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We study multiple-spin coherence transfers in linear Ising spin chains with nearest-neighbor couplings.
These constitute a model for efficient information transfers in future quantum computing devices and for many
multidimensional experiments for the assignment of complex spectra in nuclear magnetic resonance spectroscopy.
We complement prior analytic techniques for multiple-spin coherence transfers with a systematic numerical study
where we obtain strong evidence that a certain analytically motivated family of restricted controls is sufficient for
time optimality. In the case of a linear three-spin system, additional evidence suggests that prior analytic pulse
sequences using this family of restricted controls are time optimal even for arbitrary local controls. In addition,
we compare the pulse sequences for linear Ising spin chains to pulse sequences for more realistic spin systems
with additional long-range couplings between nonadjacent spins. We experimentally implement the derived pulse
sequences in three- and four-spin systems and demonstrate that they are applicable in realistic settings under
relaxation and experimental imperfections—in particular—by deriving broadband pulse sequences which are
robust with respect to frequency offsets.

DOI: 10.1103/PhysRevA.85.012325 PACS number(s): 03.67.Ac, 82.56.−b, 02.30.Yy

I. INTRODUCTION

The control of spin dynamics in chains of coupled spins
1/2 is a topic of both theoretical and practical interest [1–12].
On the one hand, the use of spin chains is considered for the
efficient transfer of information in future quantum computing
devices [13–19]. On the other hand, coherence transfer
between remote spins is the basis of many multidimensional
experiments for the assignment of complex spectra [20–22] in
nuclear magnetic resonance (NMR) spectroscopy. In addition
to linear spin chains with only nearest-neighbor couplings, in
realistic settings long-range couplings between nonadjacent
spins must also be considered. For example, in 13C- and
15N-labeled proteins, the nuclei in the protein backbone form
a chain of coupled spins 1/2 with dominant next-neighbor 1J

(single-bond) couplings and smaller 2J and 3J couplings (via
two or three chemical bonds) between nonadjacent spins in the
chain [22].

Here we focus on the efficient creation of multispin
operators from a single-spin operator in a spin chain, such
as the creation of multiple-spin order from polarization of the
first spin,

I1z → 2n−1I1zI2z · · · I(n−1)zInz. (1)

*manoj.nimbalkar@tum.de
†robert.zeier@ch.tum.de
‡steffen.glaser@tum.de

The transfer shown in Eq. (1) is just a prototype example of a
general transfer of the form

I1δ → 2n−1I1ε1 · · · Inεn
, (2)

where δ,εk ∈ {x,y,z} for k = 1, . . . ,n. Note that the transfor-
mations in Eqs. (1) and (2) are identical up to local spin rota-
tions. Hence, in the limit where the time for selective rotations
of individual spins is negligible [compared to 1/(2Jmax), where
Jmax is the largest spin-spin coupling constant in the chain], the
transformations in Eqs. (1) and (2) can be achieved in the same
amount of time. (This situation is typical for heteronuclear
NMR experiments in the liquid state, where the control
amplitudes for single-spin operators are orders of magnitude
larger than the largest coupling constants.) In Eq. (2), the initial
single-spin state is not limited to longitudinal magnetization
(polarization I1z) but may also be transverse magnetization
(in-phase coherence I1x or I1y) [22,23]. Examples of multispin
target operators in Eq. (2) containing one or several transverse
operators include states of the form 2n−1I1zI2z · · · I(n−1)zInx

(corresponding to antiphase coherence of spin n with respect
to spins 1 to n − 1), and 2n−1I1xI2x · · · I(n−1)xInx (corre-
sponding to multiquantum coherence), which are relevant
in so-called “out and back” transfer schemes [22,24,25]
and in the creation of multiple-quantum coherence [23,26],
respectively.

We consider in this work only the case of Ising-type spin
chains [27,28]. In NMR, an Ising-type coupling is also known
as weak coupling, as only Ising-type couplings need to be
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considered if the coupling constant Jk� between two spins k and
� is much smaller than the difference between the resonance
frequencies vk and v� of these two spins, i.e., if |Jk�| � |vk −
v�| [23]. This is an excellent approximation in virtually all
high-resolution heteronuclear NMR experiments (where the
gyromagnetic ratios of the spins are different) as |Jk�|/|vk −
v�| � 10−6 holds in modern high-field NMR spectrometers.
We obtain that the coupling Hamiltonian for a pair of spins k

and � has the form

H weak
k� = 2πJk�IkzI�z,

where Jk� is the coupling constant in units of hertz. In
conventional experiments, the standard methods to achieve
transfer in Eq. (2) are based on COSY- or RELAY-type transfer
steps [22,23], which are realized in heteronuclear experiments
by a series of INEPT building blocks [29] (see Sec. II). The
transfer time is determined by the size of the coupling constants
Jk� in a given spin system. For example, in a linear spin chain
with only next-neighbor couplings, the total duration is given
by

Tconv = (
J−1

12 + J−1
23 + · · · + J−1

(n−1)n

)/
2.

We are interested in finding the shortest possible time to
achieve the transfer in Eq. (2) or, conversely, the maximum
transfer amplitude for any given time, which remains an open
question up to now.

For relatively simple spin systems, consisting of up to
three spins, time-optimal [30–36] and relaxation-optimized
[37–42] pulse sequences have been recently found analyti-
cally, based on methods of optimal control theory [43–47],
establishing rigorous physical limits for minimum transfer
times or minimum relaxation losses, respectively. In addition to
powerful analytical tools, optimal control theory also provides
efficient numerical algorithms for the optimization of pulse
sequences, such as the gradient ascent pulse engineering
(GRAPE) algorithm, exploiting the known equation of motion
for the spin system [48–51]. With this algorithm it is possible
to optimize tens of thousands of pulse sequence parameters,
and the resulting pulse sequences are not limited to previously
known transfer schemes. However, in contrast to analytical
methods proving global optimality of a given pulse sequence,
there is no guarantee that numerical optimal control algorithms
like GRAPE will converge to the global optimum [52]. Never-
theless, in cases where the theoretical limits are known, the
GRAPE algorithm closely approached these limits [48,53]. This
motivated its use also in cases for which analytical results
on the global optimum are presently unknown in order to
explore the physical limits of the maximum possible transfer
efficiency as a function of transfer time, resulting in so-called
time-optimal pulse (TOP) curves [46,54–58]. Furthermore,
additional effects such as relaxation [59,60], radiation damping
[61], and experimental constraints and imperfections—like
limited control amplitudes and control field inhomogeneities
[62–64]—can be taken into account to find highly robust pulses
suitable for practical applications under realistic conditions.

Assuming a restricted pulse structure (see Secs. III A
and IV A), analytical pulses were derived in Refs. [11,12],
respectively, for the cases of equal and unequal couplings.
This results in significantly shorter transfer times compared to

conventional approaches; however, it was not clear how closely
the performance of the derived pulse sequences converges to
the time-optimal performance.

In this work, we summarize the analytic approach of
Refs. [11,12] (see Secs. III A and IV A) and explore its
time optimality by conducting a systematic numerical study
of the considered coherence transfer (see Secs. III B and
IV B). Focusing on the case of linear Ising spin chains with
three and four qubits, we compare the duration of pulse
sequences for arbitrary pulse structures with the restricted
pulse structure motivated by the analytical pulses. We also
discuss qualitatively in Sec. IV B the results of our numerical
optimizations. In addition, we numerically analyze linear Ising
spin chains for up to six spins (see Sec. VII). Our numerical
approach makes it also possible to investigate more realistic
spin systems with more general coupling topologies (see
Sec. V).

We show in Sec. VI how to make the pulse sequences
robust with respect to off-resonance effects using the delays
alternating with nutations for tailored excitation (DANTE) ap-
proach [34,65,66]. Finally, we present experimental results for
model spin chains consisting of three and four heteronuclear
spins 1/2, demonstrating good performance of these sequences
under experimental conditions and comparing the results to
those for conventional pulse sequences.

II. COHERENCE TRANSFER IN LINEAR ISING
SPIN CHAINS

Throughout this work we mostly consider linear Ising spin
chains which have only direct couplings between neighboring
spins [27,28]. (Later we will also allow additional couplings
between non-neighboring spins.) Assume that a chain of n

spins is placed in a static external magnetic field along the
z direction and that neighboring spins are coupled by an
Ising interaction where the coupling strengths J�,�+1 are fixed
but may depend on the position 1 � � � n−1 in the chain.
Without any control, the system evolves freely under its drift
Hamiltonian

Hd = 2π

n−1∑
�=1

J�,�+1I�zI(�+1)z.

The drift Hamiltonian is given in a suitably chosen multiple
rotating frame, which rotates simultaneously at the resonance
frequency of each spin. We use the product-operator basis
I�ν = ⊗j Iaj

where aj = ν for j = � and aj = 0 otherwise (see

Ref. [23]). The matrices Ix := ( 0 1
1 0 )/2, Iy := ( 0 −i

i 0 )/2, and

Iz := ( 1 0
0 −1 )/2 are the Pauli spin matrices and I0 := ( 1 0

0 1 ) is
the (2 × 2)-dimensional identity matrix. In addition to the free
evolution, we assume that individual spins can be selectively
excited using radio-frequency (rf) pulses, which is the case
if the Larmor frequencies of the spins are well separated as
compared to the coupling strengths J�,�+1. Thus controls on
individual spins can be applied on a much faster time scale
as compared to the free evolution with respect to the drift
Hamiltonian.

We derive explicit controls for the amplitude and phase
of the external rf fields by implementing a unitary evolution
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which transforms an initial polarization I1x on the first spin
to a multiple-spin state 2n−1(∏n−1

�=1 I�y )Inz while minimizing the
pulse duration tp. In the following, we often compare control
pulses with the conventional strategy, which consists of n − 1
steps of free evolution (1 � m � n−1)

2m−1I1y · · · I(m−1)yImx

Hd−→ 2mI1y · · · ImyI(m+1)z

where each individual step—besides the final one—is followed
by one hard π

2 pulse on the (m + 1)th spin along the y direction.
As each period of free evolution is of length 1/(2J�,�+1) where
J�,�+1 is given in hertz, the total evolution time is given by
tp = ∑n−1

�=1 1/(2J�,�+1).

III. LINEAR THREE-SPIN CHAINS: ANALYTICAL AND
NUMERICAL APPROACHES

A. Analytical approach

In this section, we consider the model of Sec. II in the case
of linear three-spin chains (see Fig. 1). In the most general
case, one could allow independent controls on each of the
three spins along both the x and y directions. But in order to
simplify the control problem we allow only one control on
the second spin along the y direction. This might not lead to
time-optimal controls. But even using this restricted model,
controls which are shorter as compared to the conventional
strategy were obtained in Ref. [12] (see also [11]). In the
following, we summarize the analytical approach of Ref. [12].

Starting from an initial state I1x and using only one control
on the second spin along the y direction, we can analyze the
control problem on the subspace spanned by the operators
I1x , 2I1yI2z, 2I1yI2x , and 4I1yI2yI3z as compared to the
full 63-dimensional space of operators. Using the notation
〈O〉 := Tr(Oρ) for the expectation value and Tr for the trace,
we denote the corresponding expectation values by x1 =
x1(t) = 〈I1x〉, x2 = x2(t) = 〈2I1yI2z〉, x3 = x3(t) = 〈2I1yI2x〉,
and x4 = x4(t) = 〈4I1yI2yI3z〉. We obtain the differential
equation

⎛
⎜⎜⎜⎝

ẋ1

ẋ2

ẋ3

ẋ4

⎞
⎟⎟⎟⎠ = π

⎛
⎜⎜⎜⎝

0 −1 0 0

1 0 −u 0

0 u 0 −k

0 0 k 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎟⎠, (3)

where u = u(t) denotes the amplitude of the control on the
second spin along the y direction and k = J23/J12. Using the
coordinates (x1,x2,x3,x4)T we aim to time-efficiently transfer
(1,0,0,0)T to (0,0,0,1)T .

Now, we change from the coordinates (x1,x2,x3,x4)T to the
coordinates

(r1,r2,r3)T = (
x1,

√
x2

2 + x2
3 ,x4

)T

1 2 3
J12 J23

FIG. 1. A linear three-spin chain has only direct couplings J12

and J23 between neighboring spins.
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FIG. 2. Analytical pulses for linear three-spin chains in the cases
of (a) k = J23/J12 = 88.05/88.05 = 1 and (b) k = 1.59 ≈ J23/J12 =
73.1/46.

on the sphere where θ = θ (t) is given by tan θ = x3/x2. This
transforms Eq. (3) to

⎛
⎜⎝

ṙ1

ṙ2

ṙ3

⎞
⎟⎠ = π

⎛
⎜⎝

0 − cos θ 0

cos θ 0 −k sin θ

0 k sin θ 0

⎞
⎟⎠

⎛
⎜⎝

r1

r2

r3

⎞
⎟⎠.

In the new coordinates, we want to time-efficiently transfer
(1,0,0)T to (0,0,1)T .

In order to find the time-optimal controls, Euler-Lagrange
equations were set up and solved in Ref. [12], leading to the
differential equation

θ̈ = k2 − 1

2
sin 2θ (4)

for the variable θ . The differential equation (4) can be numer-
ically integrated if the initial values θ (0) and θ̇(0) are known.
Using the results of Ref. [12] one can determine conditions on
the initial values: In the case of (r1(0),r2(0),r3(0))T = (1,0,0)T

one can deduce that θ (0) = 0, but θ̇(0) is undetermined. In
Ref. [12] combinations of one-dimensional searches were
used to determine the optimal θopt(t) and the time-optimized
control as uopt(t) = J12θ̇opt(t). Examples for the corresponding
(semi)analytic pulses are shown in Fig. 2. The values are
motivated by the experimental systems given in Fig. 3.

(a)
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19F
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1

H
z
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z
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(b)
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88
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2.
94

H
z

FIG. 3. The schematic coupling topologies of (a) ethanamide
and (b) diethyl-(dimethylcarbonyl)fluoromethylphosphonate (see
[67,68]) result in experimental three-spin systems with coupling
ratios (a) k = 1 = 88.05/88.05 and (b) k = 1.59 ≈ 73.1/46. Larger
couplings are shown as solid black lines, and smaller couplings are
shown as dashed black lines. Decoupled spins are given in gray color.
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B. Numerical approach

We numerically optimize pulse shapes by employing the
GRAPE algorithm [48] which was developed by applying
principles of optimal control theory. Using a gradient-based
optimization, we obtain rf controls which steer an initial
state (or unitary transformation) to a final state (or unitary
transformation) while minimizing (e.g.) the duration of the
pulse. Both the amplitude and the phase of the resulting pulse
can have a smooth or noisy shape depending on (e.g.) the initial
pulse or bounds on the control strength (see, e.g., [63]).

We treat three different levels of rf controls: First, we use
only one rf control operating on the second spin along the y

direction. Second, we use two different rf controls operating
on the second spin along both the x and y directions. Third, we
use a total of six rf controls operating on each of the three spins
along both the x and y directions. We remark that employing
rf controls on one spin along both the x and y directions gives
complete (local) control on that spin. Let k denote the ratio
between the couplings J23 and J12. We determine the numeri-
cally optimized pulses and plot the logarithmic fidelity F vs the
duration tp of differently shaped pulses for the coupling ratios
k = 1 and k = 1.59 which are motivated by the experimental
scenarios of Fig. 3. The numerical results are given in Table I:

TABLE I. We compare the duration tp , the logarithmic fidelity
log(1 − F ) := log10(1 − F ), and the shape of numerically optimized
pulses for a linear three-spin chain with coupling ratios (a) k = 1 and
(b) k = 1.59. The number of controls is given in the first column.
In the third column we present the corresponding logarithmic TOP
curves. The second column shows an example of a shaped pulse
which corresponds to the the shortest pulse with fidelity F � 0.9999
(unless otherwise stated) and whose position is denoted with an x
in the logarithmic TOP curve. The rf control on the middle spin
along the y axis is plotted using a solid black line. Other rf controls
are plotted using dashed or solid gray lines. All logarithms are to
base 10.

No. of
controls Pulse shape Logarithmic TOP curve

(a) k = 1

1
0 3 7 9.8

0

60

t (ms)

u
(H

z)

0 3 7 10
-6

0

tp (ms)

lo
g 

(1
-

)
F

6
0 3 7 9.8

0

60

t (ms)

u
(H

z)

0 3 7 10
-6

0

tp (ms)

lo
g 

(1
-

)
F

(b) k = 1.59

1
0 5 11 15.5

0

60

t (ms)

u
(H

z)

0 5 12 17
-6

0

tp (ms)

lo
g 

(1
-

)
F

6
0 5 11 15.5

0

60

t (ms)

u
(H

z)

0 5 12 17
-6

0

tp (ms)

lo
g 

(1
-

)
F

TABLE II. For coherence transfers in linear three-spin chains
(k = 1 and 1.59), we give the numerically optimized times tp and
the fidelities F in the cases of one, two, and six rf controls (see
text). The duration tp is independent of the number of controls, which
suggests that only one rf control on the middle spin is sufficient for
the time-optimal coherence transfer.

k No. of controls tp (ms) F

1 1 9.8 0.999 95
1 2 9.8 0.999 92
1 6 9.8 0.999 92
1.59 1 15.5 0.999 95
1.59 2 15.5 0.999 96
1.59 6 15.5 0.999 97

We show examples of shaped pulses of duration tp which
correspond to the the shortest pulse with fidelity F � 0.9999
(unless otherwise stated). In addition, we present logarithmic
time-optimal curves where we plot the logarithmic trans-
fer efficiency [i.e., log(1 − F ) := log10(1 − F ) where F is
the fidelity; all logarithms are to base 10] versus the optimal
transfer time. Comparison of the different cases suggests
that only one rf control on the second spin is sufficient
for a time-optimal pulse. For high fidelities (F � 0.9999),
the durations of the analytical and numerically optimized
pulses are identical (to the given accuracy) while the pulse
forms differ. In Table II, we compare the durations of
pulses on linear three-spin systems for different values
of k.

Conjecture 1. Consider a linear three-spin chain with
local controls on each spin. One can time-optimally transfer
coherence from I1x to 4I1yI2yI3z using only one control on the
second spin along the y direction. In addition, the analytical
pulses of Refs. [11,12] are time optimal in the case of linear
three-spin chains even if one allows arbitrary local controls.

IV. LINEAR FOUR-SPIN CHAINS: ANALYTICAL AND
NUMERICAL APPROACHES

A. Analytical approach

In this section, we consider linear spin chains with four
spins. We follow Sec. IV of Ref. [12] (see also [11]) and split
the control problem for four spins into two subproblems for
three spins (see Fig. 4): The first subproblem is given on the
first three spins by the time-optimal transfer from (1,0,0)T to
(0, cos γ, sin γ )T , where we are again using the coordinates
(r1,r2,r3)T of Sec. III A. Then, we apply certain (arbitrarily
fast) hard pulses which can be easily determined by numerical
methods. The second subproblem is given on the last three

1 2 3
J12 J23

4
J34

FIG. 4. A linear four-spin chain has only direct couplings J12,
J23, and J34 between neighboring spins. We split the corresponding
four-spin chain control problem into two subproblems for three-spin
chains.
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FIG. 5. Analytical pulses for linear four-spin chains are given in
the cases of (a) k1 = k2 = 1 as well as (b) k1 = 2.38 and k2 = 0.94.
The pulses on the second and third spins along the y direction are
given, respectively, as solid and dashed lines. The corresponding two
hard pulses on the second and third spins are depicted by a vertical
line with the flip angles given above. The hard pulses in the left figure
can be implemented by applying a pulse of 5000 Hz for 17.40 ms.
The hard pulses in the right figure can be implemented by applying a
pulse of 5000 Hz for 11.21 ms.

spins by the time-optimal transfer from (cos γ, sin γ,0)T to
(0,0,1)T . In addition, we have to simultaneously search for the
value of γ which minimizes the pulse duration. This approach
might not lead to time-optimal controls but simplifies the
control problem significantly.

The optimization of the considered subproblems can be
reduced to time-optimal transfers from (cos α, sin α,0)T to
(0, cos β, sin β)T for α,β ∈ [0,π/2], generalizing the transfer
of Sec. III A from (1,0,0)T to (0,0,1)T . Using methods of
Ref. [12] we can find the optimal controls for the transfers
using combined one-dimensional searches for the optimal
initial values θ (0) and θ̇ (0) of Eq. (4). Both θ (0) and θ̇ (0) are
undetermined but related by θ̇(0) = sin[θ (0)] cot α for the case
of (r1(0),r2(0),r3(0))T = (cos α, sin α,0)T . The corresponding
(semi)analytic pulses are shown in Fig. 5. The values are
motivated by the experimental system given in Fig. 6.

B. Numerical approach

Motivated by the analytical approach, we numerically treat
the control problem on four spins with two cases of coupling
ratios (a) k1 = 1 and k2 = 1 (J12 = J23 = J34 = 88.05 Hz),
and (b) k1 = 2.38 ≈ J12/J23 and k2 = 0.94 ≈ J34/J23 (refer

1H

19F
31P13C

15N

4.
1

H
z

46
H

z
2

H
z

19.3 Hz
73.1 Hz

10
H

z

18.1 Hz 1.9 Hz

FIG. 6. The topology of the molecule 13CO-15N-diethyl-
(dimethylcarbonyl)fluoromethylphosphonate (see [67,68]) results in
coupling ratios k1 = 2.38 and k2 = 0.94. Compare to Fig. 3.

TABLE III. For linear four-spin chains with coupling ratios
(a) k1 = 1 and k2 = 1 as well as (b) k1 = 2.38 and k2 = 0.94, the
rf controls on the second and third spins along the y axis are plotted
using solid black and solid gray lines, respectively. Other rf controls
are plotted using a dashed black line or in shades of gray. Compare
to Table I.

No. of
controls Pulse shape Logarithmic TOP curve

(a) k1 = 1 and k2 = 1

2
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F

(b) k1 = 2.38 and k2 = 0.94
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to Fig. 6 for the coupling values). The coherence transfer is
numerically optimized considering the following three levels
of rf controls: First, we use only two different rf controls (one
on each spin) operating on the second and third spins along
the y direction. Second, we use a total of four different rf
controls (two on each spin) operating on the second and third
spins along both the x and y directions. Third, we use a total
of eight different rf controls (two on each spin) operating on
each of the four spins along both the x and y directions. The
pulse shapes and the logarithmic TOP curves corresponding
to two and eight rf controls (see Table III) indicate that we do
not gain a higher fidelity or a shorter duration by using more
than the two controls (Table IV). This is consistent with the
analytical results, but the numerically optimized pulses appear
to be a little shorter than the analytical ones (cf. Fig. 5).

Conjecture 2. Consider a linear four-spin chain with
local controls on each spin. One can time-optimally transfer
coherence from I1x to 8I1yI2yI3yI4z using only two controls
along the y direction, which operate on the second and third
spins, respectively.

We will now discuss the qualitative form of the logarithmic
TOP curves as in Table III. It is apparent that some of the
(numerically obtained) logarithmic TOP curves are no longer
smooth after a certain time tp. First, we want to emphasize that
the logarithmic TOP curve is plotted using a logarithmic scale,
giving a better picture of the numerical convergence properties
as compared to a normal TOP curve where the nonsmoothness
would not even be visible. Second, we usually made no attempt
to reoptimize points where the algorithm has (apparently)
not fully converged to the global optimum. This allowed us
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TABLE IV. For coherence transfers in linear four-spin chains
(k1 = k2 = 1 as well as k1 = 2.38 and k2 = 0.94), we give the
numerically optimized times tp and the fidelities F in the cases of
two, four, and eight rf controls. The duration tp is independent of
the number of controls, which suggests that only two rf controls
on the second and third spins along the y axis are sufficient
for the time-optimal coherence transfer.

k1 k2 No. of controls tp (ms) F

1 1 2 13.8 0.999 92
1 1 4 13.8 0.999 93
1 1 8 13.8 0.999 89a

2.38 0.94 2 53.2 0.999 90
2.38 0.94 4 53.2 0.999 90
2.38 0.94 8 53.3 0.999 92

aAlthough this fidelity is not larger than 0.9999 (before rounding),
one can take the corresponding pulse with two controls, which would
achieve F � 0.9999.

to identify the limits of the numerical optimization with the
beginning of the nonsmoothness. Third, we are satisfied with
a pulse sequence if its fidelity F is larger than or equal to
0.9999 (cf. caption of Table I) and no other, more sophisticated
criteria were used (after the numerical optimization). Fourth,
we recorded the fidelity using only six decimal digits after the
decimal point and we did not analyze effects resulting from
this choice. All these decisions were motivated by the fact that
we only seek strong numerical evidence for Conjectures 1 and
2 as even the most advanced numerical optimization method
could not provide a proof.

We show in Fig. 7 different pulse shapes corresponding to
the case of eight controls in Table III(b) (see also Table IV).
One can see that the pulse shapes usually do not vary much
around the fidelity F = 0.9999, but pulse shapes as in Fig. 7(c)
may appear. We remark that the very strong modulations in
Fig. 7(c) are essentially redundant as they correspond approx-
imately to a 2π pulse on spin 3. Note also the pulse shape in
Fig. 7(a) which is similar to a reflected version of Fig. 7(e).

V. MORE GENERALLY COUPLED SPIN SYSTEMS OF
THREE AND FOUR SPINS

In more generally coupled spin systems, indirect couplings
can strongly impede or enhance the coherence transfer. In
this section we present detailed numerical optimizations and
compare them to the case of linear spin chains.

A. Three-spin system

Along the lines of Sec. III B, we numerically optimize
pulses for more generally coupled three-spin systems keeping
J12 = J23 = 88.05 Hz constant while varying the additional
coupling strength J13. By comparing the TOP curves for
different values of J13, we conclude that for a larger coupling
strength J13 the fidelity of the coherence transfer is smaller in
the cases of one [Fig. 8(a)] and two (results are not shown)
rf controls on the second spin. (As in Sec. III B, we obtain
shorter pulse sequences as compared to the conventional pulse
sequence for J13 = 0.) However, using the rf controls on each
of the three spins allows for a coherence transfer with higher
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FIG. 7. Different pulse shapes corresponding to the case of
eight controls in Table III(b). The pulse shapes (c1) and (c2)
are identical but they have been plotted with different scalings to
allow for a better comparison. The fidelities for the cases (a)–(g)
are (respectively) 0.999 73, 0.999 82, 0.999 15, 0.999 92, 0.999 96,
0.999 98, and 1.000 00 (which are rounded to five decimal digits
after the decimal point).

fidelity while keeping the pulses short [Fig. 8(b)]. Table V
shows examples of shaped pulses and the corresponding
logarithmic TOP curves for the coupling ratios k = 1 and 1.59.
The coupling strengths are taken from the spin systems shown
in Fig. 3. Detailed values are given in Table VII.

B. Four-spin system

Following Sec. IV B, we numerically optimize the shaped
pulses for more generally coupled four-spin systems. Analyz-
ing the numerical results (see Table VI), we can say that this
system needs all eight rf controls on each spin along both the x

and y directions in order to achieve the coherence transfer with
minimum duration and maximal fidelity. Table VII summarizes
and compares the duration tp and fidelity F of shaped pulses
for more generally coupled spin systems.

VI. EXPERIMENTAL RESULTS

Analytical and numerically optimized pulses are usually
optimized for on-resonance cases. We follow the DANTE
approach [65,66,69] in order to obtain pulses which are
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F

0.0

0.5

1.0 (b)

FIG. 8. (Color online) We compare numerically optimized TOP
curves (in shades of gray and denoted by oc. in the legend) for
three-spin systems with one (a) and six (b) rf controls keeping J12 =
J23 = 88.05 Hz constant while varying J13. At the same time we
compare their performance with conventional pulse sequences (in
shades of red and denoted by conv. in the legend) where both of the
couplings J12 and J13 evolve simultaneously. The limiting case of
J13 = 0 corresponds to the conventional pulse sequence of Sec. II.
Using all six rf controls (b), we can see higher fidelities F for smaller
times and larger J13 compared to the case of only one rf control (a).
A black arrow denotes where the numerically optimized TOP curves
for J13 = 44 Hz and J13 = 0 Hz merge.

broadband, i.e., invariant with respect to the change of the
chemical shift in a given offset range (Fig. 9). First, a shaped
pulse is converted into a sequence of short hard pulses and
delays. We used hard pulses with constant flip angles (see
below), and the delays between the hard pulses correspond
to the time required by the shaped pulse to accumulate
this flip angle [65,66,69]. Then, a refocusing element (i.e.,
π pulse) [34,66] is inserted between two hard pulses. The
offset bandwidth covered by a refocused DANTE sequence is
directly proportional to the rf amplitude of the applied hard
and π pulses.

TABLE V. Numerical results for more generally coupled three-
spin systems with (a) coupling ratio k = 1 (i.e., J12 = J23 =
88.05 Hz) and additional coupling J13 = 2.94 Hz as well as (b)
coupling ratio k = 1.59 (i.e., J12 = 73.1 Hz and J23 = 46 Hz) and
additional coupling J13 = 10.0 Hz. The values of the fidelities can be
found in Table VII. Compare to Table I.

No. of
controls Pulse shape Logarithmic TOP curve
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All the experiments are implemented on a Bruker AVANCE
III 600 MHz spectrometer at 298 K: We use a triple-resonance
TXI probe head with Z gradient in the case of the three-spin
system with k = 1. For the three-spin system with k = 1.59
and the four-spin system with k1 = 2.38 and k2 = 0.94, we
use a custom-made six-channel probe head with Z gradient
addressing all nuclei 19F, 1H, 31P, 12C (or 13C), and 14N (or
15N) (see [67,68]). In the experiments for three spins we
use the molecules shown in Fig. 3. The experiment for the

TABLE VI. Numerical results for more generally coupled
four-spin systems with coupling ratios k1 = 2.38 ≈ J12/J23 and
k2 = 0.94 ≈ J34/J23 (i.e., J12 = 46 Hz, J23 = 19.3 Hz, and J34 =
18.1 Hz) as well as additional couplings J13 = 4.1 Hz and J24 =
2 Hz. The values of the fidelities can be found in Table VII. In this
case, many additional numerical optimizations were done as many
of the optimizations have a fidelity close to F � 0.9999. Compare to
Table III.

No. of
controls Pulse shape Logarithmic TOP curve

2
0 16 36 57.8

-400

0
200

t (ms)

u
(H

z)

0 20 45 70
-6

0

tp (ms)

lo
g 

(1
-

)
F

8
0 16 36 54

-400

0
200

t (ms)

u
(H

z)

0 20 45 70
-6

0

tp (ms)

lo
g 

(1
-

)
F

012325-7



MANOJ NIMBALKAR et al. PHYSICAL REVIEW A 85, 012325 (2012)

TABLE VII. We compare the duration tp and fidelity F of
numerically optimized shaped pulses in the cases of three- and
four-spin systems allowing a varying number of rf controls u.
Using only one or two rf controls, we show the effect of indirect
couplings—which are usually present in experiments—on the fidelity
of optimized pulses with the same pulse duration. Hence more (i.e.,
six or eight) rf controls are necessary for higher fidelities. The J

values are taken from the actual spin systems shown in Figs. 3 and 6.

Graph J13 (Hz) J24 (Hz)
No. of

controls tp (ms) F

k = 1

0.0 – 1 9.8 0.99995

2.9 – 1 9.8 0.99596

2.9 – 6 10.1 0.99990

k = 1.59

0.0 – 1 15.5 0.99995

10.0 – 1 14.7 0.88905

10.0 – 1 15.5 0.88372

10.0 – 6 15.8 0.99995

k1 = 2.38 and k2 = 0.94

0.0 0.0 2 53.2 0.99990

4.1 2.0 2 53.2 0.98593

4.1 2.0 2 57.8 0.99981

4.1 2.0 2 66.0 0.99993

4.1 2.0 8 53.2 0.99884

4.1 2.0 8 54.0 0.99975

4.1 2.0 8 63.0 0.99991

coupling ratio k = 1 uses the first molecule [see Fig. 3(a)]
which is dissolved in deuterated water D2O. For k = 1.59
we use the second molecule [see Fig. 3(b)] dissolved in
deuterated methanol CD3OD. The simulated and experimental
offset profiles are shown in Figs. 10 and 11. We emphasize
that the duration of the broadband versions of the analytical
or the numerically optimized pulses is shorter than for the
conventional pulse sequence while keeping its robustness.

(a)

(b)

(c)

FIG. 9. In the DANTE approach an on-resonance shaped pulse
[see (a)] is converted to a series of short hard pulses and delays �i

[see (b)]. Then the pulse can be converted to a broadband pulse by
inserting a refocusing element (i.e., π pulse) represented by solid bars
between two hard pulses [see (c)].

v (kHz)

Experiment Simulation

-1 0 1
v (kHz)

-1 0 1

(a)

(b) (b´)

(a´)

FIG. 10. (Color online) We compare for a three-spin system the
offset (�v) profile for ±1 kHz of the antiphase signal (see text)
resulting from a conventional pulse sequence (tp = 11.4 ms) in the
case of experiment [see (a)] and simulation [see (a′)] with broadband
versions of the analytical pulses [tp = 9.8 ms; see (b) and (b′)] for
the case of coupling ratio k = 1 of three spins.

We first discuss the two three-spin systems: In the case
of k = 1, we start from the initial polarization I1z of 1H
(which models the first spin) and apply a π

2 pulse along
the +y direction in order to obtain the coherence I1x . By
applying a broadband version of our shaped pulse to the spin
of 15N (which models the second spin) we get the three-spin
coherence 4I1yI2yI3z. The broadband version of this shaped
pulse is divided into four hard pulses with an amplitude of
4145.936 Hz, a flip angle of 45.00◦, and zero phase; it also
contains refocusing π pulses where the phases are chosen
according to the MLEV-4 cycle [70]. Next, we apply a π

2 pulse
on 15N along the x direction and we obtain the coherence
4I1yI2zI3z. In the end, we can detect an antiphase signal of
1H (first spin) with respect to the spins of 15N and 1H (which
models the third spin). Similarly, in the case of k = 1.59, we
start from the initial coherence I1z on the spin of 1H (which
models the first spin) and apply a π

2 pulse along the +y

direction in order to obtain the coherence I1x . Then, we apply
the broadband version of our shaped pulse on the spin of 19F
(second spin) in order to produce the three-spin coherence
4I1yI2yI3z. The broadband version of this shaped pulse is
divided into four hard pulses with an amplitude of 10 000 Hz, a
flip angle of 45.03◦, and zero phase; it also contains refocusing

v (kHz)

Experiment Simulation

-2 -1 0 1 2
v (kHz)

-2 -1 0 1 2

(a)

(b) (b´)

(a´)

FIG. 11. (Color online) We compare for a three-spin system the
offset (�v) profile for ±2 kHz of the antiphase signal (see text)
resulting from a conventional pulse sequence (tp = 17.7 ms) in the
case of experiment [see (a)] and simulation [see (a′)] with broadband
versions of the analytic pulses [tp = 15.5 ms; see (b) and (b′)] for the
case of coupling ratio k = 1.59.
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Simulation Experiment

(a)

(b)

(c )

(d)

FIG. 12. We show the antiphase signal of the spin of 19F with
respect to the spins of 1H, 13C, and 15N of a four-spin system
corresponding to the simulation (left) and experiment (right). We
use the conventional pulse sequence (a) (tp = 64.4 ms), an analytical
pulse sequence (b) (tp = 53.9 ms), a pulse which was numerically
optimized for the abstract linear spin chain with rf controls on the
second and third spins (c) (tp = 53.2 ms), and a pulse which was
numerically optimized for the more generally coupled spin system
with rf controls on all spins (d) (tp = 54.0 ms). The simulation for the
abstract linear spin chain is given in gray color. All the other plots for
the more realistic case of a more generally coupled spin system are
given in black color. The plots are scaled vertically by a factor of 2.

π pulses where the phases are chosen according the MLEV-4
cycle [70]. In the next step, we apply a π

2 pulse on the spin of
1H and we end up with the coherence 4I1zI2yI3z. Finally, we
detect an antiphase signal on the spin of 19F with respect to
the spins of 1H and 31P (which models the third spin).

TABLE VIII. We compare the minimum time tp required for a
coherence transfer by numerically optimized (oc) and conventional
(conv) pulse sequences for different numbers n of spins and coupling
ratios k.

tp(s)

k = 1 k �= 1a

n ocb conv oc/conv ocb conv oc/conv

3 0.0098 0.0114 0.8596 0.0155 0.0177 0.8757
4 0.0138 0.0170 0.8118 0.0532 0.0644 0.8261
5 0.0177 0.0227 0.7797
6 0.0216 0.0284 0.7605

aFor n = 3 we have k = 1.59. And for n = 4 we have k1 = 2.38 and
k2 = 0.94.
bThe fidelities of the numerically optimized sequences are given as
F � 0.9999.
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FIG. 13. Using all ten (or twelve) rf controls we determined
numerically optimized pulse shapes for linear spin chains of length 5
(or 6) in the case of k = 1. We remark that most control strengths are
very small.

In the four-spin system, we show on-resonance simulations
and experiments for numerically optimized shaped pulses,
comparing the conventional approach with analytical and
numerically optimized pulses (see Fig. 12). The corresponding
experiments are implemented on the molecule of Fig. 6, which
is dissolved in deuterated acetonitrile. Figures 12(b) and 12(c)
show a reduction in signal intensity for the simulation if we
compare the effect of the pulse on the abstract linear spin
chain (shown in gray) with the effect on the more realistic
and more generally coupled spin system (shown in black) as
the corresponding pulses were only optimized for the abstract
linear spin chain. We remark that the pulse of Fig. 12(d) is
optimized for a more generally coupled spin system while
using rf controls on all spins. Thus, we conclude—using also
the data of Table VII—that the pulse of Fig. 12(d) shows a
higher fidelity when compared to the pulses of Figs. 12(b)
and 12(c). Furthermore, the pulse corresponding to Fig. 12(d)
is shorter (by 14%) than the conventional pulse sequence
corresponding to Fig. 12(a) while maintaining its robustness
to additional couplings (see also Table VIII).

VII. LINEAR SPIN CHAINS WITH MORE THAN
FOUR SPINS

In this section, we generalize the numerical optimization
of shaped pulses to linear spin chains of five and more spins.
Figure 13 shows two examples of the optimized pulse shapes
with coupling ratios k� = 1 and coupling strengths J�,�+1 =
88.05 Hz. These examples suggest that time-optimal controls
can be obtained on multiple spins even while irradiating
only on the spins 2 to � − 1 along the y direction (cf.
Sec. IV of Ref. [12]). We obtain shorter pulses for the
numerically optimized pulses compared to the conventional
pulse sequences, as summarized in Table VIII.

VIII. CONCLUSION

In the case of linear three-spin chains we reproduced
numerically the previous analytical results [11,12], obtaining
the same family of restricted controls by applying pulses only
on the second spin along the y axis. The same holds for linear
four-spin chains where we also obtain the analytical family
of restricted controls by applying pulses only on the second
and third spins along the y axis; but the numerically optimized
pulses appear to be a little shorter than the analytical ones. For
both three and four spins no gain in pulse duration is found

012325-9



MANOJ NIMBALKAR et al. PHYSICAL REVIEW A 85, 012325 (2012)

if arbitrary pulse structures are allowed. These observations
are summarized in Conjectures 1 and 2. Even for longer
spin chains (of up to six coupled spins 1/2) there is some
numerical evidence suggesting that the same restricted controls
motivated by Refs. [11,12] lead to time-optimal pulses (under
unrestricted controls) for linear spin chains of arbitrary length.

Further numerical results are presented for more general
and more realistic coupling topologies, for which so far no
analytical results are known; but see recent work in Ref. [71].
Compared to linear spin chains, we obtain different pulse
structures depending on the number of available controls.
We hope that the presented results and conjectures will
motivate further analytical work in order to develop a better
understanding of time-optimal control sequences for the
generation of multispin coherence.

Note that the minimum times for the transfers I1δ →
2n−1I1ε1 · · · Inεn

and 2n−1I1ε1 · · · Inεn
→ I1δ are identical

(δ,εk ∈ {x,y,z} for k = 1, . . . ,n), which is directly relevant for
“out and back” experiments and the reconversion of multiple-
quantum coherence to detectable single-quantum operators.
In the experimental part, we demonstrated that the optimized
pulse sequences work in realistic settings under relaxation and
experimental imperfections (e.g., inhomogeneity of the control
field, miscalibrations, and phase transients). In addition, the
pulses can be made broadband using the DANTE approach.

Here we assumed for simplicity that each spin 1/2
can be selectively addressed, which is directly relevant to

heteronuclear spin systems but the optimal transfer scheme
can also be adapted to homonuclear spin systems. The
presented sequences can be directly applied to small molecules
and peptides, which is true in particular for the broadband
versions. The minimum pulse sequence durations for complete
transfer are reduced by up to 24% compared to conventional
approaches (see Table VIII). Conversely, for a fixed transfer
time significantly improved transfer amplitudes are possible,
e.g., for a linear three-spin chain we gain approximately 23%
in transfer efficiency when we allow only for half of the
transfer time necessary for a complete transfer (cf. Fig. 8).
For large proteins, further gains in efficiency are expected if
relaxation-optimized pulse sequences can be developed for the
specific relaxation superoperator given in the system. Although
such sequences are beyond the scope of the present paper, the
results on time-optimal sequences presented here provide an
important benchmark for relaxation-optimized sequences.
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