
MIT Sloan School of Management

Working Paper 4333-02
January 2002

INFORMATION HIDING IN PRODUCT
DEVELOPMENT: THE DESIGN CHURN EFFECT

Ali Yassine, Nitin Joglekar, Dan Braha, Steven Eppinger, Daniel Whitney

© 2002 by Ali Yassine, Nitin Joglekar, Dan Braha, Steven Eppinger, Daniel Whitney.
All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted

without explicit permission provided that full credit including © notice is given to the source.

This paper also can be downloaded without charge from the
Social Science Research Network Electronic Paper Collection:

http://papers.ssrn.com/abstract_id=298248

http://papers.ssrn.com/abstract_id=298248

Information Hiding in Product Development:
The Design Churn Effect

Ali Yassine1 . Nitin Joglekar2 . Dan Braha1 . Steven Eppinger1 . Daniel Whitney1

1Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
2Boston University, Boston, Massachusetts, 02215

Abstract

Execution of a complex product development project is facilitated through its decomposition into

an interrelated set of localized development tasks. When a local task is completed, its output is

integrated through an iterative cycle of system-wide integration activities. Integration is often

accompanied by inadvertent information hiding due to the asynchronous information exchanges.

We show that information hiding leads to persistent recurrence of problems (termed as the design

churn effect) such that progress oscillates between being on schedule and falling behind. The

oscillatory nature of the PD process confounds progress measurement and makes it difficult to

judge whether the project is on schedule or slipping. We develop a dynamic model of work

transformation to derive conditions under which churn is observed as an unintended consequence

of information hiding due to local and system task decomposition. We illustrate these conditions

with a case example from an automotive development project and discuss strategies to mitigate

design churn.

(Product Development, Design Process Modeling, Decomposition and Integration, Component

and System Performance Generation, Information Hiding, Design Churn)

1. Introduction

 “We just churn and chase our tails until someone says that they won’t be able to make the

launch date.” Anonymous product development manager at an automobile manufacturer

The difficulty to accurately measure individual activity progress within the context of the

overall program goals is well understood by product development (PD) managers. The above

quote is taken from a study of PD management practices at a large automotive company (Mar

 2

1999). Progress oscillates between being on schedule (or ahead of schedule) and falling behind.

In many instances, development tasks are repeated and no one knows why. This is a universal

phenomenon in PD settings. For instance, in the software development realm, Cusumano and

Selby (1995) report that the progress is measured by the number of bugs that testers report to

developers during the development process. They show a bug report (Figure 1) oscillating from a

high number of bugs to a low number and back to a high number and so on. Other histories

showing oscillatory behavior in PD processes have been observed in aerospace (Browning et al.

2000), automotive (McDaniel 1996; Mar 1999), electronics (Wheelwright and Clark 1992), and

information system development (Joglekar 2001) settings.

Figure 1: Evidence of Design Churn - Microsoft Excel (Cusumano and Selby 1995)

The Motivation for studying the churn phenomenon is abundant. The oscillatory nature of PD

progress makes it hard to measure actual development progress and ultimately difficult to judge

whether the project is on schedule or slipping. Other unfortunate consequences of churn may

include significant increase in development times, organizational memory lapses regarding PD

problem solving know-how, and deteriorated morale amongst developers. There are few

managerial guidelines available for dealing with churn. Typically, a lack of understanding for the

underlying causes of churn leads to myopic resource allocation decisions.

In this paper, we take an information-processing view of PD by characterizing the

development process as a sequence of problem solving activities (Clark and Fujimoto 1991).

Design churn is defined as a scenario where the total number of problems being solved (or

progress being made) does not reduce (increase) monotonically as the project evolves over time.

Weeks

O

pe
ne

d/
 R

es
ol

ve
d

B
ug

s

 3

There are several possible explanations for churn and this paper investigates one of them. We

focus on the structural reason for churn; namely, delays associated with information

dependencies. The information processing view postulates design decomposition to be a nested

series of generation and testing activities (Simon 1996). If testing occurs simultaneously with the

generation activities, then the process will not churn.1 In reality, generation-testing cycles have

built-in delays. This paper develops a generation-testing model with the capability to consider

integration of several generation groups in the presence of delays.2 The structure of the

development process inherently results in some of the information related to the design tasks

being sometimes hidden from other developers and managers.3 Our premise is that in many

development scenarios, design churn becomes an unintended consequence of information hiding.

Performance variation (i.e. imperfect evaluation) in the test activity may also cause churn.

For instance, some systems exhibit non-monotonic reduction in either the variance or the

expected value (and sometimes both) of design parameters due to uncertainty in performance

evaluation (Browning et al. 2000). In order to avoid the confounding effects of variability (as it

will only exacerbate churn), we deal only with the expected values and exclude performance

variation as a plausible source of churn.4 Other explanations for churn are also possible.

Exogenous changes (e.g. a change in customer requirements) to design objectives also lead to

churn (Mar 1999). Again, such changes will only confound the analysis of our basic premise and

are excluded from the model. Furthermore, oscillatory allocation of resources as in “fire-

fighting” models (e.g. Repenning et al. 2001) and in behavioral choice models (e.g. Ford and

Sterman, 1999) exhibit churn-like behavior. These explanations are also excluded from our

model based on similar rationale.

We explore our premise by developing a model for tracking the progress of PD processes

while accounting for information hiding. Our model divides the development process into two

1 It is customary in the PD literature to presume that a fully concurrent generation-testing cycle does not create more
problems than it solves (Smith and Eppinger, 1997).
2 In section 3, we propose a generalized decomposition model, where the generation activities are assigned to local
or specialized groups, while testing is conducted by system-wide test and integration groups.
3 Wheelwright and Clark (1992) describe how PD projects fail to meet their original potential due to intrinsic
characteristics of the process and not due to a lack of creative people, technical skills, or management skills within
the PD organization.
4 For assessment of variability in PD refer to congestion models of development (e.g. Adler et al., 1995).

 4

interdependent task sets: local and system. The structure of this problem solving process is set up

such that local tasks, by definition, cannot hide information from system tasks about their

individual progress and problems. On the other hand, system tasks may withhold information

(gathered from local tasks) for limited periods of time before releasing it to local tasks. Between

these releases, the information is hidden from local tasks, which work based on previously

released information. Our model focuses on churning that is caused by these episodic releases of

information.

For instance, the product architecture for a laptop computer enables the development team to

decompose the laptop development project into local tasks such as the main board, LCD, and

packaging design (Baldwin and Clark 2000). These local tasks, when completed, feed

information into system testing and integration tasks. The integration tasks evaluate this

information (based on system considerations) and provide individual feedback to the local tasks,

which may require that local tasks perform extra iterations. System testing for the various pieces

of the development process may take different times to process, and thus system feedback will be

provided to local teams at different times. In effect, the inherent delays associated with

generating the test results of system integration amount to information hiding. Conversely, if the

laptop architectural decomposition required minimal (or no) interaction between the different

local development tasks, then the system integration tasks may not be required to give feedback

to local tasks and hence information hiding is non-existent.

Analysis of churn due to information hiding raises interesting questions about the

convergence of the underlying system. We define PD convergence as a process in which

problem solving activities result in a technically feasible design within a specified time frame.5

That is, the total number of problems being solved falls below an acceptable threshold. The main

results obtained from the analysis of this model are summarized as follows:

(1) The existence of design churn is a fundamental characteristic of the decomposition and

integration of design between local and system teams. More specifically, it is shown that

design churn may be attributed to two modes. The first mode reflects the ‘fundamental

5 A formalization of convergence in terms of conditions for stability is presented in section 4.3.

 5

churn’ of the design process, and the second mode, termed ‘extrinsic churn’, may be present

depending on the relative rates of work completion and the rework induced between system

and local tasks.

(2) It is possible for development processes to exhibit churning behavior under both converging

and diverging scenarios. Conditions under which the total number of design problems

associated with the system and local tasks converges to zero as the development time

increases are presented.

The rest of the paper is organized as follows. In the next section, we discuss the literature

relevant to information hiding and design churn. In Section 3 we propose a model for

asynchronous information exchanges in a development environment. In Section 4.1, we

introduce a PD model that involves a single local development team and single system

integration team, and that accounts for information hiding. The basic model is formulated and

analyzed in the rest of Section 4, where conditions for the convergence of the design process as

well as “pure design churn” are presented. In Section 5, we present a generalized model that

involves multiple local development teams that exchange information, under more general

information release policies, with a corresponding system integration team. In Section 6, we

apply the findings of the model to analyze the appearance design process for an automotive

product development project. In Section 7, we discuss the managerial implications by identifying

mitigation strategies to counter design churn in complex development processes.

2. Literature Review

Information hiding is not a new concept in management science. For instance, in the supply

chain management literature, information hiding has been justified on grounds of either

asymmetrical or distorted availability of information (Lee et al. 1997). Similar ideas have been

explored in a segment of PD literature. For instance, in software development projects

information hiding refers to the practice of keeping the implementation details of a software

module hidden from other modules in the program (Sullivan et al. 2001). Typically, such

 6

practices are justified by the desire to reduce the coordination burden. However, formal models

for capturing the effects of information hiding are rare in the PD literature.

There are several management science models that relate to one or more aspect of PD design

churning. We group these models into the following categories: Set-based concurrent

engineering, resource allocation, and information dependency.

2.1 Set-Based Concurrent Engineering:

Sobek et al. (1999) describe a method to model convergence in Toyota’s PD process, called

set-based concurrent engineering (SBCE). With SBCE, Toyota’s designers think about sets of

design alternatives, rather than pursuing one alternative iteratively. As the development process

progresses, they gradually narrow the set until they come to a final solution. This set narrowing

technique is also utilized in Krishnan’s et al. (1997) model of design iteration. For example,

Figure 2(a) shows that design parameter X converges with time. SBCE literature does not focus

on instances where design churn is possible as shown in Figure 2(b). However, it is possible to

extend these concurrency models to demonstrate and study churn (Mihm et al. 2001).

2.2 Resource allocation:

Resource allocation has been identified as a managerial lever for controlling the rate of PD

process completion (Ahmadi and Wang 1999). Bohn (2000) and Repenning et al. (2001) define

the “firefighting” syndrome as the preemption of important, but not urgent, development

activities due to an imminent necessity or problem (referred to as a “fire”) in another part of the

same development project (or another development project). Moving resources from one part of

the project to another (or from one project to another) may trigger a vicious cycle of firefighting.

Time

Design Parameter (X)

(a) Parameter Convergence (b) Parameter Churn

Figure 2: Parameter Convergence and Churn

Design Parameter (X)

Time

 7

As a result, PD performance will oscillate. Conventional PD resource allocation studies (Adler et

al. 1995; Loch and Terwiesch 1999) model waiting effects without focusing on design churn.

2.3 Information Dependency:

Information interdependency between development activities is an important feature of

complex product development processes (Eppinger et al. 1994). Interdependency is manifested

and measured by the amount of iteration and rework inherent in a PD process. The Design

Structure Matrix (DSM) provides a simple mapping to capture interdependencies within a

development process (Eppinger 2001). It is worth noting that DSM models may exhibit divergent

churn behavior; however, both Smith and Eppinger (1997) and Browning and Eppinger (1998)

artificially suppress this behavior.

Our treatment of design churn builds on the PD literature of task concurrency, resource

allocation, and information dependency constructs. In particular, we use a DSM model as a

building block to expand upon by introducing asynchronous information delays with these

constructs.6 In the next section, we will establish the linkages between asynchronous

interdependencies and the DSM.

3. Asynchronous Information Interdependency in Design Processes

In a large and complex PD project, different development groups work concurrently on multiple

aspects of the process (Joglekar et al. 2001). Work progresses within each group through internal

iteration. Coordination between groups takes place through system level testing or an integration

group. Individual (i.e., local) groups provide status updates to the system group. This information

is processed based on global considerations, which may result in rework for some of the

individual groups. Figure 3 shows a schematic of the information exchanges within the PD

process described above. In the left side of the figure, we describe how a set of local

development teams, working concurrently on a common project, interact through a system level

team that coordinates and orchestrates their individual development efforts. The double-headed

6 A control theory based matrix formulation using the DSM is a convenient approach to build our argument.
However, the core ideas can be built using alternative approaches. See, for instance, Mihm el al (2001) for a
selective evolutionary based exposition of related PD decisions.

 8

arrow demonstrates the two-way communication that takes place. The right side of the figure

depicts the interaction process between a single local development team and the system team.

The solid arrow indicates that local teams frequently provide the system with updates regarding

their progress, while the dotted arrow indicates that system team provides intermittent feedback

to the local team.

The frequency of system level feedback might depend on either exogenous considerations

(such as suppliers’ ability to provide updates) or endogenous considerations such as system level

test requiring a minimal turn around time for a desired fidelity (Thomke and Bell 2001). If the

synchronization is effectively instantaneous, for example during daily builds of Microsoft’s

Development Cycles, then we can think about the whole process in terms of a unified

(combining local and system level) structure. Smith and Eppinger (1997) have developed a

method using linear systems theory to analyze such models and identified controlling features of

a unified iteration process. Unified iteration does not allow for information delays between local

and system task execution. However, many of PD processes are characterized by intermittent

system feedback.7 Hence, we explore the management of multiple development teams

7 This is a common PD observation since system teams need time to absorb and integrate all the local information
they receive before sending feedback. Consequently, there is a delay from the time system teams receive local
information until the time they send it back to local teams. Furthermore, information hiding and delays occur due to
the fact that local teams, once they receive system feedback, do not usually drop all things at hand and immediately
act on or respond to this new information. Usually, this new information is queued or batched with other updates.

System Team

Development

Teami

Frequent
Information Update Intermittent

System
Feedback

System Team:
Testing &
Integration

Development
Team 1

Figure 3: Local and System Bifurcation of Information

(b) Synchronization between local and system teams (a) Interaction between local and system teams

Development
Team 2

Development
Team n

 9

coordinated through a system integration team and subject to periodic feedback (Joglekar and

Yassine 2001).

The DSM shown in Figure 4 captures the above development setup. The DSM is composed

of blocks that represent several local development teams and a system integration team. The

system team facilitates interactions between local teams as represented by the solid arrows in the

figure. The local DSMs are internally updated at every time step (∆T); and provide status

information to the system DSM at Si,t periodic intervals. The system DSM provides updates to

the local DSMs at periodic intervals m21 T ,,T ,T K . The local and system update periods (i.e.,

Si,t ’s or Ti's) may or may not be synchronous; e.g., ? TkT,?T,kT mm11 == K where ik are

integer constants for all i’s. In addition, the dotted arrows demonstrate an instance where local

teams are allowed to interact directly (i.e., without the facilitation of the system team); in which

case, the local DSM iL provides status information to other local DSMs at periodic intervals

mi,i,2i,1 t,, t,t K .

This type of DSM is not a pathological case. Numerous researchers have documented the

existence of this local/system bifurcation (Sosa et al. 2000). The problem cannot be treated as a

single DSM to study the churning properties of the development process due to time delays and

asynchrony in information transfers between the system and different local groups.

L1:
DSM

L2:
DSM

Lm:
DSM
m

S:
DSMs

ys

T1

T2

Tm t1,m

t1,S t2,S tm,S

tm,1

Figure 4: DSM Representation of a PD Process Showing Local and System Teams

(Li: represent a local development team, and S: represent a system team)

 10

4. Asynchronous Work Transformation Model: Single Local DSM Case

4.1 Model Formulation

First, we study a simplified version of the problem. We assume, without loss of generality, that

there exists a single local DSM (containing the local tasks) that exchanges information with a

corresponding system DSM at every time step. The system DSM releases information every T

time steps.8 Consistent with Smith and Eppinger (1997), we specify that all the tasks associated

with the local and system DSMs are internally updated at each iteration step. We label)(kL as

the vector for the amount of unfinished work in the local tasks at time k . Absent all system

feedback, the progress of)(kL is given by:

)1(W)(L −= kLkL ... ,2 ,1=k (1)

where LW is the work transformation matrix that captures the fraction of rework created within

a local group of tasks (Smith and Eppinger 1997). Equation (1) describes the work

transformation during each iteration stage as follows. Local tasks finish a fraction of their own

work, given a constant completion rate specified in the diagonal of WL. However, this work

causes some rework to be created to other dependent tasks. The off-diagonal elements of WL

document such dependencies. The construction of WL is detailed in Appendix A.

We augment the state space for the above model by introducing two more vectors:)(kS and

)(kH . The vector)(kS represents the amount of unfinished work in all system tasks at time step

k, and)(kH is a vector for the amount of finished system work at time step k that is ready to be

transmitted to local tasks but remains hidden until it is released. We also define a matrix SW

that corresponds to)(kS in a manner analogous to the relation between LW and)(kL , that is

)1(W)(S −= kSkS ... ,2 ,1=k (2)

Combining both state equations (1 and 2) and incorporating both types of information

exchanges (from local to system and vice versa), we obtain the state equation (3). This equation

assumes that the system transmits all the work withheld up until the last moment before data

transmittal to local tasks.

8 The model is capable of accommodating multiple local DSMs as discussed in Section 5. Furthermore, for the sake
of simplicity and ease of exposition, we assume that these local DSMs and the system DSM have the same rank.
Finally, the system can release information once or in multiple periods.

 11

)(
)(
)(
)(

000
0WW
IWW

))(1(
)(
)(
)(

W0
0WW
00W

)1(
)1(
)1(

SLS

SLL

SH

SLS

L

k
kH
kS
kL

k
kH
kS
kL

IkH
kS
kL

TT δδ
































+−
































=
















+
+
+

 (3)

In Equation (3), ∑ −=
∞

= 0
)()(

k
T jTkk δδ is the periodic impulse train function, where)(nk −δ is

the unit impulse (or unit sample) function defined as:





≠
=

=−
nk
nk

nk
0
1

)(δ (4)

 The matrix AHold is active at each iteration step except for every T periods when the system

team releases its feedback to the local team and the matrix ARelease becomes active. LSW is a

matrix that captures the rework fraction created by local tasks)(kL for the corresponding system

tasks)(kS . Similarly, when information is released by the system, the matrix SLW captures the

rework fraction created directly by the system tasks)(kS for the local tasks)(kL . SHW is a

matrix that captures the rework created for the local tasks by the system tasks, and is placed in a

hidden (or holding) state until it is time to be transmitted to local tasks. When no information is

being released by the system to local tasks, the identity sub-matrix in AHold guarantees that

finished system work is carried over to the next period. The identity sub-matrix in ARelease

guarantees that finished system work is transmitted to local tasks, through H(k), every T time

steps. Consequently,)(kH gets set to zero each T steps and is rebuilt in between. The

construction of the work transformation matrices LW , SW , LSW , SHW and SLW is dependent

on the structure of the information exchanged within the development process. In Appendix A,

we specify (consistent with the case study presented in Section 6) the work transformation

matrices based on the local and system DSMs LΩ , SΩ ; as well as the inter-component

dependency matrices LSΩ , SLΩ , which represent the interaction between local and system

teams.9

Individual elements within the L , S , and H vectors refer to the same task. To illustrate the

concept, consider the following two tasks : door trim design and garnish trim design related to

9 The local and system DSMs as well as the inter-component dependency matrices represent the amount of rework
created for each task based on work done on the other tasks in the previous period.

AHold ARelease

 12

the development of a car door. The state equations for this problem are shown in Equations (5)

and (6) for the case when no information is being released by the system (e.g., the ‘body’

integration team) to local tasks (e.g., the ‘door’ design team), and for the case when information

is released by the system, respectively.

In this example,)(1 kL and)(1 kS designate the number of design problems or open issues

associated with the door trim task, which are being worked by the local design team and system

integration team, respectively.)(1 kH refers to the number of door trim problems resolved by the

system integration team that are waiting to be released for future work by the local design team.

Any problem associated with the door trim design can reside in only one of these three states

until it is fully resolved. Note that Lw111− and Lw221− are the fractions of 1L and 2L

respectively that can be completed in an autonomous manner in every time step. Furthermore,

)(212 kLwL and)(121 kLwL are the amounts of rework that get created for task 1L and 2L ,

respectively, as a consequence of the autonomous progress. Similar interpretations can be made

for the system matrix (i.e., S
ijw).





















































=



























+
+
+
+
+
+

)(
)(
)(
)(
)(
)(

1000
0100
00
00
0000
0000

)1(
)1(
)1(
)1(
1(
)1(

2

1

2

1

2

1

2221

1211

22212221

12111211

2221

1211

2

1

2

1

2

1

kH
kH
kS
kS
kL
kL

ww
ww
wwww
wwww

ww
ww

kH
kH
kS
kS
kL
kL

SHSH

SHSH

SSLSLS

SSLSLS

LL

LL

 (5)





















































=



























+
+
+
+
+
+

)(
)(
)(
)(
)(
)(

000000
000000
00
00
10
01

)1(
)1(
)1(
)1(
1(
)1(

2

1

2

1

2

1

22212221

12111211

22212221

12111211

2

1

2

1

2

1

kH
kH
kS
kS
kL
kL

wwww
wwww
wwww
wwww

kH
kH
kS
kS
kL
kL

SSLSLS

SSLSLS

SLSLLL

SLSLLL

 (6)

4.2 Model Analysis

In this section, we explore the fundamental characteristics of the model described in Equation

(3). All proofs are presented in Appendix B.

First, we notice that Equation (3) can be rewritten as follows:

 13

)()()1(kxkAkx =+ (7)

where















=

)(
)(

)(

)(
kH
kS

kL

kx and
















−−
=

Ikk

kk

kA

TT

TT

))(1(W))(1(0
0WW

I)(W)(W

)(
SH

SLS

SLL

δδ

δδ

Thus, the model described in Equation (3) is a homogenous linear difference system that is

nonautonomous, or time-variant. Moreover, since the impulse train function)(kTδ is periodic

with period T (recall that the system DSM releases information every T time steps), we

conclude that for all k∈Z (where Z is the set of all positive integers),)()(kATkA =+ . That is,

the model described in Equation (7) is a linear periodic system.

We now present some results obtained using Floquet theory (Richards 1983) for the linear

periodic system given in Equation (7).10

Definition 1. Matrix)0()2()1(ATATAC L−−= is referred to as the monodromy matrix of (7).

In the following we assume that the monodromy matrix is diagonalizable.11 C is

diagonalizable if and only if it has linearly independent eigenvectors. A sufficient condition for

C to be diagonalizable is that it has distinct eigenvalues (Strang 1980). We cite the following

result from Richards (1983) as Lemma 1, Theorem 1, and corollary 1 to set up further analysis.

Lemma 1. Let C be a diagonalizable nn × matrix, and let T be any positive integer. Let us

decompose C as 1−Λ= CCC SSC , where CΛ is a diagonal matrix of the eigenvalues of C , and

CS is the corresponding eigenvector matrix. Then, there exists some nn × matrix B such that

CBT = . Moreover, 1−Λ= CBC SSB , where T CB Λ=Λ .

The following result indicates that the analysis of the periodic system described in Equation (7)

is reduced to the study of a corresponding autonomous linear system.

Theorem 1. If)(ky is a solution of the autonomous linear system

)()1(kByky =+ (8)

Then, the general solution)(kx of the linear periodic system (7) is given as follows

10 Floquet theory has been mainly applied in the mathematical and the physical sciences (Kuchment, 1993).
However, to the best of our knowledge, Floquet theory has not been applied in the social and management sciences.
11 As observed in Smith and Eppinger (1997), the diagonalization assumption reflects reality. The qualitative results,
however, will remain invariant in the general case; though the computation of the underlying matrices becomes
more complicated.

 14

gBkPkx k)()(= (9)

where)(kP is a nonsingular periodic matrix of period T , and ∈g R n is a constant vector.12

Corollary 1. The general solution)(kx of the linear periodic system (7) is given by

)()()(kykPkx = (10)

where)(ky is the general solution of the autonomous linear system (8).

 Corollary 1 has the following interesting interpretation for the information hiding problem in

PD. We note that there are two sources of oscillation that govern the development of the total

number of problems being solved as the project evolves over time. The first source is associated

with the periodic matrix)(kP in equation (10), and reflects the ‘fundamental churn’ of the

process. This ‘fundamental churn’ may be attributed to the intrinsic characteristic of information

delays between local and system task execution. The second source of oscillation, termed

‘extrinsic churn,’ is associated with the properties of the linear autonomous system (8) as

discussed in Smith and Eppinger (1997). More specifically, positive real eigenvalues of B

correspond to non-oscillatory behavior of the solution)(ky . Negative and complex eigenvalues

of B describe damped oscillations. The overall property of the linear periodic system (7) is thus

the combined effect of both sources of oscillation.

 Corollary 1 allows the development of conditions under which the linear periodic system (7)

converges (i.e., as the time increases to infinity the total number of design problems associated

with the system and local tasks converges to zero). We show in Section 4.3 that the eigenvalues

and the eigenvectors of the matrix B determine conditions of convergence.

4.3 Conditions for Stability

In this section, we present conditions under which the total number of design problems

associated with the system and local tasks converges to zero as the time increases to infinity.

 First, we note that the zero solution is an equilibrium point13 of (7). Next we introduce the

definitions of stability of the equilibrium point.

Definition 2. The equilibrium point *x is

12 Any solution of (8) may be obtained from the general solution by a choice of vector g based on initial conditions.
13 A point *x is called an equilibrium point of (8) if *)(* xkAx = for all 0≥k .

 15

(1) stable if given 0>ε there exists)(εδδ = such that δ<− *
0 xx implies ε<− *)(xkx

for all 0≥k . *x is unstable if it is not stable.

(2) globally attracting if *)(lim xkxk =∞→ for any initial work vector 0x .

(3) asymptotically stable if it is stable and globally attracting.

 Intuitively, the zero solution is stable if the total number of design problems associated with

the system and local tasks remains bounded as the project evolves over time. Asymptotic

stability requires the additional condition that the total number of design problems associated

with the system and local tasks converges to the origin for any initial work vector.

 When the PD process involves time delays and asynchrony in information transfer between

the system and local group, conditions for the convergence of the development process are of

vital importance for PD management. Before we present stability conditions for the

asynchronous work transformation model, we introduce the so-called ‘Floquet exponents’ and

‘Floquet multipliers’ of the linear periodic system (7). Floquet exponents are the eigenvalues λ

of B ; while the corresponding eigenvalues Tλ of the monodromy matrix (C) are the Floquet

multipliers. We have the following result:

Theorem 2. The zero solution of (7) is stable if and only if the Floquet exponents have

magnitude less than or equal to 1, and asymptotically stable if and only if all the Floquet

exponents have magnitude less than 1.

 The following provides an additional result that explains the behavior of solutions of the

asynchronous work transformation model:

Corollary 2 The zero solution of (7) is stable if the Floquet multipliers have magnitude less than

or equal to 1 and asymptotically stable if all the Floquet multipliers have magnitude less than 1.

 A direct consequence of Theorem 2 is that the Floquet exponents and their corresponding

eigenvectors (i.e., eigenvectors of B) determine the rate and nature of convergence of the design

process. Consistent with Smith and Eppinger (1997), we use the term design mode to refer to an

eigenvalue of B along with its corresponding eigenvector.14 The magnitude of each eigenvalue

14 For autonomous linear systems (i.e., AkA =)(), the period of the matrix)(kA is 1=T , the monodromy matrix

AC = , and the Floquet multipliers are simply the eigenvalues of A . Thus, the Smith and Eppinger (1997) model is
a special case of equation (7).

 16

of B determines the geometric rate of convergence of one of the design modes; while the

corresponding eigenvector identifies the relative contribution of each of the various constituent

tasks to the amount of work that jointly converges at the given geometric rate (Smith and

Eppinger 1997). The eigenvector corresponding to the largest magnitude eigenvalue of B (most

slowly converging design mode) provides useful information regarding design tasks that require

significant amount of work. More specifically, the larger the magnitude of an element in that

eigenvector, the stronger the element contributes to the slowly converging design mode.

4.4 Conditions for “Pure Churn”

“Pure design churn” is defined as a scenario where the total number of problems being solved

oscillates freely as the project evolves over time and neither convergence nor divergence occurs.

“Pure design churn” means that the amount of unfinished work does not decrease simultaneously

for all of the tasks. Instead, the amount of unfinished work shifts from task to task as the project

unfolds. The above scenario is represented by particular solutions that are periodic; i.e., solutions

)(kx where for all k∈Z,)()(kxNkx =+ for some positive integer N. The following results hold:

Theorem 3.

(i) The linear system (7) has a periodic solution of period T if the monodromy matrix C has an

eigenvalue of equal to 1.

(ii) The linear system (7) has a periodic solution of period T2 if the monodromy matrix C has

an eigenvalue equal to -1.

(iii) If the largest magnitude eigenvalue of the monodromy matrix C equals to 1 and is strictly

greater (in absolute value) than any other eigenvalue, then the limiting behavior of the general

solution of the linear system (7) is periodic with period T .

5. Asynchronous Work Transformation Model: Multiple Local DSM Case

In this section, we consider the general case where multiple local teams are coordinated through

a system integration team and subject to periodic feedback. More specifically, the m local

DSMs are internally updated and provide status information to others (local and system DSMs)

 17

at every time step. The system DSM provides updates to the m local DSMs at periodic intervals

mTTT ..., , , 21 as shown in Figure 4.

 We label iL as the vector that designates the amount of unfinished work of the tasks of local

team i (m1,...,=i) at time k . Let in denote the number of local tasks in local team i , and let

∑= inn denote the total number of tasks in all of the local teams. Individual elements within

the iL (mi 1,...,=), iS , and iH vectors refer, correspondingly, to the same task. In general, the

system of equations is written as follows:











































































=



































−−−

−−−

+

+

+

+

+

+

)(

)(1

)(

)(1

)(

)(1

))((100
HS

))W((1
H1S

))W((1000

00000

00))(
1

(11
HS

))W(
1

(11
H

1
S

))W(
1

(1000

000SwS
1w

SL
W

S1L
W

000
000S

1wS
11w1

SL
W1

S1L
W

)(00
LS

)W(
L

1
S

)W(
L

W
L1L

W

00

00)(
1

1LS
)W(

1

1L
1

S
)W(

1
1LL

W1L
W

)1(

)1(1

)1(

)1(1

)1(

)1(1

...

...

...

...

kmH

kH

kmS

kS

kmL

kL

Ik
mTdmmk

mTdmk
mTd

IkTdmkTdkTd

nnn
mmm

n
m

Ik
mTd

mmk
mTd

m
k

mTdmm

IkTdmkTdkTd
m

kmH

kH

kmS

kS

kmL

kL

M

M

M

OMOM

LL

MOMMM
L

K

OMOMMOM

L

M

M

M

O
L

 (11)

 In the above expression, iLW is a work transformation matrix that captures the fraction of

rework created within the group of tasks of local team i . SW is the work transformation matrix

that captures the fraction of rework created within the system tasks. ji HSW is a ij nn × matrix

that captures the fraction of finished system work created by system tasks)(kS i for the local

tasks)(kL j , and is held in)(kH j until the next scheduled information release. ji LLW is a

ij nn × matrix that captures the fraction of rework created by local tasks)(kLi for the local tasks

)(kL j . ji SLW is a ij nn × matrix that captures the fraction of rework created by local tasks

)(kLi for the system tasks)(kS j . Since information is released by the system to the local team

i only at periodic intervals of iT , the ii nn × diagonal sub-matrix Ik
iT))(1(δ− guarantees that

finished system work is carried over to the next period. When information is released by the

system to local team j , the ij nn × matrix ji
jT k LSW)(δ captures the fraction of rework created

directly by the system tasks)(kS i for the local tasks)(kL j . The ii nn × diagonal sub-matrix

)(kA)(kx

)1(+kx

 18

Ik
iT)(δ indicates that information is transmitted to the local tasks)(kLi indirectly through the

holding state)(kH i .

 The next result shows that the model described in Equation (11) is a special case of a linear

periodic system. Once the period of the matrix)(kA is identified, the monodromy matrix C can

be determined, and the results presented in Section 4 can be readily employed.

Theorem 4. If the system team provides updates to m local teams at periodic intervals

mTTT ..., , , 21 , then the fundamental period T of the linear matrix)(kA is the least common

multiple of mTTT ..., , , 21 ; i.e.,)..., , ,(lcm 21 mTTTT = .

 Following a similar reasoning as in Theorem 4, it can be shown that any periodic information

release policy will lead to a linear periodic system, and thus can be analyzed using the tools

presented in Section 4. For example, the local teams may provide status information to others

(local and system teams) at periodic intervals system21 ,..., , , tttt m , rather than at every time step;

or any team (local or system) may provide information status to others (local or system teams) at

non-uniform (but periodic) intervals. Indeed, any such periodic information release policy can be

transformed to a model, where all elements)(kaij of the linear matrix)(kA are periodic

functions (with possibly non-identical periods). In this case, Theorem 4 can be adapted by letting

the fundamental period T of the linear matrix)(kA to be the least common multiple of the

periods of the elements)(kaij .

6. Case Study: The Automotive Appearance Design Process

In this section, an illustration of the asynchronous work transformation model in a real product

development process, previously reported by McDaniel (1996), is presented. We intend to

demonstrate internal process dynamics, show that oscillatory patterns arise in an asynchronous

PD project, and assess several mitigation strategies by exploiting the results developed in the

paper. In Section 6.1, we provide a general overview of the automotive appearance design

process. Section 6.2 demonstrates how to construct the underlying work transformation matrices.

Then, in Section 6.3 we analyze the base case model. Section 6.4 assesses the efficacy of churn

 19

mitigation strategies based on three operational scenarios. Finally, results of sensitivity analysis

are presented in Section 6.5.

6.1 Appearance Design Process Overview

 Appearance design refers to the process of designing all interior and exterior automobile

surfaces for which appearance, surface quality and operational interface is important to the

customer. Such design items include, for example, exterior sheet metal design and visible interior

panels. Appearance design is the earliest of all physical design processes, and changes in this

stage easily cascade into later development activities causing costly rework. This is avoided by

allowing “stylists” (from the industrial design group) to work closely with “engineers” (from the

engineering design group). While stylists are responsible for the appearance of the vehicle,

engineers are responsible for the feasibility of the design by ensuring that it meets some

functional, manufacturing, and reliability requirements. Figure 5 shows the industrial design

process within the context of the overall automotive product development process. The industrial

design portion is allotted approximately 52 weeks for completion in a typical vehicle program.

 Records from the study company, shown in Figure 6, indicate churning behavior for a

specific vehicle program. While the curves presented in the figure show churn in both interior

and exterior subsystem development, our analysis of the churn phonemenon will be limited to

the interior design process involving the styling and engineering developement organizations.

 Information exchanges from styling to engineering take the form of wireframe CAD data

generated from clay model scans; referred to as scan transmittals of surface data. Scan

transmittals are scheduled at roughly six weeks intervals (i.e., T=6). Information exchanges

Tooling Development

Prototyping

Figure 5: Appearance Design in Relation to Total Development Process

Industrial Design

Engineering Design

52 weeks

Production

Time

Market Study

 20

between engineering and styling occur on a weekly basis through a scheduled feasibility

meeting. During these meetings various engineering groups provide feedback to styling on

infeasible design conditions. Therefore, with this information transfer setup engineering will be

the local team, as defined in our model, and styling will be the system team.

Figure 6: Churning Behavior Observed in a Family of Vehicle Programs (McDaniel 1996)

 In addition to the cross-functional information exchanges between styling and engineering,

information flows also occur within functional groups. For example, within engineering, a hand

clearance study would compile information about the front door trim panel and the front seat to

determine whether the two components physically interfere, and whether the space between them

meets minimum acceptable requirements.

6.2 Construction of Work Transformation Matrices

From the program management perspective, the vehicle interior is segmented into sub-systems,

or components. These components represent major sub-assemblies of the interior, and include

typical components such as the instrument panel, the front door trim panels, and the center

console. This level of component aggregation is used primarily because these components have

been the unit of management and budgetary control for engineering design work, and because

the company defined a number of standard engineering design studies to be performed on each

component at this level. The DSMs (LΩ , SΩ) for the engineering and industrial design

processes are shown in Figure 7(a) and 7(b), respectively. The transformation of component-

level design information to system-level design information, as used within the industrial design

group, is captured by the ‘dependency’ matrix LSΩ in Figure 7(c). This transformation is

0

20

40

60

80

100

20
-N

ov

4
-D

e
c

18
-D

ec

1
-J

a
n

1
5
-J

a
n

2
9
-J

a
n

1
2
-F

e
b

2
6
-F

e
b

1
2

-M
a

r

2
6

-M
a

r

9-
A

pr

23
-A

pr

7
-M

a
y

21
-M

ay

4
-J

u
n

1
8
-J

u
n

2
-J

u
l

16
-J

ul

%
 O

p
e
n

 P
ro

b
le

m
s

Exterior - sedan Interior - sedan

 21

typically performed on a weekly basis, when the engineering group provides feedback to the

industrial design on infeasible conditions. Similarly, the ‘dependency’ matrix SLΩ in Figure

7(d) captures the impact of industrial design on the engineering process at each scan transmittal

(on a six-week interval).

(a) Local DSM- LΩ (i.e., engineering) (b) System DSM- SΩ (i.e., industrial design)

(c) LSΩ (converting local issues to system issues) (d) SLΩ (converting system issues to local issues)

Figure 7: Local, System DSMs, and System/Local conversion matrices

 The average autonomous completion rates per component are shown along the diagonal of

the local and system DSMs (i.e., LΩ and SΩ , respectively).15 To set a base level of normalized

resource usage for each component, engineers defined the resource usage intensity required to

accomplish the autonomous completion rates presented in Figure 7 as one resource-week. The

DSMs for styling and engineering were obtained by circulating a survey instrument, to both

groups. Respondents were asked to populate the DSM by estimating the pairwise coupling (i.e.,

dependency strength) between components using S, M, W, or N ratings (i.e., strong, medium,

and weak, or none respectively). These estimates were converted into numerical values (by

assigning a probability of 0.3, 0.2, 0.1, and 0 for the S, M, W, and N respectively). Local and

system DSMs, as determined by the average of responses of the surveys, are shown in Figure

7(a-b). A complete explanation of the DSM and ‘dependency’ matrices in Figure 7 is given in

(McDaniel 1996).

15 These rates are obtained by estimating the autonomous completion time for each component and using an
exponential decay function.

1 2 3 4 5 6 7 8 9 10
1 Carpet
2 Center Console 0.09 0.17 0.21 0.09 0.14 0.42 0.29 0.38

3 Door Trim Panel 0.12 0.6 0.24 0.1 0.16 0.49 0.34 0.44

4 Garnish Trim 0.06 0.15 0.12 0.16 0.49 0.08 0.22

5 Overhead System 0.05 0.08

6 Instrument Panel 1 0.87 0.58 0.94 1.41 0.49 3.81

7 Luggage Trim 0.07 0.06 0.25

8 Package Tray 0.08 0.07

9 Seats 0.14 0.12 0.12 0.58

10 Steering Wheel 0.05

1 2 3 4 5 6 7 8 9 10
1 Carpet 0.15

2 Center Console 0.15

3 Door Trim Panel 0.15

4 Garnish Trim 0.15

5 Overhead System 0.15

6 Instrument Panel 0.15

7 Luggage Trim 0.15

8 Package Tray 0.15

9 Seats 0.15

10 Steering Wheel 0.15

1 2 3 4 5 6 7 8 9 10
1 L1 Carpet 0.85 0.12 0.02 0.06 0.06 0.06

2 L2 Center Console 0.1 0.53 0.04 0.3 0.02 0.24 0.02

3 L3 Door Trim Panel 0.02 0.04 0.47 0.08 0.24 0.02 0.18 0.02

4 L4 Garnish Trim 0.06 0.18 0.68 0.14 0.1 0.02 0.08

5 L5 Overhead System 0.04 0.83

6 L6 Instrument Panel 0.3 0.26 0.16 0.28 0.06 0.02 0.2

7 L7 Luggage Trim 0.02 0.02 0.1 0.06 0.76 0.06 0.04

8 L8 Package Tray 0.1 0.06 0.83 0.16

9 L9 Seats 0.08 0.24 0.18 0.08 0.04 0.04 0.16 0.63 0.2

10 L10 Steering Wheel 0.02 0.02 0.26 0.2 0.7

1 2 3 4 5 6 7 8 9 10
1 S1 Carpet 0.2

2 S2 Center Console 0.2

3 S3 Door Trim Panel 0.2

4 S4 Garnish Trim 0.2

5 S5 Overhead System 0.2

6 S6 Instrument Panel 0.2

7 S7 Luggage Trim 0.2

8 S8 Package Tray 0.2

9 S9 Seats 0.2

10 S10 Steering Wheel 0.2

 22

6.3 Base Case Analyses

For the base case, the largest magnitude eigenvalue of B is 0.9943. Because this eigenvalue is so

close to 1, this means that the system is stable, under the above operating conditions, and

converges very slowly (see Theorem 2). By inspecting the eigenvector corresponding to the

largest magnitude eigenvalue of B , we observe that the magnitudes (in descending order) of the

elements are as shown in Figure 8.
Element

6S 3S 2S 6H 6L 4S 9S 7S 3L 2L 3H 9L 8S 10L 2H

Magnitude 0.925 0.227 0.158 0.141 0.131 0.098 0.078 0.055 0.044 0.043 0.035 0.033 0.026 0.025 0.024

Cumulative

Work

388.2 98.7 68.8 27.8 79.2 43.6 35 22.9 25.9 24.3 7.1 18.2 10.8 12.9 4.9

Element
4L 5S 10S 4H 9H 7L 7H 1L 8L 8H 5H 10H 5L 1S 1H

Magnitude 0.022 0.022 0.018 0.015 0.012 0.009 0.009 0.007 0.007 0.004 0.003 0.003 ~ 0 ~ 0 ~ 0

Cumulative

Work

13.2 8.9 7.2 3.1 2.5 5.7 1.6 3.9 4.3 0.7 0.6 0.5 0.7 ~ 0 ~ 0

Figure 8: Eigenvector and Corresponding Total Work

 The interpretation of the ranking, in Figure 8, is that the larger the magnitude of an element

in this eigenvector, the more strongly the element contributes to the slow convergence of this

mode of the design process. Thus, the ranking of the eigenvectors gives useful information for

identifying the structure of the total work vector. This interpretation is supported by examining

the cumulative work, which is obtained by simulating the design process for 52 weeks, as shown

in Figure 8.16 We see that the cumulative work associated with the local ‘instrument panel’ (i.e.,

6L) is more than the work done on other local tasks. This is primarily due to the large work

associated with the system ‘instrument panel’ (see the cumulative work of 6S) and the long

information delay (T = 6) between local and system task execution. This phenomenon can be

seen by examining the specific traces for individual local components as shown in Figure 9(a).

As can be seen, the instrument panel has the largest number of open design issues at every point

of time. Also, the oscillatory changes in design status induced by new information contained in

scan transmittals are apparent. Finally, we observe that even in the complete absence of external

changes, the appearance design process is not completed on time. Design rework and oscillatory

16 For instance, by comparing the local tasks we see that, in all cases, the largest terms in the total work vector are
also the largest terms in the largest eigenvector. In our case, the second largest eigenvalue is much smaller than the
largest eigenvalue; thus, the second mode does not contribute significantly to the total work.

 23

behavior in the process result from the decomposed process structure and product architecture,

and can never be eliminated from the appearance design process. We conclude that the

appearance process must be redesigned to speed up convergence and mitigate churn.

6.4 Mitigation Scenarios

Recall that the development process is stable, under the base operating conditions, but converges

slowly. McDaniel (1996) reported that several mitigation strategies were implemented by the

engineering and styling teams in order to speed up the rate of design progression needed to meet

the required completion date. The analysis developed in this paper provides insight regarding

means for achieving stability for a diverging process or speeding up convergence for a slowly

converging process. In particular, three types of mitigation strategies can be applied:

1) Increasing the autonomous design completion rate for each component (i.e., increasing the

fraction of work that can be completed in an autonomous manner in every time step);

2) Lessening the pairwise coupling (i.e., dependency strengths) between components;

3) Increasing the frequency with which design information is transmitted from the industrial

design to the engineering process (i.e., reducing the information delay T).

 The first strategy can be implemented, for instance, by applying resources (work efforts)

above the normalized base-case level, which will result in increased progress being made on the

independent, autonomous components. The extra resources may be obtained through design

technology, personnel training, overtime, skill level, and other determinants of design

productivity. The second and third strategies can be accomplished, for instance, by using the

knowledge of the inter-component coupling as an aid to making co-location on teaming

arrangements (McCord and Eppinger 1993), or by using a variety of formal and informal

mechanisms to facilitate the management of design information flows (Braha 2001).

 Figures 9(b-c) present the effect of the first two mitigation strategies on the behavior of the

base-case model. Scenario 1 represents expending 2.5 normalized resource-weeks and scenario 2

represents modifying the engineering coupling structure by eliminating the weak dependencies.

In all cases, the increase in total resource expenditure and reduction in the magnitude of the

engineering inter-component dependencies are applied to the more ‘complex’ local components

 24

(i.e., center console (L2), door trim panel (L3), and instrument panel (L6), see Figure 8). Figure

9(d) shows the combined effect of these strategies on the total number of open issues.

Figure 9: The Effect of Mitigation Strategies on the Behavior of the System

 Delays in information flows (introduced by scan transmittal intervals) from the industrial

design to the engineering process have a destabilizing effect on system behavior. For example,

Figure 10 presents the behavior of the system for various information delays. As can be seen,

increasing the information delay results in more extreme churning behavior. Moreover, even

though all scenarios are converging, the increased churning behavior leads to slower

convergence rates. Indeed, by inspecting the convergence rate (i.e., largest magnitude

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

 0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

Instrument Panel
Largest eigenvalue: 0.992

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

Largest eigenvalue: 0.95

(a) Base Scenario

Weeks
O

pe
n

Is
su

es
Weeks

Weeks
0 10 20 30 40 50 60

0

1

2

3

4

5

6

7

Base Scenario

Combined Mitigation Strategy

Weeks

(b) Scenario 1: Adding Resources
O

pe
n

Is
su

es

O
pe

n
Is

su
es

O
pe

n
Is

su
es

Instrument Panel

Largest eigenvalue: 0.994

Other nine components

Instrument Panel

(c) Scenario 2: Reduced Coupling (d) Scenarios 1& 2 Combined

Total interior design status

 25

eigenvalue17 of the matrix B) of the appearance design process, for various delays between

consecutive information releases, we observe that convergence slows monotonically for longer

delays. To illustrate the economic cost of churn, we inspect the amount of total work in the

system over the “convergence” period (i.e., the time required to complete 99% of the initial total

work). We see that the work associated with the information delay 6=T is about 10% more

than the total work associated with the delay 1=T .

Figure 10. The Effect of Delay on the Churning Behavior

 We also notice in Figure 8 that the accumulation of ongoing changes in the industrial design

group related to the local ‘instrument panel’ (see the cumulative work of 6H) is larger than the

magnitudes of other elements. Thus, it may be possible to reduce the impact of the accumulated

design information by using differential delays among components; that is, by increasing the

frequency with which design information is transmitted from the industrial design to the local

components that have the most destabilizing effect on total system performance. For instance,

consider the scenario where the industrial design team provides updates to the local engineering

tasks 2L , 3L , and 6L at shorter periodic intervals of 61 <T weeks (while maintaining the delay

for the others at 62 =T weeks). According to the multiple local DSM model of Section 5, the

local DSM is now partitioned into two local teams, DSM1= { 2L , 3L , 6L } and DSM2 = { 1L ,

17 Recall that the larger the eigenvalue the slower the system’s convergence rate.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

T=1 T=2 T=3

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

T=4 T=5 T=6

O
pe

n
Is

su
es

O
pe

n
Is

su
es

O
pe

n
Is

su
es

O
pe

n
Is

su
es

O
pe

n
Is

su
es

O
pe

n
Is

su
es

 26

4L , 5L , 7L , 8L , 9L , 10L }. By applying the results18 of Section 5, Figure 11 plots the

convergence rate (i.e., largest magnitude eigenvalue of the matrix B) for the base scenario under

1) five differential information release policies, jT =1 and 62 =T for j =1, 2, K , 5, and 2)

overall information release policy jT = for j =1, 2, K , 5. As can be seen, the differential delay

policy consistently achieves better “performance” (larger convergence rate) than the

corresponding uniform policy; that is, the differential delay policy with jT =1 and 62 =T

achieves better “performance” than the uniform information release policy with delay jT = for

every j =1, 2, K , 5.19

Figure 11. The Effect of Delay Policy on the Largest Eigenvalue

6.5 Sensitivity Analysis

The model developed in this paper enables us to perform sensitivity analysis. For example, let
L
2α be the autonomous local center console completion rate (corresponding to the element in

row two, column two in the local DSM). Assume that the other elements in the local DSM are set

to their values as specified in Figure 7. Figure 12(a) plots the largest magnitude eigenvalue of B

against L
2α . As can be seen, any value of 02 >Lα will have a stabilizing effect on the system

behavior (see Theorem 2). Similar plot for the local overhead system (Figure 12b) suggests that

the convergence rate is completely insensitive to its autonomous completion rate as long as it is

18 According to Theorem 4, the fundamental period of the monodromy matrix is 30=lcm(5, 6).
19 The advantage of reducing the information delay should be weighed against the possibly additional resources and
undesirable side effects. Exploration of these tradeoffs is beyond the scope of this paper.

0 . 9 9 2

0 . 9 9 2 5

0 . 9 9 3

0 . 9 9 3 5

0 . 9 9 4

0 . 9 9 4 5

Uniform Policy

Differential Policy La
rg

es
t E

ig
en

va
lu

e







=
=

6
5

2

1
T
T







=
=

6
1

2

1
T
T







=
=

6
3

2

1
T
T







=
=

6
2

2

1
T
T







=
=

6
4

2

1
T
T

()5=T ()4=T ()3=T ()2=T ()1=T

Differential Delays:

Uniform Delay:

 27

greater than 0.05. Consequently, any increase in total resource expenditure for a bottleneck

component (such as the center console) will be effective in improving the system performance.

 (a) Center Console (b) Overhead System

Figure 12. The Effect of Autonomous Completion Rate on Convergence

7. Discussion and Conclusion

The model described in this paper provides managers with operational insights that explicitly

capture the fundamental characteristics of a development process. It allows managers to

experiment with several “what-if scenarios” in order to explore and compare the effects of

subsequent managerial actions of improvement. However, a basic revelation of the model is that

design churn is an unavoidable phenomenon and a fundamental property of a decomposed

development process where the product or process architecture dictates delays in feedback

information amongst the development groups. Consequently, the most significant insight this

model brings to managers is to avoid making myopic decisions based on the observance of

churn. The fluctuation in development progress cannot be avoided, but can be managed once

managers understand its sources. Our model reveals several main sources of churn:

a. Interdependency of process or product structure is apparent when the development occurs

within a monolithic group; however, it is usually hidden, ignored, or forgotten once the

process is decomposed into multiple groups. Fully anticipating, understanding, and

accommodating this structure, can explain why the tasks seem difficult, frustrating and prone

to change.

Completion rate, L
5α

0 0.2 0.4 0.6 0.8 1
0.994

0.995

0.996

0.997

0.998

0.999

1

1.001

0 0.2 0.4 0.6 0.8 1
0.994

0.995

0.996

0.997

0.998

0.999

1

1.001

Completion rate, L

2α

La
rg

es
t E

ig
en

va
lu

e
of

 B

La
rg

es
t E

ig
en

va
lu

e
of

 B

 28

b. Concurrency of local and system execution may help in expediting the development process;

however, careful timing and magnitude of feedback is necessary to provide development

groups with enough time, between feedbacks, to understand and react to these feedback

flows. If these flows are not carefully planned, they might drive the process unstable by

generating more rework than the development teams can handle.

c. Feedback delays are an important factor in developing a clear understanding of the

development process and play a major role in determining the system stability. In

combination with the interdependency structure, delays are the main reason why

development problems (issues) believed to be solved (closed) tend to re-appear (reopen) at

later stages of development.

 While exposing churn as a fundamental property of a decomposed development process, our

model also provides managers with three mitigation strategies to combat design process churn,

divergence, or slow convergence. These strategies are:

1. Timing-based strategies: These strategies advocate the minimization of delays for specific

tasks that contribute the most to the slow convergence of the development process. Our

model provides a quantitative approach to identify these bottleneck tasks. Once identified,

strategies for reducing the time delays for these tasks should be implemented. These include

the early release of preliminary information and divisive overlapping (Krishnan et al. 1997).

Our illustration shows that acceleration of the synchronization frequency for all tasks may

not be as effective as accelerating, by the same amount, the synchronization frequency for the

bottleneck tasks.

2. Resource-based Strategies: This strategy allows local and system teams to work faster (as

captured by the diagonal elements of both LW and SW) by incorporating more resources.

Our illustration shows that working faster on all the tasks simultaneously may not be as

effective as allocating the same amount of resources only to the bottleneck tasks.

3. Rework-based strategies: This strategy suggests that local groups ignore low priority local or

system feedback (as captured by the low rework fractions in jLiLW or jLiSW). A similar

strategy is to reduce the values of jLiLW or jLiSW by requiring that local or system teams

 29

not produce much feedback to local groups. Both these strategies benefit from a modular

architecture.

All the above strategies are effective in mitigating the three sources of churn (i.e.,

interdependency, concurrency, and feedback delays) either individually or collectively. We have

demonstrated the impact of these strategies using the automotive appearance design process.

Several extensions to our model are possible. First, cost elements associated with the

information release and information processing activities may be incorporated within our model.

This may result in a convex formulation that allows for the optimal determination of the

information delay T (e.g., Thomke and Bell, 2001). Second, except for the local and system

autonomous rates of completion, our model does not explicitly account for resource allocation

policies. Thus, explicitly incorporating resource allocation as a decision variable may lead to the

discovery of better resource allocation policies in the context of decomposed development

processes. Finally, the linearity assumption in our model can be relaxed, and non-linear

formulations may be developed. For example, our model can be modified by incorporating time-

varying rework fractions, which are reduced with time as the development process unfolds.

 We have develped a model for a development process based on decomposing it into two

groups: local and system. The model incorporates two types of information flows: 1) information

flows that reflect internal rework within local and system groups, possibly generating internal

rework; and 2) information flows that reflect status updates from local to system tasks and

feedback from system to local tasks. These information flows influence both ‘fundamental’ and

extrinsic’ churn and determine the shape and rate of convergence of the development process.

References
Adler, P., Mandelbaum, A., Nguyen, V., E. Schwerer. 1995. From Project to Process

Management: Empirically-Based Framework for Analyzing Product Development Time.
Management Science 41(3) 458-483.

Ahmadi, R., R. H. Wang. 1999. Managing Development Risk in Product Design Processes.
Operations Research 47(2) 235-246.

Bohn, R. 2000. Stop Fighting Fires. 2000. Harvard Business Review July-August 83-91.
Braha, D. 2001. Data Mining for Design and Manufacturing. Kluwer Academic Publishers:

Boston, MA.

 30

Browning, T., Deyst, J., Eppinger, S.D., D.E. Whitney. 2000. Complex System Product
Development: Adding Value by Creating Information and Reducing Risk. Proceedings of the
Tenth Annual International Symposium of INCOSE 581-589.

Browning, T., S.D. Eppinger. 1998. A Model for Development Project Cost and Schedule
Planning. M.I.T. Sloan School of Management, Cambridge, MA. Working Paper No. 4050.

Clark, K., T. Fujimoto. 1991. Product Development Performance: Strategy, Organization, and
Management in the World Auto Industry. Harvard Business School Press, Boston.

Cusumano, M., R. Selby. 1995. Microsoft Secrets. Free Press: New York, NY.
DeCarlo, R.A. 1989. Linear Systems: A State Variable Approach. New Jersey: Prentice Hall,

Englewood Cliffs.
Eppinger, S. D. 2001. Innovation at the Speed of Information. Harvard Business Review 79(1)

149-158.
Eppinger, S. D., Whitney, D. E., Smith, R., D. Gebala. 1994. A Model-based Method for

Organizing Tasks in Product Development. Research in Engineering Design 6(1) 1-13.
Eppinger, S. D. 1997. A Planning Method for Integration of Large-Scale Engineering Systems.

International Conference on Engineering Design, Tampere, Finland 199-204.
Ford, David and John Sterman, “Overcoming the 90% Syndrome: Iteration Management in

Concurrent Development Projects,” Working Paper, Texas A&M, 1999.
Joglekar, N.R., 2001. Data collected at Factory Mutual Insurance Company (Norwood, MA).
Joglekar, N.R., Yassine, A., Eppinger, S.D., D.E.Whitney. 2001. Performance of Coupled

Product Development Activities with a Deadline. Management Science 47 (12).
Joglekar, N., A. Yassine. 2001. Management of Information Technology Driven Product

Development Processes. New Directions in Supply-Chain Management: Technology,
Strategy, and Implementation. Ram Ganeshan and Tonya Boone (eds.), AMACOM books.

Krishnan, V., Eppinger, S.D., D.E. Whitney. 1997. A Model-Based Framework to Overlap
Product Development Activities. Management Science, 43 (4) 437-451.

Kuchment, P. 1993. Floquet Theory for Partial Differential Equations. Operator Theory,
Advances and Applications. Springer Verlag, New York.

Lee, H., Padmanabhan, V., S. Whang. 1997. Information Distortion in a Supply Chain: The
Bullwhip Effect. Management Science 43(4) 546-558.

Loch, C., T. Christian. 1999. Accelerating the Process of Engineering Change Orders: Capacity
and Congestion Effects. Journal of Product Innovation Management 16(2) 145-159.

Mar, C. 1999. Process Improvement Applied to Product Development. MIT MS thesis.
Marcus, M., H. Minc. 1964. A Survey of Matrix Theory and Matrix Inequalities. Allyn and

Bacon, Boston, MA.
McCord, K. R., S.D. Eppinger. 1993. Managing the Integration Problem in Concurrent

Engineering. Sloan School of Management Working Paper #3594-93-MSA.
McDaniel, C.D. 1996. A Linear Systems Framework for Analyzing the Automotive Appearance

Design Process. Master's Thesis (Mgmt./EE), MIT, Cambridge, MA.

 31

Mihm, J., Loch, C., A. Huchzermeier. 2001. Modeling the Problem Solving Dynamics in
Complex Engineering Projects. INSEAD Working Paper.

Richards, J. 1983. Analysis of Periodically Time Varying Systems. New York: Springer-Verlag.
Repenning, N., Gocalves, P., L. Black. 2001. Past the Tipping Point: The Persistence of

Firefighting in Product Development. California Management Review 43(4) 44-63.
Simon, H. 1996. The Sciences of the Artificial. MIT Press: Cambridge, Massachusetts.
Smith, R. P., S.D. Eppinger. 1997. Identifying Controlling Features of Engineering Design

Iteration. Management Science 43(3) 276-293.
Sobek, D., Ward, A., J. Liker. 1999. Toyota’s Principles of Set-Based Concurrent Engineering.

Sloan Management Review 40(2) 67-83.
Sosa, M.E., Eppinger, S.D., C.M. Rowles. 2000. Designing Modular and Integrative Systems.

ASME Conference on Design Theory and Methodology, Baltimore, MD.
Strang, G. 1980. Linear Algebra and Its Applications. Harcourt Brace Jovanovich: New York.
Sullivan, K. J., Griswold, W. G., Cai, Y., B. Hallen. 2001. The Structure and Value of

Modularity in Software Design. Proceedings of the Joint International Conference on
Software Engineering and ACM SIGSOFT Symposium on the Foundations of Software
Engineering, Vienna.

Thomke, S., D. Bell. 2001. Sequential Testing in Product Development. Management Science
47(2) 308-323.

Wheelwright, S., K. Clark. 1992. Revolutionizing Product Development. Free Press: New York.

Appendix A: Specifications of Work Transformation Matrices (LW , SW , LSW , SHW , SLW)
The specification of the work transformation matrices is based on the assumption that only work
that is done in the previous period is considered to create rework as a normal course of
operation. Let ()LL

ijα=Ω be the local DSM. The work completion coefficient LL
iii αα ≡ is the

local autonomous completion rate for task i at each iteration step. The coupling coefficient L
ijα

(for ji ≠) is the amount of rework created for local task i per unit of work done on local task j .
Consequently, the elements of the work transformation matrix LW become LL 1w iii α−= and

LLLw jjijij αα= (for ji ≠). The system DSM SΩ and work transformation matrix SW are defined
similarly.

The interaction between the local and system teams is captured by the inter-component
dependency matrices ()LSLS

ijα=Ω and ()SLSL
ijα=Ω . The coupling coefficient LS

ijα is the amount of
rework created for system task i per unit of work done on local task j . Similarly, the coupling
coefficient SL

ijα is the amount of rework created for local task i per unit of work done on system
task j . Consequently, the elements of the work transformation matrix LSW are LLSLSw jjijij αα= .
The matrix SLW is defined as LSLSLw jjijij αα= . Finally, the “holding” matrix SHW is defined as

SLSH WW = .

 32

Appendix B
Proof of Lemma 1, Theorem 1 and Corollary 1
See Richards (1983).
Proof of Theorem 2.
From Theorem 1,)(kx is a solution of the linear periodic system described by equation (7) if and
only if)()()(1 kxkPky −= is a solution of the linear autonomous system described by equation (8).
The matrix)(kP is nonsingular and periodic. Thus, the stability of the linear periodic system (7)
is equivalent to the stability of the associated linear autonomous system (8). Consequently,
1) If the largest magnitude eigenvalue of B (i.e., the largest magnitude Floquet exponent) is less
than 1, then every solution)(kx of (7) satisfies 0)(lim =∞→ kxk ;
2) If the largest magnitude eigenvalue of B is less than or equal to 1, then every solution)(ky of
(8) remains bounded for 0≥k .
3) (Only if part). Assume that the largest magnitude eigenvalue of B is greater than 1. Then
there is a solution)(ky of (8) such that ∞=∞→)(lim kxk , and the zero solution is unstable. ν
Corollary 2: Since the eigenvalues of B are the thT roots of the eigenvalues of the monodromy
matrix C, corollary 2 immediately follows. ν
Proof of Theorem 3
From Theorem 1, the general solution)(kx of (7) may be written as)()()(kykPkx = where)(ky is

the general solution of the linear autonomous system (8). For the linear autonomous system (8),
it can be verified that the general solution can be written as gSBky B

k=)(, where BS is the
eigenvector matrix of B and n

n Rgggg ∈= '
21),...,,(. The powers of B can be found by

1−Λ= B
k
BB

k SSB , where BΛ is a diagonal matrix of the eigenvalues of B . Consequently,
 =Λ== gScSBky k

BBB
k)(



















=







































n

n
k
n

kk

n
k
n

k

k

n

g

g
g

g

g
g

M
L

MO
2

1

2211
2

1

2

1

21],,,[

0

0

],...,,[ξλξλξλ

λ

λ

λ

ξξξ

Where],...,,[21 nξξξ is the eigenvector matrix for B.
Hence the general solution)(kx of (7) may be given by
)()()(kykPkx =



















==

n

n
k
n

kk

g

g
g

kPkPkPkykPkx
M

L 2

1

2211])(,,)(,)([)()()(ξλξλξλ (B.1)

From equation (B.1) we see that the general solution)(kx of (7) may be given by gkkx)()(Φ= ,
i.e., each of the column vectors of)(kΦ is a nontrivial solution of (7). Let i

k
i kPkx ξλ)()(ˆ = be such

 33

a nontrivial solution. We have
)(ˆ)()()(ˆ kxkPTkPTkx T

i
k
i

T
ii

Tk
i λξλλξλ ==+=+ + (B.2)

Notice that k
iλ is an eigenvalue of the monodromy matrix C , i.e. T

iλ is a Floquet multiplier of
the linear periodic system (B.1). Thus, there exists a solution)(ˆ kx of the linear periodic system
(B.1) such that)(ˆ)(ˆ kxTkx T

iλ=+ , and this is the reason we call T
iλ a multiplier. Now,

(i) If the matrix C has an eigenvalue equal to 1, then 1=T
iλ and from (B.2) there exists a

periodic solution of period T . ν
(ii) If the matrix C has an eigenvalue equal to –1, then 1−=T

iλ and from (B.2) there exists a
periodic solution of period T2 . ν
(iii) Let the local and system work transformation matrices will be coupled and non-negative.
Consequently, the monodromy matrix C will be coupled and non-negative. Thus, in many
applications, 0>LC for some power L (i.e., C is primitive) for L>0. By the Perron-Frobenius
theorems for primitive matrices one of its eigenvalues *

Cλ is positive real and strictly greater (in

absolute value) than all other eigenvalues, and there is a positive eigenvector corresponding to

that eigenvalue. Since, T
CB
** λλ = , according to Eq. (B.1), the largest magnitude eigenvalue of B

is also positive real, and there is a positive eigenvector corresponding to that eigenvalue.
Therefore, the long term behavior of the system has the form
)(kx ~ ξλ)()(*

1 kPc k
B (B.3)

If the largest eigenvalue of C equal to 1, then it follows from (B.3) that the long-term behavior
of the system is periodic of period T . ν
Proof of Theorem 4
Since T is the least common multiple of mTTT ..., , , 21 , it follows that there are integers

maaa ,,, 21 K such that iiTaT = for mi ≤≤1 . Let 0≥k be any time point. Assume that at time point
k the system team provides updates only to the local teams jiii ,,, 21 L . From the information
release policy it follows that there are integers nbbb ,,, 21 K such that ll ii Tbk = for },,,{ 21 jiiii Ll ∈
and lll iii eTbk += for },,,{ 21 jiiii Ll ∉ where ll ii Te <<0 . Consider time point Tk + .
For },,,{ 21 jiiii Ll ∈ , lllllll iiiiiii TabTaTbTk)(+=+=+
For },,,{ 21 jiiii Ll ∉ , lllllllll iiiiiiiii eTabTaeTbTk ++=++=+)(
Thus, we conclude that at time point Tk + the system team will provide updates only to the local
teams jiii ,,, 21 L . Consequently, the fundamental period of the linear system (12) is T . ν

