(RS'k,
ik. ilk. ilk.

1 11

Ailk.)) and allocated to the point in the informational space z2 1,

z= 1 and the same z -ordinate as TFM. (see Figure 12) and its 5-neigh-
31 1

bor is in intensity A. , the protein element suffers a state transi-
1,k.

tion from (RSi, A.) (resp. (RS.'! Aik)) to (RS' , Aik)
ilk.i ilk. ik. 1,k. ,k. ik.

1 1 1 1 1 1

(resp. (RS' Aik,)).
Ilk. ilk.

1 1

We note that the state transition steps described in the last 3

paragraphs represent the translation of a protein element from the syn-

thesis to the catalysis area (a procedure that takes 3 time steps); once

there, the state dynamics of the protein element has the structure des-

cribed previously.

We note that the "distance" 2 of transport of a protein element be-

tween the synthesis and catalysis areas in our model is 3 and it is the

same for all protein elements. In the cell, this is not the case in

general since the sites at which reactions occur are scattered all over

the intracellular space or affixed to the membrane walls and the distances

the proteins must travel from the synthesis area to the places where they

perform their catalytic actions, are widely different from each other.

We could allocate in the reactants-and-products region (see Fig-

1Notice that in this transport step the protein element is translating
(one step) in the negative direction of the z -axis.

3
2By distance here, we mean the number of points in the informational space
occupied by the protein element PR in state (RS. , A. )i,k. 1,k. 1,k.

(resp. (RS , A
i,k. i,k.

l 1
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ure 12) the reactants of different reaction systems at distances from

the corresponding synthesis points so as to reflect the actual distances

in the cell; however, for most reaction systems, these distances are not

known. Thus, we have assumed with our reactant/product element alloca-

tion, an equal distance for all the systems in the model.

Now we describe the state structure for protein elements that cata-

lyze bimolecular irreversible (resp. reversible) reactions. A state

transition diagram for the bimolecular irreversible (resp. reversible)

protein elements is given in Figure 10-c (resp. 10-d). The corresponding

structure and transition functions are given in Tables 14 and 15, respec-

tively.

The reactions in which these proteins perform catalytic actions are

of the form

A. + B. + C. (irreversible) (5)
i,k. i,k. i,k.

PRik

A. + B. + C (reversible) (6)
ilk. ik. + ilk.

R i rk1 1 PR,
ik.

where A. , B are the reactants and C. is the product of the
i,k. i,k. 1,k.

1 1i

k. -th reaction system associated with the i-th operon.

1As in the monomolecular case, we use the symbols A. , B. and C.
1,i 1,ki 1,ki

to indicate molecules as well as intensities of protein and chemical
elements. The meaning intended is made explicit in each case in which
these symbols are used.

-167-



Table 14

Structure Transition Function for Protein Elements of Irreversible (Reversible)
Bimolecular Type

Present Present Present Present Intensity Next
Structure Intensity Intensity (1st Reactant (2nd Reactant (Product Structure
(Protein) (Protein) (Ribosome) Molecule) Molecule)_ Molecule)_ (Protein)

Ne2 (Ne3

Ne2 (Ne 3

select2 (select3

select (select )2 3
select2 (select3)

RS',k. (RS"',k.)
1 1 1 1

select (select )2 3

select (select )2 3

select (select)
2 c 3

0

0

j l
j/ T.,

j = T.,

j

AB.,k.
1 1

AB. ,k.
1 1

AB. ,k.
1 1

AB.,k.
1 1

A.,k.
1 1

A.,k.
1 1

B.,k.
1 l1

B.,k.
l 1

C. ,k.
1 1

T. ,k.
1 1

T . ,k .
1 1

T. ,k.
1 1

cont

any : cont

cont

Br

Decont

A.,k.
1 1

B.,k.
1 1

--k
B. ,k.

1 i1

A. ,k.
1 1

3--
A.,k.

B. ,k.
1 i1

A. ,k.
1 1

Bi ki
B. ,k.

1 1

B. ,k.
1 1

A. ,k.
1 i1

A. ,k.

B. ,k.
1 1

C. ,k.
1 1

C. ,k.
1 1

I _____________ I

select2 (select 3

Ne2 (Ne 3)

select2 (select3

RS','k. (RS'."k.)

(Ne2) (Ne3

RS',,k.
1 1

RS'.' ,k.Ii i

RS'.',k.
i i

RS',k.
i i

RS'',k.
i I

PS'.,k.
i I

RS'.,k.

RS'.,k.
1 1

i i

select 2

RS'.' ,k.
1 1i

RS '.' ,k.
1 1

(RS'.",k.)
1 i

(RS ',k.)
1 1

(RS'.",k.)
1 1

(RS'.",k.
1 1

(RS'",k.)
1 1

(RS'.",k

(RS'.",k.)
1 1

(RS'.",k.)
1 1

(select)
3

(RS',k.)

(RS',k.)
1 i

(RS'.",k.)
1 1

RS'.',k.
1 1

RS'',k.
1 1

RS'.',k.
l 1

RS'.',k.
1 l

RS'.',k.
1 1

RS'.,k.
1 1

RS'.,k.
1 1

RS'.',k.
1 1

(RS',k.)
1 1

(RS'.",k.)
1 1

(RS ',k.)
1 1

(RS'.",k.)
1 1

(RS'.",k.)
1 1

(RS'."k.)

1 1

1 1

(RS?',k.)
1 1



Table 14 (contd.)

Present Present Intensity Next
Structure _aA_ _Structure

(Protein) Neighbor 0 Neighbor l1 Neighbor 2 Neighbor 3 Neighbor 4 Neighbor 5 Neighbor 6 (Protein)

RS'.' ,k. (R',k.
i 1 1 1

AB. ,k.
i i

AB. ,k.

AB. ,k

AB. ,k.
1 1

AB. ,k.
1 1

A.,k., B.,k.

AB. ,k.
i i

A.,k., B.,k.
1 1 i 1

AB. ,k.
1 1

De

0

I i

0 or A.,k .

any

34i ABZkk

ABRkk

any

any

any

any

any

REG

any

any

fi AB ,k

any

any

k. + k.
1 1

A ,k.
k, k.k.

0 or A. k.
I I

any

any

any

any

any

any

any

any
k. /k.

1 1

mini A ,km

mi B ,km

mi A ,km

any

stop

any

any

any

any

any

any

stop

_____________ I ___________ I _________ I _________ i I I A 4

0(0)

RS?,k.
1 1

RS ,k

RS , k.

RS k

(RS'.",k.
1 1

1 1

(RS 'I,k)

(RS ',k )

(RS'.",k.)
1 1

0(0)

RS'.',k.
1 1

RS ,k.

RS"',k

RS, k.

RS'.' , k .
1 1

RS'.',k.

RS'.',k.
i I

(RS ',k.)
1 1

( RS'',k )

(R?',k).

(R'.", k.
1 i1

( R',k .)
1 i1

(RS'",k.
1 1

(R'.",k.)
I i

any

any

any

any

any

any

stop

stop



Table 15

Intensity Transition Function for Protein Elements

of Irreversible (Reversible) Bimolecular Type

Ne2 (Ne3

Present Present Next

Intensity Intensity Intensity
(Protein) (Ribosome) (Protein)

0 cont 1

0 any/cont 0

Select2 (Select3 )

Present Present Present Present Next

Intensity Intensity Intensity Intensity Intensity

(Protein) (Ribosome) (Reactant (Product (Protein)
Molecules) Molecule)

j-1 jfT.,k. cont -- -- j+1

j = T.,k . Br -- -- AB. ,k .

Tk -- A.,k., B.,k. -- B. ,k.
i' 1 1 1 1 1 1 1

T.k -- B.,k. -- A.,k.
i i 1 1 1 1

Tk. -- -- C.,k. (AB.,k.)
i' 1 1 1 1 1
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Table 15 (contd.)

Present Present Intensity Next

Intensity - Intensity
(Protein) Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4 Neighbor 5 Neighbor 6 (Protein)

AB. ,k.
1 1

AB ,k.

1 1k

A. ,k.

B k

AB. ,k.

1 1

AB. ,k.
1 1

AB. ,k.
1 1

iR.,k., k,

AB. k.
1 1

AB. ,k ., A. ,k .,Ai kiF i kitB. ,k.
1 l

AR.i lk. ,A.l ,k
1 1 1 1,

REG

9/i ABP ,k
PA

k 'k! k.
1 1 1

O or AB. ,k'
1 1

k. /k.
1 1

A. ,k.
1 1

11

AB. ,k.
1 1

m/i
B ,k
m m
m/i
A ,k

m m

_____________ ;J. - . ___________ -

A ,k,

B ,k,

Aik iB. ,k.

i 
i

A.,k.

1 1

stop

AB ,k

De

AB. ,k!
1 1

0

stop

stop

B ,k.

1 ,k

A. ,k.

c k

C. ,k.
1 1

T. ,k. (AB. ,k.)i i 1 1

AB. ,k.

0

AB. ,k.
1 1



The protein elements whose state structure is of the form shown in

Figure (10-c) resp. (10-d) can catalyze one of a finite set of biomo-

lecular irreversible (resp. reversible) reactions.

The state structure of protein element of bimolecular irreversible

(resp. reversible) type is composed of kinds of structures: Ne2 , Select 2,

{RS'.' and the dormant structure 0 (resp. Ne Select {RS
i,k. N 3, 3' ,k.

and 0).

When in state (Ne2, 0) (resp. (Ne3, 0)) the protein element is in

an inactive status, allocated in the synthesis area (see Fig. 12) and

waiting for protein synthesis to start. Synthesis starts, when the in-

tensity of the ribosome allocated in the 5-nearest neighboring point of

the protein element becomes cont, the protein element's state becomes

(select2, 1) (resp. (select 3 ,)); if the intensity of the ribosome is

still cont, a transition to (select2, 2) (resp.(select , 2)); if the ribo-

somes intensity is still cont the protein state becomes (select2 , 3)

(resp. (select3, 3) and so on, until for some intensity j, j=t ik. the

time of synthesis of one of the preteins represented by the protein

element, and the intensity of the ribosome becomes M. In such a condi-

tion, the protein element suffers a state transition to (RS'', AB
1 r ik.

(resp. PS'' , AB. )). One in state (RS" AB. ), the proteini,k. i,k. i,k. i,k.

element is transported from the synthesis to the catalysis region in a

manner analogous to the transfer procedure described earlier for protein

elements of monomolecular i-reversible (resp. reversible) type.
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Once in the catalysis region, the protein element in state (RS.'
i,k.

AB i. ) suffers one of several possible state transitions. If the ele-

ment allocated in its 5-nearest neighboring location is in A. inten-
1,k.

sity the protein element suffers a state transition to (RS' , Bi,k. i,k.1 1

if this element is in intensity B then the protein elements state
i,k.

becomes (RS" A. ). An analogous state transition occurs in the
i,k. ' 1,k.

1 1

reversible case when the protein element is in state (RS' AB.
ik i,k.1 1

If the protein element state in the catalysis region is either

a) (RS'.' AB. ), b) (RS'.' A ) or, c) (RS" B. )
1, i,.1k ,k. 1.' ,klrk i rk i lr i

and the intensity of its 5-nearest neighbor is different from either

Aik. or B for a), A for b) or B. for c) and its 3-near-
1. o i ,k. ,k.

est neighbor is in intensity ABAk or A or B the state of
k~, the stateof

the protein element becomes, respectively, (RS 9k ASk ) or (RS ,kR'

A ,k )or (RSk , B ). Thus, effectively, a transfer of the

protein element in the positive direction of the z -axis has occured.

This translation continues until an element on the 5-nearest neighboring

location is of the appropriate intensity (i.e., AB. or A. or
1,k. 1,k.

B ) or this intensity is stop, in which case the proteins elements
i,k.

state becomes (0, 0).

Finally, if the state of the protein element in the catalysis re-

gion is (RS.' , A. ) or RS'.' B and the corresponding
i,k. 1,k. i,k. i,k.

1 1 1 -1

5-nearest neighboring element is A. or B. , respectively, the
i,k. 1,k.

1 1

state of the element becomes (RS" , C ) (resp. (RS" , C ))
i,k. i,k. i,k. i,k.

1 1 1 l

indicating the completion of the catalysis action for one irreversible
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(resp. reversible) bimolecular reaction system. In the irreversible

case, the state then becomes (select 2, T.k ) in the reversible case
2 1

it then becomes (RS' A.
ilk. 1,~ik.

1 1

We note that the catalysis action described above, proceeds always

in two steps:

(1) If the protein element in intensity AB. interacts with an

element in intensity A. , (or B. ) in its 5-nearest neighbor
1,k. 1,k.

location, then its intensity becomes B. , (or A. ).i,k. 1,k.

(2) If the protein element in intensity B. , (or A. ) inter-
1,k. 1,k.

acts with an element in intensity B. , (or A. ) the reaction
i,k. 1,k.

is completed as indicated proviously, otherwise the protein element

moves along the catalysis region until such an element, if ever,

is found or the protein element interacts with one STOP element.

Before discussing the state structure of the last two types of pro-

tein elements we digress for a moment to describe the state structure

of the genetically controller transformation elements (see Section 3.2)

which represent reaction systems, each one controller by one of the 4

protein element types discussed in the last paragraphs.

The state diagram corresponding to transformation elements under

catalytic control of proteins of monomolecular type (both reversible

and irreversible) is shown in Figure 13. The corresponding structure

and intensity transition functions are given in Tables 16 and 17 respec-

tively.
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Table 16

Structure Transition Function of the Transformation Monomolecular Element

Present NextPresent Present Intensity Nx
Structure _PresentIntensityStructure

(Reaction (Neighbor 0) (Neighbor 1) (Neighbor 4) (Neighbor 3) (Neighbor 5) (Reaction
System) System)

Rr. ,k.
1 1

Rr. ,k.
1 1

Rr. ,k.
1 1

RZ.,k.
1 1

Rr. ,k.
1 1

R9. ,k.
1 1

Rr. ,k.
1 1

Rr. ,k.
1 1

RZ. ,k.

R .,k.

1~ 1

PR. ,k*

A. ,k.
1 1

A. ,k,
1 1

B. ,k.
1 1

B.,k.
1 1

B. ,k.
1 1

A. ,k.
1 1

B. ,k.
1 1

A. ,k.
1 1

B. ,k.
1 1

A.,k.
1 1

B. ,k.
1 1

A. ,k.
1 1

B. ,k.
1 1

A.,k.
1 1

B.,k.

A.,k.

1 1
B.lkl
B ,k.
ii

A. ,k.
I 1

B. ,k
1 i1

A. ,k.
1 1

stop

stop

stop

-- l

--r k

-- r

-- 1

B9 ,k

$ stop

stop

stop

A. ,k.
1 1

A. ,k.
1 1

B. ,k.
1 1

B. ,k.
1 1

0

0

3 B. ,k.
1 1

# A.,k.
1 1

/ B.,k.
1 i1

/ A.,k.
1 i

stop

stop

I . I

Rr. ,k.
1 1

R9.. ,k.
i i

-(R9. ,k.)
1 1

-(RA. ,k.)

Rr k
91%

RZ9 ,kP

Rr ,k

R2A ,k.

Rr. ,k.
1 1

0

0



Table 17

Intensity Transition Functions of the Transformation

Monomolecular Element A. ,k. + B. ,k.
1 1 1 1

A.,k. + B.,k.
Rr. ,k. 1 1 1 1

1 1

Present NextPresent Present Intensity ex
Intensity PIntensity
(Reaction Neighbor 1 Neighbor 4 Neighbor 3 Neighbor 5 (Reaction

System) System)

A.,k. -- -- -- A.,k. B. ,k.
1 1 1 1 1 1

B.,k. -- -- -- B.,k. O(A.,k.)
1 1 1 1 1 1

A.,k. 2 -- 0 A ,k

A.,k. -- -- 0

B ,k -- B,k -- 0 B k

B.,k. -- A kk

A.,k. stop -- -- -- A.,k.
1 1 1 1

B.,k. stop -- -- -- B.,k.
1 1 1 1

A.,k. any/stop -- A ,k i Ak

1 1 k9
A.,k. any/stop -- B, f -B,

B.,k. any/stop -- AB k Afi -B k

B 1A

IThe intensity in parenthesis is reached if the corresponding protein is

of reversible type.
2Not necessarily different from i.
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Table 17 (contd.)

RE. ,k.
1 1

resent PNext
Intensity Intensity

(Reaction Neighbor 3 Neighbor 4 Neighbor 1 Neighbor 5 (Reaction

System) System)

A.,k. -- -- -- A.,k. B.,k.
1 1 1 1 1 1

B.,k. -- -- -- B.,k. O(A.,k.)
1 1 1 1 1 1

A.,k. -- Ak-- 0 k

B ,k -- k-- 0 B k

B.,k. -- Ak-- 0 Ak
11 1

A.,k. stop -- -- -- A.,k.

1 1 1 1

A ,k. any/gstop -- AP ,k kfi -- Ak

A.,k. anystop -- Bi -- B.,k

1 1 11 1

BA,k. any/stop -- B9,k 9i -- Bk

Bi,k any/stop -- Akk 99i -- A k
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.0'n

I A,k iIk

Am,km Am,km

m,k sk

RIm~kr

I ___LO___f'

See text and Tables 16 and 17.

State Diagram of the Transformation Monomolecular

Element

Figure 13
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The state diagram corresponding to transformation elements under

catalytic control of proteins of bimolecular type both,reversible and

irreversible is shown in Figure 14. The corresponding structure and

intensity transition functions are given in Tables 18 and 19, respec-

tively.

The state structure of the type representing monomolecular trans-

formation elements is composed of 3 classes of structures: {Rr. I,
i ,k.

{RZ. }, and the dormant structure.

Monomolecular transformation elements are allocated initially in

the region of the informational space determined by

Reactants of products region = {(z,z 2,z3 ) e z3 z2 2, z3

min < z1 < max} (7),

as indicated in Figure 121. The numbers min and max are determined by

the number of operons2 in the system. In the allocation of elements,

these numbers are the z -ordinates of STOP elements which constitute

barriers for the back and forth motion of transformation elements along

the z -ordinate (z2 = 2, z3 = 0), as explained below.

As we shall see, biomolecular transformation elements and control meta-
bolite elements are also allocated in the region defined by (7).

2The reason for this limitation is purely operational. Its purpose
is to keep the reactants in the interesting region of the information
space.
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/ RAi k;1RCi . I RB; k \/ OL 22V1 i, /.

I Ai,k Ci,k Bi,k

LAi LAik LBik

kI I 1i

RA~k \ 1 RC,,k 2 Rf~

.000

State Diagram of the Transformation Element of

Bimolecular Type

Figure 14
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Table 18

Structure Transition Function of the Transformation
Bimolecular Element

Present Present Intensity Next

Structure Structure
(Reaction Neighbor 0 Neighbor 1 Neighbor 4 Neighbor 3 Neighbor 5 (Reaction
System) _ System)

RA. ,k.
1 1

RA. , k.
i i

RA. ,k.
1 1

RA. ,k.
1 1

RA . ,k .
PA. ,k.

1 1

RA. ,k.
1 1

PA. ,k.
1 1

LA. ,k.
1 1

LA. ,k.
1 1

LA. ,k.
1 1

LA. ,k.
1 1

LA. ,k.
1 k

LA. ,k .
1 1

LA. ,k .
1 1

LA. ,k.
1 1

LA. ,k.
1 i1

LA. ,k.
1 i1

A. ,k.
1 1

A. ,k.
1 1

A. ,k.
i i

A. ,k.
1 1

A. , k.
1 1

A. ,k.
1 1

A. ,k.
1 1

A. ,k.
1 l1

A. ,k.
1 l1

A. , k.
l l1

A. ,k.
1 1

A. ,k.
1 1

1 1

A. ,k .
1 1

A. ,k .
1 1

A. ,k.
1 1

A. ,k.
1 1

A. ,k.
1 1

any/stop

any/stop

any/stop

stop

A ,k
Bprk

B ,k

-- P

A9 ,k
91%

A ,k 9

any34stop

any34stop

any34stop

stop

A. ,k.
1 1

0

0

0

A. ,k.
1 1

AB. ,k.
1 1

AB. ,k.
1 1

0

0

0

RC. ,k.
1 1

RA ,k

RB ,k

RC ,k

RA ,k

RB ,k

RC ,k

LA. ,k.
1 1

RC. ,k.
1 1

0

0

LA ,k

LB ,k

LC ,k

LA. ,k .
1 1

LA ,k

LB ,k

LC9 ,k
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Table 18 (contd.)

Present Next
Structure LStructure
(Reaction Neighbor 0 Neighbor 1 Neighbor 4 Neighbor 3 Neighbor 5 (Reaction
System) System)

RB.,,k . B. ,k . -- -- -- B. ,k . RC. ,k .Bi jki i i il i i ik

RB.,k. B.,k. -- Ak -- 0 RA,k

RB.,k. B.,k. -- Bk-- 0 RBpk

RB.,k. B.,k. -- Ck-- 0 RC ,k1 1 i k Vk k

RB. ,k. B. ,k. any/stop -- A k -- RA ,

RB.,,k. B. ,k. any/stop -- Bk ,  -- RBk

RB.,k . B ,k . any/stop -- C k RCk Ik,

RB,k. B.,k. stop -- -- -- LB.,k.

iBk Bikil i iC i rki
LB. ,k. B. ,k. -- -- -- B. ,k. LC. ,k .

B r kirk iB i rki i0
RB. ,k. B.,k. -- -- -- AB.,k. 0

1 1 i i 1 1

LB.,k. B.,k. ,k -- anystop -- LA
1 1 1 1 1 Zf19

LB.,k. B.,k. A,k -- any/stop -- L 9 ,k1 1 1 1 9P

LB.,k. B.,k. B ,k -- any/stop -- LBik ,

LB.,k. B.,k. -- -- stop -- LB.,k.
1 1 19 99

LB.,k. B.,k. -- A- ,kt-- 0 LB.,k.

LB.,k. B.,k. -- B k 0 LBk

1 1 1 1919
LB.,rk. B., k.- Ckk -- 0 LCl ,k
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Table 18 (contd.)

Present Present Intensity Next
Structure Structure
(Reaction Neighbor 0 Neighbor 1 Neighbor 4 Neighbor 3 Neighbor5 (Reaction
System) I e System)
RC. , k.

i i1

RC. ,k.
1 i1

RC. ,k.
1 i1

RC. ,k.
1 1

RC. ,k.
1 1

RC. ,k.
1 1

RC. ,k.
1 i1

LC.,k.
i i

LC. ,k.
1 1

LC.,k.
1 1

LC. ,k.
1 1

RC. ,k.
1 1

RC. ,k.
1 1

RC. ,k.
1 1

LC. ,k.
1 i1

LC. ,k .
1 i1

LC. ,k.
1 i1

LC. ,k.
1 1

LC. ,k.
1 1

LC. ,k .
1 1

C. ,k.
1 i1

C. ,k.
1 1

C. ,k.
1 i1

C. ,k.
1 1

C. ,k.
1 1

C. ,k.
1 k.

C. ,k.
1 1i

C. ,k.
1 i1

C. ,k.
1 1

C. ,k.
1 1

C. ,k.
I I

C. ,k.
1 1

C. ,k.
I I

C. ,k .
1 1

C. ,k.
i i1

C. ,k .
i i1

C. ,k.
i 1

C. ,k.
1 i1

C. ,k.
1 1

C. ,k.
1 1

stop

any34stop

any~stop

any~s top

A ,fk t

Bz ,k t

C ,k z
CY rk

stop

any3 stop

anygdstop

any~estop,

-- ~ 9

--f k

-- k

__________ ___________ L I. - -

A. , k.
i i1

B. ,k.
1 i1

AB. ,k.
1 i

0

0

0

-- 1

-- 1

A.,k.
i i1

0
0
0

(RB. ,k.)
i 1

(RA. ,k.)
1 1

(0)

RA ,k

RB ,k

RC ,k

LC. ,k.
i i

RC. ,k.
1 1

LB ,k

LA ,k5U %

LC ,k

RA ,k

RB ,k

RC~ 9,

LB. ,k.
1 1

(LA. ,k. )
1 1

(0)

LA9 ,k

LB9 ,k

LC~ ,k
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Table 19

Intensity Transition Functions for the Transformation Elements
RA. ,k.

Present Present Intensity Next
Intensity Intensity
(Reaction Neighbor 1 Neighbor 4 Neighbor 3 Neighbor 5 (Reaction

A.,k. -- -- -- A. ,k. C.,k.

A.,k. -- A9 ,1k -- 0 A ,k

A. ,k. -- B,k -- 0 B ,k

A.,k. -- Ck -- 0 C ,k

A.,k. stop -- -- -- A.,k.
1 1 1 1

A. ,k. anystop -- Ak -- A ,k

A. ,k. any/stop -- Bk -- B ,k

A. ,k anystop -- Ck -- C ,k

A Ik AB , k,
A.,k. -- -- -- AB.,k. 0

LA. ,k.
1 1

Present NextPresent Present Intensity Nx
Intensity Intensity
(Reaction Neighbor 3 Neighbor 4 Neighbor 1 Neighbor 5 (Reaction
System) System)

A.,k. -- -- -- A.,k. C.,k.
1 1 i 1 1

A.,k. -- -- -- AB.,k. 0

A.,k. -- A,k -- 0 A ,k

A.,k. -- B ,k -- 0 B ,k

A.,k. -- C ,k -- 0 C ,k

A. ,k. stop -- -- -- A. ,k.
1 1 i 1

A.,k. any/stop -- A, /i Ak

A. ,k. any/stop -- B ,/i B9 ,k9,
1 1 1 --

A.,k. any/stop -- C ,k 9,i -- C ,k

-184-



Table 19 (contd.)

RB. ,k.
1 1

Present Present Intensity Next
Intensity Intensity
(Reaction Neighbor 1 Neighbor 4 Neighbor 3 Neighbor 5 (Reaction
System) System)

B.,k. -- -- -- B.,k. C.,k.B l l l l

B.,k. -- A ,k -- 0 A ,k

B.,k. -- B,,k -- 0 B ,k

B.,k. -- Ck -- 0 C ,k

B.,k. stop -- -- -- B.,k.
1 1 1 1

B.,k. any/stop -- Ak -- A ,k

B. ,k. any/stop -- Bk -- B ,k

B. ,k. any/stop -- Ck -- C ,k

B.,k. -- -- -- AB. ,k. 0
1 1 1 1

LB. ,k.
1 1

Present NextPresent Present Intensity Nx
Intensity Intensity
(Reaction (Reaction
System) Neighbor 3 Neighbor 4 Neighbor 1 Neighbor 5 System)

B.,k. -- -- -- B.,k. C.,k.
1 1 1 l 1 1

B.,k. -- -- -- AB.,k. 0

l l k A l k rB. ,k. -- A,k -- 0 A ,k

B.,k. -- B- , k -- 0 B ,k

Bi ki an2so Atk kd Ak9

B.,k. -- C ,k--0C,

B. ,k. stop -- -- -- B. ,k.
1 i. 1 1

B ,k. any/stop -- A ,k P/i -- A,k

B. ,k. any/stop -- B9,,k9 9,/i -- B,

B.,k. any/stop -- C9 ,k 9,i -- C ,k
13 9,9

-185-



Table 19 (contd.)

RC. ,k.
1 1

Present NextPresent Presernt Intensity Nx
Intensity Intensity
(Reaction .... (Reaction
Syatm Neighbor l Neighbor 4 Neighbor 3 Neighbor 5 Systm)
System) System)

C.,k. -- -- -- A.,k. (Bk)
1 1 1 1 1 1
C.,k. -- -- -- B. ,k. (A .,k .)

1 1 1 1 1 1
C.,k. -- -- -- AB.,k. (0)

1 1 1 1
C.,k. -- A ,k -- 0 A ,k

C.,k. -- B ,k -- 0 B ,k

C.,k. -- C ,k 20 C 9,k

C. ,k. stop -- -- -- C.,k.
1 1 1 1
C.,k. any/stop -- Ak -- A ,k

1 1 k 2.2.
C'.,k. any/stop -- B ,k -- B ,k

Ci,k any/stop -- Cp , -- Cp ,kq

LC. ,k.
1 1

Present NextPresent Present Intensity Nx
Intensity Intensity
(Reaction (Reaction
System) Neighbor 3 Neighbor 4 Neighbor 1 Neighbor 5 System)

C.,k. -- -- -- A.,k. (B.,k.)
1 1 1 1 1 1

C.,k. -- -- -- B.,k. (A.,k.)

C.,k. -- -- -- AB.,k. (0)
1 1 1 1

C. ,k. -- Ak -- 0 A . k

C.,k. -- B ,k -- 0 B ,k

C.,k. -- C k -- 0 C k

C.,k. stop -- C. ,k.
1 1 so-----1 1

C.,k. any/stop -- B ,k.  - B ,
1 1

C.,k. any/stop -- Akk -- A k

C.,k. any/stop -- k--C

1 ( ) indicates "exclusively if A. ,k.
1 18
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When in state (Pi,. , Aik. ) or, (RZ.k , Bk. ) or, (R. , A k)
1 1 1 1 1 1

or, (R9,, B. ) if the monomolecular transformation element allocated

1 1

at some point in the reactants and products region has as its 4 neighbor

an- element in intensity A kk or B ,k the next state of the monomolecular

element becomes (Rrkk A,k) or (Rrt, Bk), respectively (while

that if its 2-nearest neighbor becomes (Rr. , A )or (Rr B
i,k. i k. 1,ik. 1,ik.1 1 1 1

or (R. , A. ) or (R. , B. ) thus the element "moves" under
1 1 1 1

this state transition in the negative direction of the z 2-ordinate. This

motion continues until the element reaches the ordinate z 2=2, which is

detected by the fact that its 5-nearest neighbor has a non-dormant inten-

sity (see Figure 12 and Tables 16 and 17).

When the monomolecular element is at some point along z2=2, z3=0

and in state (R. A ) (or (R. , A. )) and its 5-nearest
1 1 1 1

neighbor element (a protein element) is in intensity Aik , the element
1,k

suffers a state transition to state (Rr. , B ) (or (RZ. , B. ))
1,k 1.1k 1k

indicating the completion of a monomolecular reversible or irreversible

reaction.1 If the intensity of its 5-nearest neighbor is Amlk or

B (i.e., corresponding to protein PR and the intensity of its
m,k m,kM

3-neighbor (or its 1-neighbor) it A9lk or B9lk the state of the mole-

cular element becomes (Rrzk , A ) or (Rrk , BAk ) , (or (RAk '

iThe information of whether the reaction is reversible or irreversible is

contained in the state structure of PR. , as explained previously.
i,k.
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A ), or R B ) ) while that of its 1-neighbor (or its 3-neigh-
krk Rr k ' r PIk

bor) becomes (Rr. , A ) (or R, , A. ) . Thus either the reac-
1 1 1 1

tion is completed (if the appropriate protein element Pr is in the

catalysis region) or the element is transported one step in the positive

direction of z. (or the negative direction), or the transformation ele-

ment finds a STOP element as its 1-nearest neighbor (or its 3-nearest

neighbor), as mentioned earlier (see also Tables 16 and 17).

Now we pass to describe the state representation of transformation

elements of bimolecular type, for both irreversible and reversible reac-

tion systems. A state diagram for the type of these elements is shown

in Figure 14. The corresponding structure and intensity transition

functions are given in Tables 18 and 19, respectively.

The state representation of bimolecular transformation elements is

composed of 7 classes of structures: {RAik. ' i}k. 1, {RC. }, {LAik
1 1 11

{B i , {LC. I and the dormant structure. The first 3 structures are
i,k. i,k.

1 1

labels for the element representing the 2 reactants and the product of a

bimolecular reaction system in Right motion mode. The last 3 represent

these molecules in Left motion mode. The operational objective of these

structures is explained next.

As can be inferred from a comparison of Tables 18 and 19 with Tables

16 and 17 respectively, the motion of bimolecular elements in the reactant

and products region and along the z -coordinate corresponding to z2=21.2

z3=0 is analogous to that of monomolecular elements if we identify struc-

tures {RA. I or {RB. } or {RC. I with {r. and structures
,k1,.1,k. 1,k.
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{LA. or {LB. I or {LC. I with {RA. i1. Therefore, our discussion
1,k. 1,k. 1,k. 1,k.

will be restricted to the catalytic characteristics of these bimolecular

elements.

Reactions of the form

A. + B. + C.
1,k. 1,k. 1,k.

i,k.

and

A. +B + C.
1k 1k 1 k

PRik

As mentioned earlier, when we discussed the protein elements that

catalyze these types of reactions, we represent the dynamics of these

reactions as a 2 step (not necessarily consecutive step) state transi-

tion.

If the bimolecular element is in state (RA. , A. ) (or (RB. ,
1,k. 1,k. 1,k.

B. )) and the element is its 5-nearest neighbor location (a protein;
1,k.

see Figure 12) is in intensity AB. the element's state becomes (0,0)
,k.

indicating the disappearance of the system of one A. molecule (resp.
1,k.

one B molecule). The corresponding protein element now represents
1,k.

the complex A - PR. (Resp. Pr - B ) the reaction is then

1 1 1 1

completed when this element finds in its 6-nearest neighbor and element

in intensity B. , (Resp. A. ) representing a B. molecule, at
1,k. 1,k. 1,k.

which time the state of the protein element, which now represents the

complex, changes to (RS'.' , C. ) (or (RS'.' , C ) if the reaction
, k. 1,k. 1,k. ilk.

1 1 1 1

is reversible) and that of the molecule changes to C. indicating the
1,k,
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completion of the reaction. We want to point out that this operational

behavior (i.e., the formation of complexes of protein and one of the

reactants) is generally accepted to be the biochemical mechanism by

which at least some bimolecular reactions evolve. It is interesting that

this behavior is advantageous since very seldom could we find, simul-

taneously, in appropriate neighboring locations the two reactants that

participate in bimolecular reactions.

A similar operational behavior is observed for the reversible case

when the state of the transformation bimolecular element is (RC. ,
1,k.

C. ) and the element allocated at its 5-nearest-neighboring point is
1,k.

state (RS' C. ).
i,k. 1 ,k.

1 1

We close our digression for the description of transformation ele-

ments with an important observation about the labeling of their inten-

sities. Recall that the element A is a molecule which is a reactant
i,k.

in the k. -th reaction system associated with the i-th operon, that is A

is a reactant in a reaction of the form A. + B , or,
i,k. i,k.

PRik

A + B ,or A. + B + C , or A. +B. + C.
ilk. +4 ilk.i irk. ilk.i i k. irk. ilk. ilk.

PR 1 PR. PR.
i,k. iPk i,k.

This does not imply that this molecule is uniquely associated with

the k. -th reaction system. For instance, we can have the following situ-

ation

X + Y + z
PR.

i,ki (8)

Y + X

PR~ jk 
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In our notation, this is written as

A. +B. + C.ik. i,k, i,k.
PR.

S1 

(9)

A. + B
j,k. j,k .

SPR .

with A. =B. =X
i,k. i,k.

1 J

B Y
i,k.

C. Z
i,k.

A. = Y
j,k. 1

J

Thus, in the model, the numbers assigned to intensities A. and
1,k.

B are equal.
j,k.

J
Now we discuss the state structure of a fifth type of protein ele-

ment; the element representing regulator proteins. (See section 2.1,

Figure 2.1-5 and companion discussion.)

A state diagram for the type of regulator proteins is given in

Figure 10-e. The corresponding structure and intensity transition func-

tions are given in tables 20 and 21, respectively. As in the previous

four cases we give the type of regulator proteins as an element capable

of regulating one of m different operons

1As we shall see in a moment, the action of regulatory proteins is simu-

lated in our model by a particular interaction between them and the

corresponding TFM.
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Table 20

Structure Transition Function of Protein Elements of Regulator Type

Present Present Intensity Next
Structure Structure
(Protein) Neighbor 0 Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4 Neighbor 5 Neighbor 6 (Protein)

Ne 0 -- -- -- -- -- cont select4

Ne -- -- -- -- -- -- any/cont Ne 4

select jfT.,k. -- -- -- -- -- cont select4 i i 4

select j=T.,k. -- -- -- -- -- Br RR.,k.4 i i 1 1
select -- -- -- -- -- -- Decont Ne4

RR. ,k . REG. ,k. -- -- -- RE , - k

RR.,k. REG.,k -REGYk- -- -- -- RR k

RR. ,k. REG. ,k. -- -- REG -- -- R , k k
R1,k P,k -- -- '-- anyP,k -- R,

RR. ,k. P.,k. -- -- -- -- P. k. -- RR kRRi ik i k Pi'k i Ri'k i
RR. ,k. P. ,k. stop -- -- -- -- -- LRk.RRi Iki Pi ,ki ''o 'Ril
LR. ,k. P.,k. ' ?k -- -- -- any/P.,k . -- R ,k9

LRi Iki Pi Iki PirL R i I i
LR.,k. P.,k. -- -- -- -- P.,k. -- LR. ,k .

LRi ki RGi rki RE LR r
LR.,k. P.,k. -- -- stop -- -- -- RR.,,k.

LR. ,k. REG. ,k. PEG -- -- -- -- -- LR.,k.

RR ,k De -- -- -- -- -- stop select4
LR ,k De -- -- -- -- -- stop select4



Table 21

Intensity Transition Functions of Protein Elements

of Regulator Type

Ne 4

Present Present Next
Intensity Intensity Intensity
(Protein) (Ribosome) (Protein)

0 any y cont 0

0 cont 1

select
4

Present Present Next

Intensity Intensity Intensity

(Protein) (Ribosome) (Protein)

j T.,k. V i cont j+l
1 1

j = T.,k. Br REG.,k.
1 1 1 1

j Decont 0
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Table 21 (contd.)

Present Present Intensity Next

(Protein) Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4 Neighbor 5 Neighbor 6 (Protein)

stop

stop

REG

P ,k

REG, ,k

REG9 ,k

REG9 ,k

-- k

-- k

P. ,k.1 1

-- 1

-- 1

| P.,k.
1 1

P. ,k.
1 1

REG, k

--

REG ,kP

REG ,k

P. ,k .
1 1

REG ,k

1 ,1
REG ,k,

ilk i
P. ,k.

1 1

REG ,k

De

0

RR. ,k.
1 1

REG. ,k.
1 i1

REG ,k

REG. ,k .
1 l1

P. ,k.

1 1

PEG. ,k.

1 1

PEG. ,k.
1 1

P. ,k.
1 1

De 1

REG, ,k



Table 21 (contd.)

LR, ,k.
1 1

Present Next
Prntenity ___Present Intensity Next
Intensity Intensii

(Protein) Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4 Neighbor 5 Neighbor 6 (Proteii

REG ,k RG,

REG. ,k. Pk-- -- -- P. ,k . -- PR Gi ik Pk k 3 Pir 1 P ,k

REG. ,k. REG -- -- -- -- -- P.,k.
1 1 1 1

PRE , k 3 PlREG ,
P.,k. -- k~-- -- P.k, -- PGk

Pi ik Pk ,kDe P,

De -- -- -- -- P, -- 0

REG.,k. -- -- -- -- -- REGZ,k

REG. ,k. -- -- stop -- -- -- REG. ,k.
1 l 1 1

P.,k. -- -- stop -- -- -- P.,k.
1 1 1 1

REGGk REG,k

REG.,k. -- -- -- - P.,k. --
ilPpk ii P9,k

REG. , k . - REG ,k -- - P.,k . -REG 9, kk



The state structure of a regulator protein element is composed of

4 classes of structures: Ne , select4, RR,. } and {LR }. The

operational objectives of Ne4 and select are analogous to those of Ne

and select in protein elements of monomolecular irreversible type, (see

Tables 12 and 13 and companion discussion) which are, to simulate the

synthesis (by the ribosome) of the regulator protein (the simulation is

carried out by select which "counts" up to the appropriate time-of-

synthesis of the molecule).

The operational objective of structure RR. is to transport the
i,k.

molecule from the catalysis to the regulation regions (see Figure 12)

which is the set of points in the informational space defined by

Regulation Region = {(z1 ,z2 ,z3) e z3 z2=l,z 3=1, minz 1 _<nax}

(10)

where min and max were defined earlier (see expression 7), and to search

for the appropriated transcription feedback mechanism (TFM) in its

5-nearest neighbor location that is regulated by the protein represented

by the element. In RR. the regulator protein PR. is moving along
1,k. 1,k.

the regulation region in the positive direction of the z -axis until

either the protein finds the appropriate transcription feedback mechanism

(in as will be explained below) or it finds a virtual element (in z =max)

STOP in its 1-nearest neighboring location. In the second situation the

structure of the element changes to LR. in which the protein element
i,k.

moves along the regulation region in the negative direction of the
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z -axis until the protein finds the appropriate transcription feedback

mechanism or it finds a STOP element in its 3-nearest neighboring

location in which case the structure changes to RR. .
1 ,k.

When in state (RR.i, REG.k) the regulator protein, at a point
Ilk. irk.

1 1

with coordinates z =1, z =1 and some z _< max, and with the intensity

of its nearest 1-neighbor element being REG' (see Tables 20 and 21 and

Figure 12) the protein element state changes to (RR , P. ). In
i,k.' 1,k.

1 1

this state, the protein element is ready to perform its regulation role;

which is accomplished if its 5-nearest element (a TFM whose state struc-

ture is described later) is in intensity REG or P its state be-

comes (RR , REG or (RR , P ) respectively, while that of

its 1-nearest neighbor becomes (RR , P. ). Thus, the element has
i,k. i,k.

1 1

effected a translation of one point in the positive direction of the

z -axis. If the intensity of its 5-nearest neighbor is P. the state
1 1,k.

of the element becomes (RR. , De) which represents the protein bound
1,k.

to the TFM regulated by it.

The transport of the protein PR. element in the negative direc-
1,k.

tion of the z -axis (structure (R )) in the regulation region is
1 i,k.

accomplished by the symmetrical set of state transitions of the ones

described in the last paragraph (see Table 20).

Now we describe the state structure of the last type of protein

element considered in our model: the cycle protein (see Section 2.1).

1REG is a virtual element whose only state is (PEG,REG).
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A state diagram for these protein types is given in Figure 10-f; the

corresponding structure and intensity functions are given in Tables 22

and 23 respectively.

The state diagram for protein elements of cycle type shown in

Figure 10-f was constructed by modeling each of the four reaction sys-

tems composing the cycle (see Figure 2.1-4) as the reversible step in

4 bimolecular reversible protein elements a prototype of which was dis-

cussed earlier. In Chapter 5 we will illustrate with an example its

cyclic behavior.

We conclude our discussion of the state structure of protein ele-

ments with a state structure which includes the six types described

above. Towards this objective, we note two similarities among these

six types:

1 -- The inactive status for all the types prior to synthesis

((Ne, Ne. i=1,...,5), 0) and the synthesis status ((select., i=1,...,5),

j) are identical for all the six types.

2 -- The Motion simulation (via state transitions) from the sunthesis

to either the catalysis area or the regulation area and the motion of

the elements along these areas is identical (in the sense that corres-

ponding intensities and structures have corresponding equivalent state

transitions).

These two observations suggest the following implementation for a

type whose state structure includes the types of all six types of pro-

teins (or all the types required in the study of a particular system
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Table 22

Structure Transition Function for Protein Element of Cycle Type

Present Present Intensity Next

Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4 Neighbor 5 Neighbor 6 .
(Protein) . -eI gI I'--g 2I 1 IoI3(PTotln)

Ne 5

Ne
5

select 5

select 5

select 5

RA. ,k.
1 1

RA. ,k.
1 1

RA. ,k.
1 1

RA, ,

iA,ki

RA. ,k.
1 1

RA. ,k.

1 1

PA. ,k .

0

0

j>l

j#T. ,k.
1 1

j=T. ,k .
i 1

j

A. ,k.

1 1

A. ,k.
1 1

A. ,k.
1 1

A. ,k.

1 1

A. ,k.
1 1

A. ,k.
1 1

BD. ,k.
1 1

BD. ,k .

stop

A. ,kv
1 1

A, ,k

REG

-- l

A9,k

-- 1

k. /k!

A.,k.
1 1

0,A. ,k'.'
1 1

cont

any/cont

cont

Br

Decont

Br

A. ,k.

1 1

A. ,k.
1 1

B. ,k.

D. ,k.
1 1

select
5

Ne
5

select 5

RA. ,k.
1 1

Ne5

0

RA. ,k
1 1

PA. ,k

RAk ,kk

RAR , kk1 1
RA ,k

RA. ,k.
1 1

RD. ,k.
1 1

PB. ,k.i

I A I L 1 1. L L



Table 22 (contd.)

Present Present Intensity Next
Structure Structure
(Protein) Neighbor 1Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4 1 Neighbor 5 Neighbor 6 (Protein)

RB. ,k.
1 1

RB. ,k.
1 1

RB. ,k.
1 1

RC. ,k.
1 1

RC. , k.
1 1

RC. ,k.
1 1

RD. ,k.
1 1

RD. ,k.
1 1

RD. , k.
1 1

RA. ,k.
1 1

RB. ,k.
1 l1

RC. ,k .
1 l1

RD. ,k .
1 1

B. ,k.
1 ~1

CA. ,k.
1 1

CA. ,k.
1 1

C. ,k.
1 1

AD. ,k .
1 1

AD. ,k.
1 1

D. ,k.
1 1

BC. ,k.
1 1

BC. ,k .
1 1

A. ,k.
1 1

B. ,k.
1 1

C. ,k .
1 1

D. ,k .
1 1

B. ,k .
1 1k

C. ,k.
1 1k

A. ,k.
Di I

C. ,k.
1 1k

D. ,k.
i i

A. ,k.
1 1

D. ,k .
1 1

B. ,k.
1 1

C. ,k .
1 1

stop

stop

stop

stop

I J - I 1 _________ .1 _________ J.

RB. ,k .
1 1

RA. , k.
1 1

RC. ,k .
1 1

RC. ,k .
1 1

RA. ,k.
1 i

RD. ,k.
1 1

RD. ,k.
1 1

RC. ,k.
1 1

RB. ,k .
i I

T. ,k.
1 1

0

0

0



Table 23

Ne
5

Present Present Next
Intensity Intensity Intensity
(Protein) (Ribosome) (Protein)

o cont 1

0 any/cont 0

select
5

Present Present Next
Intensity Intensity Intensity
(Protein) (Ribosome) (Protein)

j>l1 jfT.,k. cont j+1
1 1

j=T. ,k. Br A. ,k.
1 1 1 1

j Decont 0
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Table 23 (contd.)

RA. ,k.
1 1

Present Present Intensity Next
Intensity Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4 Neighbor 5 Neighbor 6 Intensity
(Protein) (Protein)

A.,k. -- -- -- -- -- Ak
1 l 1 1 1 1

A.,k. -- A.,k -- -- -- -- A.k'
1 1 1 1 1 1

A. ,k . -- -- A , -- any/A. ,k. -- A,
1 1 1 1

A.,k. -- -- REG -- A,'-- A,.
1 1 1 1 1 1

A. ,k. stop -- -- -- -- -- A.k.
l0l1 1

A. ,k -- -- -- -- A.,k. -- BD. ,k.
1 1 1 1 1 1

BD.,k. -- -- -- -- k-- D.,k.
1 1 1 1 1 1

A.,k. -- -- -- -- -- stop T.,k.
1 1 Dk.1 1

D. ,k .
BD ,k. -- -- -- -- 1 -- BD ,k.

any$B. ,k .
1 1

BD.,k. -- -- -- -- D.,k. -- B.,k.
1 1 1 1 1 1



Table 23 (contd.)

RB. ,k.
1 1

Present NextPresent Present Intenslty Nx
Intensity Intensity

(Protein) Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4 Neighbor 5 Neighbor 6 (Protein)

B, ,k.
1 1k

anyB. ,k.1 1

any/B.,k.

C. ,k.
1 1

A. ,k.
1 l1

any/

C.,k. A.,k.

-- 1

stop 0

CA. ,k,
i i

B.,k.
1 1

A k k C , k

Bk,kk Dk

A. ,k.
1 1

C. ,k.
1 1

A k C,

CA.,k.1 1

B. ,k.
1 1

B. ,k.
1 1

B. ,k.
1 1

B. ,k.
1 1

B. ,k.
1 1

CA. ,k.
1 1

CA. ,k.
1 1

CA. ,k.

1 1

CA. ,k.
1 l1

B. ,k.
1 l1

stop

stop

Aprk Ckk

Bpk Dk

--



Table 23 (contd.)

Present NextPresent Present IntensltyNx
Intensity Intensity

(Protein) Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4 Neighbor 5 Neighbor 6 (Protein)

C. ,k.
1 1

any C. ,k.
1 l1

any/C. ,k .
1 1

D.,k.
l 1

A. ,k.
1 1

any/

C.,k. D ,k
-- 1

stop 0

AD. ,k.
i i

C. ,k.
1 1

A. ,k.
1 1

D. ,k.
1 1

A ,k C ,

AD. ,k.
1 1

C.,k.
1 1

C. ,k.
1 1

C,,k.
1 1

C. ,k.
1 1

C. ,k .
1 1

AD. ,k.
1 1

AD. ,k.
1 1

AD. ,k.

AD. ,k .
1 l1

C. ,k.
1 1

stop

stop

,9 k Ck ,k

B9,k Dkk

-- 9 9



Table 23 (contd.)

RD. ,k.
1 1

Present NextPresent Present Intensity Nx
Intensity Intensity

(Protein) Neighbor 1 Neighbor 2 [Neighbor 3 JNeighbor 4 {Neighbor 5 Neighbor 6

-- k

D, ,k.
1 1

any/'D. ,k.
1 1

any#D. ,k.
l 1

B. ,k.
1 1

C. ,k .
l l1

any/

B.,k. C.,k.

-- 1

stop 0

BC. ,k.
1 1

C. ,k.
1 1

Ar ,k Ck~ ,k

C.,k.
1 1

B. ,k.

BC. ,k9

BC.,k.

1 1

D. ,k.
1 1

D. ,k.
1 1

D. ,k.
1 1

D, ,k.
1 l1

BC.,k.

BC. ,k .
1 l

BC. ,k.

BC. ,k.
1 1

D. ,k.
1 1

," k C , k

3P ,k D ,k

k C k

stop

stop



under study since it may happen that one or more of the protein types

discussed above is not present in that system).

-- The Inactive structure is Ne and its only intensity is 0.

-- The counter structure is select with a set of intensities

{Tik. }, representing the times of synthesis for each protein present

in the system under study.

-- Each protein A. present in the system is assumed to be of
1,k.

one of the six types discussed earlier and consequently, we incorporate

to the type one and only one of the following structures RS., RS.'! ,
irk. ik.

1 1

. ,S' if the protein catalyzes a monomolecular irreversible
i~k. i,k.
1 1

or reversible, bimolecular irreversible or reversible reaction, two struc-

tures RR and LR if Pr is of regulator type, or 4 structures

RA , pRB. , RC. , RD. is it is of cycle type.
i,k. 1,k. i,k. 1,k.

1 1 1 1

-- It is assumed that all the proteins in the system under study

have different times of synthesis. 1

The state diagram of this "general" protein type is illustrated

(schematically) in Figure 11.

Now we conclude our description of the incidence diagram of Figure 1

with a discussion of the state structure of the transcription feedback

mechanism type.

1In the next section we will discuss means to eliminate the ambiquity re-
sulting from the case in which two proteins in the system under study have

equal times of synthesis.
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A diagram of the state transition structure of TFM is given in Fig-

ure 15. The corresponding structure and intensity transition functions

are given in Tables 24 and 25 respectively.

We note from Figure 15, that the state structure of TFM is composed

of four, mutually independent, substructures. A specific TFM. (i.e.,

the one controlling OP.) will have one and only one of these structures

depending on the type of action the corresponding regulator protein

exercises (induction or repression) and the type of action of the con-

trolling metabolite (activation or repression) as explained in Section 2.1

(see Figure 2.1-4).

The transcription feedback mechanisms, as indicated in Figure 12,

are allocated at the points in the informational space along the ordin-

ate z2=1, z3=0 and some z 1. TFM interacts with its 4-neighbor (the

control metabolite represented by a transformation element) and its

5-neighbor (the regulator protein represented by a type of the fifth class

of protein types described earlier in this section).

The state structure of the transcription feedback mechanism consists

of three types of structures {CP7}, {CM'}, {S'} j=l,2,3,4 where the
1 1 1

superindex denotes one and only one of the four possible transcriptional

control arrangements described in Section 2.1. We will describe in detail

the state transition structure corresponding to a TFM. for the inducible-

1The ordinate z of TFM. coincides with that of OP. (see Figure 12).
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Table 24

Structure Transition Function of Transcription
Feedback Mechanism-Element

Present Present Present Present Next

Structure Intensity Intensity Intensity Intensity
(TFM.) (TFM.) (Protein) (Metabolite) (TFM.)

CP .

CP.

CP.

CM.

CM.

S

S

S

2
CP.

1

2
CP.

1

2
CP .

2
CM.

2
CM.

S2

S 2

2
S
2

S

2
S
2
S

*
P. = P fc

protein in st
**

. = A ,k c
1 S s

intensities

P.

0

0

M.

M.

A

A

INA

0

P.

P.

M.

M.

A

A

A

INA

INA

r some P,,k w

ructure RR ,k

r B ,k or C
S S S

of the (s,k,)

P.

any/P

P.

any/P

P.
1

any3P

P.

P .P.

P.

any.P.

1

any/P

any/P
anyWP

iere P,,k is t

or LR ,k (sei

,k or D ,k fo

transformation

M. **
1

any

M.

M.

M.

M.

any/4M.

any/ M.

any1M

M.

1

any/M.

M.

M.

M.

1

anyM.

any/M.

e intensity of

Tables 20 and

Ssome s,k swhe
1 s

elmen.

4 4

CP.

CM

CP.

S

CM

S

S

CP.

2
CP.

2
CP.

2
CM.

2
CM.

2
S

2
S

2
S

2
S

2
CP.

i

2
CP.

a regulator

21) .

ce these are
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Table 24 (contd.)

Present Present Present Present Next
Structure Intensity Intensity Intensity Intensity

(TFM1 ) (TFM. ) (Protein) (Metabolite) (TFM. )

2S

3
CP.

3
CP.

1

3
CP.

1

3
S

3

S

3
S

3
CM.

3
CM.

4
CP.

1

4
CP .

4
S

4
S

4
S

4
CM.

4
CM.

INA

0

P.

0

A

A

INA

INA

M.

M.

P.

0

A

INA

A

M.

M.
1

any/P.

P.

any/4P.

any/P .

any/P.

any

P.

any

any/P,

P.

P.

anW3P.

P.

P.

P.

any

any

any

any/M.

any/M.

any/M.

any/M.

M.
1

M.

any

any/M.

any

any/M.

any/M.

M.

M.

any/M.

2
CP .

3
CP .

1

3
CP.

3
S

3
S

3
S

3
S

3
CM.

3
CM.

3
CP.

4
S

4
CP .

4
S

4
S

4
CM.

4
CP .

4
CM.

_________________________________________________________________ ___________________________________________________________ _______________________________________________________________________ I __________________________________________________________________
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Table 25

l Intensity Transition Functions for TFM Type
CP.

Present Present Present Next

Intensity Intensity Intensity Intensity

(TFM.) (Protein) (Metabolite) (TFM.)

P. P. -- 0
1 1

o any/P. M. M.

o P. any 0

P. any/P. -- P.

CM.

Present Present Present Next

Intensity Intensity Intensity Intensity
(TFM.) (Protein) (Metabolite) (TFM.)

M. any/P . M. A

M. P. M. M.

M. P. any/M. M.

Si

Present Present Present Next

Intensity Intensity Intensity Intensity

(TFM. ) (Protein) (Metabolite) (TFM.)

A any/P . M. A

A P. M. INA
1 1

INA P . any/M. P

INA any/P. M. A
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Table 25 (contd.)
2

CP.

Present Present Present Next

Intensity Intensity Intensity Intensity

(TFM.) (Protein) (Metabolite) (TFM.)

0 P. any/M. P.

P. P. any/M. P.

P. P. M. M.

2
CM.

Present Present Present Next

Intensity Intensity Intensity Intensity

(TFM. ) (Protein) (Metabolite) (TFM.)

M. -- M. A

M -- any/M. M.

2
S

Present Present Present Next

Intensity Intensity Intensity Intensity

(TFM. ) (Protein) (Metabolite) (TFM. )

A P. N. A

A any/P. M. INA

A P. any/M. INA

INA anyP. -- 0
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Table 25 (contd.)
3

CP.

Present Present Present Next
Intensity Intensity Intensity Intensity
(TFM.) (Protein) (Metabolite) (TFM.)

o P. -- P.

P. any/P. -- 0

0 any/P . anyM. A

P any/P. M. M.

3
CM.

Present Present Present Next
Intensity Intensity Intensity Intensity
(TFM.) (Protein) (Metabolite) (TFM.)

M. any/iP. M. M.

M. -- anyIM. INA

S

Present Present Present Next
Intensity Intensity Intensity Intensity
(TFM.) (Protein) (Metabolite) (TFM.)

A any/P . anyM. A

A P. any/M. INA

A any M. INA

INA P . any INA

INA any M. M.
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Table 25 (contd.)

4
CP.

Present Present Present Next

Intensity Intensity Intensity Intensity
(TFM.) (Protein) (Metabolite) (TFM.)

P. P. any/M. INA

0 anyP. any 0

P. P. M

4
CM.

Present Present Present Next
Intensity Intensity Intensity Intensity
(TFM. ) (Protein) (Metabolite) (TFM. )

M any M. 0

M. any any/M. M.

4
S

Present Present Present Next
Intensity Intensity Intensity Intensity
(TFM. ) (Protein) (Metabolite) (TFM.)

A P. any/M. A

INA P. any/M. A

A P. M. M.
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INA IINA INA INA

|- S 3S
L A_.i L_ -J L_ Sj--

Inducible-repressive Inducible-activator Repressible-repressor Repressible-activator

(See Fig. 2-1.5a) (See Fig. 2-1.5b) (See Fig. 2-1.5c) (See Fig. 2.1-5d)

P. = P ,k some m,k in one of the proteins of system
mm m

M . = Akk Yjk k in one of transformation elements of system

State Diagram of the Transcription-Feedback Mechanism Element (TFM)

Figure 15



repressive arrangement (j=l) the other 3 possibilities have similar

state transition substructures and its characteristics can be inferred

from the diagram of Figure 15 and from Tables 24 and 25.

When the TFM. is in structure CP! and intensity P., the TFM. (and

consequently the corresponding operon OP.) is repressed (OFF). The

state (CP! ) remains unchanged indicating a previous interaction with
1,P

the corresponding regulator protein. If the intensity of the element

allocated in its 5-nearest neighboring location (a protein) is P. (P.

= P for some k, k ) the TFM. element suffers a state transition to

(CP!, 0) indicating active repression, i.e., the actual presence of the

regulator protein. This state remains unchanged until the intensity of

the corresponding regulator protein element changes and the intensity

of the element allocated in its 4-nearest neighboring location becomes

M. (M. = A for some m,k ) indicating the absence of repression due
1 1 m,km m

to the regulator protein and the presence of the inducing metabolite.

Under these conditions the state of TFM. changes from (CP!, 0) to
1 1

(CM! ).
i,M.1"

When in state (CM' ) the TFM. element has been induced by the
1,M. 1

control metabolite. If the intensity of the element representing it

(allocated in its 4-nearest neighboring location remains unchanged (i.e.,

M.), the state of TFM. changes to (S',A) indicating that the TFM. (and

consequently OP.) is in active status (ON, has been discussed before).

This state remains unchanged until wither the control metabolite changes

its intensity (/ M.) and/or the intensity of the regulator protein be-
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comes P.. In such cases, the state of TFM. becomes (S', INA) indicating

that TFM. is inactive. If the state of the regulating protein does not
1

change, the state of TFM. becomes (CP! ) and the cycle described in
1 1,P.

the last paragraph is carried out again.

It is important to note that whenever the state of TFM becomes

(S', A) at least one copy of OP. is transcribed as can be inferred from

Table 1.

3.4 State Aggregation of the Base Model

In Section 3.1, we established formally that, from an operational

point of view, a representation of the dynamic evolution of epigenetic

control processes can be obtained by specifying the state transition

functions of the participating elements. Some considerations1 about the

microkinetic nature of the molecules (or actions) in epigenetic processes

led us to postulate a representation of the operational state of these

molecules at any time asanobject composed of two items: structure and

intensity; with the consequence that the representation of their state

transition functions is given by a set of corresponding structure and

intensity transition functions.

In Section 3.2 we classified the different molecules and actions

that participate in epigenetic control processes into operational (dis-

1For instance, high specificity and local (mearest-neighbor) energetic

interaction among these molecules or actions.
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joint) classes.

Finally, in Section 3.3, we developed a formal state model for a

typical element (type) of each of the operational classes established

in Section 3.2, under the general criterion adopted in Section 3.1, the

accepted dynamic organization and information flow of epigenetic con-

trol processes in procaryotes discovered by Jacob and Monod [21], and

the fundamental dogma of cellular biology (see Section 2.1). Comple-

mentary to the development of the state structure of the types we pro-

duced an allocation of the types to specific regions of a 3-dimensional

informational space (which simulates the intracellular space) and dis-

cussed their local interaction and motions during the state evolution

in a simulation of a given epigenetic process.

In this section, we discuss the effects of several simplifying as-

sumptions implicit in our development of Section 3.3 and give arguments

to justify them on the basis of the characteristics of the available

experimental data (see Section 3.1) with respect to which the quality of

the model in predicting epigenetic behavior is to be judged. These as-

sumptions fall into the general category of state aggregation of dynami-

cal systems (see Ziegler [16] and Aoki [1 1) and in particular into the

subclass known as homomorphic state aggregation, which we will define

next in the specific context of our model.

Recall from Sections 3.1 and 3.3 that the state structure of each

type T in the model is given by a structure transition function
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H G x(U D f )+ G (1)T T oT T (1
y e GT

and a finite non-empty set #' of structure transition functions

= {f Iy e G , fy: D f +Q } (2)
T T T T 0 T T

where Q is the set of intensities of the type, GT is the set of labels

of elements of @ (G and T are in 1-1 correspondence).
T T T

The sets V fY Y e G are defined as follows
oT' T

D f) = (q,...,q ) Cq e Q i=l,...,n } (3)
oT Y

Y

where n = number of arguments (inputs) of the intensity transition func-

tion f (n < 7 V Y E G in the types of the model described in Sec-
T YT

tion 3.3).

Clearly, under (2) and (3) <Q, > is a universal algebra over Q

with operation set 4T (see Appendix A.1). We call this algebra, the

canonical algebra of the type T. This algebra, and some of its proper-

ties will be discussed in some detail in Section 4.4 in the construction

of a covering type for a given set of types. In here, we use this struc-

ture to introduce the concept of intensity aggregation of types.

We say that type T' (with structure transition function H,,, inten-

sity transition set , and intensity set Q,,) is an intensity-homomor-

phic aggregation of type T if the algebra of the former is
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(i) Similar1 to that of the latter

(ii) There exists an epimorphism

1 :<T 1 )T >*<T1' OTT>

such that for every y e GT , q1 ... ,q e Q

T 1 1

Y Y

By theorem A.l-l <Q , , ,> is isomorphic to the quotient algebra

<Q , T > /k with k T; the kernel of < , a congruence on Q . Therefore,

for our purposes here, we can identify <QT,, OT,> with <Q,, OT> /kT and

define H , the corresponding structure transition function, and 0 ,
T /kT T /k

the intensity transition set as follows.

Let l : Q +T Q/kT be the map defined by: for q' e QT, ,

q : -+ q' 4 1 , (this map is 1-1 by theorem A.l-l). For any q' ,

iSee Appendix A.l.

2By property (i), we have 0T =0 T, We note that in the model developed in

the preceeding section, the various types interact with neighboring ele-

ments of different types. In this case, to be mathematically precise,
we would have to find the universal type which simulates all of these
types (see Section 4.4) and then perform the homomorphic aggregation on

this. What we have actually done is to aggregate each type individually
and then constructed the universal type for these simpler types. The
equivalence of these operations should be clear, and hence we will not
dwell on the mathematical inconsistencies between homomorphic aggrega-
tion and the actual method of aggregation used.

-219-



qI e QT,, Y' e G, = GT

((qi $1 1...,q 1 $1)1 y') HT/k = ((q ,...,q'; ),y')H , (5)

(q 1-1 fY I = ( 10-jq )fY"i '** ' ~, 1 1 /k~ = (q1. ,q 'r

H is well defined because is 1-1.
T/k

Now we spell out explicitly the instance in which this type of state

aggregation (i.e., intensity aggregation) was used in the formulation

of the epigenetic model in Section 3.3.

It is well known (see, for example, Watson [ ]) that the genetic

code is composed of 64-trinucleotide words (codons), 61 of them coding

for one of 20 amino acid residues (not in a 1-1 fashion) one indicating the

initial point of a gene, and two for indicating the terminal end of a gene.

Thus, from the information-operational point of view, we should have the

element representing an operon with two classes of structures.

The first represents initial or terminal status in the transcrip-

tion of a gene,and the second represents the information content of the

genes forming the operon (one for each gene).

In the model of Section 3.3 the two classes of structures mentioned

in the last paragraph are labelled respectively,

C,for initiation or termination status

is a homomorphism (see theorem A-1.l)
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G.,. j=l,... ,n for information-content of gene j belonging
to operon i.

Three intensities are associated with the first structure (C) and

m.. intensities associated with structure G. .,where m. is the number
13 13 Ji

of information codons in G. ., each of them representing one of the 61
1J

possible information codons. However, assuming that the time of tran-

scription of any of the 61 codons is constant (a reasonable assumption,

see Bobrow, et al [221) and in view of the fact that these codons are

undistinguishable from one another, from kinetic datal we can aggregate

the intensities representing each of the 61 information codons into a

single one whose information content is simply the time elapsed (one

unit of time) in transcribing a codon. A similar argument convinces us

that the two initial codons can be aggregated also into a single one.

The aggregation procedure for operons described in the last para-

graph can be put into the formal framework of intensity homomorphic

aggregation introduced previously, as follows.

Let T be an operon type with structure set CD = {a,b,e,d, C, G. ,

G ,..,G. } where a,b,e,d are the structures associated with trans-

scriptional control of the operon (see Section 3.3). C is the initia-

tion-termination structure and G...., G. are the information struc-

tures, one for each gene in the operon. The set of intensities Q is

given by

1This is the only data we are using because it is the only data that can

be obtained while the process under study in evolving (see Rosen 113]).
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Q = {ON, OFF, siby 1,sIby 2 READ, l' l 1, T

q2,l'''''q 2,2'''''Iq2,T' i 2 1 '''''njl'''''n,T.i
1,2 i~n

where ON, OFF are intensities associated with the transcriptional control,

siby, siby represent the two termination codon and q represent
2 j,Tk.

the information codons in the operon q is the k-t 'codon in the
j,Tk.k

jth-gene of operon i) where each q i one of G1 possible inten-

sities. d

We define the mapping Q + Q , where Q , = {ON, OFF, s by,

READ, q{,'...,,T. , by

i,n

ON = ON

OFF#4 = OFF

s1by 1 1 = sby2 1 = siby

READ#1 = READ

{q = }
1,T. 1~ , ~i,k. i,k.

with q = 1, q =2,...,q = T,

1,1 =, 12 TT

q21,2,2= 2,... ,q 1 = T,
i,2

1 n, = 2,-...,q= T
i,n

we can see that the resulting T' is an intensity homorphic aggregation of
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of T, and the congruence classes on Q. by the kernel of #P are

(ONI, {OFF}, fREADI, {slby1 , slby2  q,1q 2 1,l'' nl

fq , 1'l f i,2 1.01 , nI

The resulting aggregated type for the operon T/k sketched above is

very close to the one described in Section 3.3. In fact, the only

difference consists in that in Section 3.3 we split the operon type

into two elements; 1) an element (OP) that carries the transcriptional

control structure, the initiation-termination structure and a set of

information structures, one for each gene in the operon with associated

intensities representing the time of transcription of the nucleotides
1

of the respective gene and 2) an element (Cl) which counts elapsed time

during transcription of the genes. Clearly, these two elements are

operationally equivalent to the aggregated type discussed above.

We now continue with our general discussion of intensity homomor-

phic aggregation.

Notice that although the concept of intensity homomorphic aggregation

was defined in the context of a single type T, equations (4) and (5)

imply that the epimorphism #l must also induce a homomorphic aggregation

on the intensity sets of the types that interact with T in the informa-

1Since 3 nucleotides form a codon and since time in the model is a rela-

tive qunatity (i.e., with respect to the time horizon of the system un-

der study, it is clear that it is equivalent to determine a quantity

representing transcriptional time from the number of nucleotides of the

genes or the number of codons. In our model, one step in time repre-

sents the reading of a codon (see discussion of the time of synthesis

in Section 3.3).

-223-



tional space. Specifically, those types whose intensities are inputs

to Ti, have homomorphic images under #1. In addition, if the intensi-

ties of T are the inputs to a type T1 in the informational space, (q)C

is the congruence class of Q under the kernel of $1 containing q e Q

Then, for every structure transition function of T , fy : fY +
1' T oT T

we require the following compatability condition. Let T be the ith-

1 2
nearest neighbor of T in the informational space; let q , q be any

of two elements in (q) C then

1 2
(1 .. ,q 1.., n =f (q 1 ... , q n)fYT (6)

ith position ith position

Similarly, the compatability condition for the structure transition

function H of T becomes

1 2
(y ql'''''q '''''. n )HT l' '' ''''' 1 O.q n )H T1 (7)

t t
ith position ith position

V y e G

In the actual construction of the model of Section 3.3, we first

aggregated the operon type as discussed above, and then proceeded to

build the other types of the model according to the compatibility con-

ditions (5) and (6). By this procedure we eventually obtained aggregated

ii.e., those types that pass information to T.
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types for the different classes of elements (see Section 3.1). Once

we obtained aggregated types for the transformation elements, whose

intensities are representations of concentrations of chemical components,

which are the kinetic data available about the behavior of epigenetic

processes (see Section 2.1) we checked if the level of aggregation in

our transformation typesis compatible1 with this data. Since this in fact

was the case, (see Chapter 5), we did not have to iterate in our aggre-

gation procedure (see Section 3.1).

However, a glance into the literature of experimental biology (see

for instance Sampson 1 1), convinced us that for many epigenetic pro-

cesses under current study the available experimental kinetic data is

far less complete than that assumed to exist and described in Section

3.1. In these cases, we could further aggregate the transformation ele-

ment type so as to satisfy the following condition:

Let Q be the intensity set of the transformation type and let K

be the set of numbers on which the quantized and discretized version of

the concentration evolution of the different elements of the process

takes values. Let h :Q - K be the assigning map;if this map is not
T c

1-1 and onto, we can reduce the size of Q by replacing it with the

equivalence classes induced on it by the congruence relation Kh defined

By compatible we mean an affirmative answer to the following question:

Given an epigenetic process can we reproduce the quantized and dis-

cretized version of kinetic data about the process with a simulation of

it with our model?
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by the kernel of h. Then we can proceed further to aggregate the types

of the model according to this congruence relation. This procedure is

still homomorphic aggregation because Kh, belongs to the sublattice of

congruence relation of Q which satisfy Kh > K where K is the congru-

ence relation originally defined on the operon type and "propagated"

to the other types of the model as described previously.

The procedure sketched above could be easily mechanized (e.g., as

a computer program) this could give our model the added flexibility of

being able to "adapt" itself to the level of aggregation of the kinetic

experimental data available. We will not carry out this implementation

in this thesis, but mention it here as a future improvement in the com-

puter construction of our model which is described in the next section

for several examples.

3.5 Examples

In this section we carry out an implementation of a model of the

characteristics described in Section 3.3 for two epigenetic control

processes. The first one, whose description will be given in subsection

3.5.1 is the well known lac operon (see Lewin [11 , Watson 19 ], and

Gutfreund [17]) of E. Coli. The second, described in subsection 3.5.2

is an abstract epigenetic system consisting of 3 operons, whose opera-

1See theorem A.l-2.
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tional diagram was introduced in Section 2.1 (see Figure 2-1.6). The

second example is a particular version of a class of epigenetic processes

called self instructive catalytic hypercycles or Eigencycles and were pro-

posed by Eigen [14],as an idealized version of many genetic control pro-

cesses in procaryotes. In subsection 3.5.2 we shall examine some of its

characteristics in the context of an implementation of our model.

Our main objective in this section is to describe in the context of

the two examples mentioned above, a conversational program (called IDHA)

for implementing epigenetic control systems with models of the type dis-

cussed in Section 3.3.

3.5.1 The lac operon

A schematic representation of the DNA of the lac operon is shown in

Figure 1. As can be seen from the figure, this operon consists of 3

structural genes labelled z, y and al, a gene coding for the regulator

protein labelled i.

The segments of DNA labelled p and o are the promoter and operator

regions of the operon. They do not cade for proteins, bit actually their

purposes are to serve an an initial binding site for an m-RNA polymerase

and binding site for the regulator protein respectively, as illustrated

in Figures 2 and 3.

These labels are the ones conventionally used in the literature (e.g.,

Watson 1 9]).
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i = control gene (see text)

z,ya - structural genes of the operon

The number in the last line indicates estimated number of nucleotides

(adapted from Lewin).
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The control of the lac operon is of the negative control type, i.e.,

repressible (the regulator protein turns transcription off), and induc-

ible (the control metabolite induces transcription). This type of con-

trol will be referred to as negative-inducible. Figure 2 illustrates

two possible physical mechanisms for this control; in 2a the presence of

the control metabolite (called inducer for this type of control) pro-

duces an allosteric modification1 of the regulator protein such that

it can no longer bind to the operator region. In Figure 2b, direct in-

teraction between inducer and regulator protein at the binding site (the

operator region as consequence of which the resulting complex is unable

to bind to the operator region allowing the M-RNA polymerases to bind to

the promoter region and proceed with the transcription of the operon.

We note that from the operational point of view, both mechanisms are

equivalent in the sense that the control actions of regulator protein

and control metabolite produces effect which is schematically illustrated

in Figure 3.

In Figure 4, a scheme of the lac operon and some of its operational

characteristics are given, these are:

1 -- The length (estimated) of the genes of the operon

2 -- The control action of the corresponding proteins2

1This allosteric modification can be thought of as a competetive reac-

tion involving the operator region, the regulator protein and the in-

ducer with dominance of the inducer (see Reiner [15]).

2The exact control action, of the a-protein ( -galactoside-transacetylase)

is not known.

-232-



(Gene lengths not to scale)
Lac operon

I p o I I I I
p 0a y a

m-RNA - structural genes: ribosome

m-RNA
regulator

Lactose
Out

Fig. 5 Lac Operon in Active State

repressor
protein
inactive



3 -- The reaction systems (transformation elements) associated

(controlled by) each of the proteins.

These three items are the input data for the implementation of the

distributed hierarchical model for the operon. (This implementation is

carried out by IDHA in a conversational mode with the user. An example

of its operation is shown in the printout shown in Table 1 for the lac

operon implementation).

Figure 5 gives an incidence diagram of the dynamic interaction

among the different elements participating in the lac-epigenetic pro-

cess. The central task of IDHA is to transform the input data and the

associate incidence diagram into specifications in terms of the types of

our model.

The only element in the diagram of Figure 5 we have not discussed

explicitly in the construction of the types of the model is the gratui-

tus inducer. Gratuitus inducers (repressors) are metabolites (see

Watson [ ], Lewin [ ]) which have the ability to induce (repress)

operons which are not metabolized by the reaction-systems of these oper-

ons. The operational importance of these metabolites consists in that

the number of elements present in the system remains constant during its

evolution (assuming that they are not affected by any other operon

in the system). We represent gratuitus inducers (repressors) in our model

with elements of the transformation class of monomolecular irreversible

type:

i,k. i ,k.
11

-234-



where the symbol A represents the intensity assigned to the inducer.
i,k.

Before discussing IDHA in the context of this example, we make the

following important remark. Since the p and o regions of the DNA of the

operon are not codings for proteins, but rather part of its control

apparatus we do not model them as genes, but as part of the control logic

of the transcription feedback mechanism (TFM), an element in our model)

associated with the operon element. We add that the lengths of o and p

are usually very small as compared with the average lengths of the genes.

Typically the ratio between the latter and the former ranges between 40

and 200.

Now, we proceed to discuss the characteristics of the program IDHA

and illustrate them with the example considered in this subsection.

The first and second lines in Table 1, correspond to the loading

and initialization of the program (IDHA) respectively.

Then, as can be inferred from the table, the program requests

several items to the user in conversational mode (meaining that the exe-

cution halts after each request, and does not continue until it has

been answered).

The decimal point that appears in the answers to most requests is

used as a token and has no numerical meaning.

In the case of the lac operon, we have that the system has 1 operon,

1We understand as "length" in here, the number of nucleotides.
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Table 1

IDHA Construction of the Types for
the Lac-Operon System

RESET ("IDHA" ,110)

IDHA

ENTER NUMBER OF OPERONS
1.
ENTER NUMBER OF GENES OF EACH OPERON, ONE PER LINE
4.
ENTER ESTIMATED NUMBER OF NUCLEOTIDES FOR GENE NUMBER REQUESTED

1 1
1000.

1 2
3520.

1 3
760.

1 4
810.
ENTER MAXIMUM ERROR ALLOWED IN TINES OF SYNTHESIS
.1
ENTER PROTEIN TYPES 1. FOR REGULATOR, 2. FOR UNIMOLECULAR IRREVERSIBLE
3. FOR UNIMOLECULAR REVERSIBLE, 4. FOR BIMOLECULAR IRREVERSIBLE,
5. FOR BIMOLECULAR REVERSIBLE, 6. FOR CYCLIC PROTEIN

1 1
1.

1 2
5.

1 3
4.

1 4
5.
FOR REGULATOR PROTEINS ENTER INDEX OF CONTROLLER OPERON AFTER EACH
PAIR OF SUBINDICES OF CORRESPONDING PROTEINS APPEAR

1 1
1.

STATE ASSIGNMENT FOR OPERON AND CLOCK ELEMENTS
GENE STRUCTURE NUCLEOTIDES ERROR T.0
Q (1,1)=1. 1000. .0000 T(1
G(1,2)=2. 3520. .0057 T(1
G (1, 3) =3.
G(1, 4)=4.

760.
810.

.0520

.0100
T (1
T (1

.SYNT.
, 1) =10.

,2)=35.
,3)=8.
,4)=9.
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Table 1 (contd.)

GENE STRUCTURE

C=7.

A=8.

B=9.

C=10.
D=ll.
CLOCK STRUCTURE

INTENSITIES
S/BY=36.

READ=37.
OFF=38.

ON=39.

INTENSITIES
0. 0.
COUNT=5. T(ll)=10.

T (1,2)=35.

T(1,3)=8.
T(1,4)=9.

SYNTH=6. TS(1,l=10.

TS (l,2)=35.

TS (1,3)=8.
TS (1,4)=9.

MRNA,MRNA POL., RIBOSOME STRUCTURE/INTENSITY ASSIGNMENT

MRNA STRUCTURE
N=16.

END=17.

MARK=18.

DESTROY=19.
MRNA POL. STRUCTURE

NOOP=12.
ACT=13.

MOTION=14.

UMOTION=15.

INTENSITY

0.

TS(1,1)=10.
TS (1,2)=35.

TS (1,3)=8.

TS (1,4)=9.

M=44.

0.

DE=45.

INTENSITY

0.

BR=40.

S=41.
R=42.
0.

R=42.
0.

SET=43.
0.
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Table 1 (contd.)

RIBOSOME STRUCTURE

INA(1)=20.

INA(2)=21.

INA(3)=22.

ONE=23.

TWO=24.

THREE=25.

INTENSITY

1.
2.

3.

BR=40

CONT=44.

DECONT=45.
S1=41.

RR1=42.

TRANS=26.

ENTER REACTANTS AND/OR PRODUCTS SHARED BY MOPE THAN ONE REACTION SYSTEM

USE 1. FOR A, 2. for B, 3. FOR C

IN A+B=C OR A=B TYPES OF REACTIONS

ENTER IN ONE LINE THE TYPES OF ELEMENT FOLLOWED BY THE TUPLE IDENTIFYING

THE OPERON AND PROTEIN CONTROLLING THE REACTION SYSTEM

3. 1. 2. 3. 1. 3.

REACTION SYSTEM

RA (1, 2)=27.

RB(1,2)=28.

RC(1,2)=29.

LA (1, 2)=30.

LB(1,2)=31.

LC (1, 2)=32.

RA (1, 3)=33.
RB(1,3)=34.

RC (1, 3)=29.

LA (1, 3)=35.

LB (1, 3)=36.

LC (1, 3)=32.

RA(1, 4)=37.

RB (1,4)=38.

RC (1, 4)=40.

LA(1,4)=41.

LB (1, 4)=42.
LC(1,4)=43.

STRUCTURE INTENSITY

A(1,2)=46.

B(1, 2)=47.

C(1,2)=48.

A(1,3)=49.

B (1, 3) =50.
C (1, 3) =48.

A (1, 4)=51.

B (1, 4) =52.
C (1, 4) =53.
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Table 1 (contd.)

PROTEIN STRUCTURE

NE=-4.

SELECT=45.

RR(1,1)=46.

LR(1, l)=47.

RS''' (1,2)=48.

RS'' (l,3)=49.

RS' ' ' (1, 4)=50.

INTENSITY

0.
T(1,1)=10.

T (1,2)=35.

T(1,3)=8.
T(l,4)=9.

REG (1, 1)=54.
P(1)=55.

A(1, 2)=46.

B (l, 2)=47.

C(l,2)=48.
AB(1,2)=56.

A(l,3)=49.
B(1,3)=50.

C (1, 3)=48.

AB(1, 3)=57.
A(1,4)=51.
B(1,4)=52.

C(1,4)=53.

AB(1,4)=58.

ENTER A 1. IF OPERON I IS INDUCIBLE - NEGATIVE

ENTER A 2. IF OPERON I IS INDUCIBLE - POSITIVE

ENTER A 3. IF OPERON I IS REPRESSIBLE - NEGATIVE

ENTER A 4. IF OPERON I IS REPRESSIBLE - POSITIVE

ENTER CONTROL METABOLITE OF OPERON I (SEE INTENSITY NUMBER IN

TABLE OF REACTION-SYSTEMS INTENSITIES)

I= 1.

1.
48.

TFM STRUCTURE
CP1 (1)=51.

CMl(l)=52.
S1=53.

INTENSITY

0.

P(1)=55.
M(l)=48.

A=59.

INA=60.
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that the operon has 4 genes, whose lengths are entered as requested. We

note that the program assigns the label 1.1 to the first length of the

first gene in the first operon; the label l,k1 to the length of the last

gene of the operon; the label 2,1 to the length of the first gene of

the second operon; and so forth. Thus, these must be entered in that

order. Once they are entered, the gene 1.3,say, has been associated

with a given length (760.) which will determine its time of synthesis.

Next, once all the lengths are entered a request for times of syn-

thesis error has been satisfied, the program computes the times of

synthesis of each protein according to the formula

T. = [(L /Iseed)] (1)
i,k. i,k.

where L. is the length of the k. gene of the i-th operon and Iseed is
i,k.1

a scaling factor, initially assuming to be 100. The brackets [ ] indi-

cate "integer-part function".

The error i. commited in assigning the time of synthesis of the
i,k.

k.-th gene of the i-th operon according to formula (1) is expressed as

follows:
L - T Iseed

1 1
ik- i(2)

i i,k.

we demand that

C. < S V i,k. (3)
i,k.1
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T. / T. j0i (4)
i,k. j,k.

1 J

If condition (4) is not satisfied we make Iseed + Iseed-5 and recompute

the times of synthesis according to (1) and check conditions (3) and

(4) again. If they are satisfied, we take the resulting set of times

of synthesis as the times of synthesis for genes of the system under

study, otherwise we decrease Iseed by 5. and repeat the computation

until conditions (1) to (4) are satisfied or Iseed = 5. In the latter,

we take Iseed equal to 1 and T. = L. V i.
i,k. i,k.

1 1

We note that Iseed >1, implies that we s ave in the number intensities

required for representing the clock of the model, and we compress the

simulation time by a factor proportional to Iseed.

Once the gene lengths have been entered the program assigns the

tuple (i,k.) to protein i,k. and requests protein-type for each (i,k.) as

indicated in Table 1. Finally, for regulator proteins the program re-

quests for each one, the label (number) of the operon controlled by it.

once the above information is entered, the program proceeds to

assign integers to the different structures and intensities of the model

corresponding to the system under study, using the following criterion:

a) The number 0 is reserved for the dormant structure and the

dormant intensities.

For instance, in the computation of T(l,3), T(l,4), in the first itera-
tion we get T(1,3) = T(1,4) = 8 since these times are the identifiers
of the genes,we need them to be different, thus, in the second iteration
we obtain T(1,3)=8, T(1,4)=9.
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b) The numbers 1,2,...,T , T ,..., are used as the inten-
i,k.' i,k.+1''aeueasteien

1 1

sities of the clock in structure COUNT (see Section 3.3).

c) The numbers assigned to structures of the operon type are com-

puted as follows

G . i + k.- 1 (5)
i,k. L

Let

S' =max
i,k.

(6)
Fi,k

The structure C' is assignedi the number

C' = S' + 3

and the structures A,B,C,D are assigned the numbers

A = C'+l, B = C'+2, C = C'+3, D = C'+4

For instance, in the example of the lac operon displayed in Table 1

SI = 4

C' = 7

A =8

B =9

C = 10

D = 11

1The labels used in this section for identifying structures are the ones

established in Section 3.3.
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d) The number assigned to the intensity of the structure G. is
i,k.

Tik , the corresponding time of synthesis of Pr. k.

e) The clock structure COUNT is assigned the number

COUNT = S' + 1 (e.g., COUNT = 5 in Table 1) (9)

and the structure SYNTH is assigned the number

SYNTH = S' + 2 (10)

f) The intensities of structure SYNTH TS(i,k.) are assigned

numbers according to the formula

TS(i,k.) = T. (11)
i. i,k.

g) Let U' be a number defined by

U' = max Tik. (12)
i,k.

1

(e.g., U' = 36 in the example of Table 1)

The number assigned to intensities Siby, READ associated with

structure C' of the operon element are:

Siby = U' + 1 (13)

READ = U' + 2

while the numbers assigned to intensities ON and OFF associated with its

structures A,B,C,D are
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ON = U' + 3
(14)

OFF = U' + 4

h) Set

U' + U' + 9 , S' + S + 6 (15)

Assign to structures N and END of the M-RNA element the numbers

S' and S'+1 respectively, and S'+2 and S'+3 to its structures MARK and

DESTROY, respectively.

i) Assign numbers U' and U'+l to intensity M of structure MARK and

to intensity DE of structure DESTROY, respectively (44, 45 in Table 1).

j) Set U' + U' - 4, 5' - S' - 3. Assign numbers S', S' +1, S' +2,

S' +3 to structures NOOP, ACT, MOTION, respectively and numbers U',

U' +1 and U' +2 to intensities BR, S and R respectively of the M-RNA ele-

ment (12, 13, 14, 15 for the corresponding structures in Table 1, and

40, 41, 42 for the intensities).

k) Assign numbers S' +4 and S' +5 to structures MOTION and UMOTION

of the M-RNA polymerase structure and the numbers U' +3 and U' +4 to

their intensities R and SET respectively (14, 15 for the corresponding

structures in Table 1, and 42, 43 for the intensities).

1) Set U' - U' +10, S' - S' +7. Assign the numbers S', S' +1 and

S' +2 to structures INA(l), INA(2) and INA(3) of the ribosome element,
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and numbers S' +3, S' +4, S' +5 to its structures ONE, TWO and THREE.

(23, 24 and 25 respectively in Table 1).

m) Assign numbers U' and U' +1 to intensities CONT and DECONT of

the structures ONE, TWO and THREE. (44 and 45 respectively in Table 1).

n) The assignment for structures and intensities of reaction

systems depends on the type of each reaction system (which is determined

in the program once the request for protein types is answered, as shown

in the sample-output of IDHA for the lac operon) and also, on the infor-

mation (supplied by the user) as to what molecules belong to two or more

reaction systems.

Let N be the reaction type of system R(i,k.) or rather the
i,k.1

protein-type controlling reaction R(i,k. ) so (see Table 1)

N = 2 or 3 if R(i,k.) is a monomolecular
i,k. 3

il )reaction system (16)

4 or 5 if R(i,k.) is a bimolecular

reaction system

Let S', U' be numbers assigned to the last structure and intensity

(respectively) considered up to this point in the execution of IDHA.

If N = 2 or 3 and A (the reactant, see Sections 3.1 and 3.3)
i,k. i,k.

and B (the product) are not shared by any other reaction R(j,k.)
i,k.j

j<i or j=i and k. < k., then set
Jl

Rr(i,k.) = S' +1 A(i,k.) = U' +1

1 1 S(17)

RAii,k.) = 5' +2 B(i,k.) = U' +2
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If either A. (or B ) is shared with some reaction system j<i
i,k. i,k.

1 1

or j=i, k. < k, and A. = L (or B(j,k.) = M), set
J 1 j,k.

JJ

Rr(irk.) = S' +1 A = L (B(i,k.) = M
1. i,k 1 (18)

RZ(i,k.) = S' +2 B = U' +1 (A )=U' +1
1 i,k. i,k.

If both A and B. are shared with some reaction systemi,k. i,k.

R(j,k.) j < i (or j=i, k. A k.) and A(j,k.) = L, B(j,k.) = M, R(j,k.) is
J - J 1 J J J

of the same type as R(i,k.) and Rr(j,k.) + N, R9(j,k.) = P then set
1 J J

Rr(i,k.) = N A(i,k.) = L
1 1 (19)

R9.(i,k.) = P B(i,k.) = M

If N = 3 or 4, a similar set of conventions are used for
i,k.

assigning numbers to the structures RA(i,k .), RB(ik .), RC(i,k .),
1 1 1

LA(i,k.), LB(i,k.), LC(i,k.) and to the intensities A(i,k.), B(i,k.),
1 1 1 1 1

C(i,k.). Some of these conventions are used in constructing the number

assignments for the reactions systems of the lac operon shown in Table 1.

For instance, the reaction systems R(1,2) and R(1,3) share their C-ele-

ments i.e., C(1,2) = C(1,3) = 48., where C(1,2) or C(1,3) represent the

lactose molecule (see Figure 5 and Table 1).

p) Set S' = max Z. where i. is Rr or R9 ik or RAi k.. ,k. i,k. i,k. ik.i.'
i,k i I i 1 1

or RC . Similarly set U' = max 0. where 0. is A or B.
irk. i 1 1
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or C..
i,k.

Clearly, S', U' are the last numbers assigned to a structure and an

intensity so far.

q) Assign S' +1 to structure NE of the protein type and S' +2 to

its structure SELECT. The intensities associated with NE and SELECT are

0, and 1,2,...,T. ,...,T , respectively whose assignments were
i mn

carried out previously.

1
r) Set S' + S' +3. If N = 1 set

RR(l,l) = S' LR(1,1) = S' +1
(20)

REG(l,l) = U' P(l) = U' +1

where RR(i,k.), LR(i,k.) are structures of a regulator protein element
1 1

and REG(i,k.), P(i) are their intensities (see Section 3.3).

If N = 2, set RS(1,1) = S' where RS(i,k.) is the structure of

a monomolecular irreversible type, we note that in this case, numbers

have already been assigned to the corresponding intensities.

If N = 3 set RS'(1,1) = S'

If N = 4 set RS"(1,1) = S' (21)

If N = 5 set RS"' (1,1) = S'

and AB(l,l) = U'

N. i was introduced in step n) (see (16))
i,k.
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If N = 6 set RA(1,l) = S'

RB(1,l) = S' +2 (22)

RD(ll) = S' +3

where RA(i,k.) , RB(i,k.), RC(i,k.), RD(i,k.) are the structures of the

cycle protein type (see Section 3.3, Figure 3.3-10f and companion dis-

cussion)

set BD(l,l) = U'

CA(ll) = U' +1 (23)

AD(l,l) = U' +2

BC(ll) = U' +3

We note again, that other intensities associated with the structures

in (22) or (23) have been assigned numbers previously.

Once the assignment of numbers to the structures and intensities of

PR(l,l) is completed, the program proceeds to the assignment of numbers

to the structures and intensities of protein PR(1,2) (if there is a

PR(1,2) otherwise to protein PR(2,1)), PR(1,3),...,PR(m,k ). The pro-

gram assigns new numbers only to those structures and intensities that

are particular to PR(1,2), PR(l,3),...,PR(m,k ) (for instance, if Nl ,2=5,

then the only intensity to which no number has been assigned is AB(1,2)).

Note that the structures Ne and Select are common to all the protein

elements in the system.

s) Set S' = max E. where E. is RR(i,k.), or LR(i,k.) or
i. ik. i,k. 3. 1ilk.i i 1

RS(i,k.), or RS'(i,k.), or RS"(i,k.), or RS"'(i,k.), or RA(i,k.),or
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RB(i,k.) or RC(i,k.) or RD(i,k.) .

Set U' = max i. where i. equals AB(i,k.) or BD(i,k.), or
.lki ik ik

CA(i,k.) or AD(i,k.) or BC(i,k.).

t) Let m be the number of operons of the system under study and

o (I) I=1,... ,m a set of variables, each one associated with any operon

whose value is entered by the user upon request (see Table 1).

For 1=l,...

a (I) = 1. If operon I is inducible-negativel*

2. If operon I is inducible-positive
(24)

3. If operon I is repressible-negative

4. If operon I is repressible-positive

Set A = U' +1

INA = U' +2

1 2 3 4
where A and INA are intensities of the structures S , S , S , S of the

transcription feedback mechanism element (TFM) (see Figure 3-3.15) and

companion discussion).

For I=1 if a(l) = 1 set CP (1) = S' +1

CM (1) = S' +2 (25)

S1 = S' +3

By inducible-negative we mean that the corresponding transcription feed-
back mechanism is induced by the presence of the control metabolite and
turned off by the regulator protein (see Section 3.3, Figure 3.3-5 and
companion discussion).

*
In Table 1 a(1) = 1.
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if a(l) =2 set CP (1) = ' +1

CM (1) = S' +2 (26)

S2 = S' +3

if a(l) =3 set CP3 (1) = S' +1

CM (1) = S' +2 (27)

S3 = S' +3

if a(l) = 4 set CP (1) = S' +1

CM (1) = S' +2 (28)

S4 = S' +3

Once the structures of TFM(l) have been assigned their labels

(numbers) IDHA proceeds to the assignment of labels to the structures of

TFM(2),...,TFM(m) in a similar manner with the provisto that if S1 or S2

3 4
or S or S have already been assigned labe-ls, these are used for every

instance in which they are required.

u) Set U' + U' +3. At this point the user is requested to enter,

for each operon, the intensity of the corresponding control metabolite.

He can do so by consulting the Assignment of Reaction Systems which has

been printed out (by IDHA) earlier (see Table 1).

1. 2 3
v) Set S' = max E. where E. is CP(I), or CM(I), or S S , S , or

, 11

4
S

set STOP = S' +1

REG = S' +2

-250-



where STOP and REG are the structures of the corresponding virtual ele-

ments introduced in Section 3.3.

Step (v) finalizes the number assignment to structures and inten-

sities of the elements of our model representing a given system provided

by the user. We remark that the resulting model, constructed by IDHA,

will depend on the characteristics of the system under study. For in-

stance, in the case of the lac-operon, no monomolecular reaction systems

are present; therefore, the corresponding structures of -these protein

and reaction-system types are absent.

We conclude our discussion of IDHA with a description of the way the

resulting model is internally represented in the computer.

The model is represented in the computer by 3 arrays: {TYPES(I,J,K)}

(TYPEI(I,J,K)} and (GN(J)}.

(TYPES(I,J,K)} is an array whose entries are determined by the

structure transition functions of the different types of the model (see

Section 3.3). {TYPEI(I,J,K)} is an array whose entries are determined

by the intensity transition functions of the different types of the

model and (GN(J)} associates with each structure of the model a subset of

numbers from {O,1,... ,G} representing the nearest-neighbors associated

with that structure when the corresponding element has been allocated to

the informational space. The organization of these arrays is illustrated

in Tables 2, 3 and 4 respectively.

Initially, the 3 arrays are filled with 0 in each entry. One IDHA

has assigned numbers to the different structures and intensities of the
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U

H

Present U)

Neighbors Z
Present m
Intensity N

J=0,1,...,6 7
I=1 OPERON TYPE

STRUCTURE
TRANS ITION
FUNCTION

TYPES (lJ,k)

J=0,l,... ,6 7 8

I=2 CLOCK TYPE
STRUCTURE
TRANSITION
FUNCTION TYPES (2 , J,k)

J=0,l... ,6 7 8
I=3 MRNA POL

STRUCTURE
TRANSITION
FUNCTION TYPES (3,J,k)

Table 2

Illustration of the Organization of the Array

TYPES(I ,J,K)
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I=l STRUCTURE G(l,l)

>4

E-1

Intensity Z
of E
Nearest H

Neighbors Q

J=Ol,...,7 8

TYPEI (1,J,k)

J=,1,... ,7 8
I=P STRUCTURE LR(1,k) k=l

25

Table 3

Illustration of the Organization of the Array

TYPEI (I,J,K)
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0 1 2 3 4 5 6

00... 1,..., 0
STRUCTURE (J)

GN(J,,')

0 if Ath nearest neighbor does not interact
with element when in J structure

GN(J, 9 ,) =

1 otherwise
2=0,... ,6

Table 4

Illustration of the Array GN(J,k)

-254-



model for the system under study, corresponding entries of these arrays

are changed to the assigned numbers via a set of identities of the form

TYPES(l1,7,1) = G(1,1)

TYPES(1,7,2) = G(1,2)

(29)

TYPES(1,7,M) = G(L,P) M=L+P

TYPES(l,1,O) = T(1,1)

TYPES(ll,1) = 1

Etc...

where G(I,k.), T(I,k.) etc... are the variables representing structures
1 1

or intensities defined in Section 3.3 and to which IDHA has assigned

numbers on a 1-1 fashion. Notice that the first entry in the triplet

I,J,K in TYPES(I,J,K) identifies the type while the third identifies the

nearest neighboring element 0 _ J 6 to which the corresponding inten-

sity belongs. The entries in the columns J=7, J=8 correspind to the

columns "present structure" and"next structure" in the appropriate

table of Section 3.3.

In the array TYPEI shown schematically in Table 3 the entries are

constructed from the intensity transition functions developed in Sec-

tion 3.3. In TYPE(I,JK) I idnetifies the structure and J,K identify

the "coordinates" of the entry in the corresponding table, as illustrated

in Table 2.
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Finally, the array GN(J) determines for each structure J the corres-

ponding nearest neighbors: if GN(J, ) = 1, R = 0,1,...,6 this nearest

neighbor is active for this structure, as indicated in Table 4.

We conclude this subsection with an observation of the model for

the lac-operon which served us as a running example for introducing IDHA.

We note that the functional objective of the permease protein is to

facilitate (catalyze) the flow of the lactose molecule from the outside

to the inside of the cell. In our model we have represented this func-

tional objective by modeling the lactose out as an operationally different

molecule than the lactose IN, the membrane as an element of the trans-

formation class and the lactose permeation itself as a bimolecular irre-

versible reaction of the form

Lactose-OUT + Membrane ----- Lactose-IN (30)

Permease

This shows an instance in which our model can be used to study

epigenetic actions which are not reacting in the strict sense of the

word.

3.5.2 A 3-operon Eigen cycle

In this subsection we examine, in the context of the 3-operon ex-

ample introduced in Section 2.1, some additional characteristics of the

program IDHA which were not explicitly discussed in the last section.

The first of these concerns the physical locus of the operons in

the cell. In general, two or more operons which interact via their
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proteins and/or reaction systems as discussed in Section 2.1, are not

spatially allocated in adjacent loci in the chromosome; therefore, in

order to preserve time relations in the dynamics of the system composed

of these operons we must, in the implementation of the model, provide

it with the means to simulate the spatial distance between the operons

of the system. This is accomplished, as shown in Figure 1, by allo-

cating 2 n-1 operons to the informational space; for n operons in the

system; where the additional n-l operons are used to simulate the dis-

tance among the different operons. Each of the added operons is assumed

to have a single gene which codes for its regulator protein and whose

time of synthesis is proportional to the length between consecutive

operons.

If OP is the "timing" operon added after OP., then OP has the

same control metabolite M. and regulator protein P., as OP..

The importance of Eigen cycles in epigenetic processes is the fact

that in addition to the "local" transcriptional and catalytic controls

associated with a given operon OP., there is a global control of the

system due to the structure of the arrangement. The real cell locus of

the chromosome is circular and it is clear that this organization favors

the interdependence operons in a cycle. We simulate this circularity

around a given operon OP. (see Figure 2) in our model by creating addi-

tional copies of operons so that OP. "sees" them in circular fashion.

This is illustrated in Figure 6 for operon OP..
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(a) 3 Operon allocation in the chromosome

OP1 OP2 OP3

OP4 = OP2

(b) Circular representation of (a) around OP

Figure 6
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OPERON OP: 3 Structural Genes, GENEl, GENE2, GENE3

Structural Genes

PROMOTOR' OPERATOR GENE2 L Portion 1 of operon OP

-

Control
Metabol ite

In general part of a different
operon from OP

regulator
protein

PROMOTOR OPERATOR

Structural
Gene

GENE3 Portion 2 of operon OP

(a) Gene organization of a typical operon

TFMI

Cl OP2

(b) Representation of operon

OP2 represents Portion 2

of part (a) in our model OP, represents Portion 1,
and OP1 represents "timing" operon

Figure 7
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In Figure 6a OP3 and OP2 are both in sequence of OP because of

the circular arrangement of the operons. This is simulated in our model

by creating a new operon OP4 with identical structure to that of OP3 and

allocate it as shown in Figure 6b if in addition we want to represent

the circularity of OP3 we add a new operon OP = OP at the right and

on Figure 6b and a new operon OP = OP2 at the left end. If the time

horizon of the system T satisfies the inequality

m
T < max (T. 1 (31)

. i,k. ii=1 i

where m is the number of operons in the model. We continue the procedure

indicated above i.e., adding "neighboring" operons at the two ends of

our operon string until the direction of inequality (31) is reversed;

that is, the number of operons present for simulating circularity

equals pt where p is the original number of the operon in the system

and t is an integer chosen so that

pt
T < max IT. 1 (32)

i= i

In IDHA, there is a subroutine cycle (I) which when requested by

the user generated the additional operons necessary for simulating cir-

cularity around operon I of the given system.

We close this subsection with the description of two additional fea-

tures of IDHA in connection with the representation of multioperon sys-

tems.
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We recall that an operon OP is a set of genes under common trans-

criptional control. This does not mean that all the genes of a given

operon are spatially allocated in consecutive positions of the chromosome.

As illustrated in Figure 3, we simulate this situation by creating one

operon element for each consecutive portion of genes, with all these

operons interacting with identical TFM elements as illustrated in Fig-

ure 3b.

Finally, in the cell there are operons which possess more than one

transcriptional control (e.g., Ara in E coli)1. We simulate this in

IDHA by "creating" one operon for each transcriptional control.

These last two operations -- operon "splitting" and TFM "splitting"

-- are carried out in IDHA for any operon OP. by a call to subroutines

SPLIT(i) and TSPLIT(I).

1See Watson [ 1.
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4. FORMAL MODEL FOR EPIGENETIC CONTROL MECHANISMS:

THE DISTRIBUTED HIERARCHICAL AUTOMATON

4.1 Formulation of the Model

In this chapter we develop a mathematical model for the dynamics

of a computing device called the Distributed Hierarchical Automaton

(DHA for short).

Although our purpose for the development of such a model is to

obtain an efficient tool for analyzing the dynamics of the operational

model established in Chapter 3, the DHA is an interesting computational

model in its own right; therefore, in this chapter we study the DHA as

an abstract dynamical system with only occasional references about its

use in our study of epigenetic control processes.

In Chapter 5 we will develop a representation of the operational

model of Chapter 3 as a DHA,and on the basis of this representation we

formulate computational algorithms for the structural identification

problem outlined in Chapter 2 and the three prototypes of epigenetic

control processes stated in Section 2.3.

A distributed hierarchical automation A is a composite of two

objects; I and T called the Information space and the Type of A, re-

spectively.

The information space I in this study is represented by the abelian

k
group (Z , +) , where Z is the set of integers. k>_1 is an integer called
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k
the dimension of I, and + is the ordinary addition on Z

Occasionally, we will require a metric structure on I to establish

properties of the DHA A that depend on the distance between points in I.

This structure is provided in terms of the city-block metric function

k k1
P Z x Z + Z. We define p by the following formula. Let z =

1 1 2 2 2 k
{z 1 .... , z = {z1....,z k} be two elements in Z . Then,

k

(z , z 2)p = z. - z. (1)
JJ

j=1

where lul denotes the absolute value of u.

A type T is a finite-state state output automaton. We assume that

at each point in I, one and only one of these automata has been allocated.

T consists of the following pieces of data:

(i) A set Q = {0,...,R} of natural numbers called the set of

intensities of the type.

(ii) A set @' of indexed partial functions;

= {fYf : D (f Y) + Q V y e G} (2)

called the set of structures of the type.

In (2), the set G is a finite set of natural numbers {0,,.,,P}

Y
called the set of labels of D. Further the map Y + f is 1-1.

In (2), the sets D (fY) for each y e G, are defined as follows:

D (fY) = { w 6 Q2k+l I = n } (3)
0 Y
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Several Possible Neighborhoods of z in a Two-dimensional

Informational Space

Figure 1
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where Q i2k+ s the set of all sequences of elements of Q with at most

YY2k+1 elements, n Yis the number of arguments of fy and Iw is the length

of w. Also, 2k+l is the maximum number of nearest neighboring points of

k 1 k
any point z in Z , including z itself. (A point z £ Z is a nearest

neighboring point of z e Zk if (z, z1 )p < 1).

We note that since fY is a partial function V y e G, the domain of

f is, in general, a possibly proper subset of D (f ).

(iii) A set of functions,

N = {g., i=1,...,4g. ; Z + 2  ) (4)

where k < 2 2k, called the set of neighboring functions where each g.

maps a point of the information space into a finite subset of its near-
k

est neighboring points (2Z denotes the set of all subsets of points of

Z k). We require g 's to be translation-invariant, in that they give the

same shaped neighborhoods for each point.

An explicit representation for such a neighborhood function g e N

is given by the formula

(z)g. = (z + O., z + a . .z + a.m.} (5)
il i2 ii

1 k s
where at.. = [a..,. .. , i. .] ce.. £ Z s=l,, ..,k are m. distinct elements

13 1I 1 J 13

in Z k, each one with all their entries equal to zero except, perhaps,

one and only one of them. The nonzero entry (if any) can be either 1

or -l and nothing else, Figure 1 illustrates the concept of neighbor-

hood functions for a 2-dimensional information space., The number m . of
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elements {.., j=l,...,m.} associated with a given function g. is called
13 i

the characteristic of the neighborhood function g..

k
We note that for any i, i=1,..., and every z e Z , (z)g . denotes a

subset of the 2k+l possible nearest neighboring points of z. A simple

combinatorial argument shows that there are 22k possible subsets of this

kind.

(iv) A function T : G -+ N called the Input selector function.

T is 1-1 and onto. The function T satisfies the following consistency

condition:

k
V y e G, for any z e Z , (z) (y)'Y = n (6)

^2k+l
(v) A function H : G X Q + G called the structure transition

function.

For each y e G, the function H(y, : 2k+1 G satisfies

Domain (H(y, 0)) DD fY (7)

For any w e 2k+l D f, and anyyE G,
0

H(y, w) = 0 (.8)

where 0 is the label of a special structure, called the dormant structure

which will be discussed later,

(vi) An arbitrarily large, but finite, subset of the non-negative

integers T = {Q,1,2,..,} with the usual linear ordering (<) of the natu-

ral numbers, called the time base of the type.
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The local dynamics of A, i.e., the dynamics of T can now be de-

fined when we enbed this object in a I= Z k; specifically let T be the

type of A allocated at z e Zk (we indicate this allocation by (z)T);

^ 2k+l
the input w e Q at time t to (z)T is provided by a subset of the

intensities of the types allocated in the nearest neighboring points of

(z)T, at time t. This subset is determined by the input selector func-

tion of T as follows.

Let yt e G be the label of (z)T at time t, suppose

(y )T = g., g. e N (9)t i 1

Then, from (5) we have

(z)g, = {z + a ., z + a 2 ,...,z + a. } (10)
1

1 mi
so z = z + .c,...,z = z + a. are the nearest-neighboring points of

1

z (which may include z itself) whose corresponding types interact with

the type (z)T at time t, that is, the present intensities of (z )T,...,
M. Y

(z I)T are the elements of the sequence of inputs w e D (f t) to (z)T

at time t.

Now we have all the ingredients for the description of the (local)

dynamics of a DHA. A = <I, T>.

Let vt : I + G be a family of functions indexed by the time vari-

k
able t e T, such that for any z e Z , (z)v is the structure label of

t

the type assigned to z at time t. Similarly, let wt : I + Q be a family

k
of functions indexed by t such that for any z e Z , (z)w is the inten-

t
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sity of the type assigned to z at time t.

The (local) dynamics of the DHA A = (I, T) is determined by speci-

fying the structure and intensity transitions of the type in A, these are

given by

Structure transition at z:

(z)v t+= ((z)vt, wt (z)v tT)H (11)

Intensity transition at z:

(z)wt+ = (wt (z)vt )f t (12)

with f(z)vt e @ V z e Zk and 0 * means "restricted to" in the set-theo-

retic sense. That is,

wt|(z)vtp= {(z + a 1)wt, (z + aj2)wt,...,(z + aj..)wt}
J

(13)

whenever

(z)v T= (z)g. (14)

and

(z)g. = {z + aj., z + aj2,...z + (x } (15)

for some g. e N.
J

Figure 2 gives a graphical representation of the local dynamics of a

DHA A = <IT>. We note that this dynamics is determined at every z e Zk

by the state transition of (z)T, which is functionally dependent on the
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Block Representation of a Type of Model

Figure 2
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intensities of the types allocated at the nearest neighbor points of z.

In (12) is is understood that the expression is valid whenever the

r.h.s. is defined (recall that, in general, f(z)vt e 0 are partial func-

tions), otherwise (z)w t+ is undefined.

Let A = <I,T> be a DHA. The state (0,0) e G x Q of T; that is the

state corresponding to structure label 0 and intensity 0 is called the

dormant state of T and satisfies the following conditions.

(a) n = 2k+l (16)
0

(b) (0)T = (z)g (17)

where

V z E Zk z)g = {z, z + a0,1,...,z + a0,2k+1

and

a . = [0,...,1,...,0] (18)

ith position

(c) V w e D(f ), w = q 1,..,q 2 k+l
0

(w)f0 = q (19)'

We note that (c) implies that the function f is total, i.e.,

0 0
(w)f0 is defined for every w e V f .

'Note that the neighborhood function g orders the inputs of neighboring

elements so that the state of the type itself is the first input.

-270-



(d) For any Y e G, if w = (0,... ,0) e D fY then

(w)f = 0 (20)

That is, if all the neighbors of T determined by yP have 0 inten-

sities, the next intensity is zero independent of the structure.

(e) For wt = (0,... 0) ' t 0,

(Y t, w t)H = 0 (21)

The importance of the definition of dormant state relys on the fact

that it allows us to characterize the information content of a type T

in A. Intuitively, an element in dormant state does not carry informa-

tion.

Now, we establish a representation of the global dynamics of a

DHA A = <I,T> in terms of the (local) dynamics of its type (given by

(11)-(15)).

Let T be the type of a DHA A, with intensity set Q and structure

label G. A configuration C is a function that assigns to each point in

the information space I = Z k; a unique pair (Y,q) e G x Q such that

the support of C, (C)supp is a finite set. (C)supp is defined by

(C)supp0 = {zI(z)C # (0,0)} (22)

In short, a configuration is an assignment of a structure and inten-

sity to every point of the informational space I of a DHA A. Since at
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every point of I a type T is allocated we can express the configuration

of A at any time t in terms of the structure label function vt, and the

intensity function wt introduced proviously. Specifically,

indicates time)C t : I +* G x Q (t

can be represented by

(z)Ct = ((z)vt, (z)wt V z e I (23)

Clearly, since the w t} are partial

function.

Expression (23) allows us to define

(CTM for short), L in terms of the local

type.

functions, Ct will be a partial

a Configuration Transition Map

dynamics of the corresponding

Let A = <I,T> be a given DHA. By CA we denote the class of all

configurations with finite support (supp ) on I. The configuration

transition map (CTM) L associated with A is the map

L : CA + CA

such that given the configuration Ct of A at time t, CtL is the config-

uration of A at time t+l.

The CTM L of A = <I,T> is expressed in terms of the local dynamics of

A (i.e., the dynamics of T) as follows:

Let V be the function space defined on I given by

VA = (CA)Proj1
(24)
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where proj1 is the first coordinate projection function, i.e., for any

Ct= (vt, wt )eCA

(C t)proj, 
= vt

(25)

Similarly, let W be the function space on I given by

WA = (C )proj
2

(26)

where proj2 gives the second coordinate of every C = (v , w ) e C :
2 t y tA

w t = (Ct proj 2
(27)

We see that CA can be written as the cartesian product

CA = VA x WA (28)

We now define the CTM L of A as the product of two maps; S and F

L = S x F (29)

where

S : VA x WA + VA

is defined in terms of the local dynamics in A as,

(z) (vt, wt)S = ((z)vt, wt (z)vtT)H
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aind

F : VA x W +>WA, by

(z) (vt, wt)F = (wt(z)vt)f (z)vt

(31)

V ze I f e(z)vt

where *|* means -restricted to- in the set theoretic sense.

Notice that at each time t, we have defined the configuration Ct of

A = <I,T> as a partial function

Ct : I + G xQ

We note several things:

(1) The only portion of the domain of Ct that carries useful

information is (Ct )supp .

(2) Although L maps entire configurations into entire configurations

it is defined by local behavior ... , i.e., the calculation of

(z)(C L), for every z e I, requires only the valuations of C

at some or all the nearest neighboring points of z.

The last two observations have two important consequences:

(1) The finiteness of (C t)supp , plus the finite amount of computa-

tion required for evaluating (z)(C t)L in terms of a finite set

of nearest neighbors means that we can design efficient computa-

tional algorithms (the amount of computation is finite) for the

simulation of the dynamics of A.
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(2) More importantly, the local nature of L allows us to define

several disjoint configurations (to be defined below) in A at

any time t and propagate these separately until they interact

(a concept that will be introduced shortly afterwards) at some

future time t 1, (t1 > t). This will be the cornerstone in our

formulation of composite control processes in DHA's (see Section

4.5).

On the basis of the two concepts discussed above, we can express

formally Ct+1 as

Ct+= t I(Ct)supp0)L (32)

Two configurations C, C1 in CA are disjoint if

(C)supp (~' (C )supp = # (the empty set) (33)

where rndenotes set intersection.

Let C and C be two disjoint configurations. We define the disjointt t
1 1union Ct U C of C and C as the configurationt t t t

(z)Ct z e (Ct)suppo
1 1(z) Ct U t = (Z) C z r (Ct )supp (34)

\ (0,0) otherwise

It is clear that definition (34) can be inductively extended to any

finite number of simultaneous disjoint configurations.
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CONVENTIONS:

o Indicate non-dormant
elements

Interaction Region

Two Interacting Configurations C ,C2 in Two-dimensional

Information Space

Figure 3
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Two disjoint configurations are said to be interacting (Figure 3) if

at least one of the support points of one of them is in the nearest-neigh-

borhood of one of the support points of the other.

Note that the non-interaction implies a bit more than nondisjoint-

ness. Specifically, let the closure (C t)supp be defined intuitively as

Ctsupp plus all those points in the nearest neighborhoods of points in

(Ct) supp.

Mathematically, the closure (Ct)supp is given by the formula

(Ct)supp = (C t)supp U {z z1 e (z)g for some

z e (Ct)supp , g. = ((z)Ct proj1 )T} (35)

1 2
then, interaction (resp. noninteraction) of Ct, C is defined by

t

1 2
Ctsupp nl Ctsupp d d (resp. = d) (36)

We conclude this section with the definition of process trajectory,

or simply process and some related important concepts.

Given a DHA A = <I, T>, a process P in A is a sequence of configura-

tions

P = {C, C, ,C,..(37)

where C e CA

C = C L i=l,2,...
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We note that by the convention established above, P is really a

sequence of supports of configurations. This allows us to have more than

one process running simultaneously in A.

We say that two processes P =C ,C ,...} P ={C C 1,... do not
o l' 'o 1

interact if for each t, t=0,1,..., the configurations C and C do not
t t

interact where t is time.
T

A subprocess P T of a process

T
P = C , C ,...,C T (38)T T T T

o o+1

with T0 < T. This concept is frequently used in our study in cases in

which we are interested only in particular subprocesses of a given pro-

cess.

We now define a very important class of configurations in the study

of DHA's. (This class is particularly important in the applications of

DHA's studied in this thesis), the memory configurations. For this pur-

pose we need the following concepts.

A configuration C e CA is passive if the following condition holds:

(C)L I(C)supp = CI(C)supp0 (39)

We note that this definition implies that the configuration can

"expand" i.e., change its support in a time transition.

Although its values on (C)supp remain fixed.

-278-



A configuration C is strongly passive if

(i) C is passive

and

(ii) (z)C = (0, (z)w) V z e Zk

That is, the configuration only carries information in the intensity

part of the state and does not change with time provided that it does not

interact with any other configuration; that is, its support is disjoint

from the support of any non-passive configuration in I.

A memory configuartion C e C is defined as follows

(i) C is strongly passive

(ii) (C U C )L (C)suppO = CI(C)supp V C' e CA such that C' is dis-

joint from C. That is, the information contained in C is preserved in

time.

Finally, let CA be the set of configurations of A = <I, T>, C any

configuration in CA and z' e I any point in the information space. We

define the z'-translate of C, as the function C' I - G x Q given by

(z)C' = (z - z')C V z e I (40)

where z - z' in the r.h.s. of (32) is perofrmed component wise.

It is clear that for any z' e I, the z'-translate C' of C e CA is

also in CA, i.e., its support is also finite.

A configuration C' is a subconfiguration of C if

(C')supp C (C )supp (41)
t 0 - t o
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4.2 Basic Characteristics of DHA's

In this section we carry out an algebraic analysis of the model of

DHA's introduced in Section 4.1.

The section is divided into two subsections: Subsection 4.2.1 is

devoted to stating and examining some classes of DHA's with respect to

local properties and to developing the tools for obtaining DHA's in these

classes from a given DHA, such that the former are "equivalent" to the

latter is a well-defined sense which is made explicit in each case. In

this subsection we also introduce the rather important concept of cover-

ing DHA which will be extensively used in Section 4.4.

In Subsection 4.2.2 we introduce the concepts of behavior and dis-

playX for DHA's. These concepts constitute a bridge between local and

global characterizations of the dynamics of DHA's and are extensively

used in Sections 4.3 and 4.4 in the construction of the minimal DHA of

a lattice of DHA's with similar dynamics and in the construction of the

covering DHA of a given set of DHA's which has the capabilities of simu-

lating any of the DHA's in the set in a sense which is formulated in

terms of their behaviors.

4.2.1 Local properties of DHA's

Throughout this subsection we assume as given a DHA A = <I, T> where

the type T is characterized by a structure set 0 with corresponding

(structure) label set G, intensity set Q, structure transition H, neigh-

borhood functions set N, and input selector function T, which were de-
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fined in Section 4.1.

In virtue of the nearest-neighbor interaction scheme of A, is is

sufficient for the analysis of dynamic local properties; that is, pro-

perties that depend on the one-step-in-time slate transition of T, that

we concentrate our efforts on a configuration U in I = Z k, whose support

consists of 0 = (0,...0) e Zk and its nearest neighboring points, i.e.,

(U)supp = {z e Zkl (z, 0) p < l} (1)

This is possible since each of the neighborhood function of A = <IT>

is invariant on I. Therefore, for any z e I, we can translate the con-

figuration C with support (C )supp = {z'I(z, z') p < l} by z unitst t o0

(i.e., (z)T is translated to 0) without changing the information content

of (z)T at time t or its next state which is completely determined by the

translation-invariant nearest neighboring types.I

Furthermore, the state transition at z given by

(z)v t+ = (z)(v , w t)S

(z)w t+= (z)(v , w t)F

is functionally dependent on the intensities of the types allocated at the

points

This property in contradistinction with the characteristics of other types
of distributed automata, on which, the location of the element in the
information space is part of its information content. An example of this
type of automata can be found in Wolpert [15].
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(z) ((z)v )P = (z)g. = (z + a. ,...,z + a. )

for some g. e N. For z = 0 it is clear that (z)g. C (U)supp V g. ( N.
- 1 -0 i

The first local property that we analyze in this section is state

reachability. Before defining this property, we introduce three concepts

which are the ingredients of the definition; these are:

1. Initial structure label set IG: G is a subset of the structure

label set G satisfying the following conditions: IG is non-empty and

at least one of its elements is different from the dormant label 0.

2. Initial intensity set I : I is a subset of the intensity set

satisfying the following conditions: I is non-empty and at least

one of its elements is different from the dormant intensity 0.

3. Initial configuration set iCS i: CSA is a finite subset of con-

figurations C such that V C e iCSA

(C e IG Q V z o (C)supp (2)

A state (Y,q) e G x Q of T is reachable if there exists some C e

iCSA and a < oo such that the sequence of configurations {C t It=0, .. .a}

given by

C L = Cl, ClL = C2 ... , CaL = C

satisfies (3)

(z)C = (y,q) for some z e I.
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where L is the CTM of A.

The reachable structure label G of A is a subset of G given by
r

G = {y e GI(y,q) is reachable for some q e Q} (4)

Similarly, the reachable intensity set Qr of A is a subset of Q given

by

Qr = q e QI (y,q) is reachable for some y e G} (5)

The reachable state set R of T is a subset of the cartesian product

Gr xQr given by

R = {(Yq) Y e Gr q e Q r, (y,q) is reachable} (6)

We say that A is reachable if

G= G
r

Q =Qr

Note that this does not mean that every pair (y,q) is reachable and

hence our reachable DHA need not be minimal in the sense one usually

thinks of for finite-state machines. We are willing to sacrifice this

property in favor of our weaker notion, since our two-level structure-

intensity state description is both appealing on physical grounds and

useful for several mathematical manipulations we will perform later.

The second characteristic of A that we are concerned with is com-
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pleteness. We state it in terms of configurations on U.

We say that the structure label Y e G is complete if the corres-

ponding structure

fy : fY + Q

is a total function; that is, (w)f is defined for every w e D f . We

say that A is complete if every structure label y e G is complete.

We recall from our definition of the structure-set 0 in Section 4.1,

that the only structure label which is guaranteed to be complete is the

0 (zero) label, corresponding to the dormant structure f0 .

We say that A is deterministic if (0)T in U satisfies the following

conditions:

(i) The set IG xQ is a singleton say {(y0 , q0 )} with y 0 0

and/or q 0 0.

(ii) A is complete.

Most of the remaining part of this subsection is devoted to an-

swering the following questions:

a) Given a DHA A, does there exist a complete DHA AC such that

its dynamic behavior is equivalent to that of A in a well-

defined sense?

b) Given a complete DHA A does there exist a deterministic DHA A
D

whose dynamical behavior is equivalent to that of A?

c) Given a complete DHA A (not necessarily deterministic) does

there exist a reachable DHA A such that its dynamic behavior
r
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is equivalent to that of A?

We will show that the answer to questions a), b), and c) above is

affirmative for the three cases.

These answers are provided by means of corresponding computational

algorithms for AC' D and A r, given A.

Further we will show that the algorithm for computing Ar, can be

utilized, with some minor modifications, for computing a DHA A called
T

the trim DHA associated with A.

Finally, we will discuss two important properties of the DHA's AC
A D A , and AT associated with a given DHA A and some constraints on CA'

called functionality and conflict free conditions.

In order to give answers to questions a), b) and c) above, we need

several concepts relating the local dynamics of two DHA's. The first of

these is the concept of covering DHA A' = <I' , T'> with initial state set

I' x I' of a given DHA A = <I, T> with initial state set I x IG Q G Q
We say that A' covers A if the following holds:

k k
(i) I' = Z , I =Z and k' > k (7

(ii) There exist partial morphismsI1 1l , 2

Partial morphisms are partial functions which, when defined, have the
properties of ordinary morphisms between similar algebraic structures. In
Appendix A.l we discuss partial morphisms in the context of universal
(partial) algebras of the type that appears in our model of DHA's. For a
general discussion of partial morphisms the reader is referred to Gratzer
I ].
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G onto G

1 onto
2:Q -.- Q

that possess the following properties:

1 - IG G QlV2 (8)

2 - Let H, H' be the structure transition functions of T and T'

respectively; then for any y' e G' and any w' e D (f Y) C (Q') +
0

(9)

(10)

f e C' of A'

where 2 in (9) and (10) is the unique extension of $2 from Q' + Q to

^ 2k'+1 ^ 2k+l
defined by

A2k'+l
For any O' = (q0,. .. ,q) e (Q')

(q042,' e (Qk) if m < 2k+l

0 if m > 2k+l

1Notice that in ,o' I = jw'ip2J when w'ip2 is defined. Partial morphisms

with this property are called fine partial morphisms (see Eilenberg [2 ]).
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The inclusion operations (C) in (9) and (10) are to be understood

in the following sense:

If the left-hand side is defined, then (9) becomes

(Y'ip1, W'9p2)H = (y' , W')H'$ (12)

If the left-hand side of(10) is defined then

('$2 2)f = (L&)f 4 (13)

If the left-hand side of (9) (resp.(10)) is not defined we assign to

(Y'$ ,o 2)H (resp. o'$ 2f ) the 0 valuation (0, the empty set).

In synthesis (9) means (12) and (10) means (13) if the corresponding

left-hand sides are defined, and if either of them is not defined we

equate it to 0, which will be always included in the corresponding right-

hand side even if it is not defined. However, whenever either left-hand

side of (6) or (7) is defined, we demand the corresponding right-hand

side to be defined.

We note that (12) holds only if Y'$1, W' 2 are defined. Similarly,

(13) holds only if is defined, (W')f $2 is defined and () 2

is defined. But (w')fy 2 is defined only if (w')f is defined and this

requires that 1o'| = ny'. Also (W'V 2)f is defined only i o'$2 is

defined and 1W'$P 2 1 = n, 1~P thus we conclude that (9) and (10) hold only

if

n = n ,$ (14)
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We summarize the observations above in the

Lemma 1. A necessary condition for (12) and (13) to hold is,

For Y' e G' such that Y'1 exists, n , = n, 1,) and IW $2I n , .

(iii) Let N, N' be the sets of neighborhood functions of A, A' and

T, T' their respective input selector functions.

There exists an onto (total, see Gratzner [ 1) morphism $3 :N' -- N

I 2k' '
such that if g'. e N g' : I + 2 , j < 2 , g.433 = g. g. :I + 2

SJ-

2k
i < 2 then the characteristics m. of g'. and m. of g. satisfy,

J J 1

M. = m. (15)
J 1

For any z e I z' e I'

(z)g. = {z + a. ,...,z + a. e 21

(z' )g'. = {z' + ao',...,z' + a.,m.} 6 2
J Jl) J

we demand

(a. , 5) =cV'- k-l,.. m (16)
i,k Jk i ... ,

where 0 = (0,0...0) e Zk

Condition (15) guarantees that (z')g and (z) (g $3) have the same

number of nearest-neighboring points in I' and I, respectively. Condi-

tion (16) guarantees that the geometry of neighborhoods of points in I'

are preserved for the corresponding points in I. This is illustrated
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I I I N does not have an image in I

I' ,k'2 I, k=1

Illustration of the Characteristics of the Morphism
2

#3 in the covering of a DHA A' = <z , T'> with a DHA

A = <z >

Figure 1
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in Figure 1.

In short g. = g if g' can be embedded in I, as illustrated in

Figure 1.

(iv) Finally, we require the following compatibility condition in

terms of the morphisms $ 1 defined in (ii), $ 3 defined in (iii) and the

input selector functions Y, T' of A and A':

411T= TP4) 3  (17)

i.e., for any y' e G', if Y'$) =Ye G, and yT = g e N, then we demand

Y' ' = g'. e N' and g'.T 3 = g..
J J 3 1

We summarize the definition and properties of the covering DHA A' of

a given DHA A in the commutative diagrams of Figure 2.

Notice that if

(Y 0, q 0),...,(Y t', t

is a sequence of states assumed by (O)T of A, with

Y =+1 ' Wc a )()H

(O)wa+1 = a+l ( I ) f a=0,..t

Y
S 0 y 0 Te ICS c I ~ 0 f 4, y e IGo o -Q oo G

and w :U + Q

Then, the definition of the covering DHA A' given above guarantees
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2K+1 H

(QQ

0' x (Q) H'C

2 ?K'+ IH'
G x (Q)eC

(V2

G'C'

w21

(b)

Cummutative Diagrams Representing the covering of DHA A = <I, T>
by DHA A' = <I', T'>.
(a) dynamic interrelation between types T and T'
(b) neighborhood interrelation in I and I'

Figure 2
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guarantees that there exists a sequence of states assumed by (O)T' of

(y tq),. ( q ),...

with

Ya+ , = ,~& %I %Y)YJ)H

=W (w(y)'V) f aT a=0,... ,t

o'I : U'ar
+ 2k+l

(y' ,q') e I' x I'

that satisfies

q = q'2
a=0,. .. t

a a 3

This follows from (ii)-l and (ii)-2 above.

We say that two DHA's, A, A' are (partially) isomorphic if A covers

A' and A' covers A. We note that (i) implies

1We note that 0 in (0)T' is the origin in Z while 0 in (0)T is the ori-

gin in Z k; we use the same symbol for both since there is no risk of con-

fusion.
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I x I = I' x I' (15)
G Q G Q

and from expressions (9), (10), $ . is an isomorphism for i=1,2.

Remark: The definition of covering DHA given in this subsection is the

basis of the construction of a covering DHA of a family of DHA's, a task

that will be carried out in Section 4.4.

Now we proceed to give an answet to question a). This is provided by

Proposition 1. Let A = <I,T> be a given DHA, with initial state set

IG x I. Then, there exists a complete DHA A' = <I', T'> with initial

state set IG Q x I' such that A' covers A.

Proof:

Let I' = I (i.e. k=k') and define T' as follows:

G G

I '=1I

G'= G

H' = H

Let Q = {0,...,R), R and integer, be the intensity set of T and define Q',

the intensity set of T' as

Q = Q U{R+l} R+1 0 Q

The set ' of structures T' is constructed as follows:

For each fy e 4, (the set of structures of T) fY : fY + Q, define

fY e ' as follows:

-293-



where

A 2k+1
D f = {w' e (Q') :V'I = n } (16)

and

()f if (W')fy is defined

(W)iY = (17)

R+1 if (W)jf is not defined or w' e D - V fT
0 0

Notice that in the second line in the r.h.s. of (17) the condition

' V D fT means that at least one entry in the sequence w' equals R+l.

Notice also that V y e G' is a complete function on V f . Finally,

let

N' = N

where N, N' are the neighborhood functions of A and A' and T', T their

corresponding input selector functions.

In order to show that A' covers A we need to exhibit three (3)

morphisms $ 1 , $ 2 ' $3 and show that they satisfy the properties described

in (i)-(iv) above. Let

$1 :G' -* G be the identity

$2 : Q' +Q defined by

q' if q' e Q

# if q' eIR+l1
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and

p : N' + N the identity.

Clearly, with these definitions,conditions (i)-(iv) above are satis-

fied and A' covers A.

Corollary. The subset V of (Q') + defined by

V = f{' e (Q')2k+l : At least one entry of w' is equal to R+l

(18)

is an algebra ideal of the algebra <Q',4@>

Proof: Follows at once from (17). A

The importance of the ideal V defined in the corollary above will

become apparent later.

Now we consider question b).

Proposition 2. Let A = <I,T> be a complete DHA with initial state set

I x I . There exists a deterministic DHA A = <I, T > with initial
G Q D D

state set {(y , q )} and a family M of pairs of morphisms,

1 2 1 2 D
M (h., h.), i=l,...,Z = 1I xI }, h. : G + G,h. :Q Q1 1 G Q 1 D i

i=l,...,S , where GD and QD are the structure and intensity sets of AD'

such that

IG ={Yoh 1.., h

1See sppendix A.1 for definition of <Q', '> and algebra ideals.
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2 ~
I = (q h.,...,qh }Q o i o2.

and for every sequence of states

(Y,q 0 ),..,(Yt' t),. with (y, q) e Gx I

taken by some (z)T, there exists a sequence of states taken by (z)TD

(Y~q .. (Yt qt '''' t' t) e GD D t=0,..

satisfying

-1 2
Yth = Yt qte h = qt t=0,1,... for exactly one

1 2
pair (h., h.) in M. (19)

1 1

Proof:

We first construct AD and then show that it satisfies condition (19).

Define GD and QD, as follows:

D

GD 
(20)

QD (Q) E

where G is the set of all Z-tuples of elements of G, Q is the set of all

k-tuples of elements of Q and E is the kth-iterate of the cantor pairing

function E2 (see Davis 1 1).

E2 : IN + IN ,IN the set of non-negative integers,
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1 2
(nl,n2)E 2 ( (n, + n2) + 3n + n) (21)12 2 1 2 1 2

the S-th iterate of E2'

S
E : IN + IN S > 2

defined inductively by

(n1 ,...,n )E = ((nl,...,n )ES, n )E2 (22)

It is easy to prove (see Yasuhara [ 1), that the cantor function

and every one of its iterates are 1-1 onto functions.

-2k+1 2k+1
Let E +D be the extension component-wise of E from

-2k+1Q to the set of sequences of elements of Q (i.e., Q ) of length at

most 2k+1.

Let

^: 02k+1 ^2k+1
e. Q

i=1,...,k (23)

e. G + G

^2k+1
be the ith projection functions on Q and G respectively.

D D
Now we construct the set of structures Dof A For each y e GD

define

D o D

where

Y ~ A2k+l ~ ^-i ^A
S0f {w QD | E e. = n- i=l,.. . , } (24)

YE e
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For each w e D fY
0

~Y ~ -l^2k 1 ~ l^ k
(W)f= (WE ke f ,.,WE Pe f )E (25)

where Y = (y1,... Y )E .

The structure transition function HD of A is defined by

^ 2k+l
H : G x Q +GD D D D

^ 2k+l
for Y e G W QD D

(Y,)HD 1,D WE e 1)H, ... , ( WE e )H)E (26)

The set of neighborhood functions ND is defined by,

ND = N (27)

where N is the set of all k-tuples of elements of N. The input selector

function TD of A is given by

V y e GD

yTd = U (Y.)1) (28)d -y 1  '
Yi eYEk

i=l,...,f

Finally, the initial structure label y and initial intensity qo of

AD are given by

Y0 = (IG)EZ , q = (I Q)E (29)
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To show that AD as constructed above satisfies (19), we must construct

the set of morphisms M.

Lett 0 fy'q).0( 0 1q0 0Let I Q ' ' i' qi)''''' q} with the natural

ordering of the integers on the subindex i, i=1....

Define

_ -1 %,
h.=E e,hi E ei

i=1,... ,2 (30)

2 -l 
h. =E e.

1 A 1

i i

Since there is one pair (h1, h ) for each initial state, it is clear1 2

that IG x I M is onto; also since E is a bijection, this map is 1-1.

Condition (19) follows at once from (24)-(26).

Remark: The construction of AD given in the proof of Proposition 2, in-

volves, from the operational point of view, running at each step transi-

tion (in time) k step transitions of A, one for each of its k-possible

initial states. Based on this construction, we could develop an algorithm

for the construction of AD, given A and its initial state set. However,

deterministic DHA is used in this study only for theoretical purposes

(i.e., proving additional results) and therefore we do not need such an

algorithm.

The deterministic DHA AD associated with a given complete DHA A, as

constructed in the proof of the proposition, is said to emulate A.
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At this point, before passing to consider question c) we consider

the following obvious facts.

Proposition 3.

(i) Let A, A',

A';then A" covers A.

(ii) Let A be a

DHA AD that emulates

Now we consider

A" be DHA's such that A' covers Aand A" covers

not necessarily complete DHA. Thenthere exists a

the complete DHA covering A.

question c).

Proposition 4. Let A = <I, T> be a complete

IG xQ and initial configuration set ics .

able DHA Ar = <I, r> with initial state set

DHA with initial state set

Then there exists a reach-

Ir x r, that emulates A.
G Q

Proof:

The proof is constructive:

set

ics = ics
r

(31)

We first construct the reachable set R of A. Let 0 = ics . (Recall that

by definition icsA is finite.) Let {0,}, be the sequence of sets of con-

figurations defined by

. = .L- U 0.
i+1 1 3

i=O,,l....

Let A. be the following sequence of subsets of G x Q.
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A = {(Yq) e G x Qj(Y,q) = (z)C for some z e I, C e 0i+j+l i+l

- U A. (33)

j=o

with

A = {(Y,q) e G x QI (y,q) = (z)C, some z e I, C G icsA} (34)

Clearly 0., A. i=0,1, are finite sets. The sequence {O } consists of

mutually disjoint subsets of configurations with finite support. Simi-

larly, the sequence {A } consists of subsets of G x Q which are mutually

disjoint.

From the observations above, we conclude that if for some >

0 = 0 (the empty set), then + = # V s>0 and thus from (33) we have

that A +s .

The reachable set R of A is then given by

m
R = U A. (35)

j=o J

where

m = max j such that A. 0 4 (36)
J

It is clear that m is a finite positive integer since R is a finite

set. Unfortunately, due to the unboundedness of the informational space,

no effective procedure can be given for estimating the value of m (i.e.,

no effective halting condition exists for the computation described by
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(35)). Therefore, the procedure based on (35) and (36) is not an algor-

ithm. Let

I = {Y e GI Y = (z)Cproj1 for some z e I, C e ics A}
r

= {q e QI q = (z)Cproj 2 for some z e I, C e ics A}

Gr = Rprojy

Qr = Rproj 2

The set of structures r of A is given byr r

= {fY e q y e Gr}

The structure transition function H of A is defined by
r r

^"2k+1
H =HI(G x Q )

r r r

The set of neighborhood functions Nr is given by

N =G
r r

and the input selector function Tr is given by

Tr = G r

(38)

(39)

(40)

(41)

(42)

Ar as constructed above, emulates A since by (31) ics A ics and
r

by (38) G and Q contain structures and intensities that are reachable.
r r
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Remark: Next we will introduce a new type of DHA whose definition is

more restrictive than that of reachable DHA's and for which an effective

procedure (algorithm) for estimating m can be devised; this DHA is called

the trim DHA. In Appendix A.2 we give an algorithm for computing such

DHA and discuss some aspects related to the algorithm's computational

complexity and its implementability as a parallel procedure.

Trim DHA's play an important role in the application we are

considering in this study.

Let A = <I, T> be a DHA, with initial state set IG x I and initial

configuration set icsA Let TH be a positive integer that we call the

horizon of A.

We say that the state (y, q) e G x Q of T, is trim if there exists

an integer a < TH and a sequence C t, t < T H of configurations on I such

that

C e ics
0

(43)

(z)C = (z)(C L) V z e U, t < -l
t+l t

and

(z)C = (y, q) for some z e U.

The subset of V of G x Q composed of those states of (z)T,z e U,

that are trim is referred to as the trim subset of A.

The trim DHA AT associated with a given DHA A = <I, T> is defined
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as follows:

icsA = icsA
T

Initial label and intensity sets:

IG TT

I

= (V)proj1 CI

= (V)proj
2 -Q

Label and intensity sets:

G = (V)proj
1

Q = (V)proj
2

Structure transition function:

A2k+1
V Y e GT 3 6 Q

(YW)H if (YW)H e GT
(Y, W)H T= %

0 otherwise

Structure set #
T

T = (fYjY e GT C G1

V w e D fY,
0(W) f if (W)f e Q

(W)? =

0 otherwise

where

V fY = {w e V f Iow| = n } - ( De fy - Q2k+l5
0 0 Y o T
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Neighborhhod function set N
T

N = (G T) T (48)

Input selector function T :

T T = TIG (49)
TT

In the proof of proposition 4 let

0 =Ics (50)

and

m =min (T H, {maxi, such that 0 #1) < TH (51)

In this case, since m is bounded by TH the procedure ((32)-(34))

for computing the trim DHA associated with a given DHA A is an algorithm.

Its implementation is given in Appendix A.2.

Notice that

lvi < R < G x Q1 (52)

We conclude this subsection with two important related aspects of the

dynamics of DHA's. These are functionality and conflict-free conditions,

(see Gallagher [ ] for discussion of these concepts for general recur-

sions with side constraints).

Given a trim DHA A = <I, T> with ics = A and horizon TH and C e CA

a configuration, we say that A is functional with respect to C if there

exists a configuration C e A and an integer U < TH such that
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C L =C
0

We say that A is conflict-free with respect to a set M of configurations

of CA if it is functional with respect to each C e M.

Finally, A is sequentially conflict-free if M is a process P with

T < T in A.
-H

4.2.2 The concepts of behavior and display in DHA's

Let A = <I,T> be a complete trim DHA with initial state set I x I
G Q

and CTM L . Let C be the class of cinfigurations of A.

We define the a=iterate of L, La, a > 0 an integer as the map

La : C + CA

where L is the a-fold-composition of L with itself, (L = identity).

Since A is trim and complete La is well defined for every C e CA

such that (z) C e IG Q V z e (C)supp .

The behavior of A, from a given configuration C e C A(z) C e IG x

I V z e (C) supp is the sequence of configurations

C , C L, C L 2 ,...,C L ,... = (C _Lca > 0) (53)
0 0 0 0

where L = S x F

S : V A x W + V , F : VA x W W

1In fact, L is well defined for every C e CA , but in this study we are
only interested in its behavior on initial configurations.
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There are several related problems in the construction and applica-

tions of DHA's that are formulated in terms of behavior. The generic form

of these is as follows.

Given a sequence of functions {D Z + 0, a > 0} where e is finite

and contains a distinguished element (called dormant element) denoted by

0 and (D )supp is finite for every a > 0; find a DHA A = <I, T> with

CTM L, I = Z k, an encoding functioni h : G x Q -+ e where G x Q is the

state set of T, and an initial configuration C such that

For

(0,0) e G x Q

(0,0)h = 0 in 0 (54)

(z)(C L )h = (z)D V a > 0
0 a -- (55)

V z e (D )supp0

In particular, we are interested in the case in which 0 _ Q (see

sections 4.3 and 4.5) i.e., h : G x Q+ Ois given by (y, q)h = q.

We note that "finding" the DHA A = <I, T> means determining (if A

exists) the structure set G, the structure transition function H, the

input selector function $ and the neighborhood function set N. This

task is called a synthesis procedure and its outcome is a realization.

(see Section 4.3).

1An encoding function h:A + B for A, B non-empty sets, is an onto function.
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We conclude this section with the introduction of the concept of

display.

Let A = <I, T> be a DHA with CA = VA x WA (see Section 4.1). Let

WA be the set of all sequences w of elements of WA with |wl finite.

Similarly, let VA be the set of all sequences v of elements of VA with

lvi finite. For any v e V , the partial map
A A A

S : W + V
v A A

defined by

wS = (vw)S V w e WA

for 
(56)

wS = w 12 n e w A'

w)S Sv =(vw1) S, ((v,w1 )S,w2 )S,...,((... ((vw)S,w2 )S,...wn-1 )S,w ) (b)

where L = S x F is the CTM of A, and 0 is the configuration of intensities

(z)0 = 0 V z e I, is called the display of A with initial structure v.

In (56b) it is understood that the left-hand side is defined if each

of the terms in the r.h.s. is defined.

We note that for any W e W V e VA

(w)S | = IwI (57)

if w s is defined.
V

The concept of display introduced above, will be used in Chapter 5

in the formulation of the structural identification problem for DHA's.
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4.3 Realization Theory of DHA's

In this section we develop and examine an effective procedure for

the construction of DHA's. The procedure presented in this section is

an adaptation to the particular state structure of the types of DHA's

of the usual aglorithm for constructing a minimal automaton given an

input-output behavior (see Bobrow and Arbib [1 ], Eilenberg [2 ], and

Ginsburg [3 ] for 3 different versions of this procedure).

We start by giving a brief description of the procedure as applied

to general finite state automata and then we specialize it to the par-

ticular structure of DHA's.

Let A, B be two non-empty finite sets. Assume a function X:AXB+A

is given. Let B* denote the free monoid with generator B under conca-

tenation of elements of B, i.e., let

2
B = {bb' IV b, b' e B1

and

Bn = {b V W e B n-, b e BT for n > 21 (1)

then, B* is defined as

B* = B UB UB U,...,UB ,...,U,... (2)

0
where B = A is an element not contained in B called the empty word.

We refer to the elements of B* as words. For any W e B*, let

(W)k = ljw denote the number of symbols of B concatenated to form W. In

particular (A)k = 0. For any w in B* we refer to (M)k as the length of w.
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Thus, B* can be characterized as the set of all finite-length words

under concatenation of elements of B.

Let A : A B* -+ A denote the unique extension of x to B*. A is de-

fined inductively as follows:

(q,A)X = q V q e A

(q,b)X = (q,b)X V q e A, b e B (3)

(q,wb)A = ((q,W)X,b)X V q e A, W e B , b G B

On A, define a binary relation K as follows:

V q,q' e A, qK'q <=> (q,w)A = (q',03)X V W e B* (4)

Then we have the following result.

Proposition l.

(i) K as defined by (4) is a right congruence on A with respect

to X; that is,

V q,q' e A q'Kq => (q,W)A K(q',w)X V w E B* (5)

(ii) The classes of A under K are effectively computable; that is,

there exists a finite sequence of approximating equivalenceson A, K1 , K2,

...,K with K < K. i=l,2,..., K.C K.2 such that
M ij i

j>i

K < K. means that for q,q' e A qKq' => qK q' clearly < is a partial or-

der on the lattice of right congruences on A defined by X.
2We can look at K., K. as subsets of AXA so that the inclusion operation

J 1
is well defined.
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M

K = n K. i.e., K = K (6)
i=l1

Proof:

See Eilenberg [2 1 or Ginsburg [3 1. For a different statement of

the (essentially) same result see Arbib [ 4].

In Proposition 1 (ii), the equivalence relations K . i=l,...,M on A

are defined as follows:

V q1, q2 e A

q K. q2 <=> (q ,W)X = (q 2 1 W) V , (W)k < i (7)

i=l,2,...,M

From this definition we can immediately show the following result:

V q1, q2 e A

q1 , Ki+ 1 q2 <> q1K1q2 and (q1 ,b)X K(q 2,b) X V b e B (8)

It is easy to show (see for instance Eilenberg [ ]) that if

K = K for some i, then K = K.. Further, since A is finite, i>l for
i+1 i1

which K = K., is bounded by AI - 1, i.e.,

i K = K. satisfies

(9)

i < |AI - 1

As we shall see, the core of our computational procedure is consti-

tuted by an alogrithm for computing a congruence of the form of K (as
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defined in the context of DHA's) by constructing the sequence K. of

approximating equivalence classes. Condition (9) gaurantees that such

a computation is completed in a finite number of steps (i.e., at the

most IAI - 1 steps).

If we interpret X as defined above as the state transition func-

tion of a given state-output automaton with state set A and input alpha-

bet B, then the construction above, produces a new state output automa-

ton called the quotient automaton with state set AIK, input set B and

state transition function A : AjKXB + AIK defined as follows:

AIK = {(q)Elq e Al (10)

where (q)E denotes the congruence class defined by K, containing q e A,

((q)E,b)X = ((qb)X)E V b e B (11)

It is easy to show that X is well defined i.e., for q, q' e (q")E

((q)E,b)XA = ((q')Eb)X V b e B (12)

Clearly, IAIKI < JAI and the behavior' of the original automaton is

emulated by the behavior of the quotient automaton in the following

sense:

1The behavior of a state-output automaton with state-set A and input set

B is thenfamily of functions {M : B* + A for each q e Al such that
(W)M = X(q,W).

q
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Given an initial state q e A and an input string W e B*, let (w)M
q

be that state of the original automaton, then the state of the quotient

automaton is given by

() = ((W)M )E (13)
(q)E q

and clearly, for b e B, o e B*

(bw) M = [(bw)M ]E = ((w)M )E
(q)E q (q,b)A

(13a)

= (O)Mq,b)XE = (1)(qE,b)A1

Thus, for a given string of inputs the original automaton and the

quotient automaton reach homomorphically related states.

The quotient automaton is sometimes called the reduced automaton

(it is easy to show that it is unique up to a relabeling of the states).

Now we formulate the state minimization problem outlined above in

the context of DHA's. Our first task is to describe the available data.

We will consider two modes in which that data is given:

(a) Total mode

(b) Partial mode.

In the total mode (a), we assume that the CTM L of a DHA, A r <IT>

whose reduced version we want to obtain, is given. This of course is an

idealization because

L : C + CA
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requires an infinite non-countable amount of data points to be fully

described (recall that I is unbounded). However, we may assume that

what we have is the local description of L (i.e., the state dynamics

of T). Without loss of generality, we may assume that A = <I,T> is trim,

complete, and deterministic with initial state set

0 0
I xI = (y ,q) (14)
G Q

Let 6: (G x Q)2k + (G x Q) be the function defined by the for-

mula; for every C e CA,

((z)C, (z + ao2)C,...,(z + o,2k+1)C)6 = (z)(CL) (15)

We call 6 defined by (15) the isotropic local transition of the DHA A.

k
The vectors a . e Z = I, i=l,...,2k+l were defined in Section 4.1 (see

orl

expresion 4.1-18).

In terms of the local dynamics of A, 6 is given by; for C = (v,w),

((z)v, (z)), (z + ao2)v, (z + ao 2 ) ),...,(z + ao, 2 k+l )v,

(z + a )w)6 = ((z)v, wl(z)vT)H, (wl(z)vT)f (z)v
o,2k+1

(16)

where T is the input selector function of A. Notice that for any

y e G,

yT = g. E N (the neighborhood set of A where (z)g. = (z + acx
1 1i i,1

k
z + a. 2 ,...,z + a.,m.), {a. } e z

R=l,...,m.
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and

{c. ,..,cx.,m.} {ca ,.., } (17)
1i i i - o,l1' * o,2k+l1

for every g. e N. Thus, the isotropic local transition of A takes,

for computing the next state of a type allocated at z e I all the pre-

sent states of its nearest neighbors, this justifies the qualifier

"isotropic" in the denomination of 6. The objectives behind this con-

struction will become apparent later on in this section.

In the partial mode (b), the available data is not the CTML of A

but one or more segments of its orbits.

An orbit of a CTML is a sequence of elements of CA, C 1 C ,...,'

such that

t
C = C L t=Ol,2,... (18)
t 0

A segment of an orbit is a finite sequence of consecutive elements

of an orbit (i.e.,

{C T, CT+1,..CT+G Ct+1 = CtL t = T, T+l1,...,T+G-l)).

Given an orbit (or a segment of it) of A, we cannot compute in general

the isotropic local transition 6. (Since we only know a segment of L

the structure and intensity transition functions of A are only partially

known to us.1) However, we can compute a relation 6, whose graph contains

1For instance we know the set D but we do not know the structure transi-
tion H. Other possibilities can also be handled.
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the graph of 6. Next we will give a procedure to find 6 given an orbit or

a segment of it. This procedure gives us 6 in a partially recursive-

function representation. Once 6 is obtained we obtain from it an approxi-

mation 6 to the true isotropic local transition 6.

Let us assume that a segment S of an orbit of L is given i.e.,

tt

S = (C ,...,CT|Ct e C ,t t=0,.*..,, C = C 0L ,

(zC t e G x Q V z e I)

Clearly, from any consecutive pair of elements Ct-1 ' t of S, we can

A 2k+1
construct a relation 6t-1 : (G x Q) + G x 0 defined as follows:

(6 )Graph = {((z)Ct-1,(z + o Ct-l...(z + a tl

(z)Ct) IV z e 1} (19)2

Since Ct-l, Ct are elements of CA , and have finite support.

(6 t-)Graph can be effectively constructed (i.e., we only have to look at

2k+1

the points in (C 1 )Supp ). We define the relation 6 : (G x Q) G x Q

or rather its graphby the formula,

1T>O is referred to as the horizon of the segment S.
2 (G ~2k+1(6 )Graph is a subset of (G xQ x G x Q in which, a subset of

t-1 2k+1
tuples of (G x Q) are paired with corresponding elements of G x Q

without repetitions. Thus, since |(Ct-1)Supp01 is finite (6t-l)Graph

contains only finitely many nontrivial tuples.

-316-



T A

(6)Graph = U ( 6 t-l)Graph
t=1

Formally, we write 6 as

((YIq 1)f...,(Y 2k+1 ' 2k+1))
6 = (Y2k+2' 2k + 2)

(Y ,q. ) e G x Q i=l,... ,2k+2

whenever

((Y1,ql),--,(Y 2k+l' 2k+1 2k+2' 2 K + 2)) e (6 t-)Graph

for some t=l,...,T (21)

Let 6 be the isotropic local transition associated with L, then

6 satisfies

6 C 6 (22)

that is,

((Y1 q 1),..,(Y2 k+1'q 2k+ 1 H
6

(Y. ,q.)
l1

e G x Q i=l,...,2k+l if the left hand side is defined.

We define a function 6 (G x Q) 2k+ + (G x Q) as follows:

((Yq),...,(Y2k+1' q2k+1 if

defined

(0,0) e G x Q otherwise (23)
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We call 6 the approximation of the isotropic local transition

6 determined by the segment S.

If the given data consists of a set of segments {S.,i=l,...,2) of

the CTM L of A, then it is obvious that the approximation 6 determined

by these segments can be obtained from

k i (^i
(6)Graph = U U (6t-)Graph (24)

i=1 t=1

where T. is the horizon of S. and 6tl; t=l,...,T are defined by (19).
1 1- t1

The approximation is then given by (23).

Now we proceed to formulate the state minimization problem for the

isotropic local transition 6 (or its approximation 6) obtained pre-

viously on the basis of the ideas of state minimization of automata

discussed at the beginning of the section.

Let 6 : (G x Q) + G x Q be the isotropic local transition of

a DHA A (or a segment-approximation to it) associated with 6 we define

a family of functions {X., j=l,...,2k+1)} defined as follows:

2k
A.:(G x Q) x (G x Q) + G x Q

J

For (Yg 1)I,. ..,(Y2kl' 2 ~l) e (G x Q) 2+

= ( (Y, q9) ,. .. , 2k+1 ' 2k+1) )
6  (25)

j = 1, ... , 2k+1
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Let ((G x Q) 2k be the free monoid generated by (G x Q) 2k under

^ 2k *
concatenation and let A. (G x Q) x ((G x Q) ) + G x Q, be the unique

J
extension of A., j=l,...,2k+l.

J

On G x Q, define the binary relations K , j=l,. ,2k+l by the

following:

1 1
(y,q), (y ,q ) e G x Q.

jll 1 l1 ^
(Yq)K (Y ,q ) <> ((Y,q), y)A. = ((Y ,q ), y)X.

J J

2k *
V y e ((GxQ) ) (26)

j = 1,...,2k+1

From proposition 1, we have immediately that Kj is a right con-

cruence on G x Q with respect to A. for every j=l,...,2k+l.
J

The binary relation on G x Q defined by

2k+l .
K= U Kj (27)

j=l

is the least upper bound of the congruences K , j=l,... ,2k+l, and con-

sequently a right congruence on G x Q (see Appendix A.1). We summarize

these facts in the following:

Proposition 2.

K, as defined by (27) is a congruence on the algebra <(G x Q) ,{S }>

of type (2k+l) (see Appendix A.l).
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It is clear that for each congruence K, j=l,...,2k+l we obtain

a quotient "machine" with state set (G x Q)IK. and state transitionJ

function X. defined by
J

((y,q)E , y)A = (((y,q), y)X.)E
JJ

(28)

V y e (G x Q)2k

where (y,q)EI is the congruence-class on G x Q containing (y,q) , with res-

pect to K.. We now define the reduced isotropic local transition 6 as

2k+1
6 (Gx Q/K) + G x Q K

((Yl 1q1 )E,... (y2k+1 )E)6 = (Y ,ql),...(Y2k+1' 2k+1))6)E

(29)

Two points are clear; 1) by the first isomorphism theoremI there

is an epimorphism from the state set G x Q to the state set G x Q/K;

2) since the elements in a given class (y,q)E of (G x Q) K have indis-

tinguishable behavior from the operational point of view they can be

merged into a single state. As we shall see shortly, we prefer, for

reasons that depend mostly on the applications of DHA's studied in this

thesis, instead of merging states, the equivalent operation (from the

behavior point of view) of selecting a representative of each class for

iSee Appendix A.l.
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constructing "the reduced DHA" that is a DHA with associated local iso-

tropic quotient transition 61.

Towards the end of the section we will describe an algorithm for

computing (G x Q) K given a DHA with state set G x Q. The central

procedure in this algorithm is formed by an efficient routine for com-

puting 61 and (G x Q) K.

Given (G x Q)JK, constructed as indicated in the last few para-

graphs we now want to determine Gk' 9k' the label and intensity sets

corresponding to the congruence K. Let (y,q)E be the congruence class

(under K) containing the pair (y,q). We will develop next a computation-

ally-based criterion for choosing one representative (y*,q*) e (y,q)E

from each class in (G x Q) K. Briefly, the criterion is based in an

ordering of the elements of each class according to a complexity-index,

and choosing from each class (y,q)E e (G x Q) K the representative (y*,q*)

with the smallest complexity index.

Let Q be the intensity set of A (the given DHA), G its label set and

0 its structure set. For every q e Q, q / o, let (q)n be a positive in-

teger called the weight of the intensity q. For every y e G, y # 0 the

weight of y, (y)m is the positive integer computed by the formula:

(Y)m = 11 ((w)fy)n (30)
W e D fy

0

The idea behind the definition in (30) is to somehow capture in (y)m

a measure of the time complexity in computing the structure fY for some
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element W e D fy. We believe that (y)m as defined by (30) gives such
0

a measure and a supportive argument at the intuitive level is provided

in the next paragraph.

It is clear that (y)m increases monotonically with the cardinality

of V fY. This fact agrees with our intuitive understanding of time

complexity of a given function fY over a finite set, as a measure of the

time required for computing (M)f for some w e 12 fY (perhaps the worst-

case W or the "average"-case w), because in order to compute fY for

any w e 0 fy we have stored a table of (f )Graph,

(fY)Graph = (D fy, (D f )f ) (31)

and the size of this table is precisely the cardinality of V fY.

In computing Wfy, for some w e V fY, we have to do a searchi in the

table of its graph and, although we can do substantially better than

linear lexicographic search (see Section 5.1), still the computation

time2 for any of the search procedures available in the literature,

(see Aho and Ullman [5 ] for a survey) and in particular for the one we

use in Section 5.1, is determined primarily by the cardinality of 0 fY.

So, (y)m seems to be an adequate criterion for choosing representatives

from each of the congruence classes in (G x Q) 1K. Specifically, we define

1It is easy to see that except for a few special cases, this search opera-

tion is the dominant (time-wise) item in the computation of (W)fY.
2This time is called in the literature, retrieval-time (see Aho and

Ullman [ 5)-
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the weight mK associated with the pair (y,q) e (y',q')E by

(q)n + (y)m if q f 0, y / 0

(y, q) mK = (32)

0 otherwise

We assign the weight 0 to the dormant state in order to ensure

that this pair is the selected one in the corresponding congruence class.

For each congruence class (Y,q)E let (y*,q*) be the pair of label

an intensity in (Y,q)E such that

(Y*,q*)m < (Y',q')mK V (y',q') e (y,q)E (33)

Let GK' QK be the collection of all the representatives of elements

in (G x Q) K (one for each class). This is the state of our reduced DHA.

Let GK be the corresponding set of structures. We denote by (y,q)E repG

the label representative of (y,q)E and by (y,q)E repQ the intensity re-

presentative of (y,q)E.

The structure and intensity transition functions H and fY e K are
K K K

given by; for y* = (y,q)E repG'

W e Q K (G x QJK) rep , w = n (34)

(y*,w)HK = ((y*,w)H, (w) fY)E repG

(35)

(W)f = ((y*,W)H, (o)f )E rep
K Q
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The set of neighborhood functions NK is given by

NK = G K (36)

and the input selector function TK is given by

TK PIK (37)

H and f Y, y* e G are well defined (by (35)) since the right hand side
K K K

in (35) corresponds to a transition of the isotropic reduced transition

61 : ((G x Q)IK)2k+l + (G x Q)|K which is well defined by the first iso-

morphism theorem (see Appendix A.1).

We note that

IGK x Q < IG x QI (38)

and that there are morphisms (G x Q) K + GK and (G x Q) K - QK defined

by E repG and E rep respectively so that the DHA AK = <IT > emulates

the DHA A = <I,T> (T]K is defined by the expressions (34-37). Further,

A is complete and trim because 61 is a complete function and A is trim.

Theorem 1. The reduced DHA AK K<T > of a given DHA A = <I,T> is

effectively constructible (i.e., algorithmically constructable).

Proof: See algorithm below.

The algorithm that we describe next follows the steps we followed

in our discussion towards the description of the reduced DHA of a given
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DHA. A block diagram of this algorithm is shown in Figure 1.

Before we analyze the construction algorithm of Figure 1 we make

one comment with respect to the complexity measures introduced earlier.

In our application, we consider

(q)n = q V q e Q (39)

The reason for that is that in the realization of DHA that repre-

sent epigenetic systems, (see Section 3.5; program IDHA). Lower in-

tensities tend to correspond to simpler structures (i.e., structures

with fewer arguments). This implies that for a different complexity

criterion, one may obtain a DHA AK which is isomorphic to the one we

obtain from the behavioral point of view, but in which the representa-

tive sets G and Q are different from the ones we obtain. The block
K K

diagram of Figure 1 is actually a summary in computational form of the

construction of the DHA A carried out so far in this section. The only
K

item that remains to be described is the procedure partition which we

proceed to describe next.

Procedure partition consists of two subprocedures: Procedure

Equivalence and Procedure Sequence and a Function, LIST.

Procedure Equivalence compute the congruence classes {(Y,q) E3}

defined by

(y,q)K (Y',q') <> ((y,q), W)A. = ((Y',q'), W)X.
v w eJ

2k *
V w e ((G x Q ) , (w)QA < i (40)
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that is, the approximating sequence for the congruence K. (j = 1,... , 2k+l)
J

in a sequential fashion. That is, given the blocks of K , {(y,q)E?},
Jl

Procedure Sequence is called (see Step 4 in Table 1) to compute the

i+l jblocks of K. {(y ,q)E. . If no new blocks are created, i.e., K. =
J i+lJi++1

Ki+1 = K. or equivalently, |{(y,q)E }) = {(y,q)EJ }I; the procedurej j i 1+1
i+1

halts. Otherwise, Procedure Sequence is called again with K. as input
J

i+2
(i.e., its blocks) to compute K. . This cycle is continued until

J

K = K for some ' < IG x Q - 1.
J J

Procedure Sequence, outlined above, computes, given the blocks of

i i+1
K., the blocks of K. , it tests pairwise elements of a block of K. to
J JJ

determine whether they are i+1 indistinguishable. If they are not, two

sub-blocks are generated and the elements of the corresponding block are

assigned each one to one of the newly generated sub-blocks (Steps 6 to

19) . We proceed to compute the assignment to the newly generated sub-

blocks of all the elements of the original block creating new sub-blocks

as soon as in this assignment i+l-distinguishability is detected.

Procedure Partition,as described in the last paragraph and listed

in a form of Algol in Table 1, is an adaptation to our problem of a

widely used algorithm for computing blocks defined by equivalence classes

on sets (G x Q in our case) (see for instance, Aho and Ullman [ 5], Aho,

Hopcroft and Ullman [18], Stone [191, etc.). It is well known that for

n = G x Q the order of the number of steps required equals o n log 2 nxm

where m =(G x Q) 2kI
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TABLE 1

Procedure Partition

PROCEDURE PARTITION; J

J
1 SET (yq)E = G x Q;

2 SET I = 0;

3 SET N = 1;

J J
4 BEGIN SEQUENCE (N,(yq)E , N', (y,q)EI~l

I+

5 IF N.EQ.N'; HALT; ELSE GO TO 6;

6 N = N'; I = I+1; GO TO 4;

J
PROCEDURE SEQUENCE; N; (y,q)E ; N';

J
(y,q)E

1 SET I 0; M = 0;

2 IF I = L = (yq)E' ; HALT; ELSE; I = I+1;

GO TO 3;

J
3 SET I, = (y,q)E1 ;

4 IF I ;GO TO 2; ELSE GO TO 5;

5 PICK (yq) e 1 I 1(top of stack)*I;

6 SET I, = I1 - {(y,q)}; I2 =1

7 SET (yq)E + = {(y,q)) M = M+1;
1+1

8 IF 12 = 0; GO TO 4; ELSE; GO TO 9;

9 PICK (y',q') e I2

E 2 2
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Table 1 (contd.)

11 SET I3 = (G x Q)2k

12 IF I3 = 0 GO TO 18; ELSE GO TO 13;

13 PICK y = 13;

14 SET I3 = I 3 {y};

15 SET S = (y) LIST (yq)

16 SET S' = (y) LIST Y',q';

17 IF S = S' GO TO 12; ELSE GO TO 8;

18 SET (Y,q)E i = (Yq)E U ((Y' ,q'));

19 SET I, = I - {(Y',q')); IF I, = GO TO 2; ELSE GO TO 7;

FUNCTION LIST (y,q)

JJ
INPUT; Yq e (Y,q)C ; y e G x Q, {(y',q)C }

1 SET 6,= (y,q, MyA;

2 SET I = 1;

4 IF P- (Y',q')C /* for some (y',q')* ;

SET i = (y) LIST Yq; HALT;

ELSE GO TO 5;

5 i = i+l; GO TO 4.
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Construction Algorithm

Figure 1
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We have introduced in the alogrithm an important variation in order

to reduce the number of its steps. This variation consists of the

definition of two "floating" sets -- Il, which contains the elements of

the block under test by procedure sequence and 12, which contains the

elements of the block against which each element of I must be tested.

As the algorithm proceeds, elements from I which become part of a new

sub-block are eliminated from I . This reduces the number of tests by

an amount proportional to the number of new equivalence classes created

in a step K, to K i+l. Recall that K > Ki, thus, in the average
J J J ~ J

we reduce the number of steps per approximation of a given congruence K.J

by an amount K./2 = so that the number of steps required in the algori-
J
n

thm equals % log nxm. In our case, since the congruence classes are
2

rich (many blocks) this is an important reduction, (Step 19 in Table 1

is the updating inside the cycle). In synthesis we reduce the number of

tests for new sub-blocks by elminating those elements in the block that

remain indistinguishable.

The function (y) LIST y,q computes the block (y,q)E to which the

2k
pair (y,q) transfers under an input y e (G x Q)

The actual implementation of these procedures carried out for the

purposes of our study (see Section 5.1) was written in ADEPT, the assembly

language of the ADAGE AGT-llO computer; this was done after an attempt

to run the algorithm with a Fortran version produced exceedingly ineffi-

cient storage-management requirements. Since ADEPT is not a common assem-

bly language we gave, in Table 1, an Algol listing which can easily be
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translated to almost any structured higher level language such as PLI

or BASIC.

After the blocks of K. have been computed by Procedure Partition(J),
J

we computed an update of K = K (old) U K (see Figure 1) so that after

2k+1 we have the blocks of G x Q determined by K. Then we proceed to

select from each block, representatives according to the criterion

depicted in Equation (33) and finally we construct tables for HK and
KK

f e # , as indicated in the block diagram of Figure 1.
K K

4.4 Algorithmic Computation of a Covering DHA for a Given Finite

Family of DHA's

In this section we develop algorithms for computing several DHA's,

each of them a cover for a given family of DHA's

m = jA ,...,A, rs 0, finite 1(l)

in the sense defined in Section 4.2, i.e., we want to find a DHA A such

that A. < A i=l,...,s. The purpose of this exercise is to provide an

effective procedure for transforming models of the type developed in

Section 3.31 into a DHA as described in this chapter.

The advantage in having a DHA that simulates a family of the form

of (1) is that we only have to worry about a single type in the study of

1We can think of each of the types in Section 3.3 (together with its
spatial assignment) as defining a DHA in a 3-dimensional informational

space.
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the dynamics of the model with a computer simulation and this

represents a distinctive advantage with respect to the complexity of

the simulation program. Also, the analysis of the dynamic character-

istics of the model is facilitated when we only have to consider a

single type.

It should be clear from the discussion of Section 4.2 that given

A' = <I',T'> there are an infinite number of DHA's A such that A' <A.

In this section we discuss two constructions of covering DHA's which are

well suited for algorithmic construction:

a) The direct-limit covering DHA

b) The direct-product covering DHA

These two types of covering DHA's share an important characteristic

which is desirable for the purposes of our study.

Let A be the direct-limit or direct covering DHA of (1); this implies

that there exists a family of morphisms {#4, #2 3F , i1=,...,s} where for
1 2 13

each i, $y, 2 satisfy properties (i)-(vi)1 of Section 4.2 so that

T i i i
A. < A i=l,...,s, i.e., for each process in A., p. = {C , C ,...C ,

... C } there exists a process P = C, C, ,t,. T of the same

duration in A such that

I(C )Supp I = I(C t)SupplI t=0,1,...,T (2)

That is, has the properties of $ ; has the properties of $ and,

has the properties of $3'
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Ct proj # = Ct proj 1  t=O,1,...,T (3)

tl l

Ct proj2 2 =C t proj2  t=O,...,T (4)

C proj T 3 = Ct proj T t=0,...,T (5)

where T and T 1 are the input selector functions of A and A. respectively.

In short, the morphisms # , IP ,# 3 are fine morphisms. The importance
1 2 3

of this property relies on the fact that the covering operation pre-

serves the time scale and spatial neighboring of the elements two as-

pects that are fundamental in our study.

With these preliminaries we now proceed to describe the two cover-

ing procedures mentioned above

a) Let M = (A = <I ,T >,..., A = <I ,T >, s > 1, finite. Let
1 1 1 s s s

<Q ., .> be the canonical algebra 1 of A. in M, i=l,...,s. Without loss
1 11

of generality2 we may assume that <Q .,D .> i=l,...,s are complete. The
1 1

direct-limit covering DHA is constructed as follows:

Let

=Q 1 U Q2  
(6)3

and let # be the following set of (structures) operations:

iSee Section 3.4 and Appendix A.l.
2See Proposition 4.2-2.

3Q. i=1,2 are the intensity sets of A . i=1,2.
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(' = {fY y e G1 U G2, fY : Q1} (7)

where, by relabeling if necessary, we assume that G - {0} and G2- O

are disjoint sets. The set V03 is given by

(l2k'+l1

V f= { ( Q )'Iw = n } (8)

with n the number of arguments of fy, y e G1 U G2 Y 0, and k' = max

(kl,k2) where kl,k2 are the dimensions of the informational spaces I,

and I2 respectively. The function (operation, structure) f Y e (G1

- {0}) U (G - {0}) defined by

(o) fy w e D fy

(W) fY= (9)1

otherwise

Notice that for y 7 0, either fy e or f . The dormant structure

in t 1 is defined as

f 0 of G1 if k > k2

f of #2 if k2 >k (10)

Let <Q1 1 > be the algebra defined by (6)-(9). Notice that although

y 2k1+1 G Y ^ 2k2+11We note that DfY C Q 1 if y e G , 9f C Q2 if y e G2 , and

^2k +1 ^1 2kl+l
Q . J C (Q ) j=1,2.
J
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<Q, > and <Q > are complete by assumption, <Q , 1> is not.

1 1' 2 l + 1

Let H : G1 x Q1)2k1+1 + G1 be the following function, where

G = (G - (O) U (G2 - {0}) U{0} (disjoint union) (11)

^12 1 2

for W e () ,Ye G

i ^2kl+l(Y, )H 1 if Y e G w e D f CQ1

(y,=)H = (yw)H if y e G o e fY C2 2  (12)

0 otherwise

and

1
(O, (0,0,...,o0))H = 0 (13)

Now we construct a DHA A = <I ,T > on the basis of the defini-

tions above and show that A1 covers A1 and A2.

Let

I =1 if k1 > k2 or I=1 2 if k1 < k2 (14)

Let <Q ,1> be the canonical algebra of A1 and let H1 be its struc-

ture transition function we claim that A1 covers A and A2 to see that

this is the case define

1 1
: G - G as follows:

Y if Y e G -{O

1 = 0 if Y G2 - { } (15)

0 if y = 0
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Similarly, define # as follows:

Y if Y e G2 - {0}

2
Y2 0if Y e G - {O} (16)

0 if Y = 0

Define # as follows:
2

Q Q. i=1,2
2 i

q q Q i=l,2

qq (17)
2

,0 otherwise

If k > k , for each neighborhood function g. in the neighborhood func-
1- 2k

tion set N2 of A 2, define a neighborhood function g. extended from Z

to Z according to 4.2-15 and 4.2-16. The neighborhood function set

N1 of A1 is then defined as

1 = -

N N1 UN (18)

where N2 is the set of extensions of the neighborhood functions N2 of A2

as indicated above.

Let T1 : G1 - N1 be the input selector function of A 1, then from

(18), T is given by

yT1 if y e G

1= 
(19)'

(yT 2 ) if y e G1 - {ol

ig i=1,2 are the input selector functions of A and A2 '
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1
If k < k , we construct the set N as N2 U N, in the obvious fashion

and similarly T1 is given in this case by

yT2 if y eG 2

(yTP) if y e G- (0

Let N 1 + N i=l,2 be defined by (assuming k, _> k2; the case

k2 < k is analogous)

1 1
g, if g. G N.

j J
(20)91 1 =

1 23

g 3

It is clear

0 otherwise

g. if g. e N2

,0 otherwise

that # ,#, # i=1,2 satisfy (i-iv) of Section 4.21

and therefore

A. < A-
1

(21)i=1, 2

We call AL, as constructed above the direct limit of A and A . We

can now replace A1 and A2 in M with A 1 , since A1 covers A1 and A2 ' So,

1For arbitrary initial sets IG x and IG2 x I 2 of 1 and 2'
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let

M1 = (M - A2)u{A (22)

We now repeat the process for the set M 1; that is, we have M = {A

2 11
A 31 * ,A } and construct the direct limit A of A and A 3 , replace A

2
and A3 in M to obtain M2 = {A ,... ,A } and proceed in the same manner

until we obtain As-1, the direct limit of As-2 and A s, which is the

desired cover. We summarize this construction in the following.

Proposition 1. Let M = {A,...,A } be a finite family of DHA's. Then,

there exists a DHA A and an effective procedure to construct it such that

A is the direct limit of {A,...,A }.

We note that the order in which we construct A from M = {A1,... ,As

that is, which DHA's in M we take first and which DHA in M we take at

each step in the iteration is in material in the sense that all the direct

limits of M irrespective of the order in which the iteration in their

construction proceeds, are isomorphic (see Section 4.2).

b) Let M = {A = <I ,T >,... ,A = <I ,T >} be a finite family of
1 1 1 s s s

complete DHA's. Let <Q.,. > i=1,...,s be their corresponding canonical

algebras.

From <Q.,C.> i=l,...,s we construct a family of universal algebras
i 1

<Q ,,> i=l,...,s as follows:

1 - Let Q. = Q. U{R} i=1,...,s (23)
wr 1

where R > 0 is an integer such that R 0i Q. i=l,.. .,s.
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2 - The label set G of 2 is given by

S

G = fo} U ( U (G. - {O}))
i=1

(24)

In (24) we assume, by relabeling if necessary, that the sets G - {0),

i=1,... ,s are mutually disjoint.

3 - We define the algebras <Q ,Q> i=1,...,s as follows: for

each Y e G, let n be the number of arguments of fy e G . for
Y J

1 < j < s, and let f be an n -ary operation in Q defined on
- - Y Y

Q. i=1,... ,s by

()fy if fY e G., Do e fY
1 o0

(w) f = /

^2ki+l
i

some

the sets

(25)1

otherwise

That is, the operation F coincides with the operation fY on Q. if

^2ki+ ^ 2ki+1Y e G. and o e Q.k- . If y e G., o e Q

~^e2ki+1 
~

o e Q. j3i, we define (o)f = R.
J

^2ki+l
- Q or Y e G.,

Let k be an integer in {1,...,s) defined by

k = i e {1,...,s) such that k. > k., j e {1,...,s}
1 - J

fe as f= f e @

1k. i=l,...,s are the dimensions of the informational spaces I., i=1,...,s.
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Clearly, with these definitions, the set {<Qj>, i=l,...,s} is a

family of similar algebras (see Appendix A.l). Consequently, their
S

direct product, denoted by R Q., is a well defined algebra with opera-
i=l

tion set 2.
S

In order to convert the algebra < Q. ,Q> constructed above into the
i=l1

form of a canonical algebra, we use the encoding procedure, based on the

Cantor pairing function, developed in the proof of proposition 4.2-2.
S

Specifically, let E :T Q. -+ IN be the s-iterate of the Cantor pairing

function E2 (see 4.2-19) where IN is the set of natural numbers. Let

Q E IN be the range of E . Then <Q,Q> is an algebra similar to
s5S

< H Q ,2> and isomorphic to it. Specifically, for any y e G,
i=l1

let q 1

'j=1,,...,n , n > 0

q.

S
be a set of elements for I Q.* Let q., j=l,...,n be given by

i=1

q

qj=l,y.,n (28)

Since E is 1-1 and onto, q., j=1,...,n in (28) are well defined.

The operation f 0 2 is defined on Q by

~ Y ~ -l ~ -l ~y)
(q,...q = (q 1E ,... ,q E)f E (29)

0 )Y

V (~1 ,...,q( ) 8 Q
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-l
Thus, E : Q + Q. is an isomorphism.

s1=1

Let <Q,Q> as constructed above be the canonical algebra of a DHA

A = <I,T> with I = Z , given by (26), structure transition function H,

neighborhood function N and input selector function T, where H, N and T

are given by:

^2R+1
H :GxQ G

s ^-l^s
(y,W)H = ( (y, WE e.)H. (30)

i. S 1 1

-i -i
where E is the component-wise extension of E (see Section 4.2)

S s

s s 2 +1 ^s.
from T Q. to ( T Q.) e. is the extended projection function (see

A 2.+l l-2+l
4.2-21) e.( H Q.) + Q. , and the function H. 1 < i < s is defined

1. 111

from the structure transition function H. of A. as follows:
1 1

^-1 s
(YAWE e.)H. if y e (G. - {0}) -= ,( 5 1 1 ^-1 l s1  ^2ki+l

-~l~s j WE e. e Q.
(y,wE se.i)H. s 1 (31)

0 otherwise

We can see from (31) and the disjointedness of the sets {G. - {0}

i=l,...,s} that for a given y only one (if any) of the terms in

the right hand side of (30) will be different from 0 so H is well de-

fined.

The set of neighborhood functions N is given by all the functions

~ Z1

g. : Z + 2 , given by (26). Where g . is the extension of some
J ]
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g. e N., the neighborhood function set of some A. i=1,...,s, from k. to

9A. (See 4.2-15, 4.2-16 and Figure 4.2-1).

Finally the input selector function T : G -+ N is given by:

yT = g. where Y e G. y 3 0 yT . = g.
J 1 1 J

(32)

We call the DHA A = <I,T> constructed above the direct product of the

DHA's in the set M = {A ,...,A I*

Proposition 2. Let M = (A1 ..., A s be a family of DHA's. Then there

exists a DHA A = <I,T> that is the direct product of A1 ,...,As and such

that A. < A i=l,...,s.

Proof:

We define the family of morphisms {#i, #2' 3, i=l,...,s} by:

:i

Y

2

G -+ G.
l

if Y e G. i=l,. ..,s

(33)

9 otherwise

-i

1eS(q)# = q E e1
2 s i

: N - N.
3 i

(34)
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S g.if g. e N.
.3 1

3 otherwise

From (24) we conclude that i=l,...,s are well defined and satisfy

condition (i) of Section 4.2. Similarly, from (25) and (29) we can see

that # i=l,...,s satisfy condition (ii) finally $ is well defined by

the construction of N.

We conclude this section with the following important observation.

Despite the apparent complexity of the two procedures studied in this

section, both of them are readily implementable as computer programs in

the construction of simulation models of the type discussed in Section

3.3, we prefer the direct limit procedure because, as explained in

Section 3.4, the model is sequentially specified by the user (program

IDHA) and therefore, with a processor with parallel capabilities we can

carry out, simultaneously, the specification of the DHA's {A i... A

and the computation of the direct limit of these DHA's: i.e., as soon

as a new DHA is specified, the direct limit of the DHA specified so far

and the new one can be computed.

The direct product computation could also be specified as a recur-

sive procedure, but the complexity of the subroutine required to keep

track of the number of DHA's already specified makes this recursion a
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very inefficient program . On the other hand, if the DHA's A1 ...,A are

given a priori, the direct-product cover DHA is far less complex2 to com-

pute then the corresponding direct-limit cover DHA.

Notice that from the algebraic point of view, the DHA's obtained by

both procedures are isomorphic.

4.5 Process Control in DHA's

In this section we analyze three special kinds of processes in DHA's

a) Initial Activation Processes

b) Composite Processes

c) Construction Processes

The importance of these three classes of processes in our study re-

sides in the fact that they represent corresponding epigenetic control

processes in procaryotes. Therefore, we want to understand their basic

characteristics in the context of DHA's.

We discuss the three kinds of processes mentioned above in the con-

text of the formulation of three control problems in DHA's, each one

associated with one of these kinds.

a) Let C : I + G x Q be a given function where G and Q are the

structure label and intensity sets of a DHA A = <I,T>. Let CA be the set

1This observation is based on actual experimentation with a version of
this recursive implementation.

2We measure complexity here as execution time.
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of configurations of A. Let k > 0 be the dimension of I, and let TH be

a positive integer called the horizon of the DHA (see Section 4.2). In

I, we assume as given a closed (finite) subset of points S,

k i i i i i
S = {z = (z',...,z ) e I Ia' < z < , a, e z, i=l,...,k}

1

(1)

we further assume that

(C)Supp c S (2)

Let ics be the initial configuration set of A without loss of generality

(see Section 4.2)2, we assume that A is trim (with respect to T H) and

deterministic. Let {(Y),q0)} be the initial state set of A.

The initial activation process control problem is stated as follows:

find C e ics and a non-negative t < T such that3

o A H

(i) (C )Supp c S

(ii) C Lt = C
0

(iii) (C L )Supp C S v T < t.
o 0

t
A process P satisfying (i)-(iii) above, is called and initial acti-

0

vation process associated with C.

1For instance, in our application of DHA's this region is determined by

the allocation of the STOP elements (see Section 3.3).

2In particular, propositions 4.2-4 and 4.2-2.

3To avoid triviality, we assume that C 0 icsA'
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We have the following:

Lemma 1. It is effectively decidable whether an initial activation pro-

cess control problem has a solution.

Proof:

Since S is finite, (C)Suppo c S (CL )Suppo c S icsA is finite (by

definition, see Section 4.2). We can think on the following algorithm

for solving the problem. Run the DHA for each initial configuration

C 6ics'S ' Ct LH Th
Co e ics |S until either for some t < T , CL = C or C 0L C. The

t
algorithm halts whenever and if a C0 is found such that CLt = C t < TH'

or all the configuration in icsAIS have been tested.

It is clear, that the algorithm above, even for one dimensional DHA's

is terribly inefficient, i.e., it is basically a sequential enumeration of

all instances. Nevertheless, its existence guarantees the well posedness

of our problem.

We now study a sequential algorithm for solving the initial activa-

tion process whose time complexity is lower than that of the algorithm

suggested in Lemma 1.

Let x = {x V z e S1 (2a) be a (finite) set of different symbols
0 z

that we refer to herein as a set of indeterminates in intensity of the

o-th step. The first step in the proposed algorithm is to find, for each
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z e S the set (z)a of structures of A defined by

(z)c = fy e GI (y, W)H = (z)C proj 1 for some o e Q 1} (3)

where H is the structure transition function of A. Clearly, if for at

least one z,(z)a = 0, then the initial activation process control problem

has no solution. So, let us assume (z)a / # V z e S.

For every z e S construct the following subset of (z)ox

(z)a = {y G (z)al(z)C proj 2  Range fY} (4)

That is, we form (z)a by deleting from (z)a all these structures

which do not have in their range the intensity of the given configuration

at z. Again, if (z)a = 0 the problem has no solution, so let us assume

that (z)a $ 0 V z e S.

Let

(z)a- = {(z)v ,...,(z)v e G, m finite, m > 01 (5)
lm z z

z

for some z e S. We form the equations

(z)v.
(x + a , ,x + .. , )f = (z) C proj 2 j=1,...,m

z ml z mm 2 z

V z e S (5a)

Although a composite process control problem may have a solution as will

be discussed later.

2i.e., one step backwards in time.
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where

(z)v.T = g for some g e N (6)
j m m

here, N is theneighborhood set of A (see Section 4.1) and

(z)g = (z + a ,...,z + a ,2 ) (7)
m m mm

where Z is the characteristic of g.
m m

Now, we have for each z, a finite number of algebraic equations and

the next step in our algorithm is to form systems of algebraic equations

of the form of (6) and to give a method for solving them. Specifically,

we form all the sets of combinations of equations by picking at each

z e S, one structure from the corresponding set (z)a.

The number C of different combinations of systems equations that we

obtain by the method described above, is given by

( H= IT m (8)

z e S z

as can be shown by an elementary counting argument, where mz = (z)al

(see (5)). At first sight it seems that E is a very large number. Con-

sider the following case which corresponds to a DHA simulating the lac-

operon (see Sections 3.3, 3.5 and 5.3) in which IS! ~ 50. If inz = 2

V z e S then E = 2 50, a very undesirable situation from the computational

point of view, and despite the fact that the solution of a system of

1See Conway I ] or Cohn I,1 for a discussion of the general theory of

such systems over arbitrary! universal algebras.
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equations of the form of (6) is relatively easy to obtain, this order

of magnitude of the number of systems to be solved would imply that the

algorithm is useless from a practical standpoint.

Fortunately, the situation is substantially better than that because

of the high selectivity of the types from which the universal type is

built (see Sections 3.3 and 4.4), |(z)o = 1 for most of the points z

in S. In addition, recall from Section 3.3 that different types are

allocated in specific regions of S and therefore, the structures of the

universal type constructed as in Section 4.4 inherit this spatial dis-

tribution; a fact that allows us to further reduce the cardinality of

each set (z)a . Specifically, suppose that S is divided into regions

S ,...,Sp

S= U S. (9)
i=l 1

and that associated with each region S , we have a subset G of G of

the admissible structure labels in that region; then, if z e S., we only

have to consider those structures (z)at such that (z)v e G,.2 That is,

we only have to write equations for each z e S for the structures in

the set

(z)3 = (z)a fl G. V z e S. (10)
1 1

1For an example of this spatial organization into regions see Figure

3.3-12 and companion discussion.

2We note that the sets G. are not necessarily disjoint, but they do

share (relatively few) some labels in general.
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and clearly,

(z) I < | (z) a- V z e S

Finally, we can reduce the number of equations of the form of (6)

by considering only those that are non-trivial (i.e., equations district

of (x ,...,x 0 )f = 0). In fact, most of the interesting equations will
z 2k+1

be obtained for those points z such that z e (C)Suppo.

Now we discuss an algorithm for computing solutions to systems of

equations of the form of (6). The central observations towards this goal

are:

- For any z e S, the indeterminate x will appear in at the
z

most, 2k+l equations. This, as a consequence of the nearest-neighboring

interaction requirement.

- The number of equations equals the number of unknowns.

The first observation tells us that each of the systems of equations

of the form of (6) can be broken into (not disjoint in general) subsystems

of equations. The second, represents a precondition for existence of a

solution. Before we pass to the algorithm, we need a few concepts. Let

<Q,4@> be the canonical algebra of A. Let x be the set of indeterminates.

By <Q,@> [x 1, we denote the polynomial algebra of homogeneity 11 of the

set of indeterminates x0 on <Q,O>. Briefly, this algebra is defined as

follows.

1See Cohn [6 ], Arbib 14 1, Lausch and Nobauer [9 ] and Gratzer 1161.
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1 - Form a set Q of indeterminates disjoint from x as follows.

For each q e Q, a unique symbol, say q, is placed in Q ; that is, Q and

Q are in one to one, onto correspondence. Let 4 : Q - Q be the encoding

map.

2 - We now construct a set of sequences of symbols of elements

Q U x and 0 (4 interpreted as a symbol set, not as an operation set).

This set is called the word algebra of 0 over Q U x and its elements

are called words. Associated with every word there is a non-negative

integer k called the rank of the word. The word algebra of 0 over

Q U x , denoted by W(Q U x 0, ) is constructed sequentially with the

rank of the words: Words of rank 0 (zero) are the symbols of Q , the

symbols in x and, all fY e t such that n = 0. Words of rank 9 + 1,

(9 > 0) are all the words of rank k and, for every fY e 0 with n > 0,
Y

and every sequence of words of rank k of the form W 1 ...,w n the word

YYo ,..,o f is aword of rank +l1.2

Clearly, from the above construction we have that each word has

associated with it a unique minimal rank, and consequently, each word

can be decomposed into a finite number of subwords.

We define the polynomial algebra <Q,O> [x ] as the image of the

morphism #

1See Cohn 11 1 and Birkhoff [17].

2o ,...Or as defined above, are said to be subwords of the word

S,1*.., fy. We decreed that a subword o' of a subword o" of a word o

in W(Q# U x ; f) is a subword of o.

-351-



#

W U x ;) <Q,4 > [x ] (11)1

^ 
0x#= x v Ze Sz z

(12)

Q#=Q 1-1 and onto

It is clear that # is an epimorphism of algebras if we interpret each

word in W(Q U x ) as the result of the sequence of operations of the

fYI's that appear in it,in the order in which they appear. The corres-

ponding object in <Q,I> Ix ] is an expression.2 That is, if we assign

an element of Q to each indeterminate in the sequence, we obtain as the

value of the expression a well defined element of Q.

Remark: The construction of the polynomial algebra <Q,O> [x ] sketched

above is an adaptation, for our purposes of a much more general construc-

tion of polynomial algebras on algebraic varieties (see Lang [ I or

Cohn [ 1) which is carried out in the context of category theory. For

our purposes, the construction given above, which parallels the classical

In order for # to be a morphism of algebras we must convert the set
.W (Q U x ;) into an algebra. This is easily done by reinterpreting the

elements of 0 as operations on words; thus for W,1 .. , n words in

# Y Y Y
W(Q U x ;0) o ,..n., f operation equals the word o ,...,n fY.

o 1 n 1 n

2Or polynomial.

-352-



construction of polynomial rings (in several indeterminates) over an

arithmetic ring, is sufficient.

Now, we define the concept of equations on the polynomial algebra

<Q,> x]. Let W , W2 be two expressions in <Q,@> [x 1; an algebraic

equation (or equation) is stated formally as

W1 = W2  (13)

with the meaning that if {x1 ... ,xk} is a subset of indeterminates of xo

appearing in W1 and/or W2 , and if we assign to each x a value q, from Q

and obtain the same value on both sides of (13), the equality is inter-

preted in the strict sense and the tuple (q1 ...,qk) of assignments is

said to be a solution of (13) 1

A system of algebraic equations over <Q,@> [x ] is a (possibly in-

finite) set of equations

a. = b. ie (14)
1 1

where a. ,b V i e I, are expressions in Q, [x ] and I is an arbitrary

index set. Our objective now is to obtain a criterion for the solvability

of a system of the form of (14). (We note that each of the systems of

equations defined by (6) are of this form.) We first prove:

1In the literature (e.g., Lausch and Nobauer 1 9]) the interpretation given
to (13) is more general in the sense that we look for a solution in a

suitably defined extension Q of Q. Since in our case the solution must
belong to Q we do not consider this, more general, interpretation.
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Theorem 1. Let x be a given set of indeterminates. Let A be the subset
0

of <Q,@> Ix ] x <Q,5> Ix 11 defined by
0 0

A = {(a.,b.)Ia. = b. V i e I is a system of equations
1 1 1 1

over <Q,0> Ex ]} (15)
0

Let 0, viewed as a subset of <Q,5> [x ] x <Q,0> [x ] be the congru-
o 0

ence on <Q,I@> [x ] generated by A. Then, for any g, g' e <Q,O> [x I,

g 0 g' <=> there exists a chain g = h , h 1 ,...,h = g' (16)

of expressions in <Q,4> [x 0 such that any two expressions h., h j+ are

either equal, or h is obtained from h. be replacing a subword equal
j+l

to a. (for some i e I) in the representation of h. in W(Q U x ;f) by b.,
1 J 0

or by replacing a subword of h. equal to b in its representation, by
Ji

the corresponding a..

Proof:

Let g l g' iff there is a chain in <Q,0> [x0] of the form of (16).

Clearly, 0 is an equivalence relation on <Q,@D> [x 1, it is also a con-

gruence for if

g1 ) , 11...,g9n 1 9 1n g1'''''gn ' 9 '''',Ig' in <Q,@> [xo],

n > 0, fY e .
Y

1Direct product of algebras (see Appendix A.l) .
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Then, for a fixed 2, 1 < ,< n , = h ,...,h = g' implies
Y V 0 r

Y Y

= (g1, ...g,. ,gk )fY
rn

Y
so that,

(g~ 1 .F -1 f E g i "g )fY

but by transitivity of 01 this implies

1 k nY j 1,gu)fY

hence, 0 is a congruence. Certainly (by definition, in fact) 0 contains

A. Thus,

E C o (17)
- 1

On the other hand, every congruence on <Q,<b> [x ] containing A must

contain 01, by definition of 01 and the second isomorphism theorem (see

Appendix A.1). Thus, in particular,

01 0 (18)

Combining (17) and (18) we obtain 0 = 0 as desired.

Remark: We note that Theorem 1, is just a formalization of a widely used

technique for solving algebraic systems of equations in which we use some

of the equations to obtain equivalent forms of expressions in such a
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manner as to reduce the number of unknowns in the remaining equations.

A particularly well known procedure of this kind is the Gauss-Seidel

iterative scheme for solving linear algebraic equations. Theorem 1, as

presented here is an adaptation to universal polynomial algebras of a

theorem in mathematical logic proposed by Knuth [ 20 (the theorem gives

conditions for testing equivalence of sentences in a propositional cal-

culus).

Now we use Theorem 1 to establish a condition of solvability. First,

we need the following concepts (Knuth [20]).

- A congruence 0 on <Q,@> [x 0 is separating if for any q, q' e Q

q ® q' => q = q' (19)

- Let be a monomorphism from the algebra <Q,@> to the similar

algebra <Q',4'>. Then, there exists an algebra Q" such that Q" ~ Q',

such that Q is a subalgebra of Q". Without loss of generality, let us

assume that Q fl Q' = #. Then, we get Q" by replacing every element q#

q e Q, by q e Q, but do not change any other elements of Q'. This pro-

cedure is called an embedding of Q into Q' and the resulting algebra

Q" is called the embedded extension of Q in Q'.

Theorem 2.1 The algebraic system

(xl'...'xk)a = (xl,... ,xk)b. i e 1 (20)

1it turns out that Theorem 2 is true even if Q is not finite, but the
arguments required additional machinery and since we do not need the

result in that generality for our purposes, we omit the proof.
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on the indeterminates xi,,,,xk e xo, over the algebra <Q,(> Ix0], IQI

finite is solvable iff the congruence 0 on <Q,O> [x ] generated by the

set A = ((a. ,b.) Ia. = b. i e I} of <Q,@> Ix 01 x <Q,O> Ix ] is separating.

Sketch of the proof (see Lausch and Nobauer [ ] for a more general ver-

sion of this theorem).

Suppose that 0 is separating; we can then embed <Q,@> into

<Q,@> Ix ]/0. This operation gives us a new algebra <Q,5> ix ] isomorphic
0 ,>Ix0 1ioopi

to <Q, q> [x0 ]/0. Let (x. )E j=l,.. . ,k be the congruence class under 0,

containing x., then, since
J

(x 1,...,xk)a = x 1,...,xk)b i e I

by hypothesis we have

(x1,...,x )a ®(x,...,xk)b (1(1 160xk )ai 0x1 .rkb i (21)

and thus

((x1,...,xk)a )E = ((x1,...,xk)b i)E

so that

((x1)E ,...,(x k)E)ai = ((x )E,...,(xk)E)bi v i e I (22)

Equation (22) implies that (x1)E,.. .,(x )E is a solution of the

algebraic system in <Q,4> Ix ]. Conversely, suppose that the system is

solvable and let (q 1 , .. qk) e Q be a solution; then, by Theorem 1, for

any two expressions g g' in <Q,12> Ix ], g 0 g' => ( , - - -k

(q1, -... qkg' hence, in particular if g = a, g' = b are words 
of O-rank
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in Q, g E g' ==> a = b, i.e., E is separating.

We recall that the solution [x ]E ,..., [x kE characterized by (22)

in Theorem 2, is a solution of the algebraic system a. = b. i e I over
1 1

the algebra <Q, @> [x ] and not over the algebra <Q, O> Ix 1. However,

by the embedding construction we have a monomorphism #

<Q,> Ix 1/0

defined by

q= (q)E V q eQ (23)

and, since 0 is separating, (q)E does not contain any other element

(different from q) of <Q,O> (although it may contain elements from

<Q,O> Ix ]; that is, expressions of the form (x x ... xk)a,k > 0). Thus,

a solution to the algebraic system a = b. i e I over <Q,5> [x 0 exists

-1
if the morphism # is defined for every (x.)E j=l,...,k. Thus,

J

q1,...,qk, qm e Q m=1,...,k is a solution in Q of a = b if

q = (x )E #1 for some j, 1 < j < k (24)

In particular, if # as defined by (23) is also an epimorphism and (24)

holds, the solution is unique.

We summarize the observations above in the following.

Corollary. If the monomorphism #, defined by (23) has an inverse for

every (x.)E e <Q,@> Ix 1/0 j=l,...,k, then, the solution (x.)E, j=l,...,k
i 0 .

in <Q,@> Ix ] determines a solution in <Q,@> [x ]. If # is also an epi-
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morphism, this solution is unique.

A

Now we apply the general results presented above to the algebraic

systems in our algorithm (given by (6)) in order to characterize their

solvability.

Recall from Section 4.1, that the CTM L of A is the product of two

maps S and F where F the intensity configuration transition map,

F : V x W -- W , computes, given the present configuration C' = (v',W')

e CA = VA x WA, the next intensity configuration w of A.

In equation (6) we are given w = (C)proj 2 , (the right-hand side of

the equations) and the left-hand side is determined by a set of feasible
1

v' e VA each one of them, giving rise to one of these systems of equa-

tions.

Let E' be the number of different feasible systems of equations of

the form of (6), (recall that E' < E where E is given by (8)). Let

J = {jjj=l,...,E'} be an arbitrary enumeration of these systems, i.e.,

to each system an identifying ordinal from J is assigned. Let <Q,'P> be

the canonical algebra of A and <Q,4> fx ] the corresponding polymomial

algebra with x the set of indeterminates defined by (2a) and let

1That is, those v' such that v = (C)proj, = (vl,w)S for some i e WA.
Recall that (z)v = (z)(v'w)S = ((z)v',,w(z)v')H.
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(x + a ,...x + f
z m,l' z m m

with

(z) v 3T - gm

( = (z) C proj 2  (a)

(25)

(b)

v z e S some j e J

be the j-th system. Define the subset A., j e J of <Q,@> Ix I x <Q, >Ix I
0 0

as

A . = {(f
J

(z)v.
3(z)v) V z eS} (26)1

If the congruence 0., generated by A. as indicated in Theorem 1, is
JJ

separating, we obtain a solution. If, on the other hand, . is not sepa-
0

rating we will find that at least for one indeterminate x , the congru-
z

ence class (x0)E contains at least two q, q' e Q q 4 q' which means
z

0

and (27)

x = q'
z

which is clearly incompatible. In either case, the construction of 0.
J

suggests a family of algorithms for either finding a solution or finding

that the corresponding algebraic system is inconsistent. We spell out

explicitly one of such algorithms next.

We note that S in (26) plays the role of the index set for the equations

in the system.
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An algorithm for solving (25) which is well suited for the structure

of our algebraic systems is given by the following sequence of steps.

1. Solve all of the equations (if any) of the form of (25) such

that n zv. O i.e. f 3 is a o-ary operation. This is a very simple

J
task because in this case

(z) v.
x = f 3 = (z) C proj2  (28)

(z)v.

If for any of these equations, f 3 # (z) C proj 2 we halt and the

initial activation process control problem associated with the j-th sys-

tem of equations has no solution.

2. We note that most of the equations corresponding to points

z 6 (C)SuppO\S are trivial equations of the form

(x ,...,x )f, = 0 (29)
z z+ao, 2k+1

so that immediately we have xZ+ i=o i=1, . . ,2k+l by definition of

0 0,1

f .

Also if for some z, the corresponding equation in the j-th system

is of the form

(x , . .. ,x +a )fo = (z)(C) proj2 / 0

o, 2k+1

then,

xz (z) C proj 2  (30)

by definition of f0.
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First step in
the algorithm Dormant states; trival equations

of the form of (28)

Boundary of (C)suppo

Equations of the
form of (29)

Z1

( -+) Arrows indicate the direction of the algorithm
for solving an algebraic system of the form of (29)

Illustrative Diagram of Algorithm for Solving Algebraic Systems

of Equations {(xz+a '' ' ' ' z+a ,m )f
(z)v.

=z (C) pro j2, z e S)

Figure 1
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Conditions (29) and (30), suggest a start-up procedure for the al-

gorithm for solving each of the systems of equations j e J; namely, we

start by solving all the trivial equations at the boundary of (C)Supp

and those points belinging to is complement in S. This is schematically

illustrated in Figure 1 for a system evolving in a two-dimensional infor-

mation space.

3. Recall that an indeterminate x appears in, at the most, 2k+l
z

equations; thus, the next step in the solution of the system of equations

j e J, is to find intensities for those points z e (C)Supp which have

as nearest neighboring points one or more points in the boundary of the

set (Q)Supp0 which have many of their unknowns solved in the previous

steps. We order our search as follows. We first start with those

equations which have a single unknown, then those which have two un-

knowns, and so on. For instance, suppose that the indeterminate x
z

appears in two equations as indicated below

(z)v.
(x 0 , q )f = (z) C proj (a)

z 1 2 2

(31)
(z')v.

(x 0
1 ,x 0 , q )f - (z') C proj (b)

z z 3 2

where q. e Q i=1,2,3 are previously found solutions for the corres-

ponding unknowns.
(z)v.

In the transition table corresponding to f 3 (31(a)) we search

1 2 3
for all tuples (q , q , q ) such that
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l 2 3(z)V.
(q, q , q3 )f = (z) C proj 2

and (32)

2 3
q = q1, q =2

Suppose that q = {q ,...,qm} are the intensities corresponding to q in
1

(32); from these, we select the ones that are compatible with the struc-

ture transition function, i.e.,

1
((z)v., (q ,q2 q 3))H (z) C proj1 k=l,..., (33)

3 k

1 1 1 ~1
say, that these are (q , q ,...,q ), q e q

'1 12k

Now we test each of these solutions in equation (31(b)) as follows:

for each tuple

(z' i ' 3) = , . ,

(z')v.1
we search in the table of f a whether there exist tuples (q, q1 , q3

k

with q e Q such that

(z')v.

(q, , q3 )f - (z') C proj 2

If there is at least one such tuple then q. is a feasible solution for

x0 , otherwise, we discard it. After we have tested all q 1
z l

we discard those that do not satisfy (31(b)). The remaining intensities,

0
if any, are feasible solutions for x . We proceed in this fashion until

all the unknowns have been found (or we halt due to an inconsistency).

We summarize this procedure in the block diagram of Figure 2. Again, we
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remark that because of the high-selectivity of the structures, the number

of possible solutions is small (for most points, 1 solution, a few of them

2 solutions and a very rare case, we found 1 point z with x having 3 solu-
z

tions; this is based on simulation of an initial activation control pro-

cess on the computer implementation of the DHA 5.3).

4. Once we finish step 3 (if successfully) we will obtain a set

of configurations C ,...,Cm such that

C e CL~ IS i=l,...,m (34)

Each of these configurations is a candidate for being the configuration

1C t1of the initial activation process. If for some C , i=1,...,m

i 00i
(z)C = (y0,q0) V z e (C ) Supp

we have found a solution for the initial-activation process control

problem, else, we repeat the procedure described above with each of the

C 's, to find a Ct-2 set of feasible configurations. The procedure

halts when either

(i) C k L 1 S =#for all k some k < T
t-k - H-1

(ii) k = TH-1

(iii) (z)Ct-k = (y 0 q 0 ) V z G (Ct -)Sup Ctk ics

t k = , ~ k)Sp 0 ' A

In synthesis, the procedure described above finds an integer k < T
-H-1

and a sequence of configurations (if exists)

i i i
Ct-1 Ct-l,..,Ct-k
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Input: z, set of equations
containing inderminate

x", ((z)v., (z))v )

In (x*,q1,q2 ' '"',

search for tuples
Xz + akk' "'' z + a ,m ) C proj

(q',qlq 2 , .' 'z + a. ,q , ... , xz + a

satisfying equation * q = (q! i= 1, ...m)

Block Daigram for Determining Feasible Solutions for

V (see companion text)

Figure 2
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such that

i -k
C = CL S
t-k

i o0o i
(z)C = (y ,q ) V z e (C )Supp

t-k t-k o

Ct-k ecsA

The procedure exploits the local structure of the DHA in the recursive

search (in time) for feasible solutions.

In Chapter 5 we will discuss, explicitly, methods for storing the

tables of the structure and intensity transition functions so as to make

this search efficiently in the context of the structural identification

problem (Section 5.2) a problem whose solution is patterned after the

procedure discussed here for the initial activation process control

problem.

It is important to note that even in the case which CL~ |S is a

unique configuration, it may happen that locally, during the execution of

the algorithm described in the previous paragraphs, we may obtain several

feasible soltuions; however, all of them but the actual solution will be

discarded in the manner indicated above, due to the fact that if these

local solutions are not global solutions at some point during the pro-

cedure we will reach a step in which these local solutions produce incon-

sistencies.

b) Let A = <IT> be a DHA A as in part a). Let (C ,C1,C2,...CT+1

< T } be a sequence of configurations in CA such that (C )Supp _ S
-H H
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for a = 0,l,...,T. Let U , Ul,...,U be a set of functions U : S -- GXQ

where G, Q are the label and intensity sets of A. We assume that

U n C = # for all a, T, a y T. For a=-c, we assume that U and C are

disjoint, but (possibly) they interact (see Section 4.1).

A composite process PC , with main stream process {C , C ,...,C ,

T < T H} is the sequence of configurations

T
p H {C U , C U ,...,C U} (35)
o o o 1 1 T T

with

C = (C U U )L t=O,...,T (36)
t+1 t t

where the Union (U) in (35) is disjoint (as defined in Section 4.1).

We remark here that in general,

Ct+1 / (Ct )L U (Ut )L (37)

That is, t and Ut, in general, interact (see Section 4.1).

With these preliminaries we are now ready for the formulation of the

composite control problem. Let {C 0, ... C T+1 T < TH be a given main-

stream process in a complete, trim DHA A = <I,T> with (C )Supp CS

t=O,...,T, defined by (1). We want to find a set of functions

Ut : S + G x Q t=o,..., , such that

1The inequality in (31) becomes an equality only in the case in which

C and U are non-iterative (see Section 4.1).
t t
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(i) C U icsA (disjoint union)

(ii) (C U )Supp S
t t 0

(iii) (36) holds for t=O,...,T

(iv) For each t, t=O, ...,T let Vt be the set

Vt {Vt : S - G xQ, (Vt)Supp n (Ct)SuppO =}

(37)

clearly, Ut G Vt t=o,...,T. We want to find the U t's according to

the following criterion:

mini(Ut)SuppO0  t=O,...,T

s.t. (39)

Ut GVt

and (iii) holds.

Condition (iv) is required in order to limit the search for a solu-

tion of the problem. We will see, that in our search procedure, this

condition comes naturally.

We note that we have not assumed the U 's to be elements of CA (i.e.,
____ t

belonging to icsA or V L = Ut for some V e icsj). In the context of the

applications studied in this thesis, we could consider the Ut's as out-

comes (for each t) of constructions processes whose characteristics are

discussed below in c) .

For those readers who are familiar with the theory of partial differ-

ential equations, we point out the similarity between the composite con-
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(z( ') =z z- , 1 z+ )

time t-I

y -=0(y, (q'ttq' q H

q =(q'ttq'iq'3f

time t

Example of Local Compatability in the Mainstream
Process of a Composite Process

Figure 3
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trol problem stated above and the Dirichlet problem in PDE's (see for

instance Treves [21]).

As in the initial process control activation problem, we seek for

a solution for the composite problem in a recursive manner, proceeding

backwards in time. We describe the corresponding algorithm next.

1. Set t = T + 1

2. Let C = Ct, C' = Ct-l

Our first task is to check whether the composite problem is well-

posed locally for each t.

Let z be a point in (C')Supp0 such that z i (C')Supp (C')Supp .

Clearly, for every such point we must have for (C') = (v' w'), and

C = (v, W),

(z)v'T = g. some g. e N
J J

(40)

(z)g. = (z + a. ,...,z + a.,m.)

(z)v = ((z)v', (z + aj )W',...,(z + ac.,m.)W')H

(41)

(z)v'
(Z) =((Z + a. )',...,(z + a.,m)')f

J,1 J J

That is, points z of (C')Supp whose state behavior cannot be modified by

interaction with types allocated externally to (C')Supp0 must evolve to

the corresponding given state ((z)v, (z)w) = (z)C of the type at z. This

is illustrated with an example in Figure 3. If for some z in (C')Supp

(40) and (41) do not hold, then the composite process control problem

-371-



has no solution.

3. For each z 6 (C)Supp , define the set of structures (z)a as
0

follows:

( z)a = {(z)v. 6 G| ((z)v.,W)H = (z) (C)projl, for some
J J

A 2k+lW e Q } (42)

As in (a) , if for any z e (C)Supp , (z)ca / #, the composite control

problem has no solution.

Similarly, as in (a), we can reduce the cardinality of (z)cz for

each (z) e S., by intersecting it with G., the set of structure labels

admissible in region S. ; so, let

(z)a = (z) a G. z e S (43)

4. From each set (z)a constructed above, eliminate those struc-

tures (z)v. such that z 0 (C')Supp - (C')Supp . Since these are fully

determined by the local well posedness condition of step 2. Let (z) be

the resultant set for each z e (C)Supp0.

5. Form all possible combinations of algebraic systems j e J, J

and index set,

Cz) v.
(y ,...,y + a.,m.)f I - (z)(C)proj2

(z)v (z)B

(z)v.T =g (44)
J i

(z)g. = (z + .,..., z + a.,m.)
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Where y is either an indeterminate x z from a set of

indeterminates x 0 or an element of Q. Specifically,

x if
z +a .r

Yz + a irk = z + ai,k 0i (C')Supp - (C')Supp

(z + a. )C otherwise
Irk

(45)

Clearly, each of the algebraic systems j e J of the form of (44) are

algebraic systems of equations on the polynomial algebra <Q,O> Ix 0],

and therefore, the existence of solutions for each of them is determined

by the separability of the corresponding congruence E. on <Q,@>[x ],
J 0

constructed in Theorem 1.

Further, the iterative scheme whose block diagram is given in

Figure 2 can be used for solving each of the algebraic systems of the

form of (44). Let V = {U, (v., W.) j e J'} be the set of solutions ob-
J J J

tained in this manner with

v. (S - (C')Supp0 ) + G
J

j 6 J'

W. (S - (C')Supp ) + Q
J 0

1See 2(a) and companion discussion.
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Clearly for each j e J'

(C' U U.)L = C (46)
J

by construction.

6. From the set V defined in the previous step we choose as our

control function, Ut 1 at time t-1, a function U* satisfying

J

mini( U. Supp )I

j e J' (47)

U. E V
J

7. Set t <= t-l and go to step 2.

This completes the description of the algorithm for the recursive

solution of the composite-process control problem.

We conclude the discussion of the composite control problem with an

observation about the instances in which it appears in the context of

the study of epigenetic control processes in procaryotes. We recall

that we assumed the main stream process as given; this main stream pro-

cess may represent the evolution of a subset of the reaction systems of

a group of operons whose dynamic evolution we know, perhaps be experi-

mental measurements of the type discussed in Sections 2.3 and 5.2. How-

ever, it may happen (and it usually does) that the scope of experimental

measurements does not cover all the reactions systems in the system under

study, thus, we can attempt to determine that part of the evolution of

the process by representing the main stream process in a suitably chosen
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DHA (i.e., of the type of the one developed in Section 3.3) and solve a

composite-process as indicated above.

c) We now pass to formulate the construction-control process and

propose an algorithm for its solution. Let A be a deterministic, trim

T
DHA as defined in a). Let P be a given process in A with initial

0 T
configuration C e C . A constructor process of P is a process P in

A to

A defined as follows:
t

(i) The initial configuration of P , C e ics satisfies
o o A

(C0 )Supp0 S

(ii) (C L )Supp S V T , O < T < t
0 0 - -o

t
(iii) C L 0  C'

0

with
C' = C U C" (disjoint union) (48)

and

T
C" does not pass information to PT i.e.,

t
0

C U C" L = C La U C" La
(49)

V a, 0 < J < T-t

(iv) t < T -l (50)
o H

where TH is the horizon of A.
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In short, the constructor process function is to produce the initial

T
configuration of the constructed process P which evolves once C is con-

o t
structed independently of the constructor P .

T
We note that the initial configuration C of P need not be an ele-

t
0

ment of icsA'

1. The first step in the proposed algorithm is identical to that

of the initial activation control problem; that is, given C, the initial

T
configuration of P we use one step (in time) of the initial activation

t
0

control algorithm to determine the set of configurations Ac = {C

i=l,... ,m}, such that

(C )Supp C S

C L = C i=l,...,m

If A is not empty, we propagate backwards (in time) each C until
c

and if we find for some i a configuration C e ics , (C )Supp or
0o A 0 0

the algorithm reaches step TH-l'

2. Let us consider the case in which A is empty and consider the

following subsidiary problem. Does there exist a configuration C" such

that the following 3 conditions are satisfied?

C": S + G xQ

AC U C" is not empty where

AC U C" = (C 9 C C L = C U C"} (51)

and
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C U C" L = C L U C' L (52)

We construct candidates for C' as follows:

For each z e (C)Supp - (C)Supp assign to z a set of structures (z)6 and
0 0

intensities (z) E such that for each point z' e (C)Supp0 such that

(z, z')p < 1 (i.e., z', z are nearest neighbors) we have

((z')Cprojl, Cproj 21 (z')(Cprog ) P))H=

((z')Cprojl, (C U C")proj 2l (z') (C U C"proji))H

and

((C U C")proj 21(z') 
(C U C "proj1)T) f (z')Cproj

(z')Cproj
= (C)proj21 ((z')CprojT) f

(53)

with

(z)C"proj 2 e (z)6 , (z)C"proj1 e (z)

V z e C Supp0 - C Suppo

We note that (53) is the local version of Equation (52) for a=l.

Again, our choice of the elements of the sets (z)6 and (z)E is made

be restricting to structures and intensities respectively such that if

z e S. (z)6 has only structures of G. and (z)e has only intensities of

Q. (G., Q. are the label and intensity sets associated with S. (see a)).

We eliminate from (z)6 (resp. (z)e) all those structures (resp. in-

tensities) for which (53) is not satisfied. Let A = C'.', i=l, ... ,} be
1 1
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the resultant set of feasible configurations i.e., (C U C")L = CL U C.'L

3. Now, we repeat the procedure of Step 2 for a=2 i.e., we write

the local condition of the form of (53) corresponding to

(C U C")L2 = CL2 U C"L2 (54)

and eliminate from (z)5 and (z)E all those structures and intensities

corresponding to configurations in A for which (54) does not hold. We

proceed in this manner for a=3,...,T-to.

4. At the end of step 3 we will have either a subset of configu-

rations A {C'.', i=1,... ,'} that satisfy (52) at some iteration,
T-t -1 i

0

wither (z)6, or (z)c are emptied in which case the construction process

has no solution.

5. Once AT-t - has been determined we solve an initial activation
0

process control problem for each configuration C U C" i=1,...,'. If for
i i i

one of them we obtain a C , such that (C )Supp S C e ics , we have
0 0 0 0 A

found a solution for the construction problem.

We note that the initial activation process control problem is a

subproblem in both the composite and construction process control problems.

We have shown in the last paragraph that there exists recursive al-

gorithms for the solution of the 3 DHA control problems defined at the

beginning of this section. These control processes are idealization of

corresponding control processes in the epigenetic apparatus of procaryotes.

In general, a process in the apparatus is a combination of these
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3 processes thus, its representation in a DHA, is also a combination.

For instance, we can have a composite control process in which each of

the control functions Ut is the outcome of a construction process. Clear-

ly, a combination of the algorithms described above for composite and

construction control problems will provide an algorithm for solving this

problem.

It is important to note that the two central procedures in each of

the algorithms described above are structure sorting (i.e., as in "find y

such that (YW)H = Y1 for some w") and recursive solution of algebraic

equations of the type of (25). With respect to the former we-will give

an efficient method based on pseudo random storage and retrieval of the

structure and intensity transition function tables in Section 4.5.1 in

the context of a computer implementation for DHA's. The procedures given

here (see Figure 2) for solving algebraic equations are feasible compu-

tation time ~1800 sec. in AD-ll0 for (G x Q) of the order of 50 and JS|

of the order of 300 (the numbers correspond to the lac operon process

discussed in Section 3.5 and 5.3). We have not tried them in larger

processes, but it is easy to see that the complexity of the algorithm

displayed in Figure 2 grows polynomically with IGI and exponentially with

ISI. Thus, this algorithm is not efficient for processes corresponding

to more than 16 operons which would correspond to a computation time of

about 1 hour in the AD-ll0 computer. We can improve this situation by

exploiting the fact, mentioned earlier of parallel solution of the equa-

tions; since each indeterminate x does not appear in all but at the
z
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most 2k+l we can modify the algorithm of Figure 2 to solve simultaneously

several groups of independent equation (i.e., not sharing common indeter-

minates) however, this would only decrease the time-complexity of the

algorithm by an order of magnitude so, the problem-remains to find effi-

cient algorithms for large operon systems. We mention that the AD-ll0

computer in which the implementation was carried on is about 100 times

slower than a machine of the IBM-370-145 type so that these limitations

are somewhat weakened if the corresponding algorithms are implemented in

a computer of this type. Below, we will discuss another method for

solving these algebraic systems which although is not feasible in today's

commercially available computers, shows some promise when implemented in

a new class of computers (CAPP's context addressable parallel processors

(see Foster [ ])) under active development at the present.

We conclude this section with some results about the faithful repre-

sentability of systems of algebraic equations of the form of (6) or (25)

over an algebra <Q,D> [x ] of finite order (i.e., IQI is finite, |@| is

finite), as algebraic equations over a suitably chosen Boolean algebra

BIx], (x is a set of indeterminates).

The purpose of the exercise proposed in the last paragraph is two-

fold. First, we want to give an explicit characterization to the solutions

of algebraic systems of the form of (6) which play a central role in the

systematic solution of the 3 control problems discussed above; second, it

allows us to propose and algorithm for computing these solutions. Al-

though, as we will show later, this algorithm is not practical for im-
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plementation in computers available at the present time, the development

of special-purpose-processors with arithmetic-logic-units (ALU) capable

of processing bit words of several thousands of bits in length is pro-

ceeding very fast so that in the very near future (5-10 years) the

algorithm to be proposed here will become feasible in a practical sense

when implemented in these processors (see Foster [101 for a description

of these processors).

We digress for a moment to give some basic notions about Boolean

algebras and equations over Boolean algebras. A Boolean algebra B =<B,>

of finite order is defined as follows.

The type T of G (see Appendix A.1) is given by

T = {2,2,1,0,0}

with corresponding label set

G = {l,2,3,4,5}

and satisfying the following conditions:

for a, 6, y e B

Symmetry

1 12 2

(a,8)f1 = (9,a)f1 (a,)f2 _ 2c,)

Associativity

((a,)f 1,y)f - (O1(,y)f 1)f1 ((aof ,y)f 2 (a,,Y)f2 )f2

Absorption laws

1 2 2 1
(aX,(c,)f )f = a ((aS)f ,a)f = a
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Distributivity

(al, (,Y) f )f = ((c,f 2 1 (ry)f )f

(a, (0,Y) f1) = (( l) 1 2 y)f )f

Identity laws

(a,f4) 1 = f4 (f5)2 5

Complementary laws

(a,af3 1 4 3)2 5

4 3 5 5 3 4
f f =f f f =f

De' Morgan laws

(a 1f3 _ 3 3 2
(a, )f 1f 3= (af 3f 3)f2

(a 2 3 3 3 1
(ax, )f 2f 3= (af 3 11f 3)f1

The operation f1 is usually (see Birkoff and Bartee [22]) denoted

by (and called meet) in infix notation, the operation f2 is denoted by V

(and called join) in infix notation, the operation f3 is denoted by single

quotation mark (i.e., xf3 = x') and called complementation. Finally, the

o-th ary operations f4 and f5 are denoted by the numbers 0 and 1 which

are assumed to be elements of B. In what follows we will use the infix

notation for expressions in B. We will assume herein that B = f0,l1

since this is the only Boolean algebra we consider. Thus, the tables for

V, and ' become:
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x y xy X y x Vy x x

o 0 0 0 0 0 0 1

0 1 0 0 1 0 1 0

1 0 0 1 0 0

A Boolean function f : 8n + B is defined simply as an expression

formed by combinations of the 3 operations defined above.

A
Notation: Let x = {x1 ,. ,Px I be a set of indeterminates. By x , (a

sequence of length n of elements of B, i.e., A = { , ... , an ), = 0 or 1),

1 2 n
we denote a monomial of the form x 1 x 2 ,. where

1 2 r. .'n

x if
. i

X! if a.=0
I l

Theorem 3. (Shannon) For any function f:Bn + B,

(x) f = V (A) f ' x (55)

A e Bn

and this decomposition is unique.

Remark: The form of Theorem 3 is called disjunctive form of (x)f (see

Miller Ili]). We summarize some basic properties of Boolean functions

in
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Lemma 2.

(i) VA e Bn
A
x =

A C
(ii) x x =0 for A3B A, C e B

(iii) (VGA , A

A e B n

vVMD *x)D (a VA.X A

D e Bn A e Bn

n
(iv) A , A = 0, or 1 for all A e B

AA A
() ( A D DA AA

D e Bn A e Bn

if a =

of a / 8

if A = D

if A $ D

a, e B

nA, D e B

An equation in one indeterminate over B is an expression of the

form

(x)f = (x)h (56)

with f, h functions in one variable over B.
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Theorem 4. Every equation over B in one indeterminate x can be written

in the form

a1 - x V a2 - x' O

Proof:

Note first that there are 4 different functions in one indeterminate

over B : (x)g, = 0, (x)g2 = 3 = x and (x)g4 = x'.

Thus, the form S1x V 62x' can be made to represent any (x)g

i=1,... ,4 by a proper choice of and $2 (Eq 1=l= 2  1 2 V 2 1

x V X' = 1, 2 = 0 = 1, xV 1 2x' = x, and so on).

From (56) we have that

((x)f)' = ((x)h)' (57)

(from now on we write ((x)f)' as (x)f' so, "multiplying"1 (56) by (x)f'

on both sides,

0 = (x)f(x)f' = (x)h(x)f'.

Similarly, multiplying (57) by (x)f,

(x)h' (x)f = ((x)h') (x)f = 0

Thus, adding2 these two equations we have

(x)f(x)h' V (x)f'(x)h = 0 (58)
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But (x) f = a1x V a2x' for some a1, U2 e B and

(x)h = S x V S2 x' for some S1, 2 e B

so (58) becomes (using De'Morgan laws, see Miller [ 1)

(ax 5'S' vS Sa'c' vcx a' V Sa)x V (a2S1 2a'' VI I2'
112 VloiV 11 1 1 2 12 2 0102 V'2 2

V 2 a')x' = 0

which is of the desired form.
A

Let < be a binary relation on B defined by ot < S => a * = a.

Clearly, < defines a partial ordering on B.

Now we characterize solutions of an equation (x)f = 0 over B.

(notice that Theorem 4 allows us to consider just this case.)

Lemma 3. The following statements are equivalent.

(i) cx V Sx' = 0

(ii) < x < a'

(iii) x = a' x v

Proof:

(i) + (ii) by definition of the join operationa x V Sx' = 0 implies

ax = 0 and 5x' = 0. But ax = 0 -> (ax)' = 0' = 1 or a' V x' = 1 thus

(W' V x') x = 1 * x and a' x = x <> x < c'.
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Similarly, x' = 0 => (Sx')' = 1, or, ' V x = 1. Thus, ( 'x V x)3

= or x= <=> < x.

(ii) + (iii) from (ii) we have a'x = x, x' = 0 thus, a'x V x' =

xV 0 = x

(iii) + (i) let x = a'x V x'* then, multiplying * by x',

0 = x'

Multiplying * by ax,

ax = c4x' = 0

thus, ax + Sx' = 0 as desired.

A

Remark: See Abian [12 for a more general form of the Lemma in arbitrary

Boolean algebras.

Now, we give a criterion of well-posedness for an equation of 8 in

one indeterminate.

Theorem 5: (Rudeanu [131) 1 ax V x' = 0 over B has a solution iff ac = 0.

Proof:

This equation is equivalent to

< x < a'

From Lemma 3, thus, a < a' (transitivity of <) or

(59)

1The proof given here is a special case of the one proved by Rudeanu [13].
See also Abian 1 12] .
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Multiplying both sides of (59) by a we get ac = 0 as desired.

Conversely, let a -= 0. Then, aa V a' = a V 0 = 0 which means that

x = is a solution.

Corollary (Rudeanu [ ]) If the equation ax V rx' = 0 has a solution

the all its solutions are given by

x = S V a'y V y e B

The previous theorem and corollary are the basis for the recursive

algorithm for solving algebraic equations over B to be developed below.

First, we generalize the results presented for the algebraic equation

over B in one indeterminate to equations over several indeterminates.

Theorem 6.

(i) Let

(x)f = (x)g (60)

be an algebraic equation over B with x = {xl,...,x } n>l. Then there

exists a function (x)F on Bn such that each solution of (x)F=0 is a

solution of (60) and vice versa.

(ii) Let

(x)f. = (x)g. i e I (61)
11

I an index set, be an algebraic system over B, then there exists a func-

tion F : Bn - B such that each solution of (x)F = 0 is a solution of (61)

and viceversa.
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Proof:

(i) From (60) we have

(x)f' = (x)g' (62)

Thus, as in Theorem 4, multiplying (60) by (x)g', multiplying (62) by

(x)g and adding the resultant equations we have

(x)F = (x)f' (x)g + (x)f(x)g' = 0

which is of the desired form.

(ii) By (i), each equation in (61) can be written as (x)F = 0

i e I thus

(x)F = V. (x)F.itIl

by definition of V.

By Theorem 6, we can restrict ourselves to study the solutions of

a single equation of the form

(x)F = 0 (63)

F : Bn -+ x = x1 ,.. .,x a set of indeterminates.

Theorem 7. (Boole 123]) Let F ; B n -+ B be a Boolean function. The

equation (x)F = 0 is well posed (consistent) iff

H (A)F = 0 (64)

A e n

The proof to this result originally given by Boole himself is based on

some axioms of propositional calculus; here we offer an algebraic proof

patterned after Boole's proof.
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Proof:

Assume (60). From Theorem 3 we deduce immediately

(A)F < (x)F

A e B n

and since (x) F = 0, (64) follows.

Conversely, assume (64). The case n=1 was proved in Theorem 5 (see

also Rudeanu [13]). Assume that the hypothesis of the theorem has been

proven for all k<n. Define

(x1 ,...,xn-1i)h = (x 1,...,xn- 1l)F (x1 1... ,sn-1,O)F

then (64) implies

T(a, - ..'n-1)h = H(a,... ,an-1,1)F (al,...,an-1,0)F

n-i -
(a .,,,n-. ) e B lH(a ,..., )n-i e n-l

= H (A)F = 0

A e Bn

Thus, by the induction hypothesis, the equation (x 1 1... ,xn-1) has a

solution. Let this solution be x. = 3. i=l,...,n-l. Thus,1 1

(, - -6 ,Sn-1,1)F e (, On-1,0)F = 0

But then, by Theorem 5, the equation

(6 ,, ,1)F x V (i ,..,i 0)x' = 0 (65)
1 n-1' n l n-l 0)n
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has a solution, say xn = n. But, by Theorem 3, for fixed (x1, ... ,xn-l

(x .. X )F = (x,...,x )F x V (x ,...,x ,0)Fx'
1 n-1 n l n-1 n 1 n-l n

Hence, (65) implies

(S ,...,3 ,S )F = ( ,...,j ,1)F S V (O ,...,3 ,0)F' = 0
1 n-1 n 1 n-l n 1 n-1 n

which means that ( , .. . ,6 , ) is a solution of (x)F = 0.
1 n-1 n

Now we are ready to formulate our algorithm. Let (x)F = 0 be the

given equation over B1 F : Bn + B. Write (x1,...,x n)F = 0 as

(xl,...,x _,1)F x V (x ,...,x ,0)F x' = 0
n n 1 n-1 n

Now, by Theorem 5, this equation has a solution iff

(66) 2

(x ,..x )hnl = (x 1 1 ... ,x ,l)F (x , ... x ,0) (67)
1 ** n-1

and by Lemma 3 (ii) this solution is bounded as

(x ,...,x ,0)F < x < (x ,...,x ,1)F'
1 n-i - n - 1 n-i

and by Lemma 3 (iii) this solution satisfies.

(x = (x ,...,X 1 )F' X + (x1,. .. ,O)F x'
n 1 *Fn-1r n 1 (l* xn-1 n

(68)

(69)

If instead of (x)F = 0 we are given an algebraic system (x)f. = (x)g.
1 1

i e I we convert it to the form (x)F as indicated in Theorem 6.
2This is possible since by Theorem 3, for fixed x ,...,x xn-1 l '... xn )F

has the form bf (66) .
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for fixed (x 1,...,xn-1).

From (67) we have

(x , --. ,x n-1)hn-1 0

This equation can be written as

(x ,... ,x ,l)h x V (x ,...,x ,0)h x' = 0
1 n-2 n-1in-i 1 n-2 n-i n-i

which has a solution (for x n-1) bounded as

(x ,...)h < (x)h
in-2 n-1 - n-1 - 1 n-2 n-1

iff

(x,...,xn-2 = (xO'''' OXn-2, O)hin-1 (xi , 'xn- 2 ,1)hn-1

We note that

(72)
(x1 ... ,xn-2)hn- 2 = l'''' n-2,'n-1,an)F

(a ,a ) e 8
n-1 n

Clearly, from the discussion above, we can generalize so that at the jth

step of the procedure, we obtain an equation of the form

(x ,...,x .)h .-
1 n-j n-j

=II(x ,...,Pxn- ,an-. ,...,ran)F = 0
1 n-2 n-+

(a . , . ,
n-j+1 n

which can be written as
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(x ,...,X .)h .=(x ,...,x .,1)h .*x .*V(x ,...,x . 0)
1 n-3 n-3 1 n-3-1l n-3 n-3 1 n-j-1

h' x' .= 0
n-J n-J

which has a solution bounded as

(x ,0)h .< x .< (xl. x ,1)h
l n--1 n-i n-3 - 1 n-j-1" n-3

(74)

iff

0 = (x1 ,...,x . 1 ,0)h .(x 1 ,..x ,1)h .
1 n3- n- 1 n-j-1 n-i

= (x ,...,x . )h .1 n-j-1 n-j-1
(75)

Thus, in particular at the n-th step of the procedure, we have an

equation of the form

(x )hl = 0

with solution bounded as

(0)h < x < (l)h'
1 - 1 -1

iff

(0)h (1)h = 0

with

(x 1)h = II(x 1 ,a 2 ,. .. ,an)F

(a ,...,an) e B

recall from the corollary in Theorem 5 that if (x )h = 0 has a solution,

all its solutions are of the form
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x, = (O)h 1 V (l)h y

Thus, we have found an explicit expression for all the solutions of x .

If we replace (x1x2 )h2 = 0, x for each of its solutions of the form of

(76) then we obtain a set of equations in x 2 whose solutions can be ob-

tained in similar manner. Then we proceed analogously fro solving x3

from (x1,x2 'x3)h3 = 0 for each of the possible solutions of x1 and x2 '

and so on until all the indeterminates are solved. This completes the

description of the algorithm for solving (x)F = 0 over B. We note that

the algorithm proposed here, is just the construction of a set of chains

of the congruence 0 defined in Theorem 1 for the special case in which

the algebra <Q,D> is B.

We conclude this digression, by mentioning that an algorithm, called

binary search tree (see Hadley [24]) developed for listing solutions of

integer-programming problems could be easily adapted for our case to make

a systematic (i.e., irredundant) listing of all the solutions of (x)F = 0

obtained by the recursive procedure described above.

Now we show that the algorithm for solving (x)F = 0 over

B = {{0,l}, (V, -, 1,0,1)} F : n -- B discussed above can be used, in

principle, for solving algebraic equations over <Q,O>, the canonical

We will clarify this qualification later on.
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algebra of a given DHA A, for the form

(z)v.
(x + a. ,...,x + a.m.)f 3 = (z)(C)proj 2

(z) v.T = g.J 1

(z)g. = (a , .,-- , ,m.)

First, the following trivial lemma.

Lemma 4. Let <Q,@> with IQI finite, be a given universal algebra with
n

label set G. For any y e G, the operation fy : Q Y+ Q can be represented
m

faithfully by a finite set of Boolean functions {F P: - B, k=1,... ,j}
Y

for suitably chosen numbers m and p.
Y

Proof:

Choose m and p according to
Y

m n m

2 1 Q1 Y 2
(77)

IPl QI < 2P

Let E nbe the n -iterate of the Cantor-pairing function defined in
ny
Y A

Section 4.2 and let D ; IN - B be a binary encoding function such that

Y
for any integer n,

m
0 < n < 2 (78)

1See (6) or (24) and companion discussion.
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gives its binary expansion in m bits (this expansion can be made 1-1
Y

in virtue of (78), but is hot onto in general). Similarly, let D be a

binary encoding function such that for each n e IN nD gives its binary

expansion in p bits.
m n

Define F B Y + 3, B =1,..., as follows for (q 1 1 ... ,q ) e Q

((q ,...,q )E )E D )F = (q ,... q )fY D e (79)
1 n Yn Yn Ym Y 1 n y

where ep picks the kth bit in the expansion (q1,... ,q )f Yk1 n

Clearly, the left-hand side of (79) is a Boolean function for each

k and therefore can be expressed as

k, P, A
(x)F = V (A)F x (80)

Y Y
m

A e B Y =

where x = {x1 ,... ,xm } is a set of indeterminates over B.
y

Corollary: If 101 in Lemma 4 is finite then <Q,5> can be represented

faithfully by a set of Boolean functions over B.

Proof:

Choose

2k+l = n = max n
y eGY (81)

m = max m
y eG

and proceed as in the lemma for each y e G with m instead of m .
Y
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Finally, we replace in each algebraic system j e J' of the form of

(24) (over <Q,@>), each equation by a corresponding set of p equations

over B of the form

(x)F v = (C) proj D ep k=l,...,p (82)
(z) j 2 ya1

V z eS

with F v, as in (80).
(Z) J

Then we convert the resulting system into an equation of the form

(x)F = 0 over B using Theorem 6 (iii), and proceed with the algorithm

for solving these equations discussed above. Let x = [x , ... ,x m

e Bn be a solution; then the corresponding solution over x 0 is deter-

mined by

x = x D E 1 (83)
m n

Y

We remark that due to the fact that the encoding D is not onto,

this solution may not be meaningful over <QA> but all the meaningful

solutions over <Q,4D> have meaningful solutions of 8 because of its

1-1-ness.

We close this section with a final comment. Although, as we men-

tioned early, the Boolean construction described above is not implement-

able in present day, commercially available computers dues to its high

dimensionality, research on machines with highly parallel logic units

(in fact, distributed machines) are under active development at the

present (see for an example Foster [101 and Goodwyn [14]). The machine
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considered by these authors is a CAPP: Context Addressable Parallel

Processor) and there is hope that algorithms such as the one described

above will be practically implementable for moderately sized Boolean

equations i.e., lxi ~ 12k).
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5. SIMULATION STUDY OF EPIGENETIC

CONTROL MECHANISMS

5.1 Computer Implementation of DHA's

In this section we describe a computer program called DDHA, for the

dynamic simulation of DHA's. Although we concentrate on the implementa-

tion of DHA's with epigenetic control applications in mind (see Section

5.3). The program, whose general characteristics were introduced in

Section 2.3, (see Figure 2.3-2 and companion discussion) implements the

one-step configuration transition map CTM L of a given DHA A. DDHA

operates locally on the representation of a configuration (present time

configurations) on a fast-access memory and produces the next (in time)

configuration which is stored in a second fast-access memory. The latter

then takes the place of present configuration and the process is repeated

as illustrated in Figure 2.3-2.

A more or less detailed schematic of the dynamic operation of DDHA

and its functional components is shown in Figure 1. We proceed next to

describe each functional block of Figure 1 with respect to two aspects:

construction (programming, storage, etc.) of the block and operational

characteristics.

We start with block 3; NEXT-STATE TABLE MEMORY. This block, as its

name indicates, is a storage of the next structure function H and the

next intensity functions fy e 0 of A. Of course, by storage of these

functions we mean the storage of tables of their graphs.
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Recall from Section 3.5, that the outcome of the program IDHA is

precisely a set of those tables for a subset of types of the model of

the genetic apparatus developed in Section 3.3. These tables, formed

by the arrays TYPES, TYPEI, and GN are not next-state transition tables

for a DHA; so, our first task is to convert them into that form. This

is done by the program (actually an overlay of programs) whose block

diagram is shown in Figure 2. The number and/or captions in parenthesis

indicate the section in which the particular program or procedure is

discussed. Thus, block 3-1 represents IDHA the conversational program

for constructing the model from descriptive interaction with the user.

3-2 represents the construction of the direct limit cover DHA from the

set types obtained from IDHA. Recall that this gives us a DHA A, which

simulates each of these types. In block 3-3 , we obtain the minimal

DHA A using the algorithm shown in block diagram form in Figure 4.3-1
K

and then, we come to an operation, called HASH TABLE ALLOCATION which

is extremely important in the fact that its outcome determines in con-

siderable part the time retrieval efficiency of DDHA, and also, as men-

tioned in Section 4.5, the efficiency of the algorithm for solving alge-

braic systems of equations for the three types of epigenetic control

problems.

By Hash table allocation, we mean (see Knuth [ 3 or Aho and Ullman [ ])

a mechanism for storing efficiently a table of entries. This mechanism

is usually a function h called a hashing function, a hash table, and a

data storage table. These items are illustrated in the diagram of Fig-
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ure 3. Notice that because of the particular structure of our transition

functions two hashing functions and two hash tables are required. Next,

we briefly explain the general principles underlying the operation of

the hashing mechanism.

Each entry in the hash table consists of two items; and identifier

(sometimes called name) and a pointer, For our purposes we need two

hash tables (see Figure 3). In one of them, the identifier for each

entry is the label of one and only one structure Y of the DHA under im-

plementation, and the pointer is the address of a memory location which

heads (i.e., is the fist memory location) of a memory area in which the

tables for (*)fY and (Y,*)H are stored. In the other, the identifier for

'"2k+leach entry is a unique sequence of intensities of Q , w, and the

pointer is a memory location in each of the memory areas in the data

storage table determined by the first Hash table (see Figure 3).

Both hashing functions h and h' in Figure 3 are actually sets of

functions h = (h ,...,h ), h' = (h',,..,h',) respectively, where
0 m 0 m

h. G + {Ol,... ,n-l} i=0,...,m

1 (1)
^2k+1

h':+! {n,n+l,...,N} j=O,...,m'
J

The special characteristics of the functions h and h' will be described

in a moment, but before that wewant to explain our algorithm for
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generating the Hash table. We refer here to h of h as the primary

hashing function of h, and to h' of h', as the primary hashing func-
0

tion of h'.

Recall from Figure 2 that the input to the algorithm for hash-table

allocation is the minimal DHA AK being implemented. Thus, initially we

have divided a region of memory into n parts that we call volumes. Each

volume is identified by a unique pointer in the Hash table; for structure

labels (see Figure 3). Similarly, each volume is divided into N-n parts

(not of equal size in general) called files, each of which is identified

by a unique pointer in the Hash-table for intensity input sequences.

The algorithm works as follows. Initially all the entries in the

memory location-column of both hash tables are empty We pick a y e GK

the structure label set of AK, and compute (y)h . This gives us a loca-

tion in the Hash table for labels, for the label (y), We proceed in this

fashion for a new label y' and so on, until for some y", (y")ho = k and

k has already been assigned. In this case, we compute (y")h1 which

gives us a new location k'. If this in turn has already been assigned,

then, we compute (y")h2 and so on until, for some hi, i < m (y")h. gives

us an empty location.

Once a pointer and thus a volume for a structure y has been obtained

'This terminology is standard in the literature.

2i.e., it has -o (minus zero) in each of the entries,
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we compute (w,Y)HK and (w)f for each W for which these computations

are not trivial1 , and store the results in the file determined by the

pointer in the hash table of intensity sequences corresponding to (w)h.,

j < m'

We proceed in this manner until all the state transitions have been

allocated to the files of the data storage table. The algorithm des-

cribed above is shown in block diagram form in Figure 4.

Now we describe how this storage allocation operates during the

dynamic simulation of a given DHA. Suppose the program DDHA is engaged

in the computation of the next state at some point z; this is done by

the dynamics processor (box 9 in Figure 1), Let y be the present in-

tensity and w the input sequence of the element at z. Then, the pro-

cessor sends a request (i,e., sends y and W) to the pseudo-random

searcher2 (box 2 in Figure 1) this searcher is a routine that computes

(y)h . If the entry in the hash table for structure labels corresponding

to (y)h is Y, it proceeds to compute (W)h' again, if the entry in the
0 0

hash table corresponding to (&)h' is W, we go to the respective file and
0

retrieve to the dynamics processor the numbers (Y,W)HK and (w)f, If,

on the other hand, (y)h = k and the entry in k is not y we proceed to

compute (y)h1 = k' and see if the entry k' is y; if it is, we proceed to

1 ^2k+1Recall from 3,3 that only a few w 8 Q n0 f have operational meaning,

all the others are either completion intensities (see Section 4.4 or the
dormant intensity.

2This denomination will become clear once we describe the nature of the
functions h and h', respectively.
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check the corresponding inquest in (W)h'-if (w)h' = k and the entry k is
o! 0

W we proceed to retrieve (y,W)H and (W)fy; if it is not then we compute

(w)h! for j=2,3,,.., until for some j we find (W)h! = k" and the entry in
J J

k" is O. This procedure is summarized in the block diagram of Figure 5.

We now conclude our discussion of the next state table allocation

in the program with an explicit description of the hashing functions h

and h'.

For i=l,...

(y)h = ((y)h + r )mod n with m=n-1, n = IGKI V y e GK (2)

For j=l,...,m'

(W)h' = ((w)h' + r!)modNwith mt =N-l, N = 0 2k+li
J o 'K (3)

^2k+l
V O e Q

where r . i=1,... ,m are pseudo random variables r. : - {l,... ,n-l} and

r' are random variables r ! : 4, {n,... ,N+n-1). In our study both
JJ

r. i=l,. . ,m and r! j=l,. ..,N have uniform distributions.
1 J

The random number generators that we use for generating the r 's

and r . 's are listed in Appendix A,3. These generators generate every
J

integer between 1 and n-l (resp. between n and n+N-1) exactly one in

n (resp N) calls. Each time the functions h. i=l,...,n-1 (resp h!
1 J

j=l, ... ,N-1) are used the random number generator is reinitialized to

the same point, Thus, the sequence rl, r2,.. is generated each time
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h(resp h') is used (either for storage or retrieval),

The functions (Y)h and (w)h' are defined as follows:
0 0

Let

0 k(4y = 2 + a12 + ,. ak2k

i.e., the binary expansion of y. Then

[k/21
(y)h = as2s (5)

s=0

Similarly, let

W= (320 + ,., (6)
oy

then [/4]

(w) = 2 (7)

Z=0

The reasons for these choices is that the right hand sides of (5)

and (7) are easily generated (in one step, in fact) with a digital com-

puter and produce meaningful memory allocation numbers (see Figure 3).

The reasons for taking k/2 and y1/4 , respectively is purely empirical

based on experimentation with the ADAGE AGT-llO computer used in the

implementation discussed in this section, We mention as an indication

of the size of the hashing tables, that IGKI for the lac operon example

(see Section 3.5) is equal to 36 and /92k+1| (only the meaningful se-

quences) is equal to ~280,
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We conclude this discussion of the storage of the state transition

table with a brief analysis of the efficiency of the proposed storage

with respect to a) the expected number of probes k required for inserting

a pair (Y,W)H (W)fY in the data storage table, ie., expected value ofK K

the number 9.=i+j in the program of Figure 4 when the program exists

through the * link after a pair (yw) has been put for storage; and

b) the expected retrieval time T that is, the expected number of probes

required to retrieve a pair (Y,W)HK, ( Y)f once the request has been put

by the dynamics processor, that is, the expected value of i+j in the

program of Figure 5, when the program exits through the ** link.

In order to evaluate Z = Efi+j) i,j as in program 4,and T = E{i+j)

i.j as in program 5,we need to assign probability distributions to occur-

ences of elements Y e GK and W G QK I (useful W's only). We have,

after an observation of the assignments given by IDHA to the types of the

lac operon assigned the following probability distributions to items of

"^2k+l
G and Q . For any y e GK ~ K K

p (Y) = / (8)
PG

El/Y

y' e G
K

that is, y with lower values have higher probability of occurence (see

example of Section 3,5 to convince yourself that this is the case) the

conclusion that we will obtain in a moment is the same if we assume the

^2k+l
probability of the Y's to occur to be uniform for any useful W 3 Q
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P (W) = (W) 2 kl (9)
S E(oI)E 2~

^2k+l
o'6QK

where E 2k+ is the 2k+l-iterate of the Cantor pairing function (see

Section 4.2). Finally, let P (r.) i=l,...,n P ,(r!) j=l,...,N be the
r 1 r 3

probability distribution of the random numbers in (2) and (3) respec-

tively. Thus, we have that the expected number of probes required to

insert a pair (Y,o)HK, ( in the storage table when x out of n-1

entries in the hash table of structures are filled and y out of the N-1

entries of the input intensity hash table are filled, is given by

x

E(x,y) = m PG )r W)

m=1 Y e G G .l,,,,,n-11

y

+ 2:s E 2k+1 Q(' Pr'(a)
s=l o e Q a e {l,,,,,N-l} (10)

where in (10) we have used the assumption that r. 's and r!'s are inde-
1 J

-2k+l
pendent as well as the occurrences of y 6 GK and o e QK The worst

case would be clearly, when xa is the last y to be stored and ya is the

last y to be stored, since in that case the table has the maximum

number of entries filled and program 4 has to probe with almost all the

hashing functions (6) and (7), For this situation and in the example of

the lac operon system whose implementation will be discussed at the end
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of this section we found E(x,y) ~ 4,88641; that is, approximately 5 steps

in the program 4 are required for storing (y,W)HK and (M)f , For an

intermediate value of x, y we found that E(x,y) ~ 3,79952. In contrast,

with linear lexicographic storage, the number of steps required for

storing a pair (Y,W)HK, (Y) equals essentially the sum of the numbers

of labels from GK stored so far plus, the number of o's in the corres-

ponding V f . Thus, in the average we need about 18 + 200 = 218 steps

for this type of storage in the lac operon system example, Clearly,

the random storage algorithm is vastly superior in this context,

Similarly, the number E(T) of expected probes required for re-

trieving a pair (y,w)H , (w)fy equals, assumming that any pair in the
K K

table is equally likely to be retrieved, to the average number of probes

that were required originally for inserting this pair into the table,

i.e.,

n-l N-1

E (T) = E E (k,y) (11)
nN k=0 y=0

For the lac operon system, using (11), E(T) ~ 2,53! This, compared

with the average retrieval time in the case of linear lexicographic

280 x 36
search for this case, which is equal to Non/8 280 2 shows that the

random storage (pseudo random storage actually) of the transition table

makes the crucial ingredient in making feasible the implementation of a

DHA in a digital computer.

We mention that in the actual simulation, carried out for the lac
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operon system, which is described at the end of this section, E(T) was

found to be larger (6 to 10) than the theoretical value computed with

(11), However, this is still vastly superior to the corresponding fig-

ure for the linear lexicographic search, A reason for the discrepancy

between the actual and the theoretical values for E(T) may be, in part,

due to the fact that the random number generators for the r.'s and r!'s
1 J

are not really uniform (in fact, they are not even purely random) which

was an assumption in the computation of (10) and (11).

We note that the pseudo-random searcher program described above and

whose block diagram appears in Figure 5, can be used as the search pro-

cedure in the solution of the initial activation control problem des-

cribed in Section 4.5 and we will illustrate this fact with an example

at the end of this section,

Now we describe the Encoder (Box 8 in Figure 1) and Decoder (Box 6

in Figure 1) procedures. In order to do that, we must first describe how

the configurations (Boxes 1 and 7 in Figure 1), and how the two buffers

( 5 and 4 in Figure 1) operate on the contents of the two memories.

In storing a configuration A in either memory configuration we use

the following conventions.

1 - A location in either memory is either empty or contains an

encoded version of the state1 of a non-dormant element (z)T, allocated at

z = (z 1 , z 2, z3) e = I

-By state, we mean of course, structure and intensity.
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2 - The addresses of the memory configurations of which non-dormant

states of elements are allocated are determined by the following rule:

for the element allocated at z = (z1 , z2, z3), the corresponding address

(z)a1 is given by

(z)a = (z , z2 , z3)E 3  (12)

where E3 is the 3-iterate of the Cantor pairing function (see Section 4.2).

3 - If the element allocated to z, with address (z)a, is in state

(y,q), at present time, then the content of (z)a is the number

((z)a) content = (yq)E2  (13)

where E2 is the Cantor pairing function.

4 - In each memory configuration, the non-empty addresses are

grouped into sets of 208 addresses4 called files.

With these 4 conventions, we are now ready to discuss the Encoder

and Decoder procedures. Suppose that at time t of the simulation, con-

figuration memory 1 (Box 1 ) contains the present configuration

(Ct CCt)Supp ) encoded as indicated above, When the dynamics processor

generates an interrupt, a file (208 numbers) from memory 1 are brought

into the input buffer-present configuration (Box 5 ). The first task

of the decoder is to compute vt and wt, i,e,, the present structure and

1The reason for that is that the actual implementation was carried out in
an ADAGE AGT-ll0 computer in which the disk buffers, which are the buffers

that we use in our program, are 208 words long,
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and present intensity corresponding to each of these 208 elements. This

computation is summarized by the following!

Let z., i=l,...,208 be the coordinates of the elements in the buffer;

then a . = (z.)a i=1,... ,208 are the corresponding addresses in memory
1 1

configuration 1.

Hence, we obtain the coordinate z = (zl' z z i=l,... ,208 from1 2 3

its address a . as,

i i i i -1 -l
Z= (z , z , z ) = ( t.)a = (a.)E i=l,...,208 (14)'

1 2 3 1i 3

Let (cx.) content = S. i=1,...,208 (15)

then,

i -
(z )v = ( )E proj

1 E2  po 1

and i=1,...,208 (16)

i -~)1

(z )Wt = 1)E 2 proj2

Combining (14) and (15) we obtain an expression that summarizes the

computation of the procedure decoder:

-1 -l .
(a .)E v = (cc.) content E proj11 3 t 1 2 1

i=l,.. .,208 (17)

-1 -l .
(Ot.)E W = (c.) content E proj21 3 t 1 2 2

Recall that E IN + N is invertible (see Section 4.2).
S
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Similarly, assume now that the output buffer-next configuration

i i
(Box 4 ) contains 208 structure-intensity pairs (z vt, z t) corres-

ponding to elements at coordinates z i=l,...,208 then, we compute the

corresponding addresses of memory locations to which these elements must

be allocated in memory configuration 2, (which is being loaded with the

next in-time configuration) according to

(z )c = (z , z , z )E (18)
11 2 z3 3

and

(z )a content = (z vt, z W t)E2 (19)

i=l,...,208

Procedure encoder is realized in our program DDHA, by a subroutine

named Folding, and procedure decoder is realized by a subroutine called

Unfolding, which are listed in Appendix A.3.

Now we describe the dynamics processor procedure (Box 9 ) in

Figure 1). This procedure has two tasks

a) Control the actions of the other blocks in the program (DDHA);

and b) Carries out the computation of next states for the elements

allocated in the input buffer.

We describe task b) first:

Assume, as above, that the present time configuration is allocated

in memory configuration 1; the other case is perfectly symmetric.

We have in the input buffer 208 pairs of states

i i
(z v , z t) = , .,0
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obtained from the decoding operation (17). The dynamics processor

proceeds then as follows:

1 - Set i-l

2 - Compute z v t = g, where T is the input selector function
t J

of the DHA K under simulation1

i ii
3 - Compute (z )g. = (z +a. ,...,z +a. )

3 3,1 3' ,m.

4 - If (z + a. ,...,z + a. ) c {z , i=1,...,208}
-- ,1 3,m. -

J
Go to 6; else go to step 5

5 - Bring to input buffer the decoded contents of all elements

at points z + a. 9 (z , i=l,...,208}.
J,k

Step 5 has the objective of bringing the additional nearest neigh-

boring states of the element at z required for the computation of its

next state.

i ii
6 - Set Y = z v , W = ((z + a. )W ,...,(z + a. )w )

-t j,1 t J,m. t
J

7 - Call pseudo random searcher (Box 12 ).

We recall that this procedure, described earlier, retrieves

Y' = (yW)H, q = K

8 - Call Encoder (Box 8 ). This procedure computes:

i i i i i
(z )a = (z , z2, z )E3, ( )a content = (Y',W')E21 2 z3 3'(2

1We could have randomized the table of T : G + N , but since the num-
K K

ber of different neighborhood functions is fairly small (~10) we found

this to be unnecessary.

-421-



9 - Send (z )a, (z )a content to output buffer

10 - Set i = i+1

11 - If i < 208 go to 2; else go to 12

12 - Bring a new set of 208 memory contents from memory

configuration 1 to input buffer

13 - Send the 208 set of computed next-states from output

buffer to encoder - to memory configuration 2

14 - Set t = t+l (t is time)

15 - If t > T -1 Halt, else go to 16
-- H

16 - Are all the contents in input buffer empty. If yes

set SWl to B, SW2 to D' (i.e., now memory configuration 2 con-

tains the present configuration and we will load memory con-

figuration 1 with the next state

17 - Set memory configuration 1-- memory configuration 2

memory configuration 2 +- memory configuration 1

18 - Go to 1.

Task a) consists of steps 14, 15 for timing of the simulation and

steps 16, 17 for switching memory configurations. In addition, it pro-

vides with a mechanism for stopping the simulation at any time step (user

controlled interrupt).

SW1 and SW2 are the switches shown in Figure 1.
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This completes the description of the simulation program DDHA. Now

we illustrate its operation with an example of a DHA simulating the dy-

namics of the lac operon system described in Section 3.5, and whose

state assignment was carried out there (by program IDHA). The initial

configuration for the reduced DHA AK is listed in Table 1. The time

step is equivalent to 30 sec in the real process, the quantization inter-

val corresponds to 1 pinol/ml. TH was taken equal to 600 steps (~1800

sec.), the simulation time was about 20 minutes; that is, an average

of 2 sec/step.

In Figures 6, 7 and 8 we show the corresponding time evolution of

the molecules of the system (see Section 3.5). We used a 7 order poly-

nomial curve fitting to interpolate between sample levels. (The plots

are generated by a special graphics program called Screen (see Kohn and

Johnson [ ]).)

In Table 1, the structures and intensities of the different ele-

ments are the ones assigned by IDHA (see Section 3.5, Table 3.5-1). The

initial configuration displayed in Table 1 is not the initial configura-

tion of the minimal DHA AK, but of the original DHA (constructed by IDHA;

see Section 3.5). We put this configuration instead of the actual one

used in the simulation in order to correlate the assigned elements with

the physical elements they represent.

In Table 1, we have listed only a few of the elements representing

lactose-out molecules (structure 33, intensity 49). In the actual ini-

tial configuration we have assigned 300 of these molecules. The operon
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Table 1

Initial Configuration for Simulation

of Lac-Operon System

DDHA INIITIAL CONFIGURATION

POSITION
Zi Z2 Z3
1 0 0

STRUCTURE

20

44

51

29

3 0
4 0
5 0
2 0
2 0
2 0
2 0
3 0
4 0
5 0

5

5
5

5
5

6
6

6

6

6

40

-20
1

INTENSITY

0
0

0

1

1

0

04

48

48

48

48

49

49
49

49

49

49

49

49

49

49

49
49

52
52

52

52
52

56

56

57

ELEMENT
OPERON

CLOCK
MRNA POL.
MRNA
RIBOSOME

RIBOSOME
RIBOSOME

RIBOSOME

RIBOSOME
PROTEIN

TFM

REACT.SYST 3

REACT.SYST 3

REACT.SYST 3

REACT.SYST 3
REACT.SYST 3

REACT.SYST 3
REACT.SYST 3

REACT.SYST 3

REACT.SYST 3

REACT.SYST 3

REACT.SYST 3

REACT.SYST 3

REACT.SYST 3
REACT.SYST 3

REACT.SYST 3
REACT.SYST 3

REACT.SYST 4

REACT.SYST 4

REACT.SYST 4
REACTSYST 4

REACT.SYST 4

STOP

STOP

REG
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is assumed to be initially in stand/by and we have put a few elements

representing lactose-in molecules (structure 29 intensity 48) to guaran-

tee that the TFM element will be induced.

The region I of operation of the simulation in the informational

space is determined by the stop elements (structure 27, intensity 56).

This region is determined by

-20 < z < 40

- 2 < z < 300 (20)

0 < z < 2
- 3 -

A program for allocating the initial configuration to the memory

configuration 1 in coded form, has been designed. This program, called

INIT, is listed in Appendix A.3.

The graphs of the simulation2 are constructed as follows:

Let C be the configuration of the DHA A at time t, we compute the
t K

function h : Q - IN as follows

qh = Number of z's e (C t)Supp , in intensity q (21)

in the catalysis region (see Section 3.3).
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Thus, since we have assumed (see Section 2.1) that the intra-cellu-

lar volume is constant, qh is proportional to the concentration of the

molecule (either protein or metabolite) q in the cell at time t.

Figure 6 is constructed by computing, at each time step, qh i=1,2,3

for the reactants and products of reaction systems (1,2) and (1,3) (see

Section 3.5). Initially, we have constructed our initial configuration

so that there is a large concentration of lactose-out elements and a

relatively low concentration of lactose-in elements.

When the operon is activated, producing synthesis of MRNA's, and con-

sequently synthesis of the proteins of the operon are accomplished, the

elements corresponding to lactose-out molecules disappear as discussed

in Section 3.3 and the number of elements corresponding to lactose-in

molecules increase (due to the catalytic action of the permease). Sim-

ultaneously, the appearance of protein elements representing z-galacto-

sides causes the reaction system to operate with the consequent appear-

ance of elements representing glucose and galactose.

It is interesting to notice that during the simulation, the operon

went off for two time steps; an examination of the corresponding two

configurations revealed that this was due to the fact that locally there

were no lactose-in elements interacting with the TFM, this caused a

decrease in the number of MRNA elements (recall that the MRNA elements

-426-

ii.e., inducing transcription.



are destroyed after the translation of 3 set of proteins; see Sections

3.3 and 3.5) and consequently, a decrease in the number of elements

representing proteins.

This decrease is clearly observable in the concentration time-course

for the proteins displayed in Figure 7. These simulation results show

that the transcriptional control is very effective in sensing environ-

mental changes such as, in this case, the local decrease of control

metabolite elements.

Figure 8 shows the behavior of the concentrations for the REACTION

system (1,4). The initial number of acetyl C A elements allocated was

50. The reversibility of this reaction caused, towards the end of the

simulation, a complete disappearance of the elements representing

acetylthiogalactoside. The significance of this phenomenon is not clear.

We note however, that the correlation between the amount of acetyl-

thiogalactoside elements and acetyl C A and thiogalactoside elements

(the reactants in (1,4)) obtained from the simulation is consistent.

We conclude this section with some observations about a computa-

tion of the initial configuration, using the initial activation process

procedure developed in Section 4.5, assuming as given the configuration

C400 obtained in the simulation described above.

The computation time for the procedure was 18 minutes, the initial

configuration obtained is shown in Table 2. The time for the process

to reach an initial configuration was equal to 286 steps; that is, from

our control algorithm we obtained an initial configuration that reaches
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Table 2

Initial Configuration, Result of Initial

Activation Process Control

Procedure

DDHA INIITIAL CONFIGURATION
POSITION

Zl Z2 Z3
1 0 0
2 0 0
1 -l 0
2 -1 0
2 -1 1
3 -l 1
4 -l 1
5 -l 1
6 -l 1
2 -1 2
1 1 0
1 2 0
1 3 0
1 4 0
1 5 0
2 2 0
3 2 0
4 2 0
5 2 0
5 3 0
5 4 0
5 5 0
5 6 0
5 7 0
5 8 0
5 9 0
5 10 0
6 1 0
6 2 0
6 3 0
6 4 0
6 5 0
40 1 0
-20 1 0
1 1 1

STRUCTURE

7
0
12
16
21
20
22
20
20
44
51
29
29
29
29
33
33
33
33
33
33
33
33
33
33
33
33
38
38
38
38
38
27
27
28

INTENSITY

0
48
48
48
48
49
49
49
49
49
49
49
49
49
49
49
49
52
52
52
52
52
56
56
57
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the configuration C400 of the simulation in 286 steps.

A comparison between Tables 1 and 2 shows that the corresponding

elements are either in identical states or equivalent ones; for in-

stance, the ribosome element in the simulation at (2,-1,1) is in state

(20,0) while, that of the control algorithm is in state (21,1) (i.e.,

the former has not synthesized any proteins while the latter has syn-

thesized one battery corresponding to one MRNA; see Section 3.3).

The elements representing reaction systems in the catalysis region

are in identical states while those in the reactants and products region

are in the neutral intensities in the simulation, while those obtained

in the algorithm are in intensity, ready for react. Despite these

differences, it is interesting to notice that the control algorithm

produces an initial configuration which is feasible from the physical

point of view. We will come back to this point in the next section

where we discuss an algorithm for identifying structures from experi-

mental data when some of the structural characteristics of the system,

such as type of TFM of one or more operons of the system is not known.

5.2 Structural Identification of Epigenetic Processes in the Context

of DHA's

In this section we develop, on the basis of simulation procedure

(DDHA) described in the last section, a procedure for identifying

structural characteristics of the elements of an epigenetic control

process given two items:
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1 - Experimental data of kinetic nature of the characteristics

described in Section 2.31 (i.e., concentration-time courses of some or

all of the chemical elements2 and/or concentration time courses of some

or all of the protein elements participating in the process.

2 - Some partial knowledge about the structural nonobservable

characteristics of the elements of the process (e.g., the type of trans-

criptional feedback mechanism of each of the operons participating in

the process, the type of the reaction systems, etc. ... ).

We illustrate the characteristics of the identification procedure

with the lac operon system described in Section 3.5.

Our strategy in developing the identification procedure, is as

follows. First, we transform the given kinetic data into a form that

is suitable for its interpretation as observed output of a DHA repre-

senting the process (see Section 2.3 and Equation 5.1-21 for a dis-

cussion of this transformation). Second, we introduce the concept of

schemata of DHA's associated with the process under study as a set of

partially specified DHA's sharing some common features to be determined

in each specific case, and third, we define a fitness criterion which

allows us to choose among the elements of the schemata, a DHA whose

characteristics are most likely to correspond to a representation of

1Figures 2.3.3 and 2.3.4.

2By chemical elements we mean elements of the transformation subclass (see
Section 3.2).

3In a sense to be discussed later.
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the process under study.

We start with a description of the usual way in which kinetic data

is presented and then we describe a procedure for transforming this data

into a form suitable for our purposes.

Figure 1 illustrates a typical presentation of kinetic experimental

data (taken from Gutfreund [ 1]) over a cell population for the reaction

system (1,2) (see Section 3.5-1), and normalized of the experimentally

measured volume occupied by the population so that it corresponds to a

"typical" average cell in the population.

The points encircled represent actual (normalized) measurements,

while the solid lines correspond to a 5-order polynomial interpretation

under a least squares criterion.

The first important data transformation we perform is time discreti-

zation; an estimate of the appropriate time intervall for discretization

can be obtained by the following procedure.

Recall that the reaction system (1,2) represents the reaction

C(1,2) + A(1,2) + B(1,2) where C(1,2), A(1,2), B(1,2) represent lactose,
PR(l,2)

glucose and galactose respectively and PR(1,2) is -galactoside.

We can write a kinetic model which reproduces the experimental

(interpolated) data using a Michaelis-Menton formalism (see Bartholomay

[ 2]). This kinetic model is of the form:

ISee Section 2.3.
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Concentration

Mols
Litter

1'

Lactose(C(1,2)) Glucose(A(1,2))'1 0
0-galactoside(PR(1,2))

12 20 27 33 46 50 56

TIME(minutes)

Conventions:

o Experimental point
Glucose

0 Lactose

0 0-galactoside
--- Interpolated time course

Figure 1
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d 2IA(12)] + [ _A(1,2)]lk [C I + k_ + k2I = k k2[C(1,2)] [PR(l,2)]
dt2  dt 11,2 1 2 12 0

(1)

with a similar equation for IB(1,2)] where [A] means concentration of

species A.

The assumptions in the derivation of (1) are as follows:

a) There is an excess of concentration of the reactant C(1,2),

that is, the reaction tends to proceed in the forward direction

and the concentration [C(1,2)] does not vary "significantly" over

the interval of time under study.

b) The total concentration of enzyme [PR(1,2)] remains constant

over the interval of consideration.

kl, k 1 , k2 are reaction constants (see Wood et al [5 1) of the

following representation of the reaction

C(l,2) + A(1,2) + B(l,2) (2)

PR(l,2)

k

PR(1,2) + C(l,2) + PR(1,2) - C(1,2)

-~l (3)
k
2

PR(1,2) - C(1,2) + PR(l,2) + A(1,2) + B(l,2)

k_

where PR(1,2) - C(1,2) represents an unstable molecule-complex called

the activation complex. In fact, (1) can be derived from (3) by a more
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or less elementary mass conservation argument (plus the basic Micaelis-

Menten assumption; see Bartholomay [ 2 ]).

We note that under assumption a) we must restrict ourselves to the

interval from 46 to 56 minutes in the graph of Figure 1. Since in this

interval, [k [C 1,2 + k_ + k 2 constant and k1 k 2[C ,2] [PR(1,2)]

constant, Equation (3) can be integrated to give

k k [C ] k k [C ][PR(1,2)]
[A = 1 2 1,2 1___2___1,2 ____o

1,2 k[C+=+ t 121+1,2 k[C1,2 + K_ +k-2 (k [C ] + k +k )2
1 1,2 -1 -2

[k [C ]I+k + k ]t
. 1 1,2 -1 -2
e + constant terms (4)

Using Equation (4), and the experimental (interpolated) data of

Figure 1, in the time interval [46, 56] we have an algebraic equation for

determining the constants kl, k_, k-2. We found a solution for this

equation using a least squares criterion-algorithm given in Kohn and

Johnson [ 4], whose results are shown in Table 1 below.

Table 1

Least Square Estimates of Reaction
Constants of (3) Estimate

k 1 10,8 sec 1

k~l 30.4 sec 1

k 2 5.1 sec 1

-l
k_ 11.4 sec

From (4) and using the parameters in Table 1 we are ready now to state

our discretization criterion. Take as time interval of discretization,
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the minimum time interval in 146, 56 min] required for the concentration

Al,2] to increase (or decrease) one mole with respect to a standard

volume 10 lit ~ cellular volume; that is, we consider as the minimal

amount of variation in concentration of A(1,2), the one corresponding

to the appearance or disappearance of 1 molecule in the system. This

criterion is based on the fact that our model considers changes in con-

centration corresponding to integer numbers of molecules under the

assumption that the intra cellular volume is constant (see Section 2.1

for a discussion of this point).

We note that the criterion given above, for choosing the discreti-

zation interval, serves also as a criterion for choosing the quantization

interval (see Section 2.3; in particular, Figure 2.34 and companion dis-

cussion), as the interval representing the change in concentration due

to 1 molecule of A(1,2). We choose A(1,2) (which represents glucose)

to carry out our analysis because for this specific example, it is the

molecule in the system with the smallest molecular weight.

In synthesis, for a general system, we determine an evolution equa-

tion for the molecule with the smallest molecular weight using macro-

kinetic principles (see Bartholomay 1 2 1), use the experimental data to

identify the corresponding reaction constants, and then, determine the

discretization interval corresponding to the change in concentration for

this molecule of 1 mole with respect to the standard volume of the sys-

tem (i.e., the cell), and the quantization interval equals 1 mole of the

molecule in the system with smallest molecular weight.
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We then, on the basis of the determined quantization interval,

for the molecule of smallest molecular weight proceed accordingly, to

quantize the concentration time-courses of the rest of the molecules

in the system i.e., if the concentration of i species at time t is [i],

we take as its quantized verions Ii] .i, where [a] m. is the integer

number of quantization intervals smaller than or equal to [a] .

We mention that for the data of Figure 1, the discretization inter-

val equals 37 seconds. This time is considerably larger than the one

used in the simulation example in Section 5.1; however, recall that the

data used here is the one corresponding to an "average" cell over a

given population so that the data does not correspond to a particular

cell, but rather to a smoothed version of the cells in the population.

Now, we pass to define the output equation compatible with quantized

and discretized data for our simulation family of DHA's (the schemata).

Let A = <I,T> be the DHA representing a given epigenetic system.

Let P = {C C ... ,Ct ,... I be the process under study. Define for

k
q e Q, the intensity set of A the function, 6 Q + {0,1} be as follows.

q

For Ct any configuration of P, V z e I,

((z)C/proj t 
=6 t 1 if (z)C proj = qtt 2q

0 otherwise

t
Define the functions h Q + IN (the natural numbers) for some q e Q,

q

q 7 0 (the dormant intensity), t e {0,l,2,...}
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((z)Cproj )h = (((z)C)proj2 )
t  (6)

z e (Ct)Supp

That is, (6) is a formal difinition of the function h introduced in

5.1-21 if we restrict ourselves in (6) to points z in I such that

z e (C t)Supp fl S (7)
t o pr

where S is the products and reactants region of the informational
pr

space, (see Section 3.3, Figure 3.3-12 and companion discussion). We

t
call h the aggregation output of A with intensity q.

q

Recall our convention in Section 3.3, in which we use the same

symbol to represent both the name of a molecule and its intensity in

t
the reactants and product region. With this convention, h represents

q

the (quantized) concentration of q at time t when q is an intensity

t
corresponding to the molecule q in the system under study, for h evalu-

q

ated in the products and reactants region S pr'
t t t

The vector h = Ih ,...,h I with q. an intensity of a reactant or

a product, i=l,... ,n summarizes the information of kinetic nature that

we have about the time evolution of the (quantized) concentration of the

It is important to note here that we restrict ourselves to the reactants
and products region in the summation in (6), If A is the minimal DHA
computed according to the algorithm of Section 4.3 it may happen that for
some configuration Ct, (z)Ctproj2 =q for some z e Spr however, we do

not include those points in the summation (6).
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elements q,, i=l,...,n.

We note that in the case corresponding to the example of Figure 1,

h t= [ht h th t < h th th
C(1,2)' A(1,2)' B(1,2)' C(1,2)' A(1,2)' B(1,2)'

t
h >] (8)AB(1,2)

where the 3 output functions inside the < > brackets correspond to the

3 possible intensities the protein element PR(1,2) can have in the

catalysis region which forms part of the reactants and products region

(see Figure 3.3-12),

We note that no experimental data about the reaction systems (1,3)

or (1,4) is given in Figure 1. Therefore, for this example, our identi-

fication problem consists in determining feasible time-course concen-

trations for the elements participating in these reaction systems,

In general, the structural identification problem consists in

finding an initial activation or composite control process evolving in

the DHA representing the system under study, such that the part of the

output function corresponding to known kinetic data, equals the corres-

ponding concentrations (in quantized form) at every time step. That is,

t
let d. i=l,.,..,n t=0,1,.., be the quantized experimental concentrations

1

of elements q., i=l,...,n at time steps t=0,1,..., then, we want the

configurations of the process to satisfy

t = t r~r tt
d (C(z)C Cp j i=l,,,,. ,n (9)

1 t~j2'q JtPJ2 q.i

z e (C )Supp 0lS t=0,1,...
t o pr
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This is our fitness criterion.

Based on this criterion, we now proceed to describe the structural

identification procedure; this procedure consists of 5 steps:

1 - Determination of initial time t and time horizon T of
o H

the process;

2 - Specification of a set S of feasible DHA's satisfying the

fitness criterion. S is called the schemata of the identification

procedure;

3 - Assignment and rearrangement of the elements of each of the

DHA's of S so as to satisfy the dynamics of the known output elements;

4 - Solution of a composite control problem for each of the pro-

cesses in the schemata S for which step 3 has been successfully completed;

5 - Computation of the output dynamics for the unknown elements of

the process.

1- We recall that the experimental kinetic data on which we base our

identification is obtained from measurements on a cell population and not

from a single cell; moreover; frequently the data spans over more than

one cell generation (see Lewin [ 6]). Since the model developed in Sec-

tion 3.3 does not consider cell division we must select an interval of

the time base of the data on which to base our identification procedure.

In principle, this does not imply loss of experimental data because if it

spans several time generations we group it into segments with length (in

time) less than one cell generation and perform an identification in each

segment.
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From now on, we assume that the data considered for the identifi-

cation has a length within one cell generation.

The criterion for determining the initial time of the process is

as follows;

a) Order the operons in the system according to their control

action, i.e., if OP. has the code for the regulator protein of OP. the
J

i < j. This ordering is carried out in the input operation of the model

to the computer (see program IDHA, Section 3.5-1). The initial time of

the process (for the purposes of identification) is determined by the time

of appearance T1 of non-zero concentration for the first protein PR(l,l),

and by t its time of synthesis (see Section 3.3). The initial time for

identification purposes is then determined by the formula

t = T - 2t -4 (10)
o 1 1,1

where all variables in (10) are evaluated in discretized units. The

logic behind this convention for the initial time is that it takes

2t +4 time units to transcribe, synthesize and transport, from the

synthesis to the catalysis regions, the first protein of type PR(1,1)

(see Section 3.3).

For instance, in the example of Figure 1, T corresponds to the real

time of 33 minutes; thus

T= 3318 6 = 110 time steps,

t = 10 (see Section 3.5-1)
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t0 = 86 time steps.

Hence, our initial time step in the discretized and quantized data

for this example is the 86th step. If the concentration for PR(l,l) is

not part of the output function we proceed to check the zero time con-

centration T2 for PR(2,1), the first protein of the second operon OP2 '

and define t as
0

ny

t = T - 2 t - 4 - Y t 1  - 4n 1o 2 2,1 1,J l11
j=1

where n . is the number of proteins coded by OP, Clearly, we can genera-

lize this convention for the case in which the first protein for which

the zero time is known is PR(j,l) for some j.

b) The time horizon TH is determined according to

TH =F -T (12)

where TF is the nearest cell generation switch (TF > T ) if known or

else,

TH =a - t0

where (13)

a > 2t. .+ 4n.

where n. = number of proteins of the i-th operon. The second criterion
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(given by (13)) guarantees that all the operons of the system might be

activated at least once. (Notice that in a system with no operons not

all the operons need to be activated for a given process running in it.)

Finally, we select a region S of the informational space as in

Section 4.5. For the example of Figure 1, we take S as determined by

5.1-20.

2 - In this step we determine a schemata S of DHA's which satisfy

the given output equation,

A schemata S of DHA's is a finite set of DHA's {A.}, each of them
J

satisfying the fitness criterion (9). We construct every element A. of
]

S (using program IDHA) with the same initial time according to

a) For each time t, t < t < TF, assign to the reactants and

products region a sub-configuration C such thatt

j t t
((z)C proj )h = d. i=1,...,n (14)

t 2 q i

b) Let L be the CTM of A. (in fact, all the DHA's in S share

the same CTM because this map depends only on the elements forming the

system and not in their particular location in the informational space

(see Section 3.5-1).

Then, we demand

((z)WCt L projt)h = ((C h i=l,,,,,n (15)

That is, we demand consistency in the intensities corresponding to

-442-



the output function, This operation is simpler than it appears at first

sight because, very few empirical rules are sufficient to satisfy (13)

and once (14) is satisfied for t = t, t + 1,F,TF. In order for (15)

to be satisfied, we also have a set of rules for rearranging C( so that
Jt

C L is such that (15) is satisfied.
t

In synthesis S is a set of MDHA's A. such that for each j, j=l,...,m
J

(C Lt )proj h = d. t = t , t ,1,..,,T i=l,...,n
0 2 q. i o o F

where Ci is the initial configuration assigned to A.,
0 jo

3 - In this step we perform rearranging operations on the configura-

tions C. of A. j=l,... ,m so as to satisfy (14) and (15) (the fitness cri-

terion). We do these operations on the basis of a set of rules designed

in such a way so as to make the procedure attractive from the computational

point of view.

t
Suppose d. = Z > 0, the number of elements in intensity q. that must

appear in k different points of the informational space in the products

and reactants region. In general, if q. is a transformation element (see

Section 3.2), or, in particular, in the catalysis region. So C3 j=l,... ,n

must have, by the fitness criterion, 9 elements in intensity q. we insure

this in the algorithm for identification, by assigning k elements in in-

tensity q. and the corresponding structure to dormant points of the re-

gion (in the algorithm, to Z memory locations of the memory configura-

tion (1 or 2 see Section 5.1, program DDHA) that holds the present con-
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figuration at time t in program DDHA).

We perform the operation described in the last paragraph for every

tJ
d. i=l,...,n. Then we compute C L (using DDHA) and test (15); if (15)
1 t

t
is not satisfied we change the assignment for the d. elements for every

1

i, i=1,...,n for which the local condition (15) is not satisfied accor-

ding to the rearrangement rules described below,

a) If q. is a reactant in a monomolecular reaction (irreversible)

t+l t t
(see Section 3.3) and d. = d. - k k < d., this implies that in this

1 11

time step, k reactions of the monomolecular type have occurred. So, be

reallocating in the present memory configuration at least k q. -elements

to the catalysis region, and in the corresponding nearest neighboring

locations, allocating k proteins in intensity q,, the corresponding reac-

tions take place at time t+1 and (15) is satisfied.

b) A similar procedure is carried out if q. is a product in a mono-

t+l t
molecular irreversible reaction and d. = d. + k.

1 1

c) For monomolecular reversible reactions we proceed as in a). If

only the reactant appears in the output function (resp. as in b) if only

the product appears in the output function). If both, reactants and

product appear in the output function we must perform a) and b) simul-

taneously.

d) For bimolecular reactions (irreversible) (resp, reversible)

we proceed similarly as in a) (resp, c) with respect to transformation

elements, but in addition, if the reaction is of the form

q. + q. - q
PR
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and

t+l t
d. =d -k.
1 1 1

t+l t
d. =d. -k.
J J J

we must assign k. proteins of type PR to the catalysis region in inten-

sity q., and k . proteins of type PR in intensity k.,
J J J

Notice that for this example the consistency condition is

dt+l = dt + 1k. - k.1
s s 1 J

We construct the sub-configurations C C + 1 V j according to
o o

the rules given above until we reach time horizon TH, discarding along

the way those A. (schemas) for which the assignment and/or rearrangements
J

a) - d) does not give configurations satisfying the fitness condition.

Let S' be the resulting subset of S.

4 - Once at time TH, with every one of the schemas in S' we pro-

ceed backward in time, using the procedure derived in Section 4.5 for

s-lving composite process control problems for each of the schemas in S'

until and if we reach an initial configuration Ct for each of the
t

. 0

schemas in S'. We note that dach C3 in S' is the main stream process
t

of the corresponding composite process control problem and the control

functions (U3) correspond to reactants and/or products, or proteins not
t

included in the putput function.

5 - Once the configurations for each of DHA's in S' has been deter-

mined, we compute the output function for those reactants and/or pro-
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ducts, and proteins not included in the experimental data and average at

each time step, the corresponding outputs for each of the schemas. This is

the outcome of our structural identification procedure. It is clear that

the larger the number of schemas considered, the more likely that we will

obtain the true time-course of these concentrations simply because the

concentration variables are constructed from averages of microkinetic

data over a large number of samples (in the limit an o number of them)

and our model simulate deterministically for each case one feasible sam-

ple of the process.

In the case of our example of Figure 1 the unknown concentration

time courses are the ones corresponding to the elements of reactions

systems (1,3) and (1,4). We started with 10 schemas of which 6 were

successful. In Figure 2 we show the computed averaged output for the

six schemas with respect to real time for the chemical elements not

appearing in Figure 1, so that a somparison between these two concentra-

tion time courses can be performed.

We conclude this section by remarking on an observation made in

Section 3.4 about the correct level of aggregation of the model with

respect to the level of aggregation of the experimental data, Notice

that the data as presented to us is coarser than the dynamics of the

model in the sense that it does not uniquely determine the dynamic be-

havior of the process representing the epigenetic process that generated

this data. So, in order to reduce the cardinality of feasible processes

we had to resort to our knowledge of the operation of the genetic appa-

-446-



ratus, a piece of information that can not be obtained from the data

itself. So, putting together these nonobservable characteristics and

the kinetic data we are able to obtain schemata that is feasible, i.e.,

satisfies the genetic characteristics plus the kinetic data, Notice that

the schema output shown in Figure 2 satisfies with surprising precision

the mass-balance equation for each of the two nonobserved reaction sys-

tems.
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6. SUMMARY, CONCLUSIONS AND FUTURE RESEARCH

6.1 Summary

In this thesis, we have developed an operational model of the epi-

genetic apparatus of procaryotes on the basis of the fundamental dogma

of molecular genetics and the Jacob and Monod operational model of

operon-systems. The model, a computational device termed a Distributed

Hierarchical Automaton (DHA), posseses the following general character-

istics:

1 - It is a composite of elements represented by discrete-time,

finite, state output automata allocated in a descrete Lattice (Z K

called the informational space.

2 - The dynamics of the model are completely determined by the

local state transition of its elements (see Section 4.1).

3 - The state transition of an element in the model is functionally

dependent on the state of its nearest neighboring elements in the infor-

mational space (see Sections 3.1 and 4.1).

4 - At any time the state of all but a finite number of elements

is the dormant state whose operational significance is "no-information

is carried by the element at present time".

5 - The state of every element is composed of two hierarchies of

date: structure and intensity. The latter represents the energetic

status of the element at the operational level of aggregation (see Sec-

tions 3.1 and 3.4) and represents the only part of the state that is
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observable from kinetic-based experimental observation (see Section 5.2).

The former represents those molecular characteristics of the element

which determine its functionality in the genetic apparatus.

6 - The model is derived in six steps:

a) Classification of the molecules or actions of the genetic

apparatus into a finite set of classes (see Section 3.2).

b) Determination of a type for each of the classes in step a),

on the basis of the generic properties of the elements of each

class (see Section 3.3).

c) Allocation of the elements to specific regions of the informa-

tional space I = Z3 (see Section 3.3).

d) Determination of a universal type capable of simulating the

state dynamics of any of the elements of the model (see Section

4.4) obtained in step b)..

e) Simplification of the model obtained in step d) by the con-

struction of a minimal-state DHA whose time-computational complexity

is the lowest possible (see Section 4.3).

f) Algorithmic implementation of the model in a digital computer

(see Sections 3.5.1 and 5.1).

Two applications of the model in the study of epigenetic processes

i.e., a characteristic element. By determination of a type, we mean,
determination of its state transition structure.

-450-



were considered:

a - Analysis of three types of canonical epigenetic control pro-

cesses: Initial activation processes, composite processes and

construction processes (see Section 4.5).

b - Structural identification of unknown kinetic characteristics

of epigenetic control processes on the basis of experimental kine-

tic data about these processes (see Section 5.2), i.e., given the

concentration time courses of some of the chemical elements in the

process, find the concentration time course for the rest of them.

We conclude this summary with an observation about the generality

of the model.

The model has been derived with the fundamental criterion of

serving as a tool for studying a variety of epigenetic control processes

rather than tailored to a specific process. With this criterion in mind,

we developed a construction program (IDHA in Section 3.5) so that the

user can specify the specific characteristics of the process under study

and the procedure constructs a representation of the model in an effec-

tive, sequential manner. This allows the use of the model in epigenetic

studies by researchers in molecular genetics who do not have a computer

science or automata theory background.

6.2 Conclusions

We have found that the distributed hierarchical automaton possesses

dynamic characteristics which make it a very useful tool in the simula-
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tion and analysis of complex epigenetic processes in procaryotes.

The DHA is well suited for digital computer implementation and is

rich in structural properties so that a great variety of epigenetic pro-

cesses can be implemented with it.

With respect to other computer based models of epigenetic control

processes such as Dendral [1 1 or Ziegler's model of E.coli, [2 ], our

model has the unique advantage of representing functional characteristics

of the elements and their (local) dynamic interaction. Also, the state

dynamics of the elements are derived on the basis of a detailed analysis

of the operational characteristics of these elements in the cell and not

on a formal analogy with makrokinetic models of chemical reactions or

based on heuristic considerations as some of the models mentioned above

are.

As a consequence of the property of our model mentioned above, our

model has the unique characteristic of being a discrete finite state

model, and it captures the fundamental characteristics of the processes

it simulates.

We have also found, that the DHA admits an algorithmic realization

based on a generalization of the corresponding algebraic procedure for

ordinary automata and, the realization procedure and its associate pro-

cedures developed in Chapter 4 represent, to our knowledge, the first

instance in which such types of (algebraic) construction has been

applied to distributed automata.

In synthesis, the importance of the model developed in here resides
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in its use as a tool for predicting the structure of the kinetics of

(multi) operon systems, the identification of the characterisitcs of

the kinetics of nonmeasured parts of these kinetics on the basis of

(partial) measurements of concentration time courses of some of the

elements in the system and finally, the models provide an efficient tool

in which to test hypothesis about the characteristics of epigenetic

processes such as transcriptional control of some or all operons in the

system, average time before the destruction of MRNA's, ribosomes, etc.

6.3 Critique and Future Research

In this section we give an overall evaluation of the results pre-

sented in this thesis and suggest several directions of future work in

the further development of these results.

Although the formal model, developed in the thesis is capable of

handling fairly complex operon systems, in the simulation of their

structural characteristics in time, we believed it to be only a first

step in the development of a comprehensive computational model for the

analysis and reliable behavioral prediction of epigenetic control pro-

cesses in procaryotes.

Specifically, we believe an important improvement in the model can

be attained in the representation of genes and protein elements (see

Section 3.3) in the following direction. Recall that we represented the

information content of a gene by a single number (the time of synthesis)

rather than a representation of the sequence of codons confroming it.
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In order to obtain a model whose dynamics resembles as closely as possi-

ble the transcription part of epigenetic processes the types representing

operons must be modified so that their corresponding genes do simulate

the language characteristics of the genetic code and its transcription--

i.e., we may want types for individual codons. A similar observation is

valid with respect to the representation of systhesis of proteins, i.e.,

the representation of the 20 different amino-acid residues that form a

protein and its incorporation during synthesis instead of our present

representation in which we only count the number of amino acids in a

protein and not the sequence of amino acids. These modifications will

not alter the state structure of our model, but will increase its com-

putational complexity. Nevertheless, we believe that the improvement

in the closeness with which the model dynamics resembles the dynamics

of the real epigenetic process is worth this disadvantage.

We believe that a more complex operon system than the one utilized

for illustrative purposes in the thesis (the lac operon) should be

implemented with the model in order to determine its capabilities and

practical constraints (i.e., computational time, simulation errors, etc.).

We mention that although only the example of the lac operon is reported

here we have tested the model with other, single-operon systems with

encouraging results with respect to the ability of the model to predict

kinetic behavior of the molecules participating in the processes re-

sulting from the activation of these operons. (A particularly interesting

result was obtained in the structural identification of the arabinose
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operon.)

Finally, with respect to the structural identification, we think,

that a definite proof of the capabilities of the model can be assessed

by running the procedure for a system for which the kinetics is known

completely from experimental measurements. The acid test of this model

and its extension will be its ability to predict accurately experimen-

tally observed data. This clearly is the most important next step.
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APPENDIX A.l

UNIVERSAL ALGEBRAS

In this appendix, we give a short review of those aspects of univer-

sal algebras that are used in the formulation and study of DHA's in Chap-

ter IV and Section 3.4. A more complete description and analysis of uni-

versal algebras may be found in Gratzer [1 ], Cohn [2 ], Kuros [2], and

Hule [ 41.

A universal algebra Q is a pair <Q, > where Q is a nonempty set

and 4 = {fYY 6 G} is a family of operations on g being indexed by the

set of ordinals i<O where 0 is an arbitrary ordinal.

The family T = {n >0 fY is an n -ary operationy e GI is called the
Y- Y

type of G.

Two algebras Q, Q' are said to be similar (denoted by Q s Q') if

they are of the same type.

Example 1: Let 0 = {fl, f2, f }1 T = {2, 1, 0}. Let Q be a nonempty set.

Define f i=l,2,3 as follows: V q1 , q2  3 6 Q

(q 1 1 qf = (q2 q 1 )f

11 l 1 11'((q 1 f 2 ql) f 1, q 3f 1= (q1 1'(q 2 ,q 3)f 1 )

(q1f
2 q1)f

1 = (qqf2 )f 1 = f 3

1We use the same symbol to denote the algebra and its set. In each in-
stance we will make clear which of them is meant.



3
q e Q, f3E

(q1 ,f
3 f q 1 = (f3 q 1f

with these definitions <Q, D> is an abelian group with f 1= addition,

2 3
f = negation, f = identity element. Clearly all abelian groups are

similar (in fact all groups are similar). A

Notation: For similar algebras Q, Q' we used the same operation symbol

(fY P P) for those operations on Q and Q' which are indexed by the same

Y e G. A

If Q is an algebra, the cardinal IQ| of its set Q, is called the

order of the algebra Q.

Let <Q, O> be a universal algebra; let U / M, U C Q such that

V y e G

Yl n

whenever (q1,...,q ) e U for n > 0, and f = q e U if n = 0 then, the

restriction of any f e 0 to U yields an operation on U which we denote

again by fY. The algebra <U,@> is called a subalgebra of Q and Q an

extension of U.

As a consequence of the definition above we have:

Proposition 1: Any nonempty intersection of subalgebras of a given alge-

bra Q is again a subalgebra of Q. A



If S is a nonempty subset of Q, <Q,4> an algebra, then, the inter-

section of all subalgebras of <Q,D> containing S is called the subalge-

bra of <Q, D> generated by S and denoted by IS] 1D or simply IS].

Let Q, Q' be similar algebras. A homorphism from Q to Q' is a

mapping v:Q - Q' such that

(a1 ,...,a )f v = (a 1v,...,a v)fy

V y e G. Such that n > 0 and
Y

f v = fy

V y such that n = 0.

If v is injective, it is called a monomorphism; if its is surjective

it is called an epimorphism; if it is bijective it is called an isomor-

phism.

The following lemma establishes the basic characteristics of alge-

bra homomorphisms.

Lemma 1:

(i) If v is a homomorphism from <Q,,> to <Q',@> , then <Qv,C> is

a subalgebra of.Q'.

(ii) If v is an isomorphism from <Q,I> to <Q',)> and n is an iso-

morphism from <Q',@> to <Q",@> then so is vn from <Q,O> to <Q",>.

-1
(iii) If v is an algebra isomorphism then so is v .

(iv) The relation "Is isomorphic to" in any class of similar alge-

bras, is an equivalence relation. 4



Corollary. Let <Q,OI> be a universal algebra of finite order (i.e.,

1Q <*). Then any monomorphism and any epimorphism from Q to Q, is an

isomorphism. (Sometimes authors call this an automorphism.) A

Let <Q,O> be an algebra. An equivalence relation 0 on Q is called

a congruence on Q if for any f e 0 with n > 0, q 0 qj,..,q n

Y Y
(q., q! e Q i=l,...,n ), implies

1 2

(q Y .. ,%nf-Y 0 (q{,P. ,qif

'Y 'Y

Let Q be the set of equivalence classes under 0, and let (q)E,

q G Q, denote the class in Q containing q. On Q we define for every

Y e G an n -ary operation f as follows: For q1 ,...,qn
y

(q 1)E,...(q n)E = (q1 ,... ,q fy)E for n > 0

fY = (f )E for n = 0
Y

The operations f y, y e G on Q are well defined since the result of

any operation does not depend on the particular choice of representatives

<Q,O> is called the factor algebra of Q with respect to 0 and is denoted

by Q10.

From (1) we deduce that the mapping v:Q + Q|8 defined by

cv = (q)E

is an epimorphism. It is called the canonical epimorphism from Q to Q|0.

Thus, QI® is a homomorphic image of Q.



Theorem 1: (Homomorphism theorem, Gratzer)

Let Q, Q' be similar algebras. Let #:Q + Q' be an epimorphism of

algebras. Then there exists a congruence K on Q and an isomorphism

:Q'+ QIK such that #I = v is the cononical epimorphism from q to Q K.

The statement of the theorem is illustrated with the following

cummutative diagram:

Q -Q'

QJK

Outline of the proof:

We define K by;

q 1Kq 2 <>1 2

It is easy to show that K is a congruence; moreover the mapping q' + q'#

is clearly a bijection from Q' to QIK and it is also clear that the dia-

gram commutes. We show next, that this mapping, denoted by $ is a homo-

morphism.

Let q = q.$, j=l,... ,ny, ny > 0, then since $ and v are homomor-

phisms

(q',...,q' )fY$ = (q1v,...,q v)fY

and it only remains to observe that commutativity of the diagram implies



that

q.T = q.v i=l,...,ny
I l

If n = 0, then since $ and v are homomorphisms we must have
Y

ff = fJ A

Remark: If # as defined in Theorem 1, is an algebra homomorphism, then

by changing the range of # from Q' to Q# we obtain an epimorphism from

Q to Q# which we also denote by #. The set {q'#1|'q' e Q# ) induces a

congruence K on Q. K is called the Kernel of # and usually it is de-

noted by Ker # .

Every algebra Q has at least two congruences: the congruence where

the classes consist of one element and the congruence whose only class

is Q itself. In case there are no more congruences on Q we say that Q

is a simple algebra.

In view of Theorem 1 and the definition of simple algebras above

we have;

Proposition 2: <Q,5> is simple if every homomorphism of Q is a monomor-

phism or maps to the algebra <{q},D> (the algebra of order 1).
A

Let L(Q) be the let of all congruences in the algebra Q. On L(Q) we

define a binary relation < as follows

o < E <=> E C (21- 2 1- 2 (2)



with E), 1 2 considered as subsets of the cartesian product Q x Q.

Theorem 2: The set L(Q) is a complete lattice with respect to < (this

lattice is called by Birkoff 1 ], the congruence lattice of Q).

Proof:

See Gratzer f ]. A

Given a set M = (O. , i e I} in L(Q), the greatest lower bound of M

is the congruence A on Q defined by

A = E . (3)
iel 1

i.e., V qq2e Q, q 1 Aq 2 <> 1 V i e I.

The least upper bound of M, is the congruence 2 on Q defined as

follows:

q q' <=> ,...,. e M and ql,...,q r- in Q such that
'1 rr

q )i 1 l',q 1 i 2'''''I r-1 i q 4
1 2 r

i.e., the smallest congruence containing U 0.. We call (4) a chain of
ieI1

length r from q to q'.

We now want to give some results with respect to the relations be-

tween congruences on an algebra Q and those on its factor algebra QJ|

(0 e L (Q)). These are given by:



Theorem 3: (Second Isomorphism theorem, Birkoff [ ]).

Let Q be an algebra 0 a congruence on Q, (q)E the congruence class

containing q e Q and D the sublattice of L(Q) consisting of all congru.--

ences 0, 8 < 0 on Q then:

(i) If Q e D, then there exists a congruence Q1 e L(QI|) defined

by

(q)E P|O(q')E iffq 0 q'

(ii) If Z e L(Q I) then there exists T e D defined by

q E q'iff (q)E E(q')E.

(iii) The mapping a:D -- L(QjO) defined by

-1 -
Qa = E|1 is a lattice isomorphism and Ea = T (see (ii))

(iv) QI& is isomorphic to (QI)|(QI) for any 0 e D.

Some of the results of theorem 3 are used in Section 3.4.

Now we consider two operations on classes of similar algebras;

direct product and direct limit.

Let {<Q.,Q>, j e Il I an ordered set, be a family of similar alge-

bras. Let Q = X Q. be the cartesian product of the sets{Q .,j e I. We
jeI

denote any element q of Q as a function I -+ Q with (j)q = q. e Q.. We
J J

define the operations fY e on Q as follows:



({(j)q {(j)q n)fY {(j)ql',' (j) q nyf} if ny > 0

and (5)

f"Y {(j)f Y} if ny = 0

where {(j)q } denotes

(j ) ,.,n )i Vj kei

The algebra <Q,Q> is called the direct product of the algebras Q.
J

and it is denoted by H9.. We will denote the operation set of Q by G
jeI

and its operations by fY, y e G.

We note that the definition of H Q. given above implies that for
jeI 3

fixed j e I the mapping

e : {(i)a} + (j)a e Q. is an epimorphism from 1 Q. to Q..

The mappings e., j e I are called the projection mappings.
J

Direct products of algebras are used in Section 4 in the construction

of covering DHA's.

Let I be the set of all ordinals j < E where E is an arbitrary or-

dinal. A family of similar algebras {<Q.,@>, j e II is called an ascend-

ing family of algebras if Qk is a subalgebra of Qk whenever k < E. We

set Q = U Q. and define the operations fy e on Q as follows:
jeI 3

fY =f of Q if n =0

and,



for ny > 0, let .=min j e I

subject to q1,...qn, e G

q 1 1 ... ,q f = q1 ,..., ,f? in <G , >

The algebra <Q,I@> is called the direct limit(or direct product,

second form in Gratzer) of the ascending family {<Q. ,@(>, j e II.

Lemma 1: Let (<Q.,@>, j e II be an ascending family of algebras. Let
J

<Q,5> be its direct limit, then Q. is a subalgebra of Q for every j e I.

Then,

(6)

(7)



APPENDIX A.2

In this appendix, a listing of the program for computing the trim

part of DHA A is provided. The description of its operation is given

in Sub-section 4.2.1.



PROGRAM ACCESSIBLE

THIS PROGRAM COMPUTES THE ACCESSIBLE PART OF A

GIVEN M-MODULE FROM A GIVEN INITIAL PROGRAM
STEP SET IG AND INITIAL STATE SET IQ.

FRACTION A(2500) ,B(2500)
******* ******************* **

A IS THE ARRAY OF ACCESSIBLE PAIRS IN EACH TIME

TRANSITION B IS THE SET OF ACCESSIBLE PAIRS
FROM IGIQ

INITIALIZE A

DO 10 I=1,2500

B(I)=-l

A(I)=-l

INIT READS-IN INITIAL PAIRS AS A ONE DIMENSIONAL

ENCODING.
****** ****** ********** ****** ***

CALL INIT(IGIQN,M,A)

DO 15 I=1,N*M

B (I) =A (I)

N=CARDINALITY(IG) M=CARDINALITY(IQ)

N3=N*M
DO 20 I=1,N3

IF(A(I))20,30,30

CONTINUE
GO TO 90

UPDATE A : COMPUTE THE NEW PAIRS OF ACCESSIBLE
PROGRAM STEPS AND STATES FROM THE SET OF PAIRS
A.

* * **** ******* *******

CALL NEWA (A,A , Nl,Ml)



**** ****************************

CONTINUATION OF PROGRAM ACCESSIBLE

UPDATE B THE SET OF ACCESSIBLE PAIRS

N2=NUMBER OF NEW ACCESSIBLE PAIRS

Nl=NUMBER OF NEW ACCESSIBLE PROGRAM

STEPS
N2=NUMBER OF NEW ACCESSIBLE STATES

I=0

N2=N1*M1

IF(N2.EQ.0) GO TO 90

IF(I.EQ.N2) GO TO 120

I=I+1
DO 50 J-1,N3

IF(A(I).EQ.B(J)) GO TO 75

CONTINUE

GO TO 98
DO 100 K=IN2-1

A(K) -A(K+1)
A(N2)=-l

N2-N2-1

GO TO 98
K=l

DO 150 I=N3+1,N3+N2+1

B (I)=A(K)
K=K+1

N3=N3+N2+1

GO TO 30

FACTOR COMPUTES THE ACCESSIBLE PROGRAM STEPS G

AND THE ACCESSIBLE STATES Q

CALL FACTOR(BN3,GQ)
CALL EXIT

END



APPENDIX A.3

In this appendix we provide a listing of some of the programs

(those implemented in Fortran) and subroutines used in the implementation

of the program DDHA (Section 5.1). The operation of each of these pro-

grams is described in Section 5.1.



SUBROUTINE INIT (IGIQ,N,M,A)

C

C THIS SUBROUTINE READS IN THE INITIAL

C PROGRAM STEP SET IG AND INITIAL

C STATE SET IQ AND ENCODES THEM

C AS A ONE DIMENSIONAL ARRAY A

C

INTEGER A(l)
INTEGER IG(100) ,IQ(100)

C
C N AS INPUT IS THE FILE WHERE IG*IQ
C IS STORED.AS OUTPUT IT IS THE NUMBER OF

C ELEMENTS IN IG.
C

CALL FOLDING(IG,M,N,K,IQ,A,-N)

N=K

RETURN
END

SUBROUTINE FOLDING(G,MN,K,Q,A,NS)
C

C FOLDING COMPUTES A ONE DIMENSIONAL ARRAY

C A OF INTEGERS THAT CODES FOR PAIRS OF INTEGERS

C OF ARRAYS G AND Q IF DIM(G)=N AND DIM(Q)=N
C DIM(A)=N*M

C
DIMENSION IBUFF(208),X(500)

INTEGER A(1) ,G(1) ,Q(1)
IF(NS.LT.0) GO TO 90

WRITE (25,10)

10 FORMAT(10X,'TYPE DIM(G),DIM(Q) IN F-FORMAT PLUS RETURN'/)

READ(10,11) XN,XM

11 FORMAT(F12.0)

N=XN
M=XM
WRITE (25, 12)

12 FORMAT(10X,'TYPE ARRAY G IN F-FORMAT. AFTER EACH NUMBER

1 TYPE "RETURN"'/)

READ(10,11) (X(I),I=lN)

DO 13 I=1,N
13 G(I)=X(I)

WRITE (25,14)

14 FORMAT(10X,'TYPE ARRAY Q INF-FORMAT. AFTER EACH NUMBER
1 TYPE "RETURN"'/)
READ (10,11) (X(I) ,I=l,M)
DO 15 I=1,M



CONTINUATION OF SUBROUTINE FOLDING(G,M,N,K,Q,A,NS)

15 Q(I)=X(I)
GO TO 25

C

C NS LESS THAN ZERO, READS FROM
C FILE -NS IN VOLUME 120

C
90 OPEN(21,1,16,@IBUFF,'&G*Q*')

NS=-NS
REWIND(21)

IF(NS-1)199,199,200
200 DO 199 I=1,NS

SKIPFILE(21)

199 CONTINUE
READ(21)N, (G(I) ,I=1,N) ,M, (Q(I) ,I=lM)
CLOSE(21)

25 K=AMAXO (M, N)
IF(N.GT.M) GO TO 18
DO 17 I=N+l,M

17 G(I)=0

GO TO 20

18 DO 19 I=M+l,N
19 Q(I)=0
20 DO 21 I=1,K

21 A(I)=((G(I)+Q(I))**2+3*G(I)+Q(I))/2

RETURN

END


