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Abstract

The goal of this thesis is to develop a distributed control system for a smart grid
with sustainable homes. A central challenge is how to enhance energy efficiency in
the presence of uncertainty.

A major source of uncertainty in a smart grid is intermittent energy production
by renewable energy sources. In the face of global climate change, it is crucial to
reduce dependence on fossil fuels and shift to renewable energy sources, such as wind
and solar. However, a large-scale introduction of wind and solar generation to an
electrical grid poses a significant risk of blackouts since the energy supplied by the
renewables is unpredictable and intermittent. The uncertain behavior of renewable
energy sources increases the risk of blackouts. Therefore, an important challenge is
to develop an intelligent control mechanism for the electrical grid that is both reliable
and efficient.

Uncertain weather conditions and human behavior pose challenges for a smart
home. For example, autonomous room temperature control of a residential build-
ing may occasionally make the room environment uncomfortable for residents. Au-
tonomous controllers must be able to take residents' preferences as an input, and to
control the indoor environment in an energy-efficient manner while limiting the risk
of failure to meet the residents' requirements in the presence of uncertainties.

In order to overcome these challenges, we propose a distributed robust control
method for a smart grid that includes smart homes as its building components. The
proposed method consists of three algorithms: 1) market-based contingent energy dis-
patcher for an electrical grid, 2) a risk-sensitive plan executive for temperature con-
trol of a residential building, and 3) a chance-constrained model-predictive controller
with a probabilistic guarantee of constraint satisfaction, which can control continu-
ously operating systems such as an electrical grid and a building. We build the three
algorithms upon the chance-constrained programming framework: minimization of a
given cost function with chance constraints, which bound the probability of failure to
satisfy given state constraints.

Although these technologies provide promising capabilities, they cannot contribute



to sustainability unless they are accepted by the society. In this thesis we specify

policy challenges for a smart grid and a smart home, and discuss policy options

that gives economical and regulatory incentives for the society to introduce these

technologies on a large scale.

Thesis Supervisor: Brian C. Williams, Ph.D.
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Climate change is currently one of society's most pressing challenges. Engineering

efforts to address this challenge have largely focused on development and refinement

of mechanical, electrical, and material technologies that generate and store renewable

energy, such as solar arrays, wind turbines, and fuel cells. In recent years, growing

attention has been drawn to computational methods, such as control theory, artifi-

cial intelligence, and operations research, that are essential for the energy-efficient

and reliable operation of these systems. Two areas where computational methods

play particularly important roles are grid and building operation. In both, a central

challenge is how to enhance energy efficiency in the presence of uncertainty. For ex-

ample, uncertain electricity supply by wind and solar may increases risk of blackouts;

building controllers may fail to provide a comfortable environment due to uncertain

weather conditions. The ultimate goal of our work is to develop a risk-sensitive com-

putational method that overcome this challenge and contribute to realize a smart,

sustainable society.

1.1 Visions

We envision a smart electrical grid whose operation is tightly integrated with renew-

able generation and smart homes in order to achieve energy efficiency, reliability, and

reduced reliance on fossil fuels. In this section we present the vision of a smart grid,



as well as of a smart home project, called the Connected Sustainable Home [64, 65].

1.1.1 Smart Grid

According to the U.S. Department of Energy, a smart grid is defined as an "electricity

delivery system, from point of generation to point of consumption, integrated with

communications and information technology for enhanced grid operations, customer

services, and environmental benefits 1." The objective for a smart grid is three-fold:

climate, reliability, and economy.

1. Climate - The smart grid's first objective is to reduce greenhouse gas emis-

sions by optimizing grid operation and allowing the large-scale introduction of

renewable energy production. According to an estimate by the Electric Power

Research Institute (EPRI), the emissions reduction impact of a smart grid in

the U.S. will be 60 to 211 million metric tons of CO 2 per year in 2030 [26]. This

is equivalent to 1.0 to 3.9% of the total greenhouse gas emissions by the U.S. in

2008. Transition to renewable energy sources is also an urgent issue in Japan,

which was hit by a devastating earthquake and a subsequent nuclear accident in

2011. Before the earthquake, the Japanese government had planned to reduce

greenhouse gas emissions by increasing dependence on nuclear energy to 53%

by 2030. After the earthquake, nuclear is no longer a viable option. In light

of this situation, a large-scale introduction of renewable energy sources seems

to be the only acceptable solution to address both environmental and security

issues.

2. Reliability - The smart grid's second objective is to improve the security and

reliability of the power grid. Blackout prevention is a particularly important

challenge in the U.S., since the blackout probability there is comparatively high

among industrialized countries. For example, in 2006, the average household in

'The Electric GridSmart and Getting Smarter. Prepared by Ken Huber at PJM Interconnection

for DOE ARPA-E Grid Workshop on December 13, 2010.



the U.S. experienced 97 minutes of blackout. 2 An increasingly aging infrastruc-

ture is the main cause of reduced reliability in the U.S. The economic cost of

power interruptions to U.S. electricity consumers is estimated to have been $79

billion in 2002 [53]. Therefore, enhancing the reliability of the electrical grid

brings significant benefits to society.

3. Economy - The smart grid's third objective is to boost the economy. A smart

grid can impact the economy in two ways. First, it enhances the efficiency of

energy production by reducing the peak load. Reduction of peak load enables to

depend more on cost-efficient baseload plants, instead of peaking plants. As a

result, it is estimated that the average household could reduce its annual electric

bill by 10% [30]. Second, a smart grid creates a new market for smart meters,

sensors, and other IT hardware and software. The estimated size of the market

in the U.S. is $17 billion in 2014 [78]. The economic impact of a smart grid

has been particularly emphasized since the financial crisis of 2007-2008. For

example, in the U.S., the American Recovery and Reinvestment Act of 2009

(also known as the "stimulus bill") provides $4.3 billion in funding for smart

grid-related technologies, such as smart meters, IT-based energy management

systems, and advanced energy storage systems, in the hope of contributing to

both the economy and the environment.

1.1.2 The Connected Sustainable Home

The Connected Sustainable Home is a concept developed by William J. Mitchell and

Federico Casalegno, within the School of Architecture at MIT3 [64, 65]. The vision

of the Connected Sustainable Home (Figure 1-1) is three-fold, to provide sustainable,

comfortable, and convenient living. Each of the three items are discussed in detailed

2For comparison, the average blackout duration in Japan was 19 minutes in the same year. The
statistics are report by Japanese Ministry of Economy, Trade, and Industry. 2010. Available online
at http://www.meti.go. jp/report/downloadfiles/g100426a02j.pdf (Japanese). Retrieved on
November 22, 2011.

3 Connected Sustainable Home Project webpage: http: //mobile.mit . edu/f bk/ (Retrieved on
January 15, 2012.)



below. A Connected Sustainable Home is connected to other Sustainable Connected

Homes through a symmetric micro-grid, in order to form a sustainable community.

Figure 1-1: Artist's concept of the Connected Sustainable Home [64]. A full-scale
prototype will be built in Rovereto, Italy in 2012. Image courtesy of the MIT Mobile
Experience Laboratory.

Figure 1-2: Interior view of the dynamic window of the Connected Sustainable Home
[64]. The variable configuration of the windows makes it possible to dynamically re-
configure clear, opaque, open, and closed elements to achieve the current optimum or
the desired performance. Image courtesy of the MIT Mobile Experience Laboratory.

1. Sustainability

Improving the energy efficiency of residential buildings plays a significant role

in addressing the global climate challenge. In the U.S., for example, 27.3% of

the total greenhouse gas emission is attributed to buildings in 20034, where res-

4U.S. GHG Emissions Flow Chart. Created by World Resources Institute based on the emissions
data comes from the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2003, U.S.
EPA. Available on-line at http://pdf .wri.org/us-greenhouse-gas-emissionsflowchart.pdf.

Retrieved on January 15, 2012.



idential and commercial buildings account for 15.3% and 12.0%, respectively.

Heating and cooling accounted for the largest portion of residential energy con-

sumption, that is, 7.99 quadrillion Btu or 38.2% [87]. Of the energy consumption

by the residential sector, only 0.41 quadrillion Btu, that is, 1.9%, was supplied

from renewable energy sources [87].

While current buildings consume non-renewable energy, they do not fully utilize

locally available renewable energy, that is, sunlight. As shown in Figure 1-3, the

average insolation (solar radiation energy received on a given surface area) in the

U.S. is typically above 5 kWh/m 2 /day. Hence, an average household in the U.S.,

with 1646 square feet or 152.9 m 2 area [87], receives about 750 kWh/day. This

significantly exceeds the energy consumption by the average household, 153.7

kWh/day [87]. Hence, most of the energy consumed by average household can

be covered by fully utilizing sunlight.

Energy conversion efficiency of commonly used silicon solar cells is typically 14-

19%5, while solar thermal systems can capture up to 30% of the solar energy6 .

When heating a room, it can be more efficient to use sunlight directly, rather

than converting solar energy to electricity and run an HVAC system. This

can be achieved by having a large south-facing window. Furthermore, if the

incoming solar heat input is controllable, room temperature can be controlled

without using HVAC systems.

The Connected Sustainable Home is designed to achieve significant reductions

in non-renewable energy consumption by controlling incoming sunlight through

a south-facing glass facade, called a dynamic window, as shown in Figure 1-

2 [64]. By incorporating electrochromic and PDLC film with the glass, the

opacity and tint of the dynamic window can be controlled. This feature allows

the Connected Sustainable Home to minimize the use of an HVAC system,

particularly in winter, by controlling the indoor temperature using solar heat

5National Renewable Energy Laboratory (NREL)
6,Sandia, Stirling Energy Systems set new world record for solar-to-grid conversion efficiency"

(Press release). Sandia National Laboratories. 2008-02-12



Figure 1-3: US annual average solar energy received by a latitude tilt photovoltaic
cell. Image produced by the Electric and Hydrogen Technologies and Systems Center
in May, 2004.

input in place of a heater. The Connected Sustainable Home achieves further

enhancement in energy efficiency by exploiting its large thermal capacity. For

example, it can store heat energy from sunlight in the day and use it to maintain

the indoor temperature at night. In Summer, air conditioners can cool the

building at night when electricity is cheap and minimize power consumption in

the day as the house will warm slowly. Such economical features contribute to

reduce peak demand for electricity, and support efficient operation of a power

grid. Another feature of the Connected Sustainable Home is a solar array on

its roof, which enables further reduction in non-renewable energy consumption.

2. Comfort The Connected Sustainable Home improves living comfort, instead

of sacrificing it for energy efficiency. It allows residents to specify comfortable

indoor conditions, such as room temperature and illumination, and it auto-



matically maintains the indoor environment within the desired range whenever

the building is occupied. However, uncertainty in weather and occupancy pat-

terns poses a risk of failure to keep the environment within the specified range.

Moreover, optimal temperature control that minimizes energy usage can be sus-

ceptible to risk. For example, when the residents are absent in the winter the

energy consumption can be minimized by turning off the heating, but it involves

a risk that pipes freeze. The Connected Sustainable Home limits these risk by

explicitly considering safety constraints and uncertain factors.

3. Convenience Advanced capabilities of the Connected Sustainable Home must

be conveniently accessible to the residents. To this end, it will provide an

intuitive interface for the residents to specify their requirements on indoor en-

vironment, as well as on energy efficiency.

1.2 Challenges

To realize both energy efficiency and robustness within a smart grid comprised of

sustainable homes, a number of challenges must be overcome.

1.2.1 Challenges in a Smart Grid

Renewable energy sources cannot be directly substituted for conventional energy

sources due to their uncontrollable and intermittent nature. In an electrical grid,

power generation must be matched to varying power consumption at all times. Al-

though demand is uncertain, conventional power plants can supply controllable and

stable energy. Hence, in the current electrical grid, the demand-supply balance is

achieved by adjusting the output of load-following power plants, such as gas turbine

and hydroelectric power plants.

Unlike conventional power plants, the output of wind and solar power plants are

not controllable (these are referred to as non-dispatchable plants). Moreover, they

are intermittent, meaning that the energy produced at a future point in time cannot



be predicted with certainty. Figure 1-4 shows typical daily solar and wind generation

profiles, which are highly intermittent [95]. In the current electrical grid, conventional

load-following and peaking power plants absorb intermittent energy generation from

wind and solar power plants in the same way as they absorb the uncertainty of

energy demand. Such a strategy works because renewable energy production currently

accounts for only a very small portion of the total energy generation, typically a few

percent in most power grids. Denmark, where wind power provided 18.9 % of energy

production in 2008, purchases power from its neighboring countries when necessary.

There is no consensus about how much percentage of intermittent energy sources can

be accepted to the current grid systems.
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Figure 1-4: Daily solar generation profiles in Long Beach, CA (top) and wind gener-
ation profiles on an island near Santa Barbara, CA (bottom). Figure reprinted from
[95].

Many governments have set ambitious goals for the penetration of renewable en-

ergies. For example, the European Union's Directive on Electricity Production from

Renewable Energy Sources, which took effect in 2001 and was amended in 2009, re-



quires its members to increase the share of renewable domestic energy production to

20% by 2020'. In the U.S., 24 states and the District of Columbia have set a Renew-

able Portfolio Standard (RPS), a regulation that requires the increased production of

energy from renewable energy sources up to a specified goal.8 Among them, 22 states

have set the goal of a more than 15% renewable penetration by 2025.

Such a high penetration level of intermittent renewable energy raises the two

challenges, discussed below.

Risk of brownouts and blackouts Increased uncertainty in the power supply im-

mediately affects the quality of power. Demand-supply imbalance in an electrical grid

due to uncertainty results in changes to AC frequency; the frequency drops when load

exceeds generation. Similarly, imbalance in reactive power, which represents stored

energy due to inductance and capacitance of a grid, results in voltage fluctuation.

Degraded power quality is particularly unfavorable for industry customers who oper-

ate sensitive electrical equipment. The quality of electricity has become increasingly

important as society becomes ever more reliant on digital circuitry [28]. According to

the report by [28], three sectors of the U.S. economy that are particularly sensitive to

power disturbances are the digital economy, continuous process manufacturing, and

fabrication and essential services. These three sectors account for approximately 40

percent of the GDP of the U.S. The report estimates that these industries lose $6.7

billion each year to power quality phenomena. A significant drop in voltage, often

called a brownout, can also affect home appliances.

Uncertainty in energy supply also poses a risk of blackout. Large fluctuations in

AC frequency forces power generators to shut down. Each component of an electrical

grid, such as a substation or transmission line, typically has a safety mechanism that

automatically shuts itself down when its capacity is exceeded. In most cases, such

shutdowns result in local blackouts. In the worst case, a single failure cascades through

the grid, causing a large-scale blackout. For example, the Northeast blackout of 2003,
7Directive 2009/28/EC on the promotion of the use of energy from renewable sources and amend-

ing and subsequently repealing Directives 2001/77/EC and 2003/30/EC
8Web page of U.S. Department of Energy. Retrieved from http: //appsl. eere. energy. gov/

states/maps/renewable-portfoliostates. cfm on January 14, 2012.



which affected more than 50 million people in the U.S. and Canada, was initiated by

a single fault in a transmission line, which caused a chain of failure over a large area

[86].

It is an important challenge for a smart grid to allow large-scale penetration of

renewable energy while reducing the risk of brownouts and blackouts.

Cost of operational reserve and energy storage One way to deal with in-

creased uncertainty is to increase operational reserve and energy storage, but this

solution comes at significant cost.

Operational reserve refers to generation capacity that is available to the grid within

a short interval of time, and is used to meet varying demand. There are two types

of operational reserves: spinning reserve and non-spinning reserve. Spinning reserve

is the extra generation capacity that is made available by increasing the power out-

put of generators that are already connected to the power system. Non-spinning or

supplemental reserve is the extra generating capacity that is not currently connected

to the system, but which can be brought online after a short delay. Since the out-

put of wind and solar generation changes quickly, having enough spinning reserve is

particularly important. As a result, if wind and solar energy is introduced on a large

scale to the grid, a sufficient number of conventional plants must be kept operational.

The need for spinning reserve limits the penetration of renewables. Currently there is

no consensus about how much spinning reserve is necessary or how much renewable

penetration can be accepted by the current grid system. Due to this uncertainty, an

electrical grid needs to be operated conservatively. Construction, maintenance, and

operation cost of facilities for spinning reserve will increase overall energy cost.

Energy imbalance can also be absorbed by energy storage. The vast majority

of current grid energy storage is composed of pumped-storage hydroelectricity. A

pumped-storage hydroelectric plant consists of two reservoirs at different elevations.

It stores energy by pumping water up from the lower reservoir to the higher reser-

voir when the grid has excess energy available. When demand is high, it generates

energy by releasing the water from the higher reservoir to the lower. Pumped storage



recovers about 75% of the energy it receives, and is currently the most cost-effective

form of mass power storage. The chief problem with pumped storage is geographical

constraint, since it requires two nearby reservoirs at considerably different elevations.

Hence, suitable sites for pumped storages tend to be in mountain areas, which are

often very far from major cities.

Another option is battery storage, which is not constrained by geographical limita-

tions. However, battery storage provides much smaller capacity than pumped-storage

hydroelectricity. The largest battery-based storage facility in the world, located in

Fairbanks, Alaska, has only 7 MWh capacity, while major pumped hydro reservoirs

have giga-watt-hour scale capacity. Moreover, batteries are generally expensive, have

high maintenance cost, and have limited lifespans.

In sum, in order to accept a high penetration of renewables, we must face signifi-

cant uncertainty in intermittent energy supply and grid stability, as well as difficulty

in expanding reserves. Absorbing the uncertainty of increased renewables through

added storage requires significant cost. Instead, this needs to be addressed by the

controller's ability to manage the risk incurred by fluctuations while minimizing green-

house gas emission.

1.2.2 Challenges in the Connected Sustainable Home

An autonomous controller for a residential building must be able not only to minimize

green house gas emission, but also to intelligently adapt to the changing needs of the

residents. Currently most buildings are run inefficiently due to the non-adaptable

nature of their control systems, and it is considered that savings of up to 35% are

possible by optimizing operation of HVAC systems [31]. The inefficiency is mainly due

to uncertainty in occupants' behavior. Typically, rooms are occupied only for a small

fraction of time. For example, Figure 1-5 shows occupancy data, collected by a study

conducted by Xerox PARC [27]. The study showed that the rooms were occupied only

for about 20% of the time, and the occupancy patterns significantly varied from room

to room. It is a significant loss of energy to heat or cool empty rooms during regular

business hours. Although a centralized HVAC system has higher energy efficiency



than decentralized ones, it is hard to adapt to uncertain occupation pattern. On the

other hand, decentralized HVAC systems, such as conventional window unit ACs,

can manually achieve room-by-room control by simply enforcing occupants to turn

it off when they leave a room. However, in reality, it is hard to enforce occupants

to take such an energy efficient behaviors. Moreover, occupants may want to have a

comfortable temperature when they enter a room, instead of start heating or cooling

when they enter. Furthermore, Vastamski et al. [90] found that occupants' poor

understanding of temperature controllers, as well as their wrong mental models about

good indoor temperatures, can degrade energy efficiency. For example, [90] finds that

many people think a good temperature set point is always between 19-21 degrees

Celsius, which is usually uncomfortably cool during the summer time.
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Figure 1-5: Occupancy data for ten different offices over the course of a single day.
Each bar is shaded when the corresponding office is occupied and blank when the
office is vacant. Image is taken from [27].

Another source of uncertainty is weather conditions. The dynamics of buildings

are in general highly affected by environmental disturbances, particularly by the out-

side temperature. Using weather forecasts, a building can enhance energy efficiency

by being "prepared."9 For example, an energy efficient strategy would be to let the

solar radiation heat up the structure of the building if it is going to be cold during

9The Building Control Group, ETH. http://control.ee.ethz.ch/-building/research.php



the next few days. However, a major challenge with using weather forecasts lies in

their inherent uncertainty due to the stochastic nature of atmospheric processes, and

the imperfect knowledge of the weather models initial conditions, as well as modeling

errors [68].

Given the uncertainty and restrictions described above, the Connected Sustainable

Home must achieve the challenging task of maximizing energy efficiency and providing

comfortable environment in the presence of significant uncertainty in human behav-

iors and weather conditions. Our proposed system is distinct from existing building

management systems in that it can reason over stochastic plant model in order to

deal with the uncertainty.
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Chapter 2

Risk Allocation Approach

In the previous chapter we present the visions of a smart grid and the Connected

Sustainable Home, as well as their challenges. Recall that the main technical challenge

is how to limit risk of energy imbalance and violation of residents' requirements in

the presence of uncertainty. In this chapter we overview our approach to overcome

this challenge.

2.1 Approach: Risk Allocation Approach for Chance-

constrained Programming

Our overall approach to overcoming the challenges stated in Chapter 1 is to frame

problems as chance-constrained programming framework, and solve them by a novel

risk allocation approach [71].

Originally developed by [18], chance constraint programming specifies a con-

strained optimization problem that minimizes a given cost function defined for a

stochastic system, while limiting the probability of violating constraints to a user-

specified bound. In the case of a smart grid, we frame the problem as minimizing the

operational cost of an electrical grid, for example, while limiting the annual proba-

bility of blackout to a certain risk bound, such as 0.001% per year1 . In the case of a

'As mentioned in Section 1.1.1, average household in the U.S. experiences 97 minutes of blackout
annually. This is about 0.02% of the time.



Figure 2-1: Risk allocation in a race car path planning.

sustainable home, we minimize non-renewable energy use, for example, while limiting

the risk of bringing the room temperature outside of the specified range to 1% per

day. By choosing an acceptable level of risk, users can balance cost efficiency and

reliability in the presence of uncertainty.

In our previous work we developed the risk allocation approach [71], which en-

ables efficient solution to chance constrained optimal planning problems. In order to

understand the concept of risk allocation intuitively, consider the path planning ex-

ample shown in Figure 2-1. In this example a race car driver wants to plan a path to

get to the goal as fast as possible, while limiting the probability of a crash to 0.01%.

An intelligent driver would plan a path as shown in Figure 2-1, which runs mostly

in the middle of the straightaway, but gets close to the wall at the corner. This is

because taking a risk by approaching the wall at the corner results in a greater time

saving than taking the same risk along the straightaway; in other words, the utility

of taking risk is greater at the corner than the straightaway. Therefore, the optimal

path plan allocates a large portion of risk to the corner, while allocating little to the

straightaway. As illustrated by this example, risk allocation needs to be optimized

across the constraints in order to minimize cost.

Risk allocation approach reformulates a chance-constrained optimization problem

into a resource allocation problem by distributing risk to individual constraints. Con-

sider another path planning example in Figure 2-2. A chance constraint requires the

vehicle to limit the probability of crashing into the obstacles to 10%. In other words,

the vehicle is allowed to take 10% risk throughout the plan. The risk allocation ap-

proach distributes this risk among time steps in the plan, as shown in Figure 2-2-(a).

If the probabilities of a crash at each time step are within these allocated risk bounds,



then the original 10% risk bound is guaranteed to be satisfied. The 4% risk that is

allocated to the time step t = 2 is again distributed among constraints (i.e., obstacles)

as in Figure 2-2-(b). Such a decomposition is obtained from Boole's inequality [76].

For example, let A be an event of colliding with the left obstacle at t = 2, and B be

an event of colliding with the right obstacle at t = 2. Then, by Boole's inequality

Pr(A) + Pr(B) > Pr(A U B).

Therefore, by allocating the risk A and B so that the left-hand side of the equation is

equal to 4%, the right hand side is guaranteed to be less than or equal to 4%. That

is, the total risk taken at t = 2 is less than or equal to 4%.

(a) (b) (c)
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Figure 2-2: Overview of risk allocation approach. (a) The 10% of risk is allocated
to time steps in the plan. (b) The 4% of risk allocated to t =2 is distributed again
among constraints (i.e., obstacles). (c) Safety margin is set around the constraints
according to the risk allocation.

Once risk is allocated to every single constraint, a safety margin that guarantees

the risk bound can be found as in Figure 2-2-(c). By planning the nominal path to

remain outside of the safety margin for all time steps, the executive can guarantee

the satisfaction of the original chance constraint. Note that planning a nominal

path outside of safety margins is a deterministic optimization problem, which can

be solved efficiently using existing approaches. Such a decomposition of a chance

constraint makes the stochastic optimization significantly easier, hence allowing the



executive to compute the optimal control sequence efficiently. While our example

involves vehicle path plaining, the underlying principle applies to the broad family

of chance-constrained optimization problems, and in particular is well suited to the

control of the grid and homes.

As a second example, consider the problem of controlling the set point of an

office, given that data on occupancy is uncertain, as shown in Figure 2-3. More

specifically, we assume that the occupancy pattern is uncertain, but the probability

that the office is occupied at a given time in a day is known. Then, by turning off an

HVAC within a time interval t involves risk 6 t, which is equivalent to the occupancy

probability pt. By applying the risk allocation approach, we can guarantee that the

risk of failure to provide comfortable temperature when the office is occupied is below

A, by distributing the risk so that Et it < A.
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Figure 2-3: Risk allocation for temperature control of an office with uncertain occu-

pancy data.

2.2 Solution: Distributed Robust Grid Control

In order to overcome the challenges in a smart grid and sustainable homes presented

in Sections 1.2, we propose a distributed control system composed of three algorithms,

as illustrated in Figure 2-4. In this section, we first present the overall architecture

of the proposed control system, followed by a description of the three algorithms.
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Figure 2-4: Overall architecture of the proposed distributed control method of a smart
grid with Sustainable Connected Homes.

2.2.1 Overall Architecture

An electrical grid is a gigantic interconnected network, composed of numerous suppli-

ers and consumers. In regions where electricity is deregulated, such as the U.S. and

Europe, grid operation is quite decentralized, meaning that multiple decision makers

are coordinated through a market-based mechanism. In a wholesale market, elec-

tricity supply companies and utility companies are the decision makers that choose

output levels and supply levels, based on the wholesale price of the energy. Con-

sumers are also decision makers since they decide the amount of energy to consume

based on the retail price.

In order to fit with such a distributed nature of electrical grids, we also employ

a distributed architecture in our proposed system. As shown in Figure 2-4, our

first algorithm, Market-based Contingent Power Dispatch, optimally dispatches energy

over a grid in a distributed manner. Thus, this algorithm plays a role in the system

to coordinate distributed components, such as generators and buildings. Each of

the distributed components, both loads and generators, are controlled by our second

and third algorithms. The second algorithm, a risk-sensitive plan executive called

Chance



probabilistic Sulu2 (p-Sulu), robustly operates Sustainable Connected Homes. The

third algorithm is a chance-constrained model predictive control that can operate each

generator. Although our intended application of the algorithm is frequency control of

generators, it can also be applied to a wide spectrum of robust constrained optimal

control problems, both on the load and generation sides We elaborate on these three

algorithms in the following three subsections, respectively.

2.2.2 Algorithm 1: Market-based Contingent Power Dispatch

for a Smart Grid

Required Capabilities

In order to overcome the challenges described in previous sections, we specify three

attributes that our power dispatch algorithm must have: 1) market-based distributed

control, 2) optimal control with minimum cost and energy efficiency, and 3) robust

control within a bounded risk.

Market-based distributed control As discussed in the previous subsection, grid

operation must be distributed. Moreover, the building components of a grid must be

coordinated by a market-based mechanism in order to fit with the current structure

of an electrical grid. In a typical wholesale electricity market, the price is determined

by matching offers from generators to bids from consumers in a day-ahead market,

usually on an hourly interval. Likewise, our power dispatch algorithm must also de-

termine the price through a market mechanism, while each generators and consumers

choose its optimal supply or demand level depending on the price.

Optimal control with minimum cost and energy efficiency Recall that the

three objectives of a smart grid are to 1) address the climate challenge, 2) improve

reliability, and 3) contribute to the economy, as we discussed in Section 1.1.1. The first

2 Sulu is a deterministic plan executive developed by [55]. The name of the executive was taken

from Hikaru Sulu, a character in the science fiction drama Star Trek. In the story, Sulu serves as a

helmsman of the starship USS Enterprise. The plan executive was named after him because its role

is to "steer a ship" in order to achieve a given plan.



and the third objectives require minimization of energy and cost efficiency through

optimal operation of a grid. Furthermore, the controller must achieve optimality in

a distributed manner, instead of a straight forward centralized optimization.

Robust control with a bounded risk In order to achieve the second objective of

a smart grid, we need to make a grid tolerant to uncertainties. Risk of energy shortage

can be eliminated by operating an amount of spinning reserve sufficient to provide

a "100% backup" for intermittent generators in order to prepare for the worst case.

More concretely, the worst case scenario is that all wind turbines and solar cells have

no output at all when the energy demand is at the highest possible level. One can

guarantee zero probability of failure to meet energy demand by preparing spinning

reserve and stored energy that is equivalent to the highest possible level of energy

demand. Of course, such a conservative operation is very inefficient. First of all,

as we mentioned in Section 1.2, energy storage is very costly. Second of all, since

conventional plants, such as gas turbines, have minimum output level, maintaining

spinning reserve requires consumption of fuels. These inefficiencies undermine the

benefit of renewable energies.

In fact, real-world electrical grids typically do not operate the same amount of

spinning reserve as the amount of intermittent generation3 . However, although such

operation without a "100% backup" is cost and energy efficient, it involves risk of

energy imbalance. Therefore, the grid must be operated robustly to limit such a risk

below an acceptable level.

Algorithm Overview

Our Market-based Contingent Power Dispatch optimally allocates generation to power

plants within a bounded risk of power imbalance. The objective of the algorithm is to

achieve the most cost-effective power dispatch in a futures market, while limiting the

risk of power imbalance between supply and demand in the presence of uncertainty.

3 American Wind Energy Association. 20% Wind Energy by 2030: Wind, Backup Power,
and Emissions. Available on-line at http://www.awea.org/learnabout/publications/upload/
BackupPower.pdf Retrieved on January 16, 2012.



A key idea in this approach is to allocate uncertain power generation separately

from nominal power generation. When electricity is traded in a futures market (e.g.,

a day-ahead market), there is uncertainty in future electricity demand, as well as

supply from non-dispatchable generators, such as solar cells and wind turbines, which

is treated as negative demand. We refer to the deviation of net electricity demand

from the nominal as contingent power. In our algorithm, each dispatchable generator

sells not only future electricity supply for nominal demand, but also a percentage of

contingent power that it will provide. For example, assume that a generator has sold

100 MWh nominal power and 1% contingent power in a day-ahead market. If the net

demand at the time of dispatch turns out to be 1 GWh more than the nominal, then

the generator is responsible to provide 110 MWh - 100 nominal and 10% of 1 GWh.

This approach allows each generator to analytically evaluate the risk of exceeding

generation capacity because the probability distribution of the demand on the gener-

ator can be obtained from the probability distribution of the net electricity demand,

which is assumed to be available. Hence, each generator can decide the optimal

amount of nominal and contingent energy to sell in a futures market through chance-

constrained programming. Moreover, by employing a price adjustment mechanism

called titonnement, our iterative algorithm is guaranteed to converge to the glob-

ally optimal allocation of nominal and contingent energy generation in a distributed

manner. The algorithm can achieve energy efficiency by including greenhouse gas

emission in the cost function.

Inputs

Predictions of intermittent energy supply and demand The algorithm takes

the predicted net electricity demand as an input, where net demand is defined as

demand minus intermittent supply. Moreover, in order to evaluate risk quantitatively,

it requires the probability density function of the net demand.

Cost function Each generator must know its own cost function. Note that the

cost function can include not only financial cost, but also environmental cost.



Risk bounds Each generator takes its own risk level as an input. By applying the

risk allocation approach, the risk of the entire grid can be bounded by the summation

of the individual risks taken by the generators.

Outputs

Nominal power allocation Our algorithm allocates nominal generation to each

power plant, like the current electricity market.

Contingent power allocation Our algorithm also allocates contingent power to

each power plant. Each plant decides the optimal level of nominal and contingent

power by optimizing over a given cost function while respecting the given risk bound.

Next we turn to controlling the grid components, starting with sustainable homes.

2.2.3 Algorithm 2: p-Sulu for the Connected Sustainable

Home

Required Capabilities

By breaking down the challenges of developing a Connected Sustainable Home de-

scribed in Section 1.2.2, we specify three required technical capabilities: 1) Goal-

directed planning with continuous effects and temporally extended goals (TEGs), 2)

optimal planning, and 3) robust planning with risk bounds. We explain each item in

detail below.

Goal-directed planning with continuous effects and temporally extended

goals (TEGs) The Connected Sustainable Home must allow residents to specify

desired ranges of room temperature (i.e., state constraints in a continuous domain).

Moreover, it must be able to handle a flexible temporal constraints, instead of a

fixed set-point schedule that existing temperature controllers take, in order to allow

flexibility in schedule. For example, the temperature that a resident feel comfortable

when she is asleep may be different than when she is awake. Although she knows she



needs at least 7 hours of sleep, the time to go to bed and wake up can be flexible.

These requirements are represented as a sequence of TEGs, which must be executed

in a goal-directed manner.

Optimal Planning While guaranteeing that the TEGs are achieved, the Con-

nected Sustainable Home must also minimize the use of non-renewable energy con-

sumption. In other words, it must solve a constrained optimal control problem.

Robust planning with risk bounds Optimal plan execution is susceptible to

risk when uncertainty is introduced. For example, the Connected Sustainable Home

involves a risk of failure to maintain the room temperature within a specified range

due to unexpected climate changes. When the residents are absent in the winter the

energy consumption can be minimized by turning off the heating, but it involves a

risk that pipes freeze. Such risks must be limited to acceptable levels specified by the

residents. The plan executive guarantees that the system is able to operate within

these bounds. Such constraints are called chance constraints.

Algorithm Overview

As mentioned above, p-Sulu provides a robust plan execution capability with a

bounded risk. The input to p-Sulu is a schedule and requirements of the residents, as

well as risk bounds. For example, a resident specifies when to wake up in the following

morning, what range of temperature she finds comfortable, and her acceptable level

of risk of failure to satisfy the requirements. The schedule, requirements, and risk

bounds are represented by a temporal plan representation, called a chance-constrained

qualitative state plan (CCQSP), which encodes both TEGs and chance constraints.

Given a CCQSP, p-Sulu optimally controls the dynamic window and HVAC of the

Connected Sustainable Home so that energy consumption is minimized while the risk

of failure to satisfy resident's requirements is within the specified risk bounds. In this

subsection we give informal definition of the inputs and outputs. They are rigorously

defined in Sections 4.3.2 and 4.3.3.



Inputs

Initial Condition p-Sulu plans a control sequence starting from the current state,

which is typically obtained from sensor measurements.

Stochastic Plant Model p-Sulu takes as an input a discrete-time, continuous-

state stochastic plant model, which specifies probabilistic state transitions in a con-

tinuous domain. Although we limit our focus to Gaussian-distributed uncertainty,

the algorithms presented in this thesis can be extended to a broader classes of distri-

butions.

Chance-constrained qualitative state plan (CCQSP) A CCQSP is a formal-

ism to express TEGs and chance constraints [13]. It is an extension of qualitative

state plan (QSP), developed and used by [14, 40, 56]. CCQSP specifies a desired

evolution of the plant state over time, and is defined by a set of discrete events, a set

of episodes, which impose constraints on the plant state evolution, a set of temporal

constraints between events, and a set of chance constraints that specify reliability

constraints on the success of sets of episodes in the plan.

A CCQSP may be depicted as an acyclic directed graph, as shown in Figure 2-

5. The circles represent events and squares represent episodes. Flexible temporal

constraints are represented as a simple temporal network (STN) [25], which specifies

upper and lower bounds on the duration of episodes (shown as the pairs of numbers

in parentheses). The figure describes a typical plan for the Connected Sustainable

Home, which can be stated informally as:

"Maintain a comfortable sleeping temperature until I wake up. After I

wake up, maintain room temperature until I go to work. No temperature

constraints while I am at work, but when I get home, maintain room tem-

perature until I go to sleep. Maintain a comfortable sleeping temperature

while I sleep. The probability of failure of these episodes must be less

than 1%. Always make sure the house does not get so cold that the pipes

freeze. Limit the probability of such a failure to 0.01%."
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Figure 2-5: An example of a CCQSP for a resident's schedule in a planning problem
for the Connected Sustainable Home

Outputs

Optimal executable control sequence One of the two outputs of p-Sulu is an

executable control sequence that minimizes a given cost function and satisfies all

constraints specified by the input CCQSP. In the case of the Connected Sustainable

Home, the outputs are the opaqueness of the dynamic window, as well as the heat

output of HVAC.

Optimal schedule The other output of p-Sulu is the optimal schedule, which con-

sists of a set of execution time steps for events in the input CCQSP. In the case of the

Connected Sustainable Home, a schedule specifies when to change the opaqueness of

the windows and when to turn on the HVAC system.

The two outputs - the optimal control sequence and the optimal schedule - must

be consistent with each other: the TEGs are achieved on the optimal schedule by

applying the optimal control sequence to the given initial conditions.

2.2.4 Algorithm 3: Chance-constrained Model Predictive Con-

trol with Probabilistic Resolvability

As we discussed in Section 1.2, stabilizing AC frequency of a grid has a critical im-

portance. Currently each individual power plant has its own AC frequency controller,

which is based on classical PID control [4]. Recently, applications of model-predictive

control (MPC) to primary frequency control have been proposed [6, 85].



MPC, also known as receding horizon control, is a closed-loop control approach

that solves a finite-horizon optimal control problem at each time step starting from

the current initial state. Only the first step in the resulting optimal control sequence

is executed, and then a finite-horizon optimal control problem is solved again for the

latest state [32]. Initially developed for process industries, MPC is distinguished from

classical control approaches by its capability to explicitly consider state constraints

while optimizing a control sequence to minimize a given cost function. MPC is suitable

for power grid control because a power grid has a number of constraints, such as the

capacities of generation plants, substations and transmission lines, as well as the

acceptable range of frequency and voltage deviations. When applied to primary

frequency control, MPC enables more energy efficient operation while guaranteeing

the satisfaction of operational constraints, compared to classical controllers. MPC

is also effectively applied to building control [69]. However, conventional MPCs do

not typically consider stochastic uncertainty. The objective of our third algorithm is

to extend the MPC approaches to allow stochastic uncertainties in an electrical grid.

Such an extension to MPC is called a chance-constrained MPC (CCMPC) [79]. Our

CCMPC algorithm is distinct from existing ones in that it guarantees probabilistic

resolvability, as we explain shortly.

Required Features

CCMPC must have the following two features in order to be applied to grid compo-

nents, such as frequency control and building control: 1) probabilistic resolvability

and 2) tractability.

Probabilistic Resolvability A failure to find a feasible solution during the op-

eration of a power plant or an electrical grid may result in a catastrophic failure.

Existing robust model predictive control (RMPC) algorithms that assumes bounded

uncertainty guarantees resolvability (also known as recursive feasibility), meaning

that existence of feasible solution in the future is guaranteed given a feasible solution

at the current time [50, 19, 80, 51, 1, 2, 21]. However, when the probability distribu-



tion of uncertainty is not bounded or has long tails, it is impossible or, at the best,

extremely inefficient to guarantee resolvability. Alternatively, we propose a new con-

cept of probabilistic resolvability, which provides a lower bound on the probability of

solution existence. Probabilistic resolvability is a particularly important feature when

controlling a social infrastructure that must operate continuously such as an electrical

grid, because a failure to find a feasible solution poses a serious risk to a society, such

as cascading blackouts. In order to limit such a risk, the proposed CCMPC algorithm

must guarantee probabilistic resolvability with a specified risk bound.

Tractability MPC requires solving a constrained optimization problem at every

control cycle, where control frequency is typically above 1 Hz. This means that

the constrained optimization problem must be solved within one second. Hence,

tractability is an important feature. More specifically, we require the constrained

optimization problem to be a convex program.

Algorithm Overview

Our CCMPC algorithm is built upon the risk allocation approach. It distributes

risk over time steps within a control horizon. We denote by 6 TIk the risk allocated

to the Tth time step in the kth control horizon. The CCQSP solves a constrained

optimization problem at each time step, where the final state is required to be within

an c-robust control invariant set. An c-robust control invariant set is a probabilistic

counterpart of the robust control invariant set used by RMPC to guarantee resolv-

ability. It is a set such that, if the state is within the set, then there exists a control

law that keeps the state in the same set at the next time step with at least the prob-

ability of 1 - E. Hence, in the next time step, a feasible solution can be constructed

by applying the control law, with an additional risk E. The CCMPC algorithm also

require that 6 rk '> c at all time steps T within the control horizon. With these re-

quirements, feasibility of the next time step is guaranteed with a probability of 6
kik

because the newly added risk c is always less than the risk that is taken at the current

step, 4kik, and hence the chance constraint can be satisfied, as illustrated in Figure
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Figure 2-6: The proposed MPC algorithm requires that the terminal state is in an
c-robust control invariant set, so that the terminal state can stay within the set in the
next time step with the probability of 1 - E. Probabilistic resolvability is guaranteed
by ensuring that risk allocation to each time step is greater than e.

2-6. Recursive application of this argument proves probabilistic resolvability. The

constrained optimization problem solved by the algorithm at each time step is convex

under a moderate conditions.

Inputs

Risk bounds The algorithm takes two risk bounds as inputs. One of them is

a regular risk bound A that sets an upper bound on the probability of constraint

violation. In our algorithm, A also corresponds to the upper bound on the probability

that feasible solutions do not exist over a control horizon. The other risk bound is

E, which specifies the upper bound on probability that a state in an E-robust control

invariant set cannot stay within the same set in the next time step.

Cost function The algorithm takes a cost function, which typically represents

energy cost and financial cost.



Output

The CCMPC algorithm outputs an optimal control sequence that guarantees con-

straint satisfaction and solution existence over every control horizon with a probabil-

ity of A, while minimizing the given cost function.

The three algorithms introduced in this section work together to control an electri-

cal grid with sustainable homes in a distributed manner. With risk-sensitive control

capability, the distributed grid control system can limit risks in the presence of un-

certainty. The three algorithms are described in detail in Chapters 3-5.

2.3 Organization of the Thesis

The rest of the thesis is organized as follows. Chapters 3, 4, and 5 describe the

three risk-constrained algorithms: Market-based Contingent Energy Dispatch for the

electrical grid, p-Sulu for the Connected Sustainable Home, and a chance-constrained

model-predictive control with probabilistic resolvability. Chapter 6 presents a policy

analysis, and Chapter 7 concludes the thesis.



Chapter 3

Market-based Contingent Power

Dispatch

3.1 Overview

In this chapter we propose a new market-based power dispatch algorithm, which op-

timally allocates generation to power plants with a bounded risk of power imbalance.

The two key ideas behind the proposed algorithms are 1) to allocate uncertain power

generation separately from nominal power generation, and 2) to optimize the alloca-

tions of both nominal and uncertain power generation concurrently in a decentralized

manner using a market-based mechanism. This approach enables to bound proba-

bility of constraint violations quantitatively, while minimizing cost. In the proposed

algorithm, two kinds of power are traded in a market: nominal power and contingent

power. Contingent power is interpreted as insurance. Each plant sells an insurance

contract to provide extra power out of its spinning reserve when demand is higher

than forecast; when demand is lower than forecast, the contracted plant provides less

power than the committed nominal power generation.

Regarding the first idea, contingent power is different from a regular insurance

contract in that it promises to supply the standard deviation of the uncertain power

that the plant provides, instead of setting the upper bound of the uncertain supply.

This mechanism enables the ability to bound the risk of energy imbalance since each



plant can quantitatively evaluate the risk of exceeding capacity from the probability

distribution. Contingent power dispatch also allows energy storage, such as pumped-

hydro energy storage and batteries, to operate with bounded risk of exceeding capacity

of or exhausting the stored energy. The idea of contingent power dispatch is explained

in detail in Sections 3.3 and 3.4.

Turning to the second key idea, our algorithm finds optimal allocations of nominal

and contingent power in a decentralized manner through an iterative market-based re-

source allocation mechanism called tdtonnement or a Walrasian auction [84]. Roughly

speaking, tdtonnement follows the following process:

1) Increase the price if aggregate demand exceeds supply, or

decrease the price if supply exceeds aggregate demand.

2) Repeat until supply and demand are balanced.

We use a subgradient method to concurrently optimize two prices: prices of nominal

and contingent power. Mathematically, this allocation mechanism corresponds to a

distributed optimization method called dual decomposition. Under moderate condi-

tions, dual decomposition-based distributed optimization results in the same optimal

solution as centralized optimization. The market-based decentralized algorithm is

presented in Section 3.5.

3.2 Related Work

Optimal power dispatch problem, also known as economic dispatch problem, is to

find the most cost-efficient allocation of generation in a power system. It has been an

active topic of research since 1970s. Major work in this field is summarized in review

articles, such as [37, 22]. A closely related area of study is optimal power flow problem,

which adds constraints on transmission line capacity to the optimal power dispatch

problem. Both real and reactive power flow is considered to determine the optimal

voltage angle and magnitude of each bus. Comprehensive surveys on his subject are

provided in [41, 75, 77]. Our work is unique in that it handles uncertainty in power



dispatch problem by separating contingent power from nominal power. This approach

allows distributed solution of power dispatch problem with chance-constraints, by

using dual decomposition. So far our work does not consider power flow. Such an

extension is our future work.

Dual decomposition is a method that decomposes a separable constrained opti-

mization problem, and hence enables distributed optimization, by dualizing coupled

constraints [17]. It is widely applied from resource allocation [91] to risk allocation

[73, 74], and from inference [82] to optimal data routing [94]. When the original opti-

mization problem is convex, which is the case in our problem, a distributed solution

through dual decomposition is optimal since there is no duality gap. Using dual de-

composition, our contingent power dispatch problem is transformed to a distributed

optimization problem, where each generator decides its output level by minimizing

its own cost function while a central module optimizes dual variables.

Dual decomposition can be interpreted as a market-based resource allocation

mechanism, called titonnement or Walrasian auction [84], where the dual variable

corresponds to the price of a resource. The price is iteratively adjusted to find the

equilibrium price, where supply and demand are balanced. Titonnement has been

successfully applied to various problems such as the distribution of heating energy in

an office building[91], control of electrical power flow[43], and resource allocation in

communication networks[44]. In economics, a simple linear price update rule has long

been the main subject of study, but the convergence of price can only be guaranteed

under a quite restrictive condition[84]. In order to substitute the linear price up-

date rule, various root-finding methods have been employed in agent-based resource

allocation algorithms, such as the bisection method[93], Newton method[96], and

Broyden's method[91]. The market-based iterative risk allocation algorithm [74, 73]

employs Brent's method [7] to provide guaranteed convergence with superlinear rate

of convergence. In the proposed Market-based Contingent Power Dispatch, the price

is optimized using a subgradient method.



3.3 Walk-Through of Contingent Power Market

We first present a walk-through example to explain our problem framing intuitively.

The formal problem statement follows shortly.

We consider a grid with three dispatchable generators, as shown in Figure 3-1.

Plant 1 is a base-load plant, which can produce a constant level of power (i.e., nominal

power) with the lowest cost, but requires the largest cost to deviate the output (i.e.,

contingent power production) from the constant level. Plane 2 is a load-following

plant, which has moderate cost to produce both nominal and contingent power. Plant

3 is a peaking plant, which has the highest cost of nominal power production, but

the output can be easily adjusted with the least cost.

January 1, 8 pm

Day-ahead market

Predicted net load at 8 pm on Jan 2:1
Nominal Standard deviation

L = 300MW, LI =10MW

Bids:
Nominal StandardNominal deviation

GG =150MW, o1 =2MW

Plant 1

2 G =00MW, -2 =3MW

G= 50MW, 
o3 = 5MW

IG = 300MW, la o=10OMW

January 2, 8 pm

24 hours later

Actual net load at 8 pm on Jan 2:

L = 320MW (X = 2)

Dispatched power: G, = G, + o-,X
Total Contingent

G= 154MW (uIX=4MW)

Plant 1

Pg G2=106MW (o 2X=6MW)

G3 =60MW (U3X=1OMW)

IG, = 320MW

Figure 3-1: Walk-through example of contingent power dispatch for a grid with three
dispatchable power plants. See Sections 3.4.1 and 3.4.2 for the notations used in this
figure.

The predicted net load at 8:00 p.m., January 2nd, is 300 MWh, with a standard



deviation of 10 MWh. Hence, on the preceding day, January 1st, at 8:00 p.m., 300

MWh nominal power and 10 MWh standard deviation are demanded in the day-ahead

market.

The three generators sell nominal power and coverage for the standard deviation to

meet the uncertain demand. On the nominal market, Plant 1 sells 150 MWh nominal

power, Plant 2 sells 100 MWh nominal power, and Plant 3 sells 50 MWh nominal

power, which sum to 300 MWh. Plant 1 bids the highest amount of nominal power

since it has the lowest cost of nominal power production. On the contingent market,

Plant 1 sells 2 MWh standard deviation, Plant 2 sells 3 MWh standard deviation,

and Plant 3 sells 5 MWh standard deviation. Plant 3 bids the highest amount of

contingent power since it has the lower cost of contingent power production.

Then, 24 hours later, the actual net load turns out to be 320 MWh, resulting in

20 MWh excess load. We call the excess load as contingent load. The contingent load

is allocated to each plant proportionally to the standard deviation it sold. Since the

resulting excess load is twice as large as the standard deviation, Plants 1, 2, and 3

produce 4 MWh, 6 MWh, and 10 MWh of contingent power, respectively. Hence, the

total power produced by each plant is 154 MWh, 106 MWh, and 60 MWh. These

sum up to 320 MWh, which matches the actual load.

The problem that this chapter solves is how to find the optimal allocation of

nominal power and standard deviation that minimizes the expected cost of energy

production, while limiting the risk of exceeding capacity. We present the formal

problem formulation in the next section.

3.4 Problem Formulation

We consider a power grid system where load is uncertain and uncontrollable, while

generation is dispatchable and not intermittent. Wind and solar generation, which

are non-dispatchable and intermittent, are considered as negative load. Recall that

the goal of contingent power dispatch is to find the optimal allocation of nominal and

contingent power generation to dispatchable power plants. Our approach is unique in



that the dispatchable generators commit to provide a fixed percentage of contingent

load, which is defined as the deviation from the nominal load. We will explain this

in detail in Section 3.4.2.

3.4.1 Net Load Prediction

In a deregulated wholesale electricity market, where generation is allocated through

competitive bidding, electricity is traded in a futures market, typically a day-ahead

market. The objective of the market is to balance the demand and supply of electric-

ity, based on the predictions of future load and non-dispatchable generation. However,

of course, such predictions cannot be perfect.

We assume that the prediction of future net load L, which is defined as the load

minus non-dispatchable generation, is given in the following form:

L= L + ULX (3.1)

X ~ f(X) (3.2)

where X is a zero-mean random variable with its standard deviation being one. Its

probability density function (pdf) is assumed to be known and denoted by f(X). In

other words, we assume that the type of the probability distribution of the future

electricity load is known. There are existing studies on the probability distribution

of renewable energy generation. For example, it is known that a Weibull distribution

gives a good approximation of the distribution of wind speed [88]. Leigh et al. [57]

proposed a Gaussian process prior models for electrical load forecasting. The true

value of X is known at the moment of dispatch. In the example shown in Figure 3-1,

X turns out to be 2.

L and cL in (3.1) are deterministic parameters that represent the mean and the

standard deviation of the predicted load, respectively, as shown in Figure 3-2. Intu-

itively, OL represents the confidence level of the prediction. A prediction with small

9L means that the actual load L is likely to be close to the mean L, indicating a high

confidence in the prediction.
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Figure 3-2: We assume that the prediction of future load is given by the mean L and
the standard deviation, while the type of the distribution is known.

We call the first term in (3.1), Ls, nominal load, while referring to the second

term, o~LX, as contingent load.

3.4.2 Generation

We assume that there are N dispatchable generators in the grid. In the electricity

market, the ith generator commits to produce the following amount:

Gi = Gi + o-iX (3.3)

where X is the same random variable as (3.1). Gi is the nominal power production

of the generator.

The second term, oiX, is the contingent power production. Since it shares X

with (3.1), the ith generator is committed to provide a fixed portion O-i/o-L of the

contingent load.

3.4.3 Contingent Electricity Market

The objective of the electricity market is to balance the load and generation, both of

which are uncertain:

L = GZ .
i=1

(3.4)



This can be achieved by ensuring that the nominal and contingent power productions

of all dispatchable generators match the net nominal and contingent load, respectively:

N

L = G (3.5)
i=1

N

07L ai.(3.6)
i=1

Hence, instead of directly balancing a random quantity as in (3.4), the market seeks

to balance two deterministic quantities: nominal power (3.5) and standard deviation

(3.6).

Note that the contingent power generation oiX is not independent between plants

since it shares a random variable X. The standard deviation of total contingent power

generation is simply the summation of the standard deviations of all plants.

3.4.4 Cost and Capacity of Electricity Generation

We are interested in a grid system where generators are heterogeneous, meaning that

each plant in the grid has different electricity generation cost and capacity. This is the

case in real-world power grids, where various types of plants (e.g., gas, coal, hydro,

nuclear, etc.) with different cost structures are connected. Typically, nuclear power

plants are used for baseload plants since they can operate at a constant level with

relatively low cost, but adjusting the output level is not easy. On the other hand,

gas and hydro plants are often used for load-following and peaking plants since their

output levels can be quickly adjusted.

Cost We assume that the cost of electricity generation of each plant Ji is a con-

tinuously differentiable convex function of nominal power G and standard deviation

Ji = Ji (Gi, 7 o). (3.7)

For example, baseload plants are considered to have relatively small cost of nominal

power production, while having very large cost of contingent power production. On



the other hand, peaking plants are considered to relatively have high cost of nominal

power and low cost of contingent power production.

The cost function can include external costs, such as health and environmental

costs. For example, according to a study by the U.S. National Research Council,

the external cost of electricity produced from coal was 3.2 cents per kilowatt-hour in

2005, while that of natural gas was 0.16 cents per kilowatt-hour in the same year [83].

However, we note that the estimation of external costs varies widely from study to

study.

The cost function only includes the marginal cost of electricity, since the problem

that we solve is concerned with the allocation of electricity generation, given a set

of available generation facilities. Fixed costs, such as capital investment and fixed

maintenance costs, must be considered as sunk costs.

Capacity We assume that each generator has a generation capacity Ci, which is a

positive real constant. Hence,

0 <G - +o-jX < Ct. (3.8)

Note that, when X is unbounded, it is not always to guarantee the satisfaction of

constraint (3.8) in general. This means that there is a risk of power shortage when

unexpectedly large electricity demand exceeds generation capacity. In the next sub-

section, we present a problem formulation that explicitly requires that such risk is

below a user-specified risk bound.

3.4.5 Problem Statement

We frame contingent power dispatch problem a chance-constrained optimization prob-

lem, as shown below:

Problem 1: Centralized Contingent Power Dispatch



N

min Ji (0i, ori) (3.9)
G1:Ni1:N __

N

s.t. L =Z i (3.10)
i=1

N

.L oc= io (3.11)

P[0<i- +oXi>1- i=1-- )(.2

Pr [Gi + iX < Ci] > 1 - (i 1 - - -N) (3.13)

X ~ f (X), (3.14)

where f(-) is a zero-mean probability density function with a standard deviation of

one.

The problem is to find an optimal allocation of nominal power Gi and standard

deviation o to each of the generators that minimizes total cost (3.9). Constraints

(3.10) and (3.11) ensure that demand and supply of electricity are balanced, as ex-

plained in Section 3.4.3. Finally, (3.12) and (3.13) are the chance constraints. o1
and ou are the risk bounds that are specified by users, where 6' bounds the risk of

oversupply and 6 bounds the risk of undersupply. Specifically, (3.12) requires that,

when the contingent power turns out to be negative, the total power output is not

negative with probability 1 - o1, while (3.13) requires that the resulting output level

of each plant is within its capacity with probability 1 - of.

The risk of oversupplying electricity does not have to be considered for conven-

tional grids. However, we have to consider such risk when renewable energy sources,

such as solar and wind, are introduced on a large scale. When those non-dispatchable

generators produce more electricity than the demand, such a risk can be realized.

This risk can be avoided by allowing dumping of electricity. However, for this study,

we do not allow electricity to be dumped in order to be conservative.

Remark 1 The overall risk of power imbalance in the grid is bounded by the total of



6' and o6u:
0 < G1 +01 Orx C1

A 0 < 2+ O2X < C2 N
Pr < 1 - E(6 + 6u). (3.15)

A O<GN+CONX CN

In other words, the risk that at least one generator in a grid fails to provide committed

nominal and contingent power is at most E1(5(+ o'). Hence, this remark provides

a useful guideline to set 6' and 6u. For example, consider a case where a grid operator

would like to limit the overall probability of power imbalance to 10- 5 at the given

time instance. This safety goal can be achieved by setting o1 = 6u = 10- 5/2N, where

N is the number of generators.

The risk bounds o1 and 6u can be optimized, rather than fixed, by using the Itera-

tive Risk Allocation algorithm (see Chapter 4 of [70]). This allows further reduction of

the cost. However, the optimization of risk allocation is not the focus of this chapter.

3.4.6 Deterministic Reformulation

We next reformulate Problem 1 to a deterministic optimization problem.

Conversion to Deterministic Constraints

Let Fx(.) be the cumulative distribution function of X

Fx(x) := Pr[X < y] = f (X)dX.

We also denote by F ' (6) the inverse function of the cumulative distribution function:

Fx(y) = ( 4 Fy'(6) = y

Using these notations, the chance constraint (3.13) is transformed into an equiv-



alent deterministic constraint as follows:

Pr [Gi + iX < Ci] > 1 - 6u Pr X < >CGi 1 -- 6

C. - Gi
SFx C ;> - 6

Ui
SCi - Gi > ajFj(1 - 6f)

The last equivalence is derived from the fact that a cumulative distribution function

is always a non-decreasing function. (3.12) can also be transformed into an equivalent

deterministic constraint in the same manner.

Figure 3-3 provides an intuition of this transformation. The integral of the proba-

bility distribution function of X above Ci-Gi represents the probability of constraint

violation. In order to satisfy the chance constraint (3.13), this area must be less than

6u. Such a condition can be met by leaving a margin between the mean and the

constraint boundary, and the necessary width of the margin is F 1 (1 - 6u).

0 :Constraint violation

0-

a.j o C,-G,

Figure 3-3: Transformation of an individual chance constraint into an deterministic
constraint.

Deterministic Reformulation of Problem 1

By applying the deterministic transformation described above to Problem 1, we obtain

the following deterministic optimization problem that is equivalent to Problem 1.

Problem 2: Deterministic Equivalent of the Centralized Contingent Power



Dispatch

N

min J (6i, o-) (3.16)
G1:NO1:N

N

s.t. IL= (3.17)
i= 1

N

(L = i o(3.18)
i=1

-o-iFj (6 ) < Gi < Ci - o-F 1 (1 -- o) (i 1 ... N) (3.19)

where F_ is the cumulative distribution function of X.

Problem 2 is a convex optimization problem since we assume that J is a convex

function of G and o-i. Hence, this problem is tractable. Note that Problem 2 is

a centralized optimization since the nominal power and standard deviation of all

generators are decided by one optimization process. In the next section we present

an algorithm to solve Problem 1 in a decentralized manner.

3.5 Market-based Decentralized Contingent Power

Dispatch

In this section we present a decentralized solution to Problem 2 (3.16-3.19) that

uses a market-based mechanism called tatonnement. Our main reason to develop

a decentralized optimization algorithm is because the real-world electricity market

also works in a decentralized manner: providers and consumers bid their demand

and supply to maximize their benefit; electricity is priced competitively. Likewise, in

our decentralized algorithm, each provider decides its nominal and contingent power

supply to maximize its own benefit at a given market price; the price is adjusted by

the market to balance demand and supply. We show that, with moderate conditions,

our decentralized algorithm results in a globally optimal solution for Problem 2.



3.5.1 Overview

We give an informal overview of our market-based decentralized contingent power

dispatch algorithm in this subsection. Formal discussion follows in subsections 3.5.2

and 3.5.3.

Step 1
Market announces the prices.

Demand:

L= 400 MWh

L =40M MWho

Market P,$20/M\Th
p, =$5/MWh

Step 3
Market adjusts the prices.

Supply-demand imbalances

pH = $15/ M Wh

p, =$1O/MWh

Step 2
Generators bid supplies.

Step 4
Generators revise bids.

Step 5
Repeat until demands and supplies are balanced.

Figure 3-4:
algorithm.

Overview of the market-based decentralized contingent power dispatch

Figure 3-4 shows the overall process of the algorithm. The algorithm involves a

market, which decides the prices, and generators, each of which decides its output

P



level, depending on the prices. In each iteration, the market announces the price of

nominal power as well as the price of contingent power, that is, the price of stan-

dard deviation (Step 1). Then, each agent solves its own optimization problem in

a decentralized manner in order to decide how much nominal and contingent power

it wants to sell at the given prices (Step 2). In other words, each agent decides the

supply level as a function of price. Then, the market compares the demands and

aggregate supplies. In Step 2 of Figure 3-4, for example, there is excess supply of

nominal power and excess demand for standard deviation, since L < E3 Gi and

UL i aj. Therefore, in Step 3, the market lowers the price of nominal power

and raises the price of standard deviation. Then, in Step 4, the generators revise the

supply levels according to the updated price. The supplies and demands have not

been balanced yet, but the gaps become smaller this time. We repeat this process

until the supplies and demands of both quantities are balanced.

3.5.2 Dual Decomposition

We reformulate Problem 2 to a decentralized form by using dual decomposition.

The decentralized formulation has two parts. The first part is a series of convex

optimization problems, which are solved by each power provider in parallel, while the

second part is a root-finding problem, which is solved by a central module, that is, a

market.

We apply dual decomposition to Problem 2 to obtain the following Problem 3,

which is the optimization problem solved by each power provider.

Problem 3: Optimal Contingent Power Supply Problem for the ith Gen-

erator (Primal)

qi(PN,P,) min Jj(Gj, j) - pN~i - poa (3.20)

s.t. -o-iFj1(61) <G i < Ci - auFf (1 - o') (3.21)



where PN and p, are the prices of nominal power and standard deviation, given by the

market. Note that, in (3.20), pNGi + pooUi represent the revenue of the ith generator

obtained by selling Ci of nominal power and o- of standard deviation in the market.

Hence, minimizing the objective function in (3.20) means maximizing the benefit

(i.e., revenue less cost) of the ith generator. qi(PN, p,) is the minimized net cost

(i.e., negative benefit) of the ith generator at the given prices. Note that its sum,

E qi(pN, Pa), corresponds to the dual objective function of Problem 2.

We denote the arguments of the optimal solution to Problem 3 by [Oi(pN, pa), Oi (pN, p)

(PN, pa), (PN, P,) arg min Ji(Gi,0-9) - PNGi -puo-j

s.t. -UiF(6') < Ci < Ci - o-iF '(1 - 6u)

These optimal solutions are functions of price. They can be considered as supply

functions, which indicate the optimal level of supply by the ith generator at given

prices. Note that Problem 3 involves only Gi and o-. Hence, this problem can be

solved by the ith generator independent from all of the other generators. This enables

parallel computation. Also note that the prices (PN, p,) are treated as given constants

in Problem 3.

The market finds the optimal prices (PN, pa) by solving the following root-finding

problem.

Problem 4: Optimal Contingent Power Pricing Problem (Dual)

Find (PN, P) such that:

N

L = Z $(PN, Pa)

N

0L o~(PN, po)
i=1

Problems 3 and 4 together solve the dual optimization problem of Problem 2. The

sum of the optimal cost of all generators obtained from Problem 3, zi=1 Ji (Gi(pN, pa), o PNP)),

corresponds to the dual objective function, while Problem 4 corresponds to the sta-



tionary conditions of the dual optimization problem.

We present an iterative algorithm that finds solutions to Problems 3 and 4 in the

next section. For now, let us assume that optimal solutions to Problems 3 and 4 are

available. Let p*N, Pr, G(p*p*), and o(p* p) be the optimal solutions. Then, the

following theorem holds:

Theorem 1: Optimality of Decentralized Contingent Power Dispatch

Optimal solutions to Problems 3 and 4, G*(p* ,p) and 0*(p*, p), are also optimal

solutions to Problem 2.

Proof: Problem 2 has no duality gap since Ji are continuously differentiable

convex functions by assumption and all constraints in Problem 2 are linear. There-

fore, dual optimal solution G7(p*p*), a 0(p*, po) corresponds to the primal optimal

solution of Problem 2.

3.5.3 Decentralized Optimization Algorithm

In this subsection we present an iterative algorithm that finds optimal solutions to

Problems 3 and 4. The algorithm solves Problem 4 by a subgradient method, while the

supply functions G7(pN, Pa), UO(PN, p,) are evaluated in each iteration of the subgra-

dient method by solving Problem 4 using an interior point method. Every generator

solves Problem 4 in parallel.

In this subsection, we use a stronger assumption on the cost function: Ji(Gi, 0a)

is a strictly convex function. This assumption excludes linear objective functions.

Such an assumption is required since, if the cost function is not strictly convex, the

supply functions G2(PN, P), oU(PN, Pa) can be discontinuous and a subgradient may

not exist. We note that, even if the cost function is convex but not strictly convex,

optimal solutions can still be obtained by the centralized optimization of Problem 2.

The proposed algorithm, shown in Algorithm 1, is based on a market-based price

adjustment process, titonnement [84]. The algorithm is initialized with initial prices

[pN, Pa'](Line 1). The initial step size ao and the discount factor of the step size A are

also set appropriately (Line 2). In each iteration, each agent solves Problem 3 to find



Algorithm 1 Market-based Contingent Power Dispatch

: pN - P0 0

2: a <- ao, set A E (0, 1)
3: dL +- oc, d, - oo

4: while IdLI > EN V IdI > c, do
5: The market announces the prices [pN, P] to generators

6: Each agent computes Gi(pN, p,) and Ua(pN, p,) by solving Problem 3

7: dL +- -N *(PN,Po)

8: d, +-UL - P1 (PN,P)
9: [PN,Pa] +-- [PN,Pa + [dL, d]

10: a +- Aa
11: end while

the optimal supply levels of nominal power and standard deviation at the given prices

(Line 6). The market then compares the demands and the aggregate supplies (Lines

7 and 8). If their differences are within specified tolerance levels, the current prices

are the solution to Problem 4, and the algorithm terminates (Line 4). If they are not

balanced, the market adjusts the prices (Line 9) and repeats the iteration. The price

adjustment is proportional to the difference between the demand and the aggregate

supply [dL, d,]. The step size a diminishes throughout iteration since A E (0, 1) (Line

10).

Note that the difference between demand and aggregate supply corresponds to a

subgradient of the dual objective function, q(PN,P,):

N N

[dL, da] - '' (PN,PN)N, N) e &(PN,P)

In each iteration, the price adjustment is obtained by multiplying a diminishing step

size a. Algorithm 1 is guaranteed to find an optimal solution since the convergence

of the subgradient method with diminishing step size is guaranteed [12, 81].

3.6 Simulation Result

We demonstrate the Market-based Contingent Power Dispatch in a simulation.



3.6.1 Simulation Setting

We consider three electricity generators in this simulation: 1) a base load plant, 2) a

load-following plant, and 3) a peaking plant. The base load plant has the lowest cost

of nominal power and the highest cost of standard deviation. The peaking plant has

the highest cost of nominal power and the lowest cost of standard deviation.

We assume that the cost function of each plant is a quadratic function of nominal

power and standard deviation:

Jj(G, o-) = ajG + bjGj + ciou + dau,

where aj, bi, ci, and di are constant parameters. Table 3.1 shows the parameter

settings for each plant, as well as the capacity and the risk bounds. As for the step

size of the subgradient method, we set a- = 0.1 and A = 0.995.

Table 3.1: Parameter settings of the cost functions of the three plants. The cost
function that we assume is: Ji(Gj, ar) = aiGi + biC2 + ca, + djU2

Nominal Contingent
Z ai bi ci di

1 Baseload plant 1.0 0.10 0 106
2 Load-following plant 1.5 0.15 0 0.10
3 Peaking plant 2.0 0.20 0 0.05

As shown in Figure 3-5, we run the simulation on six cases, (a)-(f), with different

levels of demand for nominal power and standard deviation. Two nominal power

demand levels are considered: 100 MWh and 200 MWh, as listed on the horizontal

axis of Figure 3-5. We also consider three demand levels for standard deviation: 10

MWh, 20 MWh, and 200 MWh, as shown on the horizontal axis of the figure.

3.6.2 Result

The simulation results are shown in Figure 3-5.

The case (e) with 100 MWh nominal power and 30 MWh standard deviation
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Figure 3-5: Simulation results of the Market-based Contingent Power Dispatch.

turned out to be infeasible. This is because the lower bound constraint (3.12) cannot

be satisfied. Recall that (3.12) limits the risk of oversupplying electricity. Since the

allocated nominal power G, is small, there is not enough margin to guarantee the

specified risk level.

Optimal solutions are obtained in all other cases. The base-load plant provides

the largest portion of nominal power, while the peaking plant provides the largest

portion of contingent power in all feasible cases, except for case (c). The reason for

this exception is explained shortly.

Note the increasing tendency of the equilibrium price of nominal power as the

demand for nominal power increases. Likewise, the price of standard deviation also



increases as the demand for standard deviation increases. There is a weak coupling

between the two prices: compare the three cases in the right column in Figure 3-5

and notice that the price of nominal power is slightly changed, although the demand

for nominal power is constant. Such an effect is called a substitution effect in eco-

nomics. This substitution effect occurs because the optimizations of the supply levels

of nominal power and standard deviation are coupled through Problem 3.

The substitution effect becomes significant when the demands are close to the

boundary of the feasible region. For example, observe that, in the case (c) with

the 100 MWh demand for nominal power and the 20 MWh demand for standard

deviation, the load-following plant provides the largest portion of contingent power,

even though its cost of standard deviation is higher than that of the peaking plant.

This is explained by the substitution effect. In order for the peaking plant to provide

a larger portion of contingent energy, it must also provide a larger amount of nominal

energy, since otherwise the risk of undersupplying power will exceed the risk bound

(i.e., violation of (3.12)). However, providing nominal energy is expensive for the

peaking plant. Rather, it is cheaper to produce the necessary amount of contingent

energy at the load-following plant, since it is already producing a larger portion of

nominal energy. Therefore, the load-following plant produces a larger portion of

contingent energy than the peaking plant in the particular case.
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Chapter 4

Risk-sensitive Plan Execution for

the Connected Sustainable Home

4.1 Introduction

In this chapter we present a robust plan executive, p-Sulu, and its application for the

Connected Sustainable Home. Recall that p-Sulu takes a chance-constrained quali-

tative state plan (CCQSP) as an input, and continuously outputs control sequences

and execution schedules. Also recall that, in Section 1.2.2, we specified three features

that are required to control Connected Sustainable Home:

1. goal-directed planning with continuous effects and temporally extended goals

(TEGs),

2. optimal planning, and

3. robust planning with bounded risk.

Our approach is to build p-Sulu upon the iterative risk allocation (IRA) algorithm

[71], which can optimally plan with chance constraints. Hence, IRA can provide

the second and third features listed above. However, IRA cannot handle TEGs.

Moreover, its application has been limited to simple planning problems with finite

duration, while building control must operate continuously.



Figure 4-1: Architecture of p-Sulu. p-Sulu consists of two nested loops on top of the

fixed-risk CCQSP planner.

Therefore, two major technical challenges for p-Sulu are 1) handling of TEGs and

2) continuous planning with infinite plan duration. The first challenge is overcome by

a novel algorithm called IRA-CCQSP, which extends IRA to planning problems with

TEGs. The second challenge is overcome by employing a receding horizon control

approach, also known as model predictive control (MPC) [63], where a finite-horizon

CCQSP planning problem is repeatedly solved by the IRA-CCQSP algorithm.

Figure 4-1 shows the architecture of p-Sulu, which consists of two nested loops on

top of the fixed-risk CCQSP planner. The outer loop performs continuous receding

horizon planning through repeated calls to a CCQSP planner. The receding horizon

planner divides the time into multiple planning segments or planning horizons with

a finite duration, which "recede" over time. For example, at time t = 0, a CCQSP

planning problem with a planning horizon t E [0 10] is solved. Then, at time t = 3,

a CCQSP planning problem is solved again with a planning horizon t E [3 13].

In each planning horizon the CCQSP planning problem is solved by the inner loop

through the novel IRA-CCQSP algorithm. IRA-CCQSP finds an optimal allocation

of risk through iterative solving of a fixed-risk CCQSP planning problem. The fixed-

risk CCQSP planning problem is to find an optimal control sequence and a schedule

that satisfy the given CCQSP, which involves TEGs and chance constraints. The

fixed-risk CCQSP problem is encoded into a mixed-linear integer program (MILP),

which is solved by a commercial MILP solver.

p-Sulu

Pecedng hrinlanning

CCQSP planning
IRA-CCQSP Algonithm

Fixed-risk CCQSP Planning
Mixed-imteger imear program solver



Three innovations are presented in this chapter. First, we formulate building

climate control as a CCQSP planning problem. Second, we develop IRA-CCQSP al-

gorithm. Furthermore, we show that IRA-CCQSP is an anytime algorithm. Third, we

develop a new fixed-risk CCQSP planner, which is used in the IRA-CCQSP algorithm

to deal with TEGs in a continuous domain.

4.2 Related Work

Application of Al methods to building control has been actively studied for several

decades. For example, [62] employs a stochastic model-predictive control (SMPC) ap-

proach to significantly reduce energy consumption of a building, based on a stochastic

occupancy model. Although our work is similar to theirs in that p-Sulu is also built

upon SMPC, our problem differs in its guarantee to bound risk, and its formulation

with chance-constraints. [48] models end user energy consumption in residential and

commercial buildings. Another relevant work within the community is [58], which

uses a robust plan executive to control autonomous underwater vehicles in order to

perform ocean monitoring.

Application of MPC for building climate control has received considerable atten-

tion for its ability to minimize energy consumption with time-varying constraints

[34, 38, 61]. [69] applied a chance-constrained MPC to deal with uncertain weather

and occupancy predictions. Our approach differs from [69] in that p-Sulu can take

flexible temporal constraints.

There is extensive literature on planning with discrete actions to achieve tempo-

rally extended goals (TEGs), such as TLPlan [8] and TALPlan [52]. However, since

these TEG planners assume discrete state spaces, they cannot handle problems with

continuous states and effects without discretization. Ignoring chance constraints, the

representation of time evolved goals used by TLPlan and p-Sulu is similar. TlPlan

uses a version of metric interval temporal logic (MITL) [3] applied to discrete states,

while p-Sulu uses qualitative state plans (QSPs) [56, 40, 59] over continuous states.

Kongming [59] plans with TEGs for hybrid systems, but it does not consider stochas-



tic uncertainty and chance constraints. Chance-constraint MDP [33] considers chance

constraints, but out work is distinct from theirs in that p-Sulu is goal-directed, by

which we mean that it achieves TEGs within user-specified temporal constraints.

4.3 Problem Formulation

Recall that p-Sulu takes as an input a CCQSP, which encodes both TEGs and chance

constraints. Given a CCQSP, p-Sulu finds an optimal control sequence, which is

an assignment to real-valued control variables, as well as a schedule, which is an

assignment of execution time to events.

4.3.1 Stochastic Plant Model

An advantage of p-Sulu over existing deterministic plan executives is that it can

explicitly reason over a stochastic plant model, which specifies probabilistic state

transitions in a continuous domain in the following form:

xt+ = Atxt + Btut + wt, (4.1)

where xt is a continuous state vector at time t, ut is a continuous control vector at t,

and wt is a disturbance whose probability distribution is known.

4.3.2 Input: CCQSP

A CCQSP may be depicted as an acyclic directed graph. For example, the CCQSP

shown in Figure 4-2 is interpreted in plain English as a series of episodes, as follows:

"Maintain a comfortable sleeping temperature (18-22'C) until I wake up.

After waking up, maintain a comfortable room temperature (20-25-C)

until I go to work. I can do some work at home, but I have to do 5

hours of work in the office sometime between 9 a.m. and 6 p.m. No

temperature constraints while I am away, but when I get home, maintain



the comfortable room temperature (20-25'C) until I go to sleep. The

probability of failure of these episodes must be less than 1%. The entire

time, make sure the house does not get so cold that the pipes freeze. Limit

the probability of such a failure to 0.01%."

Formally, a chance-constrained qualitative state plan (CCQSP) is a four-

tuple P = (E, A, T, C), where E is a set of discrete events, A is a set of episodes, T

is a set of simple temporal constraints, and C is a set of chance constraints.

An event, illustrated as a circle in Figure 4-2, represents a point of time, to which

an execution time is assigned.

An episode, depicted as a rectangle, specifies the desired state of the system

under control over a time interval. It is a three tuple a = (es, e, Ra), where es and

ej are the start and end events of the episode, respectively. Each episode a has a

feasible state region Ra. For example, Ra for the "Maintain sleep temperature" is a

closed interval on the indoor temperature, [18-C 22 0 C].

A simple temporal constraint, denoted by two numbers in a bracket as [lb,' ube'],

specifies an upper bound ube' and a lower bound lb' on the temporal distance between

two events e, e' EE. Note that ub' = -lbe,.

Finally, a chance constraint specifies a lower bound on the probability of failing

to satisfy a set of episodes during execution. It is a two-tuple, c = (Ac, T), where

Ac is the risk bound and Te is the set of episodes associated with a chance constraint

c. For example, in the CCQSP shown in Figure 4-2, the first chance constraint

is associated with three episodes: a "Maintain sleep temperature" episode and two

"Maintain home temperature" episodes.

4.3.3 Outputs

Optimal executable control sequence p-Sulu generates a control sequence uo - UT

that minimizes a given cost function and satisfies all constraints specified by the in-

put CCQSP. In the case of the Connected Sustainable Home, the outputs are the

opaqueness of the dynamic window, as well as the heat output of HVAC.
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Figure 4-2: An example of a CCQSP for a resident's schedule in a planning problem
for the Connected Sustainable Home.

Optimal schedule p-Sulu also outputs an optimal schedule. Let se E R+ be an

execution time of the event e, where R± is the set of non-negative real numbers. A

schedule s is an assignment of execution times to all events in E.

4.3.4 CCQSP Planning Problem Encodings

In this subsection we encode the CCQSP planning problem that is solved at each

planning horizon by the IRA-CCQSP algorithm. Recall that we employ a receding

horizon approach. We denote by T, := {(=n - 1)NE +1 ... (n - 1)NE + Np} the set of

discrete time steps included in the nth planning horizon, where NE and Np are the

number of time steps in an execution horizon and a planning horizon, respectively.

Note that NE < Np.

The temporal constraints in a CCQSP are encoded as follows:

A A lb - se - se, ub' (4.2)
eGE e'E,e'$e

A s(e) Se, (4.3)

where E is a set of unexecuted events. (4.2) imposes upper bound and lower bounds

on arcs that involves unexecuted events. The schedule of the events that have already

been executed, e E E\Eu, are fixed to their execution time 9e, as in (4.3).



We next encode the episodes, as well as chance constraints. An episode a is

satisfied if the state xt is within the feasible region Ra whenever a is being executed

(i.e., ses < t < SEE). A chance constraint c is satisfied if all episodes in Tc are satisfied

with probability 1 - Ac. Hence, for all chance constraints in C, the following must be

satisfied:

APr A A ((ses < t <seE) - Xt E Ra) >1-A. (4.4)
cEC _aEIc tET .

The constraint (4.4) allows the plan executive to postpone the execution of a by

setting ses larger than all the time steps in T,,. Postponed episodes are executed in

later planning horizons. However, whenever an episode can be executed at the current

horizon, the executive should not postpone its execution since there is no guarantee

that the episode is still feasible with regard to state and chance constraints at future

time steps. Therefore, we penalize deferments of episode execution. Let Pa be the

penalty, and M be a large positive constant. We require the following:

Ses > (n - 1)NE + Np -> Pa = M. (4.5)

Finally, we set the objective function. Let J(u, s) be a cost function, which is

assumed to be a piecewise linear function of a control sequence u and a schedule

s. The penalty Pa of all episodes must be added to the cost function. Hence, we

minimize the following objective function:

min J(u, s) + ZPa. (4.6)
aEA

For each planning horizon 7 , p-Sulu solves a CCQSP planning problem with the

objective function (4.6) and constraints (4.1), (4.2), (4.4), and (4.5).



4.4 Robust Plan Executive: p-Sulu

Recall that p-Sulu consists of two nested loops. The outer loop performs continuous

receding horizon planning through repeated calls to a stochastic CCQSP planner.

The CCQSP planning is implemented by the inner loop through the novel IRA-

CCQSP algorithm, which performs a series of fixed-risk CCQSP planning steps. We

first walk through an example to give an intuitive overview of IRA-CCQSP. Next we

transform the stochastic optimization problem stated in the previous section above

to a deterministic optimization problem by using the risk allocation approach. We

then present the formulation of the fixed-risk CCQSP planning problem, followed by

the descriptions of the inner and outer loop algorithms.

4.4.1 Walk-Through of IRA-CCQSP

We walk through an example shown in Figure 4-3, a room temperature control prob-

lem with a 24-hour planning horizon in winter (hence the room must be heated).

For simplicity of explanation, we assume a fixed schedule in this example, where the

resident wakes up at 8 a.m., leaves home at 12 p.m., comes back home at 5 p.m.,

and goes to bed at 12 p.m. The room temperature is required to be within specified

ranges according to the resident's state, as in Figure 4-3.

As we explained in Section 2.1, allocation of risk to each constraint must be

optimized in order to optimally solve a joint chance constrained optimization problem.

The IRA-CCQSP algorithm optimizes risk allocation for a CCQSP planning problem.

It guarantees satisfaction of chance constraints by setting a safety margin (shown as

shadowed areas in Figure 4-3) along the boundaries of the constraints, and planning

a nominal state trajectory to remain outside of the margin. The width of the safety

margin is determined so that the probability of constraint violation is below the risk

allocated to each constraint. For example, in Figure 4-3-(a), the safety margin is

uniform for all the time because the initial risk allocation is uniform.

IRA-CCQSP is initialized with an arbitrary feasible risk allocation, such as the

uniform one in Figure 4-3-(a), and improves the risk allocation through iteration.
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Figure 4-3: Intuitive explanation of the iterative risk allocation (IRA) algorithm.

In each iteration a fixed-risk CCQSP planning problem is solved in order to plan a

nominal state trajectory that minimizes cost and does not violate the safety margin,

as shown in Figure 4-3-(a). The plan minimizes energy consumption by lowering the

temperature during the night, while heating the room using sunlight during the day.

It heats the room to the maximum before the sunset at around 5 p.m. to store heat

in the structure, so that the use of heater during the night can be minimized.

Note in Figure 4-3-(a) that, with this plan, constraints are active at a few points

of time, while they are inactive at other points of time. To improve cost, IRA removes

the risk that was allocated to the inactive constraints, and reallocates it to the active

constraint. Note that reducing risk allocation results in a wider safety margin, while

increasing risk allocation results in the opposite. Thus, the new risk allocation results

in the safety margin shown in Figure 4-3-(b). The algorithm then solves the fixed-risk

CCQSP planning problem again, in order to obtain the optimal plan that does not

violate the new safety margin. The new plan is more energy efficient than the one

in the previous iteration since the temperature can be lower during the night, while

it is higher in the evening to store more heat. In this way, the algorithm reallocates

the risk again from inactive constraints to active constraints at every iteration. It

terminates when all constraints become active or all constraints are inactive. The



cost function value (i.e., energy consumption in this case) decreases monotonically

during successive iterations. The path generated at each iteration always satisfies the

chance constraint since it does not violate the safety margin.

4.4.2 Deterministic Transformation

In order to make the CCQSP planning problem tractable, we reformulate the stochas-

tic constraints (4.4) to deterministic constraints. To this end, we first decompose the

chance constraint. It follows from Boole's inequality that the following is a sufficient

condition for (4.4):

Pr [(ses < t < SeE) 4 xt E Ra 1 - 6a,t (4.7)
cEC aETc tETn

A 6a,t < Ac, (4.8)
cEC aC4'c,tETn

where 6 a,t is the risk allocated to episode a at time step t. The above two constraints

can be transformed into equivalent deterministic constraints on nominal states. For

example, in the case of Connected Sustainable Home, the equivalent deterministic

constraints are described as follows:

(ses < t < SeE) ->t E Ra(3a,tU, 6 a,t,L) (4-9)
cEC aEGc tETn

A E 6 a,t,U + 6a,t,L < 'c, (4.10)
cEC aE /c,tETn

where zt is a nominal state, which is a deterministic variable defined as Xt = E[xt].

6 a,t,U and 6a,t,L are the risk allocated to the upper and lower temperature bounds

of episode a at time t. Ra(6 a,t,U, 6a,t,L) is a range of temperature between the safety

margins, as shown in Figure 4-3-(b). It is a closed interval on the indoor temperature,

Ra (a,t,U, ia,t,L) = [TL + t(3 a,t,L) TU - (6a,t,U),



where TU and TL are the lower and upper bounds of the comfortable indoor temper-

ature range for episode a, respectively. The function mt( 6 ) represents the width of

the safety margin at time step t given the risk allocation 6. For example, when the

indoor temperature T" has a Gaussian distribution with standard deviation o-, the

safety margin width is given as:

mei(6) = -FJ() = -v'2 on erf-1(1 - 26),

where F- 1(.) is an inverse cumulative distribution of a zero-mean Gaussian distribu-

tion with standard deviation ut, and erf 1 (-) is the inverse of the Gauss error function.

Figure 4-4 provides an intuition of this transformation. The integral of the probabil-

ity distribution function above Ta represents the probability of violating the upper

bound. In order to satisfy the chance constraint, this area must be less than 6. Such

a condition can be met by leaving a margin between the mean and the constraint

boundary, and the necessary width of the margin is -Ft (6).

Constraint violation

4.A

.0

0

T in TU Indoor temperature
ta

Mean state (deterministic variable)

Figure 4-4: Transformation of an individual chance constraint into an deterministic
constraint.

Finally, since wt is assumed to have a zero-mean disturbance, the following nom-

inal plant model is obtained from (4.1):

st+1 = Atzt + Btnt. (4.11)



4.4.3 Fixed-risk CCQSP planning problem

In this subsection we formulate the fixed-risk CCQSP planning problem, which is

solved in IRA-CCQSP to obtain nominal state trajectories with a given risk allocation.

Let 6 be a vector comprised of risk allocations oa,t,j for all a E A, t E Tn, and

j E {U, L}.

Definition 1 Fixed-risk CCQSP Planning Problem Pn(6) is a constrained op-

timization problem with objective function (4.6) and constraints (4.2), (4.3), (4.5),

(4.9), (4.10), and (4.11), given a fixed risk allocation 6.

[56] showed that the logical implications (->) in (4.5) and (4.9) can be encoded to

mixed-integer linear constraints. Thus, the fixed-risk CCQSP planning problem is a

mixed-integer linear program, which can be efficiently solved by a commercial solver,

such as CPLEX.

4.4.4 Inner Loop: CCQSP Planning using IRA-CCQSP

Next we present the IRA-CCQSP algorithm. IRA-CCQSP is described in Algorithm

2. Here, k is the index of iteration. We denote by 6 the risk allocated to the

constraint (a, t, j) at iteration k, and by 6 k the vector comprised of all risk allocations

at iteration k. The algorithm is initialized with an feasible risk allocation 6' in Line

1. We assume that such a feasible risk allocation is known. A uniform risk allocation

is typically used to initialize IRA-CCQSP. At each iteration, an optimal nominal

state trajectory is obtained by solving the fixed-risk CCQSP planning problem with

a risk allocation 6 k (Line 3). In Lines 5-12 the algorithm reallocates risk from inactive

constraints to active constraints. It reduces the risk allocated to inactive constraints

(Line 7), and deposits the amount of risk removed from the inactive constraints in ,.

In Line 7, 0 < a < 1 is an interpolation coefficient, and Pa,tj (zt) is the probability of

violating the constraint with index (a, t, j), given a nominal state xt. In the case of

Connected Sustainable Home, pat,j(-) is evaluated as follows:

pa,tp(T'") =1 - Ft(Ta"), Pa,t,L() =Ft(T



where T" is the nominal indoor temperature at time t, Ft(-) is the cumulative distri-

bution function of the indoor temperature Tin7, and Ti, Tf are the upper and lower

bound of the comfortable temperature range of episode a. Intuitively, Line 7 obtains a

new safety margin by interpolating the current safety margin and the current nominal

state, as shown in Figure 4-5. The new risk bound 6 k+1 is smaller than the current

risk bound 6 k, but still greater than the risk of the current nominal state pa,,,(T"t).

Therefore, Line 7 guarantees that the new safety margin is not violated by the current

nominal state trajectory. Then the algorithm reallocates the amount of risk saved

in -y to the active constraints. It splits the deposit of risk equally to the Nc active

constraints in Line 11. By going through one iteration, the risk allocation is updated

from ok to 6 k+1.

Algorithm 2 IRA-CCQSP

1: Set initial risk allocation a1; k +- 1
2: repeat
3: Solve p.(6k)
4: for allcEC do
5: 7c +- 0; Nc <- number of active constraints in c
6: for all a E Te, t E T, j E {U, L} such that the constraint with index (a, t, j)

is inactive do
7: 6,, +- ak 1 )Pa,t,j p t)

8: 7 c <- 7 -+ (+atj - a,,)
9: end for

10: for all a C Ie, t E Tn, j E {U, L} such that the constraint with index (a, t, j)
is active do

11: 6aj - 6a, + 7c/Nc
12: end for
13: end for
14: k <- k + 1
15: until VcEC Nc = 0 or VCec 7c = 0

Anytime Algorithm We now prove that IRA-CCQSP is an anytime algorithm,

given that the initial risk allocation a' is feasible. The following lemma holds:

Lemma 1: If Pn(6k) has a feasible solution, then P,(6k+1) also has a feasible

solution.
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Figure 4-5: Constraint tightening of an inactive constraint in the IRA-CCQSP algo-
rithm (Line 7). The new risk bound 3 k+1 is smaller than the current risk bound 6 k,

but still greater than the risk of the current nominal state patL(t). Therefore, the
new safety margin is not violated by the current nominal state trajectory.

Intuitively, we prove the lemma by showing that the nominal state trajectory in

the previous iteration, as shown as the dashed line in Figure 4-3-(b), does not violate

the new safety margin.

Proof: Let t* be a feasible solution of P,( 6 k). Then, z* is also a feasible

solution because the active constraints in Pn(6k) are relaxed while Line 7 guarantees

that tightened inactive constraints are not violated by t*.

It immediately follows from the lemma that, given a feasible initial risk allocation,

the fixed-risk CCQSP planning problem has a feasible solution for all iterations. The

following lemma, which guarantees that the objective function value J* (defined in

(4.6)) monotonically decreases over iterations, is also derived from Lemma 1.

Lemma 2: Let J*(6k) the minimized objective function value of the fixed-risk

CCQSP planning problem given a risk allocation Sk. Then, J*(6k+1) j*(6k) for all

k > 1.

Proof: Lemma 1 guarantees that an optimal solution of pn(6k) is also a feasible

solution of pn(6 k+1). Hence, J*(6k+1) < j*(6k). M

It follows from Lemmas 1 and 2 that the IRA-CCQSP algorithm is an anytime

algorithm. Each iteration constructs a feasible CCQSP sequence of actions. Every

iteration improves the plan, hence iteration can be stopped at any point after the

first call, while sacrificing optimality, but not correctness or incurring unacceptable

risk.



4.4.5 Outer Loop: Receding Horizon Planning

We next present the outer loop of p-Sulu. The outer loop performs continuous reced-

ing horizon planning through repeated calls of IRA-CCQSP. It exploits the feature of

IRA-CCQSP that it is an anytime algorithm by running as many IRA-CCQSP iter-

ations as possible within each planning horizon, in order to obtain the best available

solution for a given replanning interval. The outer loop is outlined in Algorithm 3.

Algorithm 3 p-Sulu

1: S <- E; n <- 1

2: while E, -# 0 do

3: Wait until t = (n - 1)NE -+ I

4: u <- IRA-CCQSP(n, E)

5: Execute the first NE steps in U

6: Ve E Su, remove e from S if e has been executed

7: n <- n + 1

8: end while

In Algorithm 3, we denote by NE the number of time steps in an execution horizon

and by Eu a set of unexecuted events. At the start of continuous planning and

execution, Eu is initialized with the full set of events E in the given CCQSP(Line

1). The executive replans every NE time steps. It waits until the next scheduled

replanning time in Line 3. A CCQSP planning problem is solved at every planning

cycle by IRA-CCQSP, in order to generate a sequence of optimal control inputs u

(Line 4), of which the first NE control inputs are executed in this horizon (Line 5).

Finally, the events that are executed within this planning horizon are removed from

S (Line 6). This iteration is repeated until all the events are executed and hence the

set S becomes empty (Line 2).

In the application for Connected Sustainable Home, new events are continuously

added to the CCQSP so that the algorithm operates without termination. This is a

reasonable approach for Connected Sustainable Home since it is not realistic to specify

episodes in far future. For example, a resident would not specify the time to go to bed



a year in advance. Instead, a resident are allowed to add episodes to CCQSP in order

to specify her requirements in near future. The plan executive operates continuously

with a CCQSP, which has a finite duration but is continuously extended. The same

approach has been employed by Remote Agent [66] and Casper [47].

4.5 Application to Connected Sustainable Home

Building Model We obtain a stochastic plant model of Connected Sustainable

Home in the form of (4.1) by using a lumped capacitance model for a thermal system

[42]. The lumped capacitance model is analogous to an electrical circuit. Separate

components, or "lumps", of a building store heat according to its heat capacity C

similar to how an electrical capacitor stores charge. Heat transfers between lumps

subject to a thermal resistance, which is a property of the materials. We break the

home down into a single lump for the indoor air mass, as well as a lump for each wall

and window, as shown in Figure 4-6. In total the house is decomposed into 11 lumps:

4 for windows, 6 for walls, and 1 for the indoor air mass. For each component i, the

following holds for a short time interval At:

C'(Tl - T) = AQ'Oflt + AQonv,t + AQadt, (4.12)

here, T7 is the temperature of the ith component at the time step t. AQ'cond,t,

AQ'onv,t, and AQ{ad't are heat inputs to the ith component during the time interval

through conduction, convection, and radiation, respectively. The outdoor environ-

ment is treated as a heat source, similar to a voltage source in the circuit analogy.

The conductive heat input AQhO ldt accounts for all heat transfer through each

wall. For example, the conduction heat input for the indoor air mass component is:

AQfond,t = n (T - Tj")At, (4.13)

where T" is the indoor temperature, T is the temperature of wall i, Ai is the area of

contact between components i and j, and R is the heat resistance (R-value) between
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Figure 4-6: Model of temperature flow between lumps is analogous to an electric
circuit (left). Depiction of state variables T and control variables QHeat, QAC, t{w
(right).

components i and j. The convection term accounts for any heat transfer from the

heater and air conditioner:

AQ'Oin = AQHeat - AQAC (4.14)

where AQHeat and AQAC are the outputs of the heater and air conditioner, respec-

tively. Finally, the radiation term accounts for heat transfer from the sun through

the glass facade:

AQadt w r(t) U DWAt, (4.15)

where A is the area of the facade, r is the solar radiation, and uW is a control variable

for the emissivity of the dynamic windows. By substituting (4.13)-(4.15) into (4.12),

we obtain the following:

Tin ± A At(T - Ti)
T)a |"+ i R+AQB""t - AQAC + Ar (t jUDW At .(4.16)



Similarly, the thermal models for the walls is are obtained as follows:

. . 1 At(T in - TO} Ayut st(Tto"t - Ttj)
1±1 + (fl {An t - t + AI 1 ztT 01 t

-~? + AQi1d} (4.17)Tja= i Cin Ri " R out + A aa't - (.

We assume that future outdoor temperature Ttout has uncertainty, which is repre-

sented by a Gaussian distribution. Hence,

to " Tu t + Wt, (4.18)

where 7 t is a constant representing the predicted temperature at time t, and wt is a

random variable that has a zero-mean Gaussian distribution with a known standard

deviation ot.

Finally, the stochastic plant model (4.1) is obtained from (4.16)-(4.18) by defining

the state vector and the control vector as follows:

o = NT 1 ]T" U . [.AQHeatt, AQC, UDWT.

Cost Function The cost function J in (4.6) is the total energy consumption over

a planning horizon, give as follows:

NP kQC Hea t

J(u,s)=Z AC + Heat

t=1 7A 1Ha

where qAC and r/Heat are the thermal efficiencies of the air conditioner and heater,

respectively, and Np is the number of time steps in a planning horizon.

4.6 Experimental Design

We demonstrate p-Sulu on simulations of Connected Sustainable Home. In our exper-

iments, we assume the resident can specify one of the following three types of episodes:

Home, Asleep, and Away. The temperature must be between 20 and 250C while the

resident is home, between 18 and 22 0C while sleeping, and above 50C while away to
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Figure 4-7: Planning results for January 1 and July 1.

ensure pipes don't freeze. We impose flexible temporal constraints and chance con-

straints shown in Figure 4-2. We introduce a disturbance wt drawn from a Gaussian

distribution with standard deviation of = 0.5'C. p-Sulu is implemented in C++,

and all trials were run on a machine with a Core i7 2.67 GHz processor and 8 GB of

RAM.

We evaluate the performance of p-Sulu on the basis of both energy saved, and

robustness to failure. We consider two baseline models for comparison: (a) a PID

controller, and (b) Sulu, the deterministic predecessor to p-Sulu. We compare p-Sulu

to the PID controller to illustrate the energy savings that comes from using a model-

predictive control compared with a traditional heating controller. We then compare

p-Sulu to Sulu to illustrate the robustness to failure that arises from risk-sensitive

control. The setpoint of the PID controller was chosen to be 21'C, a point that is

feasible in every state. For each controller, we plan according to an example resident

CCQSP that spans a week. Each controller is evaluated on the basis of energy use

and percentage of executions that fail due to constraint violations.

Figure 4-7 illustrates the results of a stochastic simulation over two different days

in the year. Notice that Sulu plans right up to the edge of the constraints, often

violating constraints when a disturbance is introduced, while p-Sulu leaves a margin.

In Table 4.1 we present the results of the stochastic simulation on the week-long

scenario, averaged over 100 Monte Carlo trials each with A = 0.1. Notice that the

failure rate of p-Sulu is lower than the risk bound A. Out of the 400 trials of Sulu



Table 4.1: Comparison of energy use and failure rate. Values are the averages of 100

runs with randomly generated disturbances.

Winter Summer
Energy [J] Pr(Fail) Energy [J] Pr(Fail)

p-Sulu 1.93 x 104 0.01 3.47 x 104  0.00
Sulu 1.65 x 104  1.00 1.00
PID 3.97 x 104 0.00 4.17 x 104 0.00

Spring Autumn
Energy [J] Pr(Fail) Energy [J] Pr(Fail)

p-Sulu 3.37 x 104 0.00 3.81 x 104 0.00
Sulu 3.09 x 104 1.00 3.67 x 104  1.00
PID 3.98 x 104 0.00 3.99 x 104 0.00

across all seasons, 345 failed to complete due to infeasibility. Of the 55 trials that

completed, every trial had constraint violations on at least 26 of the 168 time steps

of the plan.

Although the PID controller did not violate any temperature constraints, the other

two controllers performed drastically better in terms of energy consumption. In the

winter, p-Sulu (A = 0.1) yielded energy savings of 42.8% over the PID controller; in

the spring, summer, and autumn, we saw 15.3%, 16.8%, and 4.4% savings respectively.

Planning in a risk-sensitive manner does require more energy. Compared to the

Sulu runs that completed, we saw p-Sulu use 3.8% more energy in autumn, 8.9%

more energy in spring, and 17.4% more energy in the winter.

Overall, our results show that p-Sulu achieves significant savings in energy com-

pared with PID, while drastically reducing and even eliminating constraint violations

compared with Sulu.

4.7 Conclusion

In this chapter, we have developed a novel risk-sensitive plan executive called p-Sulu,

and applied to temperature control of Connected Sustainable Home. Simulation

studies demonstrated that p-Sulu achieves as much as 42.8% energy savings over a

traditional PID controller. p-Sulu exhibited drastically fewer constraint violations



than its deterministic predecessor, Sulu, under uncertainty.
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Chapter 5

Joint Chance-Constrained Model

Predictive Control with

Probabilistic Resolvability

This chapter presents a fundamental control algorithm that can continuously operate

an uncertain system, such as an electricity grid with renewable energy generations,

with bounded risk. More specifically, we develop a joint chance-constrained model

predictive control algorithm with probabilistic resolvability, which grantees the ex-

istence of feasible solutions with a given probability. Furthermore, with moderate

conditions, we show that the optimization problem solved at each time step in the

proposed algorithm is a convex optimization problem.

5.1 Introduction

Model predictive control (MPC), also known as receding horizon control, has been

successfully applied to a range of energy-related problems, such as a building control

to reduce peak electricity demand [69], power grid control [5], and AC frequency

control [46]. It is distinguished from classical control approaches by its capability to

explicitly consider state constraints, while optimizing a control sequence to minimize

a given cost function. MPC is well suited to power grid control because a power grid



has number of constraints, such as the capacity of generation plants, substations and

transmission lines, as well as bounds on the acceptable range of frequency and voltage

deviations.

However, when uncertainty is present, MPC is susceptible to risk of constraint

violation, since the optimal solution typically pushes against one or more constraint

boundaries, and hence leaves no margin for error. When uncertainty is bounded

by a compact set (i.e., roughly speaking, if there is a known upper bound on the

level of uncertainty), robust model predictive control (RMPC) method can be used

to provide a guarantee of solution existence, through the means of resolvability, also

known as recursive feasibility. Recall that MPC computes control inputs by solving a

constrained optimization problem at each time step. An MPC algorithm is resolvable

if the optimization problem has a feasible solution in a future time given a feasible

solution at the current time. Therefore, if one can find a feasible solution only at

the initial time step, then a resolvable MPC algorithm is guaranteed to find feasible

solutions at any given time in the future. Very roughly speaking, recursive feasibility

can be achieved by leaving enough margin that the worst case scenario can be handled

in the future.

However, in many practical cases, uncertainty is not bounded. Even if it is

bounded, guaranteeing solution feasibility in the worst case scenario often results

in a very conservative solution. In the case of an electricity grid, the worst case sce-

nario is that all wind turbines and solar cells have no output at all when the energy

demand is at its highest possible level. Assuming that the worst case can be bounded,

one can attempt to achieve a zero probability of failure by preparing spinning reserve

and stored energy, equivalent to the worst case demand. Of course, such a conserva-

tive operation is very inefficient. First of all, as we mentioned in Section 1.2, energy

storage is very costly. Second of all, since conventional plants, such as gas turbines,

have a minimum output level, maintaining spinning reserve requires consumption of

fuel. These inefficiencies undermine the benefit of renewable energy.

A more balanced approach is to employ chance-constrained model predictive con-

trol (CCMPC) [79], which enhances efficiency by accepting a limited amount of risk.



A control input generated by CCMPC is guaranteed to satisfy a given set of con-

straints with a specified probability. However, existing CCMPC algorithms do not

guarantee existence of such a control input when uncertainty is unbounded. Since

a power grid is a social infrastructure that must operate continuously, a failure to

find a feasible solution poses a serious risk to society. For example, assume a situ-

ation where grid energy storage become nearly depleted after discharging energy to

compensate for unexpectedly low wind generation, at a certain point of time. Then

in the next time step, CCMPC may fail to find a feasible solution that has enough

back-up capacity to prepare for future uncertainty. Such a failure to find a feasible

operating point can expose the consumers to an unacceptable risk of blackouts. In

general, when considering an unbounded stochastic disturbance, such as (5.2), it can

be impossible to guarantee resolvability, since there is a finite probability that the

disturbance is large enough to make the future optimization problem infeasible.

However, although it is impossible to guarantee the existence of feasible solutions

with 100% probability, resorting to a trial-and-error operation of a power grid is

also unacceptable. Instead, we seek to provide a probabilistic guarantee; that is, a

guarantee that feasible solutions for CCMPC exist with a certain probability, such as

99.9999%. More specifically, we define a new concept called probabilistic resolvability.

A controller is probabilistically resolvable if there exists, with a specified probability,

feasible solutions for the next n time steps, given that the state at the current time

step is feasible (the formal definition of probabilistic resolvability is given in Section

5.3). A probabilistically resolvable CCMPC method will enable an electrical grid to

operate with high efficiency within a given risk bound.

5.2 Related Work

This work is closely related to robust model predictive control (RMPC) with set-

bounded uncertainty, which has been intensively studied over the past two decades

(e.g., [50, 19, 80, 51, 1, 2, 21]). These RMPC algorithms assume that parametric and

additive uncertainty are bounded in a compact set W. Exploiting this assumption,



the RMPC algorithms compute control inputs that satisfy the given state and control

constraints for all possible realizations of the disturbance w E W. Resolvability can

be guaranteed by requiring that the terminal state at each horizon is within a robust

control invariant set [45]. Literature on RMPC is well reviewed in [63]. For the reasons

discussed earlier in this thesis, we pursue a stochastic approach to uncertainty, and

employ constraint that bounds risk.

Chance-constrained MPC has recently received growing attention for its ability

to handle unbounded uncertainty with a probability distribution, such as a Gaussian

distribution. Stochastic uncertainty is a more natural model for exogenous distur-

bances than set-bounded uncertainty, for example, in the case of wind disturbances

[9]. Schwarm et al. [79] studied an MPC method with individual chance constraints,

which bound the probability of satisfying a scalar output constraint at individual

time steps. Their approach transforms the individual chance constraints into equiv-

alent deterministic constraints. Van Hessem [89] and Li et al. [60] developed a more

general joint chance-constrained MPC method that bounds the probability of satis-

fying multiple constraints by using a conservative ellipsoidal relaxation. The particle

control algorithm, developed by Blackmore et al. [16], approximates the joint proba-

bility by sampling. Oldewurtel et al. [67] incorporates the affine disturbance feedback

approach [10] with chance-constrained MPC, in order to address the issue of conser-

vatism in open-loop chance-constrained MPC. In our previous work [72], we presented

the risk allocation approach, which reduces conservatism by optimally allocating risk

bounds to individual state constraints.

Past research on chance-constrained MPC, including work reviewed above, mainly

focuses on developing efficient solution methods for finite-horizon optimal control

problems, while leaving the discussion of resolvability relatively undeveloped. This

lack of guarantee is a significant weakness of chance-constrained MPC, compared

to set-bounded RMPC. The primary purpose of the research in this chapter is to

overcome this weakness.

The remainder of this chapter is organized as follows. Section 5.4 explains our

overall approach. Section 5.5 presents a new joint chance-constrained MPC algorithm,



and proves its probabilistic resolvability. Section 5.6 proves the convexity of the

optimization problem, and Section 5.7 presents a method to compute an E-robust

control invariant set, the probabilistic counterpart of the robust control invariant set.

Finally, Section 5.8 presents simulation results.

5.3 Problem Statement

We consider MPC for the following discrete-time stochastic dynamics with a zero-

mean additive Gaussian-distributed uncertainty:

Xk+1 = Axk + Buk + Ewk. (5.1)

Without loss of generality, we assume that Wk has a nw-dimensional standard Gaus-

sian distribution:

Wk ~ NV(0, In.), (5.2)

where Iw is the n-dimensional identity matrix. We assume that Wk and wj are

independent for k -# j.
We consider a state constraint g(x) -< 0, where g(.) is a vector-valued function

and -< is a componentwise inequality. For all time steps k = 1, 2, - - -, we impose a

joint chance constraint, which requires that the state constraint is satisfied with a

probability 1 - A over the next N time steps:

-k+N-1~

Pr [A (XT) > 0 ; 1 - A, Vk - Z+ (5.3)
T=k

where the constant 0 < A < 1 is a user-specified risk bound and Z+ is a set of positive

integers. This is a more general formulation than individual chance constraints, which

correspond to a special case of (5.3) with N = 1.

The objective of this chapter is to develop an MPC algorithm that satisfies the

joint chance constraint (5.3) and has the following two properties:



1. Probabilistic Resolvability Recall that MPC computes the control inputs

by solving a constrained optimization problem (i.e., a finite-horizon optimal control

problem) at each time step. An MPC algorithm is resolvable if the optimization prob-

lem has a feasible solution in a future time, given a feasible solution at the current

time. However, as argued earlier, when considering an unbounded stochastic distur-

bance, such as (5.2), it is typically impossible to guarantee resolvability, since there is

a finite probability that the disturbance Wk is large enough to make the future opti-

mization problem infeasible. Instead, we guarantee probabilistic resolvability, defined

as follows:

Definition 1 : Probabilistic Resolvability

Let Pk be the optimization problem solved by a model-predictive controller at time

step k. The controller is probabilistically resolvable if there is a positive integer n and

a positive real-valued constant 0 < c < 1, such that Pk+1 ... Pk+n are feasible with a

probability of at least a, given the feasibility of Pk.

We prove that the proposed joint chance-constrained MPC algorithm is proba-

bilistically resolvable with n = N and a = 1 - A.

2. Convexity We show that, with moderate conditions, the optimization problem

solved by the proposed MPC algorithm at each time step is a convex optimization

problem. This result has a practical importance because a convex optimization prob-

lem can be solved in polynomial time by interior point methods.

5.4 Approach

In this section we give an informal overview of our key ideas. A formal discussion will

follow in Section 5.5.



5.4.1 Risk Allocation Approach

Like p-Sulu OL presented in the previous section, out CCMPC algorithm is also build

upon the risk allocation approach. However, in this chapter we give a slightly different

definition of individual risk bound 6 k than in the previous sections. Here, 6k is the

upper bound on the conditional probability of violating state constraints at the next

time step k + 1, given the satisfaction of the constraints at the current time step k.

At each time step, the proposed algorithm computes the control inputs, Uk, as well

as 6k. Later we prove that a sufficient condition of the joint chance constraint (5.3)

is the following:
k+N -1

6 < A, Vk E Z+. (5.4)
-r=k

At each time k, the algorithm optimizes the sequence of risk allocation over the next

N time steps with the above constraint. This problem can be viewed as a resource

allocation problem. The available amount of resource for every N time step is limited

to A, and the problem is to find the allocation of the resource within the horizon.

5.4.2 Probabilistic Resolvability and -Robust Control In-

variant Set

As we discussed in Section 5.3, we seek to guarantee probabilistic resolvability. Most

RMPC methods with set-bounded uncertainty guarantees resolvability by requiring

that the terminal state at each planning horizon is within a robust control invariant

set Rf [45], which has the following property:

Xk E Rf =- 3K(Xk) E l : Xk+1 E Rf, VWk E /V.

In general, it is impossible to find such a robust control invariant set when Wk is

unbounded.

Instead, we consider an c-robust control invariant set, Rf(c), which has the fol-



lowing property for a given 0 < e < 1:

lni(xk+N) c U : Pr bk+i E Rf (6) 1 Xk E Rf ()] > 1 - C.

In other words, if the state is within Rf(c), then there exists a control law I'(xk+N)

such that the state remains in Rf(c) at the next time step with at least probability

1 - e. The proposed algorithm also requires the following:

6
k ;> E, Vk E Z+. (5.5)

With the above two conditions, we can guarantee probabilistic resolvability. As-

sume that the finite-horizon optimal control problem has a feasible solution at time

k, which satisfies (5.4). Then, with probability at least 1 - 6 k, the solution is also

feasible at time k + 1 with an additional control input Uk+N = I(Xk+N) and a risk

allocation Sk+N = E. Such a solution also satisfies the constraint (5.4) at time k + 1

because it follows from (5.5) that:

k+N k+N -1

T=k+1 T=k

Intuitively, (5.4) is satisfied recursively because the newly added risk 6 k+N = c is less

than 6 k, the risk that has been taken at the previous time step, as shown in Figure

5-1.

5.5 Method

5.5.1 The Algorithm

The proposed joint chance-constrained MPC algorithm is as follows.
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Figure 5-1: The proposed MPC algorithm requires that the terminal state is in an
e-robust control invariant set, so that the terminal state can stay within the set in the
next time step with the probability of 1 - c. Probabilistic resolvability is guaranteed
by ensuring that risk allocation to each time step is greater than c.

Algorithm 4 Joint Chance-Constrained MPC

1: k = 0

2: 6_1 = 0, 6-2 = 0, - - - l6-N+

3: loop

4: Solve Pk with xk and [6k-N+1, k-N+2, 4 -1]

5: Uk = Uk~k, 6 k = 6klk

6: Apply Uk

7: k = k+1

8: end loop

Pk, the finite-horizon optimal control problem solved at k, is formulated as (5.6)-

(5.12). Note that it takes two parameters: the current state Xk, as well as the risk

allocated to the past N - 1 time steps ok-N+1, * * - 6 k-1. We assume that the current

state Xk is known with certainty at time k. The designer of the controller chooses two

constants, A and e, so that 6 < A/N. The optimization problem has two decision
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variables: the control sequence,

u := [UkIk - Uk+N- ik]

and the risk allocation over the next N time steps,

klk ' ' " Ek+N-lk-

Note that, in (5.11) below, 6j is a given parameter that represents a past risk allocation

determined in previous iterations, while 6 ijk is a decision variable that represents a

future risk allocation.

Pk: Finite-horizon optimal control problem

F(Ck+Nk) +

k+N-1

Z: f trk, urlk)
T=k

(5.6)

(5.7)

(5.8)

(5.9)

s.t. XT+1|k = AXTIk + BuTk n+ EwTIk

g(XTik) < 0

Xk+Nlk E Rf (E)

VWIk E W(4 1rk), VT E k
k+N-1

(CN 6jk k
j=k
k-1 k+i

o6 + E 6ilk
j=i+k-N j=k

(5.10)

(5.11)

(5.12)

< A Vi E C -

UrIk E U, Tk ;> , VT EkZ,

where

For later convenience, the constraints (5.10) and (5.11) are labeled as C, with i

1 ... N.
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V(6) is a compact set that contains the origin in its interior and satisfies:

Pr [wk E W(6)] =1 - 6. (5.13)

Of course, such a set W( 6 k) is not unique. For now, let us assume that we can

uniquely specify a set W(o) as a function of 6k, with some additional conditions. In

Section 5.6, we present a condition that specifies W'V(6k) and guarantees the convexity

of the finite-horizon optimal control problem.

In (5.9), Rf (c) is the c-robust control invariant set. We formally define the e-robust

control invariant set as follows:

Definition 2 : c-robust control invariant set

An e-robust control invariant set, ]Rf(c) C R, is a closed set that has the following

property:

Xk E Rf (E) --= QK(Xk) E U : Xk+1 E Rf (), VWk E W(E), (5.14)

where

R = {x c Rnx | g() - 0}.

We describe how to compute an e-robust control invariant set in Section 5.7.

Like standard MPC, the proposed algorithm applies only the first control input

Uk1k, although it computes ki -... UK+N-lk. Hence, it takes only the risk allocated

to the first time step 5 klk, although it computes k ... k+N-l1k-

A notable difference of Pk from existing RMPC algorithms is that the disturbance

sets W(Tik) are not fixed; they vary for different values of 6,1k. Compared to the joint

chance-constrained finite-horizon optimal control developed by [15], Pk has three

additional constraints: (5.9), (5.11), and oik ;> c in (5.12). These constraints are the

key ingredient of Pk for, guaranteeing probabilistic resolvability.

The next two subsections present the main results of this chapter.
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5.5.2 Probabilistic Resolvability

In order to prove probabilistic resolvability for the proposed algorithm, we first prove

the following lemma:

Lemma 3: If Pk has a feasible solution, then Pk+1 has a feasible solution with at

least probability 1 - 6 k.

Proof: Let [u * - -Uik+N-1|k and k* .' +N- be a feasible solution to Pk.

Note that 6 k -- ok* (Line 5 of Algorithm 4). By definition,

Pr[wk C W( 3 k)] 2 1 - 6k.

We prove the lemma by showing that, if Wk E W(Ok) is the case, then the following

candidate solution is a feasible solution to Pk+1:

[uk+1|k ' ''k+N-1lk K(Xk+Nk)], 1k*+1|k '. 'k'+N-1|k -L

If Wk E W( 6 k), then the candidate solution satisfies (5.8) in Pk+1. Then it follows

from (5.14) that the candidate solution also satisfies (5.9) in Pk+1. The constraint Ci

of Pk+1 is satisfied for i = 1 ... N - 1 because it is equivalent to C+ 1 in Pk. Finally,

the satisfaction of CN in Pk+1 is implied from ok(= okik) > c in (5.12) of Pk:

k+N-1 k+N-1

S jk~ + 5ik<A
j=k+1 j*=k

U

The following theorem establishes probabilistic resolvability of the proposed algo-

rithm:

Theorem 2: Probabilistic Resolvability

If Pk has a feasible solution, then Pk+1 -. k+N have feasible solutions with at least

the probability of 1 - A.
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Proof: By assumption, wk and wj are independent for k ) j. By recursively

applying Lemma 3, the probability that Pk+1 - - k+N have feasible solutions given

the feasibility of Pk is:

k+N-1 k+N-1

17 (1>-) 1- E >1-A.
T=k r=k

The second inequality follows from C1 in Pk+N-1. See Appendix for the proof of the

first inequality.

5.5.3 Satisfaction of the Joint Chance Constraint

The following theorem holds:

Theorem 3: Feasibility

The Joint Chance-Constrained MPC (Algorithm 4) guarantees the satisfaction of the

joint chance constraint (5.3).

Proof: Assume that Pk is feasible, and a solution (Uk, 6k) is obtained at time step

k. It follows from Lemma 3 and (5.8) of Pk that, with a probability of at least 1 - 6k,

Pk+1 is feasible and the next state Xk+1 satisfies the state constraints g(xk+1) -< 0.

By recursively applying this fact, the satisfaction of the joint chance constraint (5.3)

at the time step k + 1 is guaranteed as follows:

k+N ~ k+N-1

Pr[A g(x) d0 > k± 1 (5.15)
-r=k+1 . =k

k+N-1

> 1- Z > 1 - A (5.16)
r=k

The third inequality follows from C1 of Pk+N-1.1 See Appendix for the proof of the

1Note that the constraints are tightened by bounding (5.15) with its first-order approximation,
(5.16). We avoid imposing the constraint HJk+N -(1 - 6) > 1 - A because it is a nonconvex
constraint. Alternatively, we can transform the nonconvex constraint into an equivalent convex
form, E'+'-' log(1 - 6,) > log(1 - A). However, we choose to use the first-order approximation
(5.16) for two practical reasons. Firstly, linear constraints has an advantage in computation time.
Secondly, since a very small value is chosen for the upper bound on the risk A in most practical
applications, the approximation error is negligible.
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second inequality.

Note that the proof of the theorem uses only C1 . Nonetheless, we need C2 ... CN

in order to recursively guarantee the feasibility of C1 in the future, as shown in the

proof of Lemma 3.

5.6 Convex Joint Chance-Constrained MPC

5.6.1 Conditions for Convexity

In this section, we show that Pk is a convex optimization problem if the following

four conditions hold:

Al : f and F in (5.6) are convex functions.

A2 : g in (5.8) is a convex function.

A3 : W(O) is a circle with a radius rk, defined as W(O) = {w E Rfw ||w~l <I rk

A4 :r, ;> vfnw 1

Note that nw is a dimension of w. Al and A2 are standard assumptions. Regarding

A3, it is common to assume that W is an ellipsoid (e.g., [2, 89, 11]). Since we assume

standard Gaussian distributions as in (5.2), the level set of the probability distribution

is a circle.

Compared to Al-A3, A4 would be an unfamiliar condition, but it plays a central

role in proving the convexity. It requires that the radius of the disturbance sets

is more than \n, - 1. It turns out that A4 is a very mild condition. Since rk is a

monotonically decreasing function of 6k, A4 is equivalent to imposing an upper bound

on 6k. The corresponding upper bound on 6 k is 0.61 for nw = 2, 0.57 for nw = 3,

and 0.56 for n = 4. In practical applications the risk bound A is set to a very small

value, typically below 1%. Therefore, A4 does not make the constraints tighter at all

in most cases.
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With regarding to A2, we approximate the convex constraint g(x) -< 0 by a set

of linear constraints Hz - g. Although our discussion below assumes this linear

approximation, Pk is convex for a general convex function g because Pontryagin dif-

ference preserves convexity. Similarly, we approximate the E-robust invariant control

set 7f (c) by a set of linear constraints, Hex - g,.

5.6.2 Convex Reformulation of 'Pk

With Al-A4 and the linear approximation of g, we reformulate Pk as below. Note

that the optimization problem involves the mean state XtIk, instead of XTik. We denote

r := [rklk rk+l|k - -- rk+N-lk]-

Pk: Convex finite-horizon optimal control problem

k+N-1

min F(k+Nk) + Y, f(k, UrTk)
T=k

s.t. XT+l|k= Asslk + BUTIk, V E Z

HeikN~k< 96 -kNr

k+N-1

j-k

k-1i

S +± ZIk< A, VT E 2- 1

j=r--N1 j=k

64ik (nfl(rlik), VT ECl

rik Ti4.-i1 VT E Zl

UTIk EC, rkE, VTE Z

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

In (5.19) and (5.20), <D' is an nf-by-N matrix, where nH is the number of rows

in H. The element of J) at the ith row and jth column is:

ShA T -k-jEll (j <T -k)
0 (Otherwise)
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where hi is the ith row vector of H. Such a matrix <D' is obtained as follows. First,

we recursively define a sequence of sets Xk, Xk+1, - as follows.

Xk {Xk}, XT+1 = AX, D B{uT} e EW(6),

where @ is a Minkowski sum. The Minkowski sum 0 of two sets, A, B E R", is

defined as:

A e B:= {x E Rn I ]a E A, b E B : x = a + b}.

By recursively applying the above equation and (5.18), we obtain:

T-k

Xr = {rT } e ZA T-k-i EW(6k+j-1)-
j=1

In order to satisfy the state constraints with the specified risk bound, XT must be

included in the feasible state region, as shown in Figure 5-2. Note that 1V(T) is a

circle with radius r,. Hence, by using the triangle inequality, a sufficient condition

for satisfying the ith constraint is obtained as follows:

T-k

hiTlk < g - ( ||hiAT -k- 1|rj.
j=1

Constraints (5.19) and (5.20) are equivalent to the above inequality. Roughly speak-

ing, when ||hill = 1, <DT r specifies the distance between a constraint boundary and

the mean state that is sufficient to guarantee the risk bound 64, as shown in Figure

5-2.

The constraint (5.23) relates rik to 41ik. The function (n.(r) is obtained by solving

the following equation [89]:

1 n - G11V = panw(w)j dw

S f n/2-1 -/2 (22nw/ 2 F(nw/2) Jo X edxa (5.26)
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Figure 5-2: Illustration of the convex joint chance-constrained MPC. With an as-
sumption that W(o) is a circle, the distance between a constraint boundary and the
mean state that is sufficient to guarantee the risk bound 6, is obtained analytically.

where p, (.) is the probability density function of the n-dimensional standard Gaus-

sian distribution. This integral can be analytically computed for a given n,. For

example, the closed-form expressions for (. (r) with n,, 1 --.- 4 are listed below:

= 1- erf ( (5.27)

-e r2/22)(r) =Ce-,/2

(3 (r) =I - erf r + rr2/
1 f+ 21/21(3/2)

±2 _)r2 /2,(4 (r) = A(r2+2)e-_/2
2

where erf(-) is the Gauss error function and F is the Gamma function.

5.6.3 Proof of Convexity

The following theorem holds:

Theorem 4: Convexity

Pk is a convex optimization problem.

Proof: Since all constraints in P( are linear except for (5.23), it suffices to show

that (,,(r) is convex. Note that the domain of r is restricted to r > V/n. - 1 by
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n=
c 0.5- n=2 _

n=4

0'
0 1 2 3 4

r

Figure 5-3: Plots of (nw(r). The inflection points are marked by the circles. The
constraint (5.24) limits the domain of r to the left of the inflection points.

(5.24). The second-order differential of (,j(r) is obtained from (5.26) as follows:

d 2
" 2(r 2 - n + 1)rn-2e-2

Therefore, " > 0, and hence (,w(r) is convex, for r > ion - 1. U

Figure 5-3 shows the plots of , (r) for nw = 1 ... 4. Observe that the inflection

points are at r = gnw- 1.

5.7 Computation of E-Robust Control Invariant Set

We next present a method for computing an c-robust control invariant set.

In set-bounded RMPCs, a robust control invariant set can be efficiently computed

by using an iterative method developed by Kerrigan [45]. The same method can be

used to compute an e-robust control invariant set Rf (c), by replacing the bounded set

W with W(c) for a fixed c. In order to use Kerrigan's method, it is more convenient

if W(c) is a polytope rather than a circle, as assumed in A3.

From here, we explain how to find such a polytope. Let L be an nL-by-n. matrix,

and set

W(6) = {w E Rnw I Lw - m}.
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We denote by Li and mi the ith row vector of L and ith element of m, respectively.

We choose Li so that W(6) is a closed set. Without loss of generality, we can assume

that:

ILIll= 1.

We also assume that mi > 0, so that the origin point is included in W(6). With these

assumptions, the following is a sufficient condition for 6 < E:

nL

w(mj)/2 = c,
i=1

where (1 is defined as (5.27). This condition is derived from Boole's inequality, and is

closely related to the risk allocation approach presented in [72]. Typically, we choose

mi uniformly so that (I(mj)/2 = c/nL, while choosing L so that W(c) is a regular

polytope.

When both the feasible state space and )/V(e) are polytopes, the c-robust control

invariant set obtained by a finite number of iterations of Kerrigan's method is also a

polytope. Such an e-robust control invariant set can be directly used for (5.20).

5.8 Simulation Results

We demonstrate the proposed algorithm with a 2-D point-mass double-integrator

plant with position uncertainty:

1 0 1 0 1/2 0 0.1 0

A= 0 1 0 1 B= 0 1/2 E= 0 0.1

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0

We impose state constraints requiring that the position is within a square with its

corners at (5,5), (5, -5), (-5, -5), and (-5,5). The control constraint is given by
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|IU|k |Ko< 1. We use quadratic terminal and step costs:

F = +NkP k+NIk, fr ~ XkQ-lk + U|k RUTk,

where Q = 10-4 - 14 and R = I2, with I, being the n-dimensional identity matrix.

We obtain the P matrix by solving the algebraic Riccati equation with Q and R.

We set Q significantly smaller than R in order to make the finite-horizon optimal

control problem nontrivial; since the controller tries to minimize the control inputs,

optimal solutions tend to push against state constraint boundaries, making the chance

constraints active.

Figure 5-4 shows simulation results with N = 10, c = 10 5 , and four different

values of A. In all four cases, the proposed control algorithm successfully guides

the states towards the origin point without violating the state constraints. Since the

system is continuously subjected to disturbances, the states do not strictly converge

to the origin. Figure 5-5 shows the risk allocation 6 k at the first 20 time steps with

A = 0.1. It allocates larger risk at the beginning in order to allow the state to go

close to the state boundary so that the control effort is minimized.

Table 5.1 shows the total step cost for 10 time steps, fk, with different set-

tings of A and c. The values shown in the tables are the averages and the standard

deviations of 100 simulations for each case with random initial conditions. The aver-

age computation time of the 1,200 simulations is 0.167 sec per step, and the maximum

is 1.58 sec per step.

The table shows a tendency towards increasing cost as the risk bound A decreases.

This is because the control algorithm becomes more risk-averse with smaller A. As

shown in Figure 5-4, with smaller A, the control algorithm keeps the state away

from the boundaries with larger margin by applying stronger control, which results

in greater cost. Hence, the designer of the controller can conduct a trade-off between

risk-aversion and efficiency by choosing A.

A choice of c influences the cost in two ways. On the one hand, with a smaller C,

the constraint c5Tik ; in (5.25) is relaxed, allowing more flexibility in risk allocation.
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0 1 2 3 4 5

Figure 5-4: Simulation
various risk bounds.

results of the proposed joint chance-constrained MPC with

This is why E = A/1ON results in less cost than c = A/N. On the other hand, a

smaller c results in a smaller c-robust invariant control set, making (5.20) tighter. This

explains the slight increase in observed cost at c = A/1OON, A = 0.0001, compared

with E = A/iON, A = 0.0001. From Table 5.1 it appears that a good rule of thumb

is to set e = A/ION.

Table 5.1: The averages and the standard deviations of the total costs for different
settings of A and c. For each cases, 100 simulations are conducted with random initial
conditions.

E = A/N E = A/1ON E = A/100N

A = 0.1 1.30 ± 0.46 1.28 ± 0.45 1.28 ± 0.45
A = 0.01 1.42 ± 0.48 1.40 t 0.47 1.40 ± 0.47

A = 0.001 1.52 ± 0.50 1.50 ± 0.50 1.50 i 0.50
A = 0.0001 1.62 ± 0.52 1.608 i 0.518 1.609 ± 0.518

Finally, in order to demonstrate probabilistic resolvability, we run the 10 time-
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Figure 5-5: Resulting risk allocation with A = 0.1.

step simulation 10,000 times, with A = 0.5, e = 0.005, and N = 10. The initial state

is chosen randomly. Out of the 10,000 runs, there are five unsuccessful runs where

the finite-horizon optimal control problem becomes infeasible or the solution violates

the state constraints. The 0.05% failure rate is lower than the specified risk bound,

50%, by a large margin. This result demonstrates the probabilistic resolvability of

the proposed joint chance-constrained MPC algorithm, as predicted by the theory.

However, it also means that the algorithm is overly conservative. Our future work is

to develop a less conservative algorithm while guaranteeing probabilistic resolvability.

5.9 Conclusions

In this chapter we defined probabilistic resolvability, and developed a joint chance-

constrained MPC approach that guarantees probabilistic resolvability. Establishing

probabilistic resolvability requires that 1) the terminal state be in an E-robust control

invariant set, and 2) the risk allocated at each time step be greater than C. We have

also shown that, with moderate conditions, the finite-horizon optimal control problem

of out MPC approach can be implemented as a convex optimization problem.
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Appendix

The following bound is used in the proofs of Theorems 1 and 2:

(0 < 6& < 1, Vi)

This inequality can be proved by induction as follows: Proof: It is trivial when

N = 1. When (5.28) holds for N = k, it also holds for N = k + 1 because:

k+1

fJ(i - 6i)
k

- 6i (1 - k+1)
k+1

i= 1

k+1
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Chapter 6

Policy Analysis

As we discussed in Chapter 1, a major technical challenge for a smart grid barrier is

the uncertainty in renewable generation, climate, and human behaviors. Chapters 3

to 5 developed a decentralized risk-sensitive control system that can overcome this

technical challenge. However, various social obstacles, such as lack of economic in-

centive, overregulation, and conflict of interest, can also prevent the implementation

of smart grid technologies. While the role of technologies are to enable a higher level

of renewable penetration into a grid, it is the role of policy to realize it by removing

these obstacles. We first discuss in Section 6.1 the connection between policy and

smart grid, with a particular focus on what policy is necessary to implement the

proposed risk-sensitive control system. Then in Sections 6.2 and 6.3, we discusses

key policy challenges and options that will enable our proposed risk-sensitive control

technologies to be fully utilized. Specifically, we discuss the need for deregulation, as

well as available policy options, by considering specific cases in Europe, Japan, and

the U.S.
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6.1 Policy Needs for Decentralized Risk-Sensitive

Control of a Smart Grid

Recall that the proposed control system in Chapters 3 - 5 are distributed and risk-

sensitive. The distributed architecture allows efficient and robust operation of a

smart grid, while the risk-sensitive capability allows for a high penetration of renew-

ables. However, traditional electrical grids are operated in a centralized manner by

vertically-integrated power providers. Moreover, since the cost of renewable energy is

higher than that of conventional energy in general, lack of economic incentive prevents

penetration of renewables into a grid. In this section, we discuss the policy needed to

deploy the proposed decentralized risk-sensitive control approach. More specifically,

we discuss the need to decentralize the grid's operation, as well as the need to provide

economic incentive for renewables.

6.1.1 Decentralization

Traditional electrical grids are centralized in two senses: vertical integration and one-

way power distribution. We provide an overview of these two areas in this subsection.

Vertical integration

The proposed control system dispatches nominal and contingent power in a distributed

manner through a market-based mechanism, as discussed in Chapter 3. Such a dis-

tributed system can achieve economic efficiency through competition. In contrast,

traditional electrical grids are centralized, in the sense that they are typically oper-

ated by vertically integrated power providers. A vertically integrated power provider

owns and operates all power plants within a region, as well as transmission and dis-

tribution networks. It behaves as a centralized decision maker, deciding the outputs

of the plants as well as the power flow in the networks.

In the past two decades, electrical grids have become increasingly decentralized,

particularly in the U.S. and in Europe. In contrast, in Japan, electrical grids are
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Hokkaido Electric Power Company

Hokuriku Electric Power Company Tohoku Electric Power Company

Tokyo Electric Power Company
Chugoku Electric Power Company

Chugokunaw Electric Power Company

Kyushu Electric Power Company - Okinawa Electric Power Company

Shikoku Electric Power Company Chubu Electric Power Company

Kansai Electric Power Company

Figure 6-1: Vertically-integrated power companies in Japan

still operated mostly by vertically integrated power companies. As shown in Figure

6-1, there are ten vertically-integrated power companies in Japan, each of which is

solely responsible for generation, transmission, and distribution within the designated

region. Although the partial deregulation in 2005 introduced a market-based power

dispatch at the newly established Japan Electric Power Exchange (JEPX), only 0.2%

of the total electricity consumed in Japan was traded in JEPX in 20061. In order to

implement the proposed distributed control system, deregulation policy is necessary

in order to allow distributed power production and market-based power exchange.

We discuss this issue in detail in Section 6.2.3.

One-way power distribution

As we introduced in Section 1.1.2, each Connected Sustainable Home has its own

generation capability through various power sources, such as the use of solar cells,

micro combined heating and power (micro-CHP), and bio-mass. We envision a com-

1Denryoku Jiyuuka no Seika to Kadai. Satoshi Yamaguchi. 2007. National Diet Library Issue
Brief Number 595 (2007. 9. 25).
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munity of Connected Sustainable Homes that are connected to each other through

a micro grid in order to maximize the overall energy efficiency of the community by

exchanging power. In such a community, each Connected Sustainable Home is both

a supplier and a consumer of electricity.

In contrast, current electricity distribution networks are designed as "one-way

streets", where households are consumers who always buy electricity from centralized

suppliers. For example, in Japan, local power interchange between households is

prohibited by law. Therefore, again, deregulation of electricity distribution system is

a key to realizing the distributed risk-sensitive control system. We discuss this matter

in detail in Section 6.2.1.

6.1.2 Economic Incentives for Renewables

In Chapters 3 and 5 we develop risk-sensitive control algorithms that overcome a tech-

nical barrier of introducing renewables to a grid. However, there is also an economic

barrier that must be overcome. More specifically, without any adequate policy to pro-

vide economic incentive, renewable energy production can hardly be competitive with

conventional energy due to its relatively high production cost. For example, in the

U.S., average levelized cost of conventional electricity is typically below $100/MWh.

According to [871, the estimated levelized cost in the U.S. in 2009 was $66.1/MWh

for conventional combined cycle gas and $94.8/MWh for conventional coal. Although

on-shore wind generation has competitive cost of $97.0/MWh, the cost of off-shore

wind power ($243.2/MWh) and Solar PV ($210.7/MWh) are significantly higher than

conventional energies. Moreover, the cost structure of renewables are characterized

by the large proportion of capital cost. For example, out of the $97.0/MWh cost of

on-shore wind, $83.9/MWh is capital cost. This requirement for a large capital cost

is another barrier to investment in new renewable generation facilities. Therefore, it

is necessary to implement policies that create economical incentives, along with the

implementation of risk-sensitive control technologies, in order to achieve high pene-

tration of renewables. Available policy options are discussed in detail in Section 6.3.

Additionally, existing regulations can also be a barrier to renewable penetration. We
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discuss such regulations in Section 6.2.2.

6.2 Deregulation

Each nation has a legal system that regulates the operation of their electrical grid.

As we discussed in the previous section, these regulatory systems were often de-

signed decades ago, when electrical grids were operated by vertically-integrated power

providers, who generate and deliver electricity in a centralized manner. In contrast,

a fundamental principle of a smart grid is to achieve energy efficiency through decen-

tralized operation of the grid, such as the market-based contingent energy dispatch

algorithm proposed in Chapter 3. Hence, deregulation is key to realizing the vision

of a smart grid. In this section we discuss the advantages and risks of deregulation

by studying cases in Japan and the U.S.

6.2.1 Regulation of Distributed Generation and Transmis-

sion in a Micro-grid in Japan

Recently, a concept for a regional-scale smart grid, called a micro-grid, has been

proposed [54, 92]. Micro-grids achieve energy efficiency by allowing flexible power

interchange between individual residential and commercial buildings with small-scale

generators, such as micro-CHPs (combined heat and power) and rooftop solar cells

[39]. However, such local power interchange between individual buildings is restricted

by a regulatory system in Japan2 . Specifically, provisions of the Electricity Business

Act 3 restrict energy distribution by unlicensed providers. The provisions also require

stability in voltage amplitude and frequency, which imposes restrictions on reverse

power flow and power interchange. By 2000, only ten companies had been licensed

to sell electricity to households in Japan. A revision of the Electricity Business Act

2 Chiiki EMS Kadai Chousa Houkokusho (Report on Regional Energy Management System).
2011. Kyushu Bureau of Economy, Trade and Industry. Available on-line at http://www.kyushu.
meti.go.jp/report/1104_ems/all.pdf (Japanese, retrieved on Jan 11, 2012)

3 Denki Jigyou Hou, Act No. 170 of July 11, 1964. English translation of the law is available at
http://eiyaku.hounavi.jp/eigo/s39a17OO1.php. (Retrieved on Jan 11, 2012.)
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in 2000 opened the electricity market for new energy providers, called Power Pro-

ducer and Suppliers (PPSs). However, this deregulation does not allow market-based

power interchange in a micro-grid because PPSs are allowed to sell electricity only

to commercial-scale utility customers that consume more than 50 kW. Due to such

restrictions, there are only 49 PPSs in Japan, as of January 5, 20124. Currently, indi-

vidual buildings with solar cells can sell energy to electricity companies by making a

special contract. However, direct exchange of power between individual buildings is

restricted. Therefore, in order to utilize micro-grid's capability to achieve energy effi-

ciency, electricity retail market must be fully deregulated to allow power interchange

between households.

6.2.2 Restrictions on the Construction of Wind Farms in

Japan

Due to geographical limitations and concentrated population, suitable sites for wind

farms are very limited in Japan. Two prospective locations for future large-scale wind

farms are the ocean and national parks. However, both involve conflicts of interests

between stakeholders.

Fishery Rights Offshore wind farms have been successfully deployed in a large

scale in Europe, most notably in the U.K. and Denmark. However, such a large-scale

introduction of offshore wind turbines is difficult in Japan partially because of conflict

with fishery rights. For historical reasons, fisheries have strong legal rights over the

use of ocean area around Japan. Specifically, the Fishery Act' grants licensed fishery

unions an exclusive right to operate fishery business within designated water areas.

Any activities that may cause loss to the fishery business are restricted.6 Therefore,

construction of an off-shore wind farm requires permission from the licensed fishery

4 The list of PPSs are available at http://www.enecho.meti.go. jp/denkihp/genjo/pps/pps_
list .html.

5Gyogyou Hou, Act No. 267 of 1949, revised most recently by Act No. 77 of 2007.
6Another area that is restricted by fishery rights is space development; since a rocket launch

requires a large ocean area to be prohibited for safety reasons, it conflicts with the fishery rights.

As a result, the number of annual launches from the Tanegashima Space Center in Japan is limited.

122



union, as well as compensation for their loss. Although fishery is still an important

industry in Japan, such a biased distribution of rights over the use of ocean area must

be adjusted in order to support sustainable development.

Preservation of the Local Environment in National Parks Suitable sites for

wind generation are often located in national parks and quasi-national parks, which

together cover about 9% of the land area in Japan. The Natural Parks Act' restricts

activities that impair the scenery and harm the ecosystem of the parks. Construction

of wind generators in national and quasi-national parks are subject to the regula-

tion since they may impair the scenery of the parks and affect the ecology of birds.

Although the law does not explicitly prohibit the construction of wind generators,

ambiguities in the provisions, such as the definition of "impairing the scenery," had

been an obstacle. These ambiguities was resolved in 2004 by the guideline published

by the Ministry of the Environment8 . The guideline rules prohibit the construc-

tions of wind generators in Special Protection Zones and Class I Special Zones 9 in

the parks, while permitting the constructions in Class II and III Special Zones with

several restrictions.

6.2.3 Risk of Deregulation: California Electricity Crisis

Although deregulation can result in enhanced energy efficiency by allowing flexible

operation of a grid and by removing obstacles to renewable energy production, it

can also undermine the reliability of an electrical grid. The California Electricity

Crisis, which occurred from 2000 to 2001 highlights the inherent risk of deregulation.

California Assembly Bill No. 1980, passed by the State of California in 1996, promoted

electricity deregulation in order to enhance competition and improve cost efficiency

7Shizen Kouen Hou, Act No. 161 of 1957, revised most recently by Act No. 47 of 2010.
8Final report by the Kokuritsu, Kokutei Kouen-nai ni okeru Fuuryoku Hatsuden Shisetsu Secchi

no Arikata ni Kansuru Kentoukai (Committee on the Construction of Wind Generation Facilities in

National and Quasi-National Parks). 2004. Available on-line at http: //www. env. go. j p/nature/
wind-power/index .html (Japanese).

9The area of each national and quasi-national park is divided into four categories of Special Zone

that determine the degree of protection: Special Protection Zone, Class I Special Zone, Class II

Special Zone, and Class III Special Zone.
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[29]. The bill encouraged investor-owned utilities (IOUs) to sell their generation assets

to independent power producers (IPPs), in an attempt to dismantle a vertically-

integrated monopoly. It also deregulated the wholesale price of electricity. This

means that the wholesale price is decided in a market. To protect consumers from

price fluctuations and power shortages, the Bill included two regulations. First, the

retail price of electricity was capped at the pre-deregulation level (6.7 cents per kWh),

while the wholesale price cap was removed. Second, utility companies were required

by law to meet demand by buying electricity from the wholesale market when faced

with imminent power shortages.

This partial deregulation policy, which was intended to protect consumers from

unregulated competition in the wholesale market, backfired. IPPs gained bargaining

power in the wholesale market since the utility companies had to purchase electricity

at any price to meet demand. This was price inelastic since the retail price was

capped. The IPPs took advantage of this situation to manipulate the wholesale

price by "economic withholding and inflated price bidding," [29] meaning that they

suppressed the output level in order to raise the wholesale price. The Federal Energy

Regulatory Commission (FERC) reported that Enron and other companies employed

trading strategies that "violated the anti-gaming provisions of their FERC-approved

tariffs." [29] The wholesale price, which had been kept below $50 per MWh, surged

above $200 per MWh in 2000, as shown in Figure 6-2 [20]. Due to the resulting

electricity shortage, the state experienced multiple large-scale blackouts, one of which

affected 1.5 million people.

This case illustrates the uncertain nature of electricity deregulation. Despite the

expectations of policymakers that the deregulation would decrease the price of elec-

tricity due to enhanced competition, it resulted in a price surge. The regulations

placed on the utility companies, which were intended to avoid electricity shortages

contributed to the large-scale blackouts.

As illustrated in this case, although deregulation is mandatory to deploy smart grid

technologies, such as the risk-sensitive controllers presented in this thesis, deregulation

policy must be carefully designed in order to avoid catastrophic market failure.
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Figure 6-2: Monthly average of hourly PX day-ahead unconstrained prices in Califor-
nia, as well as the market clearing GWh by time-of-use (TOU) and monthly average
of daily natural gas prices. The electricity price surged in 2000, although both the
demand (PX GWH On-Peak and Off-Peak) and gas price where almost constant.
Source: Woo, 2001 [20].

6.3 Policy Options to Enhance Renewable Energy

In Chapters 3 and 5, we presented risk-sensitive control algorithms that can allow high

penetrations of renewables. Deregulation policies discussed in the previous section

removes legal barriers to introducing renewables to a grid. However, since the price

of renewable energy is relatively higher than conventional energy, profitability is an

issue. Even if technologies and lows allow renewables to be connected to a grid, this

economic barrier must be overcome to realize a large-scale introduction of renewables.

Two major policies that are widely employed to accelerate investment in renewable

energy technologies are a renewable portfolio standard (RPS) and a feed-in tariff

(FIT). This section gives an overview of the mechanism of these two policies and

discusses their advantage and disadvantages.
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6.3.1 Renewable Portfolio Standard

The idea of a renewable portfolio standard (RPS) is to set a mandatory goal for re-

newable energy penetration, and to let the market find the least expensive way to

achieve that goal [49]. It typically places an obligation on electricity suppliers to pro-

duce a specified fraction of their electricity from renewable energy sources. In order to

motivate compliance, it imposes penalties on companies that fail to reach the speci-

fied targets. Many RPS programs have associated renewable energy certificate (REC;

also known as green certificate) trading programs. A tradable certificate is granted

to an electricity supplier for each unit of power generated by qualified renewable

energy sources. Electricity suppliers that encounter difficulty increasing renewable

generation can buy RECs from other suppliers who have less difficulty introducing

renewables. This market mechanism can minimize the overall cost to achieve the

RPS target. As of May 2009, 24 U.S. states and the District of Columbia have RPS

policies in place10 . Together these states account for more than half of the electricity

sold in the United States".

Pros and Cons of RPS An advantage of RPS is that the price of renewable

energy is automatically adjusted by an REC market. Hence, under the assumption of

perfect market conditions this system should lead to the lowest renewable electricity

generation cost at the target level of penetration [36]. However, choosing a reasonable

target level is not a simple task since future technology development is difficult to

predict, hence the extent of possible renewable penetration becomes unpredictable.

If the target is too ambitious it imposes unaffordable costs on electricity suppliers

through penalties; on the other hand, if it is set too low, RPS would fail to enhance

the introduction of renewable energies. For example, the Japanese RPS program

seems to have set a low target: it required 11,015 GWh of renewable production in

2010, accounting for only 1.2% of the total electricity consumption that year 12. The

10Database of State Incentives for Renewable Energy (DSIRE)
"Web page of U.S. Department of Energy. Retrieved from http: //apps 1. eere. energy. gov/

states/maps/renewableportf olio-states. cfnm on January 14, 2012.
12 According to the statistics published by the Federation of Electric Power Companies of

Japan, the total energy demand in 2010 was 9064,2000 GWh. The data is available on-
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fact that this RPS goal was too easy is evident from the low market price of REC in

Japan; it was just 5.2 Japanese Yen per kWh in 20101, which is about half the retail

price of electricity. This price is considerably lower than other countries with RPS.

Example: The State of California California's RPS aims at achieving 20% re-

newable penetration by 2010. To this end, it obligates load serving entities (LSEs),

such as investor-owned utilities (IOUs), energy service providers (ESPs) and commu-

nity choice aggregators (CCAs), to achieve an annual target level, which is increased

by 1% every year until 2010. Pursuant to the RPS legislation, the California Public

Utilities Commission implemented flexible compliance rules that allow LSEs to bank

excess renewable energy, and defer deficits in any year for up to three years. LSEs

were allowed to defer their entire target for their first year of compliance for up to

three years. LSEs with deficits are subject to penalties, 5 cents/kWh, up to $25

million per year per LS E " .

Since the implementation of the RPS program in 2002, renewable generation ca-

pacity has grown significantly, as shown in Figure 6-3. However, the 20% RPS goal

was not fully met. For example, the four large IOUs in California reported that they

met 17.0% of their electricity demand with RPS-eligible generation in 2010. PG&E

served 15.9% of its 2010 load with RPS-eligible renewable energy, SCE with 19.3%,

and SDG&E with 11.9% ". Although these companies did not meet the 20% goal by

2010, the California Public Utilities Commission (CPUC) stated in September 2011

that "it has not issued any penalties for non-compliance because it has not made a

determination that any LSE is out of compliance. 16 This is probably because the

line at http://www.fepc.or.jp/library/data/demand/__icsFiles/afieldfile/2011/04/28/
kakuho-fy2010.pdf (Retrieved on January 14, 2012).

1 3Statistics by the Japanese Agency for Natural Resources and Energy. Available On-line at
http://www.rps.go. jp/RPS/new-contents/top/ugokilink-kakaku.html. Retrieved on January
15, 2012.

14 California Public Utilities Commission. http://www. cpuc.ca.gov/PUC/energy/Renewables/
compliance.htm Retrieved on January 15, 2012.

1 5California Public Utilities Commission. Renewable Portfolio Standard Quarterly
Report. 3rd Quarter, 2011. Available at http://www.cpuc.ca.gov/NR/rdonlyres/
2A2D457A-CD21-46B3-A2D7-757A36CA20B3/0/Q3RPSReporttotheLegislatureFINAL. pdf Re-
trieved on January 15, 2012.

16 California Public Utilities Commission. http: //www. cpuc. ca. gov/PUC/energy/Renewables/
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LSEs banked credits when the goal was low in the early years of the program, and

used the credits in later years to avoid penalties.
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Source: California Public Utilities Commission, 3rd Quarter 2011

Figure 6-3: Growth in renewable generation capacity in California. Source: State-

level RPS targets in the U.S. Source: Database of State Incentives for Renewable

Energy (DSIRE). Source: California Public Utilities Commission, Renewable Portfo-

lio Standard Quarterly Report. 3rd Quarter, 2011. 17

6.3.2 Feed-in Tariff

Policy Overview

A feed-in tariff (FIT) is a policy mechanism, in which eligible renewable electricity

producers are paid a fixed cost-based price for the renewable electricity they produce

[36]. In other words, a federal or provincial government regulates the tariff rate of

renewable electricity. The objective of FIT is to create generation-based, price-driven

incentives. These usually take the form of either a fixed amount of money paid for

compliance.htm Retrieved on January 15, 2012.
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renewable generation, or an additional premium on top of the market price paid

to renewable electricity producers. In addition, most FIT policies set a guaranteed

duration (typically 10-30 years) of the specified tariffs in order to create stronger

incentives for long-term investments.

FIT policies began to attract attention in Europe in the late 1980s especially in

Denmark, Germany, Italy, and, in the 1990s, in Spain. As of 2011, FIT policies have

been enacted in over 50 countries18 . Most notably, Spain, Germany, and Denmark

achieved a large growth in wind power, which now accounts for 9%, 5%, and 20% of

electricity in those countries, respectively [24]. The case of Germany is reviewed later

in this section.

Case Study: Germany

The German FIT policy is considered to be one of the most successful, along with

those of Spain, Portugal, and Denmark [23]. The current FIT system in Germany

was established in several steps [36]. It was initially introduced to Germany in 1991

by the Electricity Feed-in Act. The act was replaced by the Renewable Energy Act

in 2000, which uncoupled the tariff level from the retail price of electricity. Instead,

it bound the tariff level to the cost of generation. This results in different tariff levels

for different technologies (e.g., wind, solar, biomass, etc.), as well as for different

locations, depending on cost. Moreover, the Act extended purchase guarantees for a

period of 20 years. As shown in Figure 6-4, the tariff levels have been relatively high

compared to other European nations, but they are reduced every year to encourage

more efficient production of renewable energy.

Renewable electricity generation, particularly wind, has shown significant growth

since the introduction of the FIT policy, as shown in Figure 6-5. In the first quarter

of 2011, 19.2% of Germany's electricity was produced by renewable sources1 9. With

18REN21 Global Status Report, 2010. Available on-line at http: //www. ren2l. net/
REN2Activities/Publications/GlobalStatusReport/tabid/5434/Default. aspx Retrieved on
January 15,2012.

19Development of Renewable Energy Sources in Germany 2010. Federal Ministry for the Environ-
mental, Nature Conservation and Nuclear Safety. Available on-line at http: //www. bmu. de/f iles/
english/pdf/application/pdf/ee-indeutschlandgraf _taben.pdf Retrieved on January 15,
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2006 2007

Figure 6-4: Comparison of FIT levels for on-shore wind generation by nations. Source:
Haas et al. [36].

the successful FIT policy, Germany reduced emissions of greenhouse gases -21.3 % by

the end of 2007, compared with 1990 levels2 0 . The country set an ambitious goal to

increase the proportion of gross electricity consumption attributable to renewables to

at least 30 percent by the year 2020, and to 50 percent by 205021.

Pros and Cons of Feed-in Tariff

A remarkable advantage of FIT over RPS is that it reduces uncertainty in investment

conditions. Under an RPS policy, investment in renewable generation facilities must

be financed by selling RECs, whose price is uncertain because it is determined by

a market. In contrast, with a FIT policy the price of renewable electricity is guar-

anteed by a government for a long period (typically for several decades). Moreover,

in many countries the tariff rate is determined based on the cost for generation of

each renewable technology. The price certainty with long-term contracts encourages

2012.
20 Renewable Energy Sources in Figures. June 2009. Federal Ministry for the Environmental,

Nature Conservation and Nuclear Safety. Available on-line at http://www.bmu.de/files/english/
renewable-energy/downloads/application/pdf /broschuere-ee-zahlenen. pdf. Retrieved on
January 15, 2012.
. 21Renewable Energy Sources in Figures. June 2009. Federal Ministry for the Environmental,

Nature Conservation and Nuclear Safety. Available on-line at http: //www. bmu. de/f iles/english/
renewable- energy/downloads/application/pdf/broschuere- ee-zahlenen. pdf. Retrieved on
January 15, 2012.
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Figure 6-5: Renewable energy generation in Germany from 1990 to 2007. Data is
based on International Energy Agency 2008. The graph is taken from [36].

investors to finance renewable energy.

A major criticism of FIT is that a too generous tariff rate results in market ineffi-

ciency. On the other hand, RPS can theoretically achieve a specified target penetra-

tion of renewable energy with minimum cost. This claim is based on an assumption

that there is a multiplicity of buyers and sellers in a perfectly competitive REC mar-

ket, where no single buyer or seller has enough market share to have a significant

influence on prices [24]. In practice, markets are rarely perfectly competitive.

It appears that FIT policies have been quite successful in Europe. For example,

Denmark, Germany, and Spain, which have operated FIT systems for two decades,

have achieved much larger growth in wind generation than other European countries

that do not employ FIT or were late to introduce it, as shown in Figure 6-6. Toke

[24] assesses the effectiveness of the RPS policy in the U.K.22 and conclude that it

does not deliver renewable energy any more cheaply than a feed-in tariff. Haas et al.

concludes [36] that "sufficiently generous FITs - set above the generation cost level -

are quite effective in attracting investment in renewables."

However, it would not be appropriate to compare RPS and FIT with a single

criterion, as the objectives of the two policies are different. While the focus of RPS

is cost-efficiency, FIT puts more focus on rapid growth of renewable penetration. In
22JIn the U.K., RPS is called renewable obligation (RO)
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Figure 6-6: Comparison of wind power deployment by the policy options employed
from 1990 to 2001. Source: Haas et al. [35]. The graph is created by [36].

terms of constrained optimization, RPS aims at minimizing cost with a lower bound

on renewable penetration, while FIT seeks to maximize renewable penetration with

an upper bound on cost, specified by the tariff rate. Hence, comparison of the two

policy options reflect differences in philosophical viewpoints, as is the case in many

other policy discussions.

6.4 Conclusions

In the first half of this chapter we reviewed several cases in Japan and the U.S. that

highlight the need for, as well as the risk of, electricity deregulation. A careful design

of deregulation policy is necessary in order to effectively implement a smart grid while

avoiding potential risk, illustrated by the case of the California energy crisis. In the

second half of this chapter we discussed the pros and cons of two major policy options

to promote the introduction of renewable energies: the renewable portfolio standard

(RPS) and the feed-in tariff (FIT). We provided an interpretation of the two policy

options in terms of constrained optimization: RPS minimizes cost with a lower bound

on renewable penetration, while FIT maximizes renewable penetration with an upper

bound on cost.
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Chapter 7

Conclusion

This thesis developed a distributed control system to enable a smart grid with sus-

tainable homes, and discussed policy options to realize the vision.

The proposed control system is composed of three algorithms. The first algo-

rithm is a Market-based Contingent Energy Dispatch for a smart grid, which finds

the most efficient allocation of nominal and contingent power generation. Further-

more, it explicitly considers the uncertainty in the supply from renewables, such as

wind and solar, and guarantees that the risk of power imbalance is within given risk

bounds. The algorithm optimizes the allocation through a market mechanism. More

specifically, a market optimizes the prices of nominal and contingent power, while

each plant is responsible for finding the optimal output levels of nominal and contin-

gent power. The maximum efficiency is achieved at the equilibrium place, where the

supplies and demands are balanced. We demonstrated the algorithm's capabilities

through simulations of an electrical grid with heterogeneous power plants.

The second algorithm is a risk-sensitive plan executive, p-Sulu On-Line or p-Sulu

OL, which can optimally control the indoor temperature of a Connected Sustainable

Home. It achieves significant reduction in energy consumption by controlling the

incoming sunlight through a south-facing facade made of electrochromic glass win-

dows, whose opacity can be changed. The residents specify their desired range of

temperature through a temporal plan on state called chance-constrained qualitative

state plan (CCQSP), which is optimally executed by p-Sulu OL. We demonstrated
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that p-Sulu OL achieves significant reduction in energy consumption compared to

a classical control approach, while successfully limiting the risk of failure to satisfy

residents' requirements.

The third algorithm is a joint chance-constrained MPC, which can be applied to

AC frequency control and building temperature control with uncertainty. Resolvabil-

ity or recursive feasibility is an essential property for robust MPCs. However, when an

unbounded stochastic uncertainty is present, it is generally impossible to guarantee

resolvability. We proposed a new concept called probabilistic resolvability. An MPC

algorithm is probabilistically resolvable if it has feasible solutions at future time steps

with a certain probability, given a feasible solution at the current time. The proposed

chance-constrained MPC algorithm guarantees probabilistic resolvability, as well as

the satisfaction of a joint chance-constraint. Furthermore, with moderate conditions,

we showed that the finite-horizon optimal control problem solved at each time step in

the proposed algorithm is a convex optimization problem. The probabilistic feasibility

of the proposed algorithm is validated by Monte-Carlo simulations.

Finally, we discussed key policy challenges and policy options to allow smart grid

technologies to be fully utilized. The case studies in Japan showed that various

regulations, such as the ones on electricity distribution, fishery right, and national

park scenery, prevent flexible operation of a smart grid and introduction of renewable

energy. On the other hand, the case study on the California energy crisis, where

a large-scale blackouts occurred as a result of a market failure, illustrated the risk

of deregulation. We also compared two policy options to enhance renewable energy

production: a renewable portfolio standard (RPS) and a feed-in tariff (FIT). We

provided an interpretation of the two policy options in terms of a constrained op-

timization that RPS minimizes cost with a lower bound on renewable penetration,

while FIT maximizes renewable penetration with an upper bound on cost.
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