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Abstract

Understanding the ways that matter deforms and flows, which is the focus of the branch of science
known as rheology, is essential for the efficient processing and proper function of such practically and
technologically important materials as plastics, paints, oil-drilling fluids, and consumer products.
Rheology is also powerful from a scientific perspective because of the correlation between rheological
properties and the structure and behavior of matter on microscopic and molecular scales. The
developing sub-field of microrheology, which explicitly examines flow and deformation behavior
on microscopic length scales, provides additional clarity to this connection between rheology and
microstructure. Aging materials, whose rheological properties evolve over time, are one class of
materials that are of significant scientific and practical interest for their rheological behavior. Also,
the unique field-responsive rheological properties of magnetorheological (MR) suspensions, which
can be tuned with an applied magnetic field, have been used to create active vibration damping
systems in such diverse applications as seismic vibration control and prosthetics.

A material that undergoes rheological aging and that has received much attention from soft
matter researchers is the synthetic clay LaponiteR©. This material is attractive as a rheological
modifier in industrial applications and consumer products because a rich array of rheological prop-
erties, including a yield stress, viscoelasticity, and a shear-thinning viscosity, can be achieved at very
low concentrations in aqueous dispersions (∼ 1 w%). Though this behavior has been investigated
extensively using traditional ‘bulk’ rheology, a number of important questions remain regarding
the nature of the dispersion microstructure. The techniques of microrheology, in which rheological
properties are extracted from the motion of embedded microscopic probe particles, could help to
elucidate the connection between microstructure and rheology in this material. Microrheological
studies can be performed using passive techniques, in which probes are subject only to thermal
motion, and active techniques, in which external forces are applied to probes.

Because aqueous LaponiteR© dispersions exhibit a significant yield stress, they could be beneficial
as novel matrix fluids for magnetorheological suspensions. MR fluids consist of a suspension of
microscopic magnetizable particles in a non-magnetic matrix fluid. When an external magnetic
field is applied, the particles attract each other and align in domain-spanning chains of particles,
resulting in significant and reversible changes in rheological properties. Because of the typically
large density difference between the matrix fluid and the suspended magnetic particles, however,
sedimentation is often problematic in MR fluids. A yield stress matrix fluid such as an aqueous
LaponiteR© dispersion could help address this issue.
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In this thesis, bulk rheology and microrheology experiments are combined in order to provide
a thorough characterization of the rheological properties of aqueous LaponiteR© dispersions. Mul-
tiple Particle Tracking (MPT), a passive microrheology technique, is used to explore the gelation
properties of dilute dispersions, while an active magnetic tweezer microrheology technique is used
to examine the yield stress and shear-thinning behavior in more concentrated dispersions. MPT re-
sults show strong probe-size dependence of the gelation time and the viscoelastic moduli, implying
that the microstructure is heterogeneous across different length scales. We also demonstrate the
first use of magnetic tweezers to measure yield stresses at the microscopic scale, and show that yield
stress values determined from bulk and micro-scale measurements are in quantitative agreement in
more concentrated LaponiteR© dispersions. With a thorough understanding of the clay rheology, we
study the magnetorheology of MR suspensions in a yield stress matrix fluid composed of an aque-
ous LaponiteR© dispersion. Sedimentation of magnetic particles is prevented essentially indefinitely,
and for sufficient magnetic field strengths and particle concentrations the matrix fluid yield stress
has negligible effect on the magnetorheology. Using particle-level simulations, we characterize the
ability of the matrix fluid yield stress to arrest the growth of magnetized particle chains.

The methods and results presented in this thesis will contribute to the fundamental understand-
ing of the rheology and microstructure of aqueous LaponiteR© dispersions and provide researchers
with new techniques for investigating complex fluids on microscopic length scales. Additionally,
our characterization of the effects of a matrix fluid yield stress on magnetorheological properties
will aid formulators of MR fluids in achieving gravitationally stable field-responsive suspensions,
and provide a new method for manipulating the assembly of particle building blocks into functional
structures.

Thesis Supervisor: Patrick S. Doyle
Title: Professor of Chemical Engineering

Thesis Supervisor: Gareth H. McKinley
Title: Professor of Mechanical Engineering
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CHAPTER 1

Introduction

1.1 Rheology

Though the term ‘rheology’ is unfamiliar even to many scientists and engineers, so much so that
it has often been assumed to be a misprint of ‘theology’ [1], it is a branch of science that is
closely connected with everyday experiences. Rheological properties are exploited when spreading
mayonnaise on a piece of bread; squeezing toothpaste onto a toothbrush; brushing, rolling, or
spraying paint on a wall; applying cosmetic products; or stepping around muddy soil [2]. The
classic definition of rheology is ‘the study of the deformation and flow of matter’ [3]. Typically,
rheology is distinguished from the broader fields of fluid mechanics and solid mechanics by its focus
on ‘complex fluids’ and ‘soft solids’. This distinction often provokes the question of just what is it
about the way a material flows or deforms that makes it ‘complex’. Though a rigorous answer to
this question is purely mathematical (the flow and deformation of ‘simple’ fluids and solids follow
well-defined models that are not obeyed by complex fluids and soft solids), complex fluid behavior
can be readily distinguished and observed phenomenologically [4]. For example, shaving cream
can be differentiated from simple fluids like water or honey in that while it maintains its shape
at rest and does not flow due to gravity (like a simple solid), it flows readily when sheared or
pressed between two hands (like a simple liquid). In other words, the material is effectively a solid
until sufficient stress is applied, at which point the material ‘yields’ and flows like a liquid. This
combination of solid-like and liquid-like behavior is a hallmark of complex fluids. Other examples
include Silly PuttyR©, which bounces like an elastic solid when thrown against a surface, but pools
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like a liquid when left quiescent for about 30 minutes or more. The primary tasks of the rheologist
are to characterize and quantify this type of mechanical behavior, as well as to connect deformation
and flow properties to the physiochemical structure of materials.

From a chemical engineering perspective, because such a large number of practically and tech-
nologically important condensed materials cannot be described as simple liquids or simple solids,
rheology plays a key role in industrial processing and product development. The typical chemical
plant features hundreds of pipelines and process units through which fluids flow. Therefore, an
understanding of complex, or so-called ‘non-Newtonian’, flow behavior is often essential to efficient
processing and fluids handling [5]. For example, in the manufacture and packaging of hair con-
ditioning products, non-Newtonian flow behavior can lead to complications when the product is
forced through a nozzle in an attempt to fill the packaging bottle. Because of the gel-like nature
of hair conditioners, the product tends to form a mound in the center of the bottle that must be
distributed in order to fill the bottle completely [6]. Rheology is also essential in the manufacture
of many plastics. Production processes such as injection molding and extrusion rely on detailed
models of the complex flow behavior of the polymer melts from which plastics are formed [7]. In
product development, rheology control is an important concern for the shelf-life and end-use of
materials such as processed foods, paints, consumer products like toothpaste, and personal care
products like cosmetics. In all of these cases, the rheological properties of the product must be
optimized to ensure proper function.

Perhaps the most powerful aspect of rheology is that it provides fundamental insight into the
physiochemical properties of complex fluids and soft materials. Because the microstructure of a
material is closely correlated with its flow and deformation behavior, rheological measurements pro-
vide a window into molecular and micro-scale architecture and dynamics, as well as clues about the
interactions between components [2]. By applying suitable models, rheological properties can be
related to, for example, the relaxation time of polymer molecules [8], the critical conditions under
which gelation occurs in a polymer solution or colloidal dispersion [9], or the nature of interactions
between surfactant micelles and suspended nanoparticles [10]. It is this kind of fundamental phys-
iochemical and microstructural insight that is the primary goal of the rheological studies presented
in this thesis.

1.1.1 Measuring Bulk Rheological Properties

A large number of instruments and protocols are available for measuring rheological properties of
complex fluids on the bulk scale [11]. The most common flows used for rheological measurements
generally fall into two categories: shear flows, and extensional flows (also known as ‘elongational
flows’). The work in this thesis primarily involves shear rheometry, which is described further
below. For information about extensional rheometry, and its distinction from shear rheometry,
interested readers are referred to the textbooks by Bird et al. [8] and Macosko [11].

Fig. 1.1 shows three typical arrangements for shear rheometry. In all three setups, a fluid sample
that fills the gap between solid surfaces is subjected to shear when one of the surfaces is rotated
around its central axis (by applying a torque or angular velocity), as indicated in the figure. In the
geometry on the left, the fluid is held between parallel plates, while a cone-and-plate arrangement
is shown at the center. In Fig. 1.1(c), the fluid lies in a cylindrical gap, and a thin cylindrical
solid is inserted from the top into the center of the gap; this arrangement is known as a double-gap
concentric cylinder Couette geometry, and is especially useful for studying low viscosity fluids due
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a) b)

c)

Fig. 1.1: Geometries used for shear rheometry experiments. In all cases, the
fluid sample fills a gap between solid surfaces, one of which is rotated to produce
a shear flow in the fluid. The geometries shown are (a) parallel-plate, (b) cone-
and-plate, and (c) a cross-section of a double-gap concentric cylinder Couette
setup. The top of each geometry is attached to the spindle rod of a rheometer,
which exerts a precise torque, angular strain, or angular velocity. Images (a)
and (b) are adopted from [12].

to the relatively large amount of surface–fluid contact area on the inside and outside of the rotated
cylinder. Two basic types of rheometer instruments are available for carrying out shear rheology
tests: stress-controlled rheometers and strain-controlled rheometers. Stress-controlled rheometers
can apply very precise torque values to rigid fixtures in contact with fluids (as in Fig. 1.1) and
measure the resulting angular strain and angular velocity, from which rheological properties are
extracted. The bulk rheology studies described in this thesis were obtained using a stress-controlled
rheometer. In contrast, strain-controlled rheometers can apply very precise angular strains and
angular velocities. A torque transducer reports the resulting torque on the geometry. Most modern
rheometers have tight feedback control mechanisms that allow a rheometer optimized for stress-
controlled tests to also operate in a strain-controlled mode, and vice versa.

A large number of fluid properties can be measured with rheological experiments using geome-
tries like those in Fig. 1.1. Techniques for measuring three common properties, of relevance to
this thesis, are described here. Perhaps the most simple and fundamental property of a fluid is its
viscosity, η, which can be measured using a test known as a rate sweep. In this test, known shear
rates, γ̇, are applied to the fluid and the resulting steady-state shear stresses, τ , are measured,
yielding the viscosity as a function of shear rate with the equation:

η (γ̇) = τ/γ̇ (1.1)

Though simple Newtonian fluids by definition have a constant viscosity, complex fluids often exhibit
a viscosity that depends on the shear rate, as implied by Equation 1.1. Many complex fluids exhibit
a decrease in the viscosity with increasing γ̇, a property known as shear-thinning. Examples of
shear-thinning fluids include ketchup, and many polymer solutions. The opposite phenomena, in
which the viscosity increases with increasing γ̇, is known as shear-thickening. This type of behavior
can occur in dense particle suspensions due to microstructural ‘jamming’ [13].
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Shaving cream was described above as exhibiting a threshold applied stress below which it
maintains its shape like a solid, and above which the material flows like a liquid. This is an
example of yielding phenomena, and the critical stress to induce flow is known as the yield stress,
τy. There has been much debate in the rheology community about whether a true yield stress
exists: that is, whether materials can truly be described as solid (η → ∞) at applied stresses below
the yield stress, or if there is actually a very large, but finite viscosity (see [14, 15, 16] for the
arguments in this debate). Independent of whether there is a true solid–liquid transition at a
critical applied stress, it is universally accepted that the concept of the yield stress is practically
useful for characterizing flow behavior and understanding the associated microstructure; therefore,
the work in this thesis employs the terminology of ‘yield stress’ materials without further comment
on this debate. The yield stress can be a difficult parameter to measure precisely; despite the fact
that there are numerous methods available for measuring the yield stress [17], different methods
often give conflicting results [18]. In this thesis, because of complications arising from the time-
dependent behavior of the fluids under study (see Section 1.3), the stress ramp test is the most
suitable and straight-forward method for measuring the yield stress [14]. In this test, the shear
stress on the fluid (i.e., the torque on the upper geometry in Fig 1.1) is slowly and continuously
increased until there is a large jump in the shear rate and the material flows. τy is extracted as the
value of the stress when this sudden increase in shear rate is observed.

While yield stress fluids undergo a transition from solid-like to liquid-like behavior at a critical
applied stress, many complex fluids exhibit some combination of solid-like and liquid-like character
simultaneously. This behavior is known as viscoelasticity. Perhaps the most straight-forward way
to understand viscoelasticity is to understand how it is measured. Consider a fluid sample in one of
the geometries shown in Fig. 1.1 and the case where a sinusoidal shear strain γ (t) = γ0 sin (ωt) with
frequency ω is applied to the fluid. We consider the case where γ0, the strain amplitude, is small
enough that the internal structure of the material is not significantly altered by the application of
the strain. This type of test is called small-amplitude oscillatory shear (SAOS), and the response
of the fluid is referred to as its linear rheology (as opposed to nonlinear rheology, in which large
deformations and/or deformation rates are applied that significantly disrupt the internal structure
of the material). For the case of SAOS, the measured shear stress output, τ (t), is also necessarily
sinusoidal, but generally has a phase shift δ:

τ (t) = τ0 sin (ωt + δ) (1.2)

This expression can be expanded using trigonometric identities to arrive at the standard expression
for the shear stress in SAOS [3]:

τ (t)

γ0
= G′ sin (ωt) + G′′ cos (ωt) (1.3)

where G′ and G′′ are the storage and loss moduli, respectively, given by:

G′ (ω) ≡ τ0

γ0
cos (δ) G′′ (ω) ≡ τ0

γ0
sin (δ) (1.4)

G′ and G′′ are related through the tangent of the phase shift, known as the loss tangent.

tan (δ) = G′′/G′ (1.5)
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Since, in oscillatory shear, the stress in an elastic solid is in phase with the strain (δ = 0, i.e., solids
respond to stress by undergoing deformation) and the stress in a Newtonian liquid is in phase with
the strain rate (δ = π/2, i.e., liquids respond to stress by undergoing flow), Equation 1.3 shows
that G′ and G′′ are the elastic and viscous contributions to the stress, respectively [3]. Equivalently,
from Equation 1.5, G′′/G′ → 0 for an elastic solid, and G′′/G′ → ∞ for a Newtonian liquid.

1.2 Microrheology

Despite the power of rheology to elucidate complex fluid behavior, there are important situations in
which traditional rheological analysis is impractical or unfeasible. Some disadvantages of traditional
‘bulk’ rheology include:

• The need for milliliter volumes of fluid, which can make the analysis of some materials im-
possible or prohibitively expensive.

• The need to conduct measurements in specialized and (typically) expensive instruments,
which often prevents the study of complex fluids in their native environments. This and the
previous point present major challenges to the study of in vivo biological fluids, for example.

• The fact that bulk scale measurements represent an average over milliliter volumes, which
precludes the study of phenomena at smaller length scales in complex fluids, such as micro-
scale spatial heterogeneities.

• The inertia of the measuring apparatus, which can produce artifacts in data during mea-
surements at high frequencies. Instrument inertia also presents challenges for rheological
measurements of very soft or low viscosity materials.

The sub-field of microrheology has been developed to address the issues above [19]. Most man-
ifestations of microrheology techniques involve tracking the motion of microscopic probe particles
embedded in complex fluids and relating the observed dynamics to fluid rheological properties [20].
Because the probe particles are microscopic in size, only microliter or nanoliter volumes of mate-
rial are necessary for analysis, and measurements of fluids in their native environments, such as
in vivo studies of cell cytoplasm and other biofluids, can be more easily facilitated. Additionally,
probe inertia is usually negligible up to much higher frequencies than are accessible in typical bulk
rheology measurements. Finally, probe particles in microrheology experiments more directly yield
information about the micro-scale structure and behavior of complex fluids, so that properties such
as spatial heterogeneity can be quantified. It is also important to recognize that in structured
fluids, there is often a length scale below which bulk rheological properties that are averaged over
macroscopic volumes of fluid are no longer representative of the local mechanical environment. This
length scale usually corresponds to some microstructural length scale in the system, like a charac-
teristic pore size in a network, or a radius of gyration of dissolved polymer. These microstructural
length scales are often essential to the proper function of the fluid, either in nature or in indus-
try [21]. In cases where the size of probe particles is comparable to or smaller than the largest
microstructural length scale in the system, microrheology can provide different information about
a material than bulk rheology: the material is probed on a different length scale [22]. While this
behavior can lead to erroneus conclusions when extrapolating microrheology results to the bulk
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Fig. 1.2: Schematic for the fluorescence microscopy setup used for Multiple Par-
ticle Tracking experiments. Light from a mercury arc lamp passes through an
excitation filter and reflects off of a dichroic mirror to illuminate and excite
the fluorescent probes in the sample. Light emitted from the fluorescent probe
particles is transmitted through the dichroic mirror and passes through an emis-
sion filter, which isolates the emission spectrum of the particles. Filters and the
dichroic mirror are housed in a filter cube. Image adopted from [25].

scale [23], it also indicates that the combination of bulk rheology and microrheology can provide
very thorough characterization of materials. In other words, microrheology is most powerful as a
complement to bulk rheology, rather than as a replacement. Though specialized instrumentation
has been developed, many microrheological techniques can be implemented with typical microscopy
and diagnostic instrumentation readily available in many laboratories [24]. This is the case for Mul-
tiple Particle Tracking (MPT) microrheology, which is employed for the work described in Chapter
2. This and other common microrheology techniques are described below.

1.2.1 Microrheology Techniques

Microrheology techniques fall into two categories: passive microrheology, in which the probe motion
is caused solely by Brownian bombardment from the surrounding fluid (i.e., thermal forces), and
active microrheology, in which an external force is applied to the probe [24]. Passive microrheology
is appropriate for studying the linear microrheology (small deformation and/or deformation rate)
of very soft materials (moduli up to ∼ 1 Pa), while active microrheology can be used for nonlinear
measurements (large deformation and/or deformation rate) of stiffer and more viscous materials.

Numerous microrheology techniques have been developed. Three established techniques that
involve tracking the motion of embedded probe particles are described below.
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Multiple Particle Tracking (MPT)
Type: Passive
Description: Brownian motion of probe colloids (radius a ∼ 1 µm) embedded in a fluid is visual-
ized and captured directly via video microscopy. Typically, fluorescent particles are used in order
to maximize the brightness contrast, increasing the spatial resolution. A standard setup, which
matches that used for the work described in this thesis, is shown as a schematic in Fig. 1.2 (image
from [25]). Light from a mercury arc lamp passes through an optical filter (the ‘excitation’ filter),
which transmits only the range of wavelengths that causes fluorescence of the probe particles, then
reflects off of a dichroic mirror to illuminate the sample. The resulting light emitted from the
probes (i.e., the fluorescence), passes through the dichroic mirror as well as a final ‘emission’ filter,
which transmits only a wavelength range corresponding to the fluorescence emission spectrum of
the probes. This arrangement of filters and dichroic mirror maximizes the contrast of fluorescent
probe particles against the background. The filtered emitted light then reaches the camera, which
can be used in conjunction with appropriate software to capture videos of probe particle diffusion.
Specialized software is applied to track the trajectories of each particle in a video [26], from which
the ensemble-averaged mean-squared displacement

〈

∆x2 (τ)
〉

can be calculated as a function of
lag time, τ [27].

〈

∆x2 (τ)
〉

is the ensemble-averaged 1-dimensional displacement (horizontal, in the
case of this thesis) that probes undergo when allowed to diffuse for a given time, called the lag time,
τ (not to be confused with the applied stress as described above for bulk rheology, which is also
traditionally denoted as τ).

〈

∆x2 (τ)
〉

is the fundamental quantitative result of MPT experiments,
from which rheological information is extracted. In a Newtonian fluid, the viscosity η is related to
〈

∆x2 (τ)
〉

via the Stokes–Einstein equation,
〈

∆x2 (τ)
〉

= τkBT/3πaη, where kB is the Boltzmann
constant, T is the temperature, and a is the probe radius. However, Savin and Doyle [28] proposed
that in order to extract accurate measurements from real MPT experiments as described above, the
Stokes–Einstein equation must be modified to account for errors in the particle tracking experiment
and data analysis. These authors showed that [28]

〈

∆x2 (τ)
〉

=
kBT

3πaη
(τ − σ/3) + 2ǫ2 (1.6)

where σ is the camera shutter speed (a dynamic error) and ǫ is the spatial resolution of the MPT
experiment (a static error). ǫ can be measured by tracking probe particles immobilized in a stiff
gel. Not accounting for these sources of error leads to spurious results, including non-zero values of
the storage modulus even for Newtonian fluids. For more details about these sources of error and
their implications, see [28]. Additional details regarding the particular MPT setup and experimental
protocol in the present work, as well as a description of calculations to obtain additional rheological
parameters, can be found in Section 2.3.2.

There are a number of advantages of the MPT technique over other methods of microrheology.
Because specialized instruments are not necessary, implementation is relatively straightforward and
inexpensive. Additionally, Brownian particles probe the fluid at all frequencies simultaneously, so
that a large number of frequencies can be examined at once from a single video; the measureable
frequencies are limited only by the frame rate of the camera and the length of a video (as long as
particles do not diffuse out of focus over the time scale of a video). Finally, since a large number of
particles are tracked at once, high statistical accuracy can be achieved and spatial properties such
as heterogeneity can be explored. Because it is a passive technique, however, the stress applied by
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Fig. 1.3: Magnetization curve for the superparamagnetic probe particles used
for magnetic tweezer microrheology experiments in this thesis. The parti-
cles are M-450 DynabeadR© particles, produced by Invitrogen Life Technolo-
gies (Carlsbad, CA), with an average diameter of d = 4.5 µm and a satura-
tion magnetization of about 19 emu/g. The particles can be well-approximated
as monodisperse. Magnetization data provided by Invitrogen Life Technologies
(http://www.invitrogen.com).

probes is on the order of ∼ kBT/a3, which is typically ∼ 1 Pa. For this reason, MPT is limited to
very soft materials, with moduli less than about 1 Pa.

Magnetic Tweezers
Type: Active
Description: An external magnetic field imposes a force on magnetizable probe particles embedded
in a fluid, and probe motions are visualized with video microscopy. The trajectories of the particles
are tracked in a manner similar to MPT, and rheological data is extracted from the response [24].
Though various particle shapes can be used, and the kinematics of the induced flow surrounding the
particle is highly dependent on the particle shape [29], spherical probe particles are widely available
and the most common. Most studies employ superparamagnetic polymer-magnetite composite
microspheres because they are available in monodisperse suspensions with well-defined magnetic
properties. Though ferromagnetic particles generally exhibit a stronger magnetic response, they
are usually less attractive for microrheological studies due to complications arising from magnetic
hysteresis, polydispersity, and shape irregularity. Superparamagnetic particle sizes of about 0.1–
10 µm with saturation magnetizations up to about 20 emu/g = 20 A·m2/kg are available. The
magnetization curve for the probe particles used in this thesis (see Chapter 3) is shown in Fig.
1.3. Upon application of an external magnetic field, H, the magnetizable probe particles translate,
rotate, or oscillate in response to the field. For the simple setup used in this thesis (see Chapter 3),
only approximately unidirectional translation of magnetic probe particles is observed. In this case,
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the applied magnetic field is approximately unidirectional (H = |H|ex = Hex), and the magnetic
force, Fmag, on an isolated particle of volume V is [30]:

Fmag = µ0ρV (M · ∇)H = µ0ρMV
dH

dx
ex (1.7)

where µ0 is the magnetic permeability of free space, ρ is the particle mass density, and M = Mex

is the magnetization of the particle per unit mass. Note that the magnetic force on a particle due
to an external field is proportional to the magnetic field gradient, so that a spatially uniform field
results in no net force on an isolated particle (though there are dipolar forces between particles in
a uniform magnetic field, as will be discussed in Section 1.4). For translation experiments with
spherical probes of radius a, the viscosity of the fluid can be found from Equation 1.1 by dividing
the stress on the particle (obtained from calibration experiments in a fluid of known viscosity) by
the shear rate, γ̇ (x) = 3 |U (x)| /2a where U is the measured velocity of the particle. Viscoelastic
parameters can be found from oscillation experiments by employing the loss tangent given in
Equation 1.5. Alternatively, the viscoelasticity can be estimated in a translation experiment by
modeling the fluid with a mechanical equivalent circuit of springs and dashpots, and subsequently
fitting the equation of motion from the model to the observed particle motion [31, 32]. Additional
details regarding the particular magnetic tweezer setup and experimental protocol in the present
work, as well as a description of calculations to obtain rheological parameters, can be found in
Chapter 3.

The primary advantage of magnetic tweezer microrheology is its simplicity of mechanism and
implementation (especially for unidirectional translation experiments), as well as the fact that
relatively large forces can be achieved. For the experimental conditions in this thesis, stresses up to
about 250 Pa are accessible. However, smaller numbers of particles are typically tracked (sometimes
only one particle), which limits statistics and inhibits the study of spatial heterogeneity.

Optical Tweezers
Type: Active
Description: A probe particle embedded in a fluid is ‘trapped’ with incident laser light. Forward-
scattered light is detected by a quadrant photodiode, allowing high spatial resolution tracking of
the particle when the trap is translated [24]. Neglecting inertia, the equation of motion for a bead
in an optical trap oscillating with a frequency ω and an applied force F0 cos ωt is [24, 33]:

6πηeffa
dx

dt
+ (kf + kt) x = ktF0 cos ωt (1.8)

where ηeff is an effective fluid viscosity, and kf (ω) and kt are spring constants for the fluid and
the trap, respectively. Measuring the resulting particle oscillation allows calculation of the true
viscosity η (ω) and kf (ω), which yields G′ (ω) and G′′ (ω) [24].

G′ (ω) =
kf (ω)

2πa
(1.9)

G′′ (ω) = ω (η (ω) − ηs) (1.10)

where ηs is the Newtonian viscosity of the pure solvent.
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Fig. 1.4: Measurable range of (a) frequency and (b) viscoelastic moduli for vari-
ous microrheology techniques. The orange arrow on the right shows the relevant
range of moduli for the materials studied via microrheology in this thesis. Im-
ages from [21].

Though optical tweezer setups are usually more difficult to assemble than MPT setups or
magnetic tweezer devices, they allow precise control over the position of the probe particle, so that
particular regions of interest in a material can be explicitly explored. An additional advantage is the
relative ease of conducting high-frequency oscillatory tests at various amplitudes. These detailed
manipulations of a single particle come at the price of reduced statistics relative to multi-particle
techniques like MPT.

Fig. 1.4 compares the ranges of frequency and moduli that can be probed with various microrhe-
ology methods (images from [21]). Note that DWS (Diffusing Wave Spectroscopy) measures laser
light scattered from an ensemble of embedded colloidal probes [34], and atomic force microscopy
extracts rheology from the response of an AFM tip immersed in a fluid [24]. The relevant range
of viscoelastic moduli for the work in this thesis is up to about ∼ 100 Pa (see Fig. 1.6). Fig.
1.4(b) shows that combining magnetic tweezers and multiple particle tracking allows measurement
over a wide range of viscoelastic moduli, from low viscosity liquids to soft solids having moduli or
yield stresses greater than 100 Pa. These techniques also span a satisfactory frequency range [Fig.
1.4(a)], and are relatively straightforward and inexpensive to implement with available microscopy
facilities.

1.3 LaponiteR©

Rheological studies in this thesis focus on a technologically and scientifically important microstruc-
tured material called LaponiteR©, a synthetic clay obtained from Rockwood Additives (Goncalves,
TX). Dispersions of LaponiteR© in water exhibit a rich array of non-Newtonian behavior, including
yield stress [35], viscoelasticity [36], shear-thinning [37], and rheological aging (that is, continual
evolution of rheological properties over time) [37, 38, 39]. Further, the dispersion properties are
highly tunable with concentration [35, 40], and for the ‘RD’ grade of LaponiteR© used in the present
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Fig. 1.5: (a) Schematic of a Laponite R© platelet. Blue slashes indicate negative
charges on the face of the disk, while small amounts of positive charge have been
suggested on the rim. (b) Proposed ‘house of cards’ structure for LaponiteR© gels
in water. The charge configuration in (a) leads to face-to-rim attractions that
induce aggregation and gelation. Images from [42].

study, soft solid states in aqueous dispersions can be formed at very low concentrations (as low as
about 1 w%). For these reasons, LaponiteR© has been used as a rheological modifier in a number
of technological and industrial applications [41, 42], and there has been significant fundamental
interest in the microstructural mechanisms underlying its rheology and phase behavior [43].

1.3.1 LaponiteR© Platelets

LaponiteR© platelets are colloidal disks about 30 nm in diameter and 1 nm in thickness, with a
reduced molecular formula of [Na0.7]

+0.7
[(Si8Mg5.5Li0.3)O20(OH)4]

-0.7
[42, 44]. The disk geometry

and size have been verified by small angle x-ray scattering (SAXS) experiments [45, 46]. Due to
the molecular structure of the LaponiteR© clay, platelets in aqueous dispersions exhibit a negative
charge on each face and for pH less than about 11, appear to be positively charged along the rim
[44, 47]. A schematic of a LaponiteR© platelet is shown in Fig. 1.5(a). Blue slashes indicate negative
charges on the face of the disk. When dispersed in water, this charge configuration is thought to
lead to the ‘house of cards’ structure in Fig. 1.5(b), though the structure at long times is still
disputed and can be highly sensitive to conditions of pH and ionic strength. Previous reports have
indicated the necessity of face-to-rim electrostatic attractions for inducing aggregation and gelation
[48, 49].

Dissolution of LaponiteR© platelets in aqueous solutions can be problematic at acidic and neutral
pH. Under these conditions, the following reaction breaks down the platelets [50, 51]:

[Na0.7]
0·7+[(Si8Mg5.5Li0.3)O20(OH)4]

0·7− + 12 H+ + 8 H2O

−−→ 0.7Na + + 8 Si(OH)4 + 5.5Mg 2+ + 0.3Li+

To avoid dissolution, LaponiteR© is usually suspended at a pH of 10, and is stored in a nitrogen
environment to hinder the uptake of CO2, which lowers the pH over time through the formation of
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Fig. 1.6: Linear viscoelastic moduli of a 1.5 w% aqueous LaponiteR© dispersion as
a function of age time as measured with an SAOS time sweep test at a constant
frequency of ω = 1 rad/s. The stress amplitude is τ0 = 0.1 Pa, and the geometry
is a 40 mm plate-plate arrangement with a 0.5 mm gap. The temperature is
held constant at T = 25 ◦C. While G′′ remains small, G′ continues growing
steadily as the material ages.

carbonic acid, H2CO3 [51].

1.3.2 Aqueous LaponiteR© Dispersions

Much controversy has surrounded the nature of aqueous LaponiteR© dispersions. Despite the de-
bates, it has consistently been agreed that:

• Over a period of time that depends on the concentration, the viscosity grows by as much as 4
orders of magnitude, and both elasticity and a yield stress appear, also growing significantly
with time (see Fig. 1.6 and [36]). This phenomena is characteristic of rheological aging ;
rapidly shearing the fluid (which is strongly shear-thinning) will ‘rejuvenate’ the fluid by
destroying structure developed during aging [37].

• The system does not reach an equilibrium state, but rather is kinetically trapped, having
undergone an ergodic-to-nonergodic transition during the aging process [52].

During aging, the system evolves toward a state depending on the LaponiteR© concentration
and the concentration of salt (i.e, the ionic strength of the solution), as seen in Fig. 1.7, which
is a phase diagram from [43] compiled from a large number of studies. Note that Fig. 1.7 is not
a true thermodynamic phase diagram, since the gel and glass states are kinetically trapped and
are not true equilibrium states. The dashed green line in Fig. 1.7 shows the salt concentration
used in this thesis, Cs = 5.9 mM. The phase map shows that there is ambiguity at this value of
Cs as to the exact nature of the phase and microstructure of the aqueous LaponiteR© dispersions.
The value of Cs = 5.9 mM was chosen before this information was fully available. It has been
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Cs = 5.9 mM

Fig. 1.7: Proposed non-equilibrium phase diagram for aqueous Laponite R© dis-
persions. Various nonergodic states are possible at long age times, depending
on the salt concentration, Cs, and the Laponite R© concentration in weight %.
Results from various groups using a range of analysis methods are compiled and
areas where uncertainty remains are noted. In this thesis, various LaponiteR©

concentrations are examined at a salt concentration of Cs = 5.9 mM, which is
noted with a dashed green line. Original image from [43]
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demonstrated, however, that the bulk rheology of aqueous LaponiteR© dispersions depends primarily
on the LaponiteR© concentration; the flow behavior is far less sensitive to the salt concentration
and the exact nature of the resulting phase [53]. Therefore, we focus here on what can be learned
from rheology without concern for whether the arrested state is more appropriately described as
a ‘gel’ or an ‘attractive glass’. Attractive interactions between platelets are expected to dominate
in both cases. Though we are unaware of any study directly comparing the microrheology of the
different types of arrested states in Fig. 1.7, one aim of this thesis is to highlight this issue and
spur further research. Independent of the exact nature of the nonergodic phase at long times, it has
been demonstrated that arrested states of LaponiteR© can be characterized as elasto-visco-plastic
fluids [2, 35]. That is, there is a yield stress, τy (i.e. plasticity), and significant viscoelasticity
at stresses below τy [36]. The tunability of these properties with Laponite concentration has
made aqueous LaponiteR© dispersions attractive as rheological modifiers in numerous applications,
including paints, oil-drilling fluids, and consumer products like toothpaste [42]. Though much work
has been done on the bulk rheology of discotic clays like LaponiteR© (see [36, 54, 55, 56] and the
extensive review by Luckham [41]), their rheology on the microscopic scale has been studied in much
less detail [57, 58, 59], despite the importance of micro-scale flow properties in many of the products
in which LaponiteR© serves as a rheological additive. For example, in oil-drilling fluids, rock cuttings
with sizes ranging from micrometers to centimeters must be entrained and removed from a well,
and in paints, sedimentation and aggregation of micro-scale pigments must be inhibited. There
remain important questions about the rheology of aqueous LaponiteR© dispersions on microscopic
scales, many of which will be addressed in this thesis.

Before leaving this introduction to aqueous LaponiteR© dispersions, it is necessary to point out
that one of the important motivations for fundamental studies of their rheology is that they serve as
models for a class of materials called soft glassy materials. A theoretical model for such materials,
called the ‘soft glassy rheology’ (SGR) model, was recently developed to describe rheological aging
and shear rejuvenation phenomena [60, 61, 62]. The model characterizes the continual slowing down
of microstructural rearrangements, as well as local rejuvenation due to shear or thermal energy,
using an ‘effective noise temperature’. Because LaponiteR© is a well-defined synthetic material that
exhibits aging and shear rejuvenation in aqueous dispersions, a number of studies have explored
LaponiteR© clays with the goal of understanding soft glassy materials in general [36, 63]. Though
further discussion of the SGR model is beyond the scope of this thesis, introductions to soft glassy
materials and the SGR model can be found in [60, 61], and a more thorough description is given
in [62].

Further discussion of the current understanding of LaponiteR© phase behavior, microstructure,
and rheology can be found in Section 2.2. Also, interested readers are directed to a thorough review
by Ruzicka and Zaccarelli [43].

1.4 Magnetorheological Fluids

After characterizing the bulk and micro-scale rheology of aqueous LaponiteR© dispersions, we ex-
plore their application as matrix fluids in magnetorheoligcal (MR) suspensions in Chapter 4. This
study takes advantage of the yield stress behavior of aqueous LaponiteR© dispersions to prevent
sedimentation of magnetic particles and maintain a stable suspension. Relevant aspects of MR
fluids are introduced below.

MR fluids are field-responsive materials that exhibit fast, dramatic, and reversible changes
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Fig. 1.8: Basic microstructure of MR suspensions in a uniform applied magnetic
field, H [72]. (a) Particles disperse randomly at H = 0. (b) When a magnetic
field is applied, chains form and align with the field. (c) Chains deforming in
response to a shear stress, τ . (d) Chains rupture when the applied stress exceeds
the field-induced static yield stress, τ ≥ τys, and the sample flows.

in properties when subjected to a magnetic field. They consist of a suspension of microscopic
magnetizable particles in a non-magnetic matrix fluid. The particles attract each other and align
when an external magnetic field is applied, resulting in the formation of domain-spanning chains
of particles [2]. This field-induced structuring of the suspension leads to significant changes in
rheological properties, including order-of-magnitude growth in the steady-shear viscosity and the
emergence of field-dependent yield stress and viscoelastic behavior [64]. The tunability of rheological
properties with the applied magnetic field provides the basis for a wide variety of commercial
applications of MR fluids, including automobile clutches [65], active mechanical dampers [66],
seismic vibration control [67], prosthetics [68], precision polishing [69], and drilling fluids [70] (for
a review of applications, see [71]).

Starting with Rabinow in 1948 [65], a large number of studies have probed the bulk rheology,
microstructure, dynamics, and applications of MR fluids as well as analogous electrorheological
(ER) fluids [72]. The most prominent rheological feature of these fluids is a field-induced and field-
dependent yield stress caused by the alignment of magnetizable particles into domain-spanning
chains that must be ruptured for the sample to flow. This basic behavior is shown schematically
in Fig. 1.8. The critical stress necessary to rupture activated chains from rest and cause bulk
flow, τys, corresponds to the bulk field-induced static yield stress (as opposed to the field-induced
dynamic yield stress, which is discussed below).

Most MR fluid formulations use carbonyl iron powder (CIP) or similar ferromagnetic micropar-
ticles as the dispersed phase because of their large saturation magnetization Msat ∼ 200 emu/g
[71, 64]. CIP particles develop a dipole moment in an external magnetic field and exhibit negligible
magnetic hysteresis. Further information about the CIP particles used to formulate MR fluids in
this thesis, including size distribution and magnetization data, can be found in Section 4.3.1 and
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Table 1.1: Typical parameters for MR fluids in commercial applications.

Particle diameter 1–10 µm, [71]

Vol. % of magnetic particles 20–40 v% [73]

Applied magnetic flux density, B ∼ 1 Tesla [71]

Magnetic susceptibility, χ ∼ 10 [74]

Saturation Magnetization, Msat ∼ 200 emu/g = 200 A·m2/kg [74]

Max induced yield stress ∼ 100 kPa typically, but up to 800 kPa in specialized
apparatus [75]

r  = r  e  ij                ij       r

i

j

H     

θij

Fig. 1.9: Magnetizable particles subject to an applied magnetic field, H. Image from [76].

Fig. 4.1. Some typical characteristics of MR fluids in commercial settings are given in Table 1.1.

When a uniform external magnetic field is applied to an MR suspension, a dipole moment m is
induced in each of the dispersed particles [77]. Treating the particles as identical point dipoles and
assuming negligible magnetic induction, the particles interact via the pairwise potential, Uij [76],

Uij =
m2µ0

4π

(

1 − 3 cos2 θij

r3
ij

)

m = ‖m‖ (1.11)

where µ0 is the magnetic permeability of free space (usually very close to the magnetic permeability
of the medium in MR fluids), rij is the separation distance between the particles, and θij is the
angle that the line connecting the particle centers makes with the direction of the applied magnetic
field, as in Fig. 1.9 (Image from [76]). Equation 1.11 shows that the energy is minimized when
θij = 0 and rij is minimum, corresponding to a particle chain aligned with the external magnetic
field H. Typically, this chaining occurs over a time scale of ∼1–10 ms [78], though generally
the microstructure formation is governed by an interplay between magnetic, viscous, thermal, and
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buoyancy effects, as well as any non-Newtonian rheological properties of the matrix fluid. The depth
of the energy well, which is related to the applied stress necessary to rupture chains, is proportional
to m2. This implies a simple approximate scaling relationship between the field-induced static yield
stress, τys, and the particle magnetization per unit mass, M .

τys ∼ m2 ∼ M2 (1.12)

Here we have used the fact that m = V ρM , where V is the volume of a particle and ρ is the particle
mass density.

In addition to the dipolar stress between particles, other relevant stresses in MR suspensions
may arise from viscous, thermal, and buoyancy effects. If the matrix fluid exhibits a yield stress,
τys,0, it may also play a significant role in the behavior of dispersed magnetic particles. Table
1.2 presents a number of key dimensionless groups comparing the magnitudes of these stresses. In
general, significant field-induced chaining occurs if the characteristic magnetic dipolar stress is large
enough to overcome all other stresses on particles (i.e., if Mn ≪ 1 and λ, Y∗

M,φ ≫ 1). Particularly
important for the purpose of this thesis is the Magnetic Yield Parameter, Y∗

M,φ, which reflects the
competition between magnetic dipolar forces and the matrix fluid yield stress. The definition of this
parameter in Table 1.2 incorporates the effect of particle volume fraction, φ, which is not included
in previous definitions [79]. This dimensionless group will be further discussed in Chapters 4 and
5. For the definitions of the dimensionless groups in Table 1.2, it is assumed that the magnetic
permeability of the matrix fluid is approximately equal to the permeability of free space, µ0.

Particle chaining in commercial MR fluids occurs on a time scale of ∼ 1 ms [78]. In the absence
of Brownian motion, the time scale for chaining can be approximated as the time necessary for a
particle to move its own diameter in response to magnetic forces. We will show in Chapter 5 that
this time scale for chaining is approximately

tchain =
48ζ

πaµ0ρ2M2
(1.13)

where ζ = 6πηca is the drag coefficient and the other parameters are defined in Table 1.2. Lateral
aggregation of chains into clusters has been observed at longer time scales [81]. This phenomena
occurs through a ‘zippering’ mechanism in which two chains approach in an attractive configuration
and become inter-digitated [82]. For Brownian chains, Fermigier and Gast proposed the following
expression for the time scale of lateral aggregation [81]:

tlat ∼
√

λ

φ2/3

πηca
3

kBTφ
(1.14)

Depending on the system parameters, this time scale is often ∼ 1–100 s. We are unaware of any
report of the lateral aggregation time scale when only magnetic forces are present (i.e., no thermal
forces or bulk flow).

In the vast majority of work on MR fluids, magnetizable particles are suspended in a Newtonian
matrix fluid; however, due to the typically large density difference between the iron-containing mag-
netizable particles and the matrix fluid, particle sedimentation is often problematic. In terms of the
dimensionless groups defined above, YG → 0 in Newtonian matrix fluids. Yield stress matrix fluids
have been proposed to address this issue [79], but the few studies in which they are used focus on
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Table 1.2: Important dimensionless groups in magnetorheology [76, 79, 80].

Parameter Stresses Definition Comments

Mason Number Mn viscous
magnetic

9ηγ̇φ2

2µ0ρ2M2

Particle chains occur if Mn ≪ 1

η = viscosity of continuous phase
γ̇ = macroscopic shear rate
φ = volume fraction of magnetic particles
µ0 = magnetic permeability of free space
ρ = particle mass density
M = particle mass magnetization

Magnetic Thermal
Parameter

λ magnetic
thermal

πµ0a
3ρ2M2

9kBT

λ ≫ 1 for MR fluids

a = particle radius
kB = Boltzmann constant
T = temperature

Magnetic Yield
Parameter Y∗

M,φ

magnetic
yield stress

µ0(ρM)
2
φ4/3

24τys,0

Particle chains occur if Y∗

M,φ ≫ 1

τys,0 = matrix fluid yield stress

Gravity Yield
Parameter

YG
yield stress
buoyancy

3τys,0

a(ρ−ρc)g

Sedimentation occurs if YG . 1

ρc = density of continuous phase
g = acceleration of gravity

Induced Yield
Parameter Yind

induced
yield stress

zero-field
yield stress

τys

τys,0

Yind ≫ 1 in most applications

τys = field-induced yield stress
τys,0 ≈ yield stress at zero-field

the bulk rheology of the suspension and provide no quantitative investigation of the microstructure
[79, 83, 84, 85]. Additionally, previous studies of MR suspensions in yield stress matrix fluids have
measured only the field-induced dynamic yield stress. The field-induced static yield stress, however,
is also an important property in many MR fluid applications and is a more direct measure of the
‘strength’ of an MR fluid [86]. The dynamic yield stress is typically measured by imposing a set of
decreasing steady-state shear rates, γ̇, and extrapolating the resulting shear stresses to γ̇ = 0 s−1.
In contrast, the static yield stress is defined as the stress required to induce flow from rest [17]. For
MR suspensions in a matrix fluid that requires a finite time to re-form microstructure after being
sheared (as is the case for aqueous LaponiteR© dispersions), it is unclear a prioiri whether these two
yield stress measures will agree when a magnetic field is applied. Because of the many applications
in which yield stress matrix fluids could prove beneficial in preventing particle sedimentation in
MR fluids, it is important to characterize the field-induced static yield stress in MR suspensions
stabilized by yield stress matrix fluids. Additionally, a fundamental understanding of the effect
of a matrix fluid yield stress on the evolution of the microstructure in these field-responsive sus-
pensions would be extremely helpful when developing rheological constitutive equations for use in
engineering design.

The dimensionless groups given in Table 1.2 are helpful in relating the work in this thesis
on yield-stress stabilized MR fluids to previous studies and existing technology. Fig. 1.10 shows
parametric maps of [YG, λ] and

[

YG,Y∗
M,φ

]

with regimes for various magnetic fluid phenomena.
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Fig. 1.10: Parameter space maps comparing the relative magnitudes of different
forces in various magnetic fluid formulations using the dimensionless groups
defined in Table 1.2 [12, 76, 79, 87, 88]. The present study examines gravita-
tionally stable MR suspensions (YG & 1, λ ≫ 1) in yield stress matrix fluids.
Regimes are explored in which inter-particle magnetic forces dominate over the
matrix fluid yield stress

(

Y∗
M,φ ≫ 1

)

and in which magnetic forces approximately

balance the matrix fluid yield stress
(

Y∗
M,φ ∼ 1

)

. Note that applications for iron
nanoparticles in yield-stress fluids have not yet been found.

In ferrofluids, thermal energy maintains dispersion of iron nanoparticles in a Newtonian fluid, so
they lie in a regime where YG, λ ≪ 1 and Y∗

M,φ ≫ 1 [87]. Applications for iron nanoparticles
in yield stress fluids, which are in the top-left corner of the [YG, λ] map, have yet to be found.
The MR fluid regimes correspond to λ ≫ 1 and Y∗

M,φ ≫ 1, and since most MR suspensions use
Newtonian solvents, YG ≈ 0 in most cases, with YG & 1 for the few yield stress-stabilized MR
fluid studies published to date [79, 76]. Since the work in this thesis involves MR suspensions in
aqueous LaponiteR© dispersions, which exhibit time- and concentration-dependent yield stresses, a
span of YG and Y∗

M,φ values will be explored. In particular, we examine regimes from Y∗
M,φ ≫ 1,

where inter-particle magnetic forces are expected to dominate over the matrix fluid yield stress, to
Y∗

M,φ ∼ 1, where magnetic forces are approximately in balance with the matrix fluid yield stress.
The regime where Y∗

M,φ ≫ 1 and YG & 1 is important for MR suspensions that are resistant to
sedimentation. While not practical for traditional MR fluids, the regime wher Y∗

M,φ ∼ 1 has yet to
be explored. It is possible that new technologies or applications could take advantage of the unique
microstructure observed in this regime where the matrix fluid yield stress has significant influence
over the growth of dipolar chains (see Chapter 5).

Additional information about existing approaches to preventing sedimentation in MR suspen-
sions, as well as details of the particular setup and protocol for magnetorheology experiments in
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this thesis, can be found in Chapter 4. For a review of recent progress on other aspects of MR fluid
research and technology, see [64].

1.5 Thesis Objectives

The first goal of this research is to combine bulk rheology and microrheology experiments to obtain
an improved understanding of the flow behavior and microstructure of aqueous LaponiteR© disper-
sions. Secondly, we aim to determine the effect of the visco-elasto-plasticity and aging behavior
of aqueous LaponiteR© dispersions on the magnetorheology and microstructure of field-activated
suspensions of dipolar particles. To this end, the following specific projects are described:

• Gelation of dilute aqueous LaponiteR© dispersions using linear bulk rheology and Multiple
Particle Tracking microrheology with a range of probe sizes (Chapter 2). (Rich et al., J.
Rheol., 2011) [89];

• Nonlinear rheology (shear-thinning and yielding) of more concentrated aqueous LaponiteR©

dispersions using bulk measurements and a fully-characterized magnetic tweezer microrheol-
ogy technique (Chapter 3). (Rich et al., Soft Matter, 2011) [90];

• Magnetorheology in an aging, yield stress matrix fluid composed of an aqueous LaponiteR©

dispersion (Chapter 4). (Rich et al., submitted to Rheol. Acta, 2011) [91];

• Particle-level simulations of field-activated dipolar particle assembly in a yield stress matrix
fluid (Chapter 5). (Rich et al., submitted to Langmuir, 2011) [92];

1.6 Overview of Results

In Chapter 2, we examine the linear viscoelasticity of 1 w% aqueous LaponiteR© dispersions during
gelation using bulk rheology and Multiple Particle Tracking microrheology. We find order-of-
magnitude differences between rheological properties and gelation times measured at the different
length scales. Further, we find that microrheology results are highly dependent on probe size,
indicating that the microstructure and rheology are highly length-scale–dependent. We hypothesize
that this behavior is due to a porous, heterogeneous network structure having characteristic length
scales (i.e., pore size, aggregate size, etc) on the order of the probe sizes. This hypothesis is
supported by direct measurements of the spatial heterogeneity of probe dynamics and qualitative
features of probe trajectories.

In Chapter 3, the nonlinear rheology of more concentrated aqueous dispersions of LaponiteR©

is examined and compared at bulk and microscopic length scales. Through collaboration with
Professor Jan Lammerding of Harvard Medical School and Brigham and Women’s Hospital (cur-
rently at Cornell University), a magnetic tweezer device was obtained and characterized in terms of
the accessible stresses, the applied magnetic fields, and the measurable viscosities and shear rates.
Stresses up to about 250 Pa are achieved on 4.5 µm diameter superparamagnetic probe particles.
We demonstrate the first use of magnetic tweezers to measure yield stresses on the microscopic
scale, as well as the first comparison between bulk and micro-scale yield stress measurements. For
LaponiteR© concentrations greater than or equal to 2.0 w%, we find that bulk and micro-scale yield
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stress measurements are in quantitative agreement, both exhibiting an approximately logarithmic
dependence on the age time.

Chapter 4 describes measurements of the magnetorheology of MR suspensions in matrix fluids
composed of aqueous dispersions of LaponiteR©. While the sedimentation of the magnetic parti-
cles is prevented essentially indefinitely by the yield stress of the LaponiteR© matrix fluid, results
indicate that aging and yield stress properties of the matrix fluid have negligible effect on the mag-
netorheological properties as long as a sufficient magnetic field is applied. These observations are
explained in terms of the magnetic yield parameter, Y∗

M,φ, defined in Table 1.2. For Y∗
M,φ & 10,

the field-induced dynamic and static yield stresses are found to be in good agreement, and aging
effects of the matrix fluid can be safely neglected. The effects of the magnetic field strength and the
magnetic particle concentration are synthesized in a master curve relating the field-induced yield
stress to the particle magnetization, amounting to a concentration–magnetization superposition.

In Chapter 5, particle-level simulations are used to examine the microstructure of dipolar par-
ticles assembling in a yield stress matrix fluid. The competition between the yield stress and
inter-particle magnetic stresses is again characterized in terms of a magnetic yield parameter simi-
lar to that in Table 1.2. We find that the yield stress results in an arrest of chain growth, so that the
length of particle chains at equilibrium decreases as the matrix fluid yield stress increases relative
to the inter-particle magnetic stresses. Additionally, the lateral ‘zippering’ mode of aggregation
observed in Newtonian fluids is suppressed by the presence of the yield stress. For sufficiently high
yield stresses (i.e., magnetic yield parameters ≤ 1) structure formation is almost entirely arrested
and individual immobile particles dominate. These results are discussed in the general context of
particle assembly, highlighting the potential for yield stress matrix fluids to aid in the assembly of
various kinds of complex functional materials.

Conclusions and an outlook to future work are summarized in Chapter 6. The appendix provides
details about particular calculations used to understand the MPT microrheology results in Chapter
2.





CHAPTER 2

Particle Tracking Microheology of

Aqueous Laponite Dispersions

This chapter begins our examination of the rheology of aqueous LaponiteR© dispersions at bulk and
microscopic length scales. Here we focus on the dependence of microrheological properties on probe
size during gelation, exploring detailed aspects of the probe trajectories and various statistics of
the diffusion behavior to gain insight into the dispersion microstructure. The results presented in
this chapter can be found in the following publication [89]: Rich, J. P.; McKinley, G. H.; Doyle, P.
S. J. Rheol. 2011, 55, 273–279, copyright 2011 by The Society of Rheology.

2.1 Overview

Soft materials such as gels and colloidal glasses often exhibit different rheological properties at bulk
and microscopic scales as a result of their complex microstructure. This phenomena has recently
been demonstrated for a gel-forming aqueous dispersion of LaponiteR© clay by Oppong et al. [59].
For this material, microrheology reveals a significantly weaker gel and a longer gelation time than
bulk measurements. By performing multiple particle tracking microrheology experiments with
different probe sizes, it can be shown that length-scale–dependent rheology is a general feature
of LaponiteR© gels. Small changes in probe size are accompanied by order of magnitude differ-
ences in the observed rheological properties and gelation time. The probe dynamics also exhibit
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size-dependent spatial heterogeneities that help to elucidate a microstructural length scale in the
system. Through analytical theory and Brownian dynamics simulations, it can be shown that the
correlations described by previous authors between successive displacements of individual probes
are more directly a result of material elasticity than of microstructural confinement. The apparent
gelation times of dispersions with different LaponiteR© concentrations exhibit a self-similar depen-
dence on probe size, suggesting a superposition of LaponiteR© concentration and probe size. From
these observations, an accordant description of the microstructural evolution of the gel is proposed.

2.2 Introduction

Colloidal gels are an important class of soft materials that are found throughout nature and used
in many industrial applications. They typically consist of a suspension of colloidal particles that
undergoes dynamical arrest through the formation of an interconnected fractal-like network [93].
This process, called gelation, can occur via equilibrium or non-equilibrium routes [94] and results
in a soft viscoelastic solid called a gel state [2]. Though suspended particles are often spherical
and uncharged, anisotropic charged particles like discotic colloidal clays are common in nature and
are used as rheological modifiers in many applications, such as paints, drilling fluids, consumer
products, and cosmetics [95]. Dispersions of discotic colloidal clays are attractive for applications
because of their ability to form various types of arrested states with rich rheological behavior even
at low clay concentrations (around 1 wt%) [41].

In this chapter we investigate the gelation and rheological aging of aqueous dispersions of the
synthetic clay Laponite RDR© (Rockwood Additives, Gonzales, TX) by tracking the thermally
driven motion of embedded microscopic probe particles [24, 21, 96, 97]. Individual LaponiteR©

crystals consist of colloidal disklike particles about 30 nm in diameter and 1 nm in thickness (see
Fig. 1.5), with a reduced molecular formula of [Na0.7]

+0.7
[(Si8Mg5.5Li0.3)O20(OH)4]

-0.7
[44]. The

disk geometry and size have been verified by small angle X-ray scattering (SAXS) measurements
[45, 46]. Due to the molecular structure of the LaponiteR© clay, platelets in aqueous dispersions
exhibit a negative charge on each face and for pH less than about 11, appear to be positively
charged along the rim [44]. Previous reports have indicated the necessity of the resulting face-
to-rim attractions for inducing aggregation and gelation [48, 49]. Attractive and repulsive surface
charge interactions can be tuned by adjusting the ionic strength I in the solution, which affects the
extent of the electrical double layer [93]. Therefore, ionic strength strongly influences the nature
and kinetics of structural arrest as well as the dispersion mechanical properties [45, 98, 47].

2.2.1 Phase Behavior and Microstructure of Aqueous LaponiteR© Dispersions

When LaponiteR© is dispersed in water, the system evolves over time from a liquidlike state to a
nonergodic disordered arrested state. During this process, known generally as aging, the mechanical
properties of the material change over time as the microstructure develops. Aging in LaponiteR©

dispersions has been studied by a number of authors using dynamic light scattering (DLS), in which
the transition from a liquid to an arrested state is typically monitored by analyzing the growth over
time of a non-ergodicity parameter [99]. Though the physical mechanism of the aging process and
the nature of the nonergodic states that develop have been the subject of much debate, the current
status of DLS studies of aging in LaponiteR© dispersions is well-summarized by Jabbari-Farouji et al
[100] (see also the recent review by Ruzicka and Zaccarelli [43]). Here the authors also present a state
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diagram obtained from DLS measurements that attempts to unify the long age time observations
of previous studies (a similar updated diagram from [43] is shown in 1.7). Different nonergodic
states are identified that correspond to regions in the (ionic strength)-(LaponiteR© concentration)
state diagram: gel, repulsive ‘Wigner’ glass, and a so-called ‘attractive glass’ or ‘cluster glass’ [101].
Generally, high values of I result in the screening of repulsive charge interactions between platelets,
leading to the dominance of attractive interactions and the emergence of a gel or attractive glass
state for LaponiteR© concentrations greater than or equal to about 0.5 wt% [see also Ruzicka et
al. [102]]. For I > 10 mM, repulsive interactions are screened to the extent that bulk phase
separation via flocculation occurs [45, 102]. At low I, long-range repulsive interactions dominate,
leading to a repulsive colloidal glass, even for LaponiteR© concentrations as low as about 1 wt%. In
this thesis, a relatively high ionic strength is used (I = 5.9 mM). Further, this chapter describes
studies of dispersions at low LaponiteR© concentration (∼ 1 wt%). For this set of parameters, it is
expected that attractive interactions will dominate, resulting in either a gel or an attractive glass
state. Since an attractive glass shares many structural and mechanical features with a gel, including
spatial heterogeneity [100], the terminology of gelation shall be emploed in the analysis. While it is
possible that some of the samples might be more accurately characterized as ‘attractive glasses’ in
the arrested state, the DLS observations of [100] imply that such a distinction would have negligible
effect on results and analysis, and that the two states would be essentially indistinguishable from
a microrheological perspective.

By combining small-angle x-ray and neutron scattering with static light scattering, Pignon et
al. [103] studied the physical structure of LaponiteR© dispersions in the gel state, obtaining the
scattering curve over 5 orders of magnitude in length scale. Their results indicate that there are
two scales of fractal organization. On length scales ranging from about a few clay platelets to
about 1 µm, aggregates form that exhibit spatial variations in LaponiteR© density (‘micro-domains’
separated by ‘voids’). These aggregates are themselves loosely connected in a fractal network, with
clusters of aggregates exhibiting sizes up to about 5 µm. Beyond this length scale the dispersion
appears homogeneous. Their observations also indicate that the characteristic sizes of aggregates
and clusters, as well as their densities and fractal dimensions, are dependent on the LaponiteR©

concentration and the ionic strength [104].

2.2.2 Rheology of Aqueous LaponiteR© Dispersions

Motivated by applications of LaponiteR© and other colloidal clays as rheological modifiers, the aging
process in LaponiteR© dispersions has also been studied using rheology experiments. This work has
also been driven by the fact that LaponiteR© dispersions serve as model soft thixotropic materials.
As the system ages and develops structure, the viscosity of the dispersion increases by orders of
magnitude and a yield stress emerges, also increasing over time. Early work on LaponiteR© rheology
was performed by [105] who observed that at long age times, both the storage modulus G′ and the
yield stress of the dispersion increase strongly with LaponiteR© concentration. At a given age time
and LaponiteR© concentration, Mourchid et al. [98] observed that the linear viscoelastic moduli
increase with ionic strength up to the point at which bulk phase separation occurs via flocculation.
They also found that the bulk storage modulus G′ is nearly independent of frequency at long age
times, a result confirmed by Ewoldt et al. [35], who explored the use of an aqueous LaponiteR©

dispersion as a simulant for a mucin gel in robotic mechanical crawlers. In this article, the steady
shear viscosity was reported to decrease sharply when the applied stress exceeds the yield stress.
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Cocard et al. [106] studied the age time and frequency dependence of the linear viscoelastic moduli
at low LaponiteR© concentration and moderate ionic strength, observing growth in both G′ and G′′

over time and an approximate power-law frequency dependence. These results are consistent with
the formation of a self-similar network structure (i.e., a gel), and the gelation time tgel is defined as
the time at which the power law exponents for the frequency dependence of G′ and G′′ are equal
[9]. Bonn et al. [36] attempted to fit the rheological behavior of LaponiteR© dispersions in the
repulsive glass state to the ‘soft glassy rheology’ (SGR) model [60, 61, 62]. Their findings indicate
good agreement in the linear viscoelastic regime. The model also correctly predicts qualitative
features of shear-thinning and shear rejuvenation, which refers to the reduction in relaxation time
that occurs when shearing motion breaks apart the dispersion microstructure [37]. The competition
between aging and shear rejuvenation at a constant shear rate, a feature of the SGR model, was
demonstrated in glass-forming LaponiteR© dispersions by Abou et al. [107]. Some deviations from
the SGR model were observed at large strains, however, due to shear banding and a viscosity
bifurcation, in which the viscosity grows indefinitely at low applied shear stress but remains orders
of magnitude lower when a critical shear stress is exceeded [36]. The SGR model has recently been
extended to capture these effects [108].

In this chapter, the method of multiple particle tracking (MPT) is used to study the rheological
properties of aqueous LaponiteR© dispersions at the microscopic scale. As with most microrheology
techniques, MPT relates the motion of embedded microscopic probe particles to the rheology of the
surrounding fluid [20]. In the case of MPT, probe motion is driven solely by Brownian bombard-
ment, with many probes (∼ 100) being simultaneously visualized via video fluorescence microscopy
[24]. Due to the small Brownian stress acting on the probe particles (usually 0.01–1 Pa), and the
limited spatial resolution of optical microscopes, MPT is best suited for fluids with moduli ≤ 1
Pa [21]. Software has been developed by Crocker and Grier [26] for extracting trajectories from
movies of diffusing probe particles, allowing the calculation of the ensemble average mean squared
displacement as a function of lag time. This quantity can be related to the linear viscoelastic
moduli G′ (ω) and G′ (ω) by a generalized Stokes–Einstein relation [96, 97, 109]. If the probes are
much larger than any characteristic microstructural length scale in the fluid, then microrheological
results will match those on the bulk scale. If, however, there are microstructural length scales on
the order of the probe size (as is the case in LaponiteR© dispersions for probes smaller than about
5 µm [103]), then the results will reflect the mechanical properties of the material on that length
scale and will generally not match bulk measurements [22]. Because individual probe trajectories
are available, analysis is not limited to ensemble averages. In particular, significant insight can
be gained into the local microenvironments of individual probe particles [110], although Levine
and Lubensky [23] have shown using a two-fluid model that local dynamics cannot be completely
decoupled from fluid properties farther from probes. A number of industrially and biologically
relevant gel-forming materials have been studied recently with MPT including Carbopol gels [111],
gellan gum [112], oligopeptide dispersions [113, 114], and hectorite clay dispersions [115].

Despite considerable interest in the bulk rheology and phase behavior of LaponiteR© dispersions,
there have been relatively few studies of the rheology on the microscopic scale. Jabbari-Farouji et
al. [57] used an optical tweezer setup to validate the fluctuation-dissipation theorem in an aging
LaponiteR© dispersion by comparing results from passive and active microrheology experiments. In
a subsequent publication, the thermal fluctuations of embedded probe particles in an optical trap
were monitored in both gel-forming and glass-forming dispersions [58]. From a microrheological
perspective, the aging behavior of the two types of dispersions was found to be similar, though
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an examination of particles at various positions revealed differences in the spatial distribution of
probe dynamics. Dispersions in the glass state exhibited spatially homogeneous microrheology
that matched bulk rheology measurements, while significant heterogeneity and discrepancies with
bulk results were observed in the gel state. Using MPT, Oppong et al.[59] performed a more
detailed comparison of the rheology at bulk and microscopic scales during the gelation process,
confirming the discrepancies and the spatial heterogeneities reported by Jabbari-Farouji et al. [58].
Additionally, these authors found that as the system ages, probes exhibit correlations between
successive displacements, which were reported to result from microstructural confinement.

The results of Oppong et al.[59] imply that the local rheology and gelation properties of the
dispersion, and therefore the nature of the probe dynamics, may generally depend on the length
scale that is probed: that is, the rheology may be probe-size-dependent. DLS observations by
Strachanet al.[116] of probe-size-dependent diffusive behavior in the repulsive glass state support
this notion. Measurements of the average diffusivity of various sized particles by Petitet al.[117]
using fluorescence recovery after photobleaching (FRAP) are also consistent with this hypothesis.
FRAP results were interpreted in terms of a scale-dependent effective viscosity that increases with
probe size.

In this chapter, MPT is used to study the gelation of aqueous LaponiteR© dispersions at the mi-
croscopic scale, expanding on the comparisons of bulk and micro-scale rheology made by Opponget
al.[59] to explore the probe-size dependence of the microrheology. Based on our observations at
different length scales, we propose a description of the microstructural evolution with age time and
check the consistency of this scenario with measurements of the heterogeneity of probe dynamics
for various probe sizes. Further, by examining correlations between successive probe displacements,
evidence is found of a microstructural length scale in the system, though the interpretation of cor-
relations as necessarily a result of microstructural confinement is challenged. Motivated by the
probe-size dependence of the microrheological observations, in the final section a common scaling is
proposed for the gelation time that collapses data at different LaponiteR© concentrations and probe
sizes.

2.3 Materials and Methods

2.3.1 Sample Preparation

Laponite RDR© powder was obtained from Rockwood Additives. To prepare the clay dispersion,
dry LaponiteR© powder is added to an aqueous buffer of pH ≈ 10 consisting of 1.8 mM NaOH and
4.1 mM NaHCO3. The purpose of the buffer is to avoid the dissolution of LaponiteR© platelets,
which has been observed at lower pH [50], and to fix the solvent ionic strength at I = 5.9 mM.
The dispersion is kept under N2 gas in order to prevent the uptake of CO2, which would lower the
solution pH and contribute to the dissociation of platelets [45, 51, 48]. After mixing vigorously
for at least 1.5 hours, the clay dispersion is passed through a 0.8 µm filter, breaking apart most
of the remaining aggregates with a strong shear [53]. This filtration marks the point of zero age
time tw, in accordance with previous work on LaponiteR© dispersions [39], and structuring of the
clay begins thereafter as the system ages. Petit et al. [117] demonstrated that about 7% of the
initial LaponiteR© concentration is lost when dispersions of about 3 wt% LaponiteR© are passed
through 0.45 µm filters. However, since the present study uses filters with larger pores (0.8 µm)
and dispersions of lower concentration (presumably reducing the size of aggregates), it is assumed
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that filtration does not change the nominal concentration of LaponiteR©.

2.3.2 Multiple Particle Tracking

Immediately following filtering, fluorescent microparticles (FluoresbriteR© Yellow Green (YG) Car-
boxylate Microspheres from Polysciences, Inc.) are added to a concentration of about φ ∼ 0.01
vol%, or about 100 particles per microscope view frame depending on the particle size. The fluo-
rescent particle concentration is chosen to achieve a large number of individual particle trajectories
with approximately non-interacting particles. After vortex mixing for about 15 seconds, the fluo-
rescent particles are randomly dispersed in the sample. The additional rejuvenation of the sample
due to vortex mixing is minimal since it is conducted immediately after filtering.

It is important to consider the electrostatic and van der Waals interactions between probes and
LaponiteR© particles, which could affect microrheological measurements [118]. FluoresbriteR© YG
Carboxylate Microspheres were shown to be negatively charged in aqueous solutions close to the
pH used in the present work, with a zeta potential of about −40 mV [119]. Additionally, LaponiteR©

particles exhibit surface charges of about −700e per particle in aqueous solution, where e is the
elementary charge [48]. In order to determine the significance of probe–clay colloidal interactions,
solution microcalorimetry measurements were performed using an Isothermal Titration Calorimeter
(Nano ITC from TA Instruments) [120]. When titrating a probe dispersion of 0.004 vol% (probe
radius a = 0.161 µm) into 0.04 vol% LaponiteR©, the probe–clay interaction energy was found to
be about 35 mJ/g of LaponiteR©: less than the LaponiteR© dilution enthalpy into buffer at the same
concentration (200 mJ/g of LaponiteR©) and below the reliable resolution of the instrument. This
result implies that such interactions can be safely neglected.

After incorporating the probe particles, the dispersion is sealed in a sample chamber consisting
of two cover slips separated by 250 µm thick spacers and mounted on a microscope (Carl Zeiss
Optical, Axiovert 40 CFL). Experiments are performed at room temperature, T ≈ 23 ± 0.5 ◦C. A
63× water-immersion objective (N.A. = 1.2) is used for all particle sizes except the largest particles,
with radius a = 1.040 µm, for which a 20× objective (N.A. = 0.5) is used. An HBO 100 Mercury
lamp (Carl Zeiss Optical), with an HBO 103 bulb (Osram) and an XF130-2 filter set (Omega
Optical), is used to excite the particles and isolate their fluorescent emission (see Fig. 1.2 for a
schematic of the fluorescence microscopy setup). Movies of particle dynamics are captured with
a CCD camera (Hitachi KP-M1A) having a variable shutter speed between 1/60 s and 1/10,000
s set to frame integration mode. Scion Image software is used to record movies at a rate of 30
frames/s over the span of one minute. Each video frame consists of two interlaced fields (the
odd or even rows of the CCD matrix) that are exposed 1/60 s apart, requiring each frame to be
de-interlaced during the movie analysis. The interlacing also results in a loss of resolution in the
spatial direction perpendicular to the interlacing [26]; thus, particle displacements in this study are
only analyzed in the horizontal direction (the x-direction). Movies of probe particle diffusion are
analyzed to obtain particle trajectories using publically available software developed by Crocker
and Grier [26] (see http://www.physics.emory.edu/~weeks/idl/, ‘Particle Tracking Using IDL’,
site maintained by Eric Weeks). Typical probe particle trajectories in 1 wt% LaponiteR© at various
dispersion age times are shown in Fig. 2.1(a), from which the decreased mobility of the particles
with age is immediately apparent. The most fundamental quantitative result extracted from probe
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1
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(a) (b)

Fig. 2.1: (a) Typical trajectories of fluorescent probe particles with radius
a = 0.463 µm in 1 wt% Laponite R© at various age times. Though particles
exhibit diffusive motion at early age times, trajectories become increasingly lo-
calized as the dispersion ages. At late age times, probe particles fluctuate around
a fixed central position. (b) The most fundamental quantitative result of multi-
ple particle tracking is the mean-squared displacement as a function of lag time
τ , shown here for various age times of a 1 w% LaponiteR© dispersion and a
probe radius of a = 0.463 µm. At early age times, the probe motion is approxi-
mately diffusive and the logarithmic slope is close to 1. As the dispersion ages,
the logarithmic slope decreases, and a plateau that is characteristic of a gel is
eventually apparent at long lag times.

trajectories is the mean-squared displacement (MSD).

〈

∆x2 (τ)
〉

= 〈x (t + τ) − x (t)〉 (2.1)

The mean-squared displacement is a function of the lag time τ , which is the time step over which
displacement due to particle diffusion is measured. If the MSD data is smoothly varying, it can
generally be fit to a local power law [97],

〈

∆x2 (τ)
〉

= 2Dτα(τ) (2.2)

Here D is the probe diffusivity and α (τ) is the diffusive exponent, equivalent to the logarithmic
slope of the mean-squared displacement:

α (τ) =
dln
〈

∆x2
〉

dlnτ
(2.3)

α (τ) = 1 for diffusion in a Newtonian fluid, whereas probes in non-Newtonian fluids generally
exhibit sub-diffusion with 0 < α (τ) < 1. Unbiased statistical results for the ensemble average of
MSD and the ensemble variance of MSD as a function of lag time τ are calculated using the
estimators described by Savin and Doyle [121] for multiple particle tracking in heterogeneous
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systems. Software to implement these calculations in the IDL language is publically available
(http://web.mit.edu/savin/Public/.Tutorial/ ‘Microrheology of Heterogeneous Systems’, T.
Savin). Measured MSD data is corrected for static error by subtracting the apparent MSD of probe
particles immobilized in a 3 wt% Agarose gel [28] (see Section 1.2.1 and Equation 1.6). Typical
results for the MSD as a function of τ and dispersion age time tw are shown in Fig. 2.1(b). As
expected for a system that gels over time, the data exhibits a logarithmic slope α (τ) close to 1 at
early age times, with the slope decreasing as the material ages. After gelation, the MSD exhibits
a plateau at long lag times.

Measurements of
〈

∆x2 (τ)
〉

can be used to obtain the linear viscoelastic moduli via a generalized
Stokes–Einstein relation [96, 109]. This relation assumes that the probe particle inertia is negligible
and that the probes experience a homogeneous continuum local environment. For smoothly varying
MSD data capable of being fit to the form in Eq. 1, the generalized Stokes–Einstein relation
simplifies to the expression [97]

G∗ (ω = 1/τ) =

{

1

a 〈∆x2 (τ)〉

}

kBT

3π

exp [iπα (τ) /2]

Γ [1 + α (τ)]
(2.4)

Here G∗ (ω) = G′ (ω) + iG′′ (ω) is the complex modulus, a the probe radius, kB the Boltzmann
constant, and T the temperature. Γ represents the Γ-function. The angular frequency ω is the
inverse of the lag time τ that is probed.

2.3.3 Bulk Rheology

Bulk rheology measurements are made using an ARG-2 stress-controlled rheometer from TA Instru-
ments. In order to obtain reliable data in the pre-gel state at early age times when the viscosity of
the LaponiteR© dispersion is quite low, an aluminum double-gap concentric cylinder Couette geom-
etry is used [see Fig. 1.1(c)], maximizing solid–liquid contact. The inner stator of the geometry has
a radius of 20.00 mm, and the inner and outer rotor radii are 20.38 mm and 21.96 mm, respectively.
The fluid sits in two gaps on either side of the rotor, both having a thickness of 0.38 mm, with an
immersed cylindrical height of 59.5 mm. The Couette cell is equipped with water circulation tubes
for temperature control, and is maintained at the same temperature as microrheology experiments
at T = 23± 0.1 ◦C. The LaponiteR© dispersion is prepared in the same way as in the microrheology
experiments, and is introduced into the Couette cell immediately after filtering, which we again
mark as the time of zero age. Subsequently, the sample is pre-sheared at a shear rate of γ̇ = 250
s−1 for 30 s prior to measurement, helping to ensure a reproducible initial condition. Though the
pre-shear may keep aggregates from forming and partially rejuvenate the fluid [36], we find this
additional rejuvenating effect to be negligible when the pre-shear is performed immediately after
filtration. Oscillatory time sweep tests are used to measure the linear viscoelastic moduli, G′ and
G′′, as a function of age time at a constant angular frequency of ω = 1 rad/s. In order to obtain
reliable measurements at early age times, an oscillatory stress of amplitude σ0 = 0.02 Pa is ini-
tially applied, with this first step terminating once the strain amplitude γ0 decreases to γ0 = 0.02.
Though strains in this step may initially appear to be in the nonlinear regime, the material is
still essentially a viscous liquid, so that results are approximately strain-independent. Once the
strain amplitude decreases to γ0 = 0.02, a second step applies a continuous oscillatory strain with
a constant amplitude of γ0 = 0.02. We have checked that the rheometer feedback mechanism is
sufficient to maintain the applied strain within 0.02 ± 0.001.
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(a) (b)

(c) (d)

Fig. 2.2: Scaled MSD versus lag time for various probe sizes in an aging 1 w%
Laponite R© dispersion. Probe radii are (a) a = 0.463 µm, (b) a = 0.258 µm,
(c) a = 0.161 µm, and (d) a = 0.11 µm. For a homogeneous material with no
length-scale dependence, data for all probe sizes should superimpose at a given
dispersion age, in contrast to the results above. This non-superposition of data
for various probe sizes implies that the dispersion structure and rheology are
length-scale-dependent, and that the dispersion is heterogeneous in nature.
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Fig. 2.3: Scaled MSD versus age time for various probe sizes in a 1 wt%
Laponite R© dispersion at a constant lag time of τ = 0.3 s. Probe-size effects
are clearly observed, as the non-superposition of data for different probe sizes
indicates a variation in structure and rheology at different length scales. The
deviations generally grow with age, signifying that the length-scale dependence
of the rheology becomes more pronounced as the microstructure of the dispersion
evolves.

2.4 Results and Discussion

2.4.1 Effects of Probe Size on Measured Rheology

It was previously noted that the diffusive exponent α (τ) in Equation 2.3 describes the nature of
the probe diffusion in the fluid (i.e Newtonian diffusion or sub-diffusion). For a continuum fluid
with homogeneous rheological properties across the length scales being probed, α (τ) is purely a
fluid property and thus should be independent of probe size. Therefore, we see from Equation
2.4 that if the material exhibits the same properties at all length scales probed, the factor will be
independent of probe size. In Fig. 2.2, a

〈

∆x2 (τ)
〉

is plotted as a function of lag time τ for four
different probe sizes in an aging 1 wt% LaponiteR© dispersion. Though there is reasonably good
agreement between different probe sizes at early age times, significant deviations are observed as
the material ages. This is seen more clearly in Fig. 2.3, where the factor a

〈

∆x2 (τ)
〉

is plotted as
a function of the age time tw for the four probe sizes at a single value of the lag time, τ = 0.3 s.
The data show that at 30 min age, for example, values of a

〈

∆x2 (τ)
〉

differ by more than an order
of magnitude between the smallest and largest probes. These results indicate that there are strong
probe size effects and that the LaponiteR© dispersion is not a continuum fluid with homogeneous
properties across the length scales probed.

Because of this scale-dependent behavior, it is necessary to proceed with care when extracting
rheological properties from MPT measurements of

〈

∆x2 (τ)
〉

. We therefore consider rheological
properties found from MPT as ‘effective’ or ‘apparent’ properties. The effective linear viscoelasticity
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at the microscopic scale can be calculated from the data in Fig. 2.2 by applying the generalized
Stokes–Einstein relation in Equation 2.4. When the diffusive exponent α (τ) satisfies 0.5 < α (τ) <
1, the material is dominated by viscous losses, whereas when 0 < α (τ) < 0.5, the material is
elastically dominated. Fig. 2.4 shows the frequency dependence of the storage and loss moduli
calculated from Equation 2.4 at four age times for a representative probe size of a = 0.463 µm.
The loss modulus G′′ (ω) is dominant at early age times, indicating an initially viscous ‘sol’. Both
moduli increase with age time as the material develops structure and forms a gel, with the storage
modulus G′ (ω) eventually surpassing G′′ (ω). At late age times, G′ (ω) is dominant and only weakly
frequency-dependent, while G′′ (ω) exhibits a minimum value.

These results are consistent with a system undergoing gelation and are in qualitative agreement
with previous observations on both bulk and microscopic scales [106, 58, 59]. We note in Fig.
2.4(b) that at the time when G′ (ω) ≈ G′′ (ω), both moduli exhibit approximately the same power
law frequency dependence. This is a hallmark of the critical gel point [9], and indicates that the
gelation time tgel can be approximated as the time when the storage and loss moduli are equal.
This is seen also in Fig. 2.5, where the loss tangent tan δ = G′′/G′ is plotted as a function of
angular frequency ω for various dispersion age times. According to the gelation theory of Chambon
and Winter [9], tan δ is independent of frequency at the critical gel point. Interpolating between
the data in Fig. 2.5, tan δ is approximately independent of frequency at an age time of about 17
min; at this time tan δ = G′′/G′ ≈ 1 for all frequencies. This again indicates that the gel point for
this system is determined by the time when G′ ≈ G′′. Similar behavior was seen for all probe sizes
and LaponiteR© concentrations, and so we subsequently take the gelation time tgel as the age time
when G′ ≈ G′′.

Applying Equation 2.4 to MSD data for different probe sizes allows the direct comparison of
apparent rheological properties in this heterogeneous clay dispersion at different length scales. Fig.
2.6 shows the evolution of the storage and loss moduli with age time for a 1 wt% LaponiteR©

dispersion at a representative frequency of ω = 1 rad/s (i.e, lag time τ = 1 s). Results for two
different probe sizes are shown, as well as the bulk response. In agreement with Oppong et al.[59], we
observe significant deviation in the linear viscoelastic measurements between bulk and microscopic
scales, with the bulk moduli exhibiting values that are at least an order of magnitude larger than
those measured by MPT. The dispersion also reaches the gel point significantly earlier at the bulk
scale. As the probe size is decreased from a = 0.463 µm to a = 0.11 µm, these trends continue.
At a given age time, smaller probes result in lower measured viscoelastic moduli, sometimes by
more than an order of magnitude. This indicates that the material is effectively a weaker gel
at the smaller length scale. Additionally, tgel is observed to be about 120 min with the smaller
probes, significantly delayed compared to the measurement of tgel = 17 min with the larger probes.
Specifically, at tgel (a = 0.463 µm) = 17 min, the smaller probes are still quite mobile, diffusing as
if in a relatively low viscosity fluid with weak elasticity. The probe-size dependence of the apparent
tgel are shown in Fig. 2.7 for a 1 wt% LaponiteR© dispersion. Almost an order of magnitude increase
in tgel is observed as the probe diameter decreases by about an order of magnitude.

2.4.2 Microstructural Description

We can conclude from these results that the LaponiteR© dispersion is not a continuum gel with ho-
mogeneous viscoelastic properties across the length scales probed; rather, in qualitative agreement
with the long age time observations of Pignon et al. [103], there must be microstructural features
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(a) (b)

(c) (d)

Fig. 2.4: Effective viscoelastic moduli calculated from microrheology versus an-
gular frequency for 1 wt% LaponiteR© and a representative probe size of a = 0.463
µm at age times of (a) 5 min, (b) 15 min, (c) 25 min, and (d) 45 min. Filled
symbols = G′, open symbols = G′′. Though the dispersion is originally viscous-
dominated, a crossover to elastic-dominated behavior occurs between 15 and 25
min of age. Near this crossover time at 15 min, the moduli have approximately
the same frequency dependence, indicative of gelation [9].
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Fig. 2.5: Loss tangent calculated from microrheology versus angular frequency
for 1 w% Laponite R© and a representative probe size of a = 0.463 µm. tan δ
is approximately independent of frequency when tan δ = G′′/G′ ≈ 1, indicating
that gelation occurs when G′ ≈ G′′ [9].

in the gel on length scales comparable to the probe particle sizes (∼ 0.1–1 µm). This microstruc-
ture could result in different local environments, with different rheological properties, at different
length scales. Since probe particle motions are directly related to structure and microrheological
properties on the length scale of their size [24], this microstructure could provide an explanation
for the observed phenomena. Because individual LaponiteR© particles are much smaller than the
probes, the microstructure must result from larger aggregates of LaponiteR© particles, as proposed
by Pignon et al. [103]. These aggregations can create gelled regions of relatively high LaponiteR©

concentration, and regions where the LaponiteR© has been depleted, resulting in a type of porous
network structure.

Based on our observations and those of previous authors, we propose the following scenario for
the evolution of the microstructure with age time tw. At early age times tw ≪ tgel, the dispersion
is homogeneous at the microscopic scale, with LaponiteR© crystals (or small clusters of crystals)
randomly distributed throughout the medium and diffusing freely. However, as the crystals diffuse,
they encounter one another and occasionally aggregate due to Van der Waals forces and electrostatic
attraction. These aggregates grow more extended over time and eventually some span the container:
this percolation characterizes the bulk gelation time. At this point, however, most of the dispersion
still appears relatively homogeneous and viscous on the microscopic scale, and probe particles still
diffuse through the ‘sol’ with only slight hindrance [59]. As the microstructure continues to develop,
interconnected elastic clusters take up more and more of the dispersion volume, eventually trapping
most of the larger probe particles in a viscoelastic gel network. Smaller probe particles, however,
are not as restricted, and though some may have been trapped in gelled regions, most are still able
to diffuse in non-gelled, or more weakly gelled pores in the aggregate structure. After a longer
period of time, the smaller probes also become trapped by the shrinking pores in the gel network,



54 2.4. Results and Discussion

Fig. 2.6: Viscoelastic moduli as a function of age time for 1 w% LaponiteR©

at a representative frequency of ω = 1 rad/s. Bulk rheology data as well as
microrheology data for two different probe sizes are shown. G′ = filled symbols,
G′′ = open symbols. Though the trends are similar, at a given age time, probing
at smaller length scales using microrheology results in lower apparent moduli
(i.e. a weaker gel). The observed gelation time is also delayed when determined
using a local versus a bulk measurement.
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Fig. 2.7: Apparent gelation time versus probe diameter for a 1 w% LaponiteR©

dispersion. The bulk gelation time is denoted by the dashed line. From the bulk
value to that observed for the smallest probe size, the gelation time changes by
over an order of magnitude.

leading eventually to the observation of a gelation time even at the length scale of the smallest
probes.

If the proposed microstructural description is accurate, there are a number of indicators we
would expect to observe. First, we would expect to see evidence of a spatially heterogeneous
medium. That is, for intermediate tw, probe particle trajectories should reflect the fact that
some probes are trapped in more strongly gelled regions while others diffuse more freely in pores
and weakly gelled regions. At a given tw, we expect the microstructure will appear more or less
heterogeneous at different length scales, so that the heterogeneity of the probe dynamics will also
depend on the probe size. Second, we would expect probe trajectories to reflect the confinement
due to the microstructure of the surrounding gel. Specifically, for particles diffusing in pores or
other confined regions, we expect successive probe displacements over a sufficiently long lag time
to be negatively correlated-having moved along a confined path over one time step, the probe
will have a higher probability of rebounding in the opposite direction over the subsequent time
step than a probe particle that is not confined, for which displacements would be uncorrelated
[122, 123, 111, 124, 59]. Lastly, analysis of these correlations and the spatial heterogeneity for
different probe sizes should reveal a characteristic length scale (characteristic pore size, cluster size,
etc.) for the microstructure at a given age time tw.

2.4.3 Heterogeneity

Savin and Doyle [121] describe a method for obtaining unbiased quantitative measures of spatial
heterogeneity in a multiple particle tracking experiment (Additional available at http://web.mit.
edu/savin/Public./Tutorial/.). Briefly, the result of the finite depth of tracking in MPT (i.e.,
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Fig. 2.8: Heterogeneity Ratio HR for four probe sizes in 1 w% LaponiteR© at
a lag time of τ = 0.33 s. (a) At early age times, heterogeneity is negligible
for all probe sizes. As the dispersion ages and structure develops, significant
heterogeneity is observed and HR becomes dependent on probe size. (b) At long
age times, the relationship between HR and probe size is non-monotonic, with
the heterogeneity exhibiting a maximum for a probe size of a = 0.161 µm for
tw ≥ 30 min.

the fact that particles diffuse in and out of focus in the z-direction) is that simple ensemble aver-
aging of individual trajectory MSD’s in a system with spatially heterogeneous rheology produces
a statistical bias toward more mobile particles-these particles leave and enter the trackable depth
more often, registering many short, mobile trajectories. If each trajectory is weighted by a factor
proportional to its duration in time, however, unbiased estimators for the ensemble average of MSD
and the ensemble variance of MSD can be calculated. From these estimators, a quantitative dimen-
sionless measure of the spatial heterogeneity can be defined, which we shall call the Heterogeneity
Ratio, HR:

HR =
M2 (τ)

M1 (τ)2
(2.5)

Here M1 (τ) is the estimator for the ensemble average of MSD, and M2 (τ) is the estimator for
the ensemble variance of MSD, both functions of the lag time τ . As a point of reference, in a
theoretical situation of MPT in an equally-weighted bimodal fluid where half the microscope view
frame is water (η1 = 0.9mPas), and half is a Newtonian fluid with viscosity η2 = 10η1, the result
is a Heterogeneity Ratio of HR ≈ 0.6. Additionally, exploratory calculations show the maximum
value of HR for an equally-weighted bimodal Newtonian fluid is 3.

In Fig. 2.8(a), the Heterogeneity Ratio HR is plotted as a function of tw for a 1 wt% LaponiteR©

dispersion and four probe sizes at a lag time of τ = 0.33 s. The LaponiteR© dispersion does exhibit
significant heterogeneity and HR generally increases with tw, consistent with our hypothesis for
the microstructural evolution. Further, there is a non-monotonic dependence of HR on the probe
size. This is highlighted in Fig. 2.8(b) where HR is plotted as a function of probe radius. For
tw ≥ 30 min, HR is peaked at the intermediate probe size of a = 0.161 µm. To understand why



2.4. Results and Discussion 57

this occurs, we examine the particle trajectories in further detail to elucidate the nature of the
heterogeneous probe dynamics.

Representative probe particle trajectories are shown in Fig. 2.9 for a 1 w% LaponiteR© dispersion
at tw = 90 min. Twenty discrete trajectories are shown for probes with radii (a) a = 0.258 µm and
(b) a = 0.161 µm, which exhibit Heterogeneity Ratios of HR = 0.99 and HR = 1.72, respectively.
All of the larger probe particles seem to be immobilized to varying degrees, diffusing around fixed
locations. In contrast, some of the 0.161µm radius particles are immobilized, while others exhibit
tortuous paths, as if exploring pores in the dispersion microstructure or ‘hopping’ between adjacent
distinct regions. As an approximation, it is possible to group these two types of trajectories into
two populations, mobile and immobile, corresponding to spatial regions of two different average
rheological properties. This is demonstrated in Fig. 2.10(a), where for each trajectory we plot
the product of the range [max (rx) − min (rx)] and the standard deviation σx of the x-coordinate
position of the particle. The ordinate is therefore a simple measure of the mobility of a particle in
a trajectory. Identifying an approximate cutoff, we designate the mobile particles as those falling
above the dotted line, and the immobile particles as those falling below the dotted line. In Fig.
2.10(b), the probability distribution of displacements P (∆x) over a lag time τ , known as the van
Hove correlation function, is plotted for the mobile and immobile populations, as well as for the full
data set with all trajectories. Displacements are taken over a lag time of τ = 0.33 s. The immobile
population is in good agreement with the full data set for small displacements, while the mobile
population characterizes the region of large displacements. This demonstrates that the majority of
small displacements come from immobile particles, while mobile particles contribute most of the
large displacements.

In Fig. 2.11, van Hove correlation data is shown for three different probe sizes in a 1 wt%
LaponiteR© dispersion at an age time of tw = 90 min. Probe particle displacements are again taken
over a lag time of τ = 0.33 s. If the material was homogeneous, the van Hove correlation function
would exhibit a characteristic single Gaussian shape; deviations from single Gaussian behavior
indicate heterogeneous probe dynamics. We note also that the Heterogeneity Ratio HR is similar
to the non-Gaussian parameter N reported by previous authors [59, 125, 126], except that statistical
biases introduced by the finite depth of tracking in MPT are corrected. As expected based on the
values of HR shown in Fig. 2.8 and the heterogeneous dynamics seen in Fig. 2.9, deviations from
single Gaussian behavior are observed, with probes of radius a = 0.161 µm exhibiting the most
significant deviations. Motivated by the results from Fig. 2.10(b), each of the van Hove correlation
functions are fitted with two Gaussian distributions [126]: one capturing the small displacements
(contributed mostly by immobile particles), and one capturing the large displacements (contributed
mostly by mobile particles). The cutoff |∆x| between these two regions identifies a characteristic
length scale in the system. Probe particle displacements begin to deviate from single Gaussian
behavior very close to |∆x| = 0.161 µm, which is the value of the probe radius at which a peak in
HR is observed. This value of |∆x| = 0.161 µm is denoted by the black dotted lines in Fig. 2.11.
The fact that this cutoff |∆x| is independent of probe size suggests that it is a microstructural
length scale. We assert, therefore, that the peak in HR at a = 0.161 µm and tw ≥ 30 min is due
to a microstructural length scale in the dispersion that is very close in size to this probe radius.
A similar length scale was measured by Mourchid et al. [45] and Pignon et al. [103] using various
scattering techniques. The tortuous paths exhibited by trajectories in Fig. 2.9(b) imply that this
length scale may correspond to a characteristic pore radius in the gelled dispersion.
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(a) (b)

Fig. 2.9: Representative probe particle trajectories in 1 w% LaponiteR© at tw =
90 min. Probe sizes are (a) a = 0.258 µm and (b) a = 0.161 µm, resulting
in Heterogeneity Ratios of HR = 0.99 and HR = 1.78, respectively. While all
the larger probes seem to diffuse around fixed locations, a significant fraction
of the smaller probe trajectories exhibit more tortuous paths and/or ‘hopping’
between distinct regions. At the same time, some of the smaller probe particles
are relatively immobilized. The greater degree of variation in the dynamics for
the smaller probe particles leads to the larger value of HR.
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(a) (b)

Fig. 2.10: Partitioning probe particles into two populations, mobile and immo-
bile, for a = 0.161 µm in 1 w% Laponite R© at tw = 90 min. (a) As an indicator
of the mobility of particles, the product of the range and standard deviation of
the x-coordinate position of probe particles is plotted. Particles falling above the
dotted line are designated as a mobile population, and those below the line as an
immobile population. (b) van Hove correlation data for mobile and immobile
populations, as well as the full data set including all trajectories. Displacements
over a lag time of τ = 0.33 s are shown. There is good agreement between the
immobile population and the full data set for small displacements, while the
mobile population characterizes the outer regions of large displacements.

2.4.4 Correlations Between Successive Probe Displacements

The study of correlations between successive particle displacements has been adopted from ex-
aminations of cage effects in colloidal glasses [122, 123] and applied to multiple particle tracking
experiments, in which correlations yield insight into the confinement of probe particles by the sur-
rounding fluid microstructure [111, 124, 59]. Let r01 and r12 represent successive two-dimensional
displacement vectors of a probe particle over a lag time τ . That is, between time t0 and t1 = t0 +τ ,
the probe’s displacement in the plane of focus is given by r01, and between time t2 and t2 = t1 + τ ,
the probe’s subsequent displacement is given by r12. If the probes are executing a random walk, as
in a viscous Newtonian fluid, then r01 and r12 will be uncorrelated. Successive displacements will
be correlated, however, if probes are confined by the fluid microstructure. The correlation between
successive displacements 〈x12〉 is defined as

〈x12〉 =

〈

r01 · r12

r01

〉

(2.6)

Here r01 is the magnitude of the initial displacement, r01 = ‖r01‖, and angled brackets represent
ensemble averages. To gain a better physical understanding of 〈x12〉, consider a probe particle
confined in a pore and assume its displacement over an initial lag time τ is r01 = r (t0 + τ)− r (t0).
Therefore, r01 represents an accessible path for the confined probe, and in the subsequent time
step τ there is an increased probability that the probe will retrace its steps through that known
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Fig. 2.11: van Hove correlation plots for three probe sizes in 1 w% LaponiteR©

at tw = 90 min. Displacements over a lag time of τ = 0.33 s are shown.
The distribution broadens as the probe radius decreases, reflecting the increased
mobility of smaller particles. Deviations from single Gaussian behavior are a
result of the spatial heterogeneity in the dispersion, with Heterogeneity Ratios
of HR = 0.99, 1.78, and 1.2 being observed for the probe sizes a = 0.258 µm,
0.161 µm, and 0.11 µm, respectively. For each probe size, the data is sub-divided
into two regions, each fit by a Gaussian distribution. The fits to the immobile
subsets with small displacements are shown as solid lines (with a zoom shown in
the inset), and the fits to the subsets of mobile particles with large displacements
are shown as dashed lines. The vertical black dotted lines correspond to |∆x| =
0.161 µm, which is equal to the intermediate probe size exhibiting a peak in
heterogeneity in Fig. 2.8(b). The experimental data for all probe sizes begins to
deviate from single Gaussian behavior very close to this value of |∆x|, suggesting
that it may correspond to a characteristic microstructural length scale.
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(a)

(b)

Fig. 2.12: The degree of correlation between successive probe particle displace-
ments at four age times in 1 w% LaponiteR©. Data is shown for a representative
probe size of a = 0.258 µm and a lag time of τ = 0.5 s. Dashed lines show linear
fits of the form 〈x12〉 = −br01 to the first 10 points of data. The negative slope
of the dashed lines gives the parameter b, which increases with the dispersion age
time. The displacement magnitude r01 at which correlations deviate from linear
behavior indicates a microstructural length scale in the system. (b) Evolution
of the b parameter with age time for four probe sizes in 1 wt% LaponiteR©, over
a lag time of τ = 0.5 s. The b parameter grows with age and exhibits probe-size
dependence, though self-similar behavior is seen between all probe sizes. The
data reaches a plateau value of b slightly less than 0.5.

accessible path. In that case, r12 would be in the opposite direction of r01, so that r01 and r12 are
negatively correlated. We therefore expect 〈x12〉 to be negative when microstructural confinement
effects probe motion.

〈x12〉 is plotted as a function of r01 in Fig. 2.12(a) at four age times for 1 wt% LaponiteR©

and a representative probe size of a = 0.258 µm. Correlations between successive displacements
of duration τ = 0.5 s are shown. While values of 〈x12〉 are scattered around 0 at tw = 10 min,
the correlations grow in magnitude as the system ages. The degree of correlation also grows
with the size of the initial displacement r01, and we observe a linear relationship of the form
〈x12〉 = −br01. The coefficient b, which grows with tw as the microstructure develops, is reported
to represent the ability of the fluid microstructure to restrict the motion of the probe particles
[59]. b is plotted as a function of tw for four probe sizes in Fig. 2.12(b). Though b is probe-size–
dependent at a given tw, data for different probe sizes exhibit self-similar age-time dependence,
suggesting a common scaling. At late age times, b seems to plateau at b = 0.5 for all probe
sizes. The fact that correlations become increasingly significant as the dispersion ages implies
that microstructural confinement effects on probe motion are important, which is consistent with
our hypothesis for the microstructural evolution in Section 2.4.2. In Fig. 2.12(a), the degree of
correlation is seen to deviate from linear behavior past a critical value of r01 for tw > 10 min. This
value of r01 represents a microstructural length scale in the system. Though these results are in
contrast to the results of Oppong et al. [59], these authors use only a larger probe size (a = 0.50



62 2.4. Results and Discussion

µm), so that initial displacements r01 large enough to observe the deviation from linearity are
inaccessible. Upon measuring this critical displacement r01,crit for various probe sizes and age
times, we find r̄01,crit, approximately twice the length scale observed in the previous section from
heterogeneity measurements. We propose that these two independent measurements actually reflect
the same microstructural length scale, and that the difference by a factor of 2 is a result of the
different methods of probing it. Having examined the evolution of the b parameter and its probe-
size dependence in an aging LaponiteR© dispersion, we now consider in more depth the physical
meaning of b. It has been reported [59] that b reflects microstructural confinement; however, one
could imagine that successive displacements may also be correlated for probes embedded in a model
material with no microstructure but with viscoelasticity that persists on time scales of the lag time
τ or longer. To investigate this, we consider probes suspended in a Kelvin–Voigt model viscoelastic
solid, which is represented by a mechanical equivalent circuit of a spring and a dashpot in parallel.
The linear spring has an elastic modulus G, and the dashpot has a Newtonian viscosity η. The
relaxation time of the material is therefore given by λV = η/G. The equation of motion for a
Brownian probe particle diffusing in such a material is [127]

λV λI r̈ (t) + λV ṙ (t) + r (t) = f (t) /6πaG (2.7)

where λI = m/6πaGλV is an inertial time scale (with m being the mass of the probe particle)
and f (t) is the stochastic Brownian force [128]. By taking the Fourier transform of both sides
of Equation 2.7, we obtain an expression for the power spectral density of the position S∗

r (ω) =
〈

‖r∗‖2 (ω)
〉

[127],

S∗
r (ω) =

λV kBT/πaG
(

1 + λ2
+ω2

) (

1 + λ2
−ω2

) (2.8)

where ∗ represents the complex conjugate and the roots λ± are given by

λ± =
λV

2

(

1 ±
√

1 − 4λI/λV

)

(2.9)

In writing Equation 2.8 we have applied the fluctuation-dissipation theorem, which can be repre-
sented mathematically as

S∗
f (ω) =

〈

‖f∗‖2 (ω)
〉

= 36πaGλV kBT (2.10)

Using the method detailed in Appendix A.1, we can obtain the relationship between 〈x12〉 and r01,

〈x12〉 = −1

2
[1 − exp (−τ/λV )] r01 (2.11)

where τ/λV is the ratio between the lag time and the material relaxation time. Comparing this
expression to 〈x12〉 = −br01, we find a simple expression for b for probe particles embedded in a
Kelvin–Voigt material,

b =
1

2
[1 − exp (−τ/λV )] (2.12)

This expression is plotted in Fig. 2.13. In order to validate the approximations that were made
to derive Equation 2.12 (see Appendix A.1), we perform a Brownian dynamics (BD) simulation
of a probe particle undergoing Brownian motion in a Kelvin–Voigt material. The details of the
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Fig. 2.13: The variation of b with the dimensionless lag time τ/λV for a Kelvin–
Voigt material, from theory and Brownian dynamics (BD) simulation. Theoret-
ical results match those from the BD simulation. The plot shows that non-zero
values of b can result from elasticity even in a homogeneous material without
microstructure. In the case of a Kelvin–Voigt material, b depends solely on the
ratio of the relaxation time to the lag time that is probed.

simulation are given in Appendix A.2. Fig. 2.13 shows that the simulation and the theoretical
results match quantitatively. The fact that b > 0 for the Kelvin–Voigt material demonstrates that
if there is elasticity present, even a continuum material with no microstructural features can exhibit
correlations between successive probe displacements. Further, if the relaxation time λV is spatially
homogeneous (i.e. independent of r01), b is a constant at a given lag time τ , so that there is a linear
relationship between 〈x12〉 and r01 for all r01. This indicates that the departure from linearity
observed in LaponiteR© results from microstructural heterogeneities. The connection between b and
elasticity implies that the common scaling between the data for different probe sizes in Fig. 2.12(b)
may be related to the development of elasticity in the material. That is, if b is plotted as a function
of some measure of the local elasticity, the data for different probe sizes may collapse. With this
motivation, we plot b as a function of the apparent storage modulus G′ (ω) in Fig. 2.14, where
ω is evaluated at the inverse of the correlation lag time ω = 1/τ . The data for all probe sizes
collapses onto a single curve. This suggests that b is more directly related to apparent elasticity
than to microstructural confinement in LaponiteR© dispersions, though the observed elasticity is
undoubtedly a result of the structural development in the material. The observation that 〈x12〉
deviates from a linear variation with r01 beyond a critical displacement remains a strong indicator
of a microstructural length scale.
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Fig. 2.14: b plotted against the measured storage modulus for various probe
sizes in 1 wt% Laponite R©, over a lag time of τ = 0.5 s. G′ (ω) is evaluated at a
frequency of ω = 1/τ = 2 rad/s from MPT measurements at the corresponding
probe size. The results for b from various probe sizes collapse, confirming the
connection between b and the material elasticity and suggesting that b is more
directly related to elasticity than to microstructural confinement for Laponite R©

dispersions.

2.4.5 Effects of LaponiteR© Concentration

All of the experimental results presented thus far have been for a 1 wt% LaponiteR© dispersion.
The observed probe size effects could be interpreted as indicating that at a given age time tw, the
dispersion ‘appears’ more concentrated in LaponiteR© as the probe size increases. That is, at a given
age time, smaller probes experience local environments that are on average like a relatively dilute
dispersion, whereas larger probes experience local environments that are more characteristic of the
bulk concentration. Recognizing this, we investigate the connection between probe size effects and
LaponiteR© concentration. Specifically, we examine whether a superposition can be found between
concentration and probe size.

Fig. 2.15(a) shows the observed gelation time tgel as a function of probe diameter for three
different LaponiteR© concentrations. The gelation time tgel exhibits a similar trend with probe size
for all three dispersions, though the value of tgel is highly sensitive to LaponiteR© concentration,
decreasing rapidly as the concentration is increased by just 0.5 wt%.

We seek a relationship describing the scaling of tgel with the probe radius a and the LaponiteR©

concentration c, expressed in wt%. From Fig. 2.15(a), it appears that tgel follows approximately
a power law scaling with probe size a for each concentration. Kroon et al. [129] used dynamic
light scattering to investigate the sol-gel transition of aqueous LaponiteR© dispersions with various
concentrations. For dispersions with 2.2 wt% ≤ c ≤ 3.4 wt% and no added salt, they found that
the gelation time scales exponentially with c according to tgel ∼ exp (−2.83c). Motivated by these
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(a) (b)

Fig. 2.15: (a) Apparent gelation time versus probe diameter for three Laponite R©

concentrations. The gelation time is very sensitive to the Laponite R© concen-
tration, decreasing rapidly for small increases in concentration. The probe-size
dependence is similar for all three concentrations. (b) Gelation time data scaled
by an exponential factor of the Laponite R© concentration c in wt%. This scaling
serves to collapse the gelation time data for the three concentrations examined
onto a single curve, exhibiting a −1.0 power law scaling with probe size. The
existence of such a master curve is an indication of a concentration–probe-size
superposition.

observations, we therefore assume an empirical expression for tgel of the form

tgel = Aaβexp (−κc) (2.13)

where A, β, and κ are constants determined by fitting this expression to the experimental data in
Fig. 2.15(a). Using a nonlinear least squares regression, we find the best-fit values to be A = 3613.7,
β = −1.0, and κ = 5.9, for tgel expressed in minutes and a expressed in micrometers. The fitted
value of κ is indicative of the strong inverse relationship between gelation time and LaponiteR©

concentration. That is, tgel decreases rapidly even for slight increases in c. The discrepancy in the
value of κ as compared to the result of Kroon et al. [129] is likely due to the different experimental
conditions and sample preparation procedure. In particular, in the present study we control the
ionic strength I through the use of added salt, since it is known that the gelation dynamics are
sensitive to I [45, 98, 47]. The nearly integer value of β suggests that there may be a relatively simple
mechanism underlying the observed scaling, though a detailed mechanistic description is reserved
for future work. The ability of Eq. 2.13 to describe the experimental results is demonstrated in
Fig. 2.15(b), where the gelation time data in Fig. 2.15(a) has been scaled by the exponential factor
Aexp (−5.9c). Data for the three different LaponiteR© concentrations collapses reasonably well onto
a single curve with a scaling ∼ a−1.0, validating Eq. 2.13 and the values of the constants given
above. The collapse also suggests a superposition between probe size and LaponiteR© concentration,
with the product (atgel) remaining essentially constant for a given LaponiteR© concentration over
the range of probe sizes studied here.
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2.5 Conclusions and Outlook

Many commercially and biologically relevant fluids exhibit different rheological properties at dif-
ferent length scales as a result of complex microstructure. In this chapter, we have used multiple
particle tracking microrheology to explore how rheological properties vary with probe size in an
aqueous dispersion of LaponiteR©, a discotic colloidal clay that forms an aging colloidal gel under
appropriate conditions. We have shown that the microrheological properties are dependent on the
probe particle size, implying that the dispersion is heterogeneous across different length scales.
Probing at smaller length scales results in the observation of lower viscoelastic moduli and a delay
in gelation time. We have also proposed a microstructural explanation for these phenomena: as
the material ages, a porous network structure develops that traps larger probe particles, while
smaller probes generally have more time to diffuse relatively unhindered through pores and more
weakly gelled regions. In support of this hypothesis, we observed that the probe dynamics develop
significant spatial heterogeneity as the system ages. Analysis of these heterogeneities for different
probe sizes indicates a microstructural length scale in the system that is similar to the length scales
measured previously by light scattering [45, 103]. In light of these results, it would be interesting
to further investigate the microstructural heterogeneities and their associated length scales with
two-point microrheology [130]. With this method, the viscoelastic moduli could be explored as
a function of probe separation. In addition to heterogeneities, we find that as the system ages
the probe particles exhibit correlations between successive displacements, which has been reported
to be evidence of microstructural confinement. However, by analyzing trajectories of a Brownian
particle in a continuum Kelvin–Voigt material, we find that correlations between successive probe
displacements are more directly related to the apparent local elasticity. We propose that a better
measure of the microstructual confinement is the length scale at which deviations from a simple
linear scaling are observed in these successive correlations. An interesting problem for future work
would be to determine the corresponding correlations for probes diffusing in a Newtonian fluid con-
fined by solid walls, which provides a simple model of a porous microstructure. Finally, motivated
by the observed probe-size dependence of rheological properties and the proposed microstructural
description, we identify a concentration–probe-size superposition, obtaining approximate scalings
for the observed gelation time as a function of probe size and LaponiteR© concentration. The results
presented in this chapter will aid in the understanding of the structure and rheology of aqueous
LaponiteR© dispersions. Furthermore, the methods used here may also find broader general ap-
plication to other structured complex fluids and gels. The methods are particularly suitable for
analyzing materials that serve different functions at different length scales, and that as a result
must have different rheological properties across length scales. Possible examples include the cell
cytoskeleton, which provides structural stability on the length scale of the entire cell, but must also
allow macromolecules and vesicles to diffuse within the pores. Finally, the results in this chapter
show that multiple particle tracking can provide insight into the structure of evolving materials,
even when the system is inhomogeneous at the probe length scale.

Multiple Particle Tracking linear microrheology studies over a range of probe sizes have helped to
elucidate the nature of the local gelation behavior and microstructure in dilute aqueous LaponiteR©

dispersions. With this understanding, we now turn to the nonlinear microrheological behavior (i.e.,
high deformation and/or deformation rate) of more concentrated aqueous LaponiteR© dispersions,
which are known to exhibit significant yield stresses on the bulk scale. Since the results from
Chapter 2 demonstrate that significant insight can be gained by comparing rheological properties
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measured at different length scales, we once again combine bulk rheology and microrheology in
order to obtain a better understanding of the microstructure of the dispersions.





CHAPTER 3

Nonlinear Microrheology of Aqueous

Laponite Dispersions

In this chapter, we extend microrheology studies to the nonlinear regime, exploring the local shear-
thinning and yield stress behavior of more concentrated aqueous LaponiteR© dispersions using a
simple magnetic tweezer device. We find that for sufficient clay concentrations, deviations between
bulk and micro-scale rheological properties like those observed in Chapter 2 disappear, implying
that the bulk mechanical properties are representative of the local microenvironment of probe par-
ticles and that characteristic microstructural length scales decrease as the Laponite R© concentration
increases. The reader should note that for the remainder of this thesis, the Greek letter τ represents
stress, rather than lag time as in Chapter 2. Though this notation is unfortunate, it follows the
standard conventions in the field. Beneficially, the lag time variable does not appear in remaining
chapters, so this standard notation can be used without excessive confusion. The results presented
in this chapter can be found in the following publication [90]: Rich, J. P.; Lammerding, J.; McKin-
ley, G. H.; Doyle, P. S. Soft Matter 2011, 7, 9933–9943, copyright 2011 by The Royal Society of
Chemistry. This work was completed in collaboration with Professor Jan Lammerding, Cardio-
vascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical
School, Cambridge, MA (currently at Cornell University, Department of Biomedical Engineering).
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3.1 Overview

The large deformation mechanical response of complex fluids and soft materials provides funda-
mental insight into their underlying microstructure and dynamics. Additionally, associated yielding
and flow processes are often central to industrial processing and end-use. By probing nonlinear
rheological properties at the microscopic scale, microstructural dynamics and flow mechanisms can
be more directly elucidated. In this chapter, we present a simple magnetic tweezer technique for
probing the nonlinear microrheology of complex fluids and soft materials. The setup is character-
ized in terms of the accessible stresses, the applied magnetic fields, and the measurable viscosities
and shear rates. Further, we report the first use of magnetic tweezers to determine yield stresses
at the microscopic scale, as well as the first comparison between bulk and micro-scale yield stress
measurements. The capabilities of the technique are demonstrated on an aqueous dispersion of
LaponiteR©: an aging, thixotropic colloidal clay of considerable scientific and practical interest.
Probe trajectories in this material reflect the yield stress and strong shear-thinning behaviour ob-
served on the bulk scale, and for sufficient clay concentrations we find good agreement for the shear
yield stress obtained from bulk rheology and magnetic tweezer measurements. These unforeseeable
observations illuminate the nature of the dispersion microstructure, including the characteristic size
of microstructural features.

3.2 Introduction

Microrheology has become an important tool for understanding and characterizing soft materials
[19]. The field encompasses various methods in which rheological properties are extracted from
the motions of embedded microscopic probe particles [24]. It is especially suited for situations
where bulk rheometry is not feasible, such as for rare materials or in vivo studies of biological
fluids [131], and can provide insight into materials with complex microstructure, which may ex-
hibit different rheological behaviour at bulk and microscopic length scales [21, 22]. Techniques for
probing both linear (small deformation and deformation rate) and nonlinear (large deformation
and/or deformation rate) microrheology have been developed, with the nonlinear case necessarily
involving active techniques in which external forces are applied to probes [24, 21, 132]. While linear
microrheology remains important and has received the most attention (see Chapter 2), nonlinear
microrheology plays a key role in the flow properties of numerous important microstructured ma-
terials, such as colloidal glasses [133], electrorheological and magnetorheological fluids [72, 64], and
polymer-colloid mixtures [2]. The bulk response and proper function of these materials is highly
dependent on shear-thinning and yield stress phenomena at microscopic length scales. For exam-
ple, in magnetorheological suspensions, microscopic iron-containing particles are often dispersed in
viscoplastic carrier fluids, whose rheological properties prevent particle sedimentation and influence
field-responsive assembly [79] (see Chapters 4 and 5).

Because of its significance in understanding the properties of structured fluids, recent work in
the field has begun to investigate nonlinear microrheology for several canonical materials, and has
explored relationships with bulk properties. A number of studies have examined the micro-scale
viscosity of colloidal dispersions [134, 135, 136, 137], the nature of forced microstructural rearrange-
ments and shear melting near the colloidal glass transition [133], and an active microrheological
method for measuring normal stress coefficients [138]. Additionally, yield stress measurements at
the microscopic length scale were first reported by Wilking and Mason, who examined gelatin
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solutions using optical tweezers that were modified to exert torques on an embedded microdisk
[139].

In this chpater, a magnetic tweezer technique is presented for measuring nonlinear microrheolog-
ical properties of complex fluids. The motion of embedded magnetic microparticles has been used
for many years to probe such phenomena as the mechanical properties of cell protoplasm [140], the
elasticity of gels [141], the stretching behaviour of macromolecules [142], and the mechanotransduc-
tion of cells [143]. Here we employ the single-pole design from Lammerding [144], which can apply
forces on the order of 10 nN on 4.5 µm superparamagnetic particles. The dynamic range of the
instrument is characterized and probe trajectories are analyzed to extract effective viscosity mea-
surements. Additionally, we report the first use of magnetic tweezers to determine yield stresses at
the microscopic scale, affording advantages to optical tweezer techniques because of simpler design
and implementation. The technique is demonstrated on a typical thixotropic, aging, yield stress
material [145], an aqueous dispersion of the synthetic clay LaponiteR© [42]. A summary of the
physical characteristics of Laponite clay particles, as well as a review of the current understanding
of the microstructure and rheology of their aqueous dispersions, is provided in Chapters 1 and 2
of this thesis. Additionally, a more thorough review of the phase behavior of aqueous LaponiteR©

dispersions can be found in [43]. Recall from earlier chapters that LaponiteR© clay consists of
nanometric disks that undergo progressive structural arrest over time when dispersed in water at
concentrations as low as about 1 wt% [45, 146, 102, 100]. The microstructural development results
in complex and time-dependent rheology [106, 147, 148, 107, 59]. Previous work has addressed the
bulk rheology and linear microrheology of aqueous LaponiteR© dispersions (see Chapter 2). We note
that while the local nonlinear rheology of aqueous LaponiteR© dispersions has also been studied [31],
only probes with sizes on the order of 1 mm were used. The current work therefore presents the
first truly micro-scale nonlinear rheological study of this material, as well as the first comparison
to bulk nonlinear properties. We observe that the effective viscosity is strongly shear-thinning,
obeying similar power-law behaviour at both the bulk and microscopic scales. Additionally, the
yield stress grows approximately logarithmically with age time, exhibiting quantitative agreement
between bulk and microscopic scales for concentrations c ≥ 2 wt%.

3.3 Experimental Methods

The magnetic tweezer device used in the present work was designed and described by Lammerding
[144]. A rod of high magnetic permeability iron (CMI-C, CMI Specialty Products, Bristol, CT)
is machined to a sharp tip of width ≈ 200 µm, as shown in Fig. 3.1, and subsequently annealed
according to the manufacturer’s specifications. The highly pointed geometry results in large mag-
netic field gradients, leading to relatively large forces on magnetic probe particles [32, 149]. The
core metal is wrapped with about 300 turns of AWG 19 copper magnet wire over a length of 7.2
cm, leading to a wire turn density n of about n ≈ 4200 m−1. The assembly is then mounted on a
manual micromanipulator (MX110, Siskiyou, Grants Pass, OR) alongside an inverted microscope
(Axiovert 40 CFL, Carl Zeiss AG, Oberkochen, Germany) and the wires are connected to a DC
power supply (GPS-2303, GWInstek, Taipei, Taiwan). Experiments are conducted at room tem-
perature, T ≈ 22.5 ◦C. For a current of 1.5 A, the temperature of the tip does not rise more than
about 1 ◦C over the time scale of a measurement (∼ 1 min) [144]. We therefore consider electrical
resistance heating of the tip to be negligible. Gaussmeter measurements at the back of the core
indicate that the magnetic field stabilizes within 1 s of applying a current.
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Fig. 3.1: The magnetic tweezer setup used for nonlinear microrheology exper-
iments. (a) The magnetic tweezer device is mounted on a micromanipulator
adjacent to the stage of an inverted microscope. The iron core is machined to
a sharp tip, which is dipped directly into the fluid of interest. The flattened tip
design, which is shown in detail in the inset, leads to locally horizontal forces
when the device is held at an angle of 45◦ to the horizontal [144]. (b) Micro-
scope view frame of the magnetic tweezer experiment. The point of the tip is
flattened to a width of about 200 µm, providing an approximately unidirectional
magnetic force in the vicinity of the tip. Upon magnetization of the core, super-
paramagnetic probe particles (diameter d = 4.5 µm) move towards the tip with
a velocity U . The distance from a probe to the surface is given by x, while y
defines the distance along the surface of the tweezer device.
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Laponite RDR© powder was obtained from Rockwood Additives. Aqueous LaponiteR© samples
were prepared in the same way as descirbed in Section 2.3.1. Immediately following filtration of
the aqueous LaponiteR© sample, superparamagnetic microparticles of diameter d = 4.5 µm (M-450
Dynabeads, Invitrogen Life Technologies, Carlsbad, CA) are added at a concentration of about
φ ≈ 0.4 vol% (see Fig. 1.3 for magnetization properties). The magnetic particle concentration
is chosen to achieve a large number of measureable particle trajectories with approximately non-
interacting particles. After vortex mixing for about 15 seconds, the magnetic particles are randomly
dispersed in the sample. The additional rejuvenation of the sample due to vortex mixing is minimal
since it is conducted immediately after filtering. A small petri dish is filled with the dispersion and
placed on the microscope stage for visualization with a 20× objective (N.A. = 0.5). By adjusting
the micromanipulator, the tip of the magnetic tweezer device is dipped directly into the dispersion
and brought arbitrarily close to magnetic probe particles, maximizing the accessible forces on
probes [32]. The tip is machined such that approximately horizontal magnetic fields are locally
obtained when the device is positioned at a 45◦ angle to the horizontal, as pictured in Fig. 3.1.
The directionality of the force is confirmed by checking that particles remain in focus as they move
towards the tip.

Movies of probe particle dynamics are captured with a CCD camera (KP-M1A, Hitachi, Tokyo,
Japan) having a variable shutter speed between 1/60 s and 1/10,000 s set to frame integration
mode. Scion Image software is used to record movies at a rate of 30 frames/s. Each video frame
consists of two interlaced fields (the odd or even rows of the CCD matrix) that are exposed 1/60
s apart, requiring each frame to be de-interlaced during the movie analysis. The interlacing also
results in a loss of spatial resolution in the direction perpendicular to the interlacing [26]; thus,
particle displacements in this study are only examined in the horizontal direction (the x-direction),
which is the predominant direction of motion. Movies are analyzed to obtain particle trajectories
using publically available software developed by Crocker and Grier [26]. Any particles that chain
or cluster together are neglected in the analysis.

Bulk rheology measurements are made using a stress-controlled rheometer (ARG-2, TA Instru-
ments, New Castle, DE) with a 40 mm diameter aluminium plate geometry and a 0.5 mm gap [see
Fig. 1.1(a)]. Adhesive-backed 600 grit sandpaper (McMaster-Carr, Elmhurst, IL, RMS roughness
≈ 6.0 µm), is attached to each surface to minimize wall-slip. The LaponiteR© dispersion is pre-
pared in the same way as in the microrheology experiments, and is introduced between the plates
immediately after filtering, which is again marked as the time of zero age, tw = 0. To help ensure
a reproducible initial condition, the sample is then pre-sheared at a shear rate of γ̇ = 250 s−1 for
30 s. Though the pre-shear may keep aggregates from forming and partially rejuvenate the fluid
[36], we find this additional rejuvenating effect to be negligible when the pre-shear is performed
immediately subsequent to the filtration step. After the dispersion is allowed to age at a constant
temperature T = 22.5 ◦C, continuous ramp tests are performed to explore the yielding and shear-
thinning behavior. Starting from a value below the static yield stress, the applied shear stress is
increased continuously until the dispersion has yielded, allowing the extraction of the flow curve
and viscosity behaviour during yielding. The stress is ramped linearly at a rate of about 1 Pa/s over
a time of 2 min, which is small compared to the age of the dispersion. We note that this protocol
estimates the static yield stress, which is the stress required to induce flow from rest, in contrast
to the dynamic yield stress, which is estimated by decreasing the shear rate and extrapolating the
resulting shear stresses to γ̇ = 0 s−1 [17].
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Fig. 3.2: Calibration curves for the stress applied by the magnetic tweezers as
a function of the distance from the tip. Results for I = 1.50 A, 2.00 A, and
2.50 A are shown. The stress increases as the tip is approached and stresses up
to about 230 Pa are accessible close to the tip. For x < 20 µm, the computed
stress values are highly sensitive to the order of the polynomial fit to trajectory
data. The stress exhibits only weak dependence on current, suggesting that
either the core or the probe particles are approaching magnetic saturation. The
inset shows a typical probe trajectory in the Newtonian calibration fluid, which
has a kinematic viscosity of ν = 30,000 cSt (η = 29.5 Pa·s).

3.4 Calibration of Magnetic Tweezers

The force and the stress applied by the magnetic tweezer device on probe particles are calibrated
by tracking particle motion in Trimethylsiloxy-terminated Polydimethylsiloxane (DMS-T43, Gelest,
Morrisville, PA), a Newtonian liquid with kinematic viscosity ν = 30,000 cSt (dynamic viscosity
η = 29.5 Pa·s). The reported viscosity was confirmed using bulk rheology measurements. The stress
applied by the tweezer device is a function of both the distance from the tip surface, x, and the
current in the copper wire, I. About 30 particle trajectories xi (t) are obtained at a given current
and an average trajectory is calculated by applying a least-squares fit. The most suitable fit for the
calibration experiments is provided by functions of the form ts,i − t = Pm (x), where ts,i is the time
at which the ith particle reaches the tip and Pm is a polynomial of order m (m = 3–6). By taking a
time derivative of the fit, an expression for the average particle velocity, U (x), is obtained, allowing
calculation of the shear rate γ̇ (x) = 3 |U (x)| /2a and the stress τ (x) = ηγ̇ (x) = 3η |U (x)| /2a,
where a is the probe radius. The resulting stress calibration curves for three different values of
the current are plotted in Fig. 3.2. Here it is seen that the instrument can impose stresses on
probe particles up to about 230 Pa, which provides an upper limit for measureable yield stress
values. Additionally, the stress depends only weakly on I over the range explored in the present
work, increasing by 10–27% (depending on x) from I = 1.50 A to I = 2.50 A. The inset of Fig.
3.2 shows a typical probe trajectory in the Newtonian calibration fluid at a current of 2.00 A. A
smooth acceleration towards the surface is observed, with d2x/dt2 < 0 for all x, as a result of
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Fig. 3.3: Operating diagram for the magnetic tweezer setup showing the range
of accessible shear rates and viscosities. The maximum shear rate γ̇max =
3 |Umax| /2a is limited primarily by the frame rate of the camera (30 frames/s
or 60 interlaced fields/s), which enables particles with diameter 2a = 4.5 µm
to be tracked at velocities up to about |Umax| ≈ 20 µm/s under 20× magnifica-
tion. The minimum shear rate γ̇min is given by dividing the spatial resolution
(here about 90 nm) by the time over which the magnetic field is applied (here
1 min). The stress calibration in Fig. 3.2 allows calculation of the correspond-
ing accessible viscosities. The dynamic range demonstrated in the present work
is given by the dark shaded region, with τmax = 225 Pa and τmin = 30 Pa,
while the lighter region is accessible at lower currents than used here. Even-
tually, Brownian stresses become significant, providing an ultimate lower limit
to the measurable viscosities. Here this limit is calculated using the character-
istic Brownian stress τBr = kBT/a3 at T = 22.5 ◦C on a particle with radius
a = 2.25 µm.

the constant viscosity and the continually increasing stress on the particle. The magnetic tweezer
technique therefore provides a micro-scale analogy to the bulk continuous stress ramp described
in the previous section. In Section 3.5.1, we contrast the shape of this trajectory with that in the
non-Newtonian case, where effects of shear-thinning behaviour become apparent.

By combining the stress calibration with the limitations of the optical and particle-tracking
setup, we construct an operating diagram of the accessible shear rates and viscosities that can
be measured by the magnetic tweezer technique. This diagram is shown in Fig. 3.3, in which
the range of accessible shear rates is bounded by the dotted lines. Assuming thermal forces are
negligible compared to magnetic forces, the lower bound γ̇min is given by the spatial resolution
(here about 90 nm, as determined from the apparent displacement of immobilized particles at 20×
magnification [28]) divided by the duration of the experiment, which in the present work is 1 min.
The upper bound γ̇max = 3 |Umax|| /2a is limited by the maximum frame rate of the camera (30
frames/s, or 60 interlaced fields/s), which allows particles to be accurately tracked at velocities up
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to about |Umax|| ≈ 20 µm/s under 20× magnification. This highlights a potential modification
that could extend the dynamic range of future realizations of the technique through the use of a
high-speed camera. The range of measurable viscosities is given by the stress calibration in Fig.
3.2, using the relation η (γ̇) = τ/γ̇. The dark gray area shows the dynamic range demonstrated in
the present work, while the lighter region, which corresponds to smaller shear stresses, is accessible
at lower currents than used here. At very low currents, the applied stress becomes comparable
to the characteristic Brownian stress τBr = kBT/a3. In this limit, particle diffusion out of the
area of focus generally makes continual tracking of particle trajectories impossible, so that τBr/γ̇
corresponds to an ultimate lower limit to the measurable viscosities.

Further insight into the capabilities of the technique can be gained by considering the magnetic
field applied by the tweezers and the resulting magnetization of the probe particles. While it is
difficult to accurately measure the magnetic field, B, at distances of 10–100 µm away from the
tip, it can be estimated by combining the calibration data with a suitable model for the particle
magnetization, M. We use the Fröhlich–Kennelly equation [150]:

M (H) = H

(

1

χ0
+

H

Msat

)−1

(3.1)

Here χ0 = 1.6 is the linear magnetic susceptibility and Msat = 30 kA/m = 19 emu/g is the
saturation magnetization of the particles, both provided by the manufacturer (see Fig. 1.9). H is
the magnetizing field. To proceed with analysis, a more manageable functional form for the average
trajectory is required. In place of the polynomial form mentioned above, we take a simpler power
law form: x = A (ts,i − t)α. For I = 1.5 A, least-squares fitting gives A = 23.1 µm and α = 0.43.
The particle velocity is then

U (x) = − dx

d (ts,i − t)
= −Aα (ts,i − t)α−1 = −A1/ααx(α−1)/α (3.2)

where the final equality is in terms of the distance from the tip, x. The drag force is then calculated
from Stokes’ Law for steady viscous drag on a sphere

Fdrag (x) = −6πηaU (x) = 6πηaA1/ααx(α−1)/α (3.3)

and the magnetic force is given by Equations 1.7 and 3.1:

Fmag (x) = µ0V M
dH

dx
= µ0V H

(

1

χ0
+

H

Msat

)−1 dH

dx
(3.4)

where µ0 is the magnetic permeability of free space and V is the particle volume. By summing
the drag force and the magnetic force and assuming inertial acceleration is negligible, we obtain a
differential equation that can be solved for the magnetizing field H as a function of x.

µ0V H

(

1

χ0
+

H

Msat

)−1 dH

dx
= −6πηaA1/ααx(α−1)/α (3.5)

Using the condition that H → 0 as x → ∞, Equation 3.5 can be integrated to obtain an expression



3.4. Calibration of Magnetic Tweezers 77

Fig. 3.4: Calculation of the magnetic field as a function of distance from the
tip at a current of I = 1.50 A. The black line presents the result obtained
from Equation 3.6, which uses the Fröhlich–Kennelly relation in Equation 3.1
to model the particle magnetization. The strength of the field is attributed to
the magnetization properties of the CMI-C core metal, shown in the inset with
data provided by the manufacturer. The dotted lines bound the range of H
values in our experiment, where H = nI and n ≈ 4200 m−1 is the wire turn
density of the coil. As a result of the field strengths on the order ∼ 1 T, the
magnetization of probe particles is calculated via Equation 3.1 to be 28.6–29.1
kA/m, which is very close to saturation. The gray line shows the calculation of
the field using the approximation of probe particle saturation M = Msat from
Equation 3.7. The result is about 15–20% lower than the values obtained using
the Fröhlich–Kennelly relation, though the trend is the same.

that is explicit in x but implicit in H.

x =

(

M2
satµ0V

(

2 − 1
α

)

6πηaA1/αα

)
α

2α−1
[
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)

− H

Msat

]
α

2α−1

(3.6)

This expression is plotted in Fig. 3.4 (black line) in terms of the magnetic field B (x) = µ0H (x) for
I = 1.50 A. Within 100 µm of the tip, the magnetic field acting on magnetizable probe particles is
of the order ∼ 1 T, which is consistent with the magnetization properties of the CMI-C core metal
shown in the inset. The magnetic field decays with increasing distance from the tip, dropping
by about 35% over a distance from x = 20 µm to x = 100 µm. This field gradient leads to a
magnetic force on the probe particles according to Equation 3.4. The resulting probe particle
magnetization values, calculated from Equation 3.1, are 28.6–29.1 kA/m, so that M ≈ Msat = 30
kA/m. This near-saturation provides an explanation for the marginal difference between stress
calibration curves at different currents shown in Fig. 3.2. If M → Msat, the particle force balance
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results in a simpler relation between H and x.

H =
6πηaα2A1/α

µ0V Msat (1 − 2α)
x

2α−1

α (3.7)

Equation 3.7 is shown by the gray line in Fig. 3.4. Though this expression provides physical insight,
Fig. 3.4 shows that it is not as suitable for quantitative analysis since it underestimates the field
by about 15–20% compared to Equation 3.6. These calculations imply that larger stresses could
be achieved by using probe particles with a higher saturation magnetization.

A final important consideration is the variation in the applied stress across the lateral plane
of the tip [see Fig. 3.1(b)]. Roughness and edge effects on the microscopic scale could lead to
significant deviations at different values of y, especially when the probes are very close to the
tip at small values of x. Because the coefficient of variation for the probe size is less than 5%
(manufacturer information), and it has been claimed that deviations in magnetic properties are
largely due to size polydispersity [151], these irregularities in tip geometry are expected to be the
primary source of variations in the applied stress. To explore this effect, probe particles are binned
according to their position along the y-axis, as shown in the inset in Fig. 3.5(a). For each bin j, an
average trajectory is obtained by applying a least-squares fit to a polynomial as described above,
allowing calculation of an average velocity function Uj (x) and a shear stress-distance calibration
curve, τj (x) = ηγ̇ (x) = η |Uj (x)| /a. At least 5 individual trajectories are averaged per bin.
The calibration curves for I = 2.00 A are shown in Fig. 3.5(a), and we find that the variation
across the lateral plane of the tip becomes increasingly significant at closer distances. This is also
seen in Fig. 3.5(b), where the applied stress is plotted as a function of y at various values of x.
Beyond a distance of x ≈ 40 µm, the applied shear stress is essentially constant across the tip. In
particular, the coefficient of variation at x = 20 µm is about 10%, and so we limit our quantitative
experiments to distances beyond this value. This calibration indicates that improvements on this
technique could be achieved by decreasing the variation across the tip through more precise micro-
machining. This would increase the upper bound of practically accessible stresses while maintaining
the experimental error within reasonable limits.

3.5 Nonlinear Microrheology Results and Discussion

Having discussed the instrument calibration and associated considerations, we now apply this mag-
netic tweezer device to the examination of the nonlinear microrheology of an aging, thixotropic, mi-
crostructured yield stress material: a colloidal clay composed of an aqueous dispersion of LaponiteR©.
The nonlinear rheology of aqueous LaponiteR© dispersions has been studied at the bulk scale
[148, 107], but has never been examined at scales below ∼ 1 mm [31]. In addition to shear-
thinning behaviour, we present the first magnetic tweezer measurements of yield stresses at the
microscopic scale. Since microstructural length scales are expected to be on the order of the probe
size [103], it is unclear a priori whether micro-scale yield stress results will match those obtained
from bulk rheology [22, 110].

3.5.1 Probe Trajectories

Bulk rheology experiments on aqueous LaponiteR© dispersions have showed a sharp decrease in
viscosity at a critical applied stress (i.e., the static yield stress), providing clues as to the expected



3.5. Nonlinear Microrheology Results and Discussion 79

Fig. 3.5: Lateral variation in the applied stress across the surface of the tweezer
device. (a) Stress calibration data is plotted at I = 2.00 A with particle tra-
jectories partitioned into five bins according to their positions along the y-axis,
as shown in the inset. Though the applied stress becomes approximately uni-
form far from the tip, local variations in the tip geometry lead to deviations
in the stress as the tip is approached. This is clarified in (b), where the ap-
plied stress is re-plotted as a function of y at five distances from the tip. Error
bars represent the standard error between individual trajectories. In order to
neglect non-uniformities in the stress across the surface, we limit our analysis
to distances beyond x = 20 µm, where the coefficient of variation is less than
10%.
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shape of probe particle trajectories in our experiment [36, 35]. If a probe particle is close enough to
the tip to exceed the yield stress, we expect the viscosity in the vicinity of the particle to decrease
significantly as a result of the disruption of the microstructure due to the applied stress (i.e., local
rejuvenation, or shear melting). This would lead to even greater mobility of the particle so that
it moves more easily towards the tip to a region of even higher stress, causing an even further
decrease in the local viscosity. The resulting trajectories will exhibit rapid acceleration towards the
tip surface, reflecting the avalanche behavior of thixotropic yield stress fluids described by previous
authors [152]. In contrast, the stress on particles farther from the tip will not be sufficient to break
the yield stress of the surrounding fluid, so those particles are expected to remain stationary. Fig.
3.6(a) shows five typical probe trajectories in a 2.0 wt% LaponiteR© dispersion at an age time of
tw = 2 h. The current is I = 2.00 A. The trajectories are generally consistent with the expectations
described above, with a few additional features that merit explanation. We first note that the
bottom three trajectories do reach the tip surface (x = 0); however, some data is lost because for
x ≤ 22 µm, the particles move too fast to be tracked at 30 frames/s. Therefore, some probe particles
reach the tip surface during the experiment and others, which generally begin farther away, do not.
The most prominent feature of the ‘mobile’ trajectories is their rapid acceleration toward the tip
upon reaching a critical separation (or stress), which in this case is about x = 32 µm (corresponding
to a stress of about τ = 135 Pa). This observation is in agreement with our expectations as described
above, and is in contrast to the smooth trajectories observed in the Newtonian calibration fluid.
Prior to this rapid acceleration there is a region in which d2x/dt2 > 0, indicating a slight slowing
of the probe velocity. Though this behaviour is not explored in detail in this communication, our
present contention is that it is a result of effective ‘jamming’ of the dispersion microstructure, while
d2x/dt2 < 0 indicates a Newtonian or shear-thinning response. The ‘immobile’ trajectories, while
never reaching the tip surface, do exhibit measurable displacement. This slow creep and eventual
plateau toward the end of the experiment, indicates an elastic response and may also be a result
of microstructural jamming. Whether or not creeping probes eventually break the yield stress and
accelerate rapidly toward the tip depends on the balance between the stress on the particle, which
slowly increases as the particle creeps, and the rheological aging process, which results in a continual
increase in the static yield stress and the effective viscosity of the unyielded state [36, 153]. Spatial
heterogeneity in the dispersion rheological properties may also play a role [89] (See Chapter 2).
Since the material properties of the dispersion evolve with age time, it is expected that changes
will be observed in the probe trajectories as the material undergoes aging. This is demonstrated
in Fig. 3.6b, where typical trajectories of mobile particles are shown for a 1.5 wt% LaponiteR©

dispersion at four different age times and a current of I = 2.00 A. As the material ages and the
microstructure develops, the static yield stress is expected to increase. As a result, we observe that
the separation distance at which probes accelerate rapidly towards the surface decreases with age.
Or equivalently, the critical stress of rapid acceleration increases with age, here going from about
30 Pa at tw = 30 min to about 60 Pa at tw = 1.5 h.

3.5.2 Shear-thinning Viscosity

In order to extract nonlinear rheological information from the trajectories in Fig. 3.6 it is necessary
to calculate particle velocities. Because the trajectories in LaponiteR© dispersions exhibit sharp
features not observed in the Newtonian case, a global polynomial or power law fit as described
for the calibration is insufficient for an accurate determination of the velocity at each value of x.
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Fig. 3.6: Probe trajectories in LaponiteR© dispersions. (a) Five typical trajecto-
ries are shown in 2.0 wt% Laponite R© at an age time of tw = 2 h with current
I = 2.00 A. Some particles, generally those beginning closer to the tip, acceler-
ate rapidly toward the surface (‘mobile’ particles), moving too fast to be tracked
for small x. Others remain at a finite separation over the course of the exper-
iment (‘immobile’ particles). The initial slowing of both populations of probes
is suggested to be a result of ‘jamming’ of the dispersion microstructure, while
the eventual rapid acceleration of mobile particles is a result of strong shear-
thinning behavior upon yielding. (b) Typical trajectories of mobile particles are
shown for different age times in 1.5 wt% Laponite R©. As the material ages and
undergoes structural arrest, the critical separation at which the particles accel-
erate rapidly towards the surface decreases, indicating that the critical value of
the local stress required to induce flow increases with age.
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Instead, a piecewise cubic spline is used to interpolate the data with a differentiable function. To
decrease the noise in the trajectories, a smoothing algorithm is first applied using the MATLAB
‘smooth’ function with a local weighted linear least squares regression and a 1st degree polynomial
model (i.e., the ‘lowess’ method). Sufficient smoothing is attained by setting the span of the local
regression to about 2% of the data. Subsequently, a cubic spline is applied and differentiated to
obtain the particle velocity U (x), which is related to the shear rate γ̇ (x) = 3 |U (x)| /2a. Combining
this with the calibration for the stress τ (x) allows calculation of an effective micro-scale viscosity,
ηmicro:

ηmicro =
τ

γ̇
=

2aτ

3 |U | (3.8)

The shear rate dependence of the effective viscosity for a 1.5 wt% dispersion is shown at three
different age times in Fig. 3.7. The applied current is I = 2.00 A. Here magnetic tweezer mi-
crorheology results (solid symbols) are compared directly with bulk rheology data (open symbols)
obtained from continuous stress ramp tests. At both bulk and microscopic length scales, the effec-
tive viscosity exhibits a power law dependence on the shear rate, ηeff (γ̇) ∝ γ̇p. The material is
very strongly shear-thinning, with pmicro ≈ −0.89 and pbulk ≈ −0.95. This result may reflect the
open microstructure of the dispersion. At 1.5 wt% (≈ 0.6 vol%), the dispersion is mostly water, so
that when the microstructure is disrupted and the material begins to flow, the viscosity is expected
to decrease sharply and approach that of water. The power law exponents at both length scales are
essentially independent of age time, an observation we attribute to the common microstructural
states realized during the aging-rejuvenation process and the (age time)–(shear stress) superposi-
tion described by Joshi and Reddy [148]. That is, when a dispersion at long age times undergoes
shear melting, it passes through many of the same states during rejuvenation as a dispersion at
shorter age times.

The correspondence between the power law exponents for bulk and micro-scale measurements
is consistent with calculations that reveal similar shear-thinning behavior between the micro- and
macroviscosity in colloidal dispersions of spherical particles [134]. Additionally, it indicates that
the nature of the shear melting process in LaponiteR© dispersions is similar at bulk and microscopic
length scales. In both cases, the interactions between LaponiteR© platelets result in an arrested
microstructure that must be disrupted, either locally or globally, for the material to flow. The
observation that pmicro ≈ pbulk is in spite of fundamental differences between the character of the
two flows. The bulk viscosity measurement is extracted from a viscometric shear flow between
parallel plates, whereas the micro-scale viscosity is obtained from flow past a sphere. Despite the
similarity between p values across length scales, the magnitude of the effective bulk scale viscosity,
ηbulk, is about 2–6 times ηmicro for all shear rates and age times. This observation is qualitatively
consistent with linear rheological measurements in aqueous LaponiteR© dispersions, which indicate a
weaker gel (lower viscoelastic moduli and longer gelation times) at microscopic length scales [59, 89]
(See Chapter 2). As in the linear case, the discrepancy is likely due to microstructural features in
the dispersion, such as pores or clay particle clusters, that exhibit characteristic sizes similar to the
probe size, so that microrheology reflects the mechanical properties of a slightly different structure
than bulk measurements.

Before leaving this discussion, it is important to address the unsteady nature of the flows from
which the viscosity data in Fig. 3.7 is extracted. Because the stress is continually increasing in
both the bulk and micro-scale experiments, it may be inappropriate to consider the viscosity values
as steady-state measurements. For similar LaponiteR© systems, the stress relaxation time scale, λ,
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Fig. 3.7: Effective viscosity as a function of shear rate for 1.5 w% LaponiteR©

at three age times. Results from bulk stress ramp tests (open symbols, with
lines added to guide the eye) and microrheology (solid symbols) are shown, with
both exhibiting strong shear-thinning behavior. A current of I = 2.00 A is used
for the magnetic tweezer experiments. The effective viscosity follows approxi-
mately a power law dependence on shear rate, ηeff (γ̇) ∝ γ̇p, and the observed
power law exponents are essentially independent of age time, having values of
pmicro ≈ −0.89 and pbulk ≈ −0.95. The correspondence between the power law
exponents at bulk and microscopic scales suggests commonality in the nature of
the shear melting process. The magnitude of the viscosity increases with age
time, but is consistently 2 to 6 times smaller on the microscopic scale, in quali-
tative agreement with previous work comparing the linear viscoelastic moduli of
Laponite R© dispersions from bulk- and micro-rheology measurements [59, 89].

was measured to be on the order of ∼ 100 s [154], which is large compared to the current shearing
time scale 1/γ̇. In other words, the Deborah number, De, is large for the experiments in Fig.
3.7: De = λγ̇ ≫ 1. For this aging system with continually evolving microstructure and rheological
properties, however, it is unclear how to measure bulk steady-state viscosity values in the traditional
sense. In particular, if such an experiment could even reach steady-state it would likely take
significant time, prohibiting the study of age-time dependence. This was demonstrated by Abou
et al. [107], who performed bulk creep tests on LaponiteR© dispersions of similar concentration and
ionic strength as in the present study. They found that reaching steady state requires exceeding a
critical shear stress and shearing for times on the order of hours. With this method, they measured
steady-state viscosities over the range of shear rates 50 s−1 ≤ γ̇ ≤ 5000 s−1 and found a shear-
thinning power law of p ≈ −0.6, which is clearly not as strongly shear-thinning as the data in
Fig. 3.7. This discrepancy further suggests that effects of the unsteady nature of the flows may be
present, and so we qualify our results as ‘effective’ viscosities. However, because of the continuous
ramping of the shear stress in both cases, the bulk and micro-scale measurements reported in Fig.
3.7 are still considered to be analogous to each other.
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Fig. 3.8: Effective viscosity as a function of applied shear stress from bulk con-
tinuous stress ramp tests on 2 w% LaponiteR©. Results are shown at five different
age times. At a critical stress, the viscosity exhibits a sharp drop over several
orders of magnitude, a phenomena associated with a yield stress on the bulk
scale. This critical stress increases with the age time. We note that because
the stress in each test is ramped continuously over 2 min, the reported viscosity
values do not correspond directly to steady-state measurements.

3.5.3 Yield Stress

At higher LaponiteR© concentrations, the yield stress becomes a very prominent rheological feature.
For example, after aging for about 1 hour, dispersions with concentrations of about 2.5 wt% or
more do not flow when the recipient is overturned. Bulk stress ramp tests performed on a 2.0 wt%
LaponiteR© dispersion support the notion of a significant yield stress. Effective viscosity data for
these experiments as a function of the applied shear stress is shown in Fig. 3.8 at five different age
times. The sharp decrease in viscosity at a critical stress is indicative of a yield stress, which we
estimate as the stress at which the viscosity exhibits an intermediate value between its pre- and
post-yielded viscosities. We note that the viscosity values reported in the pre-yielded state (∼ 1000
Pa·s) may be somewhat artificial and may depend strongly on the experimental protocol, so that
they do not necessarily reflect a true, high-viscosity, fluid state [16].

Magnetic tweezer measurements of the yield stress at the microscopic scale are based upon the
distinction between ‘mobile’ and ‘immobile’ probe particles as described in Section 3.5.1. Mobile
particles break the yield stress and cause shear-thinning of the surrounding fluid, eventually reaching
the tip. Immobile particles exhibit a slow creep, but their trajectories plateau and they remain
separated from the tip. The x value that separates the shear-thinning region from the creep region
can be considered a yield surface. More specifically, the yield stress, τy, is bounded by the minimum
stress on mobile particles and the maximum stress on immobile particles. That is, if xmobile is the
farthest distance from the tip for mobile particles and ximmobile is the shortest distance from the
tip for immobile particles, then τ (xmobile) and τ (ximmobile) are bounds on τy and we take τy as
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the average of τ (xmobile) and τ (ximmobile). One would expect that xmobile < ximmobile, so that
based on the calibration in Fig. 3.2, τ (xmobile) > τ (ximmobile). However, we typically observe
xmobile > ximmobile as a result of the creeping of immobile particles over the course of a measurement.
This is demonstrated in Fig. 3.6(a), in which one of the immobile particles eventually creeps past
the initial position of a mobile particle, and yet remains far from the tip. This observation is likely
a result of a small amount of aging during a single measurement, as well as spatial heterogeneity
in the dispersion rheological properties. Another consequence of the creep behaviour is that the
experimental time (i.e., the time over which the current is applied) must be kept constant; otherwise
immobile particles may creep varying distances for different experiments, resulting in inconsistent
calculations of τy. We maintain the experimental time at 1 min.

Yield stress measurements as a function of age time are plotted in Fig. 3.9 for three LaponiteR©

concentrations. Bulk rheology data (gray open symbols) and magnetic tweezer measurements
(black solid symbols) are directly compared. The reproducibility of the data is demonstrated by
the error bars, which represent the standard error of measurements on three different samples at
each age time. In agreement with previous work on the rheology of LaponiteR© dispersions [147, 31],
as well as other microstructured aging materials [155, 156], the yield stress grows approximately
logarithmically with age time according to the function

τy = βln

(

tw
tm

)

(3.9)

where β is a constant (assumed to be independent of LaponiteR© concentration) and tm is interpreted
as a time scale for microstructural development that can be concentration-dependent. Gray and
black solid lines in Fig. 3.9 show least-squares fits to Equation 3.9 at bulk and microscopic scales,
respectively, for each concentration. Equation 3.9 generally provides a good fit to the experimental
data, although it is a somewhat poor approximation (with coefficient of determination R2 = 0.72)
for the magnetic tweezer data at 1.5 wt%. A power law fit was also examined, with a power law
exponent that is independent of length scale and concentration, but only marginal improvement
in the overall quality of the fit is observed when the additional adjustable parameter is taken into
account. That is, we find R2

adj = 0.95 for the power law fit and R2
adj = 0.93 for the logarithmic

fit, where R2
adj is an adjusted R2 value that corrects for the number of model parameters [157].

The logarithmic fits yield β values of βbulk = 15.3 Pa and βmicro = 23.2 Pa. The fitted tm
values are plotted as a function of LaponiteR© concentration, c, in Fig. 3.9(d). We observe that
tm decreases exponentially with c (i.e., linearly on semi-log scale), indicating that dispersions of
higher concentration undergo faster structural arrest. Additionally, as the LaponiteR© concentration
increases, bulk and micro-scale tm values converge.

While quantitative agreement between bulk and micro-scale yield stress data is observed for the
lowest LaponiteR© concentration of 1.5 wt% up to tw = 200 min, the micro-scale data systematically
provides higher values for the yield stress compared to measurements from bulk shear for higher
concentrations. To interpret these results, it is important to consider the differences between the
flow kinematics for the bulk and micro-scale experiments [158]. Only shear stresses are applied
in the bulk plate-plate experiment, while the fluid experiences both shear and normal stresses at
the surface of magnetic probe particles. Since yield stress materials generally exhibit resistance to
both shear and normal stresses, it is reasonable that an elevated yield stress might be observed
from magnetic tweezer measurements. A more appropriate comparison of the data can be achieved
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Fig. 3.9: Comparison of yield stress measurements at bulk and microscopic
scales. The age-time dependence of the observed yield stress is shown for
Laponite R© concentrations of (a) 1.5 wt%, (b) 2.0 wt%, and (c) 2.5 wt%. Error
bars represent the standard error of measurements on three different samples at
each age time. For all concentrations, the yield stress measured at both length
scales grows approximately logarithmically with age time according to Equation
3.9, although this is a somewhat poor approximation for the micro-scale data
at 1.5 wt% (R2 = 0.72 for 1.5 wt% micro-scale data). Fits to this functional
form are shown by lines in black (micro) and gray (bulk). While there is good
agreement between the bulk and raw microrheology data for the lowest concen-
tration up to tw = 200 min, the raw micro-scale data provides higher values for
the yield stress compared to measurements from bulk shear for 2.0 and 2.5 wt%
Laponite R©. However, by treating the pre-yielded material as a linear elastic solid
and approximating the shear contribution to the applied stress for the microrhe-
ology experiments, quantitative agreement with the bulk yield stress measured in
shear can be recovered for concentrations c ≥ 2.0 wt%. This approximate shear
component of the micro-scale applied stress is π/4 times (78.5%) the measured
average stress based on the total force and the probe surface area in the magnetic
tweezer experiment and is given by the dashed black line. The characteristic time
scales tm, which are related to microstructural development and are extracted
by fitting the bulk and micro-scale data to Equation 3.9, decrease exponentially
with Laponite R© concentration, as shown in (d).



3.5. Nonlinear Microrheology Results and Discussion 87

by considering only the shear component of the stress. Without knowledge of the flow kinematics,
however, an exact expression for the shear stress in the micro-scale experiment is unavailable. As an
approximation, we treat the pre-yielded fluid as a linear elastic medium. In this case, the Rayleigh
analogy between viscous flow and the linear elastostatics of isotropic, incompressible solids dictates
that the stress distribution around the probe sphere is the same as that for Newtonian creeping
flow past a sphere [159, 160], for which the shear stress distribution is

τshear (θ) =

(

3ηU

2a

)

sin θ (3.10)

where θ is the inclination angle measured from the axis of the sphere velocity U [161]. By integrating
Equation 3.10, the average shear stress at the surface of the sphere is found to be τshear = 3πηU/8a,
which is π/4 times (78.5%) the average stress based on the total force (Stokes drag, |F | = 6πηa |U |)
divided by the sphere surface area, τ = 3ηU/2a. Using this result from linear elastic kinematics
to approximate the contribution of shear stresses, we therefore shift the logarithmic fits to the
micro-scale data down by a factor of π/4. These shifted results, shown as black dashed lines in
Fig. 3.9, exhibit closer agreement with bulk shear yield stress data and a β value of βshear = 18.2
Pa. However, the correspondence between bulk and micro-scale data at 1.5 wt% LaponiteR© breaks
down when considering only the shear contribution to the stress; the apparent agreement of the
black dotted line with the bulk measurements is an artefact of the questionable fit of the magnetic
tweezer data to Equation 3.9 at this concentration.

We note briefly that the problem of a sphere moving through the simplest model yield stress
fluid, a Bingham plastic, was previously considered by Beris et al. using finite element analysis
[162]. In this work, an expression is proposed that relates the yield stress to the critical applied
force, F , necessary to induce flow: τy = 0.143F/

(

2πa2
)

. Applying this expression to our magnetic
tweezer data results in micro-scale yield stresses that are about 40-50% of bulk measurements.
This discrepancy is not necessarily surprising, however, since the LaponiteR© dispersion does not
strictly obey the Bingham model, but exhibits both pre-yield elastic deformation and post-yield
shear-thinning and ‘rejuvenation’ (see Figs. 3.6 and 3.7).

The correspondence, or lack thereof at low concentrations, between bulk and micro-scale rhe-
ology is related to the characteristic size of microstructural features in the dispersions, such as
pores and other microstructural heterogeneities, as compared to the length scale that is probed.
For dispersions of similar concentration and ionic strength, Pignon et al. studied the physical
structure of LaponiteR© dispersions by combining small-angle X-ray and neutron scattering with
static light scattering [103, 104]. With this method, they obtained the scattering curve over five
orders of magnitude in length scale. Their results indicate that the microstructure consists of a
fractal network of loosely-connected clusters having a characteristic size of about 5 µm. At larger
length scales, the dispersion appears homogeneous. We therefore expect that probing at length
scales significantly larger than 5 µm would result in data that match bulk measurements. Results
for smaller probes will primarily reflect the rheological properties on the length scale of the probe
size. Since the largest microstructural length scale is on the same order of magnitude as the probe
size in the present work, we do not necessarily anticipate that bulk rheology and microrheology
results will match, though we might expect them to be close. It is reasonable to expect that the
characteristic pore size will shrink as the dispersion concentration is increased. Such a trend in
the size of microstrucutral features may account for the fact that better agreement is observed be-
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tween the bulk and the appropriately shear-corrected magnetic tweezer measurements for the more
concentrated dispersions of 2.0 wt% and 2.5 wt%. Multiple particle tracking linear microrheology
experiments in aqueous LaponiteR© dispersions have also suggested that the characteristic pore size
decreases with age time, based on the delay in the apparent gelation time observed with decreasing
probe particle size [89] (see also Chapter 2). This could provide an explanation for the eventual
increase in the micro-scale yield stress for the 1.5 wt% dispersion at the longest age time, at which
point the shear contribution to the stress corresponds reasonably well with the bulk measurement.

3.6 Conclusions and Outlook

Nonlinear rheology is critical to the processing and end-use of many industrially relevant materials,
as well as in numerous settings in nature and biology. In many of these situations, micro-scale
dynamics play a key role; however, methods for quantitatively probing nonlinear microrheology
are only recently being developed. In this chapter, we have discussed a simple magnetic tweezer
technique for studying the nonlinear microrheology of complex fluids. The instrument can apply
magnetic fields on the order of ∼ 1 T, leading to stresses up to about 230 Pa on 4.5 µm superpara-
magnetic probe particles. Shear rates up to about 10 s−1 and viscosities up to about 105 Pa·s can
be measured. The experimental error is controlled by limiting measurements to probe separations
beyond 20 µm, where the variability in the magnetic force across the tip of the tweezer device is less
than 10%. Improvements to the technique and the experimental setup could be achieved through
more precise machining and the use of a high-speed camera.

The technique has been demonstrated on an industrially and scientifically relevant aging and
thixotropic yield stress fluid: an aqueous dispersion of the synthetic clay LaponiteR©. ‘Mobile’ and
‘immobile’ probe trajectories were observed, reflecting a distinction between probes that overcome
the yield stress of the material and those that experience insufficient stress to cause flow. By
analyzing ‘mobile’ probe trajectories, the effective micro-scale viscosity was determined as a function
of the shear rate. The LaponiteR© dispersion was found to exhibit strong shear-thinning behavior,
a feature extracted from the rapid acceleration of probes towards the tip and associated with
microstructural disruption and shear melting. The shear-thinning behavior was corroborated by
bulk measurements, which exhibited similar power law results despite differences in viscosity values
by a factor of about 2 to 6. Furthermore, the distinction between ‘mobile’ and ‘immobile’ probe
trajectories has provided a basis for the first use of magnetic tweezers to directly and quantitatively
measure yield stresses at the microscopic scale. When the approximate shear contribution to
microrheology results was isolated, bulk and micro-scale yield stress measurements were found to
agree quantitatively for LaponiteR© concentrations of 2.0 wt% or higher, with both exhibiting an
approximately logarithmic growth with age time. The age-time dependence of the yield stress has
revealed a time scale associated with microstructural development, which we have found to decrease
with LaponiteR© concentration.

It is expected that nonlinear bulk and micro-scale rheology results will agree if probe particles
are large compared to the characteristic length scale of microstructural features in the dispersion
[22]. An interesting problem for future work would be to determine the probe size at which the
bulk-micro agreement observed in Figs. 3.9(b) and 3.9(c) breaks down. This would provide insight
into the microstrucural length scales in those dispersions. Further, does agreement break down at
all age times, or might the measurements coincide at long enough age times? Our current contention
is that measurements with smaller probes in 2.0 or 2.5 wt% LaponiteR© would likely follow similar
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behaviour as the data in Fig. 3.9(a), and that a concentration–(probe-size) superposition would
exist, as in the linear rheology case [89] (see Section 2.4.5).

The methods and tools presented here will aid in the micro-scale characterization of complex
fluids and soft materials, providing new insight into the microstructure and mechanical response of
such materials as polymer gels, colloidal glasses, and biological tissues. Additionally, this work will
enable a more complete rheological characterization of materials that are difficult to obtain in large
quantities, like certain biofluids. Finally, the results of this chapter will further the understanding
of aqueous LaponiteR© dispersions, which have become important model thixotropic materials in
industry and in academic studies.

Chapters 2 and 3 represent a thorough characterization of the time-evolution of the micro-scale
rheological properties of aqueous LaponiteR© dispersions at dilute and moderate concentrations
in the linear and nonlinear regimes. In the following chapter, we examine magnetorheological
suspensions in a yield stress matrix fluid consisting of an aqueous LaponiteR© dispersion. The
microrheology results from Chapters 2 and 3 provide insight into the local microenvironment of
magnetic particles in this composite magnetorheological suspension.





CHAPTER 4

Magnetorheology in an Aqueous

Laponite Matrix Fluid

With an understanding of the rheology of aqueous LaponiteR© dispersions on bulk and microscopic
scales, we now explore the use of these materials as novel matrix fluids in magnetorheological (MR)
suspensions. The benefit of using aqueous LaponiteR© dispersions in this setting is that the micro-
scale yield stress behavior of the matrix fluid serves to prevent sedimentation of suspended magnetic
particles, which is an important concern in numerous commercial applications of MR fluids. Our
studies focus on the effect of this yield stress on the field-responsive magnetorheology. An article
describing this work has been submitted to the journal Rheologica Acta [91].

4.1 Overview

Field-induced static and dynamic yield stresses are explored for MR suspensions in an aging, yield
stress matrix fluid composed of an aqueous dispersion of LaponiteR© clay. Using a custom-built
magnetorheometry fixture, the MR response is studied for magnetic field strengths up to 1 T and
magnetic particle concentrations up to 30 v%. The yield stress of the matrix fluid, which serves
to inhibit sedimentation of dispersed carbonyl iron magnetic microparticles, is found to have a
negligible effect on the field-induced static yield stress for sufficient applied fields, and good agree-
ment is observed between field-induced static and dynamic yield stresses for all but the lowest
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field strengths and particle concentrations. These results, which generally imply a dominance of
inter-particle dipolar interactions over the matrix fluid yield stress, are analyzed by considering a
dimensionless magnetic yield parameter that quantifies the balance of stresses on particles. By char-
acterizing the applied magnetic field in terms of the average particle magnetization, a rheological
master curve is generated for the field-induced static yield stress that indicates a concentration–
magnetization superposition. The results presented herein will provide guidance to formulators
of MR fluids and designers of MR devices who require a field-induced static yield stress and a
dispersion that is essentially indefinitely stable to sedimentation.

4.2 Introduction

Magnetorheological (MR) fluids are field-responsive materials that exhibit fast, dramatic, and re-
versible changes in properties when subjected to a magnetic field. First introduced by Rabinow [65],
MR fluids are composed of microscopic iron-containing particles suspended in a matrix fluid. Upon
application of a magnetic field, the particles acquire a dipole moment and align to form domain-
spanning chains (see the schematic in Fig. 1.8). This field-induced structuring of the suspension
leads to significant changes in rheological properties, including order-of-magnitude growth in the
steady-shear viscosity and the emergence of field-dependent yield stress and viscoelastic behavior
[64]. The tunability of rheological properties with the applied magnetic field provides the basis for
a wide variety of commercial applications of MR fluids, including automobile clutches [65], active
dampers [66], seismic vibration control [67], prosthetics [68], precision polishing [69], and drilling
fluids [70]. MR fluid research and technology has been reviewed numerous times, with articles
focusing on rheology and flow properties [64], models and mechanisms of chain-formation [72, 73],
MR fluid formulation [163], and applications [71, 164].

Matrix fluids in MR suspensions have traditionally been aqueous or oil-based Newtonian fluids
of moderate viscosity. While this type of formulation maximizes the rheological differences between
the activated material and the off-state, particle sedimentation is a major concern in Newtonian
matrix fluids due to the (typically) large density difference between iron-containing particles and the
surrounding fluid. To address this problem, modifications to both the suspended particles and the
matrix fluid have been proposed. For example, according to the Stokes’ drag law, sedimentation
can be slowed by decreasing the particle size. Experiments have shown, however, that smaller
particles generally lead to lower field-induced yield stresses [165]. Additionally, when particle sizes
approach nanometer length scales, Brownian effects limit the length and strength of the chain
structures that form under an applied field [81]. Composite particles with lower iron content
also exhibit slower sedimentation, but the accompanying decrease in magnetization again results
in diminished field-induced rheological properties [166]. Reasonable success has been achieved
through the use of stabilizing additives that provide a steric hindrance to particle aggregation.
Additives such as ferromagnetic nanoparticles [167, 168], fumed silica [169], organoclays [170], and
magnetizable nanofibers [171] have been used for this purpose. Arguably the most robust methods
for inhibiting sedimentation involve modifying the matrix fluid rheological properties. By employing
viscoplastic matrix fluids [79, 83] or thixotropic gel-forming agents such as silica nanoparticles
[84, 85], sedimentation can be prevented essentially indefinitely in quiescent dispersions as long as
the yield stress of the matrix fluid exceeds the net stress acting on the particles due to gravity and
buoyancy [172].

For the set of experimental conditions considered by Rankin et al. [79], results indicate that
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the matrix fluid yield stress has minimal effect on the field-induced dynamic yield stress. The field-
induced static yield stress, however, is also an important property in many MR fluid applications
and is a more direct measure of the ‘strength’ of an MR fluid [86]. The dynamic yield stress is
typically measured by imposing a set of decreasing steady-state shear rates, γ̇, and extrapolating
the resulting shear stresses to γ̇ = 0 s−1. In contrast, the static yield stress is defined as the stress
required to induce flow from rest [17]. For materials that exhibit thixotropy or require a finite
time to reform microstructure after being sheared, these two yield stress measures are generally
not equal [18, 173, 174]. Additionally, in the case of MR fluids, it is reasonable to expect that the
effects of a matrix fluid yield stress on field-induced structure and rheology will be more apparent
in static yield stress measurements. The externally-applied shear rate in dynamic measurements
increases the probability that particles will encounter each other and aggregate despite the matrix
fluid yield stress, whereas in static measurements magnetic particles must directly overcome the
matrix fluid yield stress in order to form structure and provide an MR response. Because of
these complications arising from differences in measuring techniques, and because of the practical
utility of yield stress matrix fluids in inhibiting sedimentation, the need remains to develop a more
thorough understanding of the effect of matrix fluid yield stresses on field-induced properties in
MR fluids.

The yield stress matrix fluid for the work described in this chapter is an aqueous dispersion
of the synthetic clay LaponiteR©. As discussed in greater detail in Chapter 2, LaponiteR© clay
consists of nanometric disks that undergo progressive structural arrest over time when dispersed in
water at concentrations as low as about 1 wt% [45, 146, 102, 100]. This continual microstructural
development, known as aging, results in complex and time-dependent rheology [106, 148, 147].
Furthermore, the competition between aging and microstructural disruption due to shear (i.e.
shear ‘rejuvenation’) leads to thixotropic behavior [107]. Previous work has addressed the bulk
rheology and microrheology of aqueous LaponiteR© dispersions; for a more thorough description of
the current understanding of reviews of the rheology of aqueous LaponiteR© dispersions, see Chapter
2 and Rich et al. [89]. Also, a review of the phase behavior and microstructure of aqueous LaponiteR©

dispersions has been provided by Ruzicka and Zaccarelli [43]. For the purposes of this chapter, the
significance of the aging behavior of LaponiteR© dispersions is that it results in continual growth
of the static yield stress of the matrix fluid (see for example Section 3.5.3). Therefore, different
matrix fluid yield stresses can be examined simply by allowing the MR composite system to age
for different periods of time.

Using a custom-built magnetorheometry fixture [175], the current work explores the field-
induced static yield stress of MR suspensions in an aging, yield stress matrix fluid composed
of an aqueous dispersion of LaponiteR©. The MR response is studied as a function of both the
magnetic field strength and the age time. Our results indicate that the field-induced static yield
stress grows with the applied field in a manner similar to that in a Newtonian matrix fluid, and
that, for sufficient magnetic fields, the field-induced yield stress is approximately independent of
the age time (or, equivalently, of the matrix fluid yield stress). These observations are explained by
considering a dimensionless magnetic yield parameter that characterizes the relative magnitudes
of stresses acting on the dispersed magnetic particles. The effect of particle concentration on the
magnetorheological response is also examined, and at a given field strength a power law relationship
is observed between the field-induced static yield stress and the particle volume fraction. Despite
the thixotropic properties of the matrix fluid, good agreement is observed between the field-induced
static and dynamic yield stresses for all but the lowest concentrations and magnetic field strengths.
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Fig. 4.1: The magnetic component of the magnetorheological fluid in the present
study is CM grade Carbonyl Iron Powder (CIP) (BASF, Ludwigshafen, Ger-
many). (a) Scanning Electron Microscopy (SEM) image of CIP. The powder
consists of approximately spherical particles exhibiting some polydispersity and
irregularity. (b) Volume-weighted and number-weighted size distributions of CIP
particles in the present study. Treating CIP particles as spherical, an average
particle diameter of about 3.7 µm is extracted from the number-weighted distri-
bution. Additionally, the volume-weighted distribution indicates that 50% of the
powder volume consists of particles with effective diameter d ≤ d50 = 8.6 µm,
in agreement with data provided by the manufacturer. (c) CIP magnetization
curve. Solid lines connect data points and serve to guide the eye. According
to the manufacturer’s specifications, the particles are ≥ 99.5% Fe, leading to
large values of the magnetization M at moderate applied fields. The particles
exhibit linear magnetization for small applied fields (B ≤ 0.1 T) and reach a
saturation magnetization of about Msat ≈ 190 emu/g, denoted by the dashed
gray line, above about B ≈ 0.6 T.

By expressing the applied fields in terms of the average particle magnetization, a master curve is
generated that indicates a superposition of particle concentration and magnetization.

4.3 Materials and Methods

4.3.1 Carbonyl Iron Magnetic Particles

The magnetic particles providing the MR response in the present study are CM grade carbonyl iron
powder (CIP) (BASF, Ludwigshafen, Germany). CM is a ‘soft grade’ consisting of mechanically
soft, approximately spherical particles with an iron content of about 99.5% by weight. Though the
CM grade exhibits a wider size distribution than other CIP grades, it is also relatively economical.
Fig. 4.1(a) shows a Scanning Electron Microscopy (SEM) image of CIP, providing a sense for
the polydispersity and irregularity of the particles. The scale bar corresponds to 5 µm. Particle
size distributions of CIP, as measured with a Mastersizer 2000 particle size analyzer (Malvern
Instruments, Worcestershire, UK), are shown in Fig. 4.1(b). Both volume-weighted and number-
weighted distributions are shown. The number-weighted distribution gives an average particle
diameter of 〈d〉 ≈ 3.7 µm with a standard deviation of about 2 µm. Additionally, from the volume-
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weighted distribution it is found that 50% of the powder volume consists of particles with diameter
d ≤ d50 ≈ 8.6 µm, in quantitative agreement with data provided by the manufacturer.

Although the increased polydispersity and eccentricity of CIP particles can complicate analysis,
the use of CIP in MR fluids provides functional advantages over polymer-magnetite composite
superparamagnetic particles because of its stronger magnetic properties, which result from the high
iron content. Fig. 4.1(c) shows magnetization data for CIP, obtained using a Vibrating Sample
Magnetometer. The particles exhibit linear magnetization up to an applied magnetic field of about
B ≈ 0.1 T. Beyond about B ≈ 0.6 T, the particles exhibit a constant saturation magnetization of
about Msat ≈ 190 emu/g = 190 A·m2/kg, which is about 10 times greater than that of similar-sized
polymer-magnetite superparamagnetic particles (based on data from manufacturer, Invitrogen).
Negligible magnetic hysteresis is observed.

In the present study, CIP is suspended in an aging, yield stress matrix fluid, and the MR
response of the composite is explored. The matrix fluid consists of a 3.0 w% aqueous dispersion
of the synthetic colloidal clay LaponiteR© (RD grade, Southern Clay Products, Gonzales, TX).
The aqueous LaponiteR© dispersion is prepared in the same way as described in Section 2.3.1.
Immediately after mixing and filtering the LaponiteR© dispersion, CIP is added to the desired
concentration and the sample is subjected to vortex mixing for about 30 seconds, resulting in
approximately homogeneous dispersion of the CIP particles. The composite suspension is then
deposited onto the sample plate of the custom MR cell described below.

4.3.2 Bulk Magnetorheology

The bulk rheology of CIP suspended in aqueous LaponiteR© dispersions is studied under applied
magnetic fields using the custom-built magnetorheology fixture designed by Ocalan [175] that is
shown in Fig. 4.2. The magnetic field is generated by passing electrical current (up to 5 Amps)
through a coil of copper magnet wire, which is wrapped around a cylindrical core of 1018 carbon
steel. The fluid sample is placed between a non-magnetic aluminum sample plate, which is fixed
directly above the cylindrical core, and a 20 mm diameter non-magnetic titanium plate geometry
that is attached to the spindle rod of the rheometer. To minimize wall-slip, the aluminum sample
plate is sandblasted to an RMS roughness of about 3.8 µm, and adhesive-backed 600 grit sandpaper
disks (McMaster-Carr, Elmhurst, IL, RMS roughness ≈ 6.0 µm) are attached to the 20 mm top
plate. An elastomeric ring on the outer edge of the top plate helps to prevent the sample from
escaping from the gap and climbing the spindle rod in response to strong magnetic fields. A thin
slot in the bottom of the sample plate provides access for a Gauss probe to measure the magnetic
field directly beneath the sample. The entire fixture is housed in a casing of 1018 carbon steel,
including a top cover that serves to complete the magnetic circuit and direct the magnetic field
through the sample, and then mounted on a stress-controlled rheometer (ARG-2, TA Instruments,
New Castle, DE). The casing and cover design prevent the applied magnetic fields from interfering
with the magnetic bearing of the rheometer. Temperature control is achieved by flowing silicone
oil through channels machined within the casing. Using the fixture, highly uniform magnetic fields
up to B ≈ 1 T can be applied to the sample. For more detailed information about the design of
the fixture, its capabilities, and analysis of the applied fields, see [175].

After preparing the sample as described above, the fluid is introduced between the rheometer
plates and the gap height is set to 0.5 mm. Because of the thixotropic nature of the LaponiteR©

matrix fluid, steps are taken to ensure consistent initial conditions and promote reproducibility of
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a) b)

Fig. 4.2: The custom-built fixture used for magnetorheology experiments shown
(a) as a cross-sectional schematic and (b) mounted on a stress-controlled
rheometer (images reproduced with permission from [175]). Dimensions are
given in millimeters. The magnetorheometry fixture consists of copper magnet
wire wrapped around a cylindrical core of 1018 carbon steel. The fluid sample
fills the space between a non-magnetic aluminum sample plate and a 20 mm
diameter non-magnetic plate of titanium alloy that is attached to the spindle
rod of the rheometer. Silicone oil flows through channels surrounding the coil,
providing temperature control. Two cover plates of 1018 carbon steel complete
the magnetic circuit, helping to direct the field uniformly through the sample.
A thin slot in the bottom of the sample plate allows access for a Gauss probe to
measure the magnitude of the applied magnetic field. When a current of about
3.5 A passes through the coil, the setup can apply magnetic fields up to B ≈ 1
T with high spatial uniformity.
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results. Initially, the sample is pre-sheared at a rate of γ̇ = 600 s−1 for 10 s, effectively erasing the
shear history and resetting the age time, tw, to zero [62, 37]. Though it has been shown that even
a strong shear cannot completely ‘rejuvenate’ the aging process in aqueous LaponiteR© dispersions
[176], this small amount of irreversibility is found to have a negligible effect on the rheological
response of the composite to magnetic fields. Subsequent to the pre-shear at γ̇ = 600 s−1 the
magnetic component of the suspension is structured by applying a relatively high magnetic field
of 0.8 T for 30 s, after which the field is switched off and the material is pre-sheared again at
γ̇ = 250 s−1 for 20 s. This protocol provides consistent magnetic and shear histories and imposes
reproducible initial conditions for magnetorheology experiments [12]. The suspension is allowed to
age at a constant temperature T = 22.5 ◦C, and the desired magnetic field is applied starting 30 s
before performing rheometric tests to probe the yielding behavior. The primary focus of the present
work is the static yield stress, which is measured using continuous ramp tests; starting from a value
below the static yield stress, the applied shear stress is increased continuously until the dispersion
has yielded, allowing the extraction of the flow curve during yielding. The stress is ramped linearly
over a test time of ∆ttest = 2 min (∆ttest = 1 min for 10 min age samples), which is small compared
to the age of the dispersion tw. Though attempts are generally made to minimize the rate of stress
increase, as long as the initial stress is sufficiently below the static yield stress and ∆ttest ≪ tw the
exact rate of stress increase has minimal effect on the results. We note that because the stress is
ramped continuously, the measured flow curves do not necessarily correspond precisely to steady-
state measurements. However, steady-state measurements would generally be complicated by the
aging behavior of the LaponiteR© matrix fluid [62], so that in this case the continuous ramp tests
provide a consistent and meaningful measure of the static yield stress at a particular age time when
∆ttest/tw ≪ 1. To measure the dynamic yield stress, steady-state flow tests are performed in which
the shear rate is decreased logarithmically in discrete steps from γ̇ = 100 s−1 to γ̇ = 0.05 s−1.
Starting from higher shear rates has negligible effect on the extracted values of the dynamic yield
stress. Because the aging behavior of the matrix fluid can lead to continually evolving properties, a
relatively lenient criteria for reaching steady state is used (two consecutive 3-second measurements
giving results within 5% of each other), so that the time required for a test remains small compared
to the age time (about 1 min). The dynamic yield stress is obtained by extrapolating the measured
stress values to γ̇ = 0 s−1 [17].

4.4 Results and Discussion

4.4.1 Effects of Magnetic Field and Aging

In Newtonian matrix fluids, chain models for electro- and magneto-rheology predict that the yield
stress will increase quadratically with the magnetic field B for low field strengths when the magnetic
particles are in the linear magnetization regime [177]. As the magnetic field increases and the
particles exhibit nonlinear magnetization, the yield stress is predicted to scale as B3/2 and eventually
become independent of B as the particle magnetization saturates [178]. These scalings have been
confirmed experimentally for spherical particles [167, 179], though some studies have reported a
somewhat weaker dependence on B [180, 181]. In matrix fluids composed of viscoplastic grease,
Rankin et al. [79] reported that the field-induced dynamic yield stress scales with Bx, where x
decreases from about 1.5 to 0 as the magnetic field increases and the magnetization of the particles
saturates. The value of x = 1.5 in grease-based matrix fluids for magnetic fields below the saturation
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Fig. 4.3: Typical flow curves from continuous stress ramp tests at various applied
magnetic fields. Lines connect data points to guide the eye. The qualitative
trends in the data above, which corresponds to a 10 v% CIP suspension in a 3.0
w% aqueous Laponite R© dispersion at an age time of 10 min, are representative
of all CIP concentrations and age times. At a given magnetic field, the shear
rate is negligibly small up to a critical shear stress that corresponds to the field-
induced static yield stress, τys. Further increasing the applied stress results
in the shear rate increasing by several orders of magnitude. Note that since
the stress is ramped continuously, the data above do not necessarily correspond
directly to steady-state measurements.

regime (about 0.05 T to 0.35 T) has also been reported by other authors [182, 83].

Flow curves from continuous stress ramp tests under magnetic fields are shown in Fig. 4.3.
The sample consists of 10 v% CIP (47 w% CIP) in a 3.0 w% aqueous LaponiteR© dispersion at
an age time of tw = 10 min. The constant age time ensures consistent matrix fluid properties
for each measurement. For each value of the magnetic field, very small shear rates are observed
until a critical shear stress is exceeded, after which the shear rate abruptly increases by several
orders of magnitude. This behavior is a definitive characteristic of field-activated yield stress fluids,
and indicates a breaking of the field-induced microstructure at the critical applied stress, which
corresponds to the static yield stress, τys. Larger values of this critical stress are observed as the
magnetic field is increased; at B = 1.0 T, the material can support stresses about 4 to 5 times
higher than at B = 0.2 T without yielding. Beyond about B = 0.6 T, the response of the material
to applied stress changes minimally, which is a result of the magnetic saturation of the particles
at these higher field strengths. While the measured shear rates in these experiments may not
necessarily correspond precisely to steady-state measurements, as described above, by maintaining
consistent experimental conditions it is possible to extract meaningful and repeatable values of
the field-induced static yield stress, τys, which is determined as the critical stress above which an
abrupt increase in the shear rate is observed [17].
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Fig. 4.4: Field-induced static yield stress, τys, of a 10 v% CIP suspension in
a 3.0 w% aqueous Laponite R© dispersion. (a) Field-induced static yield stress
as a function of the applied magnetic field, B, at an age time of tw = 10
min (matrix fluid static yield stress, τys,0 ≈ 85 Pa). Error bars represent the
standard deviation of measurements on three different samples. At low field
strengths, τys increases with the applied magnetic field, B. Saturation of the
yield stress is observed for B greater than about 0.6 T, due primarily to the
saturation of the particle magnetization [see Fig. 4.1(c)]. τys grows by more
than an order of magnitude from B = 0.1 T to B = 1.0 T. (b) Static yield
stress as a function of age time, tw, for 3.0 w% aqueous LaponiteR© dispersions
with no added CIP and with 10 v% CIP at B = 0.1, 0.3, and 0.5 T. While the
matrix fluid yield stress increases with age time, the yield stress of the composite
is essentially independent of age time (i.e, independent of the matrix fluid yield
stress) for all but the lowest magnetic field. The addition of CIP and magnetic
fields as low as B = 0.1 T results in an order of magnitude increase in the static
yield stress over that of the matrix fluid alone.
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The field-induced static yield stress for 10 v% CIP is shown as a function of the magnetic field
strength, B, in Fig. 4.4(a). The age time for the 3.0 w% aqueous LaponiteR© matrix fluid is again
kept constant at tw = 10 min. Error bars represent the standard deviation between measurements
on three different samples, providing an indication of the reproducibility of the measurements.
For applied fields of 0.1 T to 0.5 T, τys grows approximately linearly with B. As the magnetic
field is increased further, a plateau is observed so that for fields above about B ≈ 0.6 T, τys is
approximately independent of the magnetic field. This regime is again indicative of the magnetic
saturation of CIP particles. Before the onset of magnetic saturation, the magnetic field has a
strong effect on the rheology; τys increases by about an order of magnitude from B = 0.1 T to
B = 1.0 T. These trends are qualitatively similar to those reported in Newtonian matrix fluids [178].
Though the regime of quadratic dependence on B predicted for Newtonian matrix fluids has not
been observed, this is likely because the particles already begin to exhibit nonlinear magnetization
effects at B = 0.1 T [see Fig. 4.1(c)].

A unique aspect of the aqueous LaponiteR© matrix fluid used in the present study is its aging
behavior. Left quiescent, the rheological properties of the LaponiteR© dispersion evolve with time
as individual clay particles coordinate and an arrested microstructure develops in the material [43].
Aging results in growth of both the yield stress and the matrix viscoelasticity [89, 90] (see also
Sections 2.4.1 and 3.5.3), and generally leads to a more solid-like material. Fig. 4.4(b) shows
the effect of this aging in the matrix fluid on the magnetorheology of the 10 v% CIP suspension.
Squares represent the static yield stress of the 3.0 w% LaponiteR© matrix fluid with no added CIP,
which grows steadily with age time as expected. Without a magnetic field, adding CIP to the
matrix fluid raises the static yield stress by at most 60% (at 30 v% CIP), which is small compared
to the field-induced gain in the yield stress. For an applied field of B = 0.1 T, a small increase
in the field-induced static yield stress is observed between tw = 10 min and tw = 120 min. For
larger magnetic fields, however, τys becomes essentially independent of age time, indicating an
insensitivity to matrix fluid properties. Two orders of magnitude separate the values of τys for the
pure matrix fluid and data for a 10 v% dispersion at B = 0.5 T, which again highlights the strong
effect of the magnetic field on the rheology.

The independence of τys on the matrix fluid rheological properties for moderate to high magnetic
field strengths can be understood by considering the relative magnitude of the different stresses
acting on the CIP particles. Specifically, the matrix fluid yield stress can be compared to the
inter-particle dipolar stress resulting from the applied magnetic field. If mutual magnetic induction
is neglected so that all the particles are assumed to have the same constant dipole moment, the
interaction energy Uij between two spherical point dipoles with centers separated by a distance rij

and subject to a uniform external magnetic field is given by Equation 1.11, which is repeated here
for clarity:

Uij =
m2µ0

4π

(

1 − 3 cos θij

r3
ij

)

(4.1)

Here m is the magnitude of the dipole moment, µ0 is the magnetic permeability of the medium
(assumed to be equal to the permeability of free space), and θij is the angle that the line connecting
the particle centers makes with the direction of the applied magnetic field, as shown in Fig. 1.9.
The attraction force between the particles is maximum when their centers are aligned with the field
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(θij = 0). In this case, the magnitude of the force is

Fij |θij=0 =

∣

∣

∣

∣

−dUij (θ = 0)

drij

∣

∣

∣

∣

=
3m2µ0

2πr4
ij

(4.2)

This expression can be used to find a characteristic force by setting rij to the particle diameter, d,
which is the minimum distance between particle centers. A characteristic magnetic force between
particles is therefore

Fchar =
π

24
d2µ0 (ρM)2 (4.3)

Here the dipole moment has been expressed as m = (π/6) d3ρM where ρ is the particle density and
M is the magnetization per unit mass. A characteristic magnetic stress can be found by dividing
Equation 4.3 by the surface area of a spherical particle πd2

τchar =
µ0 (ρM)2

24
(4.4)

Comparing the characteristic values obtained from Equation 4.4 to the static yield stress of the
matrix fluid, τys,0, which must be overcome for the particles to move and form a chain-like structure
in response to the imposed field, provides insight into the effect of the matrix fluid on the MR
response. This balance of stresses is characterized by the following dimensionless group

Y∗
M =

µ0 (ρM)2

24τys,0
(4.5)

This parameter is similar to the so-called ‘magnetic yield parameter’ introduced by previous authors
[79]. Generally, if Y∗

M > 1 chain-like structures will form under the action of an external magnetic
field and a bulk MR response will be observed, whereas if Y∗

M ≪ 1, the yield stress of the matrix fluid
prevents structure formation. For the magnetic CIP particles used in the present experiments, the
density of iron is ρ ≈ 7.8 g/cm3, and the magnetization data in Fig. 4.1(c) shows that for B ≥ 0.2
T, M ∼ 100 emu/g = 100 A·m2/kg. Fig. 4.4(b) shows that the static yield stress of the matrix
fluid is on the order of 100 Pa. Using these numerical values in Equation 4.5 gives Y∗

M ≈ 320 ≫ 1.
Therefore, the characteristic magnetic stress between particles is much greater than the matrix fluid
yield stress. As a result, it is reasonable to expect that moderate changes in the matrix fluid yield
stress during aging will have minimal effect on the magnetorheological response. For the case of
B = 0.1 T, it is helpful to return to Equation 4.2 and recognize that the average distance between
particle centers is dependent on the volume fraction of CIP, φCIP . Treating the CIP suspension
as a homogeneous dispersion of monodisperse spheres, this volume fraction dependence can be

accounted for in an approximate way by replacing rij with dφ
−1/3
CIP rather than simply d. Carrying

this change through Equations 4.3–4.5 results in a modification to Y∗
M

Y∗
M,φ =

µ0 (ρM)2

24τys,0
φ

4/3
CIP (4.6)

Equation 4.6 matches the expression given for the ‘Magnetic Yield Parameter’ in Table 1.2. Ap-
plying data from Figs. 4.1(c) and 4.4(b) for a 10 v% CIP dispersion at B = 0.1 T and a matrix
fluid age time of tw = 120 min results in a value of Y∗

M,φ ≈ 4. The fact that Y∗
M,φ is close to 1
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in this case implies that the characteristic magnetic stress on particles exceeds the matrix fluid
yield stress by only a small amount. The magnetorheological response of the composite is therefore
expected to reflect a combination of the structures formed by magnetic particles as well as the
matrix fluid rheology. This is consistent with the observation that the matrix fluid and the 10 v%
CIP composite at B = 0.1 T exhibit similar rates of growth in the static yield stress during aging.
For reference, in the case of a 10 v% CIP dispersion and a matrix fluid age time of tw = 120 min,
Y∗

M,φ ≈ 15 at B = 0.3 T, so that matrix fluid effects are again expected to be minimal for this
higher magnetic field strength.

An important complication in microstructured fluids is that rheological properties measured at
the bulk scale often do not entirely reflect behavior and properties at the microscopic scale [21, 22].
In the present experiment, suspended CIP particles have an average diameter of about 3.7 µm
[see Fig. 4.1(b)], so the yield stress of the matrix fluid measured via bulk rheology may not be
representative of the matrix fluid yield stress at the length scale of the magnetic microparticles.
This effect could result from pores or other microstructures in the matrix fluid that have similar
length scales as the CIP particles. This question was addressed in the previous chapter in Section
3.5.3 [90] in which bulk yield stress values were compared to nonlinear microrheology magnetic
tweezer measurements in aqueous LaponiteR© dispersions. Recall that the probes for microrheology
experiments were superparamagnetic spheres of diameter 4.5 µm, which is similar to the average
size of CIP particles in this work. For LaponiteR© concentrations greater than or equal to about
2.0 w%, bulk and micro-scale yield stress measurements were found to agree quantitatively so long
as differences in the flow kinematics for the two experiments are correctly taken into account.
This kinematic correction consists of an order one factor that approximately captures the shear
contribution to the applied stress in the micro-scale experiment involving spherical probe particles.
Since the LaponiteR© concentration in the present work is 3.0 w%, and since the CIP particles are
irregular in shape [see Fig. 4.1(a)], we neglect this correction factor and consider the matrix fluid
yield stress measured via bulk experiments also representative of that on the length scale of the
CIP particles. Further, since the value of the matrix fluid yield stress is used primarily to gain
physical insight by evaluating the dimensionless yield parameters defined in Equations 4.5 and 4.6,
an order one correction factor will have negligible effect on conclusions.

The observation that the field-induced static yield stress is largely independent of the matrix
fluid static yield stress is consistent with the results of Rankin et al. [79], who showed similar
behavior for the field-induced dynamic yield stress of CIP suspensions in viscoplastic greases. Be-
cause of the nature of dynamic yield stress measurements, in which an initial applied shear rate
increases the probability that magnetic particles will encounter each other and form chains, and
because the measured field-induced dynamic yield stresses exceeded the matrix fluid yield stresses
by 2 to 3 orders of magnitude, it is to be expected that the MR dynamic yield stresses measured
in the work of Rankin et al. [79] would be relatively independent of matrix fluid properties. For
field-induced static yield stress measurements, however, the matrix fluid properties can play a more
significant role because the magnetic particles must overcome the matrix fluid yield stress in or-
der to form the chain-like structure and provide an MR response. It is therefore unclear a priori
whether field-induced static yield stress measurements in yield stress matrix fluids would exhibit a
similar insensitivity to matrix fluid properties as in the case of dynamic measurements. From the
perspective of formulators of MR fluids, independence of the field-induced yield stress on matrix
fluid rheology is likely to be an attractive and advantageous property. As long as the matrix fluid
yield stress is sufficient to prevent magnetic particle sedimentation, the exact rheological properties
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of the matrix fluid have little bearing on the field-responsive rheology. Therefore, the matrix fluid
rheology can be optimized to meet various off-state needs or designed for other functionalities with
little concern for how the activated material will behave. Care must be taken to account for matrix
fluid rheological properties, however, at low field strengths and large matrix fluid yield stresses, as
has been discussed. The following section, which examines the role of magnetic particle concentra-
tion, shows that effects of the matrix fluid yield stress must also be taken into consideration at low
volume fractions of magnetic particles, as implied by Equation 4.6.

4.4.2 Effect of Magnetic Particle Concentration

Increasing the concentration of magnetic particles generally enhances the rheological response of
MR fluids to an applied magnetic field [73]. For this reason, volume fractions in commercial
applications are often as high as 40 to 50 v% [183], despite the fact that increased concentrations of
magnetic particles also result in an elevated off-state viscosity. Established models predict that the
field-induced yield stress and viscoelastic storage modulus [178], as well as the viscosity [184], will
exhibit a linear dependence on the volume fraction of magnetic particles [64]. While experimental
results for the field-induced dynamic yield stress have corroborated this linear relationship up to
surprisingly high concentrations in both Newtonian and non-Newtonian matrix fluids, a super-
linear increase with volume fraction has been observed above about φCIP = 0.2 [185, 79, 167, 186].
This behavior is thought to result from the formation of thick columnar structures, as opposed to
the single particle-width chains that dominate at low concentrations.

In Fig. 4.5 we show the dependence of the field-induced yield stress on the magnetic field
strength, B, for suspensions with different volume fractions of CIP. The matrix fluid is a 3.0 w%
aqueous LaponiteR© dispersion at a constant age time of tw = 10 min (τys,0 ≈ 85 Pa). Filled
symbols and solid lines represent the static yield stress, τys, while open symbols and dashed lines
represent the dynamic yield stress, τyd, which has typically been reported by previous authors for
MR composites in yielding matrix fluids such as greases [79, 83]. For all CIP concentrations, both
yield stress measures grow with the magnetic field up to about B = 0.6 T, beyond which a plateau
is observed. This trend is generally consistent with previous measurements of τyd in yield stress
matrix fluids [79], though the plateau in Fig. 4.5 begins at slightly higher field strengths (most
likely due to a different size and grade of CIP). For the largest volume fraction examined in the
present work, field-induced static and dynamic yield stresses up to about 50 kPa are observed.
Because the matrix fluid yield stress is significantly larger than the gravitational stress acting on
particles and continually grows as the dispersion ages, sedimentation is prevented essentially indef-
initely for all CIP concentrations examined. Based on these results, it is reasonable to anticipate
that gravitationally stable dispersions with higher field-induced yield stresses could be achieved by
further increasing the CIP concentration to 40 or 50 v%.

With the exception of results for the lowest CIP concentration at low applied fields, the two
measures τys and τyd are in good agreement, indicating that field-induced thixotropy is negligible.
This is despite the thixotropic nature of the aqueous LaponiteR© matrix fluid; at tw = 10 min,
τys,0 ≈ 85 Pa while the matrix fluid dynamic yield stress is measured to be τyd,0 ≈ 20 Pa. The
deviation between τys and τyd at φCIP = 0.01 and low applied magnetic fields is most likely due
to the inability of some dispersed magnetic particles to overcome the matrix fluid yield stress and
form gap-spanning chains during the static yield stress measurement. In this dilute dispersion, for
which the average distance between particles is relatively large, inter-particle attractive forces at
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Fig. 4.5: Field-induced yield stress as a function of magnetic field for various
CIP volume fractions, φCIP , in a 3.0 w% aqueous LaponiteR© dispersion at an
age time of tw = 10 min. Both the static yield stress, τys (filled symbols and
solid lines), and the dynamic yield stress, τyd (open symbols and dashed lines),
are shown. For all CIP concentrations considered in the present study, both
measures of the yield stress follow a similar trend with the applied magnetic field,
growing with B and exhibiting a plateau above about 0.6 T. Good agreement is
observed between the field-induced static and dynamic yield stresses for all but
the lowest CIP concentration at low magnetic fields.

low external fields may be insufficient to overcome the matrix fluid yield stress. Quantitatively, for
τys,0 = 85 Pa, φCIP = 0.01, and B = 0.2 T [M ≈ 125 emu/g, see Fig. 4.1(c)], inserting parameters
into Equation 4.6 gives a volume-fraction corrected yield parameter of Y∗

M,φ = 1.3. Values close to
unity indicate that the matrix fluid yield stress approximately balances attractive forces between
particles resulting from dipolar interactions, hindering chain formation. In the dynamic yield stress
measurement, however, bulk shear and rejuvenation of the matrix fluid disrupt and lower the matrix
yield stress, enabling viscous flow and increasing the likelihood that particles will aggregate and
form chains, as discussed above. Therefore, deviations between τyd and τys are reasonable in this
dilute regime at low magnetic field strengths. In particular, the observation that τyd > τys, in
contrast to the case of the pure matrix fluid, is consistent with the mechanism described above.

Fig. 4.5 shows that the field-induced static and dynamic yield stresses increase substantially
with CIP concentration. This behavior is specifically highlighted in Fig. 4.6(a), where the yield
stress results are plotted as a function of φCIP for constant values of the applied magnetic field.
For clarity, only static yield stress measurements for three representative field strengths are shown
(B = 0.1, 0.2, and 0.5 T), though the dynamic yield stress data is generally quantitatively similar,
as previously discussed. At a given field strength, the yield stress increases by more than an order of
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Fig. 4.6: (a) Variation of the field-induced yield stress with CIP volume fraction
in a 3.0 w% aqueous LaponiteR© dispersion at an age time of tw = 10 min. For
clarity only static yield stress data at three representative field strengths are
shown here, but both τys and τyd exhibit a similar power-law dependence on
φCIP for all field strengths. The magnitude of τys (as well as τyd) increases
by almost two orders of magnitude from φCIP = 0.01 to φCIP = 0.30. In (b),
the power-law exponents, α, and coefficients, κ, resulting from least-squares
fitting to Equation 4.7 (for which the minimum coefficient of determination is
R2 = 0.96), are shown for the field-induced static (filled symbols) and dynamic
(open symbols) yield stresses. Squares represent the exponent α, given on the
left axis, while circles represent the front factor κ, given on the right axis. The
coefficient κ grows with the magnetic field in a manner that reflects the field
dependence of the yield stress, as shown in Fig. 4.5. Both sets of power-law
exponents increase from α ≈ 0.75 at B = 0.1 T (sub-linear dependence on φCIP )
to α ≈ 1.15 ± 0.06 for B greater than about 0.5 T (super-linear dependence on
φCIP ).
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magnitude from φCIP = 0.01 to φCIP = 0.30. A nearly linear dependence on CIP volume fraction
is observed, though a more general power-law relationship is most appropriate

τys = κφα
CIP (4.7)

The coefficient κ and the power-law exponent α depend on the field strength. Least-squares fits to
Equation 4.7 are shown by black lines. The ability of the power-law form to characterize the data
in Fig. 4.6(a) is representative of the goodness of fit for other field strengths, and the power-law fits
provide a minimum coefficient of determination of R2 = 0.96. The variation of the fitted parameters
in Equation 4.7 with the applied magnetic field is shown in Fig. 4.6(b) for both the static (filled
symbols) and dynamic (open symbols) yield stresses. Squares specify the power-law exponent α on
the left axis, and circles give the coefficient κ on the right axis. κ values reflect the behavior of the
field-induced yield stress, increasing by almost two orders of magnitude from B = 0.1 T to B = 1
T and exhibiting saturation above about B = 0.6 T. Additionally, κ values fitted from static and
dynamic yield stress data are in good agreement. While all α values are close to unity, signifying
a nearly linear dependence of the yield stress on CIP volume fraction as mentioned above, there is
a clear trend in which α increases from α ≈ 0.75 at B = 0.1 T to α ≈ 1.15 above about B = 0.5
T. This indicates that the yield stress increases sub-linearly with φCIP for low field strengths,
and super-linearly above about B = 0.5 T. The power-law exponents for τys and τyd are in good
agreement, deviating by less than 15%. The sub-linear volume fraction dependence of the field-
induced yield stress observed here at low field strengths is in contrast to model predictions [178] and
previous experimental results [185] for Newtonian matrix fluids, which show a linear dependence
on magnetic particle concentration for low field strengths and dilute suspensions. Additionally,
previous studies of MR composites in a viscoplastic grease have reported a linear dependence on
the volume fraction for B ≈ 0.05–0.2 T and φCIP = 0.02–0.25 [79]. These discrepancies are again
most likely related to the balance between inter-particle magnetic stresses and the matrix fluid
yield stress. For example, for B = 0.1 T, Y∗

M,φ grows from 0.5 to 50 as φCIP is increased from 0.01
to 0.30, implying that measurements will reflect a relative contribution of the matrix fluid yield
stress that diminishes as the CIP concentration is increased. The fact that τys remains close to
the matrix fluid yield stress (τys,0 = 85 Pa) for B = 0.1 T at low CIP concentrations is further
evidence for the effect of the matrix fluid. As the CIP concentration increases and Y∗

M,φ becomes
much greater than unity, the magnetic response is expected to dominate the matrix fluid yield
stress. Fitting Equation 4.7 to data spanning this range of Y∗

M,φ values results in a power law
exponent that averages the behavior in these two regimes and indicates a sub-linear dependence of
the field-induced yield stress on CIP volume fraction. We note that the volume-fraction corrected
yield parameter has values Y∗

M,φ ≥ 5 under the conditions examined in the work of Rankin et al.
[79], assuming similar magnetization properties as reported in Fig. 4.1(c).

4.4.3 Generation of Master Curves

Fig. 4.5 shows that the field-induced yield stresses of MR composites with different CIP concen-
trations exhibit similar trends with magnetic field strength, despite differences in the magnitude
of the yield stress. This observation motivates the question of whether the data can be shifted to
generate one master curve relating the field-induced yield stress to the magnetic field for differ-
ent values of φCIP . Such a master curve is shown in Fig. 4.7(a), where the field-induced static
yield stress data from Fig. 4.5 is shown as a reduced yield stress, bτys, plotted as a function of a
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Fig. 4.7: (a) Master curve showing the reduced field-induced static yield stress
as a function of the reduced magnetic field strength in a 3.0 w% Laponite R©

matrix fluid at tw = 10 min. Static yield stress measurements for different CIP
concentrations are shifted to a reference concentration of φCIP = 0.10 by the
horizontal and vertical shifting factors aB and b, respectively. As the magnitude
of the reduced magnetic field increases, the logarithmic slope of the master curve
decreases from 2 to 1 and eventually exhibits a plateau. The only exception is
the data at 1 v% CIP, which does not appear to follow the same trend as higher
CIP concentrations. (b) Horizontal (aB) and vertical (b) shift factors for the
data presented in (a) as a function of the volume fraction of CIP, φCIP . Both
sets of shift factors follow a power-law dependence on φCIP ; least-squares fitting
results in the relationships aB ≈ 0.56φ−0.26

CIP and b ≈ 0.05φ−1.33
CIP .

reduced magnetic field strength, aBB. By employing the horizontal and vertical shift factors aB

and b, respectively, yield stress data for different CIP concentrations has been collapsed onto a
single master curve that increases with the magnitude of the reduced magnetic field. The data has
been shifted to a reference concentration of φCIP = 0.10. The logarithmic slope of the collapsed
data is approximately 2 for aBB ≤ 0.2 T, decreases to approximately 1 (linear dependence) in the
range 0.3 T ≤ aBB ≤ 0.6 T, and subsequently exhibits a plateau. A notable outlier is the data
at φCIP = 0.01 and the highest field strengths, which does not follow quite the same trend as
the data for all higher CIP concentrations examined in the present work. Close inspection of this
data shows that the field-induced static yield stress for φCIP = 0.01 does not exhibit a plateau
until about B ≥ 0.8 T (see Fig. 4.5), as opposed to the plateau observed at about B ≥ 0.6 T
for higher CIP concentrations that corresponds to saturation of the particle magnetization. The
reason for this delayed plateau is unclear, but our current hypothesis is that this anomaly is likely
an additional result of the significant matrix fluid yield stress that hinders chain formation at this
dilute CIP concentration for lower magnetic fields (i.e., Y∗

M,φ ∼ 1), as previously discussed. As the
magnetic field is increased, some particles that are restrained by the matrix fluid at lower magnetic
fields eventually experience sufficient dipolar forces to overcome the matrix fluid yield stress. This
effect may be sensitive to small changes in the average particle magnetization near saturation, but
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is not expected to be significant for φCIP ≥ 0.02. This behavior could result in the field-induced
yield stress exhibiting a plateau at higher applied magnetic fields at φCIP = 0.01 than for higher
CIP concentrations, leading to the poor collapse observed in Fig. 4.7(a). Numerical simulations of
dipolar chain formation in a viscoplastic matrix fluid, which are described in Chapter 5, will aid in
further understanding the observations at φCIP = 0.01.

The variation of the shift factors with the volume fraction of CIP is shown in Fig. 4.7(b). While
aB varies relatively little with φCIP , the vertical shift factor b decreases by about two orders of
magnitude from φCIP = 0.01 to φCIP = 0.30, reflecting the order of magnitude changes in the
field-induced static yield stress over this range of concentrations. Both shift factors follow a power-
law dependence on φCIP over the range investigated in the present work. Least-squares fitting to a
power-law form leads to the expressions aB ≈ 0.56φ−0.26

CIP and b ≈ 0.05φ−1.33
CIP (0.01 ≤ φCIP ≤ 0.30).

The master curve in Fig. 4.7, combined with these expressions for the shift factors, can be used
to predict the dependence of the field-induced yield stress on the applied magnetic field at CIP
concentrations within the range (0.01 ≤ φCIP ≤ 0.30), and to reasonably extrapolate to higher
concentrations.

The master curve in Fig. 4.7 relates the field-induced yield stress at various CIP concentrations
to a macroscopic, externally-set parameter, the applied magnetic field B. Because different types of
magnetic particles exhibit different magnetization responses to applied magnetic fields, the behavior
shown in Fig. 4.7 is expected to apply strictly for the particular grade of CIP particles used
in the present study. A more general master curve can be developed, however, by considering
the dependence of the field-induced yield stress on the average particle magnetization, M , which
is an internal variable that characterizes the magnetic response on the particle level [80]. The
magnetization can then be related to the applied field via a magnetization curve, as in Fig. 4.1(c).
The characteristic inter-particle magnetic stress, τchar = µ0 (ρM)2 /24, which was introduced in
Equation 4.4, is a physically significant quantity that is set by the average particle magnetization.
A correlation or master curve relating the field-induced yield stress and τchar would be applicable
for a wide range of magnetic particles because it would be independent of the exact relationship
between B and the average particle magnetization, M .

Fig. 4.8(a) shows such an alternative master curve relating the field-induced static yield
stress to a reduced characteristic inter-particle magnetic stress, aMτchar, where aM (φCIP ) is the
magnetization–volume fraction shift factor. The fact that shifting is only required on one axis
to generate this alternative master curve suggests that the interactions between particles in field-
induced chain structures are effectively scaled and characterized by τchar (i.e., by the particle
magnetization). As in Fig. 4.7, yield stress data are again shifted to a reference concentration
of φCIP = 0.10. Data for different values of φCIP are successfully collapsed, once again with the
sole exception of the high magnetic field results for φCIP = 0.01 as was discussed for the shifting
in Fig. 4.7(a). These results effectively amount to a concentration–magnetization superposition.
The field-induced static yield stress, τys, increases with the magnitude of the reduced character-
istic inter-particle stress, exhibiting approximately exponential growth at large values of aMτchar

(appearing linear on semi-log axes). For aMτchar ≥ 30 kPa the argument of the exponential is
about (53 kPa)−1, as shown by the black dotted line. The shift factor aM increases with the CIP
volume fraction, and we show in Fig. 4.8(b) that the relationship can be well-approximated as
a power law. Least-squares fitting results in the expression aM ≈ 4.9φ0.77

CIP (0.01 ≤ φCIP ≤ 0.30),
where the coefficient of determination is R2 = 0.98. In summary, this alternative master curve
for the field-induced static yield stress τys in the range aMτchar ≥ 30 kPa can be approximately
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Fig. 4.8: (a) Alternative master curve for field-induced static yield stress data
at various CIP concentrations in a 3.0 w% Laponite R© matrix fluid at tw = 10
min. Here τys is plotted as a function of a reduced characteristic magnetic stress
between particles, aMτchar, where aM is a shift factor and τchar is the charac-
teristic inter-particle magnetic stress given in Equation 4.4 that is a function of
the average particle magnetization per unit mass, M . Data is again shifted to
a reference concentration of φCIP = 0.10. Since τchar accounts for the magne-
tization properties of the suspended particulate phase, the above plot is expected
to be more generally applicable for different types of magnetic particles than
the master curve in Fig. 4.7(a) and amounts to a concentration–magnetization
superposition. In (b), the dependence of the shift factor on CIP concentration
is shown. A power law provides a reasonable fit

(

R2 = 0.98
)

, and least-squares
fitting results in the relationship aM ≈ 4.9φ0.77

CIP .
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represented as

τys ≈ Aexp
(aMτchar

τ∗

)

(aMτchar ≥ 30 kPa) (4.8)

where A ≈ 1.1 kPa, aM is the shift factor given by aM ≈ 4.9φ0.77
CIP , τ∗ ≈ 53 kPa, and τchar is the

characteristic inter-particle magnetic stress µ0 (ρM)2 /24, which is related to the average particle
magnetization per unit mass M . This master curve provides a compact expression for design
applications in which the magnitude of the yield stress must be predicted for a given field strength,
volume fraction, and particle magnetization. The fact that such a master curve can be generated
indicates that the field-induced yield stress in these MR fluids arises from a common physical
mechanism that acts over a range of conditions, and that this mechanism depends similarly on
particle magnetization and concentration. Additionally, the superposition demonstrated in Fig.
4.8 reinforces the suggestion that higher field-induced yield stresses can be achieved at a given
volume fraction by employing particles with a higher saturation magnetization.

4.5 Conclusions and Outlook

The dramatic field-responsive rheological behavior of magnetorheological (MR) fluids, which re-
sults from the field-induced chaining of iron micro-particles suspended in a matrix fluid, has been
successfully employed in the development of numerous field-activated, ‘smart’ soft materials. The
stability of MR fluids against particle sedimentation remains an important concern, however, es-
pecially in applications where re-dispersion after long off-state times is unfeasible. One proposed
solution to this problem is the use of yield stress matrix fluids, and previous authors have investi-
gated the field-induced dynamic yield stress of MR composites in viscoplastic matrix fluids. In the
current work, analogous studies of the field-induced static yield stress have been performed in MR
suspensions in an aging, yield stress matrix fluid. MR composites were formulated from carbonyl
iron powder (CIP) and a matrix fluid consisting of an aqueous dispersion of LaponiteR© clay, which
is known to exhibit a yield stress that grows as the material ages. As a result, sedimentation of
CIP is prevented essentially indefinitely. Using a custom-built magnetorheometry fixture, the field-
induced static yield stress of this MR composite was studied as a function of the applied magnetic
field strength, B, the CIP volume fraction, φCIP , and the age time, tw. Results were used to gen-
erate a magnetorheological master curve (Fig. 4.8) that indicates a concentration–magnetization
superposition and allows prediction of the field-induced yield stress for different types and volume
fractions of magnetic particles under a wide range of conditions. A new dimensionless parameter,
Y∗

M,φ, was defined (Equation 4.6), which relates the magnitude of the matrix fluid yield stress to
the characteristic inter-particle magnetic attractive forces at a given particle concentration. For
Y∗

M,φ ≫ 1, inter-particle magnetic forces dominate and the field-induced rheology is found to be
independent of the matrix fluid yield stress. From a practical perspective of MR formulations,
this behavior implies that as long as Y∗

M,φ ≫ 1, the rheology of the yield stress matrix fluid can
be optimized to meet other design demands without significantly disrupting the behavior of the
field-activated material. Conveniently, the condition Y∗

M,φ ≫ 1 is frequently satisfied at the high
field strengths and particle concentrations used in most commercial MR applications.

While the present study has focused solely on shear magnetorheology, the need for quantitative
understanding of MR fluids in squeeze flow has recently been highlighted [64, 187]. Because yield
stress matrix fluids could play a similar role in preventing particle sedimentation in squeeze flow MR
devices, an important question for future work is whether the presence of a matrix fluid yield stress
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has significant effects on the field-induced squeeze flow rheology of MR composites. An additional
interesting problem for future studies would be to focus on some of the anomalies documented in this
chapter at low volume fractions of magnetic particles. While this dilute regime has limited appeal
for traditional MR fluid applications because of the relatively small field-induced yield stresses,
the data presented here is suggestive of potentially interesting new regimes and phenomena, which
do not appear to have been explored yet. Novel non-traditional applications could be inspired
through an improved understanding of systems at Y∗

M,φ ∼ 1, for which inter-particle attractive
forces are approximately in balance with the matrix fluid yield stress. Numerical simulations will
aid in elucidating the dynamics and equilibrium microstructures of dipolar particles under these
conditions (see Chapter 5).

The results presented here will aid designers of MR devices and guide formulators of MR sus-
pensions in the choice of appropriate viscoplastic matrix fluids. The master curves, correlations,
and scaling relationships described in the current study characterize the field-induced static and
dynamic yield stress of an MR fluid that is essentially indefinitely stable to sedimentation. This be-
havior is especially attractive for applications such as active earthquake dampers or field-responsive
drilling fluids, for which re-suspension of a dense, concentrated particle phase after long off-state
times is typically unfeasible.

This chapter demonstrates that aqueous LaponiteR© dispersions are suitable yield stress ma-
trix fluids for magnetorheological suspensions, preventing magnetic particle sedimentation without
affecting the field-responsive magnetorheology under the conditions used in most commercial appli-
cations. In order to better understand the magnetorheological behavior presented in this chapter,
especially in the regime where inter-particle attractive forces are approximately in balance with
the matrix fluid yield stress, we transition in Chapter 5 to discussions of particle-level simulations
of magnetic self-assembly in yield stress matrix fluids. We focus on elucidating the effect of the
matrix fluid yield stress on the field-induced microstructure of these suspensions, and attempt to
relate these microstructures to the magnetorheological observations in this chapter.





CHAPTER 5

Magnetic Particle Assembly in Yield

Stress Matrix Fluids

In this chapter, we use particle-level simulations to investigate the field-induced structure in a
suspension of dipolar particles in the presence of a matrix fluid yield stress. This work complements
the bulk magnetorheology results in the previous chapter, providing insights into the nature of
dipolar chains and aggregates in the MR suspension. The equilibrium microstructures determined
from particle-level simulations are consistent with the magnetorheological observations in Chapter
4, and our results additionally highlight a new approach to tuning field-directed assembly through
modification of the matrix fluid rheological properties. An article describing this work has been
submitted to the journal Langmuir [92].

5.1 Overview

The process of assembling particles into organized functional structures is influenced by the rhe-
ological properties of the matrix fluid in which the assembly takes place. Therefore, tuning these
properties represents a viable and as yet unexplored approach for controlling particle assembly.
In this letter, we examine the effect of the matrix fluid yield stress on the directed assembly of
polarizable particles into linear chains under a uniform external magnetic field. Using particle-level
simulations with a simple yield stress model, we find that chain-growth follows the same trajectory
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as in Newtonian matrix fluids up to a critical time that depends on the balance between the yield
stress and the strength of magnetic interactions between particles; subsequently, the system under-
goes structural arrest. We confirm that the dimensionless groups described in the previous chapter
are appropriate for characterizing the arresting behavior and present relationships between these
groups and the resulting structural properties. Since field-induced structures can be indefinitely
stabilized by the matrix fluid yield stress and ‘frozen’ into place as desired, this approach may
facilitate the assembly of more complex and sophisticated structures.

5.2 Introduction

The assembly of colloids and nanoparticles into complex and highly-ordered structures continues
to be an important and effective method for creating functional materials with unique and techno-
logically attractive properties [188, 189]. Through manipulation of the thermodynamic and kinetic
interactions between particle building blocks, authors have demonstrated the assembly of materials
such as photonic crystals [190] and electronic circuits [191, 192], as well as biomaterials such as
peptide-based scaffolds for regenerative medicine [193, 194]. Approaches to controlling the assem-
bly process generally fall into three categories: adjusting particle or template properties like shape,
size, patterning, and chemical functionality [195, 196]; tuning particle interactions via thermody-
namic variables such as temperature or pH [197, 198]; and directing particle behavior with external
flows or fields, such as electric or magnetic fields [189, 199]. In particular, by applying a uniform
magnetic field to polarizable colloids suspended in a matrix fluid, directed assembly of the particles
into aggregated chain-like structures in the direction of the external field can be achieved [81]. The
anisotropic mechanical properties of these structures have been exploited in magnetorheological
(MR) fluids [71, 64], which undergo dramatic changes in bulk rheological properties upon forma-
tion of particle chains (see the schematic in Fig. 1.8), as well as for lab-on-a-chip separations [200].
The matrix fluid in most particle assembly studies, as well as in most MR fluids and devices, is
typically Newtonian; however, it has long been known in the rheology community that the behavior
of suspended particles is significantly influenced by the matrix fluid rheology [172]. For example,
Feng and Joseph demonstrated that spherical particles dispersed in viscoelastic Boger fluids sub-
jected to bulk torsional flow undergo radial migration to form distinct ring patterns; by contrast,
no such microstructure was observed in the Newtonian case [201]. Additionally, the use of yield
stress matrix fluids to prevent sedimentation in MR suspensions has motivated questions about the
effects of the yield stress on the formation of field-induced structures (see Chapter 4) [79, 91].

With these considerations in mind, we present in this chapter a new approach to controlling
particle assembly via the non-Newtonian properties of the matrix fluid. Because of the immediate
relevance to MR fluid technology, we specifically demonstrate this approach by examining the effect
of the matrix fluid yield stress on the directed assembly of polarizable particles under a uniform
external magnetic field. Using 2-D particle-level simulations, we find that chain growth initially
follows the same trajectory as in Newtonian matrix fluids, but is arrested at a critical time that
scales with a dimensionless group that characterizes the balance between the yield stress and inter-
particle magnetic stresses. Adjusting this balance allows the properties of the arrested structure,
including the average cluster size, to be tuned. Assuming the matrix fluid yield stress dominates
over other forces on particles (i.e., thermal, gravitational, electrostatic, etc.), arrested structures are
indefinitely stable even after the magnetic field is removed, being essentially ‘frozen’ in the matrix
until additional manipulation is desired. This behavior is generic to particle dynamics in yield
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stress matrix fluids and could be exploited in other types of assembly processes, including assembly
via electric fields, fluid flow, or chemical interactions. Finally, this letter will have important
implications for the formulation and understanding of MR suspensions stabilized by yield stress
matrix fluids. We identify regimes in which the arrest of dipolar chain-formation due to the matrix
fluid yield stress is expected to significantly impact the field-induced rheological properties.

5.3 Simulation Details

The simulation method used in this work is adopted from a previously described algorithm [202, 76],
which was developed to study field-induced chaining of dipolar particle suspensions in Newtonian
matrix fluids. We review the essential features of this method and discuss the modifications nec-
essary to incorporate a matrix fluid yield stress. Recall the pair-wise magnetic interaction energy
Umag

ij between two dipoles separated by a distance rij , which is given in Equations 1.11 and 4.1
and repeated here for clarity:

Umag
ij =

m2µ0

4π

(

1 − 3 cos θij

r3
ij

)

(5.1)

Here m is the magnitude of the dipole moment, µ0 is the magnetic permeability of the medium
(assumed to be equal to the permeability of free space), and θij is the angle that the line connecting
the particle centers makes with the direction of the applied magnetic field, as shown in Fig. 1.9.
Though Equation 5.1 neglects mutual magnetic induction and treats particles as point dipoles
with identical dipole moments aligned with the external magnetic field, this expression has been
successful in quantitatively capturing the particle-level behavior in MR suspensions subject to a
uniform external magnetic field [202, 203, 204]. In the work of Haghgooie [76], the Heyes–Melrose
displacement algorithm is used to correct for hard-sphere overlaps between dipolar particles at each
time step of the simulation [205]. This approach complicates the incorporation of a matrix fluid yield
stress, however, because it accounts for excluded volume interactions through a constraint rather
than an explicit potential. Additionally, we find that when attempts are made to incorporate a
matrix fluid yield stress, the Heyes–Melrose algorithm leads to unphysical behavior such as ‘kinked’
chains that drift in a direction perpendicular to the applied magnetic field. Therefore, we instead
include a short-ranged repulsive potential between particles [206]:

U rep
ij =

3µ0rcm
2

4πd4
exp

(

−rij − d

rc

)

(5.2)

where d is the particle diameter, and rc is a constant that controls the range of the interaction.
For this work, we set rc = 0.05d. Lower values of rc better approximate a hard-sphere potential,
but require prohibitively short time steps. In order to simplify the simulation so that effects
of the matrix fluid yield stress can be more easily distinguished, we neglect thermal forces and
hydrodynamic interactions. In this case, the total force Fi on particle i at time t is calculated as:

Fi (t) =
N
∑

i6=j

−∇
[

Umag
ij (rij (t) , θij (t)) + U rep

ij (rij (t) , θij (t))
]

(5.3)
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The Langevin equation describing the particle velocity is then

dri (t) ≃
1

ζ
Fi (t) dt (5.4)

where ζ is the drag coefficient of a particle. In order to generalize the simulation results, Equation
5.4 is made dimensionless using the characteristic length scale d and the characteristic force Fchar =
πd2µ0 (ρM)2 /24, where ρ is the particle mass density, and M is the particle magnetization per unit
mass. M is related to the dipole moment via the expression M = m/V ρ, where V is the particle
volume. This expression for the characteristic force is the same as that given in Equation 4.3, which
is the force between two spherical dipolar particles aligned with the external magnetic field and in
contact. Applying these scalings, the dimensionless Langevin equation becomes

dr̂i

(

t̂
)

≃ F̂i

(

t̂
)

dt̂ (5.5)

where ˆ represents dimensionless variables. Setting tchar = 24ζ/πdµ0 (ρM)2 as the characteristic
time scale removes all free parameters from the dimensionless Langevin equation. This time scale
represents the time necessary for a particle to move a distance of one particle diameter in response
to the characteristic driving force Fchar.

A Bingham viscoplastic model for a yield stress matrix fluid is incorporated by applying a
constraint to Equation 5.5. We make the simple approximation that a particle moves during a time
step only if the sum of the forces on the particle (including both magnetic and short-range steric
forces) is sufficient to overcome the matrix fluid yield stress, τys,0. Otherwise, the particle remains
motionless for that time step. Mathematically, if ‖Fi‖ ≥ πd2τys,0/2C, then the particle executes a
step according to Equation 5.5; otherwise, dri is set to 0. C is a constant that relates the matrix
fluid yield stress to the critical force necessary to cause an embedded particle to yield. For spherical
particles in Bingham fluids, Beris et al. showed using finite-element modeling that C ≈ 0.143 [162].
In dimensionless terms, the criteria for yielding is

∥

∥

∥
F̂i

∥

∥

∥
≥ 12τys,0

µ0C (ρM)2
=

1

Y∗
M

(5.6)

where

Y∗
M ≡ µ0C (ρM)2

12τys,0
(5.7)

The dimensionless yield parameter Y∗
M can be understood as the characteristic inter-particle mag-

netic stress divided by the matrix fluid yield stress τys,0. That is, for Y∗
M ≫ 1, magnetic forces

dominate over the yield stress, while Y∗
M ≪ 1 corresponds to an immobilized system in which

magnetic forces are too weak to overcome the yield stress. Note that this definition of Y∗
M is the

same as that in Equation 4.5, except that the expression has been generalized by incorporating the
factor C in the numerator. For Equation 4.5 and the work in Chapter 4, C is effectively taken to
be 0.5.

Simulations are conducted in 2-D with a uniform external magnetic field in the vertical direction.
The simulation box is square with a side length equal to 100 particle diameters and periodic
boundary conditions on all sides. To begin simulations, particles are initially placed in the box in
a random configuration with no particle overlaps and Equation 5.5 is integrated forward in time
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using a simple Euler scheme for 1000 time steps at a time-step size of ∆t̂ = 3.3e-7. The purpose of
this short preparatory simulation using a very small time step is to resolve the trajectories of any
particles positioned very close to each other in the random initial placements. Subsequently, the
time-step size is increased to ∆t̂ = 3.3e-4 for the remainder of the simulation. The constraint in
Equation 5.6 is applied at each time step. A dimensionless spatial cutoff (scaled with the particle
diameter) for the inter-particle forces of 15 was used along with a linked-list binning algorithm
[207] with bin sizes that slightly exceed the cutoff value [202, 76]. Therefore, interactions between
particles separated by a distance larger than the cutoff are not considered, resulting in faster
processing times. It was confirmed that under these conditions, the simulations are converged
in time step, system size, and interaction cutoff length. Interested readers are referred to earlier
communications for additional details about the simulation algorithm [202, 76].

5.4 Particle Assembly Simulation Results and Discussion

It is well-known that applying a uniform magnetic field to a dispersion of polarizable spherical
particles in a Newtonian matrix fluid results in the formation of long-chain structures in the di-
rection of the external field. Since a matrix fluid with a strong enough yield stress will completely
immobilize particles, we examine magnetic directed assembly in a regime where both magnetic in-
teractions and the matrix fluid yield stress play an important role in structure formation. Because
the characteristic force in our simulations is defined as the maximum force between two dipolar
particles, the regime of interest corresponds to values Y∗

M > 1.

Images of magnetically assembled structures after long times
(

t̂ = 2667
)

are shown in Fig. 5.1
for dispersions with a particle area fraction of φA = 0.15 and magnetic yield parameters of (a)
Y∗

M = 6.7, (b) Y∗
M = 67, and (c) the Newtonian case (Y∗

M → ∞). At Y∗
M = 6.7, only a marginal

development of the structure from the initial condition is observed, as the equilibrium configuration
consists of a randomly distributed mixture of individual particles and small chains; the magnetic
interactions are not strong enough to generate large-scale structures. At Y∗

M = 67, the average chain
length is significantly longer at equilibrium, and the vast majority of particles are incorporated in
vertically-aligned chains. As Y∗

M increases, the limiting Newtonian case is approached, for which
domain-spanning chains are formed and some lateral aggregation of chains is evident. We note that
while Figs. 5.1(a) and 5.1(b) represent arrested configurations, chaining and lateral aggregation
continue very slowly in the Newtonian system even up to t̂ = 2667.

As a first step towards understanding this behavior, we consider a simpler system of two dipolar
particles in a yield stress matrix fluid. With one particle fixed at the origin, yielding occurs if the
distance to the second particle is sufficiently small that the inter-particle force overcomes the matrix
fluid yield stress; otherwise, both particles remain immobile. For this system, the critical positions
for yielding can be found by solving for the contour on which the magnitude of the dimensionless
force on the second particle is equal to 1/Y∗

M, as in the yield criteria in Equation 5.6. Neglecting
the repulsive steric force, which is much smaller than the magnetic force for these inter-particle
distances, the magnitude of the force on the particle is calculated from Equation 5.3:

‖Fi‖ ≈
∥

∥

∥
∇Umag

ij (rij, θij)
∥

∥

∥
=

√

√

√

√

(

∂Umag
ij

∂rij

)2

+
1

r2
ij

(

∂Umag
ij

∂θij

)2

(5.8)
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Fig. 5.1: Magnetically assembled structures at φA = 0.15 at long times
(

t̂ = 2667
)

for dimensionless magnetic yield parameters of (a) Y∗
M = 6.7 and

(b) Y∗
M = 67 and (c) the Newtonian case (Y∗

M → ∞). The applied magnetic
field is in the vertical direction. While a mixture of individual particles and
short chains is observed at Y∗

M = 6.7, increasing Y∗
M results in an equilibrium

state with greater numbers of particles incorporated into longer chains. In (d),
contours show the critical configurations at which yielding occurs in a 2-particle
system at various values of Y∗

M. With one particle fixed at the origin, a sec-
ond particle yields if its position is on or inside the contour (given by Equation
5.11); otherwise, the system is arrested. Depending on the angle between the
line connecting the particle centers and the direction of the applied magnetic
field H, magnetic interactions are attractive or repulsive. The yield contours
expand with Y∗

M and are symmetric across the vertical and horizontal axes.
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Using the expression for Umag
ij in Equation 5.1 and the fact that m = V ρM , the magnitude of the

force on the particle is given by

‖Fi‖ ≈ µ0πd6 (ρM)2

48r4
ij

√

(1 − 3 cos2 θij)
2 + sin2 (2θij) (5.9)

Dividing each side of Equation 5.9 by Fchar, we find that the magnitude of the dimensionless force
is therefore

∥

∥

∥
F̂i

∥

∥

∥
≈ 1

2r̂4
ij

√

(1 − 3 cos2 θij)
2 + sin2 (2θij) (5.10)

Setting
∥

∥

∥
F̂i

∥

∥

∥
= 1/Y∗

M gives the expression for the yield contour.

r̂ij (θij) ≈
[

Y∗
M

2

√

(1 − 3 cos2 θij)
2 + sin2 (2θij)

]1/4

(5.11)

Contours corresponding to Equation 5.11 are plotted in Fig. 5.1(d) for an external magnetic field H

in the vertical direction and Y∗
M values of 6.7, 67, and 333. As Y∗

M increases, the contours expand
and particles positioned farther from the origin are able to yield in response to the applied magnetic
field. Because of the angular dependence of dipolar interactions, the inter-particle force is either
attractive (0◦ ≤ θij < 55◦, solid lines), for which yielded particles undergo aggregation, or repulsive
(55◦ < θij ≤ 90◦, dotted lines), for which particles tend towards an unaggregated arrested state.
Though only one quadrant is shown in Fig. 5.1(d), the contours are symmetric across the vertical
and horizontal axes. While multi-particle interactions captured in the full simulations (including
the behavior of particle chains) are more complex than this two-particle system, the contours in Fig.
5.1(d) are nonetheless helpful in understanding the basic physical phenomena underlying dipolar
particle suspensions in the presence of a yield stress. In particular, Fig. 5.1(d) implies that a
particle (or a chain of particles) is arrested when the envelope defined by the yield contour becomes
devoid of particles.

The images in Fig. 5.1 imply that the magnetically assembled structures consist primarily of
vertically-connected, chain-like aggregates, and that a relatively small amount of lateral aggregation
can occur at higher values of Y∗

M. To explore the directionality of structures quantitatively, we
calculate the vertical connectivity, Cv, and the horizontal connectivity, Ch, defined as the number
of vertical and horizontal connections, respectively, scaled by N − 1, where N is the number of
particles in the simulation [76]. One connection is counted for each pair of particles with centers
separated by a dimensionless distance of at most 1.05 (i.e., the radii at contact + 5%). Connections
are considered to be vertical if θij ≤ 30◦ or θij ≥ 150◦, and horizontal if 30◦ < θij < 150◦. Cv and
Ch are plotted in Fig. 5.2 as functions of the dimensionless time for various values of Y∗

M, with
the top curves representing Cv and the bottom curves representing Ch. All simulations begin with
the same initial condition of randomly placed particles. Cv generally grows with time and, after an
initial rearrangement of the starting configuration, is at least an order of magnitude greater than
Ch for all Y∗

M. These observations are consistent with the formation of vertically-aligned chains as
shown in Fig. 5.1. Ch decreases during the initial rearrangement, exhibiting some scatter due to
very small numbers of horizontal connections, then increases as some lateral aggregation of chains
occurs on longer time scales. Perhaps the most striking feature of the results is that at a critical
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Fig. 5.2: Time evolution of the vertical and horizontal connectivities (Cv and
Ch, respectively) of magnetically assembled anisotropic chain structures for a
system at φA = 0.15 and various values of Y∗

M. All simulations begin with
the same initial condition of randomly placed particles. With the exception of
an initial decline in Ch during rearrangement of the starting configuration, the
connectivities generally grow with time, following the Newtonian result until
deviations begin at a critical time and connectivity that increase with Y∗

M. The
fact that Cv ≫ Ch after the initial rearrangement indicates that chains are
primarily vertically connected, as is seen in Fig. 5.1.

time (which increases with Y∗
M) both connectivity measures diverge from the common trajectory

that coincides with the behavior of the Newtonian system. Subsequent to this separation, both Cv

and Ch plateau and cease to evolve in the systems with a yield stress matrix fluid. Visualizing the
particle behavior in the simulations confirms that all particles are immobilized when the plateau
in the connectivity data is attained. This behavior implies that while the matrix fluid yield stress
does not affect the mechanism of structural development, it results in an arrest of chain growth.
Though it is reasonable to expect that a matrix fluid yield stress would hinder structure formation,
it is remarkable that the dynamics for all Y∗

M values appear to follow the Newtonian trajectory
until a critical time corresponding to the onset of structural arrest.

The observation that suspensions of dipolar particles in yield stress matrix fluids undergo struc-
tural arrest from a common trajectory is also supported by data for the time-evolution of the average
cluster size, 〈c〉, shown in Fig. 5.3 for the same simulation conditions shown in Fig. 5.2. The av-
erage cluster size is calculated as 〈c〉 = N/Nc, where Nc is the total number of clusters and a
cluster is identified as a collection of continuously connected particles according to the definition of
a connection given above [76]. The average cluster size grows with time and, in accordance with the
connectivity results, data at finite values of Y∗

M break away from a common trajectory at a critical
time that increases with Y∗

M. In the yield stress systems, 〈c〉 eventually plateaus at equilibrium
values that grow with Y∗

M but are uniformly smaller than the long-time Newtonian result. Taking
the critical arrest time, t̂arrest, as the time at which 〈c〉 becomes less than 90% of the Newtonian
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Fig. 5.3: Average cluster size 〈c〉 of magnetically assembled structures as a
function of time for various values of Y∗

M. The data is extracted from the same
simulations as in Fig. 5.2, for which φA = 0.15. As with the connectivity
results, 〈c〉 generally increases with time, but chain growth is arrested when a
yield stress matrix fluid is present. For all Y∗

M, 〈c〉 follows a common trajectory
until structural arrest begins at a critical time (and a critical cluster size) that
grows with Y∗

M. The arrest time, t̂arrest, defined as the time at which 〈c〉 becomes
less than 90% of the Newtonian case, is shown in the inset as a function of
Y∗

M. Results for four concentrations collapse onto a single common power law
relationship.

value, we plot t̂arrest as a function of Y∗
M in the inset of Fig. 5.3 for four different concentrations

of magnetic particles. The data follows a power law behavior, and least-squares fitting provides
the relationship t̂arrest ≈ 0.26 (Y∗

M)1.3, which is shown by the black line. The results for all four
concentrations collapse onto this function, indicating that the arrest time is approximately inde-
pendent of area fraction φA and that Y∗

M is the appropriate dimensionless group for characterizing
the dynamics of structural arrest over a range of concentrations.

While the correspondence of statistical quantities like Cv, Ch, and 〈c〉 between the Newtonian
and yield stress systems prior to arrest is a compelling indicator of a common trajectory of structural
states, these averaged quantities do not uniquely identify the magnetically assembled structures.
To more convincingly demonstrate that systems at finite values of Y∗

M truly pass through the
same structural states as the Newtonian system, it is useful to examine the positions of each
particle at a given time. A simple and instructive way to compare the positions of many particles
simultaneously is to effectively subtract a snapshot of a simulated structure in a yield stress matrix
fluid from that of the Newtonian system at the same dimensionless time. This can be accomplished
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Fig. 5.4: Comparison of the magnetically assembled structures for particle sus-
pensions in Newtonian and yield stress matrix fluids at φA = 0.15. The applied
magnetic field is in the vertical direction. For times of (a) t̂ = 3.3 and (b)
t̂ = 67, images of a Newtonian system are shown in black and images of a yield
stress system at Y∗

M = 67 are overlaid in white. Therefore, any visible black
structures indicate differences between the two systems. (a) and (b) correspond
to times before and just after structural arrest in the yield stress system, respec-
tively. At early times, the structures of the two systems are nearly identical,
whereas significant deviations are apparent after the onset of structural arrest.
In (c), the ensemble-averaged root mean square difference between particle po-
sitions in the Newtonian and yield stress system is plotted as a function of time
for various values of Y∗

M. This measure of the deviation in the structure from
the Newtonian case is essentially zero up to a critical time, then grows once the
yield stress systems become arrested.
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by displaying the structure of the Newtonian system in black, and overlaying the structure of
yield stress system in white, so that any visible black indicates structures that are not common
between the two systems. Such comparisons between structures in a Newtonian matrix fluid and
a matrix fluid at Y∗

M = 67 (starting from the same initial condition at φA = 0.15) are shown
in Fig. 5.4 at dimensionless times of (a) t̂ = 3.3 and (b) t̂ = 67, corresponding to times before
and just after the onset of structural arrest in the yield stress system, respectively (here t̂arrest =
60). This effective subtraction of images almost completely obscures the structure at t̂ = 3.3,
suggesting that the magnetically assembled structures of the Newtonian and yield stress systems
are essentially the same prior to structural arrest. Note that the light gray outlines indicate that
the white particles of the system at Y∗

M = 67 are overlaid almost exactly on the black particles
of the Newtonian simulation. At t̂ = 67, however, there are significant deviations between the
two systems, reflecting the fact that while chain-formation continues in the Newtonian system,
structural evolution in the yield stress system has slowed almost to a halt. These images are
consistent with the behavior presented in Figs. 5.2 and 5.3, and support the hypothesis that
particles in the Newtonian and yield stress systems follow very similar trajectories up to the critical
arrest time t̂arrest, after which the yield stress systems are quenched and deviations between the
structures in the two systems grow. These deviations can be explored quantitatively by calculating
the ensemble-averaged root mean square difference in particle position between the structures

in the Newtonian matrix fluid and the yield stress matrix fluid. Denoted
〈

(ri,Newt − ri)
2
〉1/2

,

this quantity is zero if particles are in the same positions in the two systems, and grows as the

structures diverge. Fig. 5.4(c) shows that for all Y∗
M,
〈

(ri,Newt − ri)
2
〉1/2

≈ 0 up to a critical

time that increases with Y∗
M. Subsequently,

〈

(ri,Newt − ri)
2
〉1/2

grows with time as the yield stress

systems are arrested and structural development continues in the Newtonian system. These results
provide further demonstration that the magnetically assembled structures in yield stress matrix
fluids closely match those in Newtonian matrix fluids up to a critical time corresponding to the
onset of structural arrest in the yield stress systems. In Fig. 5.5, the same data is plotted with
the time axis re-scaled by the arrest time t̂arrest, shown in the inset of Fig. 5.3. We observe that
deviations from the Newtonian system begin close to t̂/t̂arrest ≈ 1 for all values of Y∗

M, suggesting
that deviations are a result of structural arrest in the systems with a yield stress matrix fluid.

The results presented thus far have implications in the design of structures generated via directed
or self-assembly. While previous approaches to tuning particle assembly have focused on modifying
particles (i.e., their shape, size, patterning, or chemical functionality [195]) or employing particle
systems that respond to externally applied fields or stimuli [208], the concept of regulating assembled
structures via matrix fluid rheology has yet to be elucidated. Our simulations suggest that by
incorporating a matrix fluid with a yield stress, the chain structures that form in suspensions
of dipolar particles in Newtonian matrix fluids can be arrested at essentially any point in their
development. If the yield stress is sufficient to suppress sedimentation and Brownian motion, then
arrested structures will be ‘frozen’ into place indefinitely even if the magnetic field is decreased
or removed. Increasing the magnetic field (i.e., increasing Y∗

M) leads to the continuation of chain
growth, and the resulting equilibrium value of 〈c〉 is approximately independent of the exact history
as long as it is approached from below. This behavior is demonstrated in Fig. 5.6, where the time
evolution of 〈c〉 is shown at Y∗

M = 67, starting from initial conditions with various degrees of chain
development. The initial conditions correspond to the arrested states from the simulations in Fig.
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Fig. 5.5: The data from Fig. 5.4(c) is re-plotted as a function of the dimen-
sionless time scaled by the arrest time t̂arrest, as given in the inset of Fig. 5.3.
Results are shown for the same concentration (φA = 0.15) and Y∗

M
values as

in Fig. 5.4(c). Rescaling time in this way leads to an approximate collapse
of the data at the time where significant deviations between particle positions
in the Newtonian and yield stress systems begin to occur, indicating that this
critical time scales with Y∗

M in a similar way as t̂arrest. Additionally, the fact
that deviations between Newtonian and yield stress systems begin to grow close
to t̂/t̂arrest ≈ 1 is evidence that the deviations are associated with structural
arrest in the yield stress systems. Beyond t̂/t̂arrest ≈ 1, the data for different
Y∗

M values diverge, so that re-scaling time by t̂arrest is insufficient to collapse
the data in this region.

5.3 at Y∗
M = Y∗0

M . That is, a simulation is conducted starting from a random initial condition at
Y∗

M = Y∗0
M until structural arrest occurs. The resulting arrested configuration is set as the initial

condition in a new simulation at Y∗
M = 67 with the time reset to 0. Therefore, the data in Fig.

5.6 corresponds to applying a step-change in Y∗
M to an arrested system. Fig. 5.6 shows that for

all systems in which Y∗
M is increased (i.e., Y∗0

M ≤ 67), the equilibrium value of 〈c〉 is approximately
independent of the starting condition. However, if Y∗0

M > 67, the system remains arrested upon
decreasing the magnetic yield parameter to Y∗

M = 67.

In order to confirm the results presented here, it will be necessary to show that experiments
corroborate our observations. These experiments could be accomplished by examining the magnetic
directed assembly of monodisperse spherical polymer-based superparamagnetic particles (available
from a variety of vendors) in a yield stress matrix fluid. A simple yield stress fluid that exhibits
negligible thixotropy, such as a Carbopol ‘microgel’, would be useful in exploring and demonstrating
the basic phenomena of these field-activated suspensions [16, 173]. For example, a system at Y∗

M ≈



5.4. Particle Assembly Simulation Results and Discussion 125

1 10 100

1

10
〈c

〉

t̂

YM = 67*

YM = 3.3*0

YM = 6.7*0

YM = 13*0

YM = 33*0

YM = 67*0

YM = 133*0

YM = 333*0

Fig. 5.6: Time evolution of the average cluster size, 〈c〉, for systems at
φA = 0.15 and Y∗

M = 67, starting from various initial conditions with differ-
ent values of 〈c〉. The starting configurations correspond to the arrested states
at Y∗

M values of 3.3 (black), 6.7 (red), 13 (blue), 33 (green), 67 (pink), 133
(brown), and 333 (gold) from Fig. 5.3. In other words, the data above cor-
responds to the situation in which a system is simulated until equilibrium at
Y∗

M = Y∗0
M (as in Fig. 5.3), and the resulting equilibrium state is set as the

starting configuration for a new simulation at Y∗
M = 67 with t̂ reset to zero.

Experimentally, this condition could be achieved by, for example, implement-
ing a step-change to the magnetic field applied to an arrested system. Under
these conditions, systems previously arrested at Y∗

M < 67 resume chain growth,
eventually reaching a new equilibrium state with an average cluster size that is
essentially independent of the starting configuration. We generally observe that
the time necessary to escape the previous arrested state increases as the change
in Y∗

M decreases, noting in particular that the green data, which corresponds to
a transition from Y∗

M = 33 to Y∗
M = 67, remains constant for about 6 dimen-

sionless time units before 〈c〉 begins to grow. The systems previously arrested at
Y∗

M > 67 remain arrested upon decreasing Y∗
M to 67. These results demonstrate

that the equilibrium value of 〈c〉 is essentially independent of history when in-
creasing Y∗

M from an arrested state, but that the yield stress leads to a ‘freezing’
of the structure when Y∗

M is decreased.
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67 could be achieved by suspending 4.5 µm Dynabeads R© superparamagnetic particles (Invitrogen,
Carlsbad, CA) in a dilute Carbopol microgel with a yield stress of about 0.1 Pa [209] and by
applying a uniform magnetic field of about 0.1 T (according to the magnetization data in Fig. 1.3).

With the exception of data for the critical arrest time shown in the inset of Fig. 5.3, all
the results presented thus far have been at a representative concentration of φA = 0.15. While
systems at different concentrations exhibit qualitatively similar behavior (and, in particular, Fig.
5.3 shows that t̂arrest is approximately independent of concentration), it would be beneficial to
identify the scaling relationship between structural parameters and particle concentration. A simple
approximation for the effect of particle concentration can be obtained by adjusting the characteristic
length scale in the problem to reflect the concentration dependence of the average inter-particle
distance in the random initial condition. For a 2-dimensional homogeneous spatial distribution of

spherical particles with diameter d, the average inter-particle distance scales according to dφ
−1/2
A .

The effect of re-defining dφ
−1/2
A as the new characteristic length scale can be seen from the non-

dimensionalization and rearrangement of Equation 5.9, for example. With this new scaling, the
expression analogous to Equation 5.11 contains the product Y∗

Mφ2
A rather than simply Y∗

M as in
Equation 5.11. This motivates the definition of a re-scaled yield parameter, Y∗

M,φ, that incorporates
the concentration dependence:

Y∗
M,φ = Y∗

Mφ2
A =

µ0C (ρM)2

12τys,0
φ2

A (5.12)

This expression is a 2-dimensional analog of the definition given for Y∗
M,φ in Table 1.2 and in

Equation 4.6 in the previous chapter. By analogy with the yield parameter Y∗
M, we expect largely

immobilized particles for Y∗
M,φ ≪ 1, and extensive chain formation for Y∗

M,φ ≫ 1. The equilibrium
average cluster size, 〈c〉eq, is shown as a function of Y∗

M,φ in Fig. 5.7 for four particle area fractions.
Despite the crude approximations used to arrive at the concentration scaling in Equation 5.12,
plotting 〈c〉eq as a function of Y∗

M,φ collapses data at different concentrations over almost two
orders of magnitude of Y∗

M,φ. For Y∗
M,φ values of about 0.2 to 7, a range in which both the matrix

fluid yield stress and magnetic interactions are expected to play significant roles in the structure
and dynamics, 〈c〉eq is given by the expression 〈c〉eq ≈ 4.5

(

Y∗
M,φ

)0.65
for 0.10 ≤ φA ≤ 0.25. The

collapse of data for different concentrations indicates that Equation 5.12 provides an appropriate
scaling for describing the equilibrium structure in this regime. The scaling breaks down, however,
above about Y∗

M,φ ≈ 7. In this regime, 〈c〉eq approaches the Newtonian values and for Y∗
M,φ ≈ 60

the systems essentially behave as Newtonian. The gray band gives the range of 〈c〉eq values for
Newtonian systems with concentrations 0.10 ≤ φA ≤ 0.25, which represents an upper bound for
〈c〉eq at a given concentration. For the Newtonian systems, 〈c〉eq exhibits a weak dependence on φA

that precludes perfect collapse of the data at large values of Y∗
M,φ. Below about Y∗

M,φ ≈ 0.2, the
equilibrium structures consist almost entirely of un-yielded individual particles that are arrested
immediately in their initial positions, so that 〈c〉eq approaches 1 for Y∗

M,φ ≪ 1.

5.5 Conclusions and Outlook

The chain structures formed when dispersions of polarizable particles are subjected to a uniform
magnetic field provide the basis for a number of emerging and promising technologies involving
multi-phase complex fluids, including magnetorheological suspensions [64] and lab-on-a-chip sepa-
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Fig. 5.7: Equilibrium average cluster size, 〈c〉eq, as a function of the
concentration-scaled magnetic yield parameter, Y∗

M,φ (see Equation 5.12). Data
for four concentrations of magnetic particles collapse onto a universal power law
over two orders of magnitude in Y∗
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M,φ = 0.2, the equilibrium

structures consist primarily of individual particles, so that 〈c〉eq approaches 1.
The scaling begins to break down for Y∗

M,φ values grater than about 7, as New-
tonian behavior is approached.

ration techniques [200]. More generally, field-directed assembly of magnetic colloids and nanoparti-
cles has been exploited to design and engineer highly-ordered functional materials [210], including
materials with unique optical [199] or electrical properties [211]. In this chapter, we have used
particle-level simulations to investigate a new approach for mediating the field-induced assembly of
dipolar particles via control of the non-Newtonian properties of the matrix fluid. Specifically, we
have demonstrated the ability of the matrix fluid yield stress to arrest chain formation and growth
at a critical point along the Newtonian trajectory. The magnetic yield parameter Y∗

M (Equation
5.7), which characterizes the balance between inter-particle magnetic stresses and the matrix fluid
yield stress, as well as the more general form Y∗

M,φ (Equation 5.12) incorporating concentration
variations, have been identified as the appropriate dimensionless groups that govern the structure
and dynamics in these systems. This work addresses important questions in the field of magne-
torheological (MR) suspensions regarding the nature of the field-induced microstructure when yield
stress matrix fluids are used to prevent magnetic particle sedimentation. Our observations indicate
that for Y∗

M,φ values less than about 10, the matrix fluid yield stress will arrest chain growth and
significantly decrease the size of clusters compared to the Newtonian case. Depending on the gap
thickness in the rheometer or MR device, these truncated clusters will likely diminish or eliminate
the gain in the yield stress anticipated upon application of the magnetic field, consistent with our
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observations from bulk magnetorheology in Chapter 4. It is therefore desirable to operate yield-
stress stabilized MR devices in the regime Y∗

M,φ ≫ 10, where the structures giving rise to the MR
effect closely resemble those in Newtonian matrix fluids.

While the arrested structures demonstrated here represent states along the Newtonian trajec-
tory, the effect of the matrix fluid yield stress to ‘freeze’ structures in place could be exploited in
more exotic systems to assemble and stabilize more complex anisotropic particle structures with
high degrees of order. As long as the inter-particle forces in the final structured states are insufficient
to overcome the matrix fluid yield stress (a balance that could be characterized by dimensionless
groups analogous to those used here), the assembled structures will be stable essentially indefinitely.
If necessary, the structures can be adjusted subsequently by increasing the forces on particles as
desired, or, alternatively, by decreasing the yield stress. This approach is not limited to magnetic
assembly, but is straightforwardly extendable to systems with other types of particle interactions or
external forces (e.g., electric fields, optical tweezers, etc.). It is even possible that different assem-
bly techniques could be applied sequentially, with the yield stress matrix fluid trapping particles
in place between steps, allowing the complexity of achievable structures to be greatly expanded.
Additionally, other types of non-Newtonian behavior in the matrix fluid could be similarly utilized
to alter assembly. Though the task remains to confirm experimentally the behavior presented here,
our results are physically reasonable and expected to be in at least qualitative agreement with
experiments as long as the matrix fluid yield stress and inter-particle dipolar interactions are the
dominant phenomena.



CHAPTER 6

Conclusions and Future Work

The work presented in this thesis represents a thorough rheological characterization of aqueous
dispersions of LaponiteR© at bulk and microscopic length scales. We have also demonstrated the
ability of these materials to address sedimentation problems in magnetorheological suspensions,
and have explored the use of yield stress matrix fluids for tuning magnetic assembly. Our results
will be of significant interest to rheologists, soft matter physicists, and MEMS researchers, as well
as industrial formulation engineers and product developers.

6.1 Length-scale–dependent Linear Rheology of LaponiteR© Dispersions

We began in Chapter 2 by exploring the gelation of dilute (1 w%) aqueous dispersions of LaponiteR©

using a combination of bulk rheology and Multiple Particle Tracking (MPT) microrheology [89].
While previous reports indicated discrepancies between rheological properties and gelation times
measured at bulk and microscopic scales [59], our MPT microrheology results over a range of probe
sizes show that length-scale–dependent rheology is a general feature of aqueous LaponiteR© gels.
We find that the use of smaller probes is accompanied by the observation of significantly lower
viscoelastic moduli and longer gelation times. To explain this behavior, we hypothesize that as the
material ages, a porous network structure develops that traps larger probe particles, while smaller
probes generally have more time to diffuse relatively unhindered through pores and more weakly
gelled regions. In agreement with this picture, we find that probe dynamics exhibit significant
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spatial heterogeneity, from which a novel characteristic length scale is determined. Finally, us-
ing theory and simulation we clarify the relationship between the correlated probe displacements
reported by previous authors [59] and the elasticity of the material.

This work will impact the understanding of the gelation behavior and microstructure of aqueous
LaponiteR© dispersions. The microstructural length scales we measure using MPT are generally
consistent with previous scattering measurements of cluster sizes in aqueous LaponiteR© dispersions
[103], and indicate that for the experimental conditions in our study the resulting phase can be
more aptly characterized as a ‘gel’ than a ‘repulsive glass’, in agreement with previous reports
[43]. Our analysis also demonstrates novel methods for elucidating microstructural length scales
and quantifying features of the probe trajectories that could be applied to a variety of complex
fluids. Finally, the length-scale–dependent behavior we observe will be of interest to industrial
formulation engineers and product developers using LaponiteR© as a rheological modifier. For
many commercial applications of LaponiteR©, such as paints and oil-drilling fluids, the rheological
properties on microscopic length scales can be important for proper function.

There are a number of interesting issues motivated by this work that could be addressed in
the future. The primary conclusion of this study, that dispersion rheological properties depend
on the length scale that is probed, could be examined in greater depth through the use of two-
point microrheology [130]. By analyzing the correlated motions of two neighboring probe particles
as a function of separation distance, the length-scale dependence of the rheology could be more
explicitly studied. Also, the task remains to develop a suitable quantitative particle-level model
for the gelation mechanism of aqueous LaponiteR© dispersions that is consistent with the probe-
size–dependent behavior we observe. Another future opportunity is further clarification of the
physical interpretation of the correlations between successive probe particle displacements, 〈x12〉.
Our study has shown that probes diffusing in a continuum material with no ‘microstructure’ but
finite elasticity can exhibit non-zeros values of 〈x12〉. It would be interesting to examine these
correlations for other model systems, including probes diffusing in Newtonian fluids confined to
pores, to see if imposed microstructural length scales can be extracted from the analysis of 〈x12〉.
Finally, it would be interesting to repeat this study in different areas of the phase space shown in
Fig. 1.7, and to examine how microrheological results change as the interactions between LaponiteR©

platelets are adjusted via the concentration of added salt.

6.2 Nonlinear Microrheology of LaponiteR© Dispersions

In Chapter 3, the comparison between the bulk and micro-scale rheology of aqueous LaponiteR©

dispersions was extended to large deformation experiments (i.e., nonlinear rheology) at higher
concentrations (1.5 to 2.5 w%) [90]. In this work, a magnetic tweezer microrheology device is
thoroughly characterized in terms of the accessible stresses, the applied magnetic fields, and the
range of measurable shear rates and viscosities. Magnetic probe particles sufficiently close to the
tweezers exhibit rapid acceleration towards the tweezer surface, allowing measurement of the strong
shear-thinning behavior of the viscosity. In contrast, probes at a farther distance undergo only a
slow creep, appearing to be ‘jammed’ in the gel. This distinction between mobile and jammed
probes is used to demonstrate the first use of magnetic tweezers to measure yield stresses on the
microscopic scale. We additionally provide the first comparison between bulk and micro-scale yield
stress measurements, finding good agreement provided that a geometric factor is included that
approximately corrects for the differences in flow kinematics between the two measurements. Both
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yield stress measures grow approximately logarithmically with age time.

Since this work represents only the second report of yield stress measurements on the micro-
scopic scale [139] and comes at a time of growing interest in active and nonlinear microrheology
[109], it will be of wide appeal to the rheology and microrheology communities. Additionally, the
agreement between bulk and micro-scale yield stresses for LaponiteR© concentrations greater than
or equal to 2.0 w% expands upon our results from Chapter 2, implying that the characteristic size
of microstrucutral features (for example, the characteristic pore size) decreases as the Laponite R©

concentration increases. The results of this project will assure industrial formulators that bulk
rheological measurements are representative of local micro-scale properties for sufficient LaponiteR©

concentration.

There are a number of ways in which the magnetic tweezer device used in this project could
be optimized for future work. Ideally, a second-generation device would incorporate more precise
micromachining at the tip, which would reduce the variation in the stress near the tip where the
stresses are largest, as well as a high-camera to capture more of the shear-thinning behavior during
which particles accelerate rapidly. If possible, probe particles with higher saturation magnetizations
could also be obtained, allowing higher stresses on particles to be achieved. These adjustments
would expand the dynamic range of the instrument without modifying the design of the magnetic
core. Future experiments with this device on aqueous LaponiteR© dispersions could address the
probe size dependence in a manner similar to the MPT experiments in this thesis. For 2.0 or 2.5
w% LaponiteR©, is there a critical probe size below which agreement between bulk and micro-scale
measurements of the yield stress breaks down? Our hypothesis is that such a critical probe size
must exist between a probe diameter of 4.5 µm (the probe size in this magnetic tweezer study) and
the size of LaponiteR© platelets (∼ 30 nm). Additionally, our work has highlighted the importance
of taking into account differences between the geometry and flow kinematics in bulk and micro-scale
experiments. If the bulk flow kinematics could be more closely mimicked at the micro-scale, perhaps
through the use of disk-, plate-, or rod-shaped probe particles, bulk and micro-scale measurements
could be more directly compared. Finally, there are other aspects of the nonlinear rheology of
aqueous LaponiteR© dispersions that would be very interesting to explore with this device on the
microscopic scale. For example, perhaps shear rejuvenation could be studied by comparing the
behavior of particles that move individually towards the tip with those that follow in another’s
path through ‘rejuvenated’ fluid. Also, it is possible that the relaxation of probes after switching
off the magnetic field could reveal information about jamming and elastic recoil of the LaponiteR©

dispersion.

6.3 Magnetic Particles in Yield Stress Matrix Fluids

Taking advantage of the yield stress behavior of aqueous LaponiteR© dispersions to inhibit sedimen-
tation of magnetic particles, we examined magnetorheology in matrix fluids composed of aqueous
LaponiteR© dispersions in Chapter 4. We find that sedimentation is prevented and our results indi-
cate that the matrix fluid yield stress has a negligible effect on the magnetorheology for sufficient
applied magnetic fields. This behavior is understood in terms of a dimensionless magnetic yield
parameter, Y∗

M,φ, that characterizes the balance between inter-particle magnetic stresses and the
matrix fluid yield stress. Despite the thixotropic nature of the aqueous LaponiteR© matrix fluid,
field-induced dynamic and static yield stress measurements are in agreement for Y∗

M,φ & 10. A mas-
ter curve was developed that relates the field-induced yield stress to the particle magnetization and
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the magnetic particle concentration, amounting to a concentration–magnetization superposition
that is expected to be generally applicable for essentially any type of magnetic particle. Chapter 5
describes simulation studies of the field-induced structure of dipolar particle suspensions in a simple
Bingham yield stress matrix fluid. We find that the yield stress results in an arrest of chain growth
when the separation distance to neighboring particles and chains is too large to cause yielding,
leading to shorter chains at equilibrium than in the case of Newtonian matrix fluids. Also, we find
that the ‘zippering’ mechanism for lateral aggregation of chains is suppressed, resulting in lower
horizontal connectivity of chains at equilibrium when a yield stress is present.

The negligible effect of the matrix fluid yield stress on magnetorheological properties for suf-
ficient magnetic fields is likely to be a result welcomed by formulators of MR fluids. As long as
Y∗

M,φ ≫ 1, which is frequently satisfied at the high field strengths and particle concentrations used
in most commercial MR applications, the yield stress of the matrix fluid can be optimized to meet
other design demands without significantly disrupting the behavior of the field-activated material.
Additionally, this work clarifies previous research on MR suspensions in yield stress matrix fluids by
explicitly measuring both the field-induced static and dynamic yield stresses and showing that they
are equivalent for sufficient values of Y∗

M,φ. The magnetorheological master curves we present will
aid in the development of MR fluids and MR devices by providing a simple, analytical relationship
between the field-induced yield stress and system parameters. Finally, our simulation work exam-
ines the microstructure of MR suspensions in a previously unexplored regime that could be useful
in novel technologies. In particular, the concept of tuning particle assembly via the rheological
properties of the matrix fluid will be of significant interest to MEMS researchers.

Recent work has highlighted the opportunity for using squeeze flows in MR devices and the
need to quantitatively characterize squeeze flow magnetorheology [64, 187]. Since yield stress
matrix fluids could play a similar role in preventing particle sedimentation in squeeze flow MR
devices, an important question to address for future work in this area is the effect of a matrix
fluid yield stress on MR behavior in squeeze flows. For thixotropic matrix fluids like aqueous
LaponiteR© dispersions, it is also important to understand whether the suspension remains resistant
to sedimentation even after the application of large shear rates for long periods of time (which would
tend to ‘rejuvenate’ the matrix fluid). Additionally, the simulations of magnetic assembly in this
thesis have provided motivation and basic groundwork for many potential future studies. In addition
to extending results to 3-D simulations or incorporating more complex rheological constitutive
relations that more appropriately capture real matrix fluid behavior, future computational work
could more thoroughly address the link between the simulated microstructures and the predicted
field-responsive rheology. Finally, analogous experiments in quasi-2D slits should be performed on
suspensions of superparamagnetic particles in yield stress matrix fluids to check that the observed
microstructures match those obtained in simulations.



Appendix A

Three-point Correlation Calculations

A.1 Three-point Correlations in a Kelvin–Voigt Material

To derive expressions for the correlations between successive displacements 〈x12〉 and the b param-
eter for probe particles undergoing Brownian motion in a Kelvin–Voigt material, we begin with the
autocorrelation function of the probe position r (t) over a lag time τ .

Cr (τ) = 〈r (t + τ) · r (t)〉 − 〈r (t)〉2 (A.1)

Here brackets represent time averages. For successive probe displacements r01 and r12, each over a
lag time τ , it can be shown that

〈r01 · r12〉 = 2Cr (τ) − Cr (2τ) − Cr (0) (A.2)

〈r01 · r01〉 = 2Cr (0) − 2Cr (τ) (A.3)

Here we have used the fact that 〈r (t)〉 in a Kelvin–Voigt material (i.e. the material is a viscoelastic
solid). In order to proceed, we make the following approximations. First, we approximate 〈‖r01‖〉 =
〈√

r01 · r01

〉

≈
√

〈r01 · r01〉 where we have taken the square root outside of the average. Second,
noting the form of 〈x12〉 versus r01 in Equation 2.6, we make the so-called ‘Peterlin Approximation’
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that the average of a quotient is approximately equal to the quotient of the averages:

〈x12〉 =

〈

r01 · r12

‖r01‖

〉

=

〈

r01 · r12√
r01 · r01

〉

≈ 〈r01 · r12〉
〈√

r01 · r01

〉 ≈ 〈r01 · r12〉
√

〈r01 · r01〉
(A.4)

Combining these approximations with Equations A.2 and A.3 and using the fact that r01 = 〈‖r01‖〉,
we arrive at an expression for 〈x12〉 in terms of Cr (τ) and r01:

〈x12〉 =
2Cr (τ) − Cr (2τ) − Cr (0)

2Cr (0) − 2Cr (τ)
r01 (A.5)

This expression shows a linear variation between 〈x12〉 and r01 of the form 〈x12〉 = −br01. The
expression for b in terms of Cr (τ) is therefore

b = −2Cr (τ) − Cr (2τ) − Cr (0)

2Cr (0) − 2Cr (τ)
(A.6)

This expression can be simplified by recognizing that Cr (τ) is the inverse Fourier transform of the
power spectral density of the probe position S∗

r (ω), given in Equation 2.8 for Brownian probes
embedded in a Kelvin–Voigt material:

Cr (τ) =
(λ+ + λ−) kBT

4πaG

(

e−τ/λ+ + e−τ/λ−

λ+ + λ−
+

e−τ/λ+ − e−τ/λ−

λ+ − λ−

)

(A.7)

where the roots λ± are given in Equation 2.9. In realistic situations, the inertial time scale for the
probe is many orders of magnitude less than the relaxation time of the material, so that λI/λV ≪ 1.
In this limit, λ+ ≈ λV and λ− ≈ 0. Applying the inertia-less limit to Equation A.7 we obtain

Cr (τ) =
kBT

2πaG
exp (−τ/λV ) (A.8)

The autocorrelation function of the probe position decays with a characteristic time constant λV .
Finally, substituting this equation into Equation A.6 yields a simple expression for b that matches
Equation 2.12.

b =
1

2
[1 − exp (−τ/λV )] (A.9)

〈x12〉 is then given by

〈x12〉 = −1

2
[1 − exp (−τ/λV )] r01 (A.10)

which matches Equation 2.11. In the limit τ/λV ≪ 1, b → 0 and there are no correlations between
successive probe particle displacements. The lag time is not long enough for probe motions to
be affected by the elasticity of the material. In the limit τ/λV ≫ 1, b → 0.5 and the successive
displacements of probe particles are significantly correlated. In this case, probe motions are highly
influenced by the elasticity of the material over the time scale of the lag time τ . Since a number of
approximations were made to obtain these expressions, a Brownian dynamics (BD) simulation was
conducted in order to check the theoretical results. The details of the simulation are given below.
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A.2 Simulations of Probe Diffusion in a Kelvin–Voigt Material

The equation of motion for a Brownian probe particle in a Kelvin–Voigt material is given in
Equation 2.7. We wish to solve this stochastic differential equation using Brownian dynamics
(BD). Physical insight and computational efficiency can be gained by first using appropriate length
and time scales to make the equation of motion dimensionless. We invoke the equipartition theorem
for a tethered Brownian spring to obtain the scaling relationship

GL2 ∼ kBT

a
(A.11)

where L is the characteristic length scale at which Brownian and elastic forces on the probe particle
(having radius a) balance. Rearranging this expression and substituting G = η/λV and D =
kBT/6πηa gives the length scale L to be

L =
√

DλV (A.12)

If we now take the characteristic time scale t∗ to be the characteristic time for the probe to diffuse
the distance L, we see from Equation A.12 that t∗ = λV . Applying this scaling, we obtain a
dimensionless equation of motion:

λI

λV

¨̂r
(

t̂
)

+ ˙̂r
(

t̂
)

+ r̂
(

t̂
)

=
f
(

t̂
)

6πaG

√

1

λV D
(A.13)

where r̂
(

t̂
)

= r (t) /L and over-dots represent derivatives with respect to the dimensionless time

variable t̂ = t/λV . The right-hand side of Equation A.13 is a dimensionless Brownian force f̂
(

t̂
)

:

f̂
(

t̂
)

=
f
(

t̂
)

6πaG

√

1

λV D
=

f
(

t̂
)

kBT/L
(A.14)

This stochastic force is expressed at each dimensionless time step t̂ = t̂n in terms of a random
number [rn] taken from a uniform distribution with [rn] ∈

[

−1
2 , 1

2

]

.

f̂
(

t̂
)

=

√

24

∆t̂
[rn] (A.15)

Here ∆t̂ = ∆t/λV is the dimensionless time increment. Substituting this expression into the right-
hand side of Equation A.13, we obtain a dimensionless equation of motion that can be solved
numerically in Euler integration steps:

λI

λV

¨̂r + ˙̂r + r̂ =

√

24

∆t̂
[rn] (A.16)

If we now take the inertia-less limit λI/λV ≪ 1, then the resulting dimensionless equation of motion
is

˙̂r + r̂ =

√

24

∆t̂
[rn] (A.17)
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There are no free parameters in this equation, indicating that the simulation needs only to be
performed once in dimensionless coordinates in order to obtain a probe particle trajectory that
can subsequently be analyzed for specific correlations. Therefore correlations between successive
displacements should only depend on the dimensionless lag time τ/λV . We run the simulation with
a time step of ∆t̂ = 0.001 and a total of 5.0 × 108 time steps, exploring values of τ/λV from 10−2

to 103.
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