
MIT Open Access Articles

Generalized Regular Sampling of Trigonometric 
Polynomials and Optimal Sensor Arrangement

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Deshpande, A., S.E. Sarma, and V.K. Goyal. “Generalized Regular Sampling of 
Trigonometric Polynomials and Optimal Sensor Arrangement.” IEEE Signal Processing Letters 
17.4 (2010): 379–382. Web. 5 Apr. 2012. © 2010 Institute of Electrical and Electronics Engineers

As Published: http://dx.doi.org/10.1109/lsp.2010.2041962

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/69954

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/69954


IEEE SIGNAL PROCESSING LETTERS, VOL. 17, NO. 4, APRIL 2010 379

Generalized Regular Sampling of Trigonometric
Polynomials and Optimal Sensor Arrangement

Ajay Deshpande, Sanjay E. Sarma, and Vivek K Goyal, Senior Member, IEEE

Abstract—We address the optimal sensor arrangement problem,
which is the determination of a geometric configuration of sensors
such that the mean-squared error (MSE) in the estimation of an
unknown trigonometric polynomial is minimum. Unsurprisingly,
an arrangement in which sensors are spaced uniformly in each di-
mension is optimal. However, for multidimensional problems the
minimum MSE is achieved with a much larger class of configura-
tions that we call generalized regular arrangements. These arrange-
ments are not necessarily generated by lattices and may exhibit
great nonuniformity locally.

Index Terms—Bandlimited signals, harmonic frames, multidi-
mensional sampling, nonuniform sampling, sensor networks, tight
frames.

I. INTRODUCTION

U SING sensing modalities including temperature, pres-
sure, vibrations and chemical concentration levels,

wireless sensor networks can provide measurements through
which spatially-varying quantities can be estimated throughout
a region of interest. In this letter, we consider the problem of
estimating a bandlimited field from noisy local sample values
of a physical quantity. Our interest is in how the arrangement
of sensors affects the mean-squared error (MSE) of the field
estimate, and we focus on finding a set of arrangements that are
optimal under certain conditions on the noise and estimation
procedure.

Absent noise and information other than an upper bound on
the bandwidth in each dimension, the reconstruction problem
has an exact solution under conditions analogous to the Nyquist
condition for sampling of 1-D signals [1]. However, placing sen-
sors precisely on a separable grid may not be practical. Spatial
nonuniformity need not increase the number of samples mea-
sured, but it will generally make the reconstruction problem
more difficult and more sensitive to noise; see [2]–[4] and ref-
erences therein.

Our contribution is to define a large class of generalized reg-
ular arrangements that achieve the minimum MSE. These ar-
rangements include ones that are not generated by lattices and
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may seem surprisingly uneven. We employ the formalism of
frames [5], [6] and show that optimality of a sensor arrange-
ment is equivalent to the tightness of an associated frame. We
then show that certain transformations do not affect frame tight-
ness (and hence arrangement optimality). The results seem to be
novel in both the frame and sampling literature.

The most closely-related prior work is on the equivalent
problem of “learning” trigonometric polynomials. Sugiyama
and Ogawa [7] show that having uniformly-spaced samples in
each spatial dimension is optimal. They also show that rigid
translations of this regular arrangement or superpositions of
two or more translated regular arrangements are optimal under
certain conditions on the number of samples. These results
are special cases of our more general construction. Moreover,
once the connection to frame theory is made, they follow from
well-known constructions of tight frames.

We formalize our problem in Section II, then review relevant
results from frame theory in Section III. The solution of our
sensor arrangement problem, presented in Section IV, comes
from constructing a novel generalization of harmonic tight
frames for multiple dimensions.

II. PROBLEM FORMULATION

Let denote the unknown scalar field to be
estimated where indicates a -dimensional toroidal domain
of unit length . We assume that is a trigonometric
polynomial. This model is precisely equivalent to using the do-
main and applying periodic boundary conditions. Also,
any bounded domain can be scaled and smoothly windowed to
be approximated arbitrarily well by this model without any peri-
odicity assumption. Though our developments hold for any di-
mension , we limit most expressions and all examples to the
case of .

The bandlimited assumption on the scalar field implies that
has the form

(1)

when , revealing unknown coef-
ficients and a set of orthonormal basis
functions. For a general treatment, let ,
let denote the th basis function, and let denote the th
unknown coefficient. Then (1) is expressed more abstractly as

.
Denote the location of sensor by . The measurement of

sensor is corrupted by additive noise , yielding the mea-
surement model
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We assume that is a set of zero-mean, uncorrelated
random variables with common variance .

Using the vector and matrix notations

...
...

...

...
...

. . .
...

the field and measurement models yield

(2)

Matrix is referred to as the observation matrix, and it depends
on the sensor arrangement .

Our assumptions create a non-Bayesian parameter estimation
problem that is solved by the minimum variance unbiased esti-
mator (MVUE) [8]

(3)

This estimator has MSE given by

(4)

where denotes the Hermitian transpose of . As the MSE
is a function of the sensor arrangement , we denote it as

. The optimal sensor arrangement problem is to find
solutions to

where denotes the number of sensor locations in .
Sugiyama and Ogawa [7] refer to the same problem as the
optimal sample design for learning trigonometric polynomials.

III. FRAME REVIEW

A set of vectors is called a frame if

(5)

for some constants and called the frame bounds.
With a tight frame (TF), one can choose . If
for every , then it is called a unit-norm frame (UNF). Three
elementary facts about TFs that we will use are

1) if is a unitary matrix, then is a
TF if and only if is a TF;

2) the union of two TFs is also a TF; and
3) the tensor product of two TFs, similar to the tensor product

of vector spaces, gives a TF.
The analysis frame operator is an matrix whose

rows are conjugate transposes of the vectors . It maps a vector
into a vector of frame coefficients :

is referred to as the frame operator, and the lower bound
of (5) ensures that it is invertible. For a TF, .

Our use of frame theory is transparent from the reuse of the
notations and : we see the observation matrix as an analysis
frame operator. The following theorem describes both the op-
timal estimates (consistent with the development in Section II)
and which observation matrices are optimal.

Theorem 1 ([9]): Consider the estimation of from noisy
frame coefficients

(6)

where and . The estimate

(7)

minimizes the MSE defined as , where de-
notes the pseudoinverse of and is given by .
For any frame, the MSE satisfies

(8)

For a unit-norm frame (UNF),

(9)

A UNF is tight if and only if

(10)

IV. REGULAR SAMPLING AND OPTIMAL MSE

Consider a frame formed by vectors of the form
. The observation matrix is the

corresponding analysis frame operator. The frame is a UNF
since for each . As a consequence of this and The-
orem 1, we get the following result.

Corollary 2: is an optimal sensor arrangement if and
only if it leads to a TF, in which case

(11)

While there are several mechanisms for findings sets of
tight frames [9]–[11], the difficulty of our problem arises from
the constraint that the frame vectors have forms fixed by the
sampling of a trigonometric polynomial (1) (or its equivalent
for higher dimensions). No full characterization of such tight
frames is known; we provide novel sufficient conditions.

In 1-D, regular (uniform) sensor arrangement leads to a TF
and hence to minimum MSE. Specifically, placing the th
sensor at location for and using the
1-D analogue of field model (1), the analysis frame operator is
given by

for and . The asso-
ciated frame is both a TF and a UNF. Moreover, it is an example
of a harmonic frame [9].

Shifting all sensors by the same amount (modulo the toroidal
boundary condition) is equivalent to multiplying by a unitary
matrix; hence it does not affect tightness or optimality of MSE.
Since the tensor product of TFs is a TF, it follows that regular
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Fig. 1. (a) Regular arrangement of 5 � 5 sensors. (b) Independent line trans-
lations along x-axis. (c) Independent line translations along y-axis.

Fig. 2. (a) Independent line translations along x-axis and a rigid translation. (b)
Integer linear transform with � � �, � � �, � � �� and � � � for � � �.
(c) Mapping all the sensor locations back to ��� �� .

arrangements in higher dimensions obtained by regular arrange-
ments in 1-D are optimal sensor arrangements. Furthermore, the
union of regular arrangements yields a union of TFs and again
optimality is maintained. These optimality results that follow
from frame theory are equivalent to results of Sugiyama and
Ogawa [7]. Sugiyama and Ogawa also show that arrangements
obtained by rigid translation of a regular arrangement (modulo
the toroidal boundary conditions) are optimal.

We provide in the following subsection more general varia-
tions on regular arrangements that also yield the minimum MSE.
Note in particular that these fall outside all equivalences defined
in [9], [11]. We refer to them as the generalized regular arrange-
ments.

A. Generalized Regular Arrangements in 2-D

Let us start with a regular arrangement of sen-
sors, where each and the coordinates of the
sensors are with
and . We propose two geometric transforma-
tions to obtain generalized regular arrangements.

Transformation 1) Independent Line Translations Along
an Axis: We perform this transformation with respect to one
chosen axis. If we choose x-axis (alternatively y-axis), we
independently translate each group of (or ) sensor loca-
tions with the same (or ) coordinate by some distance along
the x-axis (or y-axis). We map the sensor locations that fall
out of back to the domain using the periodic boundary
conditions. We call this transformation independent line trans-
lations along the x-axis (or y-axis). In Fig. 1, we show a 5 5
regular arrangement of sensors and illustrate independent line
translations along either axis.

Transformation 2) Integer Linear Transform: We can per-
form this transformation after carrying out Transformation 1 and
a 2-D rigid translation of the entire sampling set. We present the
case involving independent line translations along the x-axis.
The integer linear transform is a special type of linear transform

in which we map each sensor location to
, where , , and are all integers such that the following

three conditions are satisfied.
i) for every .

ii) for every .
iii) For every

is not a nonzero integer multiple of and at
least one of the following always holds.
• ;
• .

If we had performed independent line translations along the
y-axis, the above conditions remain the same, except we need
to switch between and , and , and and . We map all
the sensor locations that fall out of back to the domain.
This transformation is illustrated in Fig. 2.

We call any sensor arrangement obtained using the above
transformations a generalized regular arrangement in 2-D.

Theorem 3: A generalized regular arrangement of
sensors in 2-D, where and

, is an optimal sensor arrangement.
Proof: Consider a periodic regular 2-D arrangement of

sensors. After carrying out Transformation 1 (along the
x-axis), a 2-D rigid translation and Transformation 2, a sensor
location in the resulting arrangement is of the form

where

and represents a 2-D rigid translation and s rep-
resent distances in line translations along the x-axis.

For the 2-D case, . Let .
Each element of is of the form

where , and
, forming

elements of . The sensor locations are with
and . Their forms are given

above. Substituting and rearranging, we get

The first factor on the right hand side of the equality can be
interpreted as a 2-D rigid translation of the entire sampling set
by . We have already shown that a rigid
translation does not change . Thus we focus on the remaining
factors. We deal with four different cases.

• Case 1: and . Thus, .
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Fig. 3. (a) and (b) Arrangements of 5� 5 and 7� 7 sensors obtained after using
Transformation 1, 2-D rigid translation, and Transformation 2. (c) Superposition
of arrangements shown in (a) and (b).

• Case 2: and . According to the second condi-
tion in Transformation 2, . Hence,

. Thus, .
• Case 3: and . According to the first condi-

tion in Transformation 2, . Hence,
. Thus, .

• Case 4: and . According to the third condi-
tion of Transformation 2,
for any nonzero integer . If ,
then . Thus,

. If ,
then according to the third condition of Transfor-
mation 2, . Therefore,

. Again,
.

Combining the cases, . Thus, the generalized
regular arrangement obtained using the transformations above
lead to a tight frame and hence yields the optimal MSE.

Besides the above transformations, the superposition of two
generalized regular arrangements also yields the optimal MSE
because the union of two TFs is a TF. Sugiyama and Ogawa
[7] restrict superposition of translated regular arrangements
to a special case where the starting regular arrangement has
a number of samples equal to the Nyquist rate. Fig. 3 shows
an optimal sensor arrangement obtained by superposing two
generalized regular arrangements of 5 5 and 7 7 sensors.
This shows that an optimal arrangement can be superficially
uneven and can have sensors arbitrarily close together. Fig. 3 is
suggestive of the conjecture that near any unit-norm frame there
is a unit-norm tight frame. The related question of constructing
a unit-norm tight frame near any given frame is addressed in
[12].

B. Generalized Regular Arrangements in Higher Dimensions

We briefly comment on generalized regular arrangements in
the -dimensional domain . Let
be the number of sensors, where each . Let

denote the axes. Again, we start with a regular
periodic arrangement in the -dimensional domain. We modify
Transformation 1 with hierarchical hyperplane translations
along different axes. At the first level, we fix an axis; say .
There are hyperplanes of dimension each containing
regular arrangements of size . We
independently translate each of these arrangements along the

-axis with possibly different distances. At the second level,

we fix another axis, say , and deal with hy-
perplanes of dimension containing regular arrangements.
We translate these arrangements along the -axis with
possibly different distances. We continue in this way till we
deal with every axis. Note that the order in which we choose
axes is not important. We call this transformation hierarchical
hyperplane translations. The second transformation involving
integer linear transform involves multiplying sensor coordi-
nates with a matrix with special integer elements. We can
obtain a set of conditions on the entries of this matrix similar to
the 2-D case. We omit these details.

C. Open Question

Following the geometric transformations proposed earlier, we
can show optimality of sensor arrangements with the number of
samples only of the form , where is a
positive integer, and . The
question of finding optimal arrangements for which cannot
be expressed in the above form remains open. We can further
reduce this question to finding optimal arrangements for the
number of samples from the set

except the terms which are not integer multiples of
or , where .

V. CONCLUSIONS

Regular sampling not only accommodates easy reconstruc-
tion of a band-limited signal from sample values but also min-
imizes the MSE of the field estimate under certain conditions
on the noise and estimation procedure. We generalized regular
sampling to a set of arrangements that are surprisingly uneven
and yet possess these same properties as regular arrangements.
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