The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

As Published
http://dx.doi.org/10.1103/PhysRevLett.107.132001

Publisher
American Physical Society

Version
Final published version

Citable link
http://hdl.handle.net/1721.1/69833

Terms of Use
Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
Measurement of the Inclusive Jet Cross Section in pp Collisions at $\sqrt{s} = 7$ TeV

S. Chatrchyan et al.*
(CMS Collaboration)

(Received 2 June 2011; published 19 September 2011)

The inclusive jet cross section is measured in pp collisions with a center-of-mass energy of 7 TeV at the Large Hadron Collider using the CMS experiment. The data sample corresponds to an integrated luminosity of 34 pb^{-1}. The measurement is made for jet transverse momenta in the range 18–1100 GeV and for absolute values of rapidity less than 3. The measured cross section extends to the highest values of jet p_T ever observed and, within the experimental and theoretical uncertainties, is generally in agreement with next-to-leading-order perturbative QCD predictions.

DOI: 10.1103/PhysRevLett.107.132001
PACS numbers: 13.85.–t, 12.38.Bx

The measurement of the inclusive jet cross section is a benchmark of the standard model (SM) at hadron colliders [1,2]. At the Large Hadron Collider (LHC), jets produced in the high center-of-mass energy collisions test the SM at the smallest distance scales presently possible can constrain parton momentum distributions in the proton and are sensitive to the strong coupling constant. Significant deviations from predictions of the inclusive jet cross section at high transverse momentum p_T could also be an indication of new phenomena beyond the SM. Results from the Tevatron $p\bar{p}$ collider demonstrate agreement with next-to-leading-order (NLO) theoretical predictions from perturbative quantum chromodynamics (pQCD) for jets in the approximate p_T range of 50–700 GeV, using about 1 fb^{-1} of data at a center-of-mass energy $\sqrt{s} = 1.96$ TeV [3–5]. Early results from the ATLAS Collaboration for jets in the p_T range 60–600 GeV, based on a 17 pb^{-1} data sample of pp collisions at $\sqrt{s} = 7$ TeV at the LHC [6], also indicate agreement with theoretical predictions. Using a data sample corresponding to 34 pb^{-1} of integrated luminosity from pp collisions recorded by the CMS detector at the LHC with $\sqrt{s} = 7$ TeV, we significantly extend the p_T range from previous measurements of the inclusive jet p_T spectrum to 18–1100 GeV and for rapidities $|y| < 3.0$. The rapidity y is defined as $y = \frac{1}{2} \ln\left(\frac{E + p_z}{E - p_z}\right)$, where E is the jet energy and p_z is the component of the jet momentum along the beam axis. The inclusive jet cross section is defined as $d^2\sigma_{\text{jet}}/(dp_Tdy) = N_{\text{jet}}/(\Delta p_T\Delta y)[1/(\varepsilon L)]$, where N_{jet} is the number of jets per bin, Δp_T and Δy are the bin widths in p_T and y, and L is the total integrated luminosity, and ε is the product of event and jet selection efficiencies. All jets with $p_T > 18$ GeV in a proton-proton collision event are used in the measurement. In this Letter, the inclusive jet cross section is compared with theoretical predictions at NLO in pQCD.

The CMS detector has silicon pixel and microstrip trackers covering pseudorapidities up to $|\eta| = 2.5$, where $\eta = -\ln\left(\tan(\theta/2)\right)$ and θ is the polar angle relative to the counterclockwise proton beam direction. Together with a 3.8 T solenoid, the trackers enable track reconstruction down to transverse momenta of about 100 MeV and a resolution of about 1% at 100 GeV. A high-granularity electromagnetic crystal calorimeter (ECAL) extends up to $|\eta| = 3.0$ and has an energy resolution of better than 0.5% for unconverted photons with transverse energies above 100 GeV. A hermetic hadronic calorimeter (HCAL) extends up to $|\eta| = 5.0$ with a transverse hadronic energy resolution of about 100%/$\sqrt{E_T}\text{GeV}$ \pm 5%. The calorimeter components relevant to this work may be described in terms of a cylindrical barrel region, extending up to $|\eta| = 1.5$, and two end caps, covering $1.5 < |\eta| < 3.0$. An efficient muon system is used to reconstruct and identify muons up to $|\eta| = 2.4$. Events are collected using a two-level trigger system, consisting of a hardware level-1 and a software high level trigger. Jets formed online by the trigger system use the energies measured in the ECAL and HCAL and are uncorrected for the jet energy response of the calorimeters. This study uses inclusive single-jet triggers corresponding to p_T thresholds of 6, 15, 30, 50, 70, 100, and 140 GeV. Finally, a minimum-bias trigger is defined as a signal from at least one of two beam scintillator counters in coincidence with a signal from one of two beam pickup timing devices. The CMS coordinate system is right handed, with the origin centered at the nominal collision point, the x axis pointing radially toward the center of the LHC, the y axis pointing vertically upward, and the z axis pointing along the beam direction. More details about the CMS detector can be found in Ref. [7].

This measurement uses the infrared- and collinear-safe anti-k_T jet algorithm [8] as implemented in Ref. [9]. The algorithm is a sequential clustering algorithm similar to the well-known k_T algorithm [10,11] except that it uses $1/p_T^2$ instead of p_T^2 as the weighting factor for the scaled

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
Photon, a small residual absolute correction of about 1%, is applied requiring that each jet within the tracker’s fiducial acceptance have at least two particles, of which at least one must be a charged hadron. Further, at most 90% of the jet energy is allowed to be from photons or neutral hadrons. Beyond the tracker acceptance, each jet is required to have both electromagnetic and hadronic energy. To remove effects from anomalous calorimeter noise, beam halo, or cosmic-ray backgrounds, events are rejected if the missing transverse momentum is both larger than 50% of the total visible transverse energy and larger than 100 GeV. The missing transverse momentum is defined as the modulus of the negative transverse vector sum over the momenta of all reconstructed particles in the event. Any inefficiency in selecting jets, due to the above criteria, is estimated from simulation to be negligible.

Because of resolution effects, a jet may fall into a different pT bin than the one corresponding to the true underlying, hadron-level jet. Such bin-to-bin migrations distort the rapidly falling pT spectrum. Each pT bin width is chosen to be larger than the reconstructed jet pT resolution in the bin to minimize the migration effects and large enough to ensure that statistical fluctuations do not dominate the measurement. The jet pT spectra are corrected for resolution effects where the true jet pT spectrum is modeled by a power-law ansatz motivated by the parton model, modified by a kinematic cutoff term at high pT:

$$f(p_T; \alpha, \beta, \gamma) = N_0 [p_T]^{-\alpha} \left[1 - \frac{1}{2} 2p_T \cosh(y_{min})\right]^{\beta} \exp\left(-\gamma/p_T\right),$$

where N0 is a normalization factor, α, β, γ are fit parameters, and y_{min} is the low-edge of the rapidity bin y under consideration. Similar parametrizations have been previously used by other experiments [5,6,18]. The function is then smeared using the jet pT resolutions in bins of p_T and y. The parameters of the model are extracted by fitting the smeared transverse momentum spectrum to the experimental data. The data points are placed at the bin center, defined as the point where the value of the predicted function is equal to its mean value over the bin width. The p_T resolution corrections for each bin in p_T and y, determined by taking the ratio of the function to the smeared function, range from 5% to 10% as a function of p_T in the central rapidity bin and range from about 10% to 50% in the most-forward rapidity bin. Jet migrations across y bins due to y resolution are found to be negligible within the tracker’s fiducial acceptance. Using simulation, migrations of up to 5% are observed and corrected across bins whose boundaries lie near the tracker acceptance.

The primary sources of systematic uncertainties in the cross section measurement arise from the jet momentum scale and resolution, as well as the integrated luminosity. The jet transverse momentum scale is sensitive to several effects including (a) the photon energy scale (known to 1.0% [19] and used to derive the residual absolute response corrections), (b) the relative response across detector regions (known to within 2.6% [14]), (c) pile-up effects (known to within 0.2% for very low pile-up conditions with low-p_T jet triggers or for intermediate pile-up conditions with high-p_T jet triggers), and (d) the calibration extrapolation to transverse momenta above available photon energies (dominated by uncertainties in jet
fragmentation and estimated to be within 4% at 1100 GeV [14]). With those considerations, the total uncertainty in the jet transverse momentum scale is determined to be between 3% and 4% in the ranges $18 < p_T < 1100$ GeV and $|y| < 3.0$. The jet momentum resolutions for different y bins are known to within 10% for $|y| < 1.5$, increasing to 15% for $1.5 < |y| < 2.0$, 25% for $2.0 < |y| < 2.5$, and 30% for $2.5 < |y| < 3.0$ [13]. The integrated luminosity of the proton-proton collisions is known with a precision of 4% [20] and directly translates into a 4% normalization uncertainty on the inclusive jet cross section.

The next-to-leading-order perturbative QCD theoretical predictions are derived using NLOJET++ 2.0.1 [21,22] within the framework of FASTNLO 1.4 [23]. Other NLO calculations are available in Refs. [24–26]. The FASTNLO framework is used for propagating uncertainties due to different parton distribution function (PDF) sets, α_s, values, and scale choices. Nonperturbative (NP) corrections for hadronization and multiple parton interactions are estimated using PYTHIA 6.422 [27] and HERWIG++, 2.4.2 [28], which are applied to the NLO pQCD prediction. The correction is defined as the average of the models, and the associated theoretical uncertainty is assumed to be half of the difference between the two predictions. For low-p_T jets, the NP correction can be as large as 30%, with a relative uncertainty of 100%. Uncertainties from any residual dependence on the choice of renormalization scale μ_r and factorization scale μ_f are determined by varying the scales according to the following combinations [29]: $(\frac{1}{2} \mu_r, \frac{1}{2} \mu_f)$, $(\frac{1}{2} \mu_r, \mu_f)$, $(\mu_r, \frac{1}{2} \mu_f)$, $(\mu_r, 2 \mu_f)$, $(2 \mu_r, \mu_f)$, and $(2 \mu_r, 2 \mu_f)$. The default choice is $\mu_r = \mu_f = p_T$. These scale variations modify the prediction of the inclusive jet cross section by about 5%–10%. Following the PDF4LHC Working Group recommendation [30], PDF uncertainties are evaluated via a prescribed envelope, defined as the maximum variation between different NLO PDF sets constructed from CT10 [31], MSTW2008NLO [32], and NNPDF2.0 [33], including their respective uncertainties and using their respective default values of the strong coupling constant $\alpha_s(m_Z) = 0.1180, 0.1190, \text{and } 0.1202$. The middle of the envelope is taken as the central prediction. The uncertainties are on the order of 10% up to a p_T of 800 GeV, except when approaching the kinematic limit where they can be as large as 40%. More detailed comparisons with individual NLO PDF sets are reported separately in Ref. [34]. Finally, an additional uncertainty from the current knowledge of the strong coupling constant is calculated from the CT10as PDF set [31] with values of $\alpha_s(m_Z)$ varied conservatively by ± 0.002 and added in quadrature to the PDF uncertainty. The uncertainties due to these variations in $\alpha_s(m_Z)$ are between 2.5% and 5.0%. The PDF uncertainties are dominated by differences between PDF sets in the PDF4LHC recommendation for $50 < p_T < 500$ GeV, and by uncertainties within a single PDF set for $p_T > 500$ GeV.

![Fig. 1](color online). Fully corrected inclusive jet differential cross section as a function of p_T for six different rapidity intervals, scaled by the factors shown in the legend for easier viewing. The next-to-leading-order (NLO) theoretical predictions, corrected for nonperturbative (NP) effects via multiplicative factors, are superimposed. The statistical uncertainties are smaller than the symbol used to represent each data point.

The fully corrected inclusive jet cross section is shown in Figs. 1 and 2. Figure 1 shows the jet p_T spectra between 18 and 1100 GeV, falling over 10 orders of magnitude in rate, and for six different rapidity bins. The comparison with the theoretical NLO prediction, corrected for NP effects, is more easily discerned in Fig. 2, which provides the ratio of the jet p_T spectra from data to the theoretical prediction for each of the six rapidity bins. The total theoretical systematic uncertainty from the prediction is superimposed as solid lines above and below unity, and the total systematic uncertainty due to experimental effects is centered on the data points as a shaded band. The central predictions for the CT10, MSTW2008NLO, and NNPDF2.0 PDF sets are also overlaid. The PDF uncertainties are large and asymmetric at high jet p_T, dominating the theoretical uncertainty band. Nevertheless, compared to the PDF4LHC recommendation, similar trends between data and the central prediction of each PDF set are observed. Within the experimental and theoretical uncertainties, the predictions are seen to be consistent with the data across a wide range of jet p_T and rapidities, although the predictions are systematically above the data.

In conclusion, using a data sample corresponding to 34 pb$^{-1}$ of integrated luminosity from pp collisions recorded by the CMS detector at the LHC with a center-of-mass energy of 7 TeV, the jet transverse momentum spectrum has been measured for $18 < p_T < 1100$ GeV and for six rapidity bins up to $|y| = 3.0$. The dominant systematic uncertainties arise from the absolute jet momentum scale and resolution, as well as the integrated luminosity.
The NLO pQCD predictions for the inclusive jet cross section, corrected for nonperturbative effects and using the PDF4LHC recommendations, are generally in agreement with the data. This measurement extends to the highest values of jet p_T ever observed.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (U.S.).

S. Chatrchyan,1 V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1 W. Adam,2 T. Bergauer,2 M. Dragicevic,2 J. Erö,2 C. Fabjan,3 F. Fried,2 R. Frühwirth,2 V. M. Ghete,2 J. Hammer,2b S. Hänsel,2 M. Hoch,2 N. Hörmann,2 J. Hrubec,2 M. Jeitler,2 W. Kiesenhofer,2 M. Wobisch,13 SEPTEMBER 2011

(CMS Collaboration)

1 Yerevan Physics Institute, Yerevan, Armenia
2 Institut für Hochenergiephysik der ÖAW, Wien, Austria
3 National Centre for Particle and High Energy Physics, Minsk, Belarus
4 Universiteit Antwerpen, Antwerpen, Belgium
5 Vrije Universiteit Brussel, Brussel, Belgium
6 Université Libre de Bruxelles, Bruxelles, Belgium
7 Ghent University, Ghent, Belgium
8 Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9 Université de Mons, Mons, Belgium
10 Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
11 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12 Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
13 Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
14 University of Sofia, Sofia, Bulgaria
15 Institute of High Energy Physics, Beijing, China
16 State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
17 Universidad de Los Andes, Bogota, Colombia
18 Technical University of Split, Split, Croatia
19 University of Split, Split, Croatia
20 Institute Rudjer Boskovic, Zagreb, Croatia
21 University of Cyprus, Nicosia, Cyprus
22 Charles University, Prague, Czech Republic
23 Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
24 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
25 Department of Physics, University of Helsinki, Helsinki, Finland
26 Helsinki Institute of Physics, Helsinki, Finland
27 Lappeenranta University of Technology, Lappeenranta, Finland
28 Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
29 DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
30 Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
31 Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
32 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
33 Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
34 Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
35 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
36 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
37 RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
38 Deutsches Elektronen-Synchrotron, Hamburg, Germany
39 University of Hamburg, Hamburg, Germany
40 Institut für Experimentelle Kernphysik, Karlsruhe, Germany
41 Institute of Nuclear Physics “Demokritos,” Aghia Paraskevi, Greece
42 University of Athens, Athens, Greece
43 University of Ioannina, Ioannina, Greece
44 KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
45 Institute of Nuclear Research ATOMKI, Debrecen, Hungary
46 University of Debrecen, Debrecen, Hungary
aDeceased.
bAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
cAlso at Universidade Federal do ABC, Santo Andre, Brazil.
dAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
eAlso at Suez Canal University, Suez, Egypt.
fAlso at British University, Cairo, Egypt.
gAlso at Fayoum University, El-Fayoum, Egypt.
hAlso at Soltan Institute for Nuclear Studies, Warsaw, Poland.
iAlso at Massachusetts Institute of Technology, Cambridge, MA, USA.
jAlso at Université de Haute-Alsace, Mulhouse, France.
kAlso at Brandenburg University of Technology, Cottbus, Germany.
lAlso at Moscow State University, Moscow, Russia.
mAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
nAlso at Eötvös Loránd University, Budapest, Hungary.
oAlso at Tata Institute of Fundamental Research–HECR, Mumbai, India.
PAlso at University of Visva-Bharati, Santiniketan, India.
qAlso at Sharif University of Technology, Tehran, Iran.
rAlso at Shiraz University, Shiraz, Iran.
sAlso at Isfahan University of Technology, Isfahan, Iran.
tAlso at Facoltà Ingegneria Università di Roma “La Sapienza,” Roma, Italy.
uAlso at Università della Basilicata, Potenza, Italy.
vAlso at Università degli studi di Siena, Siena, Italy.
wAlso at California Institute of Technology, Pasadena, CA, USA.
xAlso at Ege University, Izmir, Turkey.
yAlso at University of Kansas, Lawrence, KS, USA.
zAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia.
aaAlso at Paul Scherrer Institut, Villigen, Switzerland.
bbAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.
ccAlso at University of Athens, Athens, Greece.
ddAlso at The University of Kansas, Lawrence, KS, USA.
eeAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia.
ffAlso at Paul Scherrer Institut, Villigen, Switzerland.
ggAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
hhAlso at Gaziosmanpasa University, Tokat, Turkey.
iiAlso at Adiyaman University, Adiyaman, Turkey.
jjAlso at Mersin University, Mersin, Turkey.
kkAlso at Izmir Institute of Technology, Izmir, Turkey.
lkAlso at Kafkas University, Kars, Turkey.
mnAlso at Suleyman Demirel University, Isparta, Turkey.
noAlso at Ege University, Izmir, Turkey.
ppAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom.
qqAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
rqAlso at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy.
srAlso at Utah Valley University, Orem, UT, USA.
ssAlso at Institute for Nuclear Research, Moscow, Russia.
ttAlso at Erzincan University, Erzincan, Turkey.