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Summary
To understand how brain states and behaviors are generated by neural circuits, it would be useful to
be able to perturb precisely the activity of specific cell types and pathways in the nonhuman primate
nervous system. We used lentivirus to target the light-activated cation channel channelrhodopsin-2
(ChR2) specifically to excitatory neurons of the macaque frontal cortex. Using a laser-coupled optical
fiber in conjunction with a recording microelectrode, we showed that activation of excitatory neurons
resulted in well-timed excitatory and suppressive influences on neocortical neural networks. ChR2
was safely expressed, and could mediate opticalneuromodulation, in primate neocortex over many
months. These findings highlight a methodology for investigating the causal role of specific cell
types in nonhuman primate neural computation, cognition, and behavior, and open up the possibility
of a new generation of ultraprecise neurological and psychiatric therapeutics via cell-type-specific
optical neural control prosthetics.

Introduction
The rhesus macaque is an important model species for understanding neural computation,
cognition, and behavior, as well as for probing the circuit-level basis of human neurological
and psychiatric disorders. To resolve how complex functions emerge from the activity of
diverse cell types, ideally one would be able to perturb the activity of genetically specified cell
types and neural pathways in the primate brain, in a temporally precise fashion. In one recent
study, adeno-associated virus (AAV) was used to deliver the Drosophila allatostatin receptor
to neurons in the primate thalamus (Tan et al., 2006), enabling neural silencing via intracranial
delivery of the small molecule allatostatin. In general, however, the adaptation of neural control
tools to the primate brain has been slow in comparison to the rapid adaptation of such tools for
characterizing circuit functions in worms, flies, and mice (reviewed in Luo et al., 2008). Indeed,
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although molecular techniques have been used to deliver genetic payloads to the primate brain
(e.g., Kordower et al., 2000; Liu et al., 2004; Stettler et al., 2006), as well as to make transgenic
primates (Chan et al., 2001; Yang et al., 2008), no attempts have been made to target genes to
genetically specified neuron types. Here we used channelrhodopsin-2 (ChR2), a genetically
encoded molecular sensitizer that enables activation of neurons in response to pulses of blue
light (Boyden et al., 2005; Han and Boyden, 2007; Ishizuka et al., 2006; Li et al., 2005; Nagel
et al., 2003; Zhang et al., 2007), to assess the impact of selective activation of cortical excitatory
neurons on primate cortical dynamics. We used optical fibers in conjunction with
microelectrodes to perform simultaneous in vivo optical stimulation and electrical recording
in the awake primate. Selectively activating ChR2-positive excitatory neurons resulted in well-
timed excitatory and suppressive influences on neural activity, reflecting neural dynamics
downstream of excitatory neuron activation. ChR2 was safely expressed and could mediate
temporally precise optical neural stimulation of significant volumes of cortical tissue for
months after viral injection, opening up the possibility for such technologies to support precise,
cell-specific optical control prosthetics for patients with severe neurological and psychiatric
disorders.

Results
We targeted ChR2-GFP to neurons in the frontal cortex in two monkeys (denoted N and A),
by injecting VSVg-pseudotyped lenti-virus carrying the ChR2-GFP gene behind the 1.3 kb α-
CaMKII promoter (Figure 1A; details in Supplemental Experimental Procedures, available
online), as used before in mice to target excitatory neurons (Dittgen et al., 2004). To insure
repeatable targeting of viruses, optical fibers, and electrodes to the same sites over extended
periods of time (Figure 1B), we designed and used a grid to coordinate stereotactic virus
injections, photostimulation, and recording (Figure 1C). Histology showed that 1 μl viral
injections labeled roughly spherical regions of cortex 1.4 ± 0.5 mm in diameter (mean ±
standard deviation [SD]; exemplar in Figure 1D; details in Figure S4, available online). We
did not observe GFP-positive cells in thalamic regions that project to injected regions,
indicating a lack of retrograde labeling using lentivirus prepared as described. ChR2-GFP
appeared to be well localized to the plasma membrane at the cell body and throughout neuronal
processes (Figure 1E). To assess the cell-type specificity of ChR2-GFP gene expression driven
by the α-CaMKII promoter, we immunostained primate cortical slices with antibodies against
the excitatory neuron-specific marker α-CaMKII (Jones et al., 1994; Tighilet et al., 1998), the
inhibitory neuron-specific neurotransmitter GABA (Hendry et al., 1989; Houser et al., 1983),
and the astrocyte-specific marker glial fibrillary acidic protein (GFAP) (Cahoy et al., 2008;
McLendon and Bigner, 1994). Neurons expressing ChR2-GFP were positive for α-CaMKII
(Figure 1Fi), but not GABA (Figure 1Fii) or GFAP (Figure 1Fiii). Of the ChR2-GFP-positive
neurons examined, all coexpressed α-CaMKII (127/127 cells; Figure 1Gi), but none
coexpressed GABA (Figure 1Gii, 0/78 cells) or GFAP (Figure 1Giii, 0/84 cells). In order to
gauge the efficiency of viral labeling, we counted the fraction of α-CaMKII-positive cells that
expressed ChR2-GFP. Near centers of injection sites, where ChR2-GFP expression peaked,
78% ± 8% of the α-CaMKII-positive cells expressed ChR2-GFP (mean ± SD; n = 3 fields of
view; 42 ChR2-GFP neurons counted). Thus, lenti-virus expressing ChR2-GFP under the α-
CaMKII promoter enables cell-specific targeting and efficient expression of ChR2-GFP in
excitatory neurons of the monkey frontal cortex.

Given the extended duration of nonhuman primate experiments, and the prospect of using cell-
specific optical neuroprosthetics for therapy, we assessed the safety of ChR2-GFP expression
in primate brain. After months of ChR2-GFP expression, during which time we repeatedly
illuminated neurons with blue light and successfully made recordings, we saw widespread
expression of ChR2-GFP in healthy-looking neurons, with no histological abnormalities in
neurons or glia, and no immune reaction at the cellular or antibody level (Figure 2; see detailed
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text in Supplemental Data). These multiple lines of evidence together support the safety of
ChR2-GFP expression in the brain of the nonhuman primate, and if supported by further and
longer-term analyses, may provide the basis for cell-specific neuromodulation therapy in
humans.

To assess the effect of optical activation of ChR2-expressing excitatory neurons on frontal
cortical neural circuits in awake monkey, we developed a system appropriate for in vivo
monkey use, coupling a fiber to a blue 473 nm laser (Bernstein et al., 2008) and assembling
multiple electrodes into independently controlled drives (Figures 3Ai and 3Aii), which were
then inserted into a single hole within the 3D printed grid (Figure 1C). This setup allowed us
to record from neurons while exposing local cortex to pulses of blue light. In regions of cortex
that were not virus labeled, we never observed light modulation of neural activity (n = 32 such
sites). In regions that were virus labeled, many neurons increased their firing rate during cortical
exposure to blue light (Figures 3B and 3C). We called these neurons “excited” units. In addition
to these excited units, many neurons decreased their firing rate during cortical exposure to blue
light (Figures 3D and 3E). We called these neurons “suppressed” units, because they did not
increase firing rate during blue light exposure, but instead decreased firing rate during light
delivery, even after brief illumination (i.e., a single light pulse). We hypothesized that since
suppressed units decreased their firing rates without having undergone prior increases in
spiking, the observed suppression was due to neural network activity, i.e., recruitment of
inhibitory neurons downstream of the driven excitatory neurons. For both the excited and
suppressed units, action potential waveforms elicited during light exposure were not different
from waveforms observed in the dark (p>0.1 for each of n=15 excited single units;
Kolmogorov-Smirnov test comparing waveform shapes in light versus dark; exemplars in
Figures 3F and 3G). In regions where excited or suppressed units were found, few light-
nonmodulated units were observed (Figure S5). These excited and suppressed units were also
observed in the cortex of mice, when excitatory neurons expressing ChR2-GFP were activated
by light (Figure S3). Light did, however, result in a low-frequency electrical artifact on our
tungsten electrodes in the brain, presumably due to the photoelectric effect; this artifact was
removed from our data by high-pass filtering (see Figure S1). Light (80 mW/mm2 radiant flux
out the tip of the fiber) modulated neurons at distances over 1.2 mm away from the fiber (Figure
S2).

In the monkey cortex, we recorded 50 excited and 20 suppressed units during illumination with
200 ms blue light pulses. Out of these 70 units, 31 were single units (15 excited, 16 suppressed)
and 39 were multi-units (35 excited, 4 suppressed). We pooled multiunits and single units for
analysis unless otherwise indicated. Excited and suppressed units had similar baseline firing
rates (p > 0.2, t test; only single units compared) and similar waveform shapes (see
Supplemental Experimental Procedures). For excited units, firing rates increased rapidly at
light onset, and then settled to a lower steady-state firing level (Figure 3H). For suppressed
units, firing rates fell sharply after a short delay, and remained low for the duration of the light
pulse (Figure 3J). For both excited and suppressed units, after light cessation the firing rates
often dipped below baseline levels for ∼100 ms. We quantified the magnitude of these changes
in firing rate during three distinct periods: the first 20 ms of light exposure (“beginning of
light”), the period between 20 ms after light onset and 20 ms after light cessation (“steady
state”), and during the 20 ms period starting 20 ms after light cessation (“after light”). Excited
units fired at 750%, 370%, and 46% of baseline firing rate during these three periods,
respectively, in each case significantly different from baseline (p < 0.0001 for each, paired t
test; Figure 3I). For single units, which yield absolute values of firing rate, excited neurons
fired at 37 ± 7 Hz, 16 ± 4 Hz, and 1.3 ± 1 Hz during these three periods (mean ± standard error
[SE]; n = 15 single units); baseline their firing rates was 6.5 ±1.3 Hz. In contrast to the excited
units, suppressed units did not change their firing rates relative to baseline during the beginning
of light period (p > 0.5, paired t test; Figure 3K), but reduced their firing rates by 76% and
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75%, respectively, during the steady state and after light periods (significantly lower than that
during baseline [p < 0.0001, paired t test], but not different from each other; p > 0.8). Suppressed
single units fired at 7.4 ± 1.7 Hz, 3.1 ± 1.0 Hz, and 2.5 ± 1.2 Hz during these three periods,
respectively (mean ± SE; n=16 single units); baseline firing rate was 9.9 ± 2.0 Hz.

We compared the latencies to changes in firing rate between excited versus suppressed units,
and found two different, but overlapping, distributions. Excited units rapidly responded to light
with latencies of 8.8 ± 0.8 ms (mean ± SE; Figure 3L). This short latency was not different
from the first-spike latency of ChR2-positive cultured pyramidal neurons responding to pulses
of blue light (p > 0.6, unpaired t test; compared to published data in Boyden et al., 2005),
consistent with the idea, but not proving, that excited units were ChR2-positive pyramidal cells.
In contrast to the short latencies of excited units, suppressed units began decreasing their firing
rates 30.8 ± 8.0 ms after light onset (mean ± SE), a latency significantly longer than the latency
for the increases in firing rates of excited units (p < 0.0001, unpaired t test). This difference is
consistent with our hypothesis that suppressed units decreased their firing rates through neural
network mechanisms involving inhibitory neuron recruitment, whereas excited units were
directly activated by light. After light cessation (after light period), the majority of excited and
suppressed units exhibited firing rates below baseline levels (28 out of 50 excited units; 16 out
of 20 suppressed units). The time for this reduced firing rate to recover to baseline was similar
for excited and suppressed units (Figure 3M, p > 0.1, unpaired t test), consistent with the idea
that suppressive influences downstream of excitatory neuron activation are mediated by a
neural-network-scale phenomenon such as inhibitory neuron recruitment.

To probe the nature of neural suppression further, we examined the activity of single units
before, during, and after light exposure. For excited cells, we found that increases in firing rate
during optical stimulation were independent of baseline firing rate (R2 = 0.025, p > 0.5; Figure
4A; n = 15 excited single units). In addition, decreases in firing rate after light cessation were
independent of the light-induced increases in firing rate (R2 = 0.096, p > 0.2; Figure 4B).
Finally, the time for firing rate to recover to baseline levels after light cessation was independent
of prior increases in firing rate (R2 = 0.016, p > 0.7; Figure 4C; n = 12 excited single units that
decreased activity during the after light period). Thus, excited cells fired before, during, and
after light exposure, in independent fashions. In contrast to excited units, for suppressed units
decreases in firing rate during light exposure were highly correlated with baseline firing rate
(R2 = 0.749, p < 0.0001; Figure 4D; n = 16 suppressed single units): for each additional Hz of
baseline firing rate, light exposure decreased firing by an additional ∼0.6 Hz. In addition, the
decrease in firing rate of suppressed neurons after light cessation was correlated with the
decrease in firing rate during light exposure (R2 = 0.673, p < 0.0001; Figure 4E). However, as
for excited cells, the time for the firing rate to recover to baseline level was independent of
prior reductions in activity levels for suppressed cells (e.g., during the steady state period;
R2 = 0.045, p > 0.4; Figure 4F; n = 13 suppressed single units that had significant decreases
in activity during the after light period). Thus, for suppressed cells, but not for excited cells,
light-induced changes in activity were correlated with baseline activity, as though the
magnitudes of spontaneous and light-suppressed activity were both functions of a common
neural network state. We further probed the response of excited cells with trains of light pulses
at 10, 20, and 50 Hz (Figure S6), finding that while spike probability fell during long, high-
frequency trains, spike timing remained reliable, and therefore ChR2 may subserve the ability
to use light to control cortical synchrony.

Discussion
We have demonstrated millisecond-timescale optical activation of excitatory neurons in the
frontal cortex of nonhuman primates, using lentivirally delivered ChR2, and have characterized
the impact of such optical control on cortical circuits. This work demonstrates the feasibility
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of applying optogenetic methods to primate neural circuits, and points the way toward the
potential use of optical control in a new generation of therapies for the improvement of human
health. Immediately, this technology makes it possible to activate a region containing a set of
excitatory neurons while avoiding the modulation of fibers of passage, or of neurons projecting
into the region. Light stimulation did result in a slow electrical artifact on the metal electrode,
which was easily filtered out from our spike recordings. Single viral injections labeled on the
order of 1 mm3 of brain tissue, comparable to the volume illuminated by single optical fibers,
suggesting that arrays of viral injectors and optical fibers may enhance the ability to
systematically modulate cell and circuit activities during behavior.

We found that whereas many neurons were excited during light activation of excitatory
neurons, others were profoundly suppressed during light exposure. In addition, many excited
and suppressed cells exhibited a period of reduced neural activity after cessation of light
activation. These excited and suppressed effects were also observed in mouse cortical neurons
under similar optical stimulation conditions. These effects may be due to biophysical properties
of the neurons recorded, for example hyperpolarization after depolarization-induced opening
of BK and SK potassium channels (Bekkers, 2000; Sah and Davies, 2000; Storm, 1987; Vogalis
et al., 2003). But several independent lines of reasoning support the hypothesis that suppression
emerges from recruitment of networks of inhibitory cells downstream of activated ChR2-
positive excitatory cells. First, suppressed neurons underwent reductions in spike firing without
having undergone prior increases in spike firing, which implies that cell-autonomous
mechanisms such as postdepolarization hyperpolarization cannot be the sole mechanism
mediating the observed suppression. Second, the latency to the decrease in firing after light
onset was significantly longer for suppressed cells than the latency to the increase in firing was
for excited cells, consistent with suppressed cells being downstream of light-activated cells.
Third, suppressed neurons decreased activity during light exposure in proportion to their basal
firing rate, whereas light-driven excitation was independent of basal firing rate, consistent with
suppression being mediated through a mechanism related to the one that sustains baseline
firing, i.e., network activity. Finally, postillumination reductions in neural activity were similar
in duration across excited and suppressed neurons, again suggesting that these effects may be
more due to emergent properties of the neural network that a given neuron is embedded in,
rather than that cell's autonomous history of activity. Future studies will explore which
inhibitory neurons are recruited by excitatory neurons to create activity patterns like those
found here; one possibility is that somatostatin-positive interneurons that can be activated by
stimulation of single excitatory neurons (Kapfer et al., 2007) could potentially mediate
excitation-induced suppression. It will also be interesting to see if such dynamics can subserve
oscillatory activity: in Figures 3H and 3J, the rebound depolarization after the end of activity
suppression is suggestive of a possible natural timescale of activity fluctuation in the delta-
theta range.

Electrical microstimulation is an important tool for both basic neuroscience and for therapeutic
neuromodulation, but how it impacts neural circuit dynamics remains unclear. In
microstimulation experiments where recording was also performed, some neurons dramatically
decreased activity in response to electrical microstimulation (e.g., Butovas et al., 2006; Butovas
and Schwarz, 2003; Seidemann et al., 2002). These electrical stimulation-induced decreases
possessed some of the same attributes of the suppressions here observed; for example, the
duration of the inhibition was largely independent of the amount of activation induced (Butovas
and Schwarz, 2003). This inhibition was pharmacologically associated with GABAergic
neuron recruitment (Butovas et al., 2006), but it remained unknown whether electrical
microstimulation must directly recruit GABAergic neurons, or whether activation of excitatory
neurons would be sufficient to create such inhibition. Here we prove that driving excitatory
neurons alone is sufficient to result in periods of activity suppression in a significant population
of cortical neurons. We found similar responses in mouse neocortex, which suggests that such
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neural dynamics might be a general property of neocortical circuits under neuromodulation.
Thus, even when just one cell type is manipulated, its impact on the brain must be evaluated
in the context of the neural network in which it is embedded. Principles must be derived for
how to control a circuit, even given a delimited set of cell types to be controlled, in order to
achieve a desired physiological, behavioral, or clinical outcome.

Optically activating excitatory neurons is just one step along the path of implementing cell-
type-specific optical control in primates. Future viral, promoter, injection, and illumination
innovations will need to be developed to match the manipulations possible in mice and other
classical genetic model systems. Optical neural silencing strategies for primates will also be
critical, perhaps involving light-activated chloride pumps such as halorhodopsins (Halo/
NpHR) (Han and Boyden, 2007; Zhang et al., 2007). Especially for questions involving higher-
order activity patterns such as neural synchrony, the ability to use ChR2 and Haloin concert to
create “informational lesions,” in which precise neural patterns are disrupted, may prove
especially useful (Han and Boyden, 2007).

Launching the verification of the safety and efficacy of ChR2 function in rhesus macaques is
a critical step toward any potential clinical translational path for cell-type-specific optical
neural control prosthetics. Given that in many disorders, the functions of specific cell types are
compromised, it is possible that the ability to optically remedy aberrant activity in specific cell
types will spur precise, side-effect-free treatments for neural disorders. As a first step toward
this synthetic neurobiology goal, here we have shown that ChR2 performs efficaciously and
without immune attack in the macaque brain, and appears to be safe over many months despite
repeated viral injections and repeated illumination sessions.

Experimental Procedures
Detailed descriptions are provided in the Supplemental Data. All procedures were in
accordance with the NIH Guide for Laboratory Animals and approved by the MIT Animal
Care and Use and Biosafety Committees. Two rhesus monkeys, 7–11 years of age, weighing
8–15 kg, were equipped for awake headfixed physiology. High-titer replication-incompetent
lentivirus encoding for ChR2-GFP was produced and injected into premotor cortex/frontal eye
fields, via custom hardware. Optical stimulation proceeded via a 200 μm diameter optical fiber
coupled to a 200 mW blue laser. Electrophysiological recording was performed using tungsten
electrodes guided parallel to the optical fiber, using independent microdrives. Signal
conditioning and acquisition were performed with a Plexon data acquisition system and
analyzed with Matlab. The brain of one of the two monkeys was fixed and examined with
immunostaining and confocal microscopy.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Expression of ChR2-GFP in Excitatory Neurons in Frontal Cortex of Primate Brain
(A) Schematic of lentiviral cassette. (B) Timeline of experiments for monkey N (top) and
monkey A (bottom). (C) 3D printed targeting grid, inserted into a recording chamber (Ci) and
in a top-view schematic (Cii). (D) Fluorescence image showing ChR2-GFP expression in deep
layers of cortex (coronal slice; dotted magenta circle indicates diameter of virus injection
cannula). (E) Representative cortical neuron expressing ChR2-GFP. (F) Images of anti-GFP
fluorescence (left) as well as immunofluorescence of three cell-type markers: α-CaMKII (Fi),
GABA (Fii), and GFAP (Fiii) (middle; right, overlay of the two left images). Arrowheads
indicate ChR2-GFP-positive cell bodies. (G) Percent of ChR2-GFP-positive cells coexpressing
each of the three markers in (F).
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Figure 2. Analyses of Potential Immune Responses against ChR2-GFP-Expressing Neurons in
Primate Cortex
(A) Nuclear DNA staining (red; To-Pro-3 stain) of slices of monkey cortex containing ChR2-
GFP-expressing neurons (green). (B) Neuronal staining (red; NeuN antibody) of slices of
monkey cortex containing ChR2-GFP-expressing neurons (green). (C) Validation of ChR2-
GFP expression in HEK cells via western blotting, using anti-GFP antibody. From left to right,
lanes show, immunostained with anti-GFP: cytosolic fraction of HEK cells transfected with
ChR2-GFP plasmid, cytosolic fraction of untransfected HEK cells, membrane fraction of HEK
cells transfected with ChR2-GFP plasmid, membrane fraction (diluted 1:5) of HEK cells
transfected with ChR2-GFP plasmid, and membrane fractions of untransfected HEK cells. (D)
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Assessment of monkey serum reaction to ChR2-GFP, for monkey N (Di) and monkey A (Dii),
via western blotting, comparing preinjection (left) to postinjection (right). Membrane fractions
of HEK cells transfected with ChR2-GFP (left lane), membrane fractions of untransfected HEK
cells (middle lane), and monkey serum samples (right lane) were incubated with monkey serum
(1:50 dilution), followed by rabbit-anti-monkey secondary antibody for visualization.
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Figure 3. Increases and Decreases in Neural Activity Resulting from Optical Stimulation of
Excitatory Neurons
(A) Apparatus for optical activation and electrical recording. (Ai) Schematic. (Aii) Photograph,
showing optical fiber (200 μm diameter) and electrode (200 μm shank diameter) in guide tubes.
(B and C) Increases in spiking activity in one neuron during blue light illumination (five pulses,
20 ms duration each [B], and 1 pulse, 200 ms duration [C]). In each panel, shown at top is a
spike raster plot displaying each spike as a black dot; 40 trials are shown in horizontal rows
(in this and subsequent raster plots); shown at bottom is a histogram of instantaneous firing
rate, averaged across all trials; bin size, 5 ms (in this and subsequent histogram plots). Periods
of blue light illumination are indicated by horizontal blue dashes, in this and subsequent panels.
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(D and E) Decreases in spiking activity in one neuron during blue light illumination (five pulses,
20 ms duration (D), and one pulse, 200 ms duration [E]). As with (B) and (C), shown at top
are spike raster plots and shown at bottom are histograms of instantaneous firing rate. (F and
G) Action potential waveforms elicited during light (shown in blue, left) or occurring
spontaneously in darkness (shown in black, right), for the neurons plotted in (C) and (E),
respectively. (H) Instantaneous firing rate, averaged across all excited units recorded upon 200
ms blue light exposure (black line, mean; gray lines, mean ± SE; n = 50 units). (I) Relative
firing rate (i.e., firing rate during the indicated period, divided by baseline firing rate) during
the first 20 ms after light onset (“beginning of light”), during the period between 20 ms after
light onset and 20 ms after light cessation (“steady state”), and during the 20 ms period starting
20 ms after light cessation (“after light”), for the n = 50 units shown in (H). (***), significantly
different (p < 0.0001; paired t test) from baseline rate (shown as dotted line); plotted is mean
± SE. (J) Instantaneous firing rate averaged across all suppressed units upon 200 ms blue light
exposure (black line, mean; gray lines, mean ± SE; n = 20 units). (K) Relative firing rate, during
the beginning of light, steady state, and after light periods, for the n = 20 units shown in (J).
(L) Histogram of latencies between light onset and the earliest change in firing rate, for excited
units (gray bars, n = 50 units) and suppressed units (black bars, n = 20 units); latencies longer
than 50 ms were plotted in a bin labeled “>50.” (M) Histogram of time elapsed until activity
recovery to baseline after light cessation, for excited (gray bars, n = 28 units) and suppressed
(black bars, n = 16 units) units that had lower-than-baseline firing rates during the after light
period.
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Figure 4. Comparison of Neural Activity Levels within Excited and Suppressed Single Units, before,
during, and after Light Exposure
(A) Firing rate change during the beginning of light period (i.e., firing rate during beginning
of light minus baseline firing rate) versus baseline firing rate, for excited cells (n = 15 excited
single units). (B) Firing rate change during the after light period versus during the beginning
of light period, for excited single units. (C) Time elapsed until activity recovery to baseline
level after light cessation, versus firing rate change during the beginning of light period, for
excited single units. (D) Firing rate change during the steady state period, versus baseline firing
rate, for suppressed cells (n=16 suppressed single units). (E) Firing rate change during the after
light period versus during the steady state period, for suppressed single units. (F) Time elapsed
until activity recovery to baseline level after light cessation, versus firing rate change during
the steady state period, for suppressed single units.
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