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Abstract 

Execution of a complex product development project is facilitated through its decomposition into 

an interrelated set of localized development tasks. When a local task is completed, its output is 

integrated through an iterative cycle of system-wide integration activities. Integration is often 

accompanied by inadvertent information hiding due to the asynchronous information exchanges. 

We show that information hiding leads to persistent recurrence of problems (termed as the design 

churn effect) such that progress oscillates between being on schedule and falling behind. The 

oscillatory nature of the PD process confounds progress measurement and makes it difficult to 

judge whether the project is on schedule or slipping. We develop a dynamic model of work 

transformation to derive conditions under which churn is observed as an unintended consequence 

of information hiding due to local and system task decomposition. We illustrate these conditions 

with a case example from an automotive development project and discuss strategies to mitigate 

design churn. 

(Product Development, Design Process Modeling, Decomposition and Integration, Component 

and System Performance Generation, Information Hiding, Design Churn) 

 

1. Introduction 

 “We just churn and chase our tails until someone says that they won’t be able to make the 

launch date.”               Anonymous product development manager at an automobile manufacturer 

 

The difficulty to accurately measure individual activity progress within the context of the 

overall program goals is well understood by product development (PD) managers. The above 

quote is taken from a study of PD management practices at a large automotive company (Mar 
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1999).  Progress oscillates between being on schedule (or ahead of schedule) and falling behind. 

In many instances, development tasks are repeated and no one knows why. This is a universal 

phenomenon in PD settings. For instance, in the software development realm, Cusumano and 

Selby (1995) report that the progress is measured by the number of bugs that testers report to 

developers during the development process. They show a bug report (Figure 1) oscillating from a 

high number of bugs to a low number and back to a high number and so on. Other histories 

showing oscillatory behavior in PD processes have been observed in aerospace (Browning et al. 

2000), automotive (McDaniel 1996; Mar 1999), electronics (Wheelwright and Clark 1992), and 

information system development (Joglekar 2001) settings. 

 

 

 

 

 

 

Figure 1: Evidence of Design Churn - Microsoft Excel (Cusumano and Selby 1995) 

The Motivation for studying the churn phenomenon is abundant. The oscillatory nature of PD 

progress makes it hard to measure actual development progress and ultimately difficult to judge 

whether the project is on schedule or slipping. Other unfortunate consequences of churn may 

include significant increase in development times, organizational memory lapses regarding PD 

problem solving know-how, and deteriorated morale amongst developers. There are few 

managerial guidelines available for dealing with churn. Typically, a lack of understanding for the 

underlying causes of churn leads to myopic resource allocation decisions.  

In this paper, we take an information-processing view of PD by characterizing the 

development process as a sequence of problem solving activities (Clark and Fujimoto 1991). 

Design churn is defined as a scenario where the total number of problems being solved (or 

progress being made) does not reduce (increase) monotonically as the project evolves over time.  
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There are several possible explanations for churn and this paper investigates one of them. We 

focus on the structural reason for churn; namely, delays associated with information 

dependencies. The information processing view postulates design decomposition to be a nested 

series of generation and testing activities (Simon 1996). If testing occurs simultaneously with the 

generation activities, then the process will not churn.1 In reality, generation-testing cycles have 

built-in delays. This paper develops a generation-testing model with the capability to consider 

integration of several generation groups in the presence of delays.2 The structure of the 

development process inherently results in some of the information related to the design tasks 

being sometimes hidden from other developers and managers.3 Our premise is that in many 

development scenarios, design churn becomes an unintended consequence of information hiding. 

Performance variation (i.e. imperfect evaluation) in the test activity may also cause churn. 

For instance, some systems exhibit non-monotonic reduction in either the variance or the 

expected value (and sometimes both) of design parameters due to uncertainty in performance 

evaluation (Browning et al. 2000). In order to avoid the confounding effects of variability (as it 

will only exacerbate churn), we deal only with the expected values and exclude performance 

variation as a plausible source of churn.4 Other explanations for churn are also possible. 

Exogenous changes (e.g. a change in customer requirements) to design objectives also lead to 

churn (Mar 1999). Again, such changes will only confound the analysis of our basic premise and 

are excluded from the model. Furthermore, oscillatory allocation of resources as in “fire-

fighting” models (e.g. Repenning et al. 2001) and in behavioral choice models (e.g. Ford and 

Sterman, 1999) exhibit churn-like behavior. These explanations are also excluded from our 

model based on similar rationale. 

We explore our premise by developing a model for tracking the progress of PD processes 

while accounting for information hiding. Our model divides the development process into two 

                                                                 
1 It is customary in the PD literature to presume that a fully concurrent generation-testing cycle does not create more 
problems than it solves (Smith and Eppinger, 1997). 
2 In section 3, we propose a generalized decomposition model, where the generation activities are assigned to local 
or specialized groups, while testing is conducted by system-wide test and integration groups. 
3 Wheelwright and Clark (1992) describe how PD projects fail to meet their original potential due to intrinsic 
characteristics of the process and not due to a lack of creative people, technical skills, or management skills within 
the PD organization. 
4 For assessment of variability in PD refer to congestion models of development (e.g. Adler et al., 1995). 
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interdependent task sets: local and system. The structure of this problem solving process is set up 

such that local tasks, by definition, cannot hide information from system tasks about their 

individual progress and problems. On the other hand, system tasks may withhold information 

(gathered from local tasks) for limited periods of time before releasing it to local tasks. Between 

these releases, the information is hidden from local tasks, which work based on previously 

released information. Our model focuses on churning that is caused by these episodic releases of 

information.  

For instance, the product architecture for a laptop computer enables the development team to 

decompose the laptop development project into local tasks such as the main board, LCD, and 

packaging design (Baldwin and Clark 2000). These local tasks, when completed, feed 

information into system testing and integration tasks. The integration tasks evaluate this 

information (based on system considerations) and provide individual feedback to the local tasks, 

which may require that local tasks perform extra iterations. System testing for the various pieces 

of the development process may take different times to process, and thus system feedback will be 

provided to local teams at different times. In effect, the inherent delays associated with 

generating the test results of system integration amount to information hiding. Conversely, if the 

laptop architectural decomposition required minimal (or no) interaction between the different 

local development tasks, then the system integration tasks may not be required to give feedback 

to local tasks and hence information hiding is non-existent.  

Analysis of churn due to information hiding raises interesting questions about the 

convergence of the underlying system. We define PD convergence as a process in which 

problem solving activities result in a technically feasible design within a specified time frame.5 

That is, the total number of problems being solved falls below an acceptable threshold. The main 

results obtained from the analysis of this model are summarized as follows: 

(1) The existence of design churn is a fundamental characteristic of the decomposition and 

integration of design between local and system teams. More specifically, it is shown that 

design churn may be attributed to two modes. The first mode reflects the ‘fundamental 

                                                                 
5 A formalization of convergence in terms of conditions for stability is presented in section 4.3. 
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churn’ of the design process, and the second mode, termed ‘extrinsic churn’, may be present 

depending on the relative rates of work completion and the rework induced between system 

and local tasks. 

(2) It is possible for development processes to exhibit churning behavior under both converging 

and diverging scenarios. Conditions under which the total number of design problems 

associated with the system and local tasks converges to zero as the development time 

increases are presented.  

The rest of the paper is organized as follows. In the next section, we discuss the literature 

relevant to information hiding and design churn. In Section 3 we propose a model for 

asynchronous information exchanges in a development environment. In Section 4.1, we 

introduce a PD model that involves a single local development team and single system 

integration team, and that accounts for information hiding. The basic model is formulated and 

analyzed in the rest of Section 4, where conditions for the convergence of the design process as 

well as “pure design churn” are presented. In Section 5, we present a generalized model that 

involves multiple local development teams that exchange information, under more general 

information release policies, with a corresponding system integration team. In Section 6, we 

apply the findings of the model to analyze the appearance design process for an automotive 

product development project. In Section 7, we discuss the managerial implications by identifying 

mitigation strategies to counter design churn in complex development processes.  

 

2. Literature Review 

Information hiding is not a new concept in management science. For instance, in the supply 

chain management literature, information hiding has been justified on grounds of either 

asymmetrical or distorted availability of information  (Lee et al. 1997). Similar ideas have been 

explored in a segment of PD literature. For instance, in software development projects 

information hiding refers to the practice of keeping the implementation details of a software 

module hidden from other modules in the program (Sullivan et al. 2001). Typically, such 
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practices are justified by the desire to reduce the coordination burden. However, formal models 

for capturing the effects of information hiding are rare in the PD literature.  

There are several management science models that relate to one or more aspect of PD design 

churning. We group these models into the following categories: Set-based concurrent 

engineering, resource allocation, and information dependency.   

2.1 Set-Based Concurrent Engineering:  

Sobek et al. (1999) describe a method to model convergence in Toyota’s PD process, called 

set-based concurrent engineering (SBCE). With SBCE, Toyota’s designers think about sets of 

design alternatives, rather than pursuing one alternative iteratively. As the development process 

progresses, they gradually narrow the set until they come to a final solution. This set narrowing 

technique is also utilized in Krishnan’s et al. (1997) model of design iteration. For example, 

Figure 2(a) shows that design parameter X converges with time. SBCE literature does not focus 

on instances where design churn is possible as shown in Figure 2(b). However, it is possible to 

extend these concurrency models to demonstrate and study churn (Mihm et al. 2001). 

2.2 Resource allocation:  

Resource allocation has been identified as a managerial lever for controlling the rate of PD 

process completion (Ahmadi and Wang 1999). Bohn (2000) and Repenning et al. (2001) define 

the “firefighting” syndrome as the preemption of important, but not urgent, development 

activities due to an imminent necessity or problem (referred to as a “fire”) in another part of the 

same development project (or another development project). Moving resources from one part of 

the project to another (or from one project to another) may trigger a vicious cycle of firefighting. 

Time 

Design Parameter (X) 

(a) Parameter Convergence (b) Parameter Churn  

Figure 2: Parameter Convergence and Churn 

Design Parameter (X) 

Time 
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As a result, PD performance will oscillate. Conventional PD resource allocation studies (Adler et 

al. 1995; Loch and Terwiesch 1999) model waiting effects without focusing on design churn. 

2.3 Information Dependency:   

Information interdependency between development activities is an important feature of 

complex product development processes (Eppinger et al. 1994). Interdependency is manifested 

and measured by the amount of iteration and rework inherent in a PD process. The Design 

Structure Matrix (DSM) provides a simple mapping to capture interdependencies within a 

development process (Eppinger 2001). It is worth noting that DSM models may exhibit divergent 

churn behavior; however, both Smith and Eppinger (1997) and Browning and Eppinger (1998) 

artificially suppress this behavior.  

Our treatment of design churn builds on the PD literature of task concurrency, resource 

allocation, and information dependency constructs. In particular, we use a DSM model as a 

building block to expand upon by introducing asynchronous information delays with these 

constructs.6 In the next section, we will establish the linkages between asynchronous 

interdependencies and the DSM. 

 

3. Asynchronous Information Interdependency in Design Processes 

In a large and complex PD project, different development groups work concurrently on multiple 

aspects of the process (Joglekar et al. 2001). Work progresses within each group through internal 

iteration.  Coordination between groups takes place through system level testing or an integration 

group. Individual (i.e., local) groups provide status updates to the system group. This information 

is processed based on global considerations, which may result in rework for some of the 

individual groups. Figure 3 shows a schematic of the information exchanges within the PD 

process described above. In the left side of the figure, we describe how a set of local 

development teams, working concurrently on a common project, interact through a system level 

team that coordinates and orchestrates their individual development efforts. The double-headed 

                                                                 
6 A control theory based matrix formulation using the DSM is a convenient approach to build our argument. 
However, the core ideas can be built using alternative approaches. See, for instance, Mihm el al (2001) for a 
selective evolutionary based exposition of related PD decisions. 
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arrow demonstrates the two-way communication that takes place. The right side of the figure 

depicts the interaction process between a single local development team and the system team. 

The solid arrow indicates that local teams frequently provide the system with updates regarding 

their progress, while the dotted arrow indicates that system team provides intermittent feedback 

to the local team. 

The frequency of system level feedback might depend on either exogenous considerations 

(such as suppliers’ ability to provide updates) or endogenous considerations such as system level  

test requiring a minimal turn around time for a desired fidelity (Thomke and Bell 2001). If the 

synchronization is effectively instantaneous, for example during daily builds of Microsoft’s 

Development Cycles, then we can think about the whole process in terms of a unified 

(combining local and system level) structure. Smith and Eppinger (1997) have developed a 

method using linear systems theory to analyze such models and identified controlling features of 

a unified iteration process. Unified iteration does not allow for information delays between local 

and system task execution. However, many of PD processes are characterized by intermittent 

system feedback.7 Hence, we explore the management of multiple development teams 

                                                                 
7 This is a common PD observation since system teams need time to absorb and integrate all the local information 
they receive before sending feedback. Consequently, there is a delay from the time system teams receive local 
information until the time they send it back to local teams. Furthermore, information hiding and delays occur due to 
the fact that local teams, once they receive system feedback, do not usually drop all things at hand and immediately 
act on or respond to this new information. Usually, this new information is queued or batched with other updates. 

System Team 

  
Development  

Teami 

  

Frequent 
Information Update   Intermittent 

System 
Feedback 

  

System Team: 
Testing & 
Integration   

Development 
Team 1 

  

Figure 3: Local and System Bifurcation of Information 
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coordinated through a system integration team and subject to periodic feedback (Joglekar and 

Yassine 2001).  

The DSM shown in Figure 4 captures the above development setup. The DSM is composed 

of blocks that represent several local development teams and a system integration team. The 

system team facilitates interactions between local teams as represented by the solid arrows in the 

figure. The local DSMs are internally updated at every time step (∆T); and provide status 

information to the system DSM at Si,t  periodic intervals. The system DSM provides updates to 

the local DSMs at periodic intervals m21 T ,,T ,T K . The local and system update periods (i.e., 

Si,t ’s or Ti's) may or may not be synchronous; e.g., ? TkT,?T,kT mm11 == K  where ik  are 

integer constants for all i’s. In addition, the dotted arrows demonstrate an instance where local 

teams are allowed to interact directly (i.e., without the facilitation of the system team); in which 

case, the local DSM iL  provides status information to other local DSMs at periodic intervals 

mi,i,2i,1  t,, t,t K . 

 

 

 

 

 

 

 

 

 

This type of DSM is not a pathological case. Numerous researchers have documented the 

existence of this local/system bifurcation (Sosa et al. 2000). The problem cannot be treated as a 

single DSM to study the churning properties of the development process due to time delays and 

asynchrony in information transfers between the system and different local groups.  

 

 

L1: 
DSM

L2: 
DSM

Lm: 
DSM
m 

S: 
DSMs

ys 

 

 

T1 

T2 

Tm t1,m 

t1,S t2,S tm,S 

tm,1 

Figure 4: DSM Representation of a PD Process Showing Local and System Teams                             

(Li: represent a  local development team, and S: represent a system team) 
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4. Asynchronous Work Transformation Model: Single Local DSM Case 

4.1 Model Formulation 

First, we study a simplified version of the problem. We assume, without loss of generality, that 

there exists a single local DSM (containing the local tasks) that exchanges information with a 

corresponding system DSM at every time step. The system DSM releases information every T  

time steps.8 Consistent with Smith and Eppinger (1997), we specify that all the tasks associated 

with the local and system DSMs are internally updated at each iteration step. We label )(kL  as 

the vector for the amount of unfinished work in the local tasks at time k . Absent all system 

feedback, the progress of )(kL  is given by: 

)1(W)( L −= kLkL          ... ,2 ,1=k                                (1) 

where LW  is the work transformation matrix that captures the fraction of rework created within 

a local group of tasks (Smith and Eppinger 1997). Equation (1) describes the work 

transformation during each iteration stage as follows. Local tasks finish a fraction of their own 

work, given a constant completion rate specified in the diagonal of WL. However, this work 

causes some rework to be created to other dependent tasks. The off-diagonal elements of WL 

document such dependencies. The construction of WL is detailed in Appendix A. 

We augment the state space for the above model by introducing two more vectors: )(kS  and 

)(kH . The vector )(kS  represents the amount of unfinished work in all system tasks at time step 

k, and )(kH  is a vector for the amount of finished system work at time step k that is ready to be 

transmitted to local tasks but remains hidden until it is released. We also define a matrix SW  

that corresponds to )(kS  in a manner analogous to the relation between LW  and )(kL , that is  

)1(W)( S −= kSkS          ... ,2 ,1=k                       (2) 

Combining both state equations (1 and 2) and incorporating both types of information 

exchanges (from local to system and vice versa), we obtain the state equation (3). This equation 

assumes that the system transmits all the work withheld up until the last moment before data 

transmittal to local tasks.  
 

                                                                 
8 The model is capable of accommodating multiple local DSMs as discussed in Section 5. Furthermore, for the sake 
of simplicity and ease of exposition, we assume that these local DSMs and the system DSM have the same rank. 
Finally, the system can release information once or in multiple periods. 
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 The matrix AHold is active at each iteration step except for every T  periods when the system 

team releases its feedback to the local team and the matrix ARelease becomes active. LSW  is a 

matrix that captures the rework fraction created by local tasks )(kL  for the corresponding system 

tasks )(kS . Similarly, when information is released by the system, the matrix SLW  captures the 

rework fraction created directly by the system tasks )(kS  for the local tasks )(kL . SHW  is a 

matrix that captures the rework created for the local tasks by the system tasks, and is placed in a 

hidden (or holding) state until it is time to be transmitted to local tasks. When no information is 

being released by the system to local tasks, the identity sub-matrix in AHold guarantees that 

finished system work is carried over to the next period. The identity sub-matrix in ARelease 

guarantees that finished system work is transmitted to local tasks, through H(k),  every T  time 

steps. Consequently, )(kH  gets set to zero each T steps and is rebuilt in between. The 

construction of the work transformation matrices LW , SW , LSW , SHW  and SLW  is dependent 

on the structure of the information exchanged within the development process. In Appendix A, 

we specify (consistent with the case study presented in Section 6) the work transformation 

matrices based on the local and system DSMs LΩ , SΩ ; as well as the inter-component 

dependency matrices LSΩ , SLΩ , which represent the interaction between local and system 

teams.9 

Individual elements within the L , S , and H  vectors refer to the same task. To illustrate the 

concept, consider the following two tasks : door trim design and garnish trim design related to 

                                                                 
9 The local and system DSMs as well as the inter-component dependency matrices represent the amount of rework 
created for each task based on work done on the other tasks in the previous period. 

AHold ARelease 
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the development of a car door. The state equations for this problem are shown in Equations (5) 

and (6) for the case when no information is being released by the system (e.g., the ‘body’ 

integration team) to local tasks (e.g., the ‘door’ design team), and for the case when information 

is released by the system, respectively.  

In this example, )(1 kL  and )(1 kS  designate the number of design problems or open issues 

associated with the door trim task, which are being worked by the local design team and system 

integration team, respectively. )(1 kH  refers to the number of door trim problems resolved by the 

system integration team that are waiting to be released for future work by the local design team. 

Any problem associated with the door trim design can reside in only one of these three states 

until it is fully resolved.  Note that Lw111−  and Lw221−  are the fractions of 1L  and 2L  

respectively that can be completed in an autonomous manner in every time step. Furthermore, 

)(212 kLwL  and )(121 kLwL  are the amounts of rework that get created for task 1L  and 2L , 

respectively, as a consequence of the autonomous progress. Similar interpretations can be made 

for the system matrix (i.e., S
ijw ). 
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4.2 Model Analysis 

In this section, we explore the fundamental characteristics of the model described in Equation 

(3). All proofs are presented in Appendix B. 

First, we notice that Equation (3) can be rewritten as follows: 
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Thus, the model described in Equation (3) is a homogenous linear difference system that is 

nonautonomous, or time-variant. Moreover, since the impulse train function )(kTδ  is periodic 

with period T  (recall that the system DSM releases information every T  time steps), we 

conclude that for all k∈Z (where Z is the set of all positive integers), )()( kATkA =+ . That is, 

the model described in Equation (7) is a linear periodic system.  

We now present some results obtained using Floquet theory (Richards 1983) for the linear 

periodic system given in Equation (7).10  

Definition 1. Matrix )0()2()1( ATATAC L−−=  is referred to as the monodromy matrix of (7). 

In the following we assume that the monodromy matrix is diagonalizable.11 C  is 

diagonalizable if and only if it has linearly independent eigenvectors. A sufficient condition for 

C  to be diagonalizable is that it has distinct eigenvalues (Strang 1980). We cite the following 

result from Richards (1983) as Lemma 1, Theorem 1, and corollary 1 to set up further analysis. 

Lemma 1. Let C  be a diagonalizable nn ×  matrix, and let T  be any positive integer. Let us 

decompose C  as 1−Λ= CCC SSC , where CΛ  is a diagonal matrix of the eigenvalues of C , and 

CS  is the corresponding eigenvector matrix. Then, there exists some nn ×  matrix B  such that 

CBT = . Moreover, 1−Λ= CBC SSB , where T CB Λ=Λ .            

The following result indicates that the analysis of the periodic system described in Equation (7) 

is reduced to the study of a corresponding autonomous linear system.      

Theorem 1. If )(ky  is a solution of the autonomous linear system  

)()1( kByky =+                                              (8) 

Then, the general solution )(kx  of the linear periodic system (7) is given as follows 

                                                                 
10 Floquet theory has been mainly applied in the mathematical and the physical sciences (Kuchment, 1993). 
However, to the best of our knowledge, Floquet theory has not been applied in the social and management sciences. 
11 As observed in Smith and Eppinger (1997), the diagonalization assumption reflects reality. The qualitative results, 
however, will remain invariant in the general case; though the computation of the underlying matrices becomes 
more complicated. 
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gBkPkx k)()( =                                              (9) 

where )(kP  is a nonsingular periodic matrix of period T , and ∈g R n  is a constant vector.12  

Corollary 1. The general solution )(kx  of the linear periodic system (7) is given by  

)()()( kykPkx =                                             (10) 

where )(ky  is the general solution of the autonomous linear system (8).  

    Corollary 1 has the following interesting interpretation for the information hiding problem in 

PD. We note that there are two sources of oscillation that govern the development of the total 

number of problems being solved as the project evolves over time. The first source is associated 

with the periodic matrix )(kP  in equation (10), and reflects the ‘fundamental churn’ of the 

process. This ‘fundamental churn’ may be attributed to the intrinsic characteristic of information 

delays between local and system task execution. The second source of oscillation, termed 

‘extrinsic churn,’ is associated with the properties of the linear autonomous system (8) as 

discussed in Smith and Eppinger (1997). More specifically, positive real eigenvalues of B  

correspond to non-oscillatory behavior of the solution )(ky . Negative and complex eigenvalues 

of B  describe damped oscillations. The overall property of the linear periodic system (7) is thus 

the combined effect of both sources of oscillation. 

 Corollary 1 allows the development of conditions under which the linear periodic system (7) 

converges (i.e., as the time increases to infinity the total number of design problems associated 

with the system and local tasks converges to zero). We show in Section 4.3 that the eigenvalues 

and the eigenvectors of the matrix B determine conditions of convergence.  

4.3 Conditions for Stability 

In this section, we present conditions under which the total number of design problems 

associated with the system and local tasks converges to zero as the time increases to infinity.  

 First, we note that the zero solution is an equilibrium point13 of (7). Next we introduce the 

definitions of stability of the equilibrium point. 

Definition 2. The equilibrium point *x  is  

                                                                 
12 Any solution of (8) may be obtained from the general solution by a choice of vector g based on initial conditions. 
13 A point *x  is called an equilibrium point of (8) if *)(* xkAx =  for all 0≥k . 
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(1) stable if given 0>ε  there exists )(εδδ =  such that δ<− *
0 xx  implies ε<− *)( xkx  

for all 0≥k . *x  is unstable if it is not stable. 

(2) globally attracting if *)(lim xkxk =∞→  for any initial work vector 0x . 

(3) asymptotically stable if it is stable and globally attracting. 

 Intuitively, the zero solution is stable if the total number of design problems associated with 

the system and local tasks remains bounded as the project evolves over time. Asymptotic 

stability requires the additional condition that the total number of design problems associated 

with the system and local tasks converges to the origin for any initial work vector. 

 When the PD process involves time delays and asynchrony in information transfer between 

the system and local group, conditions for the convergence of the development process are of 

vital importance for PD management. Before we present stability conditions for the 

asynchronous work transformation model, we introduce the so-called ‘Floquet exponents’ and 

‘Floquet multipliers’ of the linear periodic system (7). Floquet exponents are the eigenvalues λ  

of B ; while the corresponding eigenvalues Tλ  of the monodromy matrix (C) are the Floquet 

multipliers. We have the following result: 

Theorem 2. The zero solution of (7) is stable if and only if the Floquet exponents have 

magnitude less than or equal to 1, and asymptotically stable if and only if all the Floquet 

exponents have magnitude less than 1. 

 The following provides an additional result that explains the behavior of solutions of the 

asynchronous work transformation model:  

Corollary 2 The zero solution of (7) is stable if the Floquet multipliers have magnitude less than 

or equal to 1 and asymptotically stable if all the Floquet multipliers have magnitude less than 1. 

 A direct consequence of Theorem 2 is that the Floquet exponents and their corresponding 

eigenvectors (i.e., eigenvectors of B ) determine the rate and nature of convergence of the design 

process. Consistent with Smith and Eppinger (1997), we use the term design mode to refer to an 

eigenvalue of B  along with its corresponding eigenvector.14 The magnitude of each eigenvalue 

                                                                 
14 For autonomous linear systems (i.e., AkA =)( ), the period of the matrix )(kA  is 1=T , the monodromy matrix 

AC = , and the Floquet multipliers are simply the eigenvalues of A . Thus, the Smith and Eppinger (1997) model is 
a special case of equation (7). 
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of B  determines the geometric rate of convergence of one of the design modes; while the 

corresponding eigenvector identifies the relative contribution of each of the various constituent 

tasks to the amount of work that jointly converges at the given geometric rate (Smith and 

Eppinger 1997). The eigenvector corresponding to the largest magnitude eigenvalue of B  (most 

slowly converging design mode) provides useful information regarding design tasks that require 

significant amount of work. More specifically, the larger the magnitude of an element in that 

eigenvector, the stronger the element contributes to the slowly converging design mode. 

4.4  Conditions for “Pure Churn” 

“Pure design churn” is defined as a scenario where the total number of problems being solved 

oscillates freely as the project evolves over time and neither convergence nor divergence occurs. 

“Pure design churn” means that the amount of unfinished work does not decrease simultaneously 

for all of the tasks. Instead, the amount of unfinished work shifts from task to task as the project 

unfolds. The above scenario is represented by particular solutions that are periodic; i.e., solutions 

)(kx where for all k∈Z, )()( kxNkx =+  for some positive integer N. The following results hold: 

Theorem 3.  

(i) The linear system (7) has a periodic solution of period T  if the monodromy matrix C  has an 

eigenvalue of equal to 1.  

(ii) The linear system (7) has a periodic solution of period T2  if the monodromy matrix C  has 

an eigenvalue equal to -1.                                                                                                             

(iii) If the largest magnitude eigenvalue of the monodromy matrix C  equals to 1 and is strictly 

greater (in absolute value) than any other eigenvalue, then the limiting behavior of the general 

solution of the linear system (7) is periodic with period T . 

 

5. Asynchronous Work Transformation Model: Multiple Local DSM Case 

In this section, we consider the general case where multiple local teams are coordinated through 

a system integration team and subject to periodic feedback. More specifically, the m  local 

DSMs are internally updated and provide status information to others (local and system DSMs) 
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at every time step. The system DSM provides updates to the m  local DSMs at periodic intervals 

mTTT ..., , , 21  as shown in Figure 4.  

 We label iL  as the vector that designates the amount of unfinished work of the tasks of local 

team i  ( m1,...,=i ) at time k . Let in  denote the number of local tasks in local team i , and let 

∑= inn  denote the total number of tasks in all of the local teams. Individual elements within 

the iL  ( mi 1,...,= ), iS , and iH  vectors refer, correspondingly, to the same task. In general, the 

system of equations is written as follows:  
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 (11) 

 In the above expression, iLW  is a work transformation matrix that captures the fraction of 

rework created within the group of tasks of local team i . SW  is the work transformation matrix 

that captures the fraction of rework created within the system tasks. ji HSW  is a ij nn ×  matrix 

that captures the fraction of finished system work created by system tasks )(kS i  for the local 

tasks )(kL j , and is held in )(kH j  until the next  scheduled  information  release.  ji LLW  is a 

ij nn ×  matrix that captures the fraction of rework created by local tasks )(kLi  for the local tasks 

)(kL j . ji SLW  is a ij nn ×  matrix that captures the fraction of rework created by local tasks 

)(kLi  for the system tasks )(kS j . Since information is released by the system to the local team 

i  only at periodic intervals of iT , the ii nn ×  diagonal sub-matrix Ik
iT ))(1( δ−  guarantees that 

finished system work is carried over to the next period. When information is released by the 

system to local team j , the ij nn ×  matrix ji
jT k LSW)(δ  captures the fraction of rework created 

directly by the system tasks )(kS i  for the local tasks )(kL j . The ii nn ×  diagonal sub-matrix 

)(kA )(kx
 

)1( +kx  
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Ik
iT )(δ  indicates that information is transmitted to the local tasks )(kLi  indirectly through the 

holding state )(kH i . 

 The next result shows that the model described in Equation (11) is a special case of a linear 

periodic system. Once the period of the matrix )(kA  is identified, the monodromy matrix C  can 

be determined, and the results presented in Section 4 can be readily employed.  

Theorem 4. If the system team provides updates to m  local teams at periodic intervals 

mTTT ..., , , 21 , then the fundamental period T  of the linear matrix )(kA  is the least common 

multiple of mTTT ..., , , 21 ; i.e., )..., , ,(lcm 21 mTTTT = .  

 Following a similar reasoning as in Theorem 4, it can be shown that any periodic information 

release policy will lead to a linear periodic system, and thus can be analyzed using the tools 

presented in Section 4. For example, the local teams may provide status information to others 

(local and system teams) at periodic intervals system21 ,..., , , tttt m , rather than at every time step; 

or any team (local or system) may provide information status to others (local or system teams) at 

non-uniform (but periodic) intervals. Indeed, any such periodic information release policy can be 

transformed to a model, where all elements )(kaij  of the linear matrix )(kA  are periodic 

functions (with possibly non-identical periods). In this case, Theorem 4 can be adapted by letting 

the fundamental period T  of the linear matrix )(kA  to be the least common multiple of the 

periods of the elements )(kaij . 

   

6. Case Study: The Automotive Appearance Design Process 

In this section, an illustration of the asynchronous work transformation model in a real product 

development process, previously reported by McDaniel (1996), is presented. We intend to 

demonstrate internal process dynamics, show that oscillatory patterns arise in an asynchronous 

PD project, and assess several mitigation strategies by exploiting the results developed in the 

paper. In Section 6.1, we provide a general overview of the automotive appearance design 

process. Section 6.2 demonstrates how to construct the underlying work transformation matrices. 

Then, in Section 6.3 we analyze the base case model. Section 6.4 assesses the efficacy of churn 
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mitigation strategies based on three operational scenarios. Finally, results of sensitivity analysis 

are presented in Section 6.5. 

6.1 Appearance Design Process Overview 

 Appearance design refers to the process of designing all interior and exterior automobile 

surfaces for which appearance, surface quality and operational interface is important to the 

customer. Such design items include, for example, exterior sheet metal design and visible interior 

panels. Appearance design is the earliest of all physical design processes, and changes in this 

stage easily cascade into later development activities causing costly rework. This is avoided by 

allowing “stylists” (from the industrial design group) to work closely with “engineers” (from the 

engineering design group). While stylists are responsible for the appearance of the vehicle, 

engineers are responsible for the feasibility of the design by ensuring that it meets some 

functional, manufacturing, and reliability requirements. Figure 5 shows the industrial design 

process within the context of the overall automotive product development process. The industrial 

design portion is allotted approximately 52 weeks for completion in a typical vehicle program. 

 

 

 

 

 

 

 

 Records from the study company, shown in Figure 6, indicate churning behavior for a 

specific vehicle program. While the curves presented in the figure show churn in both interior 

and exterior subsystem development, our analysis of the churn phonemenon will be limited to 

the interior design process involving the styling and engineering developement organizations.  

 Information exchanges from styling to engineering take the form of wireframe CAD data 

generated from clay model scans; referred to as scan transmittals of surface data. Scan 

transmittals are scheduled at roughly six weeks intervals (i.e., T=6). Information exchanges 
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Figure 5: Appearance Design in Relation to Total Development Process 
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between engineering and styling occur on a weekly basis through a scheduled feasibility 

meeting. During these meetings various engineering groups provide feedback to styling on 

infeasible design conditions. Therefore, with this information transfer setup engineering will be 

the local team, as defined in our model, and styling will be the system team. 

Figure 6: Churning Behavior Observed in a Family of Vehicle Programs (McDaniel 1996) 

 In addition to the cross-functional information exchanges between styling and engineering, 

information flows also occur within functional groups. For example, within engineering, a hand 

clearance study would compile information about the front door trim panel and the front seat to 

determine whether the two components physically interfere, and whether the space between them 

meets minimum acceptable requirements.  

6.2 Construction of Work Transformation Matrices 

From the program management perspective, the vehicle interior is segmented into sub-systems, 

or components. These components represent major sub-assemblies of the interior, and include 

typical components such as the instrument panel, the front door trim panels, and the center 

console. This level of component aggregation is used primarily because these components have 

been the unit of management and budgetary control for engineering design work, and because 

the company defined a number of standard engineering design studies to be performed on each 

component at this level. The DSMs ( LΩ , SΩ ) for the engineering and industrial design 

processes are shown in Figure 7(a) and 7(b), respectively. The transformation of component-

level design information to system-level design information, as used within the industrial design 

group, is captured by the ‘dependency’ matrix LSΩ  in Figure 7(c). This transformation is 
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typically performed on a weekly basis, when the engineering group provides feedback to the 

industrial design on infeasible conditions. Similarly, the ‘dependency’ matrix SLΩ  in Figure 

7(d) captures the impact of industrial design on the engineering process at each scan transmittal 

(on a six-week interval).  

(a) Local DSM- LΩ  (i.e., engineering)             (b) System DSM- SΩ  (i.e., industrial design) 

 

 

 

 

(c) LSΩ  (converting local issues to system issues)   (d) SLΩ  (converting system issues to local issues) 

Figure 7: Local, System DSMs, and System/Local conversion matrices 

 The average autonomous completion rates per component are shown along the diagonal of 

the local and system DSMs (i.e., LΩ  and SΩ , respectively).15  To set a base level of normalized 

resource usage for each component, engineers defined the resource usage intensity required to 

accomplish the autonomous completion rates presented in Figure 7 as one resource-week. The 

DSMs for styling and engineering were obtained by circulating a survey instrument, to both 

groups. Respondents were asked to populate the DSM by estimating the pairwise coupling (i.e., 

dependency strength) between components using S, M, W, or N ratings (i.e., strong, medium, 

and weak, or none respectively). These estimates were converted into numerical values (by 

assigning a probability of 0.3, 0.2, 0.1, and 0 for the S, M, W, and N respectively). Local and 

system DSMs, as determined by the average of responses of the surveys, are shown in Figure 

7(a-b). A complete explanation of the DSM and ‘dependency’ matrices in Figure 7 is given in 

(McDaniel 1996). 
                                                                 
15 These rates are obtained by estimating the autonomous completion time for each component and using an 
exponential decay function. 

1 2 3 4 5 6 7 8 9 10
1 Carpet
2 Center Console 0.09 0.17 0.21 0.09 0.14 0.42 0.29 0.38

3 Door Trim Panel 0.12 0.6 0.24 0.1 0.16 0.49 0.34 0.44

4 Garnish Trim 0.06 0.15 0.12 0.16 0.49 0.08 0.22

5 Overhead System 0.05 0.08

6 Instrument Panel 1 0.87 0.58 0.94 1.41 0.49 3.81

7 Luggage Trim 0.07 0.06 0.25

8 Package Tray 0.08 0.07

9 Seats 0.14 0.12 0.12 0.58

10 Steering Wheel 0.05

1 2 3 4 5 6 7 8 9 10
1 Carpet 0.15

2 Center Console 0.15

3 Door Trim Panel 0.15

4 Garnish Trim 0.15

5 Overhead System 0.15

6 Instrument Panel 0.15

7 Luggage Trim 0.15

8 Package Tray 0.15

9 Seats 0.15

10 Steering Wheel 0.15

1 2 3 4 5 6 7 8 9 10
1 L1 Carpet 0.85 0.12 0.02 0.06 0.06 0.06

2 L2 Center Console 0.1 0.53 0.04 0.3 0.02 0.24 0.02

3 L3 Door Trim Panel 0.02 0.04 0.47 0.08 0.24 0.02 0.18 0.02

4 L4 Garnish Trim 0.06 0.18 0.68 0.14 0.1 0.02 0.08

5 L5 Overhead System 0.04 0.83

6 L6 Instrument Panel 0.3 0.26 0.16 0.28 0.06 0.02 0.2

7 L7 Luggage Trim 0.02 0.02 0.1 0.06 0.76 0.06 0.04

8 L8 Package Tray 0.1 0.06 0.83 0.16

9 L9 Seats 0.08 0.24 0.18 0.08 0.04 0.04 0.16 0.63 0.2

10 L10 Steering Wheel 0.02 0.02 0.26 0.2 0.7

1 2 3 4 5 6 7 8 9 10
1 S1 Carpet 0.2

2 S2 Center Console 0.2

3 S3 Door Trim Panel 0.2

4 S4 Garnish Trim 0.2

5 S5 Overhead System 0.2

6 S6 Instrument Panel 0.2

7 S7 Luggage Trim 0.2

8 S8 Package Tray 0.2

9 S9 Seats 0.2

10 S10 Steering Wheel 0.2
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6.3 Base Case Analyses 

For the base case, the largest magnitude eigenvalue of B  is 0.9943. Because this eigenvalue is so 

close to 1, this means that the system is stable, under the above operating conditions, and 

converges very slowly (see Theorem 2). By inspecting the eigenvector corresponding to the 

largest magnitude eigenvalue of B , we observe that the magnitudes (in descending order) of the 

elements are as shown in Figure 8. 
Element 

6S  3S  2S  6H  6L  4S  9S  7S  3L  2L  3H  9L  8S  10L  2H  

Magnitude 0.925 0.227 0.158 0.141 0.131 0.098 0.078 0.055 0.044 0.043 0.035 0.033 0.026 0.025 0.024 

Cumulative 

Work 

388.2 98.7 68.8 27.8 79.2 43.6 35 22.9 25.9 24.3 7.1 18.2 10.8 12.9 4.9 

Element 
4L  5S  10S  4H  9H  7L  7H  1L  8L  8H  5H  10H  5L  1S  1H  

Magnitude 0.022 0.022 0.018 0.015 0.012 0.009 0.009 0.007 0.007 0.004 0.003 0.003 ~ 0 ~ 0 ~ 0 

Cumulative 

Work 

13.2 8.9 7.2 3.1 2.5 5.7 1.6 3.9 4.3 0.7 0.6 0.5 0.7 ~ 0 ~ 0 

Figure 8: Eigenvector and Corresponding Total Work 

 The interpretation of the ranking, in Figure 8, is that the larger the magnitude of an element 

in this eigenvector, the more strongly the element contributes to the slow convergence of this 

mode of the design process. Thus, the ranking of the eigenvectors gives useful information for 

identifying the structure of the total work vector. This interpretation is supported by examining 

the cumulative work, which is obtained by simulating the design process for 52 weeks, as shown 

in Figure 8.16 We see that the cumulative work associated with the local ‘instrument panel’ (i.e., 

6L ) is more than the work done on other local tasks. This is primarily due to the large work 

associated with the system ‘instrument panel’ (see the cumulative work of 6S ) and the long 

information delay (T = 6) between local and system task execution. This phenomenon can be 

seen by examining the specific traces for individual local components as shown in Figure 9(a). 

As can be seen, the instrument panel has the largest number of open design issues at every point 

of time. Also, the oscillatory changes in design status induced by new information contained in 

scan transmittals are apparent. Finally, we observe that even in the complete absence of external 

changes, the appearance design process is not completed on time. Design rework and oscillatory 

                                                                 
16 For instance, by comparing the local tasks we see that, in all cases, the largest terms in the total work vector are 
also the largest terms in the largest eigenvector.  In our case, the second largest eigenvalue is much smaller than the 
largest eigenvalue; thus, the second mode does not contribute significantly to the total work. 
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behavior in the process result from the decomposed process structure and product architecture, 

and can never be eliminated from the appearance design process. We conclude that the 

appearance process must be redesigned to speed up convergence and mitigate churn. 

6.4 Mitigation Scenarios 

Recall that the development process is stable, under the base operating conditions, but converges 

slowly. McDaniel (1996) reported that several mitigation strategies were implemented by the 

engineering and styling teams in order to speed up the rate of design progression needed to meet 

the required completion date. The analysis developed in this paper provides insight regarding 

means for achieving stability for a diverging process or speeding up convergence for a slowly 

converging process. In particular, three types of mitigation strategies can be applied:  

1) Increasing the autonomous design completion rate for each component (i.e., increasing the 

fraction of work that can be completed in an autonomous manner in every time step);  

2) Lessening the pairwise coupling (i.e., dependency strengths) between components;  

3) Increasing the frequency with which design information is transmitted from the industrial 

design to the engineering process (i.e., reducing the information delay T ).  

 The first strategy can be implemented, for instance, by applying resources (work efforts) 

above the normalized base-case level, which will result in increased progress being made on the 

independent, autonomous components. The extra resources may be obtained through design 

technology, personnel training, overtime, skill level, and other determinants of design 

productivity. The second and third strategies can be accomplished, for instance, by using the 

knowledge of the inter-component coupling as an aid to making co-location on teaming 

arrangements (McCord and Eppinger 1993), or by using a variety of formal and informal 

mechanisms to facilitate the management of design information flows (Braha 2001).  

 Figures 9(b-c) present the effect of the first two mitigation strategies on the behavior of the 

base-case model. Scenario 1 represents expending 2.5 normalized resource-weeks and scenario 2 

represents modifying the engineering coupling structure by eliminating the weak dependencies. 

In all cases, the increase in total resource expenditure and reduction in the magnitude of the 

engineering inter-component dependencies are applied to the more ‘complex’ local components 
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(i.e., center console (L2), door trim panel (L3), and instrument panel (L6), see Figure 8). Figure 

9(d) shows the combined effect of these strategies on the total number of open issues. 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: The Effect of Mitigation Strategies on the Behavior of the System 

 Delays in information flows (introduced by scan transmittal intervals) from the industrial 

design to the engineering process have a destabilizing effect on system behavior. For example, 

Figure 10 presents the behavior of the system for various information delays. As can be seen, 

increasing the information delay results in more extreme churning behavior. Moreover, even 

though all scenarios are converging, the increased churning behavior leads to slower 

convergence rates. Indeed, by inspecting the convergence rate (i.e., largest magnitude 
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eigenvalue17 of the matrix B ) of the appearance design process, for various delays between 

consecutive information releases, we observe that convergence slows monotonically for longer 

delays. To illustrate the economic cost of churn, we inspect the amount of total work in the 

system over the “convergence” period (i.e., the time required to complete 99% of the initial total 

work). We see that the work associated with the information delay 6=T  is about 10% more 

than the total work associated with the delay 1=T . 

  

 

 

 

 

 

 

 

 

 

Figure 10.  The Effect of Delay on the Churning Behavior 

 We also notice in Figure 8 that the accumulation of ongoing changes in the industrial design 

group related to the local ‘instrument panel’ (see the cumulative work of 6H ) is larger than the 

magnitudes of other elements. Thus, it may be possible to reduce the impact of the accumulated 

design information by using differential delays among components; that is, by increasing the 

frequency with which design information is transmitted from the industrial design to the local 

components that have the most destabilizing effect on total system performance. For instance, 

consider the scenario where the industrial design team provides updates to the local engineering 

tasks 2L , 3L , and 6L  at shorter periodic intervals of 61 <T  weeks (while maintaining the delay 

for the others at 62 =T  weeks). According to the multiple local DSM model of Section 5, the 

local DSM is now partitioned into two local teams, DSM1= { 2L , 3L , 6L } and DSM2 = { 1L , 

                                                                 
17 Recall that the larger the eigenvalue the slower the system’s convergence rate. 
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4L , 5L , 7L , 8L , 9L , 10L }. By applying the results18 of Section 5, Figure 11 plots the 

convergence rate (i.e., largest magnitude eigenvalue of the matrix B ) for the base scenario under 

1) five differential information release policies, jT =1  and 62 =T  for j =1, 2, K , 5, and 2) 

overall information release policy jT =  for j =1, 2, K , 5. As can be seen, the differential delay 

policy consistently achieves better “performance” (larger convergence rate) than the 

corresponding uniform policy; that is, the differential delay policy with jT =1  and 62 =T  

achieves better “performance” than the uniform information release policy with delay jT =  for 

every j =1, 2, K , 5.19  

 

 

 

 

 

 

 

 

 

Figure 11.  The Effect of Delay Policy on the Largest Eigenvalue  

6.5 Sensitivity Analysis 

The model developed in this paper enables us to perform sensitivity analysis. For example, let 
L
2α  be the autonomous local center console completion rate (corresponding to the element in 

row two, column two in the local DSM). Assume that the other elements in the local DSM are set 

to their values as specified in Figure 7. Figure 12(a) plots the largest magnitude eigenvalue of B  

against  L
2α . As can be seen,  any value of 02 >Lα  will  have  a  stabilizing effect on the  system 

behavior (see Theorem 2). Similar plot for the local overhead system (Figure 12b) suggests that 

the convergence rate is completely insensitive to its autonomous completion rate as long as it is 

                                                                 
18 According to Theorem 4, the fundamental period of the monodromy matrix is 30=lcm(5, 6). 
19 The advantage of reducing the information delay should be weighed against the possibly additional resources and 
undesirable side effects. Exploration of these tradeoffs is beyond the scope of this paper. 
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greater than 0.05. Consequently, any increase in total resource expenditure for a bottleneck 

component (such as the center console) will be effective in improving the system performance. 

 

         

  

 

 

 

 

           (a) Center Console                                                            (b) Overhead System 

Figure 12. The Effect of Autonomous Completion Rate on Convergence  

 

7. Discussion and Conclusion 

The model described in this paper provides managers with operational insights that explicitly 

capture the fundamental characteristics of a development process. It allows managers to 

experiment with several “what-if scenarios” in order to explore and compare the effects of 

subsequent managerial actions of improvement. However, a basic revelation of the model is that 

design churn is an unavoidable phenomenon and a fundamental property of a decomposed 

development process where the product or process architecture dictates delays in feedback 

information amongst the development groups. Consequently, the most significant insight this 

model brings to managers is to avoid making myopic decisions based on the observance of 

churn. The fluctuation in development progress cannot be avoided, but can be managed once 

managers understand its sources. Our model reveals several main sources of churn:  

a. Interdependency of process or product structure is apparent when the development occurs 

within a monolithic group; however, it is usually hidden, ignored, or forgotten once the 

process is decomposed into multiple groups. Fully anticipating, understanding, and 

accommodating this structure, can explain why the tasks seem difficult, frustrating and prone 

to change.  
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b. Concurrency of local and system execution may help in expediting the development process; 

however, careful timing and magnitude of feedback is necessary to provide development 

groups with enough time, between feedbacks, to understand and react to these feedback 

flows. If these flows are not carefully planned, they might drive the process unstable by 

generating more rework than the development teams can handle.  

c. Feedback delays are an important factor in developing a clear understanding of the 

development process and play a major role in determining the system stability. In 

combination with the interdependency structure, delays are the main reason why 

development problems (issues) believed to be solved (closed) tend to re-appear (reopen) at 

later stages of development.  

 While exposing churn as a fundamental property of a decomposed development process, our 

model also provides managers with three mitigation strategies to combat design process churn, 

divergence, or slow convergence. These strategies are: 

1. Timing-based strategies: These strategies advocate the minimization of delays for specific 

tasks that contribute the most to the slow convergence of the development process. Our 

model provides a quantitative approach to identify these bottleneck tasks. Once identified, 

strategies for reducing the time delays for these tasks should be implemented. These include 

the early release of preliminary information and divisive overlapping (Krishnan et al. 1997). 

Our illustration shows that acceleration of the synchronization frequency for all tasks may 

not be as effective as accelerating, by the same amount, the synchronization frequency for the 

bottleneck tasks. 

2. Resource-based Strategies: This strategy allows local and system teams to work faster (as 

captured by the diagonal elements of both LW  and SW ) by incorporating more resources. 

Our illustration shows that working faster on all the tasks simultaneously may not be as 

effective as allocating the same amount of resources only to the bottleneck tasks. 

3. Rework-based strategies: This strategy suggests that local groups ignore low priority local or 

system feedback (as captured by the low rework fractions in jLiLW  or jLiSW ). A similar 

strategy is to reduce the values of jLiLW  or jLiSW  by requiring that local or system teams 
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not produce much feedback to local groups. Both these strategies benefit from a modular 

architecture.  

All the above strategies are effective in mitigating the three sources of churn (i.e., 

interdependency, concurrency, and feedback delays) either individually or collectively. We have 

demonstrated the impact of these strategies using the automotive appearance design process.  

Several extensions to our model are possible. First, cost elements associated with the 

information release and information processing activities may be incorporated within our model. 

This may result in a convex formulation that allows for the optimal determination of the 

information delay T (e.g., Thomke and Bell, 2001). Second, except for the local and system 

autonomous rates of completion, our model does not explicitly account for resource allocation 

policies. Thus, explicitly incorporating resource allocation as a decision variable may lead to the 

discovery of better resource allocation policies in the context of decomposed development 

processes. Finally, the linearity assumption in our model can be relaxed, and non-linear 

formulations may be developed. For example, our model can be modified by incorporating time-

varying rework fractions, which are reduced with time as the development process unfolds.  

 We have develped a model for a development process based on decomposing it into two 

groups: local and system. The model incorporates two types of information flows: 1) information 

flows that reflect internal rework within local and system groups, possibly generating internal 

rework; and 2) information flows that reflect status updates from local to system tasks and 

feedback from system to local tasks. These information flows influence both ‘fundamental’ and 

extrinsic’ churn and determine the shape and rate of convergence of the development process.  
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Appendix A: Specifications of Work Transformation Matrices ( LW , SW , LSW , SHW , SLW ) 
The specification of the work transformation matrices is based on the assumption that only work 
that is done in the previous period is considered to create rework as a normal course of 
operation. Let ( )LL

ijα=Ω  be the local DSM. The work completion coefficient LL
iii αα ≡  is the 

local autonomous completion rate for task i  at each iteration step. The coupling coefficient L
ijα  

(for ji ≠ ) is the amount of rework created for local task i  per unit of work done  on local task j . 
Consequently, the elements of the work transformation matrix LW  become LL 1w iii α−=  and 

LLLw jjijij αα=  (for ji ≠ ). The system DSM SΩ  and work transformation matrix SW  are defined 
similarly.  

The interaction between the local and system teams is captured by the inter-component 
dependency matrices ( )LSLS

ijα=Ω  and ( )SLSL
ijα=Ω . The coupling coefficient LS

ijα  is the amount of 
rework created for system task i  per unit of work done  on local task j . Similarly, the coupling 
coefficient SL

ijα  is the amount of rework created for local task i  per unit of work done  on system 
task j . Consequently, the elements of the work transformation matrix LSW  are LLSLSw jjijij αα= . 
The matrix SLW  is defined as LSLSLw jjijij αα= . Finally, the “holding” matrix SHW  is defined as 

SLSH WW = . 
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Appendix B 
Proof of Lemma 1, Theorem 1 and Corollary 1 
See Richards (1983). 
Proof of Theorem 2. 
From Theorem 1, )(kx  is a solution of the linear periodic system described by equation (7) if and 
only if )()()( 1 kxkPky −=  is a solution of the linear autonomous system described by equation (8). 
The matrix )(kP  is nonsingular and periodic. Thus, the stability of the linear periodic system (7) 
is equivalent to the stability of the associated linear autonomous system (8). Consequently,   
1) If the largest magnitude eigenvalue of B  (i.e., the largest magnitude Floquet exponent) is less 
than 1, then every solution )(kx  of (7) satisfies 0)(lim =∞→ kxk ;  
2) If the largest magnitude eigenvalue of B  is less than or equal to 1, then every solution )(ky of 
(8) remains bounded for 0≥k . 
3) (Only if part). Assume that the largest magnitude eigenvalue of B  is greater than 1.  Then 
there is a solution )(ky  of (8) such that ∞=∞→ )(lim kxk , and the zero solution is unstable.  ν 
Corollary 2: Since the eigenvalues of B  are the thT  roots of the eigenvalues of the monodromy 
matrix C, corollary 2 immediately follows. ν 
Proof of Theorem 3 
From Theorem 1, the general solution )(kx  of (7) may be written as )()()( kykPkx =  where )(ky  is 

the general solution of the linear autonomous system (8). For the linear autonomous system (8), 
it can be verified that the general solution can be written as gSBky B

k=)( , where BS  is the 
eigenvector matrix of B  and n

n Rgggg ∈= '
21 ),...,,( . The powers of B  can be found by 

1−Λ= B
k
BB

k SSB , where BΛ  is a diagonal matrix of the eigenvalues of B . Consequently,  
 =Λ== gScSBky k

BBB
k)(  
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Where ],...,,[ 21 nξξξ  is the eigenvector matrix for B. 
Hence the general solution )(kx  of (7) may be given by 
 )()()( kykPkx =  
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From equation (B.1) we see that the general solution )(kx  of (7) may be given by gkkx )()( Φ= , 
i.e., each of the column vectors of )(kΦ  is a nontrivial solution of (7). Let i

k
i kPkx ξλ )()(ˆ =  be such 
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a nontrivial solution. We have 
 )(ˆ)()()(ˆ kxkPTkPTkx T

i
k
i

T
ii

Tk
i λξλλξλ ==+=+ +                   (B.2) 

Notice that k
iλ  is an eigenvalue of the monodromy matrix C , i.e. T

iλ  is a Floquet multiplier of 
the linear periodic system (B.1). Thus, there exists a solution )(ˆ kx  of the linear periodic system 
(B.1) such that )(ˆ)(ˆ kxTkx T

iλ=+ , and this is the reason we call T
iλ  a multiplier. Now, 

(i) If the matrix C  has an eigenvalue equal to 1, then 1=T
iλ  and from (B.2) there exists a 

periodic solution of period T . ν 
(ii) If the matrix C  has an eigenvalue equal to –1, then 1−=T

iλ  and from (B.2) there exists a 
periodic solution of period T2 . ν 
(iii) Let the local and system work transformation matrices will be coupled and non-negative. 
Consequently, the monodromy matrix C  will be coupled and non-negative. Thus, in many 
applications, 0>LC  for some power L  (i.e., C  is primitive) for L>0. By the Perron-Frobenius 
theorems for primitive matrices one of its eigenvalues *

Cλ  is positive real and strictly greater (in 

absolute value) than all other eigenvalues, and there is a positive eigenvector corresponding to 

that eigenvalue. Since, T
CB
** λλ = , according to Eq. (B.1), the largest magnitude eigenvalue of B  

is also positive real, and there is a positive eigenvector corresponding to that eigenvalue.  
Therefore, the long term behavior of the system has the form 
 )(kx ~ ξλ )()( *

1 kPc k
B               (B.3) 

If the largest eigenvalue of C  equal to 1, then it follows from (B.3) that the long-term behavior 
of the system is periodic of period T .   ν      
Proof of Theorem 4 
Since T  is the least common multiple of mTTT ..., , , 21 , it follows that there are integers 

maaa ,,, 21 K  such that iiTaT =  for mi ≤≤1 . Let 0≥k  be any time point. Assume that at time point 
k  the system team provides updates only to the local teams jiii ,,, 21 L . From the information 
release policy it follows that there are integers nbbb ,,, 21 K  such that ll ii Tbk =  for },,,{ 21 jiiii Ll ∈  
and lll iii eTbk +=  for  },,,{ 21 jiiii Ll ∉  where ll ii Te <<0 . Consider time point Tk + .  
For },,,{ 21 jiiii Ll ∈ ,       lllllll iiiiiii TabTaTbTk )( +=+=+                             
For },,,{ 21 jiiii Ll ∉ ,                 lllllllll iiiiiiiii eTabTaeTbTk ++=++=+ )(  
Thus, we conclude that at time point Tk +  the system team will provide updates only to the local 
teams jiii ,,, 21 L . Consequently, the fundamental period of the linear system (12) is T . ν   


