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Detecting Highways of Horizontal Gene Transfer

MUKUL S. BANSAL,'> GUY BANAY,' J. PETER GOGARTEN,? and RON SHAMIR!

ABSTRACT

In a horizontal gene transfer (HGT) event, a gene is transferred between two species that do
not have an ancestor-descendant relationship. Typically, no more than a few genes are hor-
izontally transferred between any two species. However, several studies identified pairs of
species between which many different genes were horizontally transferred. Such a pair is said
to be linked by a highway of gene sharing. We present a method for inferring such highways.
Our method is based on the fact that the evolutionary histories of horizontally transferred
genes disagree with the corresponding species phylogeny. Specifically, given a set of gene trees
and a trusted rooted species tree, each gene tree is first decomposed into its constituent quartet
trees and the quartets that are inconsistent with the species tree are identified. Our method
finds a pair of species such that a highway between them explains the largest (normalized)
fraction of inconsistent quartets. For a problem on n species and m input quartet trees, we give
an efficient O(m +n®)-time algorithm for detecting highways, which is optimal with respect to
the quartets input size. An application of our method to a dataset of 1128 genes from 11
cyanobacterial species, as well as to simulated datasets, illustrates the efficacy of our method.

Key words: algorithms, horizontal gene transfer, microbial evolution, quartets.

1. INTRODUCTION

HORIZONTAL GENE TRANSFER (HGT) (also called lateral gene transfer) is an evolutionary process in
which genes are transferred between two organisms that do not have an ancestor-descendant rela-
tionship. HGT plays an important role in bacterial evolution by allowing them to transfer genes across species
boundaries. This transfer of genes between divergent organisms first became a research focus when the
transfer of antibiotic resistance genes was discovered (Ochiai et al., 1959; Gray and Fitch, 1983). Micro-
biologists soon realized that the sharing of genes between unrelated species resulted in evolutionary patterns
very different from those found in multi-cellular animals. Gene transfer often was seen as preventing a natural
taxonomy of prokaryotes, i.e., a classification based on shared ancestry (Sapp, 2005). Some went so far as to
suggest that all prokaryotic microorganisms are a single species or super organism (Sonea, 1988; Margulis
and Sagan, 2002), because of their ability to share genes. However, the analysis of ribosomal RNAs has
shown that at least some molecular systems follow the tree-like pattern of relationships that is expected under
predominantly vertical inheritance (Woese and Fox, 1977; Woese, 1987).
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The problem of detecting horizontally transferred genes has been extensively studied (Zhaxybayeva,
2009). An important problem in understanding microbial evolution is to infer the HGT events (i.e., the
donor and recipient of each HGT) that occurred during the evolution of a set of species. This problem is
generally solved in a comparative-genomics framework by employing a parsimony criterion, based on the
observation that the evolutionary history of horizontally transferred genes does not agree with the evolu-
tionary history of the corresponding set of species. This is illustrated in Figure 1b. More formally, given a
gene tree and a species tree, the HGT inference problem is to find the minimum number of HGT events that
can explain the incongruence of the gene tree with the species tree. The HGT inference problem is known
to be NP-hard under most formulations (Bordewich and Semple, 2005; Hallett and Lagergren, 2001;
Hickey et al., 2008) and, along with some of its variants, has been extensively studied (Hallett and
Lagergren, 2001; Boc and Makarenkov, 2003; Nakhleh et al., 2004, 2005; Beiko et al., 2005; Than et al.,
2007; Jin et al., 2009; Boc et al., 2010; Hill et al., 2010).

In general, one expects at most a few genes to have been horizontally transferred between any given pair
of species. However, Beiko et al. (2005) demonstrated that some pairs of species portray a multitude of
horizontal gene transfer events. Such pairs are said to be connected by a highway of gene sharing (Beiko
et al., 2005). Highways of gene sharing point towards major events in evolutionary history; well corrob-
orated examples of this phenomenon are the uptake of endosymbionts into the eukaryotic host, and the
many genes transferred from the symbiont to the hosts nuclear genome (Gary, 1993). Recent proposals for
evolutionary events that may be reflected in highways of gene sharing are the role of Chlamydiae in
establishing the primary plastid in the Archaeplastida (red and green algae, plants and glaucocystophytes)
(Huang and Gogarten, 2007), and the evolution of double membrane bacteria through an endosymbiosis
between clostridia and actinobacteria (Lake, 2009). Detecting these highways of gene sharing is thus an
important biological problem and is crucial for inferring past symbiotic and ecological associations that
shaped the evolution of organisms.

Given a rooted species tree, any two species (nodes) in it that are not related by an ancestor-descendant
relationship define a horizontal edge connecting those two nodes. Any HGT event must take place along a
horizontal edge in one of its two directions (Figure 1a). A horizontal edge along which an unusually large
number of HGT events have taken place (say 10% of the genes) will be called a highway of gene sharing or
simply a highway. The only existing method for detecting highways is the one employed originally by
Beiko et al. (2005). That method takes as input a species tree and a set of gene (protein) trees, and
computes, for each gene tree, the HGT events affecting that gene on the species tree. This is done by
solving the HGT inference problem for each gene tree. The HGT events that are inferred in the HGT
scenarios for a significant fraction of the gene trees are postulated as the highways. However, this approach
suffers from several drawbacks. First, the HGT inference problem is NP-hard under most formulations, and
thus, difficult to solve exactly (and must often be solved using heuristics). Second, there may be multiple
(in fact, exponentially many) alternative optimal solutions to the HGT inference problem (Than et al.,
2007). And third, when the rate of HGT is relatively high, there is little reason to expect that the number of
HGT events should be parsimonious; that is, the HGT inference problem, even if solved exactly and
yielding only one optimal solution, may not infer the actual HGT events. In this work we propose an
alternative approach to detecting highways that does not rely on inferring individual HGT events. More-

FIG. 1. Horizontal gene transfers
and highways. (a) A species tree
depicting three HGT events (dotted
arcs) and a highway (bold red hor-
izontal edge). The highway repre-
sents many individual HGT events
all occurring between the same two
(present-day or ancestral) species.
(b) The corresponding gene tree for
Gene-1. Because of the HGT of
Gene-1 from species d into species g, the copy of that gene in g is most closely related to the one in d. Therefore, in the
tree for Gene-1, the species g appears next to d. (Here we assume that Gene-1 was not transferred on the highway as
well.)
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over, our formulation allows exact solution of the problem in polynomial time. Our method thus avoids all
of the aforementioned pitfalls.

As in Beiko et al. 2005, the input to our method is a trusted rooted species tree for some set of species,
and a set of gene trees on genes taken from those species. Since it is often difficult to accurately root gene
trees, we assume that the input gene trees are unrooted. Our method is based on the observation that
highways, by definition, affect the topologies of many gene trees. Thus, the idea is to combine the
phylogenetic signals for HGT events from all the gene trees and use the combined signal to infer the
highways, thereby avoiding the need to infer individual HGT events. We achieve this by employing a
quartet decomposition of the gene trees. In particular, our method decomposes each gene tree into its
constituent set of quartet trees and combines the quartet trees from all the gene trees to obtain a single
weighted set of quartet trees. The intuition is that quartet trees that disagree with the species tree may
indicate HGT events and thus the collective evidence from all quartet trees could pinpoint possible
highways. The combined set of quartet trees is then analyzed against the given species tree to infer the
highways of gene sharing. Decomposing the gene trees into quartet trees allows us to cleanly merge the
phylogenetic signals for HGT events from all the different gene trees into a single summary signal, from
which exact and efficient inference of the highways is possible.

To find highways, our method iteratively finds a horizontal edge that explains the largest fraction of
inconsistent quartet trees. Essentially, for each (weighted) quartet tree inconsistent with the species tree, we
identify the horizontal edges that can explain it by an HGT event (in either direction) along them. The
horizontal edge that explains the most normalized inconsistency is proposed as a highway. (Normalization
is needed since the structure of the species tree and the location of the horizontal edge in it influence the
number of inconsistent quartet trees that edge may explain.) We give a dynamic programming algorithm
that, given a weighted set ® of quartet trees, computes the scores of all candidate highway edges (thereby
finding the best highway) in O(|®|+ n?) time, where n is the number of species in the species tree. Since
there are ®(n?) candidate highway edges, our algorithm is asymptotically optimal with respect to the input
and output size. In contrast, a naive enumeration algorithm would require O(|®| - n*) time. Though |®| can
be quite large (as large as @(n*)), our efficient algorithms allow our method to be applied to fairly large
datasets; for example, we can analyze a dataset of 1000 gene trees with 200 taxa within a few hours on a
personal computer (this includes the time required to compute the quartet decompositions for the 1000 gene
trees). We demonstrate the utility of our method on simulated data as well as on a dataset of 1128 genes
from 11 cyanobacterial species (Zhaxybayeva et al., 2006), where its results match prior biological ob-
servations.

A preliminary version of this article appeared elsewhere (Bansal et al., 2010).

2. BASIC DEFINITIONS AND PRELIMINARIES

Given a rooted or unrooted tree 7, we denote its node set, edge set, and leaf set by V (7), E(T), and Le(T)
respectively. For the remainder of this paragraph, let 7 denote a rooted tree. Given 7, the root node of T is
denoted by r#(T). Given a node v € V(T), we denote the parent of v by par (v), its set of children by Chy (v),
and the (maximal) subtree of T rooted at v by T(v). We define <7 to be the partial order on V (T) where u <7
v if v is a node on the path between r#(7) and u. We say that v is an ancestor of u, or that u is a descendant of
v, if u <7 v. Given a non-empty subset L CLe(T), we denote by Icaz{L) the least common ancestor (LCA) of
all the leaves in L in tree T ; that is, Ica;(L) is the unique smallest upper bound of L under <;. Throughout
this work, the term ““tree”, rooted or unrooted, refers to a binary tree.

Given a rooted tree T, a horizontal edge on T is a pair of nodes {u, v}, where u,v € V(T), such that u,
v#riT), u £v, v £u, and par (u) # par(v). We denote by H(T) the set of all horizontal edges on T.
Horizontal edges represent potential horizontal gene transfer events; the (directed) horizontal edge (u, v)
represents the HGT event that transfers genetic material from the species represented by edge (par (u), u)
to the species represented by edge (par (v), v). Thus, the horizontal edge {u, v} represents the HGT events
(u, v) and (v, u). Also note that, while any particular HGT event is directional, we address the problem in
which horizontal edges are undirected because highways can be responsible for transfer of genetic material
in both directions.

Our formulation and solution to the highway detection problem rely on the concept of quartets and
quartet trees. A quartet is a four-element subset of some leaf set and a quartet tree is an unrooted tree
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whose leaf set is a quartet. The quartet tree with leaf set {a, b, ¢, d} is denoted by ab|cd if the path from a to
b does not intersect the path from c to d. Given a rooted or unrooted tree 7, let X be a subset of Le(T) and let
T1X] denote the minimal subtree of T having X as its leaf set. We define the restriction of T to X, denoted
T|X, to be the unrooted tree obtained from 7[X] by suppressing all degree-two nodes (including the root, if T
is rooted). We say that a quartet tree Q is consistent with a tree T if Q=T| Le(Q), otherwise Q is
inconsistent with T. Observe that, given any 7 and any quartet X={qa, b, ¢, d} from Le(T), X induces
exactly one quartet tree in 7, that is, the quartet tree 7|X. Also observe that this quartet tree must have one
of three possible topologies: ab|cd, ac|bd, or ad|bc.

3. DETECTING HIGHWAYS

Our goal is to detect the highways of gene sharing in the evolutionary history of a set of species S. To
that end, we are given a set of unrooted gene trees {7}, ..., T, }, and a rooted species tree S showing the
evolutionary history of S. Thus, Le(S) =S, and Le(T;) C S for 1 <i<m. The idea is to infer the highways
by inspecting the differences in the topologies of the gene trees compared to the species tree. The highway
detection problem can thus be stated as follows: Given a species tree S and a collection of gene trees, find
all the horizontal edges on S that correspond to highways of gene sharing.

Throughout this manuscript, S denotes the given species tree, and n denotes the number of species in the
analysis, i.e., n=|Le(S)|.

Our solution to the highway detection problem is based on decomposing each input gene tree 7 into its

constituent set of (‘Lef") quartet trees, combining the quartet trees from the different gene trees into a

single weighted set of quartet trees, and then comparing this set of quartet trees to the given species tree to
infer highways. To understand the intuition behind using quartet trees, consider the scenario depicted in
Figure 2. The figure on the left shows a species tree on six species, along with two HGT events of two
different genes. Consider the HGT event (C, E) that transfers Gene-1. This HGT event causes the topology
of the gene tree constructed on Gene-1 to deviate from the topology of the species tree. Essentially,
according to the standard subtree transfer model of horizontal gene transfer (Hein, 1990; Beiko et al., 2005;
Hill et al., 2010), this HGT event causes the subtree rooted at node E to be pruned and then regrafted along
the edge (B, C), as shown in the figure. Let us decompose both trees into their constituent set of quartet
trees: Each tree generates (2) = 15 quartet trees. Among these, most of the quartet trees are the same in both
the species tree and the gene tree. In particular, only four of the fifteen quartets induce different quartet
trees in the two trees; in the gene tree, these appear as aclef, ad|ef, bc|ef and bd|ef. Different HGT events
produce gene trees with different sets of inconsistent quartet trees. Thus, given the species tree, and the set
of the four inconsistent quartet trees from the gene tree on Gene-1, we could have precisely inferred the
HGT event (C, E) that affected Gene-1.

Decomposing the gene trees into quartet trees allows us to cleanly combine the phylogenetic signal for
HGT events from all the different gene trees into a single analysis, which is desirable since highways, by
definition, affect the topologies of a large number of gene trees. Under our quartet based model, we say that
a horizontal edge is a highway if its two HGT events together explain a disproportionately large number of
inconsistent quartet trees. The highway detection problem thus becomes the problem of finding such
horizontal edges.

FIG. 2. The tree on the left Species tree Gene tree on Gene tree on
is a species tree showing the Gene-1 Gene-2

evolutionary history of a set
of six species. Two HGT
events (C,E) and (b,c),
shown by the dotted arcs, are
also depicted on this species
tree. The two other trees
show the evolutionary his-
tories of Gene-1 and Gene-2.
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3.1. The method in detail

Our method proceeds iteratively, inferring one highway per iteration, as follows.

[Le(T)|
4

Step 1: Decompose each input gene tree 7 into its constituent set of ( ) quartet trees.

Step 2: Combine the quartet trees from the different gene trees into a single weighted set, @, of quartet
trees. Note that, since each quartet can have at most three different quartet trees, the number of
quartet trees in this weighted set is at most 3 - (}).

Step 3: Remove from @ all those quartet trees that are consistent with S.

Step 4: Compute the HGT score of each edge in H(S). This HGT score for an edge is computed based on
®, and is explained in detail below.

Step 5: Select the highest scoring horizontal edge as a highway.

Step 6: Remove from ® all those quartet trees that are explained by the proposed horizontal edge.

Step 7: Go to Step 4 to start the next iteration.

The (raw) HGT score of a horizontal edge is simply the total weight of the quartets from @ that are
explained by a HGT along that edge (in either direction). Thus, this raw score of a horizontal edge captures
the number of quartet trees from the input gene trees that support horizontal gene transfer along that edge.
However, not all horizontal gene transfers affect the same number of quartets. Consider the example shown
in Figure 2. As seen previously, the HGT event (C, E) causes four of the quartet trees in the corresponding
gene tree to become inconsistent. Consider the HGT event (b, ¢) that transfers Gene-2. This HGT event
causes ten of the quartet trees in the gene tree built on Gene-2 (shown on the right in Fig. 2) to become
inconsistent; these are ad|bc, ae|bc, af|be, ac|de, ac|df, aclef, be|de, beldf, belef and de|cf. Thus, considering
only the raw scores of the horizontal edges would lead to overestimation of the quantity of HGT along
certain horizontal edges and underestimation of this quantity for other horizontal edges, leading to incorrect
inference of highways.

To overcome this bias we modify the score of each horizontal edge by dividing its raw score by a
normalization factor: The maximum number of distinct quartet trees that could be explained by a horizontal
gene transfer (in either direction) along that edge. More precisely, let ¥ be the set of all possible quartet
trees on the leaf set Le(S). Given a horizontal edge {u, v}, let Q; denote the set of quartet trees in ‘¥ that
become consistent due to the HGT event (i, v), and let O, denote the set of quartet trees in ‘¥ that become
consistent due to the HGT event (v, u). The normalization factor for {u, v} is defined to be |Q; U O,|. After
normalization, the HGT scores of all horizontal edges can be directly compared to one another. In general,
not all the gene trees will represent all the species considered in the analysis and this may lead to
overestimation of the normalization factor for some horizontal edges. However, when analyzing HGTs, it is
common to only include those gene trees that have genes from most of the taxa (say at least 75%)
considered in the analysis, and this normalization scheme can be expected to yield accurate results on such
datasets.

The number of iterations in the method can either be fixed at the beginning or, preferably, be decided on
the fly, based on the distribution of the horizontal edge scores computed in the current iteration. In that
case, the algorithm would terminate when none of the horizontal edges show a significant score. When
using the algorithm iteratively, we should also check that the new suggested highway is time consistent
with the previous ones.

3.2. The basic computational problems

This iterative quartet based method involves four computational steps: (i) computing the initial set
of weighted quartet trees from the gene trees; (ii) removing the quartet trees that are consistent with S;
(iii) computing the (normalized) HGT score of each edge in H(S); and (iv) identifying and removing
those quartet trees that are explained by the proposed highway. The main computational challenge
here is (iii), in which we must compute the (normalized) HGT score of each horizontal edge. Next, we
first briefly describe how to efficiently solve problems (i), (ii), and (iv), and then focus on the main
problem.

Computing the weighted set of quartet trees. The goal here is to decompose each of the input gene
trees into its constituent set of quartet trees, and then combine these sets into a single weighted set of
quartet trees. We note that several quartet based phylogeny inference/analysis methods rely on de-
composing a tree into its constituent set of quartet trees (Piaggio-Talice et al., 2004; Zhaxybayeva et al.,
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2006). Though it is “folklore” that the problem of quartet decomposition can be solved in O(n*) time,
this result has, to our knowledge, never been formally established. For the sake of completeness, here we
fill this gap. In particular, we will show how to generate all the quartet trees for any gene tree 7 in a
predefined (e.g., lexicographical) order within O(|Le(T)|*) time. Since the quartet trees are generated in a
predefined order, the quartet trees from different gene trees can all be combined together in linear time,
yielding the O(sn*) overall time bound, where 7 is the number of input gene trees. We rely on the
following lemma.

Lemma 3.1.  Given an unrooted tree T we can determine, after an initial O(|Le(T)|) preprocessing step,
whether any given quartet tree Q on the leaf set of T is consistent with T within O(1) time.

Proof. Let T’ be the rooted tree obtained from 7 by rooting it along any arbitrary edge. We first
preprocess T’ so that, given any two nodes from V (T”7), we can compute their LCA within O(1) time
(Bender and Farach-Colton, 2000). This preprocessing step takes O(|Le(T)|) time, and also allows us to
label the nodes of T’ in such a way that given any two nodes u,v € V(T) we can check if v € V(T'(u)) in
O(1) time. To accomplish this, we first perform an in-order traversal of 7’ and label all the nodes by
increasing numbers in the order in which they are seen. Next, we perform a post-order traversal of T’ to
associate a start and an end value to each node. These start and end values at a node are, respectively, the
smallest and largest labels that occur in the subtree rooted at that node. It is easy to verify that, given any
u,v € V(T"), we can now check if v is in the subtree rooted at T’(x) simply by checking if the label of v lies
between the start and end values at u.

Given a quartet tree Q = ab|cd, let X = Icap(a, b) and Y =Icap(c, d). We claim that Q is consistent with T
if and only if either ¢,d & Le(T'(X)) or a,b & Le(T'(Y)). To prove this claim, consider the following two
cases.

Q is consistent with 7 Let E and F denote the internal nodes of Q such that E is on the path from a to b,
and F is on the path from c to d. Let T’Q denote the tree T'[Le(Q)]. Consider the embedding of Q in T’Q. The
root of T’Q must appear along one of the following five paths: the path from (i) a to E, (ii) b to E, (iii) Eto F,
(iv) c to F, or (v) d to F. In cases (i) and (ii), the node Y will correspond to node F, and the condition
a,b & Le(T'(Y)) must be satisfied. In case (iii), the nodes X and Y must correspond to nodes E and F
respectively, and both the conditions ¢,d & Le(T'(X)) and a,b & Le(T/(Y)) are satisfied. In cases (iv) and
(v), the node X will correspond to node E, and the condition ¢, d ¢ Le(T'(X)) must be satisfied. Thus, if Q is
consistent with 7 then at least one of ¢,d & Le(T' (X)) or a,b & Le(T'(Y)) must hold true.

Q is not consistent with 7: Without any loss of generality, assume that Q' = ac|bd is the corresponding
quartet tree in 7. Let E and F denote the internal nodes of Q' such that E is on the path from a to ¢, and F is
on the path from b to d. Let T, denote the tree T'[Le(Q")]. Consider the embedding of Q' in T’Q,. The root of
Té, must appear along one of the following five paths: the path from (i) a to E, (ii) ¢ to E, (iii) E to F, (iv) b
to F, or (v) d to F. In case (i), we must have b € Le(T'(Y)) and ¢,d € Le(T'(X)). In case (ii), we must have
a,b € Le(T'(Y)) and d € Le(T'(X)). In case (iii), we must have a,b € Le(T'(Y)) and ¢,d € Le(T'(X)). In
case (iv), we must have a € Le(T'(Y)) and ¢, d € Le(T'(X)). In case (v), we must have a,b € Le(T'(Y)) and
¢ € Le(T'(X)). Thus, if Q is not consistent with T then neither of the two conditions c,d & Le(T'(X)) or
a,b & Le(T'(Y)) can hold true.

Since, after the preprocessing steps, both the conditions c¢,d € Le(T'(X)) and a,b & Le(T'(Y)) can be
tested in O(1) time, our proof is complete. [ ]

Lemma 3.1 makes it easy to generate the set of constituent quartet trees for any gene tree 7. First, we
generate all the 3 - ('Lgf)‘) possible quartet trees on the leaf set of T in some predefined order and then,

after the O(|Le(T)|)-time preprocessing step, check which of these quartet trees are consistent with 7. In
this way, we can count for each quartet tree the number of gene trees it is consistent with in O(mn®)
time.

Removing consistent quartet trees. This can be accomplished in O(n*) time by simply consid-
ering each quartet tree in @ separately and using the result of Lemma 3.1 to check if it is consistent
with S.

Checking which quartet trees are explained by a proposed horizontal edge. This step can be
executed in O(n*) time as follows. Suppose the proposed horizontal edge is {x, v}. This edge represents the
HGT events (1, v) and (v, u). Our goal is to identify those quartet trees in @ that can be explained by at least
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one of these two HGT events. To accomplish this, construct a variant S’ of S obtained by pruning the
subtree rooted at v and regrafting it at the edge ( pa(u), u) (this models the HGT event (1, v)). Now consider
each quartet tree in @ separately and use the result of Lemma 3.1 to check if it is consistent with §'. Remove
all the consistent quartet trees from ®. Similarly, construct a second variant S” of S obtained by pruning the
subtree rooted at u and regrafting it at the edge (pa(v), v) (this models the HGT event (v, u)). As before,
consider each quartet tree in ® separately, use the result of Lemma 3.1 to check if it is consistent with S”,
and remove all the consistent quartet trees from @.
Next, we study the main computational problem of our method, i.e., the highway scoring problem.

4. THE HIGHWAY SCORING PROBLEM
The highway scoring problem can be formally stated as follows:

Problem 1. Given a rooted species tree S and a set O of weighted quartet trees (that are inconsistent
with S) on the leaf set Le(S), the Highway Scoring (HS) problem is to find the (normalized) HGT score of
each edge in H(S).

The naive way to solve the HS problem would be to consider each edge in H(S) one-at-a-time and to
check which of the quartet trees from ® are explained by that edge. As shown above, checking whether a
quartet tree is explained by a horizonal edge can be accomplished in O(1) time. Since there are @(n%)
candidate horizontal edges the complexity of computing just the raw score of each horizontal edge is still
O(|®| - n*). In this section we show how to solve the HS problem in O(|®| 4 n?) time. The time complexity
of our algorithm is thus optimal.

Notation. Recall that each horizontal edge actually represents two HGT events. We denote the set of all
these HGT events on, S by H (S). Thus, for any horizontal edge {u,v} € H(S), there are two HGT events
(u, v) and (v, u) in H(S)

Given a horizontal edge {u, v}, if Q; and O, denote the sets of quartet trees that are explained by the
HGT events (4, v) and (v, u) respectively, then, the raw score of {u, v} is |Q;UQ,|, which is
|01 4 1Q5]| — |Q1 N Q5. First, in Section 4.1, we show how to compute the raw score of each horizontal
event (i.e., how to compute |Q;| and |Q-|), and then, in Section 4.2, we show how to compute |Q; N Q5| and
thus obtain the raw scores of horizontal edges. Finally, in Section 4.3, we show how to efficiently compute
the normalization factor for each horizontal edge.

4.1. Computing the raw scores of HGT events

For any given quartet tree Q € <I> there may be several HGT events from H (S) that could explain Q; we
denote this set of HGT even§> by H (S, 0). Smce Si 1S fixed, throughout the remainder of this work we will
abbreviate H(S), H (S) and H (S, Q) to H, H and H (Q) respectively. Our algorithm relies on an efficient
characterization of the HGT events that can explain a given quartet. This characterization appears in the
next two lemmas; but first, we need some additional definitions and notation. .

Notation and definitions. We denote the raw score of an HGT event (u,v) € H by RS(u, v). Given any
two nodes p, g € V(S), let p — g denote the path between them in S, and let V (p — ¢) denote the set of
nodes on this path (including p and ¢). A subtree-path (SP) pair on S is a pair (S(v), p — ¢), where
v,p,q € V(S), such that the subtree S(v) and the path p — ¢ are node disjoint and none of the nodes in p — ¢
1s an ancestor or descendant of v. Given an SP pair ¢ = (S(v) p — q), the set of all HGT events (i, v) from

H such that u € S(v) and v € V(p — q) is denoted by H (o). Similarly, a subtree-complement-path (SCP)
pair on S is a pair (S(v),p — ¢), where v, p, g € V(S), such that V (p — ¢q) C V (S(v)). We define V(S(v)) to
be the set [V (S)\V (S(v))]U {v}. Given an SCP pair ¢ = (S(v), p — q) the set of all HGT events (u, v) from
H such that u € V(S(v)) and v € V(p — q) is denoted, as before, by H (0). If o is an SCP pair, then we say
that S(v) is the subtree-complement of ¢, and it refers to the subtree of S induced by V(S(v)).

Type I and Type II quartet trees. Let Q =ab|cd be any quartet tree from ® and, without loss of
generality, assume that the corresponding quartet tree in S is Q' = ac|bd. We will label Q as either a Type I
or Type II quartet tree based on how Q' in embedded in S. This is done as follows: Let E and F denote the
internal nodes of Q' such that E is on the path from a to ¢, and F is on the path from b to d. Let Sy denote
the tree S[Le(Q’)]. Consider the embedding of Q' in Sy . Note that the root of Sy must appear along one of
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FIG. 3. TypeIand Type II -
quartets, and SP and SCP T

pairs. Consider a quartet tree
Q=ab|cd from ®. Then, Q
is a type I quartet tree with
respect to the first species
tree, and a type II quartet
tree with respect to the sec-
ond. In the first species tree,
any HGT event that origi-
nates at a bold (blue) edge

and ends at a dashed (bold é

green) edge can explain the a e f c g h i b ] d
quartet tree Q. This set of .

HGT events is represented SpGCleS Tree 1

by the SP pair (S(A), B — b).
The other three SP pairs for
Q on the first species tree are
(SB)., A—a), (SO,
D —d), and (S(D), C— c).
Similarly, in the second
species tree any HGT event
that originates at any edge in
the shaded region and ends
at a dashed (bold green)
edge can explain the quartet
tree Q. This set of HGT
events is represented by the
SCP pair (S(E), B— b). The
three SP pairs for Q on the
second species tree are
(SB).  A-a). (SO,
D —d), and (S(D), C - c)

the following five paths: the path from (i) a to E, (ii) ¢ to E, (iii) E to F, (iv) b to F, or (v) d to F. If
the root of Sy appears along the path from E to F then we say that Q is a Type I quartet tree with
respect to S, otherwise we say that Q is a Type II quartet tree with respect to S. An example is depicted
in Figure 3. Since S is fixed, we can label each quartet tree from ® directly as a Type I or Type 11
quartet tree.

Lemma 4.1 (Characterization of HGT events for Type I quartet trees) Given L any Type 1 quartet tree
Q € ®, there exist four SP palrs denoted 01, 02, 03, 04 such that H(Q)f H(Gl) U H(Gz) U H(Gg)
UH(04) Moreover, the four sets H(al) H(az) H(G3) and H(0'4) are pairwise disjoint.

Proof. We continue with the notation of the preceding paragraph. Suppose Q = ab|cd is of Type 1, i.e.,
the root of Sy appears along the path from E to F. Let A denote the child of E whose subtree contains a, C
denote the child of £ in S whose subtree contains ¢, B denote the child of " whose subtree contains b, and
D denote the child of ' whose subtree contains d. See the first species tree in Figure 3 for an example. We
define the four SP pairs as follows: o= (S(A), B—b), 0,=(S(B), A —>a), 63= (S(C) D— d) and
04= (S(D) C—c¢). It is straightforward to verify that the four sets of HGT events H (01), H (02),
H(ag3), H (04) are pairwise disjoint and that each of them is a sugset of H Q).

We will now show that there does not ex1st any HGT event in H (Q) that does not appear in any of these
four sets. Consider any HGT event (u,v) € H (Q). Observe that the node v must be such that |V (S(v)) N {a,
b, ¢, d}|=1. This is because if |V (SW)N{a, b, ¢, d}|=0 then this HGT event does not affect the
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embedding of the quartet tree Q in the resulting gene tree at all, and if |V (S(v)) N {qa, b, ¢, d}| > 1 then this
HGT event yields a gene tree that remains consistent with Q. Thus v must be a node on one of the paths
A—a, B—-b, C—c, or D—d. Suppose v € A — a (the other cases are symmetric). In order for the
resulting gene tree to be consistent with Q, the path from a to b in this gene tree must not intersect the path
from ¢ to d. This means that the node «# must be such that either V (S(lca(b, u))) N {c, d} =0 or V (S(Ica(c,
d))N{b, u} =0 (or both). Since b € V(S(lca(c d))), we must have V (S(lca(b, u)))N {c d}=1(. Thus, u
must lie in the subtree S(B) i e, (u,v) € ! H (02). In summary, any HGT event (u,v) € H (Q) must be such
that (u,v) € H(al) U H(az) U H(0'3) U H(a4) [ |

Lemma 4.2 (Characterization of HGT events for Type II quartet trees). Given any Type Il quartet tree
Q € P, there extst three SP palrs denoted ., 05, 03, and one SCP pazr denoted 04, such that
H(Q) = H(al) U H(az) U H(0'3) U H(0'4) Moreover, the four sets H(al) H(az) H(a3) and H(04) are
pairwise disjoint.

Proof. We reuse the notation from the paragraph preceding Lemma 4.1 and assume now that Q = ab|cd
is of Type II, i.e., the root of S must appear along one of the following four paths: the path from (i) a to E,
(ii) ¢ to E, (iii) b to F, or (iv) d to F.

We prove the lemma for case (i); the proofs for the other cases are analogous. Let A denote the child of
the root of Spr whose subtree contains a, C denote the child of £ in S whose subtree contains ¢, B denote
the child of F whose subtree contains b, and D denote the child of F whose subtree contains d. We define
the three SP pairs as follows: a; = (S(B), A — a), 6, = (S(C), D — d), and a5 = (S(D), C — ¢). The SCP pair

is deﬁned o be (S(E) B — b). It is straightforward to verify that the four sets of HGT events
H(al) H(az) H(a3) H(a4) are pairwise disjoint and that each of them is a subset of H(Q) See the second
species tree in Figure 3 for an example.

We will now show that there does not exist any HGT event in H (Q) that does not appear in any of
these four sets. Consider any HGT event (u,v) € H (Q). As in the proof of Lemma 4.1, node v must be
on one of the paths A »>a, B—b, C — ¢, or D —»d. Suppose v € A — a. In order for the resulting gene
tree to be consistent with Q, the path from a to b in this gene tree must not intersect the path from ¢ to d.
This means that the node u must be such that V (S(Ica(b, u))) N {c, d} = (. Thus, u must lie in the subtree
S(B), i.e., (u,v) € H(al) The cases when v € C — ¢, and v € D — d are analogous and correspond to 7,
and o3 respectively. Now consider the case when v € B — b. To ensure that the path from a to b in the
resulting gene tree does not intersect the path from c to d, we must have either V (S(Ica(a, u))) N {c, d} =0
or V (S((lca(c,d)))N{a, u}=0 (or both). To get V (S(lca(a, u)))N{c,d} =0, u must lie in the
subtree S(A) and to get V (S((lca(c,d))))N{a, u}= Q) we must have u € V(S(E)). In either _case,
(u V) € H(04) In summary, any HGT event (u,v) € H(Q) must be such that (u,v) € H(al) U H(oz)
UH (03) U H (04). [ |

Note that the path in any SP/SCP pair is monotone in the tree S, and in particular contains at most one

node from any level of S. From the constructive proofs of Lemmas 4.1 and 4.2, the following corollary
follows immediately.

Corollary 4.1. For every quartet tree Q € ®, (i) any two of the subtrees/subtree-complements from its
four SP/SCP pairs are disjoint, and (ii) any two of the paths from its four SP/SCP pairs are disjoint.

Our algorithm performs a nested tree traversal of S. Before we begin this nested tree traversal we (i)
perform a pre-processing step, which precomputes certain values on the tree S, and (ii) perform a tree
decoration step during which we decorate the nodes of S with information about the four SP/SCP pairs for
each quartet tree in ®. Next we describe these two steps in detail, and then proceed to describe the nested
tree traversal procedure.

The preprocessing step. The first step in the algorithm is to preprocess the tree S so that, given any two
nodes from V (S), we can compute their LCA within O(1) time (Bender and Farach-Colton, 2000). This
preprocessing step also allows us to label the nodes of S in such a way that given any two nodes u,v € V(S)
we can check if v € V(S(u)) in O(1) time (see the previous section for a description on how to do this
efficiently). We also associate with each v € V(S) a counter, denoted by counter,, initialized to zero, and a
set path, initialized to be empty.

Decorating the tree. The tree decoration step marks, on the tree S, the endpoints of the four paths in the
SP/SCP pairs of any quartet. This is done by executing the following procedure:
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Procedure Decorate(®, S)

1 for each quartet tree Q € ¢ do
2 Using Lemmas 4.1 and 4.2, compute its four SP/SCP pairs a1 = (S(v1), p1 = q1), 02 = (S(2), p2 = q2), 63 = (S(v3),
P3 = q3), and a4 = (S(v4), p4 — q4). (Note that by convention the ¢;s denote the leaf-node end points of the four
paths.)
for each i € {1,2,3,4} do
if o; is an SP pair then
Add the triple (Q, v;, SP) to the sets path,, and path,,).
if o; is an SCP pair then
Add the triple (Q, v;, SCP) to the sets path,, and pathy,,."

~N N R W

Note that, in the procedure above, each quartet appears in at most eight path sets on S. Our algorithm
performs a post-order traversal of S and, at each node v, calls the procedure Augment(v) described below.
This procedure marks the corresponding subtrees/subtree-complements for all the paths that appear in the
set path,, and computes a value val, at each u € V(S)\ {r#(S)}. This value val, is the weight of all quartet
trees Q from ® such that (i) (Q,x,I") € path, and (ii) if T" is SP then u € V(S(x)), and, if T" is SCP then
u € V(S(x)). The reason for computing these val,’s becomes clear in the context of Lemma 4.3.

Procedure Augment(v) {v e V(S)}

1 for each x € V(S) do
2 Set counter, to 0.
3 for each triple (Q,y,I') € path, do
4 if ' is SP then
Increment counter, by the weight of Q.
if I" is SCP then
Increment counter,,s, by the weight of Q.
8 Decrement countery; and counter,, by the weight of Q, where {y;, y,} = Ch(y).
9 for each u € V(S)\{rt(S)} do
10 Set val, t0 3 cyius) ) COUNters.

~N O\

Observation 1.  In the last “‘for” loop of procedure Augment(v), a triple (Q, y, I') from path,, is counted
in val, exactly when (i) T is SP and u € V(S(¥)), or (ii) I is SCP and u € V(S(y)).
Our algorithm is based on the following key lemma.

Lemma 4.3. Suppose S has _b)een decorated and procedure Augment(v) has been executed for some
v € V(S). Consider any (u,v) € H.

1. If v € Le(S), then RS(u, v) =val,.

2. If v & Le(S), then RS(u, v) =RS(u, vi) + RS(u, vo) — val,, where {v{, vo} = Ch(v).

Proof. v € Le(S): Let Q be any quartet tree that is explained by the HGT event (u, v). Then, QO must
have an SP/SCP pair, say o = (S(x),p — ¢), such that ¢ =v and, if ¢ is an SP pair then u € V(S(x)) or if ¢ is
an SCP pair then u € V(S(x)). This implies that the set path, contains the triple (Q, x, SP/SCP). Thus, (the
weight of) QO is counted at least once in val,,. Now, from Corollary 4.1, we know that the subtrees/subtree-
complements from any two SP/SCP pairs must be node disjoint. Thus, the quartet tree Q is, in fact, counted
exactly once in val,. Finally, observe that if some quartet tree Q' is counted in val,, then Q' must have an
SP/SCP pair ¢ = (S(x), p — ¢) such that g =v and, if ¢ is an SP pair then u € V(S(x)) or if ¢ is an SCP pair
then u € V(S(x)); consequently, by Lemmas 4.1 and 4.2, the HGT event (1, v) must indeed explain the
quartet tree Q'. Thus, RS(u, v) = val,.

v & Le(S): Let Q be a quartet tree from @ and {v;, v,} = Ch(v). Observe that at most one of the edges
(v, v1) and (v, v,) may be present on the path of any single SP/SCP pair of Q (since all paths are monotone).
Corollary 4.1 therefore implies that Q may be counted in at most one of RS(u, v;) and RS(x, v,) (since only
one of the subtrees/subtree-complements from any two different SP/SCP pairs of Q may contain the node

'"We include SP/SCP in these triples to indicate whether the triple corresponds to an SP pair or to an SCP pair.
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u). Suppose Q is explained by the HGT event (1, v). Then, Q must have an SP/SCP pair, say o= (S(x),
p—q), such that ¢<g v<g p, and, if o is an SP pair then u € V(S(x)) or if ¢ is an SCP pair then
u € V(S(x)). In other words, Q must have been counted in one of RS(u, v,) or RS(u, v,). And, since v < g p,
the set path, does not contain the entry (Q, x, SP/SCP). Also, from Corollary 4.1, we know that the node u
may occur in the subtree/subtree-complement of at most one SP/SCP pair of Q. Thus, Q cannot be counted
in the value val, and, consequently, Q is counted exactly once in the value RS(u, vi) + RS(u, v,) —val,.
Now, suppose that Q is not explained by the HGT event (u, v). There are two possible cases: (i) Q is
counted in one of RS(u, v{) or RS(u, v,), say RS(u, vy), or (ii) Q is counted neither in RS(u, v;) nor in RS(u,
v,). Consider case (i). Since Q is satisfied by the HGT event (i, v;), but not by (&, v), Q must have an SP/
SCP pair ¢ = (S(x), p — ¢), such that vi =p, g € S(v1)g € S(v1) and, if ¢ is an SP pair then u € V(S(x)) or if
o is an SCP pair then u € V(S(x)). Thus, since v = pa(p), the set path, must contain the entry (Q, x, SP/
SCP). This implies that Q is counted at least once in the value val,. Now, from Corollary 4.1, we know that
the subtrees/subtree-complements from any two SP/SCP pairs must be node disjoint. Thus, the quartet tree
Q is, in fact, counted exactly once in val,. Consequently, Q does not affect the value RS(u, v{)+ RS(u,
v») — val,. Consider case (ii). In this case, since the terms RS(u, v;) and RS(u, v») do not count Q, it remains
to show that val,, does not count Q. If path, does not contain any entry of the form (Q, y, SP/SCP), where
y € V(S), then Q could not have been counted in val, and the proof is complete. Therefore, suppose that
path,, contains an entry (Q, y, SP/SCP). Let the SP/SCP pair corresponding to the entry (Q, y, SP/SCP) be
(S(y),p — q). By construction of the path sets, either v; or v, must be p. Without loss of generality, assume
vy =p. Then, we must have ¢ € V(S(v;)). Now, if u is a node in the subtree/subtree-complement S(y), then
Q must be counted in RS(u, vi), a contradiction. Thus, u cannot be a node in the subtree/subtree-
complement S(y) and, consequently, Q is not counted in val,. This completes the proof for case (ii). Since
the above analysis holds for any quartet tree Q, we must have RS(u, v) =RS(u, v{) +RS(u, vo) —val,. N

Nested tree traversal. Once the preprocessing and tree decoration steps have been executed, the alﬂ-
gorithm performs a nested tree traversal of S and computes the raw score of each HGT event from H
according to Lemma 4.3. More formally, the algorithm proceeds as follows:

Algorithm ComputeScores

1 for each v € V(S) in a post-order traversal of S do

2 Perform procedure Augment(v).
3 for each u € V(S$)\{r#(S)} do .
4 if (u, v) is a valid HGT event, i.e., (u,v) € H, then
5 if v € Le(S) then
6 Set RS(u, v) to be val,.

7 else

8 Set RS(u, v) to be RS(u, v{) + RS(u, v,) — val,, where {v{, vo} = Ch(v).

Lemma 4.4. The raw scores of all HGT events in H can be computed within O(n* + |®|) time.

Proof. We will show that our algorithm correctly computes RS(u, v), for each (u,v) € H in on® + |D)
time.

Correctness: The correctness of the algorithm follows immediately from Lemma 4.3.

Complexity: As explained in the proof of Lemma 3.1, the preprocessing step can be executed in O(n)
time. For the tree decoration step, we can infer whether any given quartet is of Type I or Type II and its four
SP/SCP pairs in O(1) time by performing a constant number of LCA and subtree-inclusion queries. Once
these four SP/SCP pairs are identified, updating the path sets on S requires O(1) time. Decorating the tree
with information from all the quartet trees thus takes O(|®@|) time. Next, we analyze the complexity of
the nested tree traversal (Algorithm ComputeScores). Consider Step 2 of Algorithm ComputeScores: We
perform the procedure Augment(v) for each v € V(S). At any given v, the time complexity of Augment(v) is
O(n) for the first “for” loop, O(|path,|) for the second ““for”” loop, and O(n) for the third ““for” loop (since
all the val,’s can be computed in a single pre-order traversal of S). The time complexity of Step 2 of
Algorithm ComputeScores is thus O(n+ |path,|). Now, by Lemma 4.1 we know that any Q € ® is re-
presented in the path sets of S exactly eight times. Thus, over all v € V(S), the total time spent at Step 2 is
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O vevis) 8 of Algorithm ComputeScores: Each of
these steps requires 0(1) time per execution and are executed O(n®) times. The total time complexity of
Steps 4 through 8 is thus O(n?). Thus, the total time complexity of our algorithm is O(n” + |D)). [ ]

4.2. Computing the raw scores of horizontal edges

Our goal now is to compute the raw score of each horizontal edge in H. For any edge {u,v} € H, let its
raw score be denoted by RS{u, v}. Observe that RS{u, v} =RS(u, v) + RS(v, u) — common{u, v}, where
common{u, v} is the total weight of the quartet trees that are counted in both RS(u, v) and RS(v, u). We now
show how to compute the value common{u,