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Abstract

Nascent blood vessel growth in angiogenesis is a complex process involving cellular
response to biochemical growth factors, degradation of the surrounding matrix, and
coordinated migration of multiple endothelial cells up a growth factor gradient. Mech-
anistic understanding and quantitative modeling of the dominant dynamics involved
in nascent vessel growth will enable new strategies for regulating vessel growth rate
and geometry, and will have implications in controlling growth of complete vascular
networks in many research areas, ranging from cancer treatment and wound healing
to tissue engineering.

In this thesis, we investigate the dynamics of nascent vessel growth in 3D mi-
crofluidic assays, formulate a quantitative process model based on our experimental
characterization, and formulate a feedback approach to regulate growth. We begin
by developing a new microfluidic assay consisting of a collagen gel scaffold with fea-
tures to reduce assay-to-assay variability and increase experimental throughput. This
high throughput assay reveals that there is an inverse relationship between nascent
vessel elongation rate and diameter under diverse biochemical conditions. This find-
ing is supported by immunofluorescent staining and biochemical inhibition studies,
which give insight into the dominant mechanisms determining nascent vessel diame-
ter. Based on our experimental characterization, we formulate a simple quantitative
reaction-diffusion model that relates vessel diameter to elongation rate, and supports
our understanding of the relevant dynamics. We conclude by formulating a model-
based optimization approach for planning the optimal trajectory of elongation rate

vs. time needed to obtain desired sprout geometry, and illustrate in simulation that
model predictive feedback control can be used to correct for noise in the response of
elongation rate to growth factor inputs.

Thesis Supervisor: H. Harry Asada
Title: Ford Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Angiogenesis in Development and Tissue En-

gineering

Angiogenesis is the process of sprouting and growing new blood vessels from pre-

existing blood vessels in the body [27]. Coordinated vascular growth is essential for

perfusing developing thick tissues (> 100ptm thick) in vitro that can be successfully

engrafted into the body [48], has been shown to provide essential guidance cues for

organ development [47], and is essential for perfusing wounded and ischemic tissues

[74]. Promoting growth of coordinated vascular networks remains one of the main

challenges in growing thick tissues and organs in vitro [39]. Understanding how to

promote successful angiogenic growth will play an important role in each of these

fields.

The objective of this thesis is to understand how to reliably regulate vascular

growth using an active feedback approach.

1.2 Mechanisms of Angiogenic Growth

Vascular network growth in angiogenesis is initiated when tip cells are selected from

endothelial cells (ECs) in pre-existing vasculature in response to biochemical factors,



such as vascular endothelial growth factor (VEGF), among a multitude of others

[27, 29]. See Fig. 1-1. The tip cells proteolyze extracellular matrix (ECM), of which

type I collagen is the main structural constituent [8], enabling them to chemotactically

migrate and leaving a cleaved conduit behind them in the ECM [14, 73]. Endothelial

stalk cells migrate and proliferate in this conduit behind the tip cell, and configure

themselves in a lumen structure to form the stalk of the new vasculature [36]. Even-

tually the new vessels branch and anastomose to form a network as shown in Fig.

1-1C. In vivo, as the network matures, a "pruning" process eliminates some of the

AC Growth
Gel 7 Factor

o iCells

B
Growth

Cor Gel Matrix
Brnchin

k Cell

Figure 1-1: Illustration of angiogenic sprouting process. (A) ECs residing in a blood
vessel sprout out in response to growth factor molecules. (B) A leading tip cell, detects
gradients in certain growth factors, cleaves the ECM, and chemotactically migrates
toward the growth factor source while stalk cells follow behind the tip. (C) New
sprouts branch at multiple stages and anastamose to form a new vascular network.

many sprouts [57]. Finally, flow induction and attraction of pericyte and smooth

muscle mural cells stabilize the sprouts and a tiered network forms [57]. The network

maturation process is very complex and has been heavily studied [36, 30, 16, 57]. In

this thesis, we restrict our attention to the early stage nascent vessel formation before

pruning and stabilization.



1.3 Microfluidic Angiogenesis Models

Recent advances in 3D microfludic angiogenesis models [15] provide important tools

for both investigating and regulating angiogenic growth. Fig. 1-2 shows the device

used for angiogenesis experiments. A collagen gel matrix is formed between micro-

Higher VEGF
CollagenConcentrationColae EGF Gradient Media A

Micro-fluidic
Channel A

Concentration
s Seeded

Micro-flui Forming Monolayer
Channel B

Figure 1-2: Schematic of microfluidic angiogensis model used in [15].

fluidic channels A and B (see fabrication details in Appendix A.1). Human Micro-

Vascular Endothelial Cells (hMVEC) are seeded on one side of the gel matrix facing

Channel B. Fluids containing growth factors and other molecules are delivered to the

gel matrix through both channels. The fluid provided to Channel A usually contains

a higher concentration level of VEGF than that of Channel B, so that a uniform

gradient of VEGF concentration can be formed across the gel matrix. In response to

the gradient of VEGF provided, ECs sprout out and extend towards the higher VEGF



concentration. The sprouting process is observed from beneath using a confocal or

widefield microscope, from which we can observe the evolution of individual ECs and

the total sprout morphology.

Fig. 1-3 shows an example phase contrast experiment taken from one of the

microfluidic device designs used by Chung et al. in [15]. The device enables us to ob-

serve growth in response to multiple concentrations and gradients of VEGF and other

angiogenic factors (e.g. sphingosine-1-phosphate [20], platelet derived growth factor

[31], angiopoietins 1 and 2 [1], among a multitude of others) under tightly regulated

biophysical and biochemical conditions. Furthermore, this platform provides a means

of observing growth in real time and actively regulating growth by manipulating the

application of angiogenic factors in channels A and B.

~250pm

ollagen
Gel

PDMVS
Suppor Developing

Post Sprouts

PDMS
Monolayer Support

Post

Microfluidic
Channel

Figure 1-3: Phase contrast image of nascent sprouts grown in microfluidic platform
from [15].

1.4 Regulating Growth

1.4.1 Prior Work in Angiogenic Regulation

Many previous studies have attempted to grow vascular networks in vitro. These

studies have been targeted at attempting to reproduce in vivo conditions in an in



vitro setting, including embedding angiogenic growth factors into the matrix scaffold

[22], co-culturing mural cell types with vascular endothelial cells [42], micropatterning

molds to mimic in vivo vasculature that are later seeded with ECs [43], and ECM

scaffold fabrication by decellularization of mouse hearts, later seeded with ECs [60].

These attempts have had some success, but are not yet fully functional [39], and

successful and reliable growth remains a challenging issue. These prior works have

attempted to engineering and regulate vascular growth using passive approaches in

the sense that they do not monitor growth and actively change conditions to make

corrections. In this thesis, we will take an active approach to regulating growth into

a 3D ECM with no preexisting patterning.

1.4.2 Feedback Approach

Microfluidic technology (like in Fig. 1-2) opens up the possibility of actively control-

ling the angiogenic growth process. As shown in Fig. 1-4, we can use a process model

to determine the best time-sequence of biochemical factors to apply in channels A

and B to obtain desired growth. Furthermore, we can observe vessel growth in real

time and close the loop to correct for error in the vessel growth.

Model based control and feedback are widely implemented in traditional engi-

neering problems ranging from aircraft autopilots and robotics to chemical process

control and are adaptable here. While many control approaches exist for determin-

ing the best sequence of conditions to apply, a technique known as model predictive

control (MPC) has been widely used in chemical process control among many other

amplifications to regulate systems with large time delay and nonlinearities [65, 12].

However, angiogenesis and cell population growth processes differ in many ways

from traditional engineered systems where control technology has been successfully

applied. First, the system consists of a population of EC's, each interacting with

nearby cells, the ECM, and responding to exogenous biochemical inputs. Second, cells

live in a "wet" environment, where biochemical inputs propagate through diffusion

and influence broad regions of the cells. It is infeasible to directly control the behavior

of each and every cell in the population. Available inputs are broadcast in nature,



influencing the multitude of cells. Further, it is not necessary, or even desirable, to

control each and every cell. In generating a vascular network, the system as a whole

should satisfy certain collective requirements, such as vascular density in the matrix,

rate of branching, rate of growth, vessel diameter, or others. Rather than the behavior

of each individual cell, correct development of the cellular population as a whole is

important in growing a useful vascular system.

Application of growth
factors in channels A
and B

Desired growth Model Based
---- Controller

Observe
response

- Cell interactions
- Cell-matrix

interactions
- Transport Check for improper
- Et c. growth

Figure 1-4: Model based feedback control approach used for actively regulating an-
giogenic growth.

1.4.3 Mathematical Angiogenesis Models

A key aspect of this work will be formulation of quantitative predictive process model

to be used for MPC. This means predicting how fast or how large a developing vessel

will be in the future given application of growth factors and current conditions. The

model needs to be tailored to take measurable and known quantities as inputs and

yield quantities related to future sprout development, like diameter, as an output.

A multitude of mathematical models have been proposed to describe different

aspects of the angiogenesis process. To list a few, [4] has proposed a stochastic tip

cell selection model, [38] has proposed a detailed reaction-diffusion tip cell matrix

degradation model, [34, 67, 66] have proposed complex, multiscale models to capture



cell-cell interaction and chemotactic dynamics in a forming sprout, and [64] has pro-

posed a hybrid discrete/continuum model involving random walks. See [51] for an in

depth review of some of these models as well many other stochastic and deterministic

modeling approaches.

Despite the great mechanistic insights and qualitatively similar results obtained

from these models, they are extremely complex with many parameters and many

equations, and none has shown significant capability to quantitatively predict any

of the behaviors or geometries observed in angiogenesis. Therefore, we will need to

formulate a new model designed to quantitatively describe future growth based on

current observations and known inputs.

1.4.4 Vascular Growth Metric

A key initial question in understanding how to regulate angiogenesis is: What are the

important features to regulate? Do we need to concern ourselves with the positions

and internal states of all of the ECs and the ECM, or are bulk measures like vessel

diameter and rate of growth sufficient?

To our knowledge, there has been no specific discussion in the literature about

which vessel features are important to promote successful growth. However, the

mechanisms determining the geometry, e.g., diameter, of nascent vessels are still

poorly understood. In fact, recent murine vessel explant studies [57, 59] have observed

a wide distribution in the range of 5-25im during the first 14 days of nascent'vessel

growth, but there has been no explanation of the mechanisms behind such dramatic

sizing variability. In this work, we aim to investigate the mechanisms mediating

nascent vessel geometry in precisely regulated microfluidic assays, and describe and

verify the mechanisms using a quantitatively predictive mathematical model, which

will later be useful for formulating a control framework.



1.5 Contributions of this Thesis

It is clear that understanding how to reliably manipulate and guide angiogenic growth

will provide an important advancement in fields as diverse as tissue engineering,

wound repair and even cancer inhibition [36).

In this thesis, we take a new approach to regulating vascular growth by integrating

quantifiable angiogenesis assays with a quantitative process model and feedback to

improve reliability/variance, as illustrated in Fig. 1-5. We use in vitro microfluidic as-

Experiments Modeling

Control

Figure 1-5: This work takes an integrated appraoch by combining experimental ob-
servations with quantitative process models to implement feedback.

says with precisely controlled biophysical and biochemical conditions [15], which can

be systematically modulated to experimentally study and regulate angiogenic growth.

Observed response to applied angiogenic stimuli, such as vascular endothelial growth

factor (VEGF), will provide insights necessary for formulating a mathematical process

model. The process model will be used to predict future growth based on observed

W



growth-so-far and applied biophysical conditions, will enable open loop selection of the

best input stimuli to obtain desired growth patterns, and will enable active feedback

control to regulate incorrect growth. Since angiogenesis is a complex, multi-stage,

process [57], I focus on modeling and controlling nascent sprout development after

the tip cell is selected, but before branching and maturation occurs. Relatively little

is known about this portion of the process, but since later stages of angiogenic de-

velopment depend on these initial sprouts, understanding their process and how to

regulate them may play an important role in learning how to attain successful mature

networks.

In the following chapters, we take the following integrated approach to regulating

control of angiogenic growth:

" Quantitative assay development Present the design of a new microfluidic

assay, which is an extension of the design developed by [15]. The new design

provides a multitude of angiogenic growth regions subjected to virtually iden-

tical biochemical and biophysical conditions, enabling quantitative evaluation

of nascent vessel growth despite a high level of variability in the growth of

individual vessels.

* Experimental observation Employ the new assay design to systematically

evaluate growth in response to multiple VVEGF conditions and MMP in-

hibitors. These observations will lead to new understanding of the mechanisms

mediating nascent vessel geometry.

" Computational model formulation Formulate a quantitative process model

with structure based on the experimental observations and parameter tuned to

match the data.

" Controller formulation Formulate an input vs. time trajectory optimization

approach to plan the best sequence of inputs to obtain desired growth and

formulate a Model Predictive Control approach to correct for noise in the process

response to growth factor inputs.

Taken together, this thesis contributes the first methodology to integrate exper-



imental observations with a quantitative and predictive mathematical model to ac-

tively regulate angiogenic growth.



Chapter 2

"High Throughput" Microfluidics 1

2.1 Need for a High Throughput Angiogenesis As-

say

Recent advances in microfluidic assay technologies have demonstrated the ability to

produce physiologically relevant three dimensional microenvironments with precise

biophysical and biochemical conditions for studying morphological growth, such as in

angiogenesis [15]. These devices have enabled systematic study of morphological re-

sponse to multiple exogenous biophysical and biochemical inputs. However, previous

designs suffer from the key limitation that just a few observational instances are avail-

able from each assay. In contrast, single cell assays, measured using flow cytometry,

can automatically evaluate millions of ensemble observations [9], yielding quantitative

and statistical measurements. A similar capability in microfluidic morphology assays

would enable us to characterize angiogenic growth in response to multiple growth

factors and combinations thereof. In this chapter, we aim to help bridge the capa-

bility gap in microfluidic morphology assays by developing a new device design for

statistically comparing the angiogenic response to multiple biochemical cues. As we

will show in the next chapter, the multitude of data will enable us to find consistent

relationships in angiogenic growth that will facilitate predictive modeling and control.

'This work was conducted as a collaboration between myself, Waleed Farahat, and loannis Zer-
vantonakis. See [25] for further topics on usage of this design.



2.2 High Throughput Assay

2.2.1 Design

The founding motivation for this work came when we attempted to quantify and

distinguish angiogenic response to different growth factor stimuli, including conditions

with gradient of VEGF (VVEGF)=O and VVEGF=20ng/mL/(gel region width).

Increasing VVEGF is known to stimulate chemotactic response in ECs [71]. However,

the growth response in the microfluidic devices was highly variable from region to

region and from device to device (see Fig. 2-1). We employed numerous metrics,

including counting the number of nuclei to invade beyond the monolayer, the total

number of sprouts, and attempting to measure the overall length of sprout growth.

Regardless of metric, it was difficult to statistically discern morphological differences

between the conditions.

Figure 2-1: Sprouting in two of the microfluidic devices designed in [15] after 72hr
of growth. Despite being constructed at the same time and subjected to apparently
identical conditions (20ng/mL VEGF in the lower channel and 40ng/mL VEGF in
the upper channel), the devices show enormous growth variability, including rate and
shape of the elongating vessels.

To improve on these issues, we developed a new microfluidic design that extended

the approach described in [15] to incorporate an increased number of cell growth

regions, yielding multiple observation instances on a single chip. The new device

design (Fig. 2-2A) consists of 2 media channels engulfing an extended, central region

containing the extracellular gel matrix. By varying the biochemical conditions in



the channels, growth factor concentrations and gradients across the gel region are

established to stimulate cellular responses. Because all of the gel regions are subjected

to virtually identical conditions via channels a and b, and they are all filled using a

single gel injection through the ports at the end of the gel region, the gel regions

should comprise an ensemble of virtually identical experimental repetitions.

Two objectives were sought in the design of the device with respect to gel con-

tainment in the central region:

" Extending the length of the gel region to enable the formation of a longer

monolayer, thereby increasing the number of cell growth regions and their as-

sociated observations, and

" Achieving a uniform gel-fluidic channel interface since non-uniformities

would result in aberrations in the extra-cellular conditions and non-uniform cell

seeding.

These two objectives were achieved via post design (Fig. 2-2C). To enable uniform

gel interface with channels a and b, trapezoidal shapes were chosen for the posts. The

post angle (600) was chosen to supplement the contact angle of the PDMS surface

(measured to be - 120') such that the collagen is parallel and flush with the medium

channels [32] (see Figs. 2-2C-D).

To extend the length of the gel region, posts were spaced such that the pres-

sure containment capability of the cage was sufficient to withstand filling pressure

transients encountered during filling of the gel solution.

Ideally, it is desirable to minimize the presence of the posts (in number and in

size) since they diminish the usable length of the device. However, since the posts

provide the necessary functionality of gel caging, they need to be sufficiently close to

maintain sufficient pressure containment capability.

To maximize pressure containment in the gel cage, we analyzed factors driving

surface tension at the air-liquid interface. The pressure drop across the air-liquid

interface is given by [44]

A P = (++ (2.1)
R2 R
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where P is the pressure differential sustained by surface tension, -y is the surface ten-

sion coefficient, and R2 and R, are the radii of curvature of the air-liquid interface

in two mutually perpendicular directions (shown in Fig. 2-2B). In conjunction with

the contact angle between PDMS and gel solution, R, is determined by post spacing,
whereas R2 is determined by channel height. An interface that is robust to spillage

during the filling process is one that can withstand large pressure perturbations P.

Thus, to maximize P, two steps were taken: first, devices were baked during fab-

rication (see Appendix A.1) to render the PDMS hydrophobic [77], which allowed

for the formation of interfaces with smaller radii of curvature. Second, the radius of

curvature R2, was chosen via empirical testing of various post spacings to provide

the necessary P that allowed the gel to be filled through the length of the gel region

without spilling into channels a or b. The radius of curvature R, was not subject

to optimization since it was determined by channel height, and was constrained by

the desire to maintain three-dimensionality of the cell culture. Furthermore, the con-

verging geometry of the trapezoidal posts helped stabilize the air-gel interface since

it results in narrower radius R2 as more gel is filled in the device. Thus, the geom-

etry provided a stiffening interface that helped arrest perturbations that may have

occurred during the manual gel filling process.

2.2.2 Transport Validation

To validate growth factor transport dynamics, we used Texas Red-conjugated Dextran

(40 kDa) as an analog for biological growth factors such as VEGF-165 (38 kDa).

By imaging the fluorescence intensity, diffusion profiles are attained (Fig. 2-3A-B).

These characterizations were conducted when flow was drawn through the device at

1 pL/min via a perfusion pump (Harvard Apparatus). Under flow conditions, the

device developed nearly linear gradients that can be sustained for extended durations

(>6hr measurement duration). The concentration profiles in the outermost gel regions

nearest to the gel filling ports were affected by the large mass of gel at the ports that

acted as a sink. This resulted in reduced gradients in the first and last 2 to 3 gel growth

regions in the device. We have noted a significantly reduced (50-75%) reduction of
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Figure 2-2: "High throughput" microfluidic device design. (A) The device is con-
structed from a PDMS substrate fabricated using standard soft lithographic tech-
niques [77] and bonded to a glass coverslip (see Appendix A.1). The device consists
of a central 3D collagen gel matrix with a fluidic media channel on either side. The
gel channel is bounded by trapezoidal support posts leaving 37 separated growth re-
gions along its length. The collagen matrix and channels are 120A m deep. (B) The
device contains an array of trapezoidal posts that cage collagen gel into well-defined
regions with uniform surface interface. During collagen filling, the gel solution-air in-
terface curvature sustains transient filling pressures. The posts have an angle of 600,
supplementary to the contact angle of the liquid collagen and hydrophobic PDMS
surface (measured to be 120'). Post spacing is 100-125 pm, and width of gel region
is 1.3mm. (C) Phase contrast image of trapezoidal posts bounding collagen-channel
interface after 72hr of cell growth from monolayer in channel a into collagen matrix.
(D) Side view confocal image of ECs built up on the collagen wall and sprouting into
the collagen matrix. Blue: Dapi. Red: Cytosolic CellTracker CMMRA. Green: DQ
quenched collagen.



sprouting incidence in the outer 2 regions, and the sprouts that do grow are typically

stunted.

While we validated transport in this microfluidic design using flow, all of the

cell growth experiments in this thesis were conducted without flow. Instead the "Y-

junction" on the right side of Fig. 2-2A was blocked by injecting collagen. Channel

medium was replaced every 24hr, meaning that the gradient decays with time. From

previous work, we expect the gradient to decay with a time constant -60min [80].

B

0 hr 1 hr 3 hr 6 hr

Figure 2-3: Characterization of device transport characteristics in the absence of
monolayers. Characterization was conducted using Texas Red conjugated 40 kDa
Dextran in lieu of VEGF (molecular weight38kDa) (A) Gradients are estimated via
fluorescent intensity measurements along the entire gel region (B) The generation
gradients that are stable in time when device is under flow of 1 pL/min. Gradients
are shown to be stable over 6hr.

2.3 Illustration of High Throughput Data

With this high throughput design, we expected to be able to quantify and statis-

tically distinguish the influence of multiple biochemical conditions on angiogenic

growth. One metric of interest that we first used for evaluating growth is the rate of

new sprout growth in response to multiple biochemical factors. We wanted to check

whether we could influence the rate of growth using different applications of VEGF

and sphingosine-1-phosphate (SIP). The former is well known to illicit angiogenic



growth, while the latter is known to illicit a highly invasive phenotype in ECs [20].

We seeded ECs into into channel a of the high throughput design (see Appendix

A.2 for details of cell loading). The cells build up on the collagen wall and sprout

into the collagen matrix during the next several days (see Fig. 2-2D). The experiment

began 24hr after cell loading (referred to as day 1). We considered three different con-

ditions in channels [a,b]: i) complete EGM-2MV minus VEGF (referred to as basal)

in both channels, ii) basal plus [20ng/mL VEGF, 40ng/mL VEGF), and iii)basal plus

[20ng/mL VEGF, 40ng/mL VEGF + 250nM SiP]. We use n = 3 devices per con-

dition for a total of N = 111 growth regions. We then counted the number of new

sprouts that has grown in each region by comparing phase contrast images from both

days.

As shown in Figs. 2-4A-C, we were able to get different number of new sprouts

depending on the conditions. However observing the individual instances in Figs.

2-4A-C alone is insufficient to fully understand the distribution of each response. (see

Fig. 2-4D). As shown, our large number of observations for each condition were able

to define three completely different growth distributions (P < 0.01 between each pair

of conditions).

2.4 Summary and Utility

Our high throughput design enables us to quantify the sprouting response to multiple

combinations of growth factors in terms of a statistical distribution. As in the pre-

vious section, this gives us the ability to learn how growth factors and interventions

manipulate angiogenic growth. As we will illustrate in the next chapter, observation

of so many growth regions gives us the additional capability to look for low variance

relationships in the data. These relationships will lead to formulation of a quantitative

and predictive model that can be used for control.
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Figure 2-4: Number of new sprouts grown over 48hrs from each of three conditions:
(A) complete EGM-2MV minus VEGF (referred to as basal; see Appendix A.2) in
both channels, (B) basal plus [20ng/mL VEGF, 40ng/mL VEGF], and (C) basal
plus[20ng/mL VEGF, 40ng/mL VEGF + 250nM SiP]. (D) The instances shown in
(A) - (C) are representative but they do not illustrate the overall distribution shown.



Chapter 3

Experimental Evaluation and

Quantitative Model Formulation

3.1 Introduction

Vascular network growth in angiogenesis is initiated when tip cells are selected from

endothelial cells (ECs) in pre-existing vasculature in response to biochemical factors,

such as vascular endothelial growth factor (VEGF) [27, 29]. The tip cells proteolyze

extracellular matrix (ECM), of which type I collagen is the main structural constituent

[8], enabling them to chemotactically migrate and leaving a cleaved conduit behind

them in the ECM [14, 73]. Endothelial stalk cells migrate and proliferate in this

conduit behind the tip cell to form the stalk of the new vasculature [36].

Many aspects of nascent vessel elongation have been heavily studied, including tip

cell selection [37, 49, 69], collagen proteolysis [38], and tip and stalk cell migration

[46]. However, the mechanisms determining the geometry, e.g., diameter, of nascent

vessels are still poorly understood. In fact, recent murine vessel explant studies [57, 59]

have observed a wide distribution in the range of 5-25pum during the first 14 days of

nascent vessel growth, but there has been no explanation of the mechanisms behind

such dramatic sizing variability. In this work, we aim to investigate the mechanisms

behind nascent vessel growth in precisely regulated microfluidic assays and verify the

mechanisms using a quantitatively predictive mathematical model.



Angiogenic sprout growth and conduit formation have been shown to depend on

matrix metalloproteinase (MMP) mediated remodeling of the collagen extracellular

matrix [14, 73], making MMPs key candidates for explaining observed conduit and

sprout geometries. There are several important MMP species involved in degradation

of type I collagen, including the cell-membrane bound species, membrane type 1

(MT1)-MMP (MMP14) [14], as well as the soluble species MMP1 (collagenase I) [70]

and MMP2 (gelatinase A) [33]. In addition MMP2 and MMP9 (gelatinase B) both

proteolyze type IV collagen [54], which ECs secrete to form a basement membrane

while cleaving the ECM [35, 51].

Quantitatively predicting nascent vessel geometry requires understanding of the

spatial distribution of MMP secretion and activation in addition to which species

play a dominant role in matrix remodeling. MT1-MMP is known to be activated

prior to secretion and has shown to be essential for vascular growth in murine retina

models, but whether it is expressed solely at the tip cell or distributed along the

sprout has been a key question [56, 73, 79]. Furthermore, MT1-MMP is involved

in the MMP2/MMP9 activation cascade [75], meaning that the proteoytic forms of

MMP2 and MMP9 co-localize with MT1-MMP. Finally, MMP1 is activated by MMP3

(stromelysin-1) and MMP1O (stromelysin-2), neither of which proteolyze triple helix

fibers in type I collagen [55, 62, 70]. To our knowledge, MMP1 localization has not

been studied.

In this chapter, we investigate the mechanisms determining nascent sprout di-

ameter by combining a microfluidic angiogenesis model with a computational MMP-

collagen reaction-diffusion simulation. The microfluidic model involves vessel growth

into a 3D type I collagen scaffold from a primary microvascular endothelial cell mono-

layer [15, 25]. This assay enables precise manipulation of biophysical and biochemical

conditions, including application of MMP inhibitors, while eliminating many of the

poorly understood and unmeasured interactions involved in in vivo assays. Simulta-

neously, the computational simulation supports the experimentally observed mecha-

nisms and serves as a tool to analyze experimental data. We will use the model to

formulate our control framework in Chapter 4.



3.2 Results

3.2.1 Diameter is Inversely Correlated with Elongation Speed

We first tested whether we could produce a range of nascent vessel diameters in our

microfluidic angiogenesis model, similar to what has been observed in in vivo murine

studies [57, 59]. In a microfluidic device shown in Figs. 2-2A, 2-2C, a collagen gel

scaffold was created between the two microfluidic channels, a and b, and different

concentrations of Vascular Endothelial Growth Factor (VEGF) were applied to both

channels to create a gradient of VEGF concentration across the gel scaffold. Human

microvascular endothelial cells (hMVEC) were seeded into one channel (channel a),

formed a confluent monolayer on the vertical wall of the gel scaffold, and sprouted

out towards the higher VEGF concentration (Fig. 2-2D). The 3D growth of sprouts

into the collagen scaffold was observed, and their elongation speed and the sprout di-

ameter were measured. Different combinations of VEGF concentration and gradient

resulted in diverse speed and diameter distributions, as shown in Fig. 3-1B. Com-

paring faster and slower elongating vessels, slower vessels had wider diameters (Fig.

3-1A). Interestingly, comparing multiple experiments, with different VEGF concen-

trations applied in channels a and b, and therefore gradients across the gel region,

showed that all of the vessel speeds and diameters fell on a single curve (Fig. 3-1B) 1 .

3.2.2 Diameter vs. Speed Curve is Consistent with Tip Cell

Localized Soluble MMP Activation

We sought to understand and explain the mechanisms relating speed and diameter in

Fig. 3-1B. Since vessel growth is dependent on matrix remodeling, we considered the

important MMP species involved in proteolysis of types I and IV collagen (see Fig. 3-

2). These include the cell membrane bound MT1-MMP, as well as the soluble species

MMP1, MMP2, and MMP9 [54]. The soluble species are secreted from the cell as

iTo give an idea of how consistent a typical sprout geometry is along its length, Experiment 2)
yielded a total of approximately 82 sprouts, and only 5 (about 6%) satisfied our criterion.
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Figure 3-1: Vessel diameter is correlated with elongation speed. (A) Live cell stained
confocal images showing a thick, slow growing lumen developing at 25pm/day and a
narrow, faster growing lumen developing at 75pm/day. Green: CellTracker CMFDA.
Blue: Live nuclear stain Hoechst 33342. Arrows: vessel tip cell nuclei. Arrow heads:
vessel stalks connected to monolayer. (B) Diameter vs. elongation rate from exper-
imental measurements, scaling analysis, and COMSOL. Experimental measurements
are taken from nascent vessels grown over 3-9 days with less than 20% variation
in cross sectional diameter over their length. Channel [a, b] conditions were either
[20ng/mL VEGF, 40ng/mL VEGF] in experiments 1) and 3) or [30ng/mL VEGF,
60ng/mL VEGF] in experiment 2). The scaling analysis was given by Eq. 3.2 with
a = 39.8. The simulation was conducted in COMSOL according to Eqs. 3.3-3.4 and
used parameter values from Table 1.
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the latent proenzymes proMMP1, proMMP2, and proMMP9, and are activated via

a cleaving process that exposes their own proteolytic domains. MT1-MMP is known

to be the key activator of proMMP2 [33] while MMP2 and MMP3 are important

activators of proMMP9 [75]. In addition proMMP1 is known to be activated by

MMP3 and MMP10 [70]. Finally, membrane bound plasmin is known to activate

MMP1, MMP3, and MMP9 [53]. Furthermore, 3D human umbilical endothelial cell

cultures showed that MT1-MMP expression is localized to the tip cell in the presence

of mural smooth muscle cells (SMCs), but may be distributed along the vessel without

SMCs [79].

Figure 3-2: Hierarchy of MMP secretion, activation and reaction with ECM compo-
nents types I and IV collagen.

Because of the many MMPs and overall complexity involved in proMMP activation

and localization, we conducted a basic analysis to understand how vessel diameter

would scale with elongation rate, assuming that activated soluble MMP species are

localized to the tip cell. Suppose that a tip cell elongates at a constant speed v along a

straight line while producing activated soluble MMPs at a constant rate Qsource. Over

time T the cell produces Qo,,ceT of soluble MMPs and proteolyses the collagen gel

to create a conduit. This total amount of proteolyzed collagen scales as the amount

of activated MMP produced. Therefore, if the initial collagen concentration is co, and



the final volume of the vessel is V,

coV '-~ QsourceT (3.1)

Furthermore, assuming a symmetric distribution of the degraded collagen about the

straight line of the tip cell motion, the conduit can be approximated to a cylinder

with diameter Dc, which yields the following scaling relationship:

Dc I/v (3.2)

Fitting Dc = a1/vi, with a as a parameter, to the data in Fig. 3-1B yields

a = 40.0m 3/ 2 s-1/ 2 with a correlation coefficient of R2 = 0.87 between the scaling

curve and the experiment data. Thus, the experimental observations are consistent

with a mechanism involving soluble MMPs produced and activated locally at the tip

cell.

3.2.3 Inhibition of MMP2 Reduces Vessel Diameters

We next used several specific soluble MMP inhibitors commercially available from

Calbiochem to ascertain which species play a significant role in mediating vessel diam-

eter. Previous knockout studies in mouse retina models have shown that MMP2 and

MMP9 are not as important as MT1-MMP in mediating vascular network growth [14],

but vessel diameters were not analyzed. Therefore, we used three inhibitors from Cal-

biochem to probe the influence of the soluble species on diameter: i) MMP2/MMP9

Inhibitor I (MMP2/9i), which primarily acts on MMP2 (IC50=310nM) and MMP9

(IC50=240nM), but also inhibits MMP3 (IC50=1pM), ii) MMP9 Inhibitor I (MMP9i),

which primarily inhibits MMP9 (IC50=5nM), and iii) MMP Inhibitor I (MMPli),

which primarily acts on MMP1 (IC50=1puM) and MMP8 (IC50= 1ipM).

We applied [30ng/mL, 40ng/mL] of VEGF in a total of 12 microfluidic devices to

be used for four conditions in triplicate. The conditions were: Control of [30ng/mL,

40ng/mL) VEGF only, and each of the inhibitors i)-iii) applied in both channels a and



b, with the VEGF. Fig. 3-3 shows a typical typical vessel from each of the conditions,

while Fig 3-5 shows a statistical analysis of the measurements.

Of the three inhibited conditions, only MMP2/9i showed a significant diametric

change relative to Control (Figs. 3-5A-B). The MMP2/9i also showed both reduced

diameter and elongation speed compared with the scaling analysis (Fig. 3-4), in-

dicating that the total amount of cleaved collagen was reduced. Furthermore, all

three soluble MMP inhibited conditions showed no significant change in incidence of

sprouting relative to the Control (Fig. 3-5C). Taken together, these results suggest

that MMP1 and MMP9 do not play a significant role in determining vessel diameter.

In addition, MMP2 does play a significant role in mediating diameter, but is not

essential for vessel invasiveness, as found in [14].

As an additional control, we applied the pan-MMP inhibitor GM6001, which has

been reported to inhibit angiogenic invasiveness, possibly due to MT1-MMP inhibi-

tion [73]. It similarly inhibited angiogenic sprouting in our microfluidic angiogenesis

model (see Fig. 3-6). This result suggests that vessel invasiveness is MMP mediated

even though it is not dependent on the soluble species, MMP1, MMP2, or MMP9.

3.2.4 MT1-MMP Expression is Tip Cell Localized in the

Nascent Vessel

Since MT1-MMP is widely considered to be a key activator of MMP2 [10, 18, 40], we

investigated MT1-MMP expression and localization using immunofluorescent staining

in nascent vessels after 72hr of growth. We found that elongating vessels led by tip

cells having active filopodia consistently stained positive for tip cell localized MT1-

MMP (Fig. 3-7A), while vessels without apparent filopodia did not stain positive

(Fig. 3-7B). Active tip cells also stained positive for MT1-MMP in the presence of

the MMP2/MMP9 inhibitor (Fig. 3-7C), verifying that the inhibitor does not act on

MT1-MMP. These results suggest that active tip cells featured by extensive filopodia

express MT1-MMP, and that MMP2 activation via MT1-MMP is therefore localized

at the tip cell.



Figure 3-3: Influence of MMP inhibitors on sprout diameter with channel condi-
tions [30ng/mL VEGF, 40ng/mL VEGF] over 72hr. (A) Phase contrast image of
representative vessel from control. (B) Representative vessel with 1PM MMP2/9i.
(C) Representative vessel with 1pM MMP9i. (D) Representative vessel with 10 puM
MMP1i.
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Figure 3-4: Diameter vs. speed measurements from 10 sprouts in the MMP2/9i
condition compared against the scaling curve given by Eq. 3.2.

3.2.5 Dynamic Reaction-Diffusion Model Predicts Vessels Ge-

ometry

The scaling analysis and the experimental data in Fig. 3-1 delineated the sprout

diameter-speed relationship, but it applies only to steady state tip cell migration

where a long cylindrical vessel with a constant diameter is produced. However, time

lapse observations show that nascent vessels have variability in the elongation rate and

direction. Therefore, we have constructed a simple mathematical reaction-diffusion

model to validate our hypothesized mechanism in terms of the variable sprouting

behavior.

The MMP inhibition and MT1-MMP staining studies suggest that sprout diameter

is widened by MMP2, which is activated by MT1-MMP at the sprout tip. The

mathematical model was constructed based on these results with two key mechanisms:

a) soluble MMPs are produced/activated locally at a tip cell, and b) the activated

soluble MMPs diffuse into the collagen gel, degrade the gel, and widen the conduit.

Let x"P(t) be the coordinates of a tip cell location at time t. Since the soluble

MMPs are produced and activated only at the tip cell location, the MMP reaction-

diffusion process can be described by the following reaction-diffusion equation .
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Figure 3-5: Quantification of inhibitor influence on vessel diameter. (A) Histogram of
all nascent vessel diameters measured after 72hr of growth for Control and each of the
soluble MMP inhibitors. MMP2/9i shows a marked reduction in mean diameter and
a reduction in variance of the distribution.(B) Percentage of measured vessels below
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clearly defined vessels from 37 gel regions per device. Clearly defined vessels consist
of a clear leading tip connected to the monolayer via vessel stalk. N = 3 devices
for each condition. Only MMP2/9i yielded a significant change in vessel diameters
(mean ± SD, **P < 0.01 compared with Control). (C) Number of measured vessels
for each condition after 72hr or growth (mean ± SD).
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Figure 3-6: Nascent vessel response to 1pM pan-MMP inhibitor GM6001. (A) In
stark contrast to inhibition of soluble species alone, pan-MMP inhibition lead to
no vessel extension in any growth region that did not already have an existing tip
cell. (B) Pan-MMP inhibition applied at Ohr in growth regions that had pre-existing
nascent vessels halted vessel elongation.
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Figure 3-7: Immunofluorescent staining for MT1-MMP of sprouts growing in
2.5mg/ml type I collagen gel. Blue: DAPI. Green: Phalloidin. Red: MT1-MMP. (A)
Channel conditions of [30ng/mL VEGF, 40ng/mL VEGF] with leading cell showing
apparent filopodia (arrow head) characteristic of tip cell phenotype, and expressing
MT1-MMP (arrows). (B) Channel conditions of [30ng/mL VEGF, 40 ng/mL VEGF]
with leading cell (double arrow head) showing no apparent filopodia and expressing
no MT1-MMP. Trailing cell shows filopodia extension (arrow head) and expresses
MT1-MMP. (C) Channel conditions of [30ng/mL VEGF, 40ng/mL VEGF] + 1PM
MMP2/9i in both channels. MT1-MMP expression is maintained despite MMP2/9i.

Oq(x, t) = DV 2 q(x, t) - kqc(x, t)q(x, t) + 4,ource (x"i (t)) (3.3)at xPM

where q(x, t) is the soluble MMP concentration at position x and time t, c (x, t) is

the collagen concentration, D is the MMP diffusion coefficient, kq is second order

MMP loss rate constant due to reaction with collagen, and 4,ource is a fixed MMP

production rate at the tip cell location and zero elsewhere. The production rate is

computed as jsource (XtiP (t)) = Qsource/Vceu where Qsource is MMP production rate in

units of (mol/s) and Vcei is the cell volume. In response to the diffusion of soluble

MMP into the gel, collagen loss is given by

&c(x, t) = -kcc(x, t)q(x, t) (3.4)at

where ke is the second order collagen proteolysis rate constant. We used published

values from the literature for D, kq, Qsource (Table 3.1), and tuned only ke using

the data in Fig. 3-1B. To tune kc, we note that over long periods of time T with

constant tip cell speed, the total amount of collagen lost and the total amount of

MMP produced, QsourceT should be consumed in the same period of time. Therefore,



Table 3.1: List of simulation parameter values and their sources.
Parameter Reported Value Used Value Source

Initial collagen con- - 2.5mg/mL Experimental value

centration, co used in the microflu-
idic assay.

Diffusion Coefficient, 0.85 x 10- 6 cm2s-1 0.85 x 10- 6cm 2s-1 Activated MMP2 diffu-
D sion coefficient [38, 6].

MMP rate constant, 1.2 x 105M-Is-1 - 1.2 x 106M-ls- 1  Enzymatic efficiencies
kq 1.4 x 106Mls-1 reported for multiple

MMP2 species binding
with type IV collagen
[52].

Collagen rate con- - 8.0 x 105M-ls-1  Tuned parameter to
stant, kc match the data.

MMP source, Qsource 0 - 180,000 180,000 No measurements
molecules/hr molecules/hr available for MMP2,

but speculated to be
similar to MT1-MMP
production rate in [38].

their characteristic loss rates must be equal:

kcQsourceT = kqCoV (3.5)

from which we estimated kc such that the simulated diameter vs. speed curve matched

the experimental data and scaling analysis in Fig. 3-1B (Table 3.1). The simulated

vessel boundary was taken at c (X, tf) < 0.15co.

This dynamic model, built upon the hypothesized mechanism, was validated

against experimental data. First, the 2D tip position was measured every three days

using phase contrast imaging (Figs. 3-8A-B). Next, the spatial tip cell trajectory

was taken to be the 3D centerline of the sprout, which was measured from end-point

confocal images (Fig. 3-8C). Finally, the full spatiotemporal tip cell trajectory is

estimated by linearly interpolating between the phase contrast data to determine the

time profile over which the tip cell traversed the centerline. The full spatiotemporal

tip cell trajectory, x"P (t) is used as an input to Eq. 3.3.

We computationally implemented the PDE reaction-diffusion model Eqs. 3.3-3.4

in COMSOL using the full 3D geometry of the microfluidic device and x"P (t) as an



Day3 Day6 Day9

Top View Side View

B ASprout 1 C
E Sprout 2

c200
0

0 100
0L

3 6 9

Time [day]

Figure 3-8: Illustration of experimental data analysis for input to the computational
model. (A) Phase contrast images yield approximate tip cell locations (arrows) at 3
day intervals for the duration of growth. (B) Tip cell vertical position versus time for
both sprouts, as estimated from the phase contrast images. Sprout 2 lost its tip cell
phenotype and stopped migrating between day 6 and day 9. (C) Maximum intensity
projection top and side views of endpoint confocal image. Stains are: Rhodamine
Phalloidin (red) and Dapi (blue). Estimated centerline of sprout 1 (blue line) is
taken as estimated tip cell migration trajectory. The tip position information from
(B), combined with the estimated migration trajectory in (C) are used as inputs to the
quantitative model. The arclength coordinate, s is used for quantitatively evaluating
the simulation fit to the data using Eqs. 3.6-3.7.



Table 3.1: List of simulation parameter values and their sources.

Parameter Reported Value Used Value Source

Initial collagen con- - 2.5mg/mL Experimental value
centration, co used in the microflu-

idic assay.

Diffusion Coefficient, 0.85 x 10- 6cm2 s-1 0.85 x 10- 6cm 2s-1  Activated MMP2 diffu-
D sion coefficient [38, 6].

MMP rate constant, 1.2 x 105M-ls~1 - 1.2 x 106M-ls- 1  Enzymatic efficiencies
kq 1.4 x 10 6 M~1s-1 reported for multiple

MMP2 species binding
with type IV collagen
[52].

Collagen rate con- - 8.0 x 105M-ls- 1  Tuned parameter to
stant, kc match the data.

MMP source, Qsource 0 - 180,000 180,000 No measurements
molecules/hr molecules/hr available for MMP2,

but speculated to be
similar to MT1-MMP
production rate in [38].

their characteristic loss rates must be equal:

kcQsourceT - kqcoV (3.5)

from which we estimated kc such that the simulated diameter vs. speed curve matched

the experimental data and scaling analysis in Fig. 3-1B (Table 3.1). The simulated

vessel boundary was taken at c (x, tf) < 0.15co.

This dynamic model, built upon the hypothesized mechanism, was validated

against experimental data. First, the 2D tip position was measured every three days

using phase contrast imaging (Figs. 3-8A-B). Next, the spatial tip cell trajectory

was taken to be the 3D centerline of the sprout, which was measured from end-point

confocal images (Fig. 3-8C). Finally, the full spatiotemporal tip cell trajectory is

estimated by linearly interpolating between the phase contrast data to determine the

time profile over which the tip cell traversed the centerline. The full spatiotemporal

tip cell trajectory, x"P (t) is used as an input to Eq. 3.3.

We computationally implemented the PDE reaction-diffusion model Eqs. 3.3-3.4

in COMSOL using the full 3D geometry of the microfluidic device and x" (t) as an
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Figure 3-9: Simulated sprout growth based on quantitative model overlaid on exper-
imental confocal images. Contour lines indicate constant collagen concentration and
define the sprout boundary. (A) Simulation of Sprout 1 from Fig. 3-8 using published
parameter values, as indicated in Table 3.1. (B) Simulation of faster growing Sprout
2 from Fig. 3-8 using the same parameter values. (C) Endpoint image of 72hr sprout
growth from a different experiment (left). Green: Phalloidin. Blue: Dapi. Simulation
using the parameter values from Table 3.1 superimposed on sprout.
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Figure 3-11: Illustration of quantitative comparison between simulation and exper-
iment. The centerline of the final experimental volume is used as the simulated tip
cell trajectory. The error between simulation and experiment is computed in terms
of both total volume and average error in cross sectional area. The cross sectional
area is taken as the area in the plane that is locally perpendicular to the centerline
curve, s. Volume and area are analyzed between the planes at so and sf to eliminate
boundary errors due to unobserved MMP production as the tip cell is beginning to
invade the gel and unrealized proteolysis at the tip due to endpoint fixation.
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Table 3.2: Simulation vs. experiment error metrics. Values are averaged across 5
sprouts.

Metric Mean Min Max

Volume error, ev 11% 1% 20%

Ave. area error, EA 13% 9% 25%

whereso and sf are chosen to eliminate measurement ambiguity at the base and tip of

the vessel. We evaluated the error of a total of 5 nascent vessels, yielding the results

in Table 3.2.

3.3 Discussion

Prior work has considered many aspects of nascent vessel development, including the

tip cell selection process, tip cell migration, the influence of collagen degradation, and

stalk cell migration and proliferation [27, 29, 8, 73, 14, 36, 4], but has not addressed

the mechanisms that determine nascent vessel diameter. In this study, we combined

experimental evidence in 3D microfluidic assays with a computational model to sup-

port the hypothesis that soluble MMP2 activated at the tip cell plays a dominant role

in degrading collagen to determine sprout geometry and diameter. The microfluidic

assays provided a platform for observing the spatiotemporal profile of the sprouting

process in response to multiple growth conditions and interventions while maintaining

the biological relevance of 3D migration and conduit formation [15]. Furthermore, the

simple computational model supported the hypothesis by matching the experimental

data, despite the multitude of less significant factors that may be involved, e.g., a

multitude of MMP species [54], TIMPS [38], plasmin [53], among others.

The vessel diameters observed in control experiments were substantially larger

than that of a tip cell (as large as 40pm; Fig. 3-5), suggesting that the vessel con-

duit may be formed not only by membrane bound MT1-MMP on the tip cell that

directly cleaves the collagen gel, but also by other mechanisms. Only the MMP2/9

inhibitor yielded a significant change in conduit diameters relative to Control (Fig.

3-5). Furthermore, vessels grown subjected to the MMP2/9 inhibitor stained posi-



tive for MT1-MMP (Fig. 3-7C), indicating that MT1-MMP alone is insufficient to

generate large conduit diameters. These results also imply that MMP9 and MMP1

don not play a significant role. The apparently limited role of MMP1 is somewhat

unexpected since MMP1 is known to degrade type I collagen with similar efficacy to

MMP2 [62]. One explanation may be that, while MMP1 is capable of proteolyzing the

collagen triple helices into 1/4 and 3/4 segments, it does not solubilize the remaining

matrix components. In contrast, MMP2 proteolyzes the collagen triple helices and

solubilizes all matrix components in type I collagen [62]. That MMP9 plays a less

significant role is less surprising since it is capable of preoteolyzing type IV, but not

type I collagen, which is the primary ECM component, both in our in vitro model

and in vivo [8].

Since the rate of vessel formation was not influenced by MMP2/9i (Fig. 3-5C),

sprouting may be MT1-MMP mediated in our microfluidic model and is consistent

with previous work in mouse retina models [14]. We also found that application of the

pan-MMP inhibitor GM6001, which inhibits MT1-MMP in addition to the relevant

soluble species, entirely inhibited new vessel sprouting and stopped elongation of

existing nascent vessels (Fig. 3-6). These results are also consistent with previous

work [73]. Taken together, our MMP inhibition studies strongly suggest that conduit

geometry is mediated by expression of soluble MMP2, but that vessel elongation

depends on other species including MT1-MMP.

Immunofluorescent staining for MT1-MMP showed localization in the sprout to

tip cells with active filopodia (see Fig. 3-7A), but tip cells without apparent filopodia

often do not stain positive for MT1-MMP (see Fig. 3-7B). The latter result is con-

sistent with a vessel that is quiescent and is no longer cleaving the matrix. However,

since we must fix the vessel to check for MT1-MMP, it is not possible to determine

whether additional matrix remodeling would have occurred. Note that some non-

tip cells do express MT1-MMP within the cell monolayer (Fig. 3-7), but we have

not observed MT1-MMP expression within the sprout stalk after the 72hr duration

of our experiments. We speculate that the MT1-MMP expressing cells within the

monolayer may be consistent with cells that are stochastically differentiating to the



tip cell phenotype. This follows from previous work showing that delta like ligand

4/notch signaling is known to inhibit tip cell phenotypic differentiation in the vicinity

of an existing tip cell [4, 63], and a recent finding that MT1-MMP expression is up

regulated by notch [28]. Since proMMP2 is enzymatically activated by MT1-MMP,
tip cell localized MT1-MMP expression in the nascent vessel implies that activated

MMP2 is sourced from the vessel tip.

The scaling analysis and experimental data in Fig. 3-1 are valid only for steady

state tip cell migration that produces a nascent vessel having a uniform diameter

along a long longitudinal axis. We measured the diameter and length of each nascent

vessel, took only the vessels with approximately constant diameter, and estimated

their average elongation speed to obtain a correlation between speed and diameter

at steady state. We took measurements from multiple experiments with different cell

batches, and VEGF concentrations and gradients (see Fig 3-1B). Each experiment

having 37 sprouting sites shows a range of vessel growth rates despite all sprouts

being exposed to similar biophysical and biochemical conditions. In order to explore

a wider range of speeds, we applied different concentration and gradients of VEGF.

Interestingly, while the data were obtained from diverse experiments under dif-

ferent conditions, they all lie on a single curve relating vessel diameter to tip cell

velocityDc ~ v-01 /2 The curve is consistent with the steady state scaling analysis of

the degraded collagen gel cleaved by tip cell localized soluble MMPs produced at a

constant rate while the tip cell moves at a constant speed.

While the scaling analysis explains the relationship between elongation speed and

vessel diameter for tip cells migrating at a constant speed, many experimental data

show that both tip cell speed and direction vary over a broad range during nascent

sprout formation. The dynamic reaction-diffusion model is applicable to broader

experimental data with varying tip cell speed and direction. This elucidates the spa-

tiotemporal profile of sprouting vessels in relation to the varying tip cell velocity and

diffusion of soluble MMPs. The reaction-diffusion model with only four parameters

fitted very well the spatiotemporal profile of varying vessel diameter obtained ex-

perimentally. The model was built based on the key hypothesis: the soluble MMPs



locally activated at a tip cell are responsible for widening the vessel diameter. The

agreement with broad experimental data substantiates this hypothesis.

The full mechanism regulating proteolysis of type I collagen includes the interac-

tions of the several essential MMP species discussed so far, both with each other and

with the matrix, as well as multiple species of tissue inhibitor of metalloproteinases

(TIMPs), which are both MMP agonists and involved in activation of proMMP2 [11].

Furthermore, though MT1-MMP is often cited as the most important proMMP2 ac-

tivator, plasmin mediates the process [531 and other MT-MMPs, including MT2, 3,

and 5-MMP, are known to be involved in proMMP2 activation [21]. Since the ex-

perimental data suggest that diameter regulation is MMP2 mediated, but a host of

factors may be involved in proMMP2 activation, we supported our hypothesis that

active soluble MMP is tip cell localized by implementing a reaction diffusion model

that is consistent with the hypothesis and verified it against experimental data.

Due to the complexity of the total proteolytic reaction, some previous work has

attempted to construct a mechanistically accurate model of the preteolytic activa-

tion and reaction cascade, including MT1-MMP, MMP2, and TIMP2 [38]. However,

the process is very complex and the model included 14 equations and more than 30

parameters. While accurate, this model has never been matched with experimental

data. Our objective was to formulate a model that included just a few parameters

that are tuned to one data set and illustrate that the mechanism holds across a wide

collection of experiments. Inspired by the mechanistically complete work in [38], we

formulated a simple tip cell localized soluble MMP reaction-diffusion model involv-

ing just two equations and a total of 4 parameters. By utilizing the experimentally

observed spatiotemporal profile of tip cell position as an input, and assuming con-

stant soluble MMP production rate, we were able to tune the parameters to fit a

single sprout, and then showed that the tuned model predicted other experimentally

observed sprout geometries from the same, and from other, experiments. Further-

more, the model was able to predict not only sprouts with constant diameter, but

also sprouts with non-uniform diameter and speed.



3.4 Summary

In this chapter we took a coupled approach to investigating and quantitatively de-

scribing the relationship between nascent vessel geometry and sprout elongation rate

by combining biochemical assays with a quantitatively tuned computational model.

We have illustrated that the model can be used to reliably predict experimentally

observed geometries from our experimental platform without needing to re-tune the

parameters for every experiment.

As we will show in the next chapter, this quantitative model will enable us to

predict the time profile of input speeds necessary to optimize vessel geometry. Fur-

thermore, it will enable implementation of a feedback loop to actively compensate for

input and process noise.



Chapter 4

Synthesis of Condition Time

Profile and Feedback Control

The long term goal of this thesis is to establish a framework for regulating the nascent

sprouting process to generate desired sprout geometries. The quantitative model de-

veloped in section 3.2.5 is instrumental for synthesizing the time profile of input con-

ditions to yield a desired geometry, and for implementing feedback control. However,

there are several important issues that remain to be addressed (see Fig. 4-1):

" Understanding how to use the PDE model to determine the the opti-

mal time profile of tip cell speed, OP(t). The system dynamics are spatially

distributed. Manipulating speed while the tip cell is at one location affects the

conduit shape at the tip cell location and its surroundings, meaning that the

optimal time profile is not trivially obtained.

" Determining whether we well we can control tip cell speed by applying

growth factors in channels a and b. The relationship between growth

factor stimulus, such as VVEGF, and chemotactic response is an open research

question without an effective quantitative model, and is outside of the scope of

this thesis. We will show that we have limited influence over speed, and that

the response is highly variable, so we characterize its variability.

" A computationally efficient model to evaluate the influence of noisy



v"P(t) on the terminal sprout geometry. The computational model requires

~ 1min in COMSOL to evaluate 24hr of sprout growth. - 100's of simulations

are required to find the optimal v"P(t), and that number squared are required

to evaluate the optimal inputs in the face of v"P(t). Therefore, we pose a much

simpler ODE representation for a sprout elongating in a straight line.

9 Implementation of feedback control to compensate for noisy v"P(t).

Since since the input is very noisy, we implement a feedback loop in simulation to

actively make corrections for incorrect growth. We find that with experimentally

observed variance, the controller can make only limited improvement. However,

if the variance can be reduced in the future, the controller will prove important

in regulating final geometry.

Noise
sources

Reaction-Diffusion PDE's

Current
Geometry

Figure 4-1: Complete formulation for feedback control requires our computational
model, a model relating tip cell response to growth factor inputs, and input trajectory
optimization. The model relating tip cell response to growth factor inputs is currently
an open research question and outside of the scope of this thesis. Therefore, in this
work we characterize it and assume that we can directly manipulate tip speed with
noise.



4.1 Trajectory Planning

4.1.1 Time Profile Planning

The model developed in section 3.2.5 quantitatively describes the spatiotemporally

distributed nature of the reaction-diffusion dynamics. The model enables us to plan

how best to manipulate elongation rate, t"P (t), to obtain desired vessel geometric

profiles (see Fig. 4-2). However, because of the distributed influence of the tip

cell produced MMP2 on its surroundings, we need to take into account not only its

influence on the local cross section in the conduit, but also how it will influence the

conduit in front and behind of its current location as well as how its future speeds

will affect the distributed vessel geometry.

In this section, we implement input trajectory optimization using the PDE model

assuming that we can directly control tip cell speed without noise. We will address

the issue of noise in the following sections.

D Dref

D ef 2 Def

Y tip D (y, t)

ref

y

y 1  y2  3 n

Figure 4-2: Illustration of current diametric time profile, De (y, t), compared with
desired diametric profile, Def (y) of the nascent vessel at time tj. yref is the desired
terminal tip position, ytiP (tf).

We can formulate the open loop trajectory optimization problem as follows. To



begin, we define our state vector to be composed of the quantities we want to control

yA (t)

X (t) = Di (t)(41

Dn (t)

where Di (t) ... D, (t) are the current diameters at the positions yi ... yn. In addition,

we define a reference vector

yref

r Di (4.2)

Dref

from which we can define an error state Xr (t) X (t) - r.

Assume that the tip cell takes on some time profile of velocity, v(t). Then the

states take on nonlinear dynamics according to the PDEs and v(t) (see Fig. 4-1):

X(t) = f ( T (t) , o (t)) (4.3)

For the present development, we assume that we take v (t) to be our control input

subject to the constraint 0 < 7V (t) < Vmax and can only change the input at discrete

intervals v (t) = vi, iT, < t < (i + 1) T, < tf where T, is the controller sampling

period and i E {Noli <; m} with m = [tf /T].

Using this formulation, we can choose an optimal control input policy to minimize

terminal error state. Define v = [vi - .-m] T . Then assign a cost function in terms of

the terminal error

j (V) = ifC (ty) Qi (tf) (4.4)

where Q is a (n + 1) x (n + 1) weighting matrix that can be used to weight the

importance of some final error states more than others. Based on this cost function,



we can choose a sequence of optimal inputs such that

v -p* = argmin J (v) (4.5)

where 9Z {vi10 < vi < vma}.

4.1.2 Input Optimization Approach

Evaluating the cost in Eq. 4.4 given an input sequence v requires solving the reaction

diffusion equations, which we solve numerically in COMSOL. Therefore, an analytic

approach to optimizing Eq. 4.5 is not tractable. Instead, we employ MATLAB's

fmincon numerical optimization package using the active set algorithm obtain the

optimal input sequence, v"Pt.

The active set algorithm recasts our constrained optimization (veU) as an uncon-

strained problem and relies on the local gradient and Hessian of the cost function with

respect to the input sequence to descend the cost function toward a local optimality,

as shown in Fig. 4-3. Optimization speed is dramatically increased in algorithms

utilizing analytic expression for the gradient and Hessian. However, analytic ex-

pressions for terminal cost are not feasibly evaluated from the 3D reaction-diffusion

equations, so fmincon numerically estimates these quantities numerically, using the

Broyden-Fletcher-Goldfarb-Shanno(BFGS) method to compute the Hessian [261.

We implemented the input sequence optimization in simulation using MATLAB,

and COMSOL with LiveLink for MATLAB. See MATLAB code in Appendix A.6.

The simulation was implemented using a radial symmetric geometry using a maximum

mesh edge size of 3pum, and using the parameters from Table 3.1. To limit computation

time, we take tf = 24hr. While the time constant of cellular response to application

of VVEGF has not been characterized, we assume that we have direct control over

the tip speed, v (t) and take T, = 6hr. Therefore, m = 4.

To illustrate the trajectory optimization, we aim to optimize the terminal conduit

diameters at y = 25, 50, 75, and 100pm to the terminal reference, r = [yref 20pm

20tm 10tm 10pm]T. Note that we have not defined a value for yref because
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Figure 4-3: Active set algorithm descends cost surface using locally computed gradient
and Hessian.

we are not interested in its final value. To eliminate it from the optimization, we set

Q = In+1,n+1 except for Q1,1 = 0. Finally, we take v"' = 12pm.

Fig. 4-4 shows the final diameter profile using the optimal input sequence vOM

obtained from the COMSOL simulation at tf = 24hr. The terminal root-mean-

squared error between the simulation and the desired values is approximately 1.6pm.

Fig. 4-5 illustrates the time profile of the input and the evolution of the states X(t).

At first glance, it appears that the terminal diametric profile obtained in Fig. 4-4,

may not be optimal. It appears that if we increase the vi and v2, we should be able to

reduce the error in D1(tf) and D2 (tf). Fig. 4-6, shows the resultant terminal diameter

profile with increased vi and v2. As we can see can see, the error in D1 (tf) and D2 (tj)

is reduced. However, in elevating vi and v2 by less than 0.5ptm/hr, we pushed the

tip cell much closer to Y3 by the end of the third control interval (i = 3). In doing

so, D3 (tf) is considerably widened due to the proximity of the slow moving cell, and

increases the total mean squared error. Therefore, the original optimal solution is

better.
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Figure 4-4: Final conduit profile Dc(y, tf) using optimal input sequence, vort (line),
compared with reference diameters, DCef (circles). Vertical lines indicate the tip cell
location y"iP(iT8 ) and the arrows at the top indicate the speeds, vi used during the
ith time interval.
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4.2 Using V VEGF to Manipulate Speed

Formulating a practical control strategy faces the additional challenge that our model

only provides a relationship between v"P (t) and resultant geometry, but does not

relate application of biochemical factors, such as VVEGF to v"P. Tip cell speed

depends on a wide variety of factors, including the state of the tip cell itself, such

as activation of migration related signaling pathways, including Rac, Rho, and Focal

Adhesion Kinase, among many others [68, 72, 41], and expression of cell-cell and cell-

ECM receptors such as integrins and cadherins. In addition, ECM microstructure,

including density of collagen fibers, and the presence of cell-cell junctions may play

a role [3]. Each of these processes is influenced by many of the others, leading to

a complex and, so far, poorly quantified set of mechanisms. Understanding of the

interplay between these mechanisms and the final tip cell speed is a formidable and

open question and is outside of the scope of this thesis.

In this work, all of our characterization has been conducted using EGM-2MV

with different concentrations and gradients of VEGF. To evaluate how effectively we

could manipulate elongation rate using VEGF gradients, we observed the growth of

32 sprouts in a microfluidic device, and applied a step input in V VEGF (see Fig.

4-7). We found that we were able to increase mean spead by about 50% with a similar

rise in standard deviation (Fig. 4-8).

With standard deviation on the order of the mean, it will be exceedingly difficult

to use VVEGF as a control input for manipulating elongation rate. As we will discuss

more at the end of this chapter and in Section 5.2.1, new approaches will be needed

to reduced the variance in the speed response. However, whatever approach proves

to be successful in reducing the variance, it is sure to be significant. Therefore, we

will address closing the loop to correct for noise in the next two sections.

In the face of such large input speed variability, we propose that feedback control

will provide a means of improving variability in the final geometry. In the following

sections, we treat our input speed as being corrupted by additive white noise and

illustrate the role of a feedback controller to actively correct growth in simulation.
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Figure 4-7: Example of sprout changing elongation rate when V VEGF is increased
from 0 to 20ng/mL/(gel width).
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Figure 4-8: Histogram of 32 sprouts' elongation rate before and after a step input of
VVEGF from 0 to 20ng/mL/(gel width). Mean speed was 0.8 ± 0.7SD tm/hr for
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4.3 Reduced Parameterization Approach

In our experience, descending the cost surface typically requires ~ 100 complete for-

ward simulations before the optimum is obtained, depending on how far the initial

guess is from the optimal speed sequence. Simulating the full PDE's in COMSOL

requires ~ 1min to forward simulate 24hr, meaning that obtaining an optimal input

sequence via Eq. 4.5 often requires more than 1hr of computation time. This com-

putation time is well within our estimated sampling time of T, = 6hr, but we have

so far only considered a deterministic process. As we introduce process noise in the

next section, many more function calls will be necessary to evaluate the mean value

of the terminal squared error in Eq. 4.4, requiring perhaps an order of magnitude

more computation time.

With this in mind, we explored a simple approximation to the full PDE's by

parameterizing to match the computational model. To begin, we recognize that

collagen cleaving and increase of the conduit diameter is caused by MMP diffusion in

the viscinity of the tip cell. Therefore, MMP concentration at the conduit centerline

may be a good indicator of rate of change of diametric increase. To begin, we used the

2D COMSOL model to simulate a tip cell moving at constant velocity, and measured

the resultant steady state MMP profile at the centerline, as a function of the distance

6 behind the tip cell. Fig. 4-9A shows the profiles taken from simulations at several

different cell speeds. The steady state profile changes amplitude, but its other features

do not significantly vary with speed. As shown in Fig. 4-9B, normalizing the curves

by their maximum values collapses them onto a single curve.

To understand how to parameterize the curve, we recognize that there is little

MMP loss within the confines of the conduit - most of the collagen is already de-

graded except for at the boundaries. Therefore, we turn to the analytic solution for

diffusion from a transient point source in a non-reactive medium [13]. In our usual

axisymmetric coordinates (see Appendix A.5).

FaY'JI-\ source [T 2 + (y -yi(t))21
q (r, y, t) = 2 exp - (4.6)

[47rDt]3/2 X 4Dt



In a non-reactive medium, the previous solution could be integrated, with Qsource
changed to Qsource to yield the MMP profile vs. time. However, our MMP profile

is consumed by the collagen matrix at the conduit boundaries with a characteristic

time constant taken from the reaction term of Eq. 3.3:

1
TMMP 1 0.14s (4.7)

kqCo

with values taken from Table 3.1. Therefore, for longer time intervals, our MMP

profile may be approximated in terms of a Bell curve similar to Eq. 4.6. Since our

process is operating in steady state, there should be no time dependence if the profile

is parameterized in terms of 6 = y"P - y. Therefore, we assume a form

62
q(r = 0, 6) = exp (-a2 (4.8)

where a is a length scale. Here we take a = 9pm. As shown in Fig. 4-9B, the Bell

curve approximation is able to capture the MMP profiles. Note that there is some

error in front of the cell. This is likely due to a higher rate of MMP loss in front of

the cell since collagen concentration is higher there.

One note here is that we have not included the influence of tip cell speed on the

transient solution. We are able to do so because diffusion in the y-direction dominates

over tip cell motion based convection, v"Pa/D << 1 . Therefore, the tip cell velocity

does not significantly influence the profile.

Next, we checked to see whether we could use the Bell curve approximation to

the MMP profile to predict the change in the conduit diameter as the tip cell passes

through a particular location, y = 100pm. We note that conduit area, rather than

diameter, varies linearly with quantity of MMP released at a cross section. Therefore,

we write our dynamics in terms of the conduit cross sectional area A (y) = D, (y).

Then we have

A (y, y"P) = Kexp - J (4.9)
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Figure 4-9: MMP profiles taken from computational model in COMSOL. (A). Steady
state MMP profiles at the conduit centerline, q (r = 0, 6), measured from the 2D
COMSOL model while tip cell is moving at steady speed of 2,5, or 8pm/hr in a
straight line. (B) Centerline MMP profiles from (A) collapse onto a single curve
when normalized by their peak values, which can be approximated by a Bell curve.

Next, recalling that 6 = y"P - y and integrating from t = 0 to tf yields

A (y, tf) = f exp a2  dt

0f 1-- (4.10)

= ,if exp ] dt
0

but d6 = dyt"P = v"Pt, so assuming that the tip cell has passed through the location

y and that 6 >> a at time tf,

A (y, tf) ~ f ex [-L2 d6
-Oo (4.11)

since we know from Chapter 3 that De 40/1/v and a = 9pm we have that

r = 79.3pm 2/s.

Using Eq. 4.9, we are not able to perfectly predict the conduit diameter for

all time (Fig. 4-10), but we can predict the final diameter with root-mean squared

error of approximately 1pm in the range of speeds we have observed in experiments

(2 - 10pm).

Everything we have done so far assumes a constant speed, v"P, and a steady
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state MMP profile. However, the MMP profile is speed dependent. We assume that

we are able to change speed every T, = 6hr, so it is important to understand how

significantly these changes will influence our predictive capability. To this end, we

apply a step in speed from v"p = 5pm/hr while 6 < 0 to vP = 2pm/hr while 6 > 0.

As shown in Fig. 4-11, the distribution requires approximately 1hr and 3pm until the

the profile transitions to within 5% of its new steady state profile. During this time,

the conduit diameter changes from approximately 12 to 20pm, the conduit shifts to

the new steady state conditions (like in Fig. 4-9).
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v* =5p m/hr Transient

6-
C
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a..

0

0-
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Distance Behind Tip Cell, t (tm)

Figure 4-11: Transient MMP measurements from COMSOL at y = 100pm after step

in speed from v"P = 5pm/hr to v"P = 2pm/hr at 6 = 0 compared with steady state

MMP profiles for both speeds. Markers are measurements taken every 1hr.

This entire section has sought to pose a simple set of equations that capture the

dominant aspects of the full COMSOL PDE solutions. We are trading low simulation

error for computational speed. The last question is whether the simplified solution

does an adequate job of predicting the diameter profile and whether the obtained

policy matches the policy obtained via COMSOL.

First, we checked to see how well the resulting diameter profile matched the one

obtained from COMSOL using the COMSOL-based voPt. As shown in Fig. 4-12,



the reduced model is able to capture the major features of the full COMSOL model,

except for some over prediction of diameter in the transient region near y"iP (tf). The

root mean squared error between the two models is 2.1pam for the portion of the

conduit behind y"iP (tf).
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Figure 4-12: Comparison of resultant diameter profile at time tf from COMSOL and
reduced parameter models.

The reduced model captures the final conduit geometry, Dc (y; tf), but can we use

it to estimate the optimal input sequence? Revisiting the optimization problem in the

previous section, but now using the reduced model to optimize our cost function, Eq.

4.4, we obtain the reduced parameter optimal policy voPt = [v1 - 4 ], and yielding

the final conduit profile, De (y; tf), in Fig. 4-13 and input and state time profiles

in 4-14. The final profiles look similar, but the reduced parameter model achieved

somewhat smaller final error in the desired states by accentuating the changes in speed

from interval to interval. The root-mean squared error in velocity is 1.2pm. We stress

that results would be more similar to the COMSOL result if additional states were

added - at y = 15ptm, for example. The optimal solution from COMSOL may

not have converged on this result in part because of the 3pm mesh size used in the

simulation, which reduces resolution in the output measurements. In our experience,



decreasing the mesh size to 1pm can increase computation time by as much as an

order of magnitude, and is therefore not practical.

Given the assumptions and discrepancies between the reduced model and the

computational COMSOL model, we propose that the utility of the reduced model

is to find candidate optimal solutions or initial "guesses" for use in the COMSOL

optimizer. All optimal input trajectories should be checked against the COMSOL

solution
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Figure 4-13: Reduced model conduit profile obtained using v*Pt.

4.4 Feedback

As illustrated in Figs. 4-7 and 4-8, controlling tip cell speed, v"P(t) via application

of biochemical factors suffers from very high noise in the response. In addition, the

speed-diameter relationship may face process noise due to factors such as inhomo-

geneities in local collagen concentration or variation in the MMP expression rate to

list a few. Therefore, we need to have a means of checking to see whether the system
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states are evolving as expected and, if not, modifying the remainder of the input

sequence to make corrections. Fig. 4-15 illustrates our assumed process dynamics

and our scheme for correcting for error using a model predictive controller (MPC)

[12, 65]. Since the speed response to a step in VVEGF in Fig. 4-8 takes a Gaussian

character, we treat the input noise, w (t), to be white noise and additive. The process

noise, w (t), may require a more general model description depending on its source.

For example, if the matrix inhomogeneities take on a white distribution, their effect

may show up multiplicatively on the process dynamics.

Reference, r MPC W + i " X(t)
Optimization +

Reaction-
LDiffusion Model

Figure 4-15: Model Predictive Control approach to compensate for input and process
noise.

In the previous sections, without noise sources, we computed the entire optimal

input sequence, v49*, ahead of time. Since there was no noise, we did not need to

recompute the optimal solution at each step. Here we consider the influence of input

noise, w(t). Under the influence of input noise, we have that the actual tip cell speed

during the ith interval becomes

" in v"pt. Wi (4.12)

where wi = N(0, o). Note that we are treating the input noise as taking a fixed

value during the controller sampling period, T,. This assumption may be appropriate



depending on the time constant of the cellular response to the input, Tr,. If T, >> Tr,

the assumption may not be appropriate. Since we take T, ~ Tr, Eq. 4.12 should be

an effective model.

Since the input speed is now stochastic, we need to optimize the input sequence

to optimize the expected terminal squared error. In the MPC approach, we obtain the

input sequence, vMPC _ MPC ... vPC], to optimize the terminal expected squared

error given the current state X (t = iT), and assuming that we are not closing the

loop for the duration of the experiment. Therefore, to determine the first input v{1MPC

to apply, we define V-1 - [1 ... V-m], compute

1 argnin {E [X(tf)TQX (tf) X (0), v] (4.13)

and assign

vIMPC (4.14)

The assumption that the system will operate in the open loop during during the

remainder of the time horizon makes the the resultant policy suboptimal [7]. However,

this assumption vastly improves computational complexity and is the typical MPC

approach.

Since the input speed is now stochastic, the original optimal policy computed at

the beginning of the experiment, V-1 is now out of date and needs to be updated based

on our measurement of the previous state X (T(i - 1)). Therefore, at the ith control

interval we have

Vi = arg min {E [(tf) T QX (tf )X (T8(i - 1)), v } (4.15)

where Vi = ... -- m]. Then, assign

VM =(4.16)

We implemented the MPC approach using the reduced model with o = 2pm/hr.



We estimated the expectation in the optimization step, Eq.4.15, by forward stimulat-

ing using vin to the terminal state 100 times for each candidate input sequence. Fig.

4-16 shows the MPC input sequence, vMPC compared with the actual speed vin, and

the original estimate of the optimal input sequence V1 in the lower panel. We can

see that vin stochastically fluctuates and does not match vMPC. During the second

control interval from 6-12hr, the actual speed Vin, had enough error that the controller

had to increase from its original estimate V1 of the controller speed for i = 3 to the

corrected value v3c

The upper panels of Fig. 4-16 show the time evolution of the states subjected to

the noisy input vin: ytip(t; Vin) and Di(t; Vin). As we can see, there was considerable

terminal state error due to the noise in vin. D1 (tf; Vin) has a particularly large error of

approximately 10pm due to the large discrepancy between vn and vIPC. The process

evolution illustrating the reason for the very high error in terminal diameter is more

apparent from Fig. 4-17, which illustrates the differences between the "expected"

profile if Vi" = vyPc and the actual profile obtained due to the noisy vo!.

To conclude this section, we wish to provide a performance measure given our

MPC feedback control approach that relies on a coarse sampling period, and suffers

from input disturbance. Unfortunately, the relationship between our inputs and cost

function is 1) highly nonlinear due to the reaction-diffusion PDE process model and

the entire time sequence of inputs determining the final cost, 2) the process is irre-

versible, and 3) the process is stochastic due the input disturbance. Furthermore, the

expected terminal cost in our system will be highly influenced by initial conditions,

including any initial growth (this chapter has assumed that initial conditions start

with with a uniform diameter of 0).

Stability and performance bounds are well characterized for linear stochastic pro-

cesses using stochastic Lyapunov functions [45], supermartingale theory [19], and

other approaches of illustrating probability one convergence (see, for example [58]).

In contrast, an expression for terminal cost in MPC of general nonlinear stochastic

systems is not avalailabe. However, it is known that the terminal expected cost using

MPC is less than or equal to the terminal expected cost using an optimal open loop



'E' 1GO I

100 -i -; -i-
y tiv

0 50 -

P 0
0 5 10 15 20

.,

E
2LL _ 0 D , t ; v i D 4 t ; v "i

2(Vi

EI D2ndtth

5 0

0 5 10 15 20

(15)

E 10 - vurc........

"Q in

0 5 10 15 20
Time (hr)

Figure 4-16: Simulated state (tip cell location and diameter) given input speed se-
quence vin are shown in the top two panels. The lower panel compares the actual
input sequence v i" with the computed MPC input sequence vMPC, and the initial
trajectory optimization -.



- Previous Diameter D. (T.(N - 1))

3030
E ..
=L25!=

2 0  0  0 20
E E
. 15

10 00 -10 00

5
0) 0

00
0 50 100 150 200 0 50 100 150 200

Position, y (im) Position, y (pi)

30 -30
E E

u 20 0 .0

E E

O 21 -------------------------

5S

0 50 10 150 3 0

10o

0 50 100 150 200 0 50 100 150 200

Position, y (pin) Position, y (pm)

Figure 4-17: Illustration of the time sequence of diameter profile evolution at the end

of the ith interval. At the beginning of each interval, we start with state information

X(T8 (i - 1)) and compute the input vyPc! that will minimize mean squared error

during this time step. Each panel shows the "expected" diameter if v~p were not

corrupted with noise, wi, and the actual result obtained from the noise corrupted v"

--- Current Diamter, De(Ti;v'")

--------- ."Expected" Diameter, Dc4iT; voYPc, X (T (i - 1)))

0 Reference, r



policy [7].

Since a general expression is not available, we can compute expected root mean

squared (RMS) terminal cost vs. the magnitude of the input disturbance, o (Fig.

4-18). Nonzero RMS error with o- = 0 implies that the desired terminal state is not

perfectly reachable. Note that the RMS error curve shown applies only to the initial

conditions and terminal desired state used above. A separate performance curve must

be computed for different initial and desired terminal conditions.
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Figure 4-18: RMS diametric error vs. input disturbance magnitude, a. RMS is taken
as the square root of the terminal cost averaged over 10,000 MPC simulations and
normalized by the number of reference diameters, n.

4.5 Correcting for Parameter Value Uncertainty

Before concluding this chapter we should briefly touch on the issue of incorrect knowl-

edge/uncertainty of the model parameter values. This uncertainty can lead to con-

siderable bias between the model and the experiment

i= E (t) - (t; )] (4.17)

where X (t) are the true process dynamics, (t; 6) are the model predicted dynam-

ics, and 6 is the vector of estimated model parameters, including D, Qsource, kc, kq,

and co, as well as variance of the process and input disturbance. If knowledge of these



parameters is uncertain - in new experiments with new interventions, for example

- the model will poorly predict the process. and the optimized input sequence will

be incorrect.

To correct for this problem, we can turn to an estimation scheme to tune the

model parameters, 6 such that the model correctly predicts the experimental pro-

cess dynamics that have been observed until the the most recent observation. Many

approaches are available for tuning the parameters online, including Bayesian and

Maximum Likelihood (ML) approaches [50]. A Bayesian estimator is more appropri-

ate when apriori information about the parameter is available, but is computationally

intensive. The ML approach is less computationally intensive yet provides a consis-

tent parameter estimate even when the parameters are nonlinearly involved [50]. If

the process noise, w, is white, then the ML estimate at time T is

"' (T) = arg max II 1 exp 2(T8i,X(TSi)o)T3s1(Ti,e)
0 = (2,7 |S2

(4.18)

where S = E [wwT]. Two important questions in parameter estimation are 1) can

the parammeters be estimated uniquely? and 2) how much variance is there in the

estimate? The answers to these questions depend on the number of parameters, how

they are involved in the process dynamics, and how well the system is excited based on

the inputs. See Appendix B for discussion of identifiability and parameter estimation

error variance for estimating parameters involved in individual cell migration.

4.6 Summary of Control

In this chapter, we developed a feedback control approach by starting with our mech-

anistic PDE model implimented in COMSOL, and reducing it to a much more com-

putationally efficient parameterization. This simple model made it computationally

feasible to implement a Model Predictive Controller to correct for noise in the input

speed, which we implemented in simulation. Even with our modest noise level -

with standard deviation on the order of one-half of the mean - there can still be



large error in the terminal diameter profile.

As shown in Fig. 4-8, we were able to experimentally influence sprout growth

via application of biochemical factors such as VVEGF, but the noise in the process

response is extremely high. Currently, the standard deviation is on the same order

as the mean when using VVEGF as the control input. New methods of measuring

and predicting tip cell response to biochemical inputs will be required to facilitate

successful active regulation in angiogenic growth. These new methods include newly

developed FRET based biosensors capable of measuring signaling pathway activation

in real time [61], or different combinations of migratory cytokines which may yield a

higher fidelity response.

A feedback control approach for controlling the vessel geometry will ultimately be

necessary, when higher fidelity means of manipulating vessel elongation are achieved.

This chapter has presented an effective framework to the task.



Chapter 5

Conclusion

5.1 Contribution of this Work

This thesis has developed a modeling and control framework for regulating angiogenic

growth in 3D microfluidic angiogenesis models:

" We began by designing a new high throughput microfluidic assay that yielded a

consistent relationship between diameter and elongation rate in nascent vessels.

" We employed the same assay with specific MMP inhibitors and inmmunofloures-

cent stains to evaluate which species were most important and where they were

localized. We discovered that soluble MMP2 activated at the leading tip cell

plays a dominant role in determining nascent vessel diameter.

" We developed a four-parameter reaction-diffusion model, with just one tunable

parameter, based on the experimentally supported dominant mechanism of sol-

uble MMPs secreted from the tip cell. We computationally implemented the

model in COMSOL and compared the results with experimental data. The

model was able to predict the experimentally observed vessels across multiple

experiments without the need to adjust the single tunable parameter.

" We designed an input speed trajectory optimization and feedback approach

based on the computational COMSOL model. First, we optimized the speed



trajectory by forward simulating the computational COMSOL model without

any input or process noise. Then, we developed a simple ODE state evolution

model based on the computational COMSOL results for the full PDE's. Based

on the simple model, we were able to optimize the input speed trajectory in

simulation while taking into account noise in the input speed, and close the

loop using Model Predictive Control to correct for undesirable growth due to

the noise.

Combined, these findings provide a complete framework for determining the input

speed profile needed to obtain desired nascent vessel geometry. This modeling and

feedback approach will be useful in designing treatment time courses and actively cor-

recting vascular network growth in tissue engineering applications. Furthermore, the

quantitative model will provide a necessary addition to cell-level computation models

attempting to quantify and predict individual cell motions and cell-cell interactions

during vessel growth in angiogenesis. See Appendix B and [5, 34].

The key limitation of our approach is in modulating elongation rate using.bio-

chemical factors, such as VEGF. As shown in Fig. 4-8, the variability in elongation

rate is extremely high. With high variability in the elongation rate, we will also

have high variability in the terminal vessel geometry. Reducing variability will most

likely require knowledge of dominant factors influencing migration potential, includ-

ing chemotactic gradients, cell signaling state, and the local microenvironment. This

is a currently active research topic [2, 34, 4, 76].

5.2 Future Directions

5.2.1 Completing the Feedback Loop

Based on our findings, the key to regulating geometry in the nascent vessel is low(er)-

variance manipulation of vessel elongation rate. Two future avenues of research may

yield advances here. The first is to look for more potent migratory stimukli (such as

sphingosine-1-phosphate [20]), or combinations thereof, which may facilitate greater



authority over elongation rate. Another approach is to close the loop around migra-

tion rate or activation of migration-related signaling pathways, such as Rac, Rho,

and Focal Adhesion Kinase. The development of new FRET-based biosensors [61]

may enable real time observation of these pathways and provide a means of actively

controlling the tip cell migratory potential by feeding back the state of the pathway

activation.

5.2.2 Cell Cluster Models for Coordinated Growth

This thesis has focused on formulating a very simple model relating sprout elongation

(and tip cell migration) to the nascent vessel geometry. Our approach is effective in

describing the geometric evolution of intact vessels. However, the complete in vivo

process involves multiples stages, including a pruning process where many sprouts are

lost due to the cells dissociating, apoptosing, and being removed, and a maturation

state where mural cells are attracted to stabilize and regularize vessel geometries [57].

As we move further toward computationally recreating the total angiogenic process,

it will be necessary to incorporate more details of cellular phenotypic state, cell-cell,

and cell-matrix interactions [17].

There are currently multiple groups working to this end in the literature [2, 34, 4,

76]. However, the challenge, is that a complete mechanistic model will be extremely

complex, composed of 100's-1000's of parameters, without accurate estimates for

their values. How can we reliably quantify the process using such a complex model?

We have already begun attempting to address this issue by posing a set of very

simple low-order equations describing tip cell, and stalk cell migration with ~10

parameters (see Appendix B and [78]). The equations have been designed such that

the parameters can be tuned from confocal observations of cellular migration.

The tuned quantitative model from this work will well integrate with our individ-

ual cell-level model by quantitatively describing the vessel boundary, which may be

taken as a known input for estimating the parameters involved in the individual cells'

migration.



5.2.3 Branching Models

Another extension to our work, is formulation of a predictive model for the location

of branching sites. As shown in Fig. 3-7, there are multiple cites of MT1-MMP

expression at sufficient distances from the active tip cell. It has been suggested that

MT1-MMP expression correlated with Notch/D1l4 signaling [28], and these cites may

be good indicators of where branches will form. It has been suggested that cells far

enough from an active tip cell take on a probabilistic competition to see which will

become the tip cell first [4]. However, this competition weighted by D114 signaling or

other mechanisms may be involved in regularized formation of a complete network.

Looking for the (quantitative) relationships in this process may yield insights into

how tip elongation rate will influence the morphology of the complete network in

addition to nascent vessel diameter.



Appendix A

Materials and Methods

A.1 Device Fabrication

The devices were fabricated out of polydimethylsiloxane (PDMS - Dow Corning Syl-

gard 184 at a ratio of 10:1 polymer to cross-linker) using standard soft lithography

techniques [48]. Devices were wet autoclaved for 20 minutes followed by a dry auto-

clave cycle for 20min and baked overnight at 80'C to dry. Devices were plasma bonded

to #1.5 glass cover slips (Cell Path) that were pretreated with ethanol. All device

channels were then treated with 1 mg/mL poly-D-lysine (PDL) solution (Sigma-

Aldrich) for 4hr to enhance cell and collagen matrix binding to the device material

[49], followed by additional baking at 80'C for 24-48 hours to dry and make the

devices hydrophobic.

Type I collagen gel (BD Biosciences Cat. No. 354236) was prepared at 2.5 mg/mL

and pH 7.4, and was pipetted into the devices at low injection pressures to avoid

spillage into the main channels. The injection pressures were lower than the upper

limit determined by the surface tension cage. Once in place, the collagen solution

was allowed to gel for 1 hour in a humidity box via thermal cross-linking. The media

channels were then filled with microvascular endothelial growth media (Lonza EGM-

2MV Cat. No. CC-3202) to hydrate the gel, and prepare it for endothelial cell

adhesion and growth.



A.2 Cell Culture

A.2.1 Passaging and Live Cell Staining

Human microvascular endothelial cells (hmVECs - Lonza Cat. No. CC-2543) were

received at passage 3 and expanded to passage 7 in endothelial growth media (Lonza

EGM-2MV Cat. No. CC-3202) via standard mammalian adherent cell culture pro-

tocols, and then cryogenically frozen until needed. When cells were needed prior to

seeding in a device, a passage 7 vial was thawed and expanded to passage 8.

When the cells reached 80-90% confluence, the cells were trypsinized (0.05%

Trypsin EDTA, Invitrogen), centrifuged, and then suspended in endothelial growth

media to a density of 2.5 million cells/mL. In some experiments (where indicated) live

staining of the cells enabled confocal imaging before and after biochemical conditions

were applied to the gel region.

Live staining experiments used the cytosolic stain CellTracker Green CMFDA (In-

vitrogen Cat No. C7025) or CellTracker Orange CMRA (Invitrogen Cat No. C34551)

at 5pM, with the nuclear stain Hoechst 33342 (Invitrogen Cat. No. H1399) at 0.1pM

both using the recommended protocols for CMFDA from Invitrogen. These stain con-

centrations were found to maintain cell viability as well as sustained image contrast

for the duration of the cultures in the devices.

A.2.2 Cell Loading into Microfluidic Device

Cells were seeded through the main flow channels of the devices. In all cell exper-

iments in this thesis, the downstreem "Y-junction" between channels a and b was

blocked with type I collagen. Flow was not used. The hydrostatic pressures across

the channels were controlled by pipetting droplets of various sizes for each of the ports

(Fig. A-1) and were managed to enable net cell convection in the seeding channel

along the length of the device. Additionally, the pressures were managed so as to

create a slow interstitial flow through the gel that biases the cells towards the gel for

adhering on the gel-medium interface (Fig. A-1). Care was taken to ensure that cells



did not excessively crowd the gel region so as to avoid necrosis.

The cell-seeded devices were allowed to culture for 24hr before condition was

applied to ensure a confluent monolayer. Any devices that did not have a confluent

monolayer or exhibited excessive cell buildup on the gel regions were discarded after

24hr. After the biochemical condition was applied, the channel medium was replaced

every 12hr.

2 P2

V

P, P3

Figure A-1: Illustration of pressure adjustment for cell seeding protocol. A pipette
may be used at the port labeled P3 to draw the cell suspension through more quickly
and ensure uniform seeding down the length of the channel.

A.3 Endpoint Staining

Devices were fixed by flowing 4% paraformaldehyde into the channels and leaving it

for 10-15mins. Afterward, the devices were blocked with goat serum (Sigma G9023)

for 2 hr and MT1-MMP primary antibody in chicken (Sigma Cat. No. GW21125)

was applied at 1:100 dilution ratio overnight at 4 C. The following day, Alexa Flour

568 goat anti-chicken (Invitrogen Cat. No. A11041) was flowed into the channels

at a dilution ratio of 1:200 and incubated at room temperature for 2hr. Nuclei and

F-actin were stained with 1 pM Hoeschest 33342 (Invitrogen Cat. No. H3570) and

Alexa 488 Phalloidin (Invitrogen Cat No. A12379) for 30-60min.



A.4 Diameter Measurement

The diameters plotted in Fig. 3-1B were selectively measured from confocal images

of nascent vessels with a geometry consisting of an approximately straight centerline,

had diameters that had less than 20% variation along their lengths, and had less than

20% difference between the measurements xz-diameter and xy-diameter (see Fig. A-

2). The reported diameter values are the means of the xy-diameter along the length

of the centerline. Mean elongation speed, was computed as

measured length
Vmean - experiment duration (A.1)

Do to the large number of data needed to compute the statistical responses to

multiple MMP inhibitors and limited confocal microscope availability, the data in

Fig. 3-5, were measured from 2D phase contrast images and taken as the mean value

from intact vessels like those shown in Fig. 3-3.

A.5 COMSOL Simulations

The PDE reaction-diffusion model, Eqs. 3.3-3.4, was implemented in COMSOL Mul-

tiphysics 4.2 with the chemical reaction toolbox (COMSOL - Burlington, MA) and

simulation analysis was conducted in MATLAB (MathWorks, Inc. - Natick, MA).

Analysis of the steady state elongation behavior and input optimization for control

were conducted using 2D axisymmetric coordinates, infinite boundary conditions, and

~ 3pm triangular mesh size. The PARDISO algorithm was used. Simulations con-

ducted for comparison with endpoint data implemented the full 3D post geometry

(Fig. A-3) with no flux boundary conditions, and - 10pm triangular mesh size. The

3D simulations used the Biconjugate Gradient Stabilization Method.
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Figure A-2: Illustration of diameter measurement procedure for data plotted in Fig.
3-1.
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Figure A-3: (A) Illustration of 2D COMOSOL model used for steady-state analysis
and control. (B) Full 3D geometry used for comparing computational model with
control. Post, top, and bottom boundaries are no-flux.



A.6 MATLAB Optimization Codes for Control

A.6.1 Input Speed Optimization with COMSOL via LiveLink

speedopt.m

%Main optimization script using fmincon.

%pendfun calls OOMSOL to evalute the terminal cost

options=optimset( 'MaxFunEvals' 300, 'MaxIter' , 300, 'TolFun', 0.1, 'DiffMinChange', 0.1);

tape-size=4;

alphalow - 2* ones( tape-size ,1);
alphaup = 12*ones(tape-size 1);

[thetaHat ,gl ,g2 ,g3 ,g4 , g5 , hessian]=fmincon (0( alpha) pendfun(alpha),
alphaO , [] , [] [] , [] , alphalow ,alphaup ,[] ,options)

pendfun.m

%Save the control input , and run COMSOL script , which will retreive it.
function [J} = pendfun(alpha-in)
alpha-in
alpha-save=alpha-in *1e -6/3600;
save ( 'D:\Work\Comsol Testing \2DSim\TwoDOLFC2\ controlu.mat' 'alpha-save')
global yTip diamMeas xdes

xdes=[100 20 20 10 10]';

%run COMSOL script and measure diameters at desired locations. Note: cannot

%be fun as a function. sproutFunction is actually as cript. This is a
%LiveLink limitation
sproutFunction

J = finalCost ([yTip; diamMeas])

end % of pendfun

% Compute terminal cost of diameter states

function C = finalCost (X)
global xdes;

% Xerr = X - repmat(xdes,1, size(X,2));
% Xerr(1 ,:) = mod(Xerr(1 ,:)+pi ,2* pi)-pi;

% [Q,R,Qend] = get-QR;
% /MPLEMENT THE FINAL COST

%C-. 5 *Xerr '* Qend* Xerr;

C=sum((X(2:end) -xdes (2:end)) . ^ 2);
end

%--//////////////////////------ ---

sproutFunction.m



%This script loads the COMSOL model via LiveLink , manipulates parameters
%and runs the simulation. Note that the input 'alpha-in ' is provided to
%V0MSOL via the OOMSOL readable function yTipPos.m
global yTip diamMeas

%Load the OOMSOL model
model=mphload ( 'OLFC1.mph')

% Duration of simulation: 24hr
duration=86400; % in seconds

%model.param.set ( 'vtip ' , vtip);
model.param.set ( 'duration ' , duration ); Send duration to the model

model.sol( 'soll ').run; % Run the simulation

ts=60^2; %in seconds

%set r and y measurement step sizes (x=r here)
xs=0.1; %in un
%ys=2; %in urn

%Format a measurement grid
[x, y] = meshgrid([0:xs:60]*1e-6,[25 50 75 100]*le-6);
sizex=size(x,1); sizey=size(x,2);
xx=reshape(x, sizex*sizey, 1); yy=reshape(y, sizex*sizey , 1);

%Measure model using LiveLink
[c q)= mphinterp (model,{ 'c' , 'q'}, 'dataset', 'dsetl','coord',[xx';yy'], 't', duration);
cc=reshape(c,sizex , sizey); qq=reshape (q, sizex , sizey);

yTip=mphglobal(model, 'yTip', 'dataset ', 'dsetl', 't',duration)*le6

%Measure diameters based from collagen concentration values
diamMeas=zeros (sizex ,1)
for i=1:sizex

diamMeas( i )=2*length (find (cc(i ,:)<0.2*8.6e -3))*xs; %in urn
end
%diamMeas

%Extract final geometry and time profiles , and plot

%geometry profile
ys =5;

[x, y] = meshgrid([0:xs:60]*1e-6,[0:5:200]*1e -6);
sizex=size(x,1); sizey=size(x,2);
xx=reshape(x, sizex*sizey , 1); yy=reshape (y, sizex*sizey, 1);

[c qJ= mphinterp(model,{'c', 'q'}, 'dataset', 'dsetl','coord' ,[xx';yy'], 't', duration);
cc=reshape(c,sizex , sizey); qq=reshape (q, sizex , sizey);

diamOut=zeros (sizex ,1)
for i=1:sizex

diamOut(i)=2*length (find (cc(i ,:)<0.2*8.6e-3))*xs; %in urn
end

figure; plot ([0:5:200] , diamOut, [25 50 75 100], {20 20 10 10], 'o' , 'LineWidth' 2);

% hold on
% figure; plot ([25]*ones(25 ,1) ,[1:25] , [25]*ones(25,1) ,[1:25],, [25]*ones(25,1) ,[1:25], [100 *ones

(25,1) ,[1:25])
% xlabel( 'Position , {\it y} (\mum)'); ylabel ('Diameter , {\it D-c} (\mum)')

%time profiles
dt=30*60; N-floor (duration /(30*60));

[x, y] = meshgrid([0:xs:60]*le-6,[25 50 70 100]*le-6);
sizex=size(xl); sizey=size(x,2);
xx=reshape(x, sizex*sizey , 1); yy=reshape(y, sizex*sizey , 1);

uLoad=load ( 'D: \Work\Comsol Testing \2DSim\TwoDOLFC2\cont rolu.mat');
u=uLoad.alpha-save ;

diamTime=zeros (sizex ,N)
for time=1:N
[c q]= mphinterp(model,{ 'c' , 'q'}, 'dataset' , 'dsetl' ,'coord' [xx';yy'], 't', time*dt);
cc=reshape(csizex , sizey); qq=reshape(qsizex , sizey);

for i=1:sizex
diamTime(i,time)=2*length(find (cc(i ,:)<0.2*8.6e -3))*xs; %in urn

end
yTime(time)=mphglobal(model, 'yTip', 'dataset', 'dsetl', 't',time*dt)*le6;

uTime(time)=u(ceil(time*4/N));

end



figure (24)
subplot (311)
plot ([dt : dt : dt*N]/60^2, yTime(1,:), 'LineWidth', 2);
ylabel ( 'Tip Pos. , y'{Tip} (\mum/s)')
grid on

subplot (312)
plot ( [dt: dt :dt*N] /60 ^2,diamTime (1,) [dt: dt: dt*N]/60^ 2,diamTime (2,: , dt -dt :dt*N] /60^ 2,diamnTime

(3 ,:) *11 .8 /max(diamTime (3,:)), [dt: dt: dt*N]/60 ^2 , diamTime (4,:) , 'LineWidth', 2);

ylabel ( 'Diameter (\mum) ')
grid on

subplot (313)
plot ([dt:dt:dt*N]/60^2, uTime*3600e6, 'LineWidth', 2)
xlabel( 'Time (hr)'); ylabel( 'Speed, {\it v ^{opt}} (\mum/s) '); ylim([0 12])
grid on

figure(26); plot ([0:5:200], diamOut, [25 50 75 100], [20 20 10 10], 'o', 'LineWidth' 2); hold on

plot ([yTime( ceil (N/4))]* ones (25,1) ,[1:
2

5] , [yTime(ceil(N/2))]*ones (25,1) ,[1:25] ,yTime( ceil (N*3/4)

)]*ones(25,1) [1:25] ,[yTime( ceil (N))]*ones(25,1) ,[1:25])
xlabel ('Position , {\it y} (\mum)') ylabel ('Diameter , {\it D.c} (\mum)')

yTipPos.m

5rOMSOL directly evalutes this function via LiveLink to comput yTip as a

%function of time given the control sequence alpha-in from pendfun.m. This
%function assume that alpha is of length 4 and duration=86400
function y=yTipPos(t)
uLoad=load ( 'D: \Work\Comsol Testing \2DSim\TwoDOLFC2\controlu.mat ')
u=uLoad.alpha-save ;
u*3600*1e6 %convert units to um/hr from m/s
t1 =86400/4;
t2=2*tl
t3=3*tl
t4=4*tl
for i =1:length(t)

if t(i)<tl
y(i)=u(1)*t(i);

elseif t(i)<t2
y(i)=u(1)*t1 + u(2)*(t(i)-t1);

elseif t(i)<t3
y(i)=u(1)*tl+u(2)*(t2-tl)+u(3)*(t(i)-t2);

else
y(i)=u(1)*t1+u(2)*(t2-tl)+u(3)*(t3-t2)+u(4)*(t(i)-t3);

end
end
end

A.6.2 OLFC Optimization with Reduced Model

OLFC3.m

%This is the main OLFC script

cl ; close all; clear all

global K a yl Al y2 A2 y3 A3 y4 A4 xdes currentState currentTime;

yl = 25; Al = pi/4*(20e-6)^2;
y2 = 50; A2 = pi/4*(20e-6)^2;
y3 = 75; A3 = pi/4*(10e-6)^2;
y4 = 100; A4 = pi/4*(10e-6)^2;

%Kappa(j)=13e-11*2e-2*2*(j)^(0.5)*(33/
4 4

) ^2;

a = 1/80;

9= 13e-11*2e-2*2*(33/44)^2;



xdes = [100 Al A2 A3 A4] % the desired final state

% Plant dymanics

x = [0 0 0 0 0]'; %initial state
dt=0.24; %in hr
N=101; %run for 24hr.
%alphaOld=zeros (5 ,1) +5;
alphaOld=[0 3.466 3.9 3.72 9.9]

for i=1:N
xOut (: , i )=x;

if sum(i==round ([1:N/4:N]) )>0
alpha=speedOptFMINCON(i ,x, alphaOld); %Call fmincon to get updated input optimization
u=alpha(1)+2*randn(1) ; %new input is the first element of the optimized alpha plus input

noise
if i ==1

uOriginal=alpha;
end
uIntended=alpha (1)
clear alphaOld
alphaOld=alpha;
clear alpha

end

uIntendedOut (i )=ulntended (1);
uOut ( i )=u;
x = x + dynamics(x,u).*dt; %keep track of actual evlution of states
uOriginalOut(i)=uOriginal(ceil(i/N*4));

end

yTip=xOut (1 ,:)
save( 'yTipOpt.mat' , 'yTip' , 'uOriginalOut , 'uOut') % saveinputs and tip location

%Plot time profiles

figure (24)
subplot (311)
plot ([dt:dt: dt*N], xOut(1,:));
xlim ([0 24]) ; ylabel ('Tip Pos. , y'{tip}(\mum)')

subplot (312)
plot ([dt:dt:dt*N],sqrt (4/pi*xOut(2,:)), [dt:dt:dt*N],sqrt(4/piexOut(3,:)), [dt:dt:dt*N],sqrt(4/pi*

xOut (4 ,:) ) , [dt : dt : dt*N] , sqrt (4/pi*xOut (5 ,:) ));
xlim ([0 24]); ylabel ('Diameter , D.1, (\mum) ')

subplot (313)
plot ( [dt dt : dt*N] ,uOut, [dt :dt : dt*N] , uIntendedOut , [dt : dt : dt*N] , uOriginalOut)
xlabel('Time (hr)'); ylabel('Speed, u (\mum/hr)')
xlim([0 24]);

speedOptFMINCON.m

%This function finds the optimal input sequence for the remainder of the
%experiment conditioned on current state knowledge
function thetaHat=speedOptFMINCON(timeIn , stateIn , alphao)
global K a yl Al y2 A2 y3 A3 y4 A4 xdes currentState currentTime;
currentTime=timeln ; currentState=stateIn ;

options=optimset ( 'MaxFunEvals ' 300, 'MaxIter' , 300, 'TolFun' , 0.1 , 'DiffMinChange' 0.1);

%theta=[D Itilde sigThresh Qsource];

tape-size=4;

alphalow = 2*ones (tape-size 1)
alphaup = 12*ones (tape-size 1);

[thetaHat gl ,g2, g3 ,g4 ,g5 , hessian]=fmincon (0( alpha) pendfun(alpha) ,
alphaO , [] [ ] , [] , alphalow , alphaup ,[] , options )

% [thetaHat ,fval ,exitflag output] = fminsearch(O(alpha) pendfun(alpha), .
% alpha0, options)
end



pendfun.m

%This function forward simulated from the current state using alpha-in
%The mean squared error is returned by taking the mean of terminal squareed
%error 100 times when subjected to input noise
function [J] = pendfun(alpha-in)
for montelter=1:100

% dynamics dt
dt = 0.24; T = 24;

% pendulum parameters
global K a yl Al y2 A2 y3 A3 y4 A4 xdes currentState currentTime;

N = floor (T/dt)+1-currentTime;
xtape = zeros (length (currentState) N)
utape = zeros(1,N);
alpha = zeros(N,1);
if nargin>0

alpha = alpha-in;
end

% Simulate forward
%IC = [0 0] ';
IC = currentState;

x IC; %
for i=1:N-1

xtape(:,i) = x;
if i<(6/0.24)

u=alpha (1)
else

u = alpha(ceil(i/(6/0.24)))+2*randn(1);
end
utape(i) = u;
x = x + dynamics(x,u).*dt;
%x(1)
%[u i*dt]

end

%[x(1);sqrt(4/pi*x(2:end))]
%size ([O: dt:dt*N])
%size (xtape(1 ,:))
% figure (24)
% subplot (311)
% plot ([dt:dt:dt*N], xtape(1,:));

% subplot (312)
% plot ([dt :dt :dt*N , xtape (2 ,:)) ;

% subplot (313)
% plot ([dt : dt : dt*N] ,utape);
% drawnow;

%dJdalpha = compute-gradients(xtape ,utape ,dt);
%dJdalpha =[;
%J = sum(cost (xtape ,utape , dt)) + finalCost (xtape (:,N));
Jinstance (montelter) finalCost(x)

end
J=mean( Jinstance)
end % of pendfun

function C = finalCost (X)
global xdes;

% Xerr = X - repmat(xdes ,1, size(X,2));
% Xerr (1 ,:) = mod(Xerr (1 ,:)+pi ,2* pi)-pi;

[Q,R,Qend] get-QR;
9MPLEMENT THE FINAL COST

%0=.5+Xerr '*Qend*Xerr;
sqrt (X)
C-sum(( sqrt (4/ pi*xdes(22end) )*le6-sqrt (4/ p iX(2:end) )). 2)
end



pendfun.m

%This function computes the state derivatives
function xdot = dynamics(xu)
global K a yl Al y2 A2 y3 A3 y4 A4 xdes;

Aldot = 80* exp(-a* (yl-x (1 ,: 2);

A2dot = 80*exp(-a* (y2-x (1 ,:)). 2);

A3dot = 80* exp(-a*(y3-x (1 ,:)). ^2);

A4dot = 80*exp(-a- (y4-x( ,:) ) . 2)

xdot = [u Aldot A2dot A3dot A4dot]
end
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Appendix B

Time Lapse Observation Based

Modeling and Identification of Cell

Behaviors in Angiogenic Growth

B.1 Introduction

This chapter addresses modeling and system identification of the vessel growth pro-

cess based on experimental time lapse observation of sprout development in in vitro

angiogenesis assays. As shown in Fig. 1-lA, angiogenesis begins when one Endothelial

Cell (EC) differentiates into a special phenotype, called a "tip cell". This cell begins

by breaking out of the existing blood vessel and invades the surrounding scaffold. As

it invades further into the matrix, other cells, called "stalk cells" follow behind it (see

Fig. 1-1B). When these cells work together in a coordinated fashion, they eventually

lead to a tube-like vessel capable of transport. When a new vessel forms, one or

multiple new branches may form off of the original. When this process happens in

multiple stages, a new vascular network forms to satisfy the need of signaling tissues.

Angiogenesis is an extremely complex process involving the activation and stim-

ulation of ECs by external growth factor concentrations and gradients in the matrix.

In addition, the ECs respond to the mechanical properties of the matrix and in-
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fluence the matrix properties, both mechanically and chemically [17]. All of these

interactions are happening in a heterogeneous environment, where no two cells see

the same condition. Also, different cells are operating in different phenotypic states

[17], meaning that some cells are tip cells and some are stalk cells, and each cell takes

on another functional state such as migratory, proliferative, apoptotic, or quiescent.

Despite vast nonuniformity, a collection of ECs is able to behave in a coordinated

fashion and generate a complex vascular network.

A predictive mathematical model of angiogenesis is extremely important for de-

termining how to manipulate and coordinate vascular development. A multitude of

computational models exist in the literature that have focused on capturing different

aspects of the process. See [51] for a good review. However, many of these models are

extremely complex, involving hundreds of parameters (see [4], for example) that can-

not be estimated from available data. None have been successfully applied to predict

how a network will evolve based on current measurements. This work attempts to

formulate a lumped parameter model of cell migration based on observed behaviors

and involving just a few tunable parameters that may be estimated from data.

This paper will begin by analyzing angiogenic sprout behaviors observed in in vitro

assays conducted in the laboratory. Next, we will pose a set of lumped parameter

cell migration and matrix evolution dynamics based on our experimental observations,

findings in the literature, and hypothesis. We will discuss identification of parameters

involved in the dynamics and present simulation experiments that address parameter

identification given limited measurements from experimental data.

B.2 Angiogenic Behaviors

Experiments are indispensable in gaining insights as to how ECs behave and create a

vascular network pattern. Over the last 40 years, angiogenesis experiments have been

performed in either in vivo environments or in vitro environments using traditional

on-the-gel dish experiments [23]. The former provides the right environment for the

cells to grow, but due to the extreme complexity of the in vivo environment, it is
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difficult to interpret the data. The latter is simple, but the standard on-the-gel

experiment significantly differs from the actual in vivo environment.

Recently the authors' research team has developed microfluidic platforms for in

vitro angiogenesis experiments [15]. The device enables tight control of the deliv-

ery of various growth factors, providing an environment much closer to the actual

in vivo environment than that of the on-the-gel dish experiment. It also provides

excellent visibility for observing 3-dimensional cell behaviors using advanced imaging

technology, e.g. confocal microscopy with fluorescent markers.

Fig. 1-2 shows the device used for angiogenesis experiments. A collagen gel matrix

is formed between micro-fluidic channels A and B. Human Micro-Vascular Endothelial

Cells (hMVEC) are seeded on one side of the gel matrix facing Channel B. Fluids

containing growth factors and other molecules are delivered to the gel matrix through

both channels. The fluid provided to Channel A contains a higher concentration level

of VEGF than that of Channel B, so that a uniform gradient of VEGF concentration

can be formed across the gel matrix. In response to the gradient of VEGF provided,

ECs sprout out and extend towards the higher VEGF concentration. The sprouting

process is observed from beneath using a confocal microscope, which can measure

3-dimensional movements of the individual cells. Fig. B-1 shows an example of the

type of confocal microscopy data we can obtain. Fig. B-la shows a sprout that

has grown from the monolayer over 24hr. We monitor the growth process using the

confocal imaging system and obtain position trajectories for the cells involved in the

growth process.

Our experiments using the device have allowed us to watch cell population behav-

ior, i.e. how cells migrate together and what patterns they form. We have made the

following observations:

e Tip cells The tip cells move in 3D and establish the path or "conduit" that the

sprout is going to form into.

e Stalk cells The stalk cells migrate along the conduit wall formed by the tip cell

toward the tip. As shown in Fig. B-1b, the stalk cells follow the trajectory
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taken by the tip cell. A migrating stalk cell can also pass other stalk cells in

the quiescent state within the same conduit.

" Sprout spacing Once a new sprout is created, no sprout comes out from neighbor

cells. Only one cell among many cells in close proximity becomes a tip cell, so

that sprouting sites are separated. See Fig. B-2 and [4].

" Coupling Cell motions in the sprout appear to be coupled together; migrating

stalk cells apparently attract as well as repel each other (not shown).

" Conduit size Conduit width is related to tip cell migration speed. If the tip cell

migrates quickly, the conduit is narrow. If the tip movies slowly, the conduit is

wider. As described in detail later, a tip cell secrets a special protease to degrade

the gel matrix. Depending on its speed, the density of protease released per

unit distance traveled will be different. A wider conduit is necessary for lumen

formation by stalk cells. Fig. B-2 shows how two stalk cells migrate on different

sides of the same conduit when it is sufficiently wide. The narrow conduit in

Fig. B-1 leads to a line of cells. It was formed by a tip cell that moved - 40Pm

in 22hr. In contrast, the lumen in Fig. B-2 was formed by a tip cell that moved

~ 50pum in 16hr.

" Detachment When the tip cell migrates too quickly, it detaches from the cells

behind it and advances into the scaffold. When the tip gets too far away,

the stalk cells lose their sense of directionality and often retract toward the

monolayer (not shown).

B.3 Dynamic Modeling

B.3.1 Overview

This chapter forms dynamic equations based on the previous observations, informa-

tion from the literature, and hypothesis, where no information is known. For simplic-
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Figure B-1: (A) Tip cell and first stalk cell in sprout; (B) Stalk cell follows the path
taken by the tip.
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Figure B-2: Stalk cells 1 and 2 migrate on the conduit wall.

ity, we ignore phenotypic state, except for the distinction between tip and stalk cells.

For more details on modeling and identification of phenotypic state, see [24, 171.

All cells are numbered from 1 through N, including new cells created through

proliferation. Let x = [x, y, z]T E R3 be a cartesian coordinate system fixed to the

matrix field, and x' E R3 and v' E R3 be, respectively, the position and velocity of

the ith cell at time t. The position of each cell is represented by the center point of its

nucleus. If the cell is a tip cell, they are denoted xt' E R3 and vt' E 3 respectively.

All state transitions are described in discrete time with a sampling interval of At.

As described previously, tip cell and stalk cells have distinct migration mechanisms

governed by 3-dimensional vs. 2-dimensional stochastic dynamic equations. The gel
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matrix field, on the other hand, is assumed to be deterministic, and is governed

mainly by diffusion and binding dynamics of various growth factors [17]. Governing

dynamics in each of these phenotype states will be formulated next.

B.3.2 Tip Cell Migration Dynamics

Tip cell migration is a 3-dimensional dynamical process guided by several factors.

Most prominent and well studied is the gradient of chemo attractant, VEGF. A tip

cell is capable of detecting the gradient of VEGF by extending filopodia in diverse

directions [29]. In the following dynamic formulation, only VEGF is considered as an

exogenous growth factor that guides the migration of the tip cell. Let ut (x) E Ri

be the concentration of VEGF at coordinates x in the matrix field and Vut (x) E R3

be the gradient of VEGF concentration at x. The tip cell velocity is directed in the

positive VEGF gradient direction:

wtip ; |Vut| = 0
Vt+1+ hi (Vut; a1, di) - V + w"' ; |Vut| $ 0 (B.1)

xtip + (At)vxt+ 1  ttp

where wt"p E R3 is an uncorrelated noise with zero mean values and covariance S,
and hi(Vut, ai, di) is a scalar function that saturates at ai:

hi (Vut, ai, di) = ai [1 - exp (- Vut| /di)] (B.2)

Parameters ai and di as well as covariance S are to be identified based on experi-

mental data. The scalar function hi (Vut, ai, di) is pertinent to the tip cell's abilities

to degrade the collagen gel matrix and generate a traction force for moving forward.

Therefore, this term depends on the properties of the gel matrix, including stiffness.

It is well known that the adhesion of filopodia and lamillopodia to the surrounding

gel matrix and contraction of actin fibers inside the filopodia/lamillopodia are the

mechanism of generating the traction force. However, details of quantitative mech-
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anism are unknown. In this paper these details are left to tuning of parameters, a1

and di, based on actual cell migration data. The function hI (Vut, ai, di) saturates,

because the tip cell receptors of VEGF are known to saturate in response to a steep

VEGF gradient [71]. The noise term wt E R3 in the above dynamic equation repre-

sents the random walk nature of tip cell migration, which has been reported in several

references [51].

As observed in the in vitro experiments, the tip cell behavior is affected by stalk

cells in the proximity of the tip cell. In case a tip cell is directly connected to a

stalk cell through cytoskeleton adhesion, a significant reaction force acts on the tip

cell as it pulls the stalk cell. In such situations, the above dynamic equations must

be augmented by adding a term representing the inter-cellular forces. Since the

above dynamic equations are valid for isolated tip cells, those parameters involved in

hi (Vut, ai, di) must be obtained from isolated tip cell migration data.

B.3.3 Matrix Field State Equations

The collagen gel matrix is degraded mostly by matrix metalloproteinase (MMP),

released by the tip cell. Let CMMp(X, t) be the concentration of MMP at coordinates

x at time t, and QMMP be the rate at which MMP is produced by a single tip cell.

Assuming no interstitial flow, the MMP released by a tip cell diffuses to the local gel

matrix, governed by the following diffusion dynamics [17]:

&CMMP(X, t) DMMPV2CMMP(X, t) + QMMP 6 (X - xti) (B.3)
at

where DMMP is a diffusion coefficient, and J(e) is the delta function, which takes

0 other than the tip cell location: x = xtP. As the tip cell migrates, it releases

MMP from a different location and in consequence the MMP concentration exhibits

a unique distribution depending on the time trajectory of the tip cell.

The MMP degrades the gel matrix by cleaving the cross links of gel fibers. This

lowers the "integrity" of the gel matrix, allowing the tip cell to penetrate the gel
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matrix. Let I(x, t) be the integrity of gel matrix at coordinates x and time t.

08t' = -kc mC AuP(x, t)I(x, t) (B.4)

where kc-m is the rate at which the gel matrix is cleaved by MMP.

B.3.4 Directed Stalk Cell Migration

Stalk cells migrate along the conduit created in a gel matrix. Similar to tip cell migra-

tion, stalk cell migration is directionally guided. The detail mechanism of directional

guidance is not known. However, the experimental observations strongly suggest that

each stalk cell has the ability to detect the direction of the tip cell. For a stalk cell

to detect the direction solely based on the local information it can sense, there must

be some form of gradient signal spread across the conduit and its vicinity. Therefore,

we hypothesize that a tip cell leaves cues that spread out within the conduit creating

a gradient signal and that stalk cells are guided by the gradient.

Let qt(x) be the strength of the cue generated by a tip cell and observed at

coordinates x at time t. The guided migration of a stalk can be described as:

v41 = v' (1 - b) + a 2 - Vqt (xi) + wttalk
t t t t(B .5 )

xI+ = x7, +(t) vi

where parameter b in the first term represents viscous damping that the faster moving

stalk cells are likely to feel while migrating in the conduit, the second term forces the

stalk cell in the positive gradient of cue intensity, and the final term is a random walk

term. Recall that stalk cells often move at a significantly higher speed than a tip cell

and thereby the viscous damping may not be ignored, unlike the tip cell migration.

The damping may be due to the degraded collagen products left in the conduit as

well as integrin binding to the conduit wall.

The cues are generated by the tip cell and thereby the intensity qt(x) reflects

the migration trajectory of the tip cell. Similar to the release of MMP, the cues are

released by the tip cell at different locations as it migrates. As a result, the cue
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intensity has a spatiotemporal distribution, similar to that of MMP. Furthermore,

the in vitro experimental observations provide insights into how the cue qt(x) should

be constructed. Specifically, the data revealed two stalk cell behaviors characteristic

to its guided migration pertinent to the assumed cues intensity.

" Stalk cells often became unable to track the conduit as the distance to the tip cell

got longer.

" Stalk cells often became unable to track the conduit as the time elapsed since the

conduit was first created by the tip cell.

The latter implies that cue intensity decays with time. The former implies that

the cues released by the tip cell dilute as the distance gets longer. Based on these

observations, we consider the following simple dynamic model for generating

qt+i(x) = a -qt(x) + a3 exp -Ix dxtl) (B.6)

where a is to determine the time decay rate, 0 < a < 1 and a3 and d2 are, respectively,

the intensity scale and the distance scale of the cues released by the tip cell. Since

the parameter a 2 in Eq. B.5 also indicates the intensity scale, parameter a3 can be

set to 1 without loss of generality. Given a tip cell trajectory, xti, 0 < T < t, the cue

intensity qt(x) can be computed from B.6 with initial condition qo(x) 0. Taking

the spatial derivatives of qt(x) and using them in Eq. B.5 yield the directed stalk cell

migration dynamics.

B.3.5 Crawling on the Conduit Wall

The stalk cell migration is basically 2-dimensional, being constrained to the wall

surface of the conduit. According to the matrix field state equations, B.3 and B.4, the

matrix integrity varies continually across the cross sectional matrix field, as opposed to

a rigid surface having discontinuity in integrity level. When migrating, stalk cells tend

towards the free space to avoid constraints or resistive forces, but at the same time

stalk cells have to adhere to rigid matrix fibers in order to generate a traction force.
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These two conflicting requirements take a stalk cell to a middle ground somewhere

between the highest and the lowest integrity levels. Let Inom be the middle ground

nominal value of the matrix integrity. When a stalk cell deviates from the middle

ground, a type of restoring force should work on the cell, so that it can tend towards

the right level of matrix integrity Iom. This restoring effect can be written as

(x') = R (I (x', t) - I Vm VI (x', t) (B. 7)

where R is a scalar gain and I (x', t) is the integrity level at x" derived from Eqs. B.3

and B.4.

The above method for forcing stalk cells to crawl on a conduit wall requires rather

heavy computations of the matrix field state equations, B.3 and B.4. If the conduit

location is known or visually observable, 2-dimensional migration dynamics can be

described as a differential-algebraic equation (DAE), using a geometric constraint

equation, which is algebraic. Suppose that the conduit wall, or more rigorously, the

plane where the integrity level is Inom, is given by an implicit function:

gt (x) = 0 (B.8)

Then the 2-dimensional migration dynamic equations are given by Eq. B.5 subject

to the algebraic constraint: gt (x) = 0. This DAE model will be used for, parameter

estimation in the following section.

Multiple stalk cells often interact with each other, influencing other cell's migra-

tion dynamics. For example, we often observe that multiple cells move together within

the same conduit. Also, we observe that a stalk cell passes other stalk cells within the

same conduit. As more stalk cells are recruited to a conduit and new cells are created

through proliferation, the cell density increases within the conduit, and thereby more

interactions may occur. There are at least three types of cell-cell interaction mecha-

nisms, and the details are current research issues in cell biology. At the present work,

which is largely based on time lapse cell trajectory observation, we focus on the type

of cell-cell interactive forces that correlate with the relative locations of their nuclei:
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f(xt - xl), i # j. When adjacent cells are too close, a repelling force is generated to

push them away. When they are at a certain distance, they attract each other, but

the attractive force diminishes as the distance gets longer. We consider the following

function f for the interactive force between cells i and j with Axi' = - x

jZXt Ax~ici -sinc , 0y < Yx 2y
f (Axii) ly tt-(B.9)

C2 -sine , < I |Axii I 2-y

for j # i, 1 < ij N where ci, c2, and y are parameters to tune.

Adding collective forces from all surrounding cells to the previous dynamic equa-

tions yields

v =v (1 - b) + a2Vqt - Z f (xj - xi) + wfstalk

si (B.10)

x = xz + (At) v,

subject to gt (x') = 0. We will use this form of stalk cell migration dynamics for

stochastic system identification.

B.4 Stochastic Identification

B.4.1 Approach

Based on the experimental observations and the literature information, a set of para-

metric models for describing the behavior of sprouting ECs have been obtained. These

models explain many of the experimental results and reflect the literature informa-

tion, yet the models include hypothetical sub-processes that have not yet been verified

or firmly grounded on biochemistry. These include the guidance mechanism of stalk

cell migration, forces acting between adjacent cells, local properties of the gel matrix

degraded by a tip cell, the branch formation mechanism, and so forth. Extensive

research efforts in biochemistry are required for verifying these poorly understood

sub-processes. To supplement those efforts, however, this section presents a synthetic
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approach to verifying the model. Namely, we integrate all the sub-processes and

synthesize emergent behaviors that can be identified with observable data. The tip

cell migration process, for example, is an aggregated process comprised of many sub-

processes, including VEGF gradient detection by filopodia, secretion of MMP, degra-

dation of the gel matrix, adhesion to matrix fibers, traction force generation, and so

on. These facets have been aggregated into the tip cell migration dynamics having

just a few parameters and the phenotype state transition model. This synthesized

model predicts variables that are directly observable, i.e. migration velocities. The

parameters involved can be determined by comparing the predicted velocities against

observed data: a standard procedure of system identification. The error covariance

associated with the system identification may indicate the validity of the model and

the quality of prediction. Although those experimental data are phenomenological

trajectory data, they reflect aggregate effects of many sub-processes.

The in vitro microfluidic experiments of EC sprouting provides time lapse data of

tip cells and stalk cells as well as monolayer sprouting and branching processes. For

each of three major measurements, a). tip cell migration, b). stalk cell migration, and

c). monolayer sprouting and branching, the parameter estimation can be performed

in sequence. After identifying the three observable processes, the entire emergent

behavior, i.e. the blood vessel pattern formation, will be derived.

We use the Maximum Likelihood Estimate (MLE) for estimating the parame-

ters involved in each observable model. MLE is simple, yet it provides a consistent

estimate even for nonlinear systems. In our problem, the parameters are involved

nonlinearly in each of the observable models.

B.4.2 Estimating Parameters of Tip Cell Migration

We assume that the gradient of VEGF concentration is uniform over the gel matrix

field. In other words, the concentration varies linearly across the gel matrix. This

can be accomplished with a two channel micro-fluidic device [15]. We also assume

that the initial matrix stiffness and integrity are uniform across the gel matrix. Then

the parameters to identify are two parameters involved in the saturation function, ai
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and di, and the variance of the Gaussian noise wt". Let 0 be the parameter vector

containing all these parameters to estimate. The tip cell velocity at time t + 1 can be

predicted based on the dynamic model in Eq. B.1 as

- tipVut
9 +1 (Vut; 6)=hi (Vut; 51, di) - ' (B. 11)

where represents estimate of unknown variable or parameter z. The prediction error

is given by the discrepancy from the actual measurement v i

$(t, 0) = vii - v1 (V'ut; 0 ti - hi (V'ut; e1, di) (B.12)

Assuming that the model structure is correct, it follows from the tip cell dynamic

model (1) that the probability distribution of the prediction error 4 (t, 0) is Gaussian

with zero mean values for the correct parameter distribution 00, since the prediction

error comes from the uncorrelated noise wt'p.

p (# (t) ; Oo) ~ N (0, S) (B.13)

where S is the error covariance of noise wy'p. This implies that the prediction error

is independent with respect to time t, and the Maximum Likelihood Estimate of the

parameter vector based on t = 1 through T data is then given by

SMLE (T) = argmin q0(t, )TS-1#(t, 0) + In IS) (B.14)
tip 0( Tt=1

If the covariance is isotropic, S = oI, the number of parameters to estimate reduces
-T

to only three: 6tip ai di o-, .

B.4.3 Estimating Parameters of Stalk Cell Migration

Assuming again that the covariance of the Gaussian noise wt'talk is isotropic, o-2

the parameters to estimate are Bstalk = [b, a2, d2 , a, c1 , c2 , 'Y, o-stalk]T, where b is

the viscous damping, a2 , d2, and a are associated with the cue intensity, and ci, c2 ,
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and -y are for cell-cell interactive forces.

Eliminating the uncorrelated noise term wetalk, the velocity predictor is given by

v+ 1 (v'; (stagk) =v(1 - b) + a2 Vqt(x'; d', xt, 0 < T < t)

-- E f (xj - xi; 1 2, i)(B. 15)

Note that the stalk cell migration is constrained to the wall of the conduit. The

predicted velocity does not necessarily lie on the conduit wall. The prediction error

in the direction normal to the conduit wall is meaningless. Therefore, for parameter

estimation we use only the two components of the prediction error that is parallel

to the wall surface. The challenge is that the number of parameters is high for the

stalk cell migration dynamics. Experimental data containing a rich variety of data

segments associated with diverse cell-cell interactions are necessary to identify these

parameters.

B.5 Simulation Experiments

The cell sprouting model obtained previously is now examined through simulation

experiments. Considering the complexity of the process, it is necessary to investigate

the feasibility of the proposed method of synthetic process identification prior to

applying the method to actual experimental data. This can be done by using a known

process for which the true parameter values are known. Stochastic simulations are

performed to create a data set. Then the system identification method is applied in

order to examine whether the original parameter values are recovered from the data

set. If the model structure is not adequate, the parameter estimation process will

not converge. Though it converges, a lot of data will be required. The covariance

of estimation error will also provide us with useful information in designing actual

experiments.

The first simulation experiment described below focuses on the dynamics of single

sprout growth. The simulation consists of a collection of 17 cells that begin distributed
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Table B.1: Migration parameter values.

Tip Cells Stalk Cells
a 1  d1  atip b a 2  d2  O'stalk o C1 Y C2

1 20 0.25 0.5 0.5 10 0.25 0.5 2 10 0.4

in a monolayer in the yz-plane at x = 10. A cell in the center of the plane is

differentiated into a tip cell and takes on the dynamics of Eq. B.1, which responds
T

to a gradient applied on the x-direction alone:Vu [ vux 0 0 1 .

The remaining cells take on stalk cell dynamics as given by Eq. B.10. The scaffold

matrix dynamics are given by an approximation to Eq. B.4 and Eq. B6. The nominal

parameter values used in the simulation are given in Table 1. These parameter values

are used throughout this chapter.

Fig. B-3 shows the output of the simulation under different conditions. The color

contour in each part defines constant matrix integrity, I, while the solid black contours

are lines of constant q. Fig. B-3a shows the cell locations after time t = 10, projected

into the xy-plane at z = 50. Fig. B-3b shows the same information at t = 100 when

the VEGF gradient is too high, Vu, = 80. When the gradient is too high, the tip

cell migrates too quickly into the gel and the stalk cells become separated from it.

When the tip cell is too far away, any stalk cells that have migrated into the conduit

may retract toward the gel. Fig. B-3c shows what happens when the VEGF gradient

is chosen at a lower value, Vu, = 10. In this case, the tip sprouts out and stalk cells

follow it into conduit. A stable, hollow, lumen forms and can continue to grow. Fig.

B-3d shows the same stable lumen with cells projected onto the yz-plane at x = 15.

The lumen cells are spatially distributed on different sides of the conduit where the

matrix integrity is approximately I =om.
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Figure B-3: Simulation of single sprout growth.

B.5.1 System ID

Tip Cells

We can form a MLE estimator using data obtained from the simulation described in

the previous section. In physical experiments, we only have access to cell location

trajectory information, xt" and xt and applied VEGF gradient, Vu.

Using the MLE, we can estimate the parameters involved in the dynamic equa-

tions. We can get an idea of how much data we need by estimating the unknown

parameters with different amounts of data for an ensemble of different simulation

experiments. Then we can compute the ensemble mean and variance of parameter

estimation error. Fig. B-4 shows the results for estimating the tip cell parameters,

ai, di, and up. In each of the ensemble simulations, the simulation had the same
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Figure B-4: Ensemble mean parameter estimation error with standard deviation.

initial conditions. Also, the initial guess for the parameters was ai= 2, di 20, and

u,=0.5. Here, we used three sets of data with different levels of VEGF gradient,

Vux. The first data set with Vux = 10 was used for the first 28 time steps, followed

by the data set of Vux 40, and then Vu_ = 80.

Initially, with just the data from a single level of input, there is not enough

information to correctly estimate the chemotactic saturation function parameters.

Thus, the optimization maximizing the log-likelihood function does not correctly

estimate ai and di. The results show that three levels of input excitation are good

enough to obtain the correct parameter values, and the ensemble expected parameter

estimation error decreases to zero. The tip cell dynamics only have three parameters

and can be correctly estimated with just three levels of system input, Vux.
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Stalk Cells

The parameters involved in the stalk cell equation of motion are considerably more

difficult to estimate than the tip cell parameters. The difficulty arises from several

factors. First, there are a total of eight parameters involved in the stalk cell equa-

tions, compared with just three parameters in the tip cell equation. Some of the eight

parameters may be coupled so that changing two of them may have similar effect on

the migration of the stalk cells. This means that it may not be possible to uniquely

identify all of the parameters. Particularly challenging is the fact that the hypothe-

sized chemoattractant, q (x), is unknown. Also, since the restoring force due to the

boundary is generated normal to the wall, we can merely ignore the component of

cell motion normal to the wall and use only the components parallel to the wall for

estimation.

To examine the validity and identifiability of the model structure, we first consider

the case where the cue intensity q (x) is known. This reduces the number of parame-

ters to identify to six. Table 2 shows the parameter estimation results using the same

data used in the previous section. The expectation and variance are computed from

the estimate over all 10 data sets. Note that all the parameters are reliably identified.

It is nice to see how well different parameters can be estimated because it gives a

clear idea of how important each term is in the governing dynamics. Any parameters

that are poorly estimated are either part of a term which has a small influence over the

overall cell dynamics or are lumped with other parameters. While the true parameters

are unknown in a physical experiment, the ensemble parameter estimation variance

gives clues about how a model should be retailored.

Note that with these estimates, the mean and standard deviation of the output es-

timation error are E [9r - v'] = -0.01 and E,,i_,i = 0.26, respectively. Theoretically,

with Ustalk = 0.25, the best we can possibly do is E [^ - v'] = 0 and E'_vi = 0.25.

Since we do not know q (x) in practice, we have to address the full estimation

problem with a total of eight parameters in Ostalk. Unfortunately, with the observable

information from the simulation alone, i.e., stalk position, there is not enough infor-
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Table B.2: Estimation results with q (x) known.

b a 2  -y C1 C2  
0 stalk

True Val. 0.50 0.50 10.0 2.0 0.40 0.25
Est. Val. 0.50 0.54 10.06 1.81 0.40 0.25

Error Var. x10 2  0.01 0.06 0.64 1.40 0.12 0.00

Table B.3: Estimation results with q (x) unkown.

b a 2  d 2  a y C1 C2 Ustalk

True Val. 0.50 0.50 10.0 0.50 10 2.0 0.40 0.25
Est. Val. 0.49 0.53 10.13 - 10.00 2.00 0.43 0.25

Error Var. 1.78 7.49 77.61 - 9.09 5.96 3.56 0.38
x10 2

mation to reliably estimate all of the system parameters. In fact we cannot reliably

estimate any of the system parameters if o also needs to be estimated. In practice, it

will be necessary to estimate some of the parameters from independent experiments.

For example, a can be estimated based on a systematic set of studies to see how fast

the tip cell can migrate into the gel while stalk cells are still following. The larger

the data set, the better the parameter can be estimated. Here, we use the same

parameters and input used previously, and assume a is known. Table 3 shows the

ensemble estimation results over 10 data sets. The estimator once again works well.

B.6 Conclusion

This work has presented a method for developing a set of lumped parameter dynamic

equations for EC motion in angiogenesis and testing/tuning the model against data.

This approach will allow multiple model structures or hypotheses to be tested against

each other to see which model better explains the data. These models can be tested

in simulation before application to experimental data to ascertain how confidently

the parameters can be estimated and whether the model should be revised based on

what can be identified from measurable data. In addition, a simple model with few
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tunable parameters will be useful for predicting process evolution and understanding

how different components of the process dynamics influence process evolution and

stability.
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