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Abstract

This thesis addresses the problem of visual recognition under two sources of variability:

geometric and photometric. The geometric deals with the relation between 3D objects

and their views under parallel, perspective, and central projection. The photometric deals

with the relation between 3D matte objects and their images under changing illumination

conditions. Taken together, an alignment-based method is presented for recognizing ob-

jects viewed from arbitrary viewing positions and illuminated by arbitrary settings of light

sources.

In the �rst part of the thesis we show that a relative non-metric structure invariant

that holds under both parallel and central projection models can be de�ned relative to

four points in space and, moreover, can be uniquely recovered from two views regardless

of whether one or the other was created by means of parallel or central projection. As a

result, we propose a method that is useful for purposes of recognition (via alignment) and

structure from motion, and that has the following properties: (i) the transition between

projection models is natural and transparent, (ii) camera calibration is not required, and

(iii) structure is de�ned relative to the object and does not involve the center of projection.

The second part of this thesis addresses the photometric aspect of recognition under

changing illumination. First, we argue that image properties alone do not appear to be

generally su�cient for dealing with the e�ects of changing illumination; we propose a model-

based approach instead. Second, we observe that the process responsible for factoring out

the illumination during the recognition process appears to require more than just contour

information, but just slightly more. Taken together, we introduce a model-based alignment

method that compensates for the e�ects of changing illumination by linearly combining

model images of the object. The model images, each taken from a di�erent illumination

condition, can be converted onto novel images of the object regardless of whether the image

is represented by grey-values, sign-bits, or other forms of reduced representations.

The third part of this thesis addresses the problem of achieving full correspondence

between model views and puts together the geometric and photometric components into a

single recognition system. The method for achieving correspondence is based on combining

a�ne or projective geometry and optical ow techniques into a single working framework.

Thesis Advisor: Professor Shimon Ullman
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Introduction

Chapter 1

The problem of visual object recognition is the focus of much interest in human and

computer vision. The task seems very easy and natural for biological systems, yet has

proven to be very di�cult to place within a comprehensive analytic framework.

There are many aspects to the problem of recognition, many relevant sources of infor-

mation, and apparently not a single widely accepted de�nition of what the problem is. For

example, physical objects in the world can be identi�ed based on various visual cues that

include shape, color and texture. The images that an individual object can create depend

on geometric properties, such as viewing position, on photometric properties such as the

illumination conditions, and also on object characteristics such as the ability to change

shape, having movable parts, and so forth. Objects often appear in the context of other

visual information, such as when a scene contains multiple objects that are next to each

other, or partially occluding each other. Objects can be classi�ed as belonging to a general

category or be identi�ed as individuals. Finally, the kind of visual analysis that is employed

in the process of recognition is not limited to the task of object recognition. Therefore,

recognition may involve more than simply naming the object; it may also provide other

information that is useful for motor interaction, following a path, and movements in the

world in general.

The multitude of aspects to visual recognition and the considerable degree of abstrac-

tion associated with it implies that in order to make the problem amenable to analytic

treatment, some form of problem simpli�cation is required. In this thesis we are primarily

concerned with shape-based recognition of individual three-dimensional (3D) objects from

a single image of the object. The component within this context that we emphasize is

that of dealing with the mathematical problem of understanding the relationship between

objects in the world and their images. This component has two parts, geometric and

photometric. The geometric part of the problem has to do with the relationship between

di�erent views of the same object produced by means of a central projection onto the image

1



2 Introduction

plane. The photometric part has to do with the relationship between images of the same

object produced by changing the lighting conditions (level of illumination, positions and

distributions of light sources).

We consider the case of recognition from full grey-level images and from reduced images

(such as are produced by edge detection, or are binary images produced by threshold

operation on the original image). Our de�nition of \success" is the ability to reproduce,

or synthesize, a precise copy of the image in question from the model representation. This

de�nition is adopted from the alignment approach to recognition.

1.1 Sources of Variability

One of the characteristic problems in visual recognition is the one-to-many mapping be-

tween an individual object in space and the images it can produce. As we move our eyes,

change position relative to the object, or move the object relative to ourselves, the image

of the object undergoes change. Some of these changes are intuitive and include displace-

ment and/or rotation in the image plane, but in general the changes are far from obvious

because of the nature of perspective projection from a 3D world onto a 2D plane. If the

illumination conditions change, that is, the level of illumination, as well as the positions

and distributions of light sources, then the image of the object changes as well. The light

intensity distribution changes, and shadows and highlights may change their position. In

general we may regard the one-to-many mappings as sources of variability that a�ect the

kind of images that an individual object can produce. We distinguish four general sources

of variability:

� Geometric: changes in the spatial location of image information as a result of a

relative change of viewing position.

� Photometric: changes in the light intensity distribution as a result of changing the

illumination conditions.

� Varying Context: objects rarely appear in isolation and a typical image contains mul-

tiple objects that are next to each other or partially occluding each other. Changes

in the image can, therefore, occur by changing the context without applying any

transformation to the object itself.

� Non-rigid Object Characteristics: these include objects changing shape (such as facial

expressions), objects having movable parts (like scissors), and so forth.
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The geometric source of variability has to do with the geometric relation between rigid

objects and their perspective images produced under changing viewing positions (relative

motion between the viewer and the object). This is probably the most emphasized source

of variability and has received much attention both in the context of recognition and in the

context of structure from motion. There are several approaches to this problem, depending

on the model of projection that is assumed (orthographic or perspective), the object model

representation (3D, or a number of 2D views), and the representation of structure (metric

or non-metric). This is reviewed in more detail in Section 1.3, but we briey mention

here that in spite of extensive research in this area hard mathematical problems remain.

For example, there is a lack of uniformity with respect to the model of projection, i.e.,

solutions are often approached by either assuming orthographic or perspective projection,

but not both at the same time. Most of the research to date is focused on orthographic and

parallel projections, where methods that assume perspective projection are often extremely

sensitive to noise, require non-linear computations and do not fully address the issues in

a comprehensive manner (i.e., necessity of calibration, the kind of metric or non-metric

properties that are worth exploring, and so forth).

The photometric source of variability has to do with the relation between objects and

the images they produce under changing conditions of illumination, i.e., changing the level

of illumination, direction and number of light sources. This has the e�ect of changing the

light intensity distribution in the image and the location of shadows and highlights. The

dominant approach is to recover features from the image that are invariant to changes in

illumination conditions. Under this approach the photometric source of variability turns

into a question of image representation. The best known example of such features are step

edges, namely, contours where the light intensity distribution changes abruptly from one

level to another. Such edges are often associated with object boundaries, changes in surface

orientation or material properties. The issue of image representation will be discussed

in more detail in Chapter 4, but we can briey mention here that the representation

of edges and the invariance they provide is mostly su�cient for simple objects, such as

polyhedrons and simple machine parts. Problems with the su�ciency of edge representation

and its invariance against changing illumination arise with more complex objects, such as

a face, a shoe, and so forth. In this case, we argue that a similar approach to that taken

with the geometric source of variability is more appropriate than it would be to look for

invariances, i.e., to examine the relationship between objects and the images they produce

under changing illumination and �nd ways to compensate for its e�ect in an alignment

style of approach.
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The third source of variability has to do with the e�ect of varying context. A typical

image often contains multiple objects that are next to each other, or partially occluding

each other. If we attempt to compare the entire image (containing a familiar object) to

the model representation of an object in question, then we are unlikely to have a match

between the two. The problem of varying context is, therefore, a question of how the

image representation of an object (say its contours) can be separated from the rest of the

image before we have identi�ed the object. The problem is di�cult and is often referred to

as the problem of \segmentation", \grouping" or \selection". In the context of achieving

recognition the crucial question is whether the problem of context can be approached in a

bottom-up manner, i.e., irrespective of the object to be recognized, or whether it requires

top-down processes as well. We discuss this further in Section 1.4, but we can mention here

that there is considerable empirical evidence, drawn from physiology and psychology, that

the human visual system contains elaborate processes that perform segmentation prior to

the subsequent recognition process.

The fourth source of variability has to do with objects changing their shape. These

include objects with movable parts (such as the human body) and exible objects (for

example, a face where the changes in shape are induced by face expressions). This source

of variability is geometrical, but unlike changing viewing positions, the geometric relation

between objects and their images has less to do with issues of projective geometry and

more to do with de�ning the space of admissible transformations in object space.

In this thesis we focus on the �rst two sources of variability, i.e., on geometric and

photometric e�ects. The scope of the problem and its de�nition are discussed in the next

section.

1.2 Scope of Recognition in this Work

The recognition problem we consider is that of identifying an image of an arbitrary in-

dividual 3D object. We allow the object to be viewed from arbitrary viewing positions,

using the model of central projection, and to be illuminated by an arbitrary setting of light

sources. We assume that the image of the object is already separated from the rest of the

image, but may have missing parts (for example, as caused by occlusion).

We adopt the alignment methodology, which de�nes \success" as the ability to exactly

re-construct the input image representation of the object (possibly viewed under novel

viewing and illumination conditions) from the model representation of the object stored
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image
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plane

image

novel view

V
3

p’

p’’

p

p p’

p’’ ?
3D OBJECT

Geometric Recognition Problem

Figure 1.1: Illustrating the geometric alignment problem of recognition. Given a small

number of corresponding points between the novel input view and the two model views,

determine for any �fth point P , projecting onto p and p
0 in the two model views, the

location p
00 of its projection onto the novel image.

in memory. We assume low-level representations of both the object model and the input

image. An object is represented by a small number of grey-level images, and the input

image is represented by grey-levels, or points (edges, contours), or what we call \reduced"

representations that are binary images made out of contours and sign-bits (such as those

produced by thresholding the image, or by edge detection using a Laplacian of Gaussian

operator).

The geometric and photometric components of the recognition problem can be treated

independently of each other and then combined together into one recognition scheme. We

therefore de�ne the geometric and photometric problems as follows.

De�nition 1 (Geometric Problem) Given two projections (central, perspective, or par-

allel) of an arbitrary collection of points in 3D space (the object), then for any arbitrary
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Figure 1.2: Demonstrating the e�ects of changing viewing position on the matching process.

The di�culty of matching two di�erent views can be illustrated by superimposing the

two. One can see that, even for relatively small changes in viewing position, it could be

very di�cult to determine whether the two views come from the same face without �rst

compensating for the e�ects of viewing transformation.

planar �gure (novel image), determine whether it can be produced by a projection of the

object.

The geometric problem (illustrated in Figure 1.1) assumes we can identify a small

number of corresponding points across the di�erent views of the same object, which we

assume can be established by means of correlation (this is discussed in detail in Chapter 7).

We note that even relatively small changes in viewing position between two images of the

same object often create a real problem in matching the two against each other. Figure 1.2

illustrates this point by superimposing two edge images of a face separated by a relatively

small rotation around the vertical axis. We see that it could be very di�cult to determine

whether they come from the same face without �rst compensating for the e�ects of viewing

transformation.

De�nition 2 (Photometric Problem) We are given three images of an arbitrary con-

vex matte surface. The images are taken under three di�erent arbitrary settings of point

light sources. For any arbitrary image determine whether the image can be produced by the

surface under some illumination condition.

The photometric problem is a question of how one can compensate for the e�ect of

changing illumination by directly predicting the input signal, assuming that it came from

the same surface that produced the model images. As with the geometric problem, this

approach follows the alignment approach for recognition. The photometric problem also
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Figure 1.3: The photometric problem. The images of `Ken' in the top row are taken from

di�erent illumination conditions (same viewing position). The images in the bottom row

are various image representations of a novel image (novel illumination condition). The

image on the left in the bottom row is the original novel image, the center image is the

sign-bits of the Laplacian of Gaussian operator applied to the original image, and the image

on the right is produced by thresholding the original image by some unspeci�ed value.

raises the question of image representation. In other words, what is the minimal nec-

essary information, extracted from the image, which will cancel the e�ects of changing

illumination? The issue of representation is discussed in more detail in Chapter 4.

In practice, we work with an approximate version of the photometric problem by admit-

ting non-convex, approximately matte surfaces illuminated under situations that produce

cast-shadows and highlights. Figure 1.3 illustrates the photometric problem on the kind

of objects and the input image representations, we work with in this thesis.

Note that the photometric problem assumes the surface is viewed from a �xed viewing

position, and that the geometric problem assumes the views are taken under a �xed illumi-

nation condition (for a matte surface this means that the angle between the local surface

orientation and the light sources remains �xed). The overall recognition problem that is

addressed in this thesis is a combination of both problems.

De�nition 3 (Combined Problem) We assume we are given three model images of a
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3D matte object taken under di�erent viewing positions and illumination conditions. For

any input image, determine whether the image can be produced by the object from some

viewing position and by some illumination condition.

1.3 Existing Approaches

Modern approaches for performing recognition fall into two classes: one is symbolic, in

which the image undergoes a relatively elaborated data-driven process of extracting geo-

metric parts and their spatial inter-relations, and which is then compared to a symbolic

model representation of the object. The other approach is more pictorial and low-level,

in which the data-driven component is relatively minor (to a degree of extracting con-

tours, line approximation, corners and simple grouping criteria), and most of the e�orts are

placed at the level of recovering the model-to-image transformation and the model-to-image

matching. Ullman (1986) refers to the former as \recognition by structural decomposition

methods" and to the latter as \recognition by alignment methods" (for reviews see also

Pinker 1984, Binford 1982).

The general idea behind structural decomposition methods is that the geometric source

of variability, i.e. the e�ects of changing viewing positions, would be canceled over a wide

range of viewing positions when the object is described in terms of a relatively small number

of parts that are composed out of a library of shape primitives and that are also relatively

simple and easy to compute from the image (Binford 1971, Marr & Nishihara 1978, Brooks

1981, Biederman 1985, Connell 1985, Ho�man & Richards 1986).

The main problem with the structural decomposition approach is that it mostly applies

to simple objects with clearly identi�able parts. In the general case of complex objects (like

a shoe or a face) it may be di�cult to describe the object in terms of a relatively small set

of geometric primitives that are at the same time common to many other objects as well

(Ullman, 1986). The alternative of simplifying the part description to include edges and

line segments may be unrewarding, because the resulting object description will be highly

complex, which, in turn, may increase the susceptibility of the system to noise.

In the alignment approach the emphasis is placed not on the data-driven image analysis

component but directly on the geometric relation between objects and their images. Object

representations vary across alignment methods, but they all share the property that the

representation is relatively low-level and does not require an elaborate data-driven compo-

nent. The general idea behind the alignment approach involves a hypothesis-veri�cation
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process. First a model-to-image transformation, called the alignment transformation, is

recovered. The alignment transformation is then applied to the model in order to produce

a synthesized image. The synthesized image is then compared to the actual input image

for veri�cation. The alignment transformation is the key component of this process and

is responsible for compensating for the change in viewing position between the model and

the input image. Such an approach was de�ned by Ullman (1986) and used also in Fischler

& Bolles (1981), Lowe (1985), Faugeras & Hebert (1986), Huttenlocher & Ullman (1987),

Thompson & Mundy (1987). Alignment methods di�er in the following ways:

1. Object representation.

2. Recovery of alignment transformations. Types of recovery include:

(a) A search over model-to-image correspondence space.

i. Minimal alignment.

ii. Constrained search over all possible correspondences.

iii. Model pre-processing.

(b) A search over transformation space.

Object representation is often based on a geometric structure that varies according to the

information used to identify the object, the geometry used (metric versus non-metric), and

the representation, i.e. whether it is explicit or embedded in the process for recovering the

alignment transformation.

Some alignment methods identify the image of an object by reconstructing the 3D

shape and comparing to it to the model (Douglass, 1981). Other alignment methods

identify the image by predicting the appearance of the object and comparing it to the

image (Huttenlocher & Ullman 1987, Lowe 1985). A 3D metric representation (i.e., one of

relative depth) was used in Huttenlocher & Ullman (1987), and a 3D a�ne representation

was implied in the work of Koenderink and Van Doorn (1991) on a�ne structure from

two orthographic views. An implicit representation of a�ne structure was used by Ullman

and Basri (1989) by modeling the object by two orthographic views in full correspondence.

In other cases higher level representations are used by modeling the object by sets of

identi�able features. An image is recognized if it contains a corresponding set of features

(e.g., Fischler & Bolles 1981).

The methods for recovering the alignment transformation vary according to which space

is searched over | model-to-image correspondence space, or transformation space. Some
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alignment methods determine the transformation by �rst identifying a small number of

corresponding points between the image and the model (Fischler & Bolles 1981, Lowe 1987

for the perspective case, and Huttenlocher & Ullman 1987, Shoham & Ullman 1988, Ullman

& Basri 1989 for the orthographic case). Consequently, in the case in which the alignment

points are indistinguishable, the search space is over all possible tuples of points containing

the minimal number of corresponding points required for recovering the alignment trans-

formation. The correspondence problem can be constrained and the search space reduced

if alignment points are not all indistinguishable, i.e., if they carry labels. For example, Hut-

tenlocher and Ullman (1987) classify feature points into di�erent types, such as corners

and inection points. Only points that carry the same label can match together, therefore

reducing the search space.

Other methods that search over the image-to-model correspondence space search over

the space of all possible correspondences between the set of image features and the set

of model features. The search space is reduced by de�ning constraints, often pairwise

constraints, that follow certain \perceptual organization" or \grouping" rules, such as

proximity of features, connectivity, collinearity and parallelism. Search over all possible

correspondences has the advantage of not assuming that the image of the object is isolated

from the rest of the image. Therefore, these methods attempt to deal with the varying

context source of variability in addition to the geometric source. Because of the grouping

rules that are used for managing the search, these methods are often limited to recognizing

images of relatively simple objects such as polyhedrons and simple machine parts (Roberts

1965, Davis 1979, Bolles & Cain 1982, Grimson & Lozano-P�erez 1984, Faugeras & Hebert

1986, Van Hove 1987, Lowe 1985,1987).

Another method for reducing the search over the model-to-image correspondence space

is the \geometric hashing" method introduced by Lamdan, Schwartz & Wolfson (1988).

The idea is similar to minimal alignment, but with a pre-processing stage in which multiple

copies of the object model, one for each tuple of alignment points, is stored in a table.

This method has the advantage of there being no need to establish a model-to-image

correspondence. Furthermore, more than one object model can be stored in the table. The

latter property implies that the search over di�erent objects can be done in parallel rather

than in serial, as with the other alignment methods mentioned above. The main problem

with the geometric hashing method, however, is that it is most suitable to planar objects or

to 3D polyhedrons and is more sensitive to noise than minimal alignment without the pre-

processing stage (Grimson, Huttenlocher & Jacobs, 1991). Jacobs (1992) proposed another
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model pre-processing method that can deal with 3D objects, but because of grouping rules

employed during model acquisition, it is limited to relatively simple objects.

Another set of alignment methods search over the transformation space rather than over

correspondence space. The best known example of this approach is the generalized Hough

transform introduced by Ballard (1981). In the Hough transformation method every tuple

of alignment points votes for the transformation it speci�es (the parameters of the viewing

transformation). The transformation that is supported by the largest number of tuples

is selected and then veri�ed by matching the transformed model with the actual image.

The method is sensitive to noise because the voting table must sample a six dimensional

space (six degrees of freedom for de�ning a rigid viewing transformation) and because of

quantization problems (Grimson & Huttenlocher 1988). Other examples of the transfor-

mation space search approach include the deformable templates method (Yuille, Cohen

& Hallinan 1989), the local search in transformation space by maximizing a probability

density function (Wells 1992), search by transformation clustering (Thompson & Mundy,

1987), search by transformation sampling (Cass 1988), and combined correspondence and

transformation space search (Cass 1992, Breuel 1992).

1.4 Relationship to Human Vision

Of particular interest to any theory in machine vision is to �nd some biological evidence at

the physiological or psychophysical level for the analytic problems identi�ed by the theory

and for the approach by which those problems should be solved. The best known examples

of a successful match between an analytic model and biological data are in the �eld of edge

detection (Hubel & Wiesel 1962, Marr & Hildreth 1980) and the measurement of retinal

motion (Hildreth, 1984). Visual recognition, on the other hand, involves a considerable

degree of abstraction which precludes direct inspection of the lower substrate of processing

levels.

In the sections below we explore the analytic aspects of the recognition problem (which

were described in Section 1.1 in terms of sources of variabilities) from the standpoint of

available biological data. We will focus on data concerning the extent of low-level processing

that is done prior to recognition, and the role of geometric and photometric cues in human

visual processing.
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1.4.1 Recognition and the Problem of Varying Context

The problem of varying context raises the question of whether the problem of recognition

can be isolated and treated independently of the data-driven segmentation process, or

whether the two are strongly coupled. It appears that in some cases in human vision the

processes for performing grouping and segmentation cannot be isolated from the recognition

process. In some well known examples, such as R.C. James' image of a Dalmation dog (see,

Marr 1982), it appears unlikely that the image of the object can be separated from the

rest of the image based on image properties alone and, therefore, some knowledge about

the speci�c class of objects is required to interpret the image.

Human vision, however, appears also to contain relatively elaborate processes that per-

form grouping and segmentation solely on a data-driven basis independent of subsequent

recognition processes. For example, Kinsbourne and Warrington (1962, cited in Farah

1990) report that patients with lessions in the left inferior temporo-occipital region are

generally able to recognize single objects, but do poorly when more than one object is

present in the scene. Another line of evidence comes from displays containing occlusions.

The occluding stimuli, when made explicit, seem to stimulate an automatic `grouping'

process that groups together di�erent parts of the same object (Nakayama, Shimojo &

Silverman, 1989). The third line of evidence comes from `saliency' displays in which struc-

tures, not necessarily recognizable ones, are shown against a complex background. Some

examples are shown in Figure 1.4. In these displays, the �gure-like structures seem to be

detected immediately despite the lack of any apparent local distinguishing cues, such as

local orientation, contrast and curvature (Shashua & Ullman, 1988).

1.4.2 Geometry Related Issues in Human Vision

The use of geometric information for visual analysis of shape is not limited to the task

of object recognition. We use shape and spatial information for manipulating objects,

for planning and following a path, and for performing movements in the environments in

general. The use of geometric information subserving recognition and motor interactions

are therefore two related but separate issues. Furthermore, even within the context of

performing recognition, geometric information may be used di�erently for the task of iden-

tifying individual objects and for classifying an object as belonging to a particular class

of objects. Because of the diverse application of geometric information in visual analysis,

and the apparent di�culty in decoupling these issues at the experimental level, most of
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Figure 1.4: Structural-saliency displays. The �gure like structures seem to `pop-up' from

the display, despite the lack of any apparent local distinguishing cues, such as local ori-

entation, contrast and curvature (Shashua and Ullman, 1988). The �gure on the right

originally appeared in (Mahoney, 1986)

the empirical data available on human visual recognition are not conclusive in ruling out

competing theories, but rather serve to support some of the existing ones. The general

outline of using an alignment transformation prior to matching an image to a model, the

use of viewer-centered model representations of shape, the use of pictorial information at

the level of model-to-image matching, and the use of non-metric structure representation,

appear to agree with several observations on human vision. We discuss below some of the

empirical data that tend to support these aspects of the alignment approach and the use

of non-metric representations.

Orientation Alignment in Human Vision

The empirical evidence related to the possible role of an alignment transformation occurring

during the recognition process comes from studies on \mental rotations". These studies

establish the existence of recognition latencies for matching shapes that di�er in their

depth orientation, with latencies increasing directly with degree of disparity in orientation

(Jolic�ur 1985, Shepard & Metzler 1988, Tarr & Pinker 1989, Edelman & B�ultho� 1990).

These �ndings suggest that during recognition the orientation of the viewed object is

brought into alignment with its corresponding stored model.
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Viewer-centered Model Representations

The second aspect of the alignment approach is that models are viewer-centered, i.e., the

model describes the object as seen from a particular viewing position, or from a particular

restricted range of viewing positions (in case a number of 2D images are used for model

representation, as opposed to a 3D representation). The possible use of a viewer-centered

model representation is supported by studies showing that recognition is severely impaired

when the disparity in orientation between the learned object and the viewed object becomes

too large (Rock, DiVita & Barbeito 1981, Rock & DiVita 1987). Edelman & B�ultho� (1990)

also show that performance in recognition is best for novel views that are in between the

learned views, and that performance degrades with increasing angular separation between

the novel and learned views.

There is also some physiological evidence supporting the notion of viewer-centered

representations. Recordings from face-sensitive neurons in the macaque's STS suggest

that memory representations for faces are viewer-centered , and that each representation

is usually view-insensitive, covering a rather wide range of orientations in space (Perret,

Smith, Potter, Mistlin, Head, Milner and Jeeves, 1985).

Pictorial Matching

Another aspect of the alignment approach is that the match between the image and the

model representation stored in memory is performed at a low level of matching pictorial de-

scriptions, or template matching, rather than employing symbolic descriptions. Empirical

evidence suggests that a pictorial comparison between an image and a model is a possible

in some cases. Palmer (1978) conducted experiments that show that in tasks of simultane-

ous comparison (two �gures presented simultaneously) subjects tend to use structural and

abstract features such as closure and connectivity. In contrast, in sequential comparison

tests (essentially a recognition test) the main determinant is the degree of pictorial overlap.

Non-metric Structure

Another aspect of our recognition approach is that the structure representation of objects

is not necessarily metric. Non-metric representations imply either a more exible camera

model (central projection instead of perspective projection), or equivalently, that objects

are allowed to undergo non-metric transformations, such as stretch and shear. There
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is only limited empirical evidence regarding what form of structure information is used

for representing models. The existing empirical data, though not speci�c to recognition,

suggest that the kind of geometric information employed by human vision is not necessarily

metric.

Luneburg (1947) and Schelling (1956), (see also Julesz 1971) have argued that for

a given �xation point the measurements of binocular vision are non-metric, and this is

because as we change eye convergence from one target to the next, the perceived distance

of the previous target does not seem to change. Cutting (1986) o�ers another reason why

non-metric representations may be preferred over metric ones by referring to La Gournerie's

paradox: Visual interpretation of 3D objects from pictures appears to be robust even in

situations in which the pictures are viewed from the side (see also Kubovy 1986, Jacobs

1992). This observation implies that central projection may be more appropriate than

perspective projection when modeling the geometric relation between objects and their

images (see Section 1.6). Recently, Todd and Bressan (1990) have suggested using a�ne

representations of structure based on psychophysical experiments on human subjects. Their

experiments suggest that a�ne properties play an important role in the perception of

kinetic depth displays, even in cases where the number of views presented to the subjects

were more than su�cient to recover metric properties.

1.4.3 Issues of Photometry in Human Vision

The problem of varying illumination conditions, or the photometric problem as we refer to

it here, raises the question of whether the problem can be isolated and dealt with indepen-

dently of subsequent recognition processes, or whether it is coupled with the recognition

process.

It appears that in some cases in human vision the e�ects of illumination are factored out

at a relatively early stage of visual processing and independently of subsequent recognition

processes. A well known example is the phenomenon of lightness and color constancy. In

human vision the color of an object, or its greyness, is determined primarily by it's re-

ectance curve, not by the actual wavelengths that reach the observer's eye. This property

of the visual system is not completely robust as it is known, for example, that uores-

cent lighting alters our perception of colors (Helson, Judd & Wilson, 1956). Nevertheless,

this property appears to suggest that illumination is being factored out at an early stage

prior to recognition. Early experiments that were used to demonstrate this used simple

displays such as a planar ensemble of rectangular color patches, named after Mondrians'
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Figure 1.5: Images of `Ken' taken from di�erent illumination conditions followed by a

thresholding operation. The recognizability of the thresholded images suggests that some

knowledge about objects is required in order to factor out the illumination, and speci�cally

that the image we are looking at is an image of a face.

paintings, or comparisons between Munsel chips (Land & McCann, 1971). More recent

psychophysical experiments demonstrated the e�ect of 3D structure on the perception of

color and lightness (Gilchrist 1979, Knill & Kersten 1991). These experiments show that

the perception of lightness changes with the perceived shape of the object. The objects

that were used for these experiments are relatively simple, such as cylinders, polyhedrons

and so forth. It is therefore conceivable that the 3D structure of the object displayed in

these kinds of experiments can be re-constructed on the basis of image properties alone

after which illumination e�ects can be factored out.

Human vision, however, appears also to contain processes that factor out the e�ect

of illumination during the recognition process. In other words, the image and the model

are coupled together early on in the stages of visual processing. Consider, for example,

the images displayed in Figure 1.5. The images are of a `Ken' doll lit by two di�erent

illumination conditions, and thresholded by an arbitrary value. The thresholded images

appear to be recognizable, at least in the sense that one can clearly identify the image as

containing a face. Because the appearance of the thresholded images critically rely on the

illumination conditions, it appears unlikely that recognition in this case is based on the
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input properties alone. Some knowledge about objects (speci�cally that we are looking at

the image of a face) may be required in order to factor out the illumination. The issue of

the recognizibilty of reduced image representations, and the issue of image representation

in general, is discussed in more detail in Chapter 4.

1.5 Overview of Thesis Content and Technical Contributions

This thesis is organized in three parts (see Figure 1.6). The �rst part of the thesis (Chap-

ter 2 and 3) considers the geometric relationship between 3D objects and the images they

produce under central projection. The results established in this part have direct contri-

butions to the geometric problem of recognition and to the representation and recovery

of relative structure under the most general conditions (all projection models are treated

alike, internal camera calibration is not necessary).

The second part of this study (Chapters 4,5 and 6) considers the photometric prob-

lem of recognition. We consider the problem of factoring out the illumination during the

recognition process in a model-based approach. The model-based approach proceeds by

establishing a connection between di�erent images of the same object under changing illu-

mination. This connection provides an algorithm by which a novel image can be reproduced

by three model images of the object.

The third part of the thesis (Chapters 7 and 8) considers the correspondence problem

and the combined recognition problem. This part is distinct from the other two parts of

the thesis because here we begin to consider both sources of information together. We

show that the correspondence problem, which is a necessary component in building models

of objects, can be approached by combining a�ne or projective geometry and optical ow

into a single framework. We then consider the problem of achieving recognition under

both sources of variability | changing viewing positions and illumination conditions |

occurring simultaneously. The issues and contributions made in each part of the thesis is

described in more detail in the following sections.

1.5.1 Part I: Geometry, Recognition and SFM

The geometric relationship between 3D space and image space is a topic of interest in

recognition and in structure from motion. Most of the mathematical problems in this topic

are well understood when it comes to parallel and orthographic projections. However,
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Figure 1.6: Graphic Roadmap of the thesis. The thesis is organized in three parts: the

geometric part deals with the geometric relation between 3D space and image space under

central projection. The photometric part deals with the problem of compensating for the

e�ects of changing illumination in matte surfaces using a model-based approach. The third

part combines geometric an photometric sources of information to solve the correspondence

problem, and the combined recognition problem.
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many hard mathematical problems remain when we consider the more general models of

projection | central and perspective projection.

We argue that at the level of problem de�nition, three major issues must be addressed

before one attempts to propose solutions. The �rst issue is why there should be a distinction

made between orthographic and perspective projections. Virtually all previous methods

assume either one or the other, and often perform best when the �eld of view is either

very wide (strong perspective distortions) or very narrow. The second question is whether

internal camera calibration is really necessary. Thirdly, we analyze whether structure needs

to be metric, and if not, what kind of non-metric structure should be sought.

Our major contribution is to propose a framework that provides an adequate solution to

these problems requiring only simple linear computations that is useful also for purposes of

recognition under the alignment approach. There are two components to this framework:

(i) the model of central projection is used instead of perspective projection, (ii) the non-

metric structure of the object is de�ned in a way that does not implicate the center of

projection, thereby allowing the center of projection to be any point in projective space,

including the case of an ideal point (parallel projection).

1.5.2 Part II: The Photometric Problem

Chapter 4 addresses the photometric problem both from a practical point of view and

from empirical observations of human vision. Two central questions are addressed in this

chapter: �rst, is there a need for a model-based approach for dealing with the e�ects of

illumination in recognition? Second, what are the limits on image information in order to

make that process work? The evidence we look at suggest, �rst and foremost, that image

properties alone do not appear to be su�cient for a complete solution, and secondly, that

the process responsible for factoring out the illumination during the recognition process

appears to require more than just contour information, but just slightly more.

In Chapter 5 we introduce the basic method, we call photometric alignment, for com-

pensating for the e�ects of illumination during recognition. The method in based on a

result that that three images of the surface provide a basis that spans all other images of

the surface (same viewing position, but changing illumination conditions). The photomet-

ric problem of recognition is, therefore, reduced to the problem of determining the linear

coe�cients. Chapter 6 extends the basic method to deal with situations of recognition

from reduced image representations. The computational results introduced in this chapter



20 Introduction

appear to agree with the empirical observation made in Chapter 4 that sign-bits appear to

be su�cient for visual interpretation, whereas edges alone do not.

The conclusion is therefore, that with regard to the computational aspect of the pho-

tometric problem, three model images of the object can be used to reproduce any novel

image of the object, even in the case where only a \reduced" input is provided to the recog-

nition system. The minimal reduction that is still su�cient for purposes of recognition is

not to the level of edges, but to the level of edges and their sign-bits (includes the case of

thresholded images).

1.5.3 Part III: Combining Geometric and Photometric Sources of Information

This part of the thesis deals with the problem of achieving full correspondence between

two images taken from di�erent viewing positions and the combined recognition problem,

i.e., recognition under changing illumination and viewing positions.

The correspondence problem is a critical component of the alignment-based approach.

Both the geometric and photometric components assume that the model of the object is

represented by a small number of images for which all correspondences are known. Chap-

ter 7 deals with the correspondence problem. The approach to this problem is to combine

both the geometric and photometric sources of information in order to fully determine all

correspondences between two views of a rigid object. The main result is that a small number

of known correspondences, together with the observed temporal and spatial derivatives of

image intensities everywhere else, are su�cient to uniquely determine the correspondences

between all image points in both views.

The combined recognition problem is addressed in Chapter 8. The �rst two parts of

this thesis dealt with each source of variability separately and independently because the

e�ects of changing geometry and changing illumination are decoupled when dealing with

matte surfaces. We can, therefore, combine the results that were derived in Part I, and

part II of the thesis in order to deal with the combined problem, i.e., recognize novel images

of the object taken from novel viewing positions and novel illumination conditions.

1.6 Projection Models, Camera Models and General Notations

The geometric relation between 3D space and image space depends, �rst and foremost, on

what assumptions are being made on the way the world is projected onto the image plane.
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Figure 1.7: Projection models: orthographic, parallel, perspective and central.

We distinguish between four models of projection: orthographic, perspective, parallel and

central. The �rst two models are mostly used in computer vision, while the latter two are

used in models of higher geometries of the plane.

Figure 1.7 illustrates these four projection models. To project a collection of points in

3D space onto a plane via a point O, we draw lines from O to the di�erent 3D points. The

image is produced by the intersection with a plane (the image plane) which is not coplanar

with O. This is known as central projection, and O is known as the center of projection

(COP). Parallel projection is the same thing but with the condition that the center of

projection O is at in�nity (\ideal" point in 3D projective space). In parallel projection,

therefore, the rays are all parallel to each other.

The perspective projection model is similar to central projection but with several ad-

ditional conditions. First, perspective projection has a distinguishable ray known as the

optical axis. Second, the optical axis not only intersects the image plane at a �xed point

(known as the principal point), but is also perpendicular to the image plane. Third, the

distance of the image plane from the center of projection along the optical axis is �xed

and is known as the focal length. A more convenient way to describe perspective projec-
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tion is to assume a coordinate frame with its origin at the center of projection, its z axis

aligned with the optical axis, and its xy plane parallel to the image plane. In perspective

projection, therefore, the location of the image plane with respect to this coordinate frame

is assumed to be known | whereas in central projection the location of the image plane

with respect to the coordinate frame is arbitrary and unknown. In other words, the change

of coordinates between two perspective views is assumed to be rigid, i.e., translation of

the COP followed by a rotation of the coordinate axes, whereas the change in coordinates

between two central projections of the same object is composed of a rigid motion followed

by an arbitrary projective transformation of the image plane. In particular, this means

that we can have an a�ne change of coordinates (the xyz frame undergoes an arbitrary

linear transformation in space, rather than only rotations), and in addition we can take a

projection of a projection (taking a view of the image plane).

The orthographic projection model is similar to parallel projection, but with the con-

dition that the image plane is perpendicular to the projecting rays (perspective projection

in which the center of projection is an ideal point). In computer vision, uniform scale

is often added to the orthographic model in order to model changes in size due to the

distance between the image plane and the object. The scale extended orthographic model

is then often referred to as \scaled orthographic projection" or \weak perspective". For

reasons of simplicity, we will continue to refer to this as orthographic projection, with the

understanding that uniform scale is included.

1.6.1 Camera Models

The perspective projection model describes an internally calibrated camera. The location

of the principle point, the focal length and the true angle that the image plane makes

with the optical axis of the particular camera in use, are often known as internal camera

parameters. Perspective projection is, therefore, an accurate model of the way the world

projects onto �lm | provided that we have full knowledge of internal camera parameters.

We refer to this imaging model as a calibrated camera model, or perspective projection with

a calibrated camera, or a rigid camera (rigidity comes from the observation that knowledge

of internal parameters is inter-changeable with assuming that the world is rigid).

The viewing transformation with a rigid camera is, therefore, composed of camera

translation and rotation of the camera coordinate frame around the new location of the

center of projection. This is often referred to as the six parameter motion of the camera.



Section 1.6 23

The six parameters include two for translation (magnitude of translation cannot be recov-

ered from 2D observations alone), three for specifying the rotation axis in space, and one

for the angle of rotation.

The model of central projection describes an uncalibrated camera. In this case, the

camera coordinate frame can undergo any arbitrary linear transformation in space (around

the new location of the COP), rather than only rotations. This means that the location of

the principle point is not �xed as the camera changes its position. In addition, we allow

the views to undergo arbitrary projective transformations of the plane, which is equivalent

of taking arbitrary central projections of central projections of the object (as when looking

at a picture of an object). We refer to this camera model as an uncalibrated camera or a

non-rigid camera. A non-rigid camera has, therefore, the advantage of not requiring prior

knowledge of internal parameters, allows us to take pictures of pictures of 3D objects,

which taken together means that only non-metric world properties can be recovered from

the 3D scene.

Orthographic and parallel projections are an approximation to the rigid and non-rigid

camera models, respectively. The approximation holds under conditions of small �eld of

view (objects are relatively far away from the camera) of objects which are only moderately

extended in depth. Parallel projection is equivalent of taking orthographic views followed

by an arbitrary a�ne transformation of the plane. Orthographic views followed by a�ne

transformations of the plane are in turn equivalent to having orthographic views and allow-

ing the object to undergo arbitrary a�ne transformations in space (David Jacobs, personal

communication).

In this thesis we address the central, perspective and parallel models of projection.

We therefore address the geometric problem of recognition and the problem of recovering

relative structure from two views in situations where calibration is unknown as well as in

situations where calibration is assumed.

1.6.2 General Notations

We denote object points in capital letters and image points in small letters. If P denotes

an object point in 3D space, p; p0; p00 denote its projections onto the �rst, second and novel

projections, respectively. We treat image points as rays (homogeneous coordinates) in

3D space, and refer to the notation p = (x; y; 1) as the standard representation of the

image plane. We note that the true coordinates of the image plane are related to the
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standard representation by means of a projective transformation of the plane. In case

we deal with central projection, all representations of image coordinates are allowed, and

therefore, without loss of generality, we work with the standard representation (more on

that in Appendix A).



Part I

Geometry: Recognition and

Structure from Motion
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Non-metric Structure and Alignment from two Parallel

Projected Views

Chapter 2

The geometric problem we consider in this study is the recognition, via alignment, of a

novel view given a small number of corresponding points with two model views of the same

3D object. In other words, given the image locations of a small number of object points in

the two model views and the novel view, we would like to be able to determine the image

locations of all other points that project onto the novel view. We refer to this problem

as \re-projection" for we wish to re-project the model of the object (represented by two

views) onto any arbitrary viewing position. Once we have re-projected the model, we can

compare the re-projected view and the novel view and expect to have a match when the

three views are projected from the same set of 3D points.

This chapter sets the stage by �rst focusing on a relatively simple domain resulting

from assuming parallel projection. We start with the more simple problem �rst primarily

because we argue that the general case is not much di�erent and naturally extends from it |

provided we look at the simple case from the proper angle. Most of the material covered in

this chapter is related to the work of Koenderink and Van Doorn (1991) on a�ne structure

from motion, and the work of Ullman and Basri (1989) on the linear combination of views.

The main points covered here include the following:

� Non-metric structure is introduced in two forms: a�ne coordinates, and a�ne struc-

ture.

� Re-projection can be achieved by recovering the epipolar geometry and the non-

metric structure of the object. Epipolar geometry alone is also su�cient in most

cases, but generally provides only a weak solution to the problem of re-projection.

� The linear combination of views can be derived from the a�ne structure result.

27
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2.1 Overview

In the context of structure from motion (SFM) and recognition under the assumption of

orthographic projection, it is known that three views are necessary for recovering metric

structure (Ullman 1979, Huang & Lee 1989, Aloimonos & Brown 1989, Tomasi & Kanade

1991, Weinshall 1992) and, similarly, three model views are necessary for achieving recog-

nition of rigid objects (Ullman & Basri, 1989). The conclusion, therefore, is that structure

and/or recognition from two model views is governed by a�ne geometry rather than Eu-

clidean geometry. The fact that this is possible is due to Ullman and Basri (1989) and

Koenderink and Van Doorn (1991).

One way to view non-metric (in this case a�ne) structure is by coordinates. Instead

of recovering the coordinates with respect to the camera coordinate frame (the image

plane coincides with the xy plane, and the optical axis coincides with the z axis) we may

consider recovering the coordinates of object points with respect to a coordinate frame

de�ned by four non-coplanar object points whose positions in space are unknown. We

therefore cannot measure distances in space (the angles between the a�ne axes are not

preserved under a�ne transformations), and the coordinates are not absolute because they

depend on the choice of the four points. Nevertheless, with a�ne coordinates we get some

feeling of structure (we can tell the shape of the object up to an unknown stretch and

shear) and can predict the appearance of the object as seen from any other novel position

under parallel projection.

Another way to represent non-metric structure is to de�ne a measurement of the point

of interest P with respect to the four points, such that the measurement remains �xed

under parallel projection. For instance, we may consider three of the four points de�ning

a plane and the invariant measurement may be some form of relative deviation of P from

the plane. Koenderink and Van Doorn (1991) refer to this as \a�ne structure" and show

that it is equivalent to the third a�ne coordinate of P . In a way Similar to the case of the

a�ne coordinate representation, we can predict novel views of the object by carrying only

one number (the a�ne structure invariant) instead of three numbers (a�ne coordinates)

for each point.

The representation of structure by a�ne coordinates or by a�ne structure are equivalent

as we can convert one to the other. The di�erence is in concept. We shall see later that

the di�erence is signi�cant when it comes to the general case of central projection.

Another strategy for achieving re-projection, described by Ullman and Basri (1989), is
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by a result which appears to be orthogonal to the a�ne structure result in the sense that

no structure is explicitly involved in the process of re-projection. Ullman and Basri show

that image coordinates of corresponding points in three views (two model views and the

novel view) are linearly related: the image coordinates of the novel view can be obtained

by linearly combining the image coordinates of the two model views. We will establish a

connection between the two results by showing that the linear combination result can be

derived from the a�ne structure result.

2.2 A�ne Coordinates from two Views

Let O; P1; P2; P3 be four non-coplanar object points, referred to as reference points, and let

O
0
; P

0

1; P
0

2; P
0

3 be the coordinates of the reference points from the second camera position.

Let b1; b2; b3 be the a�ne coordinates of an object point of interest P with respect to the

basis OP1; OP2; OP3, i.e.,

OP =
3X

j=1

bj(OPj);

where the OP denotes the vector from O to P . Under parallel projection the viewing

transformation between the two cameras can be represented by an arbitrary a�ne trans-

formation, i.e., O0
P
0 = T (OP ) for some linear transformation T . Therefore, the coordinates

b1; b2; b3 of P remain �xed under the viewing transformation, i.e.,

O

0
P

0 =
3X

j=1

bj(O
0
P

0

j):

Since depth is lost under parallel projection, we have a similar relation in image coordinates:

op =
3X

j=1

bj(opj) (2:1)

o

0
p

0 =
3X

j=1

bj(o
0
p

0

j): (2:2)

Given the corresponding points p; p0 (in image coordinates), the two formulas 2.1,2.2

provide four equations for solving for the three a�ne coordinates associated with the object

point P that projects to the points p; p0. Furthermore, since the a�ne coordinates are �xed

for all viewing transformations, we can predict the location p
00 on a novel view by �rst
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recovering the a�ne coordinates from the two model views and then substituting them in

the following formula:

o

00
p

00 =
3X

j=1

bj(o
00
p

00

j ):

We have, therefore, a method for recovering a�ne coordinates from two views and a method

for achieving re-projection given two model views and four corresponding points across the

three views.

A more concise representation of non-metric structure and a more direct re-projection

method can be derived if, instead of recovering a�ne coordinates, we de�ne and recover

an a�ne invariant. The a�ne invariant discussed next is what Koenderink and Van Doorn

(1991) call \a�ne structure", which turns out to be simply b3. More importantly, how-

ever, is the concept of describing structure as an invariant measurement with respect to a

geometric construction de�ned by the reference points. We will use this concept later on

when we deal with central projection.

2.3 A�ne Structure: Koenderink and Van Doorn's Version

We can view the four reference points O; P1; P2; P3 in space as composed of a reference

plane, de�ned by O; P1; P2, and a reference point P3 not coplanar with the reference plane.

The fundamental theorem in a�ne geometry of the plane states that correspondences of

three points uniquely determine all other correspondences of the plane (see Appendix A.1

for more details). In other words, from the observed correspondences in both views o !
o
0
; p1  ! p

0

1; p2  ! p
0

2 we can recover a transformation T [] (a�ne transformation of

the plane in non-homogeneous coordinates) that accounts for all correspondences induced

by the reference plane. For example, for any point ~
P coplanar with the reference plane

projecting onto p; ~p0 in our two views, then ~p0 = T [p].

Let P be an arbitrary point in the scene projecting onto p; p0 on the two image planes.

Let ~
P be the projection of P onto the reference plane along the ray towards the �rst image

plane, and let ~p0 be the projection of ~
P onto the second image plane (p0 and ~p0 coincide if

P is on the reference plane). Note that the location of ~p0 is is determined by T [p]. Using

a simple geometric drawing, the a�ne structure invariant is derived as follows.

Consider Figure 2.1. The projections of the fourth reference point P3 and the point P
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V
1

V
2

P

p

P~

p’
~

p’

~

reference
plane

P
3
~

P
3

p
3

3
p’

3
p’

Figure 2.1: Koenderink and Van Doorn's A�ne Structure.

form two similar trapezoids: P ~
Pp

0~p0 and P3 ~P3p
0

3~p
0

3. From similarity of trapezoids we have,

p =
jP � ~

P j
jP3 � ~

P3j
=
jp0 � ~p0j
jp03 � ~p03j

:

Since the motion of the camera consists of translation and rotation of the image plane in

space and possible change of angle with repect to the projecting rays, p is invariant to

camera motion under parallel projection.

The a�ne structure p is a measure of a�ne shape, just as a�ne coordinates were a

representation of a�ne shape. With a�ne structure we can describe the location of a point

in space relative to a reference plane whose orientation in space is unknown, therefore, we

can tell what the object is up to an unknown shear and stretch.

We can also achieve re-projection onto a novel view by �rst recovering p from the known

correspondences between the two model views. The location of p00 is then determined by

substitution of p in the equation

p =
jp00� ~p00j
jp003 � ~p003j

:

Finally, the relation between a�ne coordinates and a�ne structure is simply p = b3,

or in other words p is a measure of \a�ne depth" (if we consider the analogy between

the third a�ne coordinate and the z coordinate in metric space). This can be shown as

follows:
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Let A and v be the 2D a�ne transformation that aligns o; p1; p2 with o
0
; p

0

1; p
0

2, i.e.,

o
0 = Ao+ v and p

0

j = Apj + v; j = 1; 2 . By subtracting the �rst equation from the other

two we get:

o

0
p

0

1 = A(op1)

o

0
p

0

2 = A(op2):

We can, therefore, see that A is the matrix [o0p01; o
0
p
0

2][op1; op2]
�1. From the two for-

mulas 2.1,2.2 we obtain the following result:

o

0
p

0 =
3X

j=1

bj(o
0
p

0

j) = b1A(op1) + b2A(op2) + b3o
0
p

0

3 + b3A(op3)� b3A(op3)

= A(op) + b3(o
0
p
0

3 �A(op3)):

By substituting v = o
0 �Bo we get:

p

0 = Ap+ v + b3(p
0

3 � Ap3 � v):

Finally, by noting that ~p0 = Ap+ v we get:

b3 =
jp0 � ~p0j
jp03 � ~p03j

:

2.4 Epipolar Geometry and Recognition

In the course of deriving a�ne structure, we have also obtained the epipolar geometry

between the two views. The lines p0 � ~p0 are all parallel to each other (can be easily seen

from Figure 2.1) and are known as the epipolar lines. The epipolar lines are parallel because

we are assuming parallel projection | in the general case epipolar lines converge to a point

known as the epipole which is at the intersection of the line connecting the two centers of

projection and the image plane (to be discussed in more detail in the next chapter).

The epipolar geometry, i.e., the direction of epipolar lines in both image planes, contains

all the information regarding the viewing transformation between the two camera locations.

We can see that in orthographic projection this information is generally not su�cient for

uniquely determining the rigid motion of the camera. This is because the component of

rotation around the axis perpendicular to the direction of the epipolar lines cannot be

determined by the epipolar transformation (the transformation that maps epipolar lines in

one image onto the epipolar lines of the other image). The epipolar geometry is, therefore,

weaker than the full viewing transformation. In other words, the alignment transformation
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that is responsible for re-projecting the model onto a novel view, does not require a full

recovery of the viewing transformation.

Corollary 1 Recognition via alignment using two parallel projected model views can be

achieved by recovering a�ne coordinates or by recovering a�ne structure and the epipolar

geometry between the model and the novel view.

In some cases epipolar geometry alone is su�cient for re-projecting the model onto the

novel view. This can be done by intersecting the epipolar lines between each of the model

views and the novel view. This is possible as long as the center of projection of the novel

camera position is not collinear with the centers of projection of the two model views, or,

in other words, the projection of the two axes of rotation of the viewing transformations

between the model views and the novel view do not coincide. Re-projection via epipolar

intersection may also be unstable for viewing transformations that are nearly singular

(intersecting lines are nearly parallel).

The methods described so far were based on recovering some from of relative struc-

ture and/or the epipolar geometry resulting from the viewing transformations between the

camera positions. The method discussed in the next section, the linear combination of

views, achieves re-projection by employing a direct connection between the views of the

same object.

2.5 The Linear Combination of Views and A�ne Structure

Ullman and Basri (1989), (also Poggio 1990) have discovered a simple linear relationship

between the corresponding points p; p0 and p00 of three distinct views of the point P , under

parallel projection.

Let o; o0; o00, the projections of an arbitrary point O, be the origins of the three image

coordinate frames, and let (x; y); (x0; y0); (x00; y00) be the coordinates of the image vectors

op; o
0
p
0
; o

00
p
00, respectively. Ullman and Basri show the following result:

x

00 = �1x+ �2y + �3x
0

y

00 = �1x+ �2y + �3x
0

where the coe�cients �i; �i are independent of the positions of p; p
0
; p

00. Similarly,

x
00 = 1x + 2y + 3y

0

y
00 = �1x+ �2y + �3y

0
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where the coe�cients i; �i are independent of the positions of p; p
0
; p

00.

The linear combination result requires three more corresponding points, making alto-

gether four points projected from non-coplanar points in space, to perform re-projection.

Re-projection, therefore does not directly implicate, object structure or epipolar geometry.

The linear combination method has also a practical advantage of allowing more than four

points to solve for the coe�cients in a least squares fashion. With a�ne structure, or a�ne

coordinates, there is no easy way of providing a least squares solution, unless we assume

that the additional corresponding points are coplanar with the reference plane. We show

next that the linear combination of views result can be derived from a�ne structure and

epipolar geometry.

The derivation of a�ne structure in the previous section concluded with,

o
0
p
0 = A(op) + pw;

where w = o
0
p
0

3 � o
0~p03 is the epipolar line direction, and p is invariant under viewing

transformations. Similarly, let o00p00 = B(op) + ps be derived from the �rst model view

and the novel view using the same four reference points. We derive the following result:

Proposition 1 The coe�cients of the linear combination result are expressed by the fol-

lowing equations:

�1 = b11 � �3a11 �2 = b12 � �3a12 �3 =
w1

s1

�1 = b21 � �3a11 �2 = b22 � �3a12 �3 =
w2

s1

1 = b11 � 3a21 2 = b12 � 3a22 3 =
w1

s2

�1 = b21 � �3a21 �2 = b22 � �3a22 �3 =
w2

s2

Proof: Since p is invariant and appears in both equations, we can cancel it and obtain

the following equation:

1

s1

(x0�a11x�a12y) =
1

s2

(y0�a21x�a22y) =
1

w1

(x00� b11x� b12y) =
1

w2

(y00� b21x� b22y)

We therefore see that x00 and y
00 can be represented as a linear combination of x; y; x0

provided that the rotation between the model views has a non-zero component around

the horizontal axis (s1 6= 0), and similarly that x00 and y
00 can be represented as a linear

combination of x; y; y0 provided that the rotation between the model views has a non-zero

component around the vertical axis (s2 6= 0). We also see that there is no restriction on the
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viewing transformation between the model views and the novel view (w = 0 corresponds

to the case of pure rotation around the optical axis, in which case the novel view is simply

a 2D a�ne transformation of the model views).

2.6 Discussion

We described the geometrical concepts underlying non-metric structure, epipolar geome-

try, and alignment from two model views in the case of parallel projection. We wish to

emphasize the following points.

The �rst point is the question of structure representation. We have seen two di�erent,

but mathematically equivalent, ways of representing structure from two parallel views: one

is by a�ne coordinates and the other is by a geometric invariant. The geometric invariant

approach led to a simpler method of re-projection; however, this is not the main point.

The structure-by-coordinates approach necessarily involves the center of projection, which

in the case of parallel projection can be any point on the object. Therefore, the two

representations measure shape relative to a basis imposed on the object. In the general

case of central projection, however, the structure-by-coordinates approach would result

in shape relative to the camera coordinate frame, whereas the structure-by-geometric-

invariant approach does not. The question of how to avoid implicating the center of

projection is not only important for reasons of stability of reconstruction and recognition,

but also, as described in the next chapter, is the key for allowing parallel and central

projection to coexist in a single uni�ed framework. It is important, therefore, to make a

distinction between these two approaches.

The second point we wish to emphasize is the distinction between recovering the viewing

transformation (the parameters of camera motion) and recovering the epipolar geometry.

In parallel projection, the question of recovering the viewing transformation does not arise

because two views are not su�cient for a unique recovery. In the more general case, how-

ever, we have a choice between recovering the viewing transformation or simply recovering

the epipolar geometry. We saw that epipolar geometry is su�cient for recovering non-

metric structure and for achieving recognition. This result extends, as described in the

next chapter, to the general case of central projection.

Finally, we emphasize the connection between a�ne structure and epipolar geometry

and the linear combination result of Ullman and Basri. The linear combination method of

re-projection is by far the most e�cient. Not only are structure and epipolar geometry not
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directly involved in the process, but in addition, more than the minimal necessary number

of points can be used to recover a least squares solution to the re-projection problem.

However, it may be di�cult to extend this result to central projection without �rst directly

addressing the issues of structure and camera geometry. The importance of Proposition 1

is to show that a more direct connection between distinct views of the same object (i.e.,

the linear combination result) can be derived in terms of structure and epipolar geometry.

This suggests, therefore, that a similar connection may be derived in the general case of

central projection if we can �rst represent the relation between corresponding points in a

way that involves a non-metric invariant and epipolar geometry.



Projective Structure and Alignment in the General Case of

Central Projection

Chapter 3

In this chapter we continue to pursue the geometric relation between objects and their

views by considering the general problem of central projection. First, we would like to

recover some form of non-metric structure from two views produced by central projection,

and secondly we would like to achieve recognition from two model views and a novel view.

The problem may be approached in several ways. Therefore, before we attend to the

proposed solution we will consider several questions. The �rst question is whether it is

really necessary to work in a non-metric framework. In other words, what are the major

problems in previous metric approaches? The second question concerns the requirements

of a good representation of non-metric structure. In parallel projection, the two repre-

sentations (coordinates and geometric invariants) were mathematically equivalent, but in

the general case they may not be. Thirdly, what are the challenges in going from the

relatively simple domain of parallel projection to central projection? For example, we will

see that the a�ne structure invariant, de�ned with respect to a reference plane and a ref-

erence point, critically relies on the projection being parallel and does not apply to central

projection. Furthermore, there is the issue that the transformation due to a plane under

central projection requires four coplanar points, rather than three. Since four arbitrarily

chosen points are generally not coplanar, the question is whether extending the geometric

invariant approach is worthwhile from a practical point of view.

The solution we propose is based on a geometric invariant approach, rather than on

recovering projective coordinates of the scene. We show that it is �rst necessary to de�ne

another kind of geometric invariant, di�erent from the one proposed by Koenderink and Van

Doorn (1991). The new structure invariant applies to both parallel and central projections,

and similarly to parallel projection, requires only four non-coplanar points for its de�nition.

The di�erence between the two cases (parallel and central projections) is that in central

37
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projection we must �rst recover the epipolar geometry between the two views. Once the

location of epipoles is recovered there is essentially no di�erence between the two cases.

Our proposed solution has several advantages. First and foremost, we treat parallel

and central projection alike, i.e., no distinction is made between the two at the algorithmic

level. Secondly, there is no need for assuming internal camera calibration. On the other

hand, if the cameras are calibrated, then rigidity of the object can be veri�ed in the course

of computing structure and during recognition. Thirdly, the computations are simple and

linear.

3.1 Problems with Metric Approaches

The derivation of a�ne representations of structure, coordinates or geometric invariants,

for purposes of SFM and recognition has a clear practical aspect when it comes to parallel

projection: non-metric SFM can be achieved from two views (Koenderink & Van Doorn,

1991), rather than three views required for recovering metric structure, and recognition

using the alignment approach can be achieved from two model images, rather than three

(Ullman & Basri, 1989).

This advantage, of working with two rather than three views, is not present under

perspective projection, however. It is known that two perspective views are su�cient

for recovering metric structure (Roach & Aggarwal 1979, Longuett-Higgins 1981, Tsai &

Huang 1984, Faugeras & Maybank 1990, Horn 1990, Horn 1991). The question, therefore,

is why look for alternative representations of structure?

There are three major problems in structure from motion methods: (i) critical depen-

dence on an orthographic or perspective model of projection, (ii) internal camera calibra-

tion, and (iii) the problem of stereo-triangulation.

The �rst problem is the strict division between methods that assume orthographic pro-

jection and methods that assume perspective projection. These two classes of methods do

not overlap in their domain of application. The perspective model operates under condi-

tions of signi�cant perspective distortions, such as driving on a stretch of highway, requires

a relatively large �eld of view and relatively large depth variations between scene points

(Adiv 1989, Dutta & Synder 1990, Tomasi 1991, Broida et al. 1990). The orthographic

model, on the other hand, provides a reasonable approximation when the imaging situation

is at the other extreme, i.e., small �eld of view and small depth variation between object

points (a situation for which perspective schemes often break down). Typical imaging situ-

ations are at neither end of these extremes and, therefore, would be vulnerable to errors in
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both models. From the standpoint of performing recognition, this problem implies that the

viewer has control over his �eld of view | a property that may be reasonable to assume at

the time of model acquisition, but less reasonable to assume occurring at recognition time.

The second problem is related to internal camera calibration. As discussed in Sec-

tion 1.6, with perspective projection we assume a known and �xed relationship, described

by �ve internal parameters, between the image plane and the camera coordinate system. In

practice, these internal parameters must be calibrated prior to making use of the perspec-

tive model for recovering shape or for purposes of recognition. Although the calibration

process is somewhat tedious, it is sometimes necessary for many of the available commer-

cial cameras (Brown 1971, Faig 1975, Lenz and Tsai 1987, Faugeras, Luong and Maybank

1992).

The third problem is related to the way shape is typically represented under the perspec-

tive projection model. Because the center of projection is also the origin of the coordinate

system for describing shape, the shape di�erence (e.g., di�erence in depth, between two ob-

ject points), is orders of magnitude smaller than the distance to the scene, and this makes

the computations very sensitive to noise. The sensitivity to noise is reduced if images are

taken from distant viewpoints (large base-line in stereo triangulation), but that makes the

process of establishing correspondence between points in both views more of a problem,

and hence, may make the situation even worse. This problem does not occur under the

assumption of orthographic projection because translation in depth is lost under ortho-

graphic projection, and therefore, the origin of the coordinate system for describing shape

(metric and non-metric) is object-centered, rather than viewer-centered (Tomasi, 1991).

These three problems form the basis of evaluating the possible ways one can extend

from parallel projection to central projection. It is clear that by replacing the perspective

projection model with central projection we no longer have the calibration problem to

be concerned with. The other two problems imply that we should avoid implicating the

camera's center of projection with the de�nition of structure. We describe these issues in

more detail in the next section.

3.2 From parallel to Central projection: Points of Interest

We saw in the previous chapter that in parallel projection the two representations of struc-

ture, i.e., coordinates and geometric invariants, were mathematically equivalent. The equiv-

alence comes from the unique property that depth translation is lost under parallel pro-
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jection. Therefore, structure is measured relative to an object-centered frame of reference,

rather than relative to a camera-centered frame. Since this property does not hold under

central (and perspective) projection, then representing structure by projective coordinates

relies on a camera-centered frame of reference, whereas a geometric-invariant approach may

still provide us with an object-centered representation. The stereo-triangulation problem,

for example, clearly favors the latter approach.

Recent work in this area approach the problem of recovering non-metric structure from

the standpoint of recovering projective coordinates of the object in 3D projective space

(Faugeras 1992, Mohr, Quan, Veillon & Boufama 1992, Hartley, Gupta & Chang 1992).

The general idea is motivated by the result that �ve points in general position provide

a basis in 3D projective space (see, for instance, Semple & Kneebone 1952). Faugeras,

for example, shows that given the epipoles and �ve corresponding points between the two

views one can recover the projective homogeneous coordinates of all other points projecting

to corresponding points in both images. Along with recovering projective coordinates,

Faugeras recovers the center of projection and the full set of 11 parameters describing the

camera geometry. This approach of representing structure by projective coordinates clearly

provides a solution to the internal calibration problem, but not for the other two problems.

Parallel projection, for instance, is a point of singularity for these methods.

We take on a di�erent path and represent structure by de�ning a geometric invariant

that applies to both parallel and central projections. We wish to extend, therefore, the

construction of a�ne structure to handle also the case of central projection. The are gen-

erally two problems in taking this path. The �rst problem is that a�ne structure was

de�ned in a way that critically relies on the properties of parallel projection. Consider,

for example, Figure 3.1 which illustrates the same geometric construction as in Figure 2.1

but under central projection. The relationship between the points P; P3; ~P; ~P3 and the

center of projection V1 and the points p0; ~p0; p03; ~p
0

3; Vl, where Vl denotes the epipole, can be

described as a perspectivity between two triangles. We have �ve points in each triangle

which would seem as su�cient for de�ning an invariant relation (since four points deter-

mine the projectivity of the plane in projective geometry, then the coordinates of the �fth

point are invariant). This, however, requires that no three of the points be collinear | a

requirement that is not satis�ed in this case.

Secondly, the idea of using a reference plane is problematic. In a�ne geometry three

points are su�cient for uniquely determining the correspondences of all other points on the

reference plane. In projective geometry, however, four coplanar points are required. Since
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Figure 3.1: A�ne structure invariant does not hold under central projection (see text).

four arbitrarily chosen points are generally not coplanar, this raises a question of whether

extending the structure-by-geometric-invariant approach is worthwhile from a practical

point of view.

We �rst describe a di�erent a�ne structure invariant under parallel projection using

two reference planes, rather than one reference plane and a reference point. The new a�ne

invariant applies to central projection as well. We then show that, given the epipoles,

only three corresponding points for each reference plane are su�cient for recovering the

associated projective transformations induced by those planes. This leads to the main result

(Theorem 1) that, in addition to the epipoles, only four corresponding points, projected

from four non-coplanar points in the scene, are su�cient for recovering the projective

structure invariant for all other points.

3.3 A�ne Structure Using Two Reference Planes

We make use of the same information | the projections of four non-coplanar points | to

set up two reference planes. Let Pj , j = 1; :::; 4, be the four non-coplanar reference points in

space, and let pj  ! p
0

j be their observed projections in both views. The points P1; P2; P3

and P2; P3; P4 lie on two di�erent planes, therefore, we can account for the motion of all
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Figure 3.2: A�ne structure using two reference planes.

points coplanar with each of these two planes. Let P be a point of interest, not coplanar

with either of the reference planes, and let ~
P and P̂ be its projections onto the two reference

planes along the ray towards the �rst view.

Consider Figure 3.2. The projection of P; ~P and P̂ onto p0; ~p0 and p̂0 respectively, gives

rise to two similar trapezoids from which we derive the following relation:

�p =
jP � ~

P j
jP � P̂ j

=
jp0 � ~p0j
jp0 � p̂

0j :

The ratio �p is invariant under parallel projection. Similar to the case of Koenderink and

Van Doorn's a�ne structure p, we can easily show a one-to-one mapping between the

a�ne coordinates of P and �p:

b3 =
�p

1� �p

p̂
0

4 � ~p04
p̂
0 � ~p0

:

There is no particular advantage for preferring �p over p as a measure of a�ne struc-

ture, but as will be described below, this new construction forms the basis for extending

a�ne structure to projective structure: together with the epipole, the similarity of trape-

zoids in the a�ne case turns into a cross-ratio in the projective case.
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Figure 3.3: De�nition of projective shape as the cross ratio of p0; ~p0; p̂0; Vl.

3.4 Projective Structure

We assume for now that the location of both epipoles is known, and we will address the

problem of �nding the epipoles later. The epipoles, also known as the foci of expansion,

are the intersections of the line in space connecting the two centers of projection and the

image planes. There are two epipoles, one on each image plane | the epipole on the second

image we call the left epipole, and the epipole on the �rst image we call the right epipole.

The image lines emanating from the epipoles are known as the epipolar lines.

Consider Figure 3.3 which illustrates the two reference plane construction, de�ned

earlier for parallel projection, now displayed in the case of central projection. The left

epipole is denoted by Vl, and because it is on the line V1V2 (connecting the two centers of

projection), the line PV1 projects onto the epipolar line p
0
Vl. Therefore, the points ~

P and

P̂ project onto the points ~p0 and p̂
0, which are both on the epipolar line p0Vl. The points

p
0
; ~p0; p̂0 and Vl are collinear and projectively related to P; ~P; P̂ ; V1, and therefore have the

same cross-ratio:

�p =
jP � ~

P j
jP � p̂j �

jV1 � p̂j
jV1 � ~

P j
=
jp0 � ~p0j
jp0 � p̂

0j �
jVl � p̂

0j
jVl � ~p0j :

Note that when the epipole Vl becomes an ideal point (vanishes along the epipolar line),

then �p is the same as the a�ne invariant de�ned in section 3.3 for parallel projection.

The cross-ratio �p is a direct extension of the a�ne structure invariant de�ned in

section 3.3 and is referred to as projective structure. We can use this invariant to reconstruct

any novel view of the object (taken by a non-rigid camera) without ever recovering depth

or even projective coordinates of the object.
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Having de�ned the projective shape invariant, and assuming we still are given the

locations of the epipoles, we show next how to recover the projections of the two reference

planes onto the second image plane, i.e., we describe the computations leading to ~p0 and

p̂
0.

Since we are working under central projection, we need to identify four coplanar points

on each reference plane. In other words, in the projective geometry of the plane, four

corresponding points, no three of which are collinear, are su�cient to determine uniquely

all other correspondences (see Appendix A, for more details). We must, therefore, identify

four corresponding points that are projected from four coplanar points in space, and then

recover the projective transformation that accounts for all other correspondences induced

from that plane. The following proposition states that the corresponding epipoles can be

used as a fourth corresponding point for any three corresponding points selected from the

pair of images.

Proposition 2 A projective transformation, A, that is determined from three arbitrary,

non-collinear, corresponding points and the corresponding epipoles, is a projective trans-

formation of the plane passing through the three object points which project onto the cor-

responding image points. The transformation A is an induced epipolar transformation,

i.e., the ray Ap intersects the epipolar line p
0
Vl for any arbitrary image point p and its

corresponding point p0.

Comment: An epipolar transformation F is a mapping between corresponding epipolar

lines and is determined (not uniquely) from three corresponding epipolar lines and the

epipoles. The induced point transformation is E = (F�1)t (induced from the point/line

duality of projective geometry, see Appendix C for more details on epipolar transforma-

tions).

Proof: Let pj  ! p
0

j , j = 1; 2; 3, be three arbitrary corresponding points, and let

Vl and Vr denote the left and right epipoles. First note that the four points pj and Vr are

projected from four coplanar points in the scene. The reason is that the plane de�ned by

the three object points Pj intersects the line V1V2 connecting the two centers of projection,

at a point | regular or ideal. That point projects onto both epipoles. The transformation

A, therefore, is a projective transformation of the plane passing through the three object

points P1; P2; P3. Note that A is uniquely determined provided that no three of the four

points are collinear.
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Let �~p0 = Ap for some arbitrary point p. Because lines are projective invariants, any

point along the epipolar line pVr must project onto the epipolar line p0Vl. Hence, A is an

induced epipolar transformation.

Given the epipoles, therefore, we need just three points to determine the correspon-

dences of all other points coplanar with the reference plane passing through the three

corresponding object points. The transformation (collineation) A is determined from the

following equations:

Apj = �jp
0

j ; j = 1; 2; 3

AVr = �Vl;

where �; �j are unknown scalars, and A3;3 = 1. One can eliminate �; �j from the equations

and solve for the matrix A from the three corresponding points and the corresponding

epipoles. That leads to a linear system of eight equations, and is described in more detail

in Appendix A.

If P1; P2; P3 de�ne the �rst reference plane, the transformation A determines the loca-

tion of ~p0 for all other points p (~p0 and p
0 coincide if P is coplanar with the �rst reference

plane). In other words, we have that ~p0 = Ap. Note that ~p0 is not necessarily a point on

the second image plane, but it is on the line V2 ~P . We can determine its location on the

second plane by normalizing Ap such that its third component is set to 1.

Similarly, let P2; P3; P4 de�ne the second reference plane (assuming the four object

points Pj , j = 1; :::; 4, are non-coplanar). The transformation E is uniquely determined by

the equations

Epj = �jp
0

j ; j = 2; 3; 4

EVr = �Vl;

and determines all other correspondences induced by the second reference plane (we assume

that no three of the four points used to determine E are collinear). In other words, Ep

determines the location of p̂0 up to a scale factor along the ray V2P̂ .

Instead of normalizing Ap and Ep we compute �p from the cross-ratio of the points rep-

resented in homogeneous coordinates, i.e., the cross-ratio of the four rays V2p
0
; V2~p

0
; V2p̂

0
; V2Vl,

as follows: Let the rays p0; Vl be represented as a linear combination of the rays ~p0 = Ap

and p̂
0 = Ep, i.e.,

p

0 = ~p0 + kp̂

0

Vl = ~p0 + k

0
p̂

0
;

then �p = k
k0

(see Appendix B for more details). This way of computing the cross-ratio

is preferred over the more familiar cross-ratio of four collinear points, because it enables
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us to work with all elements of the projective plane, including ideal points (a situation

that arises, for instance, when epipolar lines are parallel, and in general under parallel

projection).

We have therefore shown the following result:

Theorem 1 In the case where the location of epipoles are known, then four corresponding

points, coming from four non-coplanar points in space, are su�cient for computing the

projective structure invariant �p for all other points in space projecting onto corresponding

points in both views, for all central projections, including parallel projection.

This result shows that the di�erence between parallel and central projection lies entirely

on the epipoles. In both cases four non-coplanar points are su�cient for obtaining the

invariant, but in the parallel projection case we have prior knowledge that both epipoles

are ideal, therefore they are not required for determining the transformations A and E

(in other words, A and E are a�ne transformations, more on that in Section 3.7). Also,

because cross-ratios are invariant under projectivities it is clear why we included in our

non-rigid camera model (Section 1.6) the capability to take projections of projections (�p

remains unchanged under any projective transformation of the left image).

We next discuss algorithms for recovering the location of epipoles. The problem of

recovering the epipoles is well known and several approaches have been suggested in the

past (Longuet-Higgins and Prazdny 1980, Rieger-Lawton 1985, Faugeras and Maybank

1990, Hildreth 1991, Horn 1990, Faugeras 1992, Faugeras, Luong and Maybank 1992).

In general, the epipoles can be recovered from six points (four of which are assumed

to be coplanar), seven points (non-linear algorithm, see Faugeras & Maybank 1990), or, as

recently shown by Faugeras (1992), eight points. We start with the six-point method (two

additional points to the four we already have). The method is a direct extension of the

Koenderink and Van Doorn (1991) construction in parallel projection, and was described

earlier by Lee (1988) for the purpose of recovering the translational component of camera

motion. The second algorithm we describe for locating the epipoles requires eight points

and is based on the fundamental matrix of Longuet-Higgins (1981).

3.5 Epipoles from Six Points

We can recover the correspondences induced from the �rst reference plane by selecting four

corresponding points, assuming they are projected from four coplanar object points. Let
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pj = (xj ; yj; 1) and p
0

j = (x0j; y
0

j ; 1) and j = 1; :::; 4 represent the standard image coordinates

of the four corresponding points, no three of which are collinear, in both projections.

Therefore, the transformation A is uniquely determined by the following equations,

�jp
0

j = Apj :

Let ~p0 = Ap be the homogeneous coordinate representation of the ray V2 ~P , and let ~p�1 =

A
�1
p
0.

Having accounted for the motion of the reference plane, we can easily �nd the location

of the epipoles (in standard coordinates). Given two object points P5; P6 that are not on

the reference plane, we can �nd both epipoles by observing that ~p0 is on the left epipolar

line, and similarly that ~p�1 is on the right epipolar line. Stated formally, we have the

following proposition:

Proposition 3 The left epipole, denoted by Vl, is at the intersection of the line p05~p
0

5 and

the line p
0

6~p
0

6. Similarly, the right epipole, denoted by Vr, is at the intersection of p5~p
�1

5

and p6~p
�1
6 .

Proof: It is su�cient to prove the claim for one of the epipoles, say the left epipole.

Consider Figure 3.4 which describes the construction geometrically. By construction, the

line P5
~
P5V1 projects to the line p

0

5~p
0

5 via V2 (points and lines are projective invariants)

and therefore they are coplanar. In particular, V1 projects to Vl which is located at the



48 Projective Structure and Alignment in the General Case of Central Projection

intersection of p05~p
0

5 and V1V2. Similarly, the line p
0

6~p
0

6 intersects V1V2 at V̂l. Finally, Vl and

V̂l must coincide because the two lines p
0

5~p
0

5 and p
0

6~p
0

6 are coplanar (both are on the image

plane).

Algebraically, we can recover the ray V1V2, or Vl up to a scale factor, using the following

formula:

Vl = (p05 � ~p05)� (p06 � ~p06):

Note that Vl is de�ned with respect to the standard coordinate frame of the second camera.

We treat the epipole Vl as the ray V1V2 with respect to V2, and the epipole Vr as the same

ray but with respect to V1. Note also that the third component of Vl is zero if epipolar

lines are parallel, i.e., Vl is an ideal point in projective terms (happening under parallel

projection, or when the non-rigid camera motion brings the image plane to a position where

it is parallel to the line V1V2).

In the case where more than two epipolar lines are available (such as when more than

six corresponding points are available), one can �nd a least-squares solution for the epipole

by using a principle component analysis, as follows. Let B be a k � 3 matrix, where each

row represents an epipolar line. The least squares solution to Vl is the unit eigenvector

associated with the smallest eigenumber of the 3 � 3 matrix B
t
B. Note that this can be

done analytically because the characteristic equation is a cubic polynomial.

Altogether, we have a six point algorithm for recovering both the epipoles, and the pro-

jective structure �p, and for performing re-projection onto any novel view. We summarize

in the following section the 6-point algorithm.

3.5.1 Re-projection Using Projective Structure: 6-point Algorithm

We assume we are given two model views of a 3D object, and that all points of interest

are in correspondence. We assume these correspondences can be based on measures of

correlation, as used in optical-ow methods (see also Chapter 7 for methods for extracting

correspondences using combination of optical ow and a�ne geometry).

Given a novel view we extract six corresponding points (with one of the model views):

pj  ! p
0

j  ! p
00

j , j = 1; :::; 6. We assume the �rst four points are projected from four

coplanar points, and the other corresponding points are projected from points that are

not on the reference plane. Without loss of generality, we assume the standard coordinate

representation of the image planes, i.e., the image coordinates are embedded in a 3D vector
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whose third component is set to 1 (see Appendix A). The computations for recovering

projective shape and performing re-projection are described below.

1: Recover the transformation A that satis�es �jp
0

j = Apj , j = 1; :::; 4. This re-

quires setting up a linear system of eight equations (see Appendix A). Apply the

transformation to all points p, denoting ~p0 = Ap. Also recover the epipoles Vl =

(p05 � ~p05)� (p06 � ~p06) and Vr = (p5 � A
�1
p
0

5)� (p6 � A
�1
p
0

6).

2: Recover the transformation E that satis�es �Vl = EVr and �jp
0

j = Epj, j = 4; 5; 6.

3: Compute the cross-ratio of the points p0; Ap; Ep; Vl, for all points p and denote that

by �p (see Appendix B for details on computing the cross-ratio of four rays).

4: Perform step 1 between the �rst and novel view: recover ~
A that satis�es �jp

00

j =
~
Apj ,

j = 1; :::; 4, apply ~
A to all points p and denote that by ~p00 = ~

Ap, recover the epipoles

Vln = (p005 � ~p005)� (p006 � ~p006) and Vrn = (p5 � ~
A
�1
p
00

5)� (p6 � ~
A
�1
p
00

6).

5: Perform step 2 between the �rst and novel view: Recover the transformation ~
E that

satis�es �Vln = ~
EVrn and �jp

00

j = Epj, j = 4; 5; 6.

6: For every point p, recover p00 from the cross-ratio �p and the three rays ~
Ap;

~
Ep; Vln.

Normalize p00 such that its third coordinate is set to 1.

The entire procedure requires setting up a linear system of eight equations four times

(Step 1,2,4,5) and computing cross-ratios (linear operations as well).

The results so far required prior knowledge (or assumption) that four of the correspond-

ing points are coming from coplanar points in space. This requirement can be avoided,

using two more corresponding points (making eight points overall), and is described in the

next section.

3.6 Epipoles from Eight Points

We adopt a recent algorithm suggested by Faugeras (1992) which is based on Longuet-

Higgins' (1981) fundamental matrix. The method is very simple and requires eight corre-

sponding points for recovering the epipoles.

Let F be an epipolar transformation, i.e., Fl = �l
0, where l = Vr � p and l

0 = Vl � p
0

are corresponding epipolar lines. We can rewrite the projective relation of epipolar lines
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using the matrix form of cross-products:

F (Vr � p) = F [Vr]p = �l

0
;

where [Vr] is a skew symmetric matrix (and hence has rank 2). From the point/line

incidence property we have that p0 � l0 = 0 and therefore, p0
t
F [Vr]p = 0, or p0

t
Hp = 0 where

H = F [Vr]. The matrix H is known as the fundamental matrix introduced by Longuet-

Higgins (1981), and is of rank 2. One can recover H (up to a scale factor) directly from

eight corresponding points, or by using a principle components approach if more than eight

points are available. Finally, it is easy to see that

HVr = 0;

and therefore the epipole Vr can be uniquely recovered (up to a scale factor). Note that

the determinant of the �rst principle minor of H vanishes in the case where Vr is an ideal

point, i.e., h11h22 � h12h21 = 0. In that case, the x; y components of Vr can be recovered

(up to a scale factor) from the third row of H . The epipoles, therefore, can be uniquely

recovered under both central and parallel projection. We have arrived at the following

theorem:

Theorem 2 In the case where we have eight corresponding points of two views taken un-

der central projection (including parallel projection), four of these points, coming from

four non-coplanar points in space, are su�cient for computing the projective structure in-

variant �p for the remaining four points and for all other points in space projecting onto

corresponding points in both views.

We summarize in the following section the 8-point scheme for reconstructing projective

structure and performing re-projection onto a novel view.

3.6.1 8-point Re-projection Algorithm

We assume we have eight corresponding points between two model views and the novel

view, pj  ! p
0

j  ! p
00

j , j = 1; :::; 8, and that the �rst four points are coming from four

non-coplanar points in space. The computations for recovering projective structure and

performing re-projection are described below.

1: Recover the fundamental matrix H (up to a scale factor) that satis�es p0j
t
Hpj , j =

1; :::; 8. The right epipole Vr then satis�es HVr = 0. Similarly, the left epipole is

recovered from the relation p
t ~
Hp

0 and ~
HVl = 0.
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2: Recover the transformation A that satis�es �Vl = AVr and �jp
0

j = Apj , j = 1; 2; 3.

Similarly, recover the transformation E that satis�es �Vl = EVr and �jp
0

j = Epj,

j = 2; 3; 4.

3: Compute �p as the cross-ratio of p
0
; Ap; Ep; Vl, for all points p.

4: Perform step 1 and 2 between the �rst and novel view: recover the epipoles Vrn; Vln,

and the transformations ~
A and ~

E.

5: For every point p, recover p00 from the cross-ratio �p and the three rays ~
Ap;

~
Ep; Vln.

Normalize p00 such that its third coordinate is set to 1.

We discuss below an important property of this procedure which is the transparency

with respect to projection model: central and parallel projection are treated alike | a

property which has implications on stability of re-projection no matter what degree of

perspective distortions are present in the images.

3.7 The Case of Parallel Projection

The construction for obtaining projective structure is well de�ned for all central projections,

including the case where the center of projection is an ideal point, i.e., such as happening

with parallel projection. The construction has two components: the �rst component has to

do with recovering the epipolar geometry via reference planes, and the second component

is the projective invariant �p.

From Proposition 2 the projective transformationsA and E can be uniquely determined

from three corresponding points and the corresponding epipoles. If both epipoles are ideal,

the transformations become a�ne transformations of the plane (an a�ne transformation

separates ideal points from Euclidean points). All other possibilities (both epipoles are

Euclidean, one epipole Euclidean and the other epipole ideal) lead to projective transfor-

mations. Because a projectivity of the projective plane is uniquely determined from any

four points on the projective plane (provided no three are collinear), the transformations

A and E are uniquely determined under all situations of central projection | including

parallel projection.

The projective invariant �p is the same as the one de�ned under parallel projection

(Section 3.3) | a�ne structure is a particular instance of projective structure in which

the epipole Vl is an ideal point. By using the same invariant for both parallel and central
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projection, and because all other elements of the geometric construction hold for both

projection models, the overall system is transparent to the projection model being used.

The �rst implication of this property has to do with stability. Projective structure does

not require any perspective distortions, therefore all imaging situations can be handled

| wide or narrow �eld of views. The second implication is that 3D visual recognition

from 2D images can be achieved in a uniform manner with regard to the projection model.

For instance, we can recognize (via re-projection) a perspective image of an object from

only two orthographic model images, and in general any combination of perspective and

orthographic images serving as model or novel views is allowed.

Similar to the case of parallel projection, we can achieve recognition just from the

epipolar geometry, but under the condition that the centers of projection of the two model

camera locations and the novel camera location are not collinear. This is a rather weak

result as it implies instabilities in near singular situations. We describe this in more details

in the following section.

3.8 On the Intersection of Epipolar Lines

Barret et al. (1991) derive a quadratic invariant based on Longuet-Higgins' fundamental

matrix. We describe briey their invariant and show that it is equivalent to performing

re-projection using intersection of epipolar lines.

In section 3.6 we derived Longuet-Higgins' fundamental matrix relation p
0t
Hp = 0.

Barret et al. note that the equation can be written in vector form h
t � q = 0, where h

contains the elements of H and

q = (x0x; x0y; x0; y0x; y0y; y0; x; y; 1):

Therefore, the matrix

B =

2
666666664

q1

:

:

:

q9

3
777777775

(3:1)

must have a vanishing determinant. Given eight corresponding points, the condition jBj =
0 leads to a constraint line in terms of the coordinates of any ninth point, i.e., �x+�y+ =
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0. The location of the ninth point in any third view can, therefore, be determined by

intersecting the constraint lines derived from views 1 and 3, and views 2 and 3.

Another way of deriving this re-projection method is by �rst noticing that H is a

correlation that maps p onto the corresponding epipolar line l0 = Vl � p
0 (see section 3.6).

Therefore, from views 1 and 3 we have the relation

p

00t ~
Hp = 0;

and from views 2 and 3 we have the relation

p

00t
Ĥp

0 = 0;

where ~
Hp and Ĥp

0 are two intersecting epipolar lines. Given eight corresponding points, we

can recover ~
H and Ĥ . The location of any ninth point p00 can be recovered by intersecting

the lines ~
Hp and Ĥp

0.

This way of deriving the re-projection method has an advantage over using the condition

jBj = 0 directly, because one can use more than eight points in a least squares solution

(via SVD) for the matrices ~
H and Ĥ .

Approaching the re-projection problem using intersection of epipolar lines is problem-

atic for novel views that have a similar epipolar geometry to that of the two model views

(these are situations where the two lines ~
Hp and Ĥp

0 are nearly parallel, such as when the

object rotates around nearly the same axis for all views, or the centers of projection of the

three cameras are nearly collinear). We therefore expect sensitivity to errors also under

conditions of small separation between views. The method becomes more practical if one

uses multiple model views instead of only two, because each model view adds one epipolar

line and all lines should intersect at the location of the point of interest in the novel view.

We discuss next the possibility of working with a rigid camera (i.e., perspective projec-

tion and calibrated cameras).

3.9 The Rigid Camera Case

The advantage of the non-rigid camera model (or the central projection model) used so far

is that images can be obtained from uncalibrated cameras. The price paid for this property

is that the images that produce the same projective structure invariant (equivalence class

of images of the object) can be produced by applying non-rigid transformations of the

object, in addition to rigid transformations.
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In this section we show that it is possible to verify whether the images were produced by

rigid transformations, which is equivalent to working with perspective projection assuming

the cameras are internally calibrated. This can be done for both schemes presented above,

i.e., the 6-point and 8-point algorithms. In both cases we exclude orthographic projection

and assume only perspective projection.

In the perspective case, the second reference plane is the image plane of the �rst model

view, and the transformation for projecting the second reference plane onto any other

view is the rotational component of camera motion (rigid transformation). We recover

the rotational component of camera motion by adopting a result derived by Lee (1988),

who shows that the rotational component of motion can be uniquely determined from

two corresponding points and the corresponding epipoles. We then show that projective

structure can be uniquely determined, up to a uniform scale factor, from two calibrated

perspective images.

Proposition 4 (Lee, 1988) In the case of perspective projection, the rotational compo-

nent of camera motion can be uniquely recovered, up to a reection, from two corresponding

points and the corresponding epipoles. The reection component can also be uniquely de-

termined by using a third corresponding point.

Proof: Let l0j = p
0

j � Vl and lj = pj � Vr, j = 1; 2 be two corresponding epipolar lines.

Because R is an orthogonal matrix, it leaves vector magnitudes unchanged, and we can

normalize the length of l01; l
0

2; Vl to be of the same length of l1; l2; Vr, respectively. We

have therefore, l0j = Rlj , j = 1; 2, and Vl = RVr, which is su�cient for determining R

up to a reection. Note that because R is a rigid transformation, it is both an epipolar

and an induced epipolar transformation (the induced transformation E is determined by

E = (R�1)t, therefore E = R because R is an orthogonal matrix).

To determine the reection component, it is su�cient to observe a third corresponding

point p3  ! p
0

3. The object point P3 is along the ray V1p3 and therefore has the coordinates

�3p3 (w.r.t. the �rst camera coordinate frame), and is also along the ray V2p
0

3 and therefore

has the coordinates �03p
0

3 (w.r.t. the second camera coordinate frame). We note that the

ratio between �3 and �
0

3 is a positive number. The change of coordinates is represented

by:

�Vr + �3Rp3 = �

0

3p
0

3;

where � is an unknown constant. If we multiply both sides of the equation by l
0

j , j =

1; 2; 3, the term �Vr drops out, because Vr is incident to all left epipolar lines, and after
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Figure 3.5: Illustration that projective shape can be recovered only up to a uniform scale

(see text).

substituting ltj with l
0
t

j R, we are left with,

�3l
t
j � p3 = �

0

3l
0
t

j � p03;

which is su�cient for determining the sign of l0j.

The rotation matrix R can be uniquely recovered from any three corresponding points

and the corresponding epipoles. Projective structure can be reconstructed by replacing the

transformation E of the second reference plane, with the rigid transformation R (which

is equivalent to treating the �rst image plane as a reference plane). We show next that

this can lead to projective structure up to an unknown uniform scale factor (unlike the

non-rigid camera case).

Proposition 5 In the perspective case, the projective shape constant �p can be determined,

from two views, at most up to a uniform scale factor.

Proof: Consider Figure 3.5, and let the e�ective translation be V2� Vs = k(V2� V1),
which is the true translation scaled by an unknown factor k. Projective shape, �p, remains

�xed if the scene and the focal length of the �rst view are scaled by k: from similarity of

triangles we have,

k =
Vs � V2

V1 � V2

=
ps � Vs

p� V1

=
fs

1

=
Ps � Vs

P � V1

=
Ps � V2

P � V2
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where fs is the scaled focal length of the �rst view. Since the magnitude of the translation

along the line V1V2 is irrecoverable, we can assume it is null, and compute �p as the

cross-ratio of p0; Ap; Rp; Vl which determines projective structure up to a uniform scale.

Because �p is determined up to a uniform scale, we need an additional point in order

to establish a common scale during the process of re-projection (we can use one of the

existing six or eight points we already have). We obtain, therefore, the following result:

Theorem 3 In the perspective case, a rigid re-projection from two model views onto a novel

view is possible, using four corresponding points coming from four non-coplanar points, and

the corresponding epipoles. The projective structure computed from two perspective images,

is invariant up to an overall scale factor.

Orthographic projection is excluded from this result because it is well known that the

rotational component cannot be uniquely determined from two orthographic views (Ullman

1979, Huang and Lee 1989, Aloimonos and Brown 1989). To see what happens in the case

of parallel projection note that the epipoles are vectors on the xy plane of their coordinate

systems (ideal points), and the epipolar lines are two vectors perpendicular to the epipole

vectors. The equation RVr = Vl takes care of the rotation in plane (around the optical

axis). The other two equations Rlj = l
0

j, j = 1; 2, take care only of rotation around

the epipolar direction | rotation around an axis perpendicular to the epipolar direction

is not accounted for. The equations for solving for R provide a non-singular system of

equations but do produce a rotation matrix with no rotational components around an axis

perpendicular to the epipolar direction.

3.10 Simulation Results Using Synthetic Objects

We ran simulations using synthetic objects to illustrate the re-projection process using the

6-point scheme under various imaging situations. We also tested the robustness of the

re-projection method under various types of noise. Because the 6-point scheme requires

that four of the corresponding points be projected from four coplanar points in space, it

is of special interest to see how the method behaves under conditions that violate this

assumption, and under noise conditions in general. The stability of the 8-point algorithm

largely depends on the method for recovering the epipoles. The method adopted from

Faugeras (1992), described in Section 3.6, based on the fundamental matrix, tends to be



Section 3.10 57

image plane
object points

Y

X

Z

Figure 3.6: The basic object con�guration for the experimental set-up.

very sensitive to noise if the minimal number of points (eight points) are used. We have,

therefore, focused the experimental error analysis on the 6-point scheme.

Figure 3.6 illustrates the experimental set-up. The object consists of 26 points in space

arranged in the following manner: 14 points are on a plane (reference plane) ortho-parallel

to the image plane, and 12 points are out of the reference plane. The reference plane

is located two focal lengths away from the center of projection (focal length is set to 50

units). The depth of out-of-plane points varies randomly between 10 to 25 units away

from the reference plane. The x; y coordinates of all points, except the points P1; :::; P6,

vary randomly between 0 | 240. The `privileged' points P1; :::; P6 have x; y coordinates

that place these points all around the object (clustering privileged points together will

inevitably contribute to instability).

The �rst view is simply a perspective projection of the object. The second view is a

result of rotating the object around the point (128; 128; 100) with an axis of rotation de-

scribed by the unit vector (0:14; 0:7; 0:7) by an angle of 29 degrees, followed by a perspective

projection (note that rotation about a point in space is equivalent to rotation about the

center of projection followed by translation). The third (novel) view is constructed in a

similar manner with a rotation around the unit vector (0:7; 0:7; 0:14) by an angle of 17

degrees. Figure 3.7 (�rst row) displays the three views. Also in Figure 3.7 (second row)

we show the result of applying the transformation due to the four coplanar points p1; :::; p4

(Step 1, see Section 3.5.1) to all points in the �rst view. We see that all the coplanar points

are aligned with their corresponding points in the second view, and all other points are

situated along epipolar lines. The display on the right in the second row shows the �nal

re-projection result (8-point and 6-point methods produce the same result). All points
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Figure 3.7: Illustration of Re-projection. Row 1 (left to right): Three views of the ob-

ject, two model views and a novel view, constructed by rigid motion following perspective

projection. The �lled dots represent p1; :::; p4 (coplanar points). Row 2: Overlay of the

second view and the �rst view following the transformation due to the reference plane.

All coplanar points are aligned with their corresponding points, the remaining points are

situated along epipolar lines. The righthand display is the result of re-projection | the

re-projected image perfectly matches the novel image (noise-free situation). Row 3: The

lefthand display shows the second view which is now orthographic. The middle display

shows the third view which is now a perspective projection onto a tilted image plane. The

righthand display is the result of re-projection which perfectly matches the novel view.
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Figure 3.8: Deviation from coplanarity: average pixel error due to translation of P1 along

the optical axis from z = 100 to z = 125, by increments of one unit. The result of re-

projection (overlay of re-projected image and novel image) for the case z = 125. The

average error is 1:31 and the maximal error is 7:1.

re-projected from the two model views are accurately (noise-free experiment) aligned with

their corresponding points in the novel view.

The third row of Figure 3.7 illustrates a more challenging imaging situation (still noise-

free). The second view is orthographically projected (and scaled by 0.5) following the same

rotation and translation as before, and the novel view is a result of a central projection onto

a tilted image plane (rotated by 12 degrees around a coplanar axis parallel to the x-axis).

We have therefore the situation of recognizing a non-rigid perspective projection from a

novel viewing position, given a rigid perspective projection and a rigid orthographic projec-

tion from two model viewing positions. The 6-point re-projection scheme was applied with

the result that all re-projected points are in accurate alignment with their corresponding

points in the novel view. Identical results were observed with the 8-point algorithms.

The remaining experiments, discussed in the following sections, were done under various

noise conditions. We conducted three types of experiments. The �rst experiment tested the

stability under the situation where P1; :::; P4 are non-coplanar object points. The second

experiment tested stability under random noise added to all image points in all views, and

the third experiment tested stability under the situation that less noise is added to the

privileged six points, than to other points.

3.10.1 Testing Deviation from Coplanarity

In this experiment we investigated the e�ect of translating P1 along the optical axis (of

the �rst camera position) from its initial position on the reference plane (z = 100) to the
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Figure 3.9: Random noise added to all image points, over all views, for 10 trials. Average

pixel error uctuates around 1:6 pixels. The result of re-projection on a typical trial with

average error of 1:05 pixels, and maximal error of 5:41 pixels.

farthest depth position (z = 125), in increments of one unit at a time. The experiment was

conducted using several objects of the type described above (the six privileged points were

�xed, the remaining points were assigned random positions in space in di�erent trials),

undergoing the same motion described above (as in Figure 3.7, �rst row). The e�ect of

depth translation to the level z = 125 on the location of p1 is a shift of 0:93 pixels, on

p
0

1 is 1:58 pixels, and on the location of p001 is 3:26 pixels. Depth translation is therefore

equivalent to perturbing the location of the projections of P1 by various degrees (depending

on the 3D motion parameters).

Figure 3.8 shows the average pixel error in re-projection over the entire range of depth

translation. The average pixel error was measured as the average of deviations from the

re-projected point to the actual location of the corresponding point in the novel view, taken

over all points. Figure 3.8 also displays the result of re-projection for the case where P1

is at z = 125. The average error is 1:31, and the maximal error (the point with the most

deviation) is 7:1 pixels. The alignment between the re-projected image and the novel image

is, for the most part, fairly accurate.

3.10.2 Situation of Random Noise to all Image Locations

We next add random noise to all image points in all three views (P1 is set back to the

reference plane). This experiment was done repeatedly over various degrees of noise and

over several objects. The results shown here have noise between 0{1 pixels randomly

added to the x and y coordinates separately. The maximal perturbation is therefore
p
2,

and because the direction of perturbation is random, the maximal error in relative location
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Figure 3.10: Random noise added to non-privileged image points, over all views, for 10

trials. Average pixel error uctuates around 0:5 pixels. The result of re-projection on a

typical trial with average error of 0:52 pixels, and maximal error of 1:61 pixels.

is double, i.e., 2:8 pixels. Figure 3.9 shows the average pixel errors over 10 trials (one

particular object, the same motion as before). The average error uctuates around 1:6

pixels. Also shown is the result of re-projection on a typical trial with average error of 1:05

pixels, and maximal error of 5:41 pixels. The match between the re-projected image and

the novel image is relatively good considering the amount of noise added.

3.10.3 Random Noise Case 2

A more realistic situation occurs when the magnitude of noise associated with the privileged

six points is much lower than the noise associated with other points, for the reason that

we are interested in tracking points of interest that are often associated with distinct

intensity structure (such as the tip of the eye in a picture of a face). Correlation methods,

for instance, are known to perform much better on such locations, than on areas having

smooth intensity change, or areas where the change in intensity is one-dimensional. We

therefore applied a level of 0{0:3 perturbation to the x and y coordinates of the six points,

and a level of 0{1 to all other points (as before). The results are shown in Figure 3.10.

The average pixel error over 10 trials uctuates around 0:5 pixels, and the re-projection

shown for a typical trial (average error 0:52, maximal error 1:61) is in relatively good

correspondence with the novel view. With larger perturbations at a range of 0{2, the

algorithm behaves proportionally well, i.e., the average error over 10 trials is 1:37.
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3.11 Summary of Part I

Although our main interest is achieving recognition via alignment methods, we have chosen

to approach the recognition problem from a structure from motion point of view. In

Chapter 2 we have shown that the relatively simple domain of parallel projection contains

the basic concepts which enable the extension to central projection. First, there is the

issue of representation of structure. Second, is the issue of what geometric information is

necessary for recognition, and thirdly, is the connection between the geometric approach

and the more direct approach obtained by the linear combination of views result.

In this chapter, we �rst motivated our approach by specifying the major problems in

classic approaches for recovering metric structure from two perspective views. We men-

tioned three problems: (i) critical dependence on an orthographic or perspective model of

projection, (ii) internal camera calibration, and (iii) the problem of stereo-triangulation.

A necessary approach for dealing with these problems is to work with a non-metric model,

but that alone is not su�cient. We argued that the decision of what structure represen-

tation to use is of major importance, and, for instance, the representation of structure by

coordinates would provide only a partial solution, namely, only a solution to the internal

calibration problem.

We have introduced a geometric invariant which we call projective structure, that leads

to a system for recovering a relative non-metric shape measurement that does not require

internal camera calibration, does not involve full reconstruction of shape (Euclidean or

projective coordinates), and treats parallel and central projection as an integral part of

one uni�ed system. We have also shown that the invariant can be used for the purposes of

visual recognition within the framework of the alignment approach to recognition.

We have shown that the di�erence between the a�ne and projective case lie entirely in

the location of epipoles, i.e., given the location of epipoles both the a�ne and projective

structure are constructed from the same information captured by four corresponding points

projected from four non-coplanar points in space. Therefore, the additional corresponding

points in the projective case are used solely for recovering the location of epipoles.

We have shown that the location of epipoles can be recovered under both parallel and

central projection using six corresponding points, with the assumption that four of those

points are projected from four coplanar points in space, or alternatively by having eight

corresponding points without assumptions on coplanarity. The overall method for recon-

structing projective structure and achieving re-projection was referred to as the 6-point
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and the 8-point algorithms. These algorithms have the unique property that projective

structure can be recovered from both orthographic and perspective images from uncali-

brated cameras. This property implies, for instance, that we can perform recognition of a

perspective image of an object given two orthographic images as a model. It also implies

greater stability because the size of the �eld of view is no longer an issue in the process of

reconstructing shape or performing re-projection.
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Previous Approaches and the Problem of Representation

Chapter 4

In this part of the thesis we pursue another aspect of the relation between 3D objects

and their images | the photometric aspect, i.e., the relation between objects and their

images under changing illumination conditions. Like the geometric mapping from 3D to

2D, we view the photometric aspect as a source of variability that is directly relevant to

visual recognition. Most of the research in visual recognition has focused on the geometric

aspect of the problem, while leaving the photometric aspect in the hands of data-driven

processes that proceed independently of subsequent recognition levels. Photometric issues

have, therefore, mostly been dealt with in the context of lower-level processes such as edge

detection, lightness and color constancy, and shape from shading.

In this chapter we are concerned with two questions. First and foremost, is it necessary

to have a model-based approach to the photometric aspect of recognition? Consider the

geometric problem of compensating for changing viewing positions. The major critique of

the early approaches, such as those that look for features that are invariant to changing

viewing positions or those that attempt to recover generic geometric parts from the input

image, is that they are mostly appropriate for dealing with relatively simple objects, like

polyhedrons or machine parts (Section 1.3). Alignment model-based methods, on the other

hand, were motivated in part by the notion that with complex objects like a face, a horse,

a shoe, a loaf of bread, and so forth, a direct coupling between the image and the model at

the time of recognition may be more appropriate for dealing with the geometric problem

of changing viewing positions. Our �rst question, therefore, is whether a similar situation

applies to the photometric domain, i.e., whether current approaches are mostly appropriate

only to relatively simple objects. We address this question by closely examining the current

available approaches and by making empirical observations related to human vision (see

also Section 1.4.3).

The second question we are concerned with is that of image representation. Assuming

that we are pursuing a model-based alignment approach to the photometric problem, then

67
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what is the level of image information that needs to be extracted in order to cancel the

e�ects of changing illumination? Consider again the analogy between the photometric and

geometric problems. The alignment approach requires us to identify corresponding features

between the input image and model images. In the absence of photometric changes between

the di�erent views of the object, any set of clearly distinguishable points can be used as

features (no labeling is necessary), and in particular the step edges in the light intensity

distribution can be used for purposes of representation. The question, therefore, is whether

a reduced image representation, such as edges, is su�cient for compensating for illumination

changes during recognition, or whether a higher degree of information is necessary, such

as the full light intensity distribution. We address this question by examining empirical

evidence available from human vision that suggests that in some cases edges alone are not

su�cient for visual interpretation, but slightly more than that is su�cient.

In the following sections we �rst examine the previous approaches for dealing with the

problem of changing illumination to see whether they provide a general solution to the

problem, or whether a model-based alignment approach is required. We then pursue the

question of image representation within the context of a model-based alignment approach.

4.1 Current Approaches

The approaches we review below include computational components of visual analysis

that contain, directly or indirectly, a role for illumination. These include edge detection,

lightness and color constancy, shape from shading (SFS), and photometric stereo. We will

narrow the discussion by assuming that surfaces of interest are matte (Lambertian) or

approximately matte.

4.1.1 Edge Detection

The most dominant approach to the problem of changing illumination is to recover features

from the image that are invariant to changes of illumination. The key idea is that abrupt

changes in intensity provide a su�ciently rich source of features that capture the important

aspects for subsequent image analysis, yet at a considerably reduced size. The best known

example of such features are step edges, i.e., contours where the light intensity changes

relatively abruptly from one level to another. Such edges are often associated with object

boundaries, changes in surface orientation, or material properties (Marr 1976, Marr &

Hildreth 1980). Edge images contain most of the relevant information in the original

grey-level image in cases where the information is mostly contained in changing surface
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Figure 4.1: Grey-scale images of `Ken' taken from three di�erent illumination conditions.

The bottom row shows the step edges detected by local energy measures followed by hys-

teresis (Freeman 1992). The step edges look very similar to the ones produced by Canny's

edge detection scheme.

material, in sharp changes in surface depth and/or orientation, and in surface texture,

color, or greyness. In terms of 3D shape, these are characteristics of relatively simple

objects. Therefore, the edges of simple objects are relatively informative (or recognizable)

and will change only slightly when the illumination conditions change.

Many natural objects have a more complex structure, however: surface patches do not

change orientation abruptly but rather smoothly. In this case, step edges may not be an

ideal representation for two reasons: the edge image may not necessarily contain most of

the relevant information in the grey-level image, and not all edges are stable with respect to

changing illumination. For example, edges that correspond to surface inections in depth

are actually \phantom" edges and depend on the direction of light source (Moses, 1989).

Alternative edge detectors prompted by the need for more recognizable or more stable

contour images search instead for extremal points of the light intensity distribution, known

as valleys and ridges, or build up a \composite" edge representation made out of the union

of step edges, valleys, and ridges (Pearson, Hanna & Martinez 1986, Morrone & Burr 1988,

Moses 1989, Perona & Malik 1990, Freeman & Adelson 1991). The composite edge images
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do not necessarily contain the subset of edges that are stable against changing illumination;

they generally look better than step edges alone, but that varies considerably depending

on the speci�c object.

The process of edge detection, producing step edges, ridges, valleys, and composite edge

images, is illustrated in Figures 4.1 and 4.2. In Figure 4.1 three `Ken' images are shown,

each taken under a distinct illumination condition, with their corresponding step edges. In

Figure 4.2 the ridges, valleys, and the composite edge images of the three original images

are shown (produced by Freeman and Adelson's edge and line detector). These results

show the invariance of edges are not complete; some edges appear or disappear, some

change location, and spurious edges result from shadows (especially attached shadows),

specularities, and so forth.

The `Ken' images and their edge representations also demonstrate the practical side

of the problem of recognition under changing illumination conditions. The images appear

di�erent to the degree that a template match between any two of them is not likely to

succeed without �rst compensating for the changing illumination.

4.1.2 Recovering Intrinsic Surface Properties: Lightness Constancy

Another possible approach is to decouple the illumination from the image formation equa-

tions and thereby recover the surface reectance, also known as albedo, from the image of

the surface. Since surface reectance is an intrinsic property of the object, we can therefore

achieve invariance under changing illumination.

The fact that something like this is possible comes from empirical evidence on human

vision. As mentioned in Section 1.4.3, most of the empirical evidence related to the ability

of humans to factor out the illumination in judgments of surface color or greyness from a

single image, are based on either extremely simple objects, such as planes, or other simple

objects such as polyhedrons and cylinders (Land & McCann 1971, Gilchrist 1979, Knill

and Kersten 1991). Computational approaches to the problem of recovering surface albedo

from 3D objects are also limited to relatively simple objects, such as polyhedrons (Sinha,

1992).

4.1.3 Shape from Shading

Another possible approach is to use the illumination (either assumed or recovered) in order

to recover surface structure from the image of the surface. This is known in computer
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Figure 4.2: Valleys, ridges, and composite contour images produced by Freeman's contour

detection method applied to the three images of the previous �gure.

vision as \shape from shading". Unlike the previous two approaches, shape from shading

methods are often applied to general complex objects, rather than simple objects. However,

as described below, there are other restrictions and assumptions that make this approach

an unlikely primary vehicle for purposes of recognition.

One class of methods, pioneered by Horn and collaborators (Horn 1977, Ikeuchi & Horn

1981, Horn & Brooks 1986), uses integration techniques for using image grey-values to solve

for shape. These methods proceed by propagating constraints from boundary conditions

(such as from smooth occluding contours). The drawback of these methods is that they

require considerable a priori information, and assumptions, about the scene. These often

include surface orientation along surface boundary, and the assumption of uniform albedo
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(surface is of uniform greyness throughout the area of analysis). In addition, the direction

of light source must be recovered. Early techniques (Horn, 1977) required knowledge of

light source direction, but more recent schemes (Brooks & Horn, 1985) solve for direction

of light source by iterating and interleaving the estimate of shape and light source. Brooks

and Horn show that their scheme works well for synthetic images of simple objects like a

hemisphere or a cylinder; however, the question of robustness for more general shapes and

for real images has remained open.

The second class of methods, pioneered by Pentland (1984), relies on local analysis

of shape. These methods do not require knowledge of boundary information, but they

do assume uniform surface albedo. In addition, local methods assume that the surface is

locally umbilical, but this assumption strictly holds only for a sphere. Nevertheless, local

methods may produce good approximations for approximately spherical surfaces. The

problem of recovering the direction of light source requires an additional assumption that

surface orientation is uniformly distributed over the object (Pentland, 1982).

To conclude, the assumptions and requirements, especially the assumption of uniform

albedo, make shape from shading methods an unlikely primary vehicle for purposes of

recognition. These limitations do not rule out the possibility of using SFS methods as a

component in a recognition system, but this remains an open question.

4.1.4 Photometric Stereo

Another possible approach is to use multiple images of the surface, taken under di�erent

illumination conditions, in order to recover intrinsic surface properties such as structure and

albedo. This method is known as \photometric stereo" and was pioneered by Woodham

(1980). Although photometric stereo belongs to the family of shape from shading methods,

we distinguish it here as a separate approach mainly because it is the only approach that

can be considered as model-based from the standpoint of achieving recognition.

The basic method is extremely simple, and goes as follows: assume we have three

images, I1; I2; I3, of the object taken under three di�erent light source directions. The

image intensity at location p in the three images has the form

Ij(p) = �p(np � sj) j = 1; 2; 3;

where �p is a scalar that represents a mixture of the surface albedo, the spectral response

of the image �lters, and the spectral composition of light sources | all which is assumed
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to be �xed for the three images (see Appendix D, for details on image formation and

the image irradiance equation). The unit vector sj is in the direction of the light source,

and np is the unit vector in the direction of the surface normal. Assuming that we know

the directions s1; s2; s3, then the three image irradiance equations provide a linear system

of three equations and three unknowns per image location (�pnp is an unknown vector

in 3D). The system has a unique solution, provided that the light source directions are

linearly independent (no two of them are in the same direction, and the three of them

are not coplanar). Photometric stereo, therefore, does not require boundary information,

makes no assumptions about surface shape and surface albedo, but requires knowledge of

directions and intensity of light source (or only direction if we assume that intensity of

light source remains �xed). Knowing the direction of light source puts a heavy burden on

the applicability of this method outside the domain of dark-room environments; also, in

practice more than three images would be required in order to deal with sensor noise and

deviations from the Lambertian model (a fourth image would provide four equations with

three unknowns, thereby making it possible to �nd a least squares solution).

More recent progress in photometric stereo shows that the directions of light sources

can be recovered up to an arbitrary rotation of the coordinate system in space. The

requirement of knowing the direction of light sources can, as a result, be traded o� with the

uniform albedo assumption (Woodham, Iwahori and Barman 1991). The method proceeds

as follows: let Ip be a vector (I1(p); I2(p); I3(p))
t containing the image intensities at location

p of the three images. Because albedo is assumed to be uniform, we can attribute it to

the light source vectors sj (representing light source intensity). We therefore have that

Ip = Snp, where S is a 3� 3 matrix whose rows are sj . Since np is a unit vector, we have

I

t
pS

�t
S

�1
Ip = I

t
pAIp = 1;

where A is symmetric and positive de�nite. Therefore, six points are su�cient to determine

the six parameters of A (more than six points will de�ne a least squares solution to A).

Once A is solved for, we can recover S�1, and hence S, up to a product with an orthogonal

matrix. Though the method is elegant and simple, the uniform albedo assumption is

too restricting for the improved version of photometric stereo to be of general use for

recognition.

In conclusion, we have seen that purely data-driven approaches such as edge detection,

lightness constancy, and shape from shading are either limited to relatively simple objects,

or make several restricting assumptions regarding surface greyness, illumination, and shape.
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Figure 4.3: Mooney faces and their level-crossings.

The only model-based approach, the photometric stereo method, is also limited to relatively

simple cases, not necesserily simple objects, of surfaces with uniform greyness.

4.2 The Question of Image Representation

Subsequent to motivating our pursuit after a model-based alignment approach to the pho-

tometric problem of recognition, we turn our attention to the question of image represen-

tation. The question of image representation is, what kind of image features are necessary

for compensating for changing illumination? The question of representation is motivated

by two considerations. The �rst is phenomenological. It appears that in some cases in

human vision, more than edges are required for visual interpretation, but not much more.

We would like to examine this situation and make a connection with the computational

results presented in the next two chapters. The second consideration is a practical one.

The less we rely on the exact light intensity distribution in the image, and rely more on

reduced representations of the image, the more stable the overall scheme would be. Image

grey-values are prone to errors because of poor illumination, low signal to noise ratio due

to distance to the viewer, and other e�ects that may occur at recognition time and cause

uctuations in image intensities. These situations may have a lesser e�ect if instead more
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Figure 4.4: A less interpretable Mooney picture and its level-crossings

compact representations are used.

It appears that in some cases in human vision the interpretation process involves more

than just contours. A well-known example is the set of thresholded face images produced

by Mooney (1960) for clinical recognizability tests, known as the closure faces test, in which

patients had to sort the pictures into general classes that include: boy, girl, grown-up man

or woman, old man or woman, and so forth. An example of Mooney's pictures are shown

in Figure 4.3. Most of the control subjects could easily label most of the pictures correctly.

Some of Mooney's pictures are less interpretable (for example, Figure 4.4), but as a general

phenomenon it seems remarkable that a vivid visual interpretation is possible from what

seems an ambiguous collection of binary patches that do not bear a particularly strong

relationship to surface structure or other surface properties.

Mooney images are sometimes referred to as representing the phenomenon of \shape

from shadows" (Cavanagh 1990). Although some Mooney images do contain cast shadows,

the phenomenon is not limited to the di�culty of separating shadow borders from object

contours. The thresholded image shown in Figure 4.5, for example, is not less di�cult to

account for in computational terms, yet the original image was not lit in a way to create

cast or attached shadows.

In Section 1.4.3 we used Mooney-kind images to argue in favor of a model-based compu-

tation in which illumination is compensated for during recognition. Here we wish to point

out another aspect of these kinds of images. It is evident that the contours (level-crossings)

alone are not interpretable, as can be seen with the original Mooney pictures and with the

level-crossing image in Figure 4.5. It seems that only when the distinction of what regions

are above the threshold and what are below the threshold is made clear (we refer to that as

adding \sign-bits") does the resulting image become interpretable. This appears to be true

not only for thresholded images but also for step edges and their sign-bits (see Figure 4.5,
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Figure 4.5: Top Row: A `Ken' image represented by grey-levels, the same image followed by

a threshold, the level-crossings of the thresholded image. The thresholded image shown in

the center display is di�cult to account for in computational terms, yet the original image

was not lit in a way to create cast or attached shadows. Bottom Row: The sign-bits of the

Laplacian of Gaussian operator applied to the original image, and its zero-crossings (step

edges). Interpretability of the sign-bit image is considerably better than the interpretability

of the zero-crossings.

bottom row).

It appears, therefore, that in some cases in human vision the illumination is factored out

within the recognition process using top-down information and that the process responsible

apparently requires more than just contours | but not much more. We refer from here

on to the Mooney-kind of images as reduced images. From a computational standpoint we

will be interested not only in factoring out the illumination, in an alignment model-based

appraoch, but also in doing so from reduced images | this is described in the next two

chapters.

4.3 Summary

The two central questions addressed in this chapter are, is there a need for a model-based

approach for dealing with the e�ects of illumination in recognition? And what are the limits
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on image information in order to make that process work? We arrive at two conclusions.

First, image properties alone do not appear to be su�cient for obtaining a general result

of factoring out the illumination prior to recognition. This conclusion is based partly on

empirical observations resulting from Mooney-kind of images (also in Section 1.4.3) and

partly on observing the limitations of various possible approaches in the areas of edge

detection, lightness constancy, and shape from shading. Second, the process responsible

for factoring out the illumination during the recognition process appears to require more

than just contour information, but just slightly more. We refer to what seems a necessary

input level as reduced images. Although reduced images are not a representative of natural

input images, they are, nevertheless, an especially di�cult type of inputs that humans are

able to interpret very well. It may be also possible to view reduced images as an extreme

case of a wider phenomenon of interpreting low quality images, such as images seen in

newspapers, images produced by photo-copying the original, or images taken under poor

illumination conditions. These types of inputs, however, do not fall within the scope of

this thesis.
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Photometric Alignment

Chapter 5

A model-based alignment type of approach to the photometric problem assumes that

we have stored several images of the object, taken under distinct illumination conditions,

with which a compensating transformation can be found. This transformation is such that

the model (represented by the model images) can be converted to match the novel input

image of the object. We have seen this done in several ways in the geometric domain,

and also in the photometric domain with the use of photometric stereo. With photometric

stereo, however, we had to assume knowledge of light source parameters, or to assume

that the surface is of uniform albedo | both of which we want to avoid. Our approach is

similar to the linear combination of views (Ullman & Basri, 1989) that was introduced in

the geometric domain. In other words, we de�ne a direct algebraic connection between all

images of a matte surface under changing illumination conditions. The alignment scheme

that makes use of this result for purposes of recognition is referred to as the photometric

alignment scheme. The photometric problem was de�ned earlier in Section 1.2, and is

re-produced below:

Photometric Problem: We are given three images of an arbitrary convex matte surface.

The images are taken under three di�erent arbitrary settings of point light sources. For any

arbitrary image determine whether the image can be produced by the surface under some

illumination condition.

The photometric problem assumes the surface is convex in order to avoid the problem

of cast shadows (this assumption is implicitly contained in the photometric stereo method

as well). Although our analytic results strictly hold only under the conditions speci�ed

above, these restrictions are not critical in practice. The main results derived in this

chapter include the following:

� The e�ect of changing direction and intensity of light sources can be factored out by

a linear combination of images of the same object.

79
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� The photometric alignment scheme can be used to detect specular regions in the

image.

� The e�ects of changing the spectral composition of light sources can be factored out

by linearly combining the color bands of a single model image.

5.1 The Linear Combination of Grey-scale Images

De�nition 4 An order k Linear Reectance Model is de�ned as the scalar product x � a,
where x is a vector in k-dimensional Euclidean space of invariant surface properties (such

as surface normal, surface albedo, and so forth), and a is an arbitrary vector (of the same

dimension).

The Lambertian model of reection is an obvious case of an order 3 linear reectance

model. As described in more detail in Appendix D, the grey-value, I(p), at location p in

the image can be represented by the scalar product of the surface normal vector and the

light source vector,

I(p) = np � s:

Here the length of the surface normal np represents the surface albedo (a scalar ranging

from zero to one). The length of the light source vector s represents a mixture of the

spectral response of the image �lters, and the spectral composition of light sources | both

of which are assumed to be �xed for all images of the surface (we assume for now that light

sources can change direction and level of intensity but not spectral composition).

Another example of a linear reectance model is the image irradiance of a tilted Lam-

bertian surface under a hemispherical sky. Horn (1986, pp. 234) shows that the image

irradiance equation is E�pcos
2�
2
, where � is the angle between the surface normal and the

zenith, E is the intensity of light source, and �p is the surface albedo. The equation is an

order 4 linear reectance function:

I(p) =
1

2
E�p(1 + cos�) = np � s+ jnpj � jsj = (np; jnpj)t(s; jsj);

where s represents the direction of zenith, whose length is E
2
.

Proposition 6 An image of an object under an order k linear reection model I(p) =

x(p) � a can be represented as a linear combination of a �xed set of k images of the object.
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Proof: Let a1; :::;ak be some arbitrary set of basis vectors that span k-dimensional Eu-

clidean space. The image intensity I(p) = x(p) � a is therefore represented by

I(p) = x(p)[�1a1 + :::+ �kak ] = �1I1(p) + :::+ �kIk(p);

where �1; :::; �k are the linear coe�cients that represent a with respect to the basis vectors,

and I1; :::; Ik are the k images Ik(p) = x(p) � ak .

To see the relevance of this proposition to visual recognition, consider the case of a

Lambertian surface under a point light source (or multiple point light sources). Assume we

take three pictures of the object I1; I2; I3 from light source directions s1; s2; s3, respectively.

The linear combination result is that any other image I of the object, taken from a novel

setting of light sources, is simply a linear combination of the three pictures,

I(p) = �1I1(p) + �2I2(p) + �3I3(p);

for some coe�cients �1; �2; �3 (this observation was made independently by Yael Moses).

The coe�cients can be solved by observing the grey-values of three points providing three

equations. Using more than three points will provide a least squares solution. The solution

is unique provided that s1; s2; s3 are linearly independent, and that the normal directions

of the three sampled points span all other surface normals (for a general 3D surface, for

example, the three normals should be linearly independent).

Alignment-based recognition under changing illumination can proceed in the following

way. The images I1; :::; Ik are the model images of the object (three for Lambertian under

point light sources). For any new input image I , rather than matching it directly to

previously seen images (the model images), we �rst select a number of points (at least k)

to solve for the coe�cients, and then synthesize an image I 0 = �1I1 + ::: + �kIk . If the

image I is of the same object, and the only change is in illumination, then I and I
0 should

perfectly match (the matching is not necessarily done at the image intensity level, one can

match the edges of I against the edges of I 0, for example). This procedure has factored

out the e�ects of changing illumination from the recognition process without recovering

scene information, i.e. surface albedo or surface normal, and without assuming knowledge

of direction of light sources (as photometric stereo does). Another property of this method

is that one can easily �nd a least squares solution for the reconstruction of the synthesized

image, thereby being less sensitive to errors in the model, or input errors.

In addition to the properties listed above, the photometric alignment approach also

shares the general properties of the geometric alignment methods including that: (i) the
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procedure can be applied whether the image and the model are of the same object or

not, (ii) the complexity of the object is not of critical importance, although here it may

have an e�ect by introducing more cast shadows (see below), and (iii) the actual matching

is performed in a pictorial manner without the need to recover scene information, and

without the application of top-down reasoning processes. We consider next two situations

that occur with general surfaces (rather than convex matte surfaces). The �rst situation

described in the next section is that of cast and attached shadows; and the second situation,

described in Section 5.1.2, is that of specular reections arising from non-matte surfaces.

5.1.1 Attached and Cast Shadows

We have assumed that surfaces are convex because the linear combination result requires

that points be visible to the light sources. In a general non-convex surface object points

may be occluded from some, or from all, the light sources. This situation generally leads

to two types of shadows known as attached and cast shadows. A point P is in an attached

shadow if the angle between the surface normal and the direction of light source is obtuse

(np � s < 0). An object point P is in a cast shadow if it is obstructed from the light

source by another object or by part of the same object. An attached shadow, therefore,

lies directly on the object, whereas cast shadows are thrown from one object onto another,

or from one part onto another of the same object (such as when the nose casts a shadow

on the cheek under oblique illumination).

In the case of attached-shadows, a correct reconstruction of the image grey-value at p

does not require that the object point P be visible to the light source s, but only that it be

visible to the light sources s1; s2; s3. If P is not visible to s, then the linear combination

will produce a negative grey-value (because np � s < 0), which can be set to 0 for purposes

of display or recognition.

If P is not visible to one of the model light sources, say s1, then the linear combination

of the three model images is to reconstructing I
0(p) under a light source s0 which is the

projection of s onto the sub-space spanned by s2; s3. This implies that photometric align-

ment would perform best in the case where the novel direction of light source s is within

the cone of directions s1; s2; s3.

The remaining case is when the object point P is in a cast shadow with respect to the

novel light direction s. In this case there is no way to predict a low, or zero, grey-value

for I 0(p) and the reconstruction will not match I(p). Therefore, cast shadow regions in the
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Figure 5.1: Rembrandt's Night Watch illustrating that cast shadows may be intellectually

understood, yet visually non-obvious. The hand of the �gure on the left (the captain) is

casting a shadow on the �gure on the right (the lieutenant). The shadow is understood as

created from the captain's gesticulating hand, but does not appear to have a perceptual

connection to the object on which it appears (Arnheim, 1954).

novel image are not modeled in this framework, and hence, the performance degrades with

increasing number and extent of cast-shadows in the novel image.

With regard to human vision, there appears to be a marked increase in di�culty in

interpreting cast shadows compared to attached shadows. Arnheim (1954) discusses the

e�ect of cast shadows on visual perception, its relation to chiaroscuro in Renaissance art,

and its symbolism in various cultures. He points out that cast shadows often interfere

with the object's integrity, whereas attached shadows are often perceived as an integral

part of the object. Rembrandt's Night Watch, displayed in Figure 5.1, is an example of a

shadow that is intellectually understood, yet is not visually obvious. Although the shadow

is cast upon a di�erent object, the general observation is that the more the cast-shadow

extends from the part that throws it, the less meaningful is the connection made with the

object. The interpretability of cast shadows is also illustrated by `Ken' images displayed in

Figure 5.2. The three model images have extensive attached shadows that appear naturally

integrated with the object. The cast shadow region thrown from the nose in the image on

the right appears less integrated with the overall composition of the image.

In conclusion, attached shadows in the novel image, or shadows in general in the model

images, do not have signi�cant adverse e�ects on the photometric alignment scheme. Cast
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Figure 5.2: Three model images of a plastic doll, taken under a single light source from three

di�erent directions (non-coplanar) and intensities. Note that the surface is not perfectly

matte, and the images contain shadows and specular reections.

shadows in the novel image, cannot be reconstructed or even approximated, and therefore

are not modeled in this framework. It may be noted that apparently there is a percep-

tual di�erence between attached and cast shadows, whereby the latter may appear to be

disconnected from the object upon which they are cast.

5.1.2 Detecting and Removing Specular Reections

The linear combination result and the photometric alignment scheme that followed assume

that objects are matte. In general, inhomogeneous surfaces are dominantly Lambertian,

except for isolated regions that are specularly reecting light (see Appendix D). In practice,

if the specular component is ignored, the reconstructed image has the specular regions of all

three model images combined together, and the specular regions of the novel image are not

reconstructed. For purposes of recognition, as long as the specular regions are relatively

small, they do not seem to have a signi�cant adverse e�ect on the overall photometric

alignment scheme. Nevertheless, the alignment method can be used to detect the specular

regions and replace them with the Lambertian reectance provided that four images are

used.

The Detection of specular points is based on the observation that if a point is in the

specular lobe, then it is likely to be so only in one of the images at most. This is because

the specular lobe occupies a region that falls o� exponentially from the specular direction.

In general we cannot detect the specular points by simply comparing grey-values in one

image with the grey-values of the same points in the other images because the intensity of

the light source may arbitrarily change from one image to another.
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By using Proposition 6, that is, the result that three images uniquely determine the

Lambertian component of the fourth image, we can, thereby, compare the reconstructed

intensity of the fourth image with the observed intensity, and check for signi�cant devi-

ations. For every point p, we select the image with the highest intensity, call it Is, and

reconstruct I 0s(p) from the other three images (we recover the coe�cients once, based on

points that are not likely to be specular or shadowed, i.e. do not have an especially high

or low intensity). If Is(p) is in the specular lobe, then I
0

s(p) << Is(p). To avoid deviations

that are a result of shadowed points, we apply this procedure to points for which none of

the images has an especially low grey-value.

In practice we observe that the deviations that occur at specular points are of an order

of magnitude higher than deviations anywhere else, which makes it relatively easy to select

a threshold for deciding what is specular and what is not. A similar approach for detecting

specular points was suggested by Coleman and Jain (1982) based on photometric stereo.

The idea is to have four images and to reconstruct the normal at each point from every

subset of three images. If the point in question is not signi�cantly specular, then the

reconstructed normals should have the same direction and length, otherwise the point is

likely to be specular. Their method, however, requires knowledge of direction and intensity

of light sources, whereas in our method we do not.

5.1.3 Experimental Results

We used the three `Ken' images displayed in Figure 5.2 as model images for the photometric

alignment scheme. The surface of the doll is non-convex almost matte which gives rise to

specular reections and shadows. The novel image (shown in Figure 5.3) was taken using

light source directions that were within the cone of directions used to create the model

images. In principle, one can use novel light source directions that are outside the cone of

directions, but that will increase the likelihood of creating new cast shadow regions. The

reconstruction was based on a least squares solution using eight points. The points were

chosen automatically by searching for smooth regions of image intensity. The search was

restricted to the area of the face, not including the background. To minimize the chance of

selecting shadowed or specular points, a point was considered as an admissible candidate

if it was contained in an 8� 8 sized smooth area, and its intensity was not at the low or

high end of the spectrum. We then selected eight points that were widely separated from

each other. The reconstructed image (linear combination of the three model images) is

displayed in Figure 5.3 together with its step edges. The novel and reconstructed image
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Figure 5.3: Reconstructing a novel image. Row 1 (left to right): A novel image taken from

two point light sources, and the reconstructed image (linear combination of the three model

images). Row 2: Step edges of the novel and reconstructed images. Row 3: Overlaying

both edge maps, and subtracting (xor operation) the edge maps from each other. The

di�erence between the images both at the grey-scale and edge level is hardly noticeable.
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are visually very similar at the grey-value level, and even more so at the edge-map level.

The di�erence between the two edge maps is negligible and is mostly due to quantization

of pixel locations.

In conclusion, this result shows that for the purposes of recognition, the existence of

shadows and (small) specular regions in the model images do not have a signi�cantly

adverse e�ect on the reconstruction. Moreover, we did not use a matte surface for the

experiment, illustrating the point that plastic surfaces are dominantly Lambertian, and

therefore su�ciently applicable to this method.

Figure 5.4 demonstrates the specular detection scheme. The method appears to be

successful in identifying small specular regions. Other schemes for detecting specular re-

gions using the dichromatic model of reection often require a relatively large region of

analysis and, therefore, would have di�culties in detecting small specular regions (Shafer

1985, Klinker, Shafer and Kanade 1990).

5.2 The Linear Combination of Color Bands

The photometric problem considered so far involved only changes in direction and inten-

sity of light sources, but not changes in their spectral compositions. Light sources that

change their spectral composition are common as, for example, sunlight changes its spec-

tral composition depending on the time of day (because of scattering). The implication

for recognition, however, is not entirely clear because there may be an adaptation factor

involved rather than an explicit process of eliminating the e�ects of illumination. Adap-

tation is not a possibility when it comes to changing direction of light source, because

objects are free to move in space and hence change their positions with respect to the

light sources. Nevertheless, it is of interest to explore the possibility of compensating for

changing spectral composition as well as direction of light sources.

We assume, for reasons that will be detailed below, that our surface is either neutral , or

is of the same color, but may change in luminosity. A neutral surface is a grey-scale surface

only a�ecting the scale of light falling on the surface, but not its spectral composition. For

example, the shades of grey from white to black are all neutral. Note that the assumption

is weaker than the uniform albedo assumption because we allow change in luminosity,

but is less general than what we had previously because we do not allow changes in hue

or saturation to occur across the surface. We also assume that our model of the object
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Figure 5.4: Detecting and removing specular regions. Row 1: The image on the left is

a novel image, and the one on the right is the same image following the procedure for

detecting and removing the specular regions. The specular regions are replaced with the

reconstructed grey-value from the model images. Row 2: The specular regions that were

detected from the image.
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consists of a single color image obtained by overlaying three color images of the object each

taken from a distinct direction of light source having a distinct spectral composition.

Let Ir; Ig; Ib be the three color bands that together de�ne the color picture. Let �p�(�)

be the surface reectance function. Note that the neutral surface assumption means that

across the surface �(�) is �xed, but �p may change arbitrarily. Let S1(�); S2(�); S3(�) be

the spectral composition of the three light sources, and s1; s2; s3 be their directions. As

before, we require that the directions be non-coplanar, and that the spectral compositions

be di�erent from each other. This, however, does not mean that the three spectral functions

should form a basis (such as required in some color constancy models, Maloney and Wandell

1986). Finally, let Rr(�); Rg(�); Rb(�) be the spectral sensitivity functions of the three

CCD �lters (or cones). The composite color picture (taking the picture separately under

each light source, and then combining the results) is, therefore, determined by the following

equation:

0
BB@

Ir(p)

Ig(p)

Ib(p)

1
CCA =

0
BB@
R
S1(�)�(�)Rr(�)d�R
S1(�)�(�)Rg(�)d�R
S1(�)�(�)Rb(�)d�

1
CCAnp � s1 +

0
BB@
R
S2(�)�(�)Rr(�)d�R
S2(�)�(�)Rg(�)d�R
S2(�)�(�)Rb(�)d�

1
CCAnp � s2 +

0
BB@
R
S3(�)�(�)Rr(�)d�R
S3(�)�(�)Rg(�)d�R
S3(�)�(�)Rb(�)d�

1
CCAnp � s3;

where the length of np is �p. This can re-written in matrix form, as follows:

0
BB@

Ir(p)

Ig(p)

Ib(p)

1
CCA =

0
BB@

v1

v2

v3

1
CCAnp � s1 +

0
BB@

u1

u2

u3

1
CCAnp � s2 +

0
BB@

w1

w2

w3

1
CCAnp � s3

= [v;u;w]

2
664
s1

s2

s3

3
775np = Anp:

The 3 � 3 matrix [v;u;w] is assumed to be non-singular (for that reason we required

that the spectral composition of light sources be di�erent from one another), and therefore

the matrix A is also non-singular. Note that because of the assumption that the surface

is neutral, the matrix A is independent of position. Consider any novel image of the

same surface, taken under a new direction of light source with a possible di�erent spectral
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composition. Let the novel picture be Jr; Jg; Jb. The red color band, for instance, can be

represented as a linear combination of the three color bands Ir; Ig; Ib, as follows:

Jr(p) =

�Z
S(�)�(�)Rr(�)d�

�
np�s = np�(�1A1+�2A2+�3A3) = �1Ir(p)+�2Ig(p)+�3Ib(p)

where A1; A2; A3 are the rows of the matrix A. Because A is non-singular, the row

vectors form a basis that spans the vector [
R
S(�)�(�)Rr(�)d�]s with some coe�cients

�1; �2; �3. These coe�cients are �xed for all points in the red color band because the scaleR
S(�)�(�)Rr(�)d� is independent of position (the neutral surface albedo �p is associated

with the length of np). Similarly the remaining color bands Jg; Jb are also represented as a

linear combination of Ir; Ig; Ib, but with di�erent coe�cients. We have, therefore, arrived

at the following result:

Proposition 7 An image of a Lambertian object with a neutral surface reectance (grey-

scale surface) taken under an arbitrary point light source condition (intensity, direction

and spectral composition of light source) can be represented as a linear combination of the

three color bands of a model picture of the same object taken under three point light sources

having di�erent (non-coplanar) directions and di�erent spectral composition.

For a neutral surface, the linear combination of color bands can span only images of the

same surface with the same hue and saturation under varying illumination conditions. The

combination of color bands of a non-neutral surface spans the space of illumination and

color (hue and saturation). That is, two surfaces with the same structure but with di�erent

hue and saturation levels, are considered the same under the photometric alignment scheme.

5.3 Summary

The photometric alignment scheme presented in this chapter is a model-based approach

similar to photometric stereo since multiple images of the same object taken from di�erent

illumination conditions are recorded. Unlike photometric stereo, we do not use these images

in order to recover intrinsic properties of the object, but rather to directly compensate

for the change in illumination conditions for any other novel image of the object. This

di�erence is critical for it enables us to avoid the limitations of photometric stereo by

allowing an arbitrary distribution of surface albedo, and by not having to assume or recover

the parameters associated with the light sources. We have discussed the situations of

shadows and specular reections. The conclusion was that attached shadows in the model
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and novel images are generally not a problem for the photometric alignment method,

but cast shadows in the novel image are. The alignment scheme, therefore, degrades

with increasing cast shadow regions in the novel image. As a result of this, photometric

alignment when applied to general non-convex surfaces is most suitable for reconstructing

novel images whose illumination conditions are in between those used to create the model

images. We have also seen that specular reections arising from inhomogeneous surfaces

can be detected and removed if necessary. Finally, we have extended the basic result to

deal with color images and the problem of changing spectral composition of light sources

in addition to their directions.
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Photometric Alignment with Reduced Images

Chapter 6

The primary purpose of this chapter is to address the question of image representation

within the context of the photometric alignment approach. In Chapter 4 we arrived at two

conclusions based on empirical observations on human vision: �rst, it appears that in some

cases illumination is factored out during the recognition process in a model-based manner.

Second, the process responsible for factoring out the illumination during the recognition

process appears to require more than just contour information, but just slightly more.

We have addressed the �rst issue in the previous chapter by proposing the photometric

alignment method, which can directly factor out the illumination during the model-to-

image matching stage by using the information contained in the grey-values of the model

and novel images.

In this chapter we explore the possibilities of using less than grey-values for purposes of

factoring out the illumination. In other words, since the photometric alignment method is

essentially about recovering the linear coe�cients that represent the novel image as a linear

combination of the three model images, then the question is whether those coe�cients can

be recovered by observing more reduced representations of the novel image, such as edges,

edges and gradients, sign-bits, and so forth. Speci�cally, we are most interested in making

a computational connection with the empirical observation that sign-bits appear to be

su�cient for visual interpretation, whereas edges alone are not. The main results derived

in this chapter include the following:

� We show that level-crossing or zero-crossing contours of the novel image are theoreti-

cally su�cient for recovering the linear coe�cients for the model images. This result

requires, however, that contours be given at a sub-pixel accuracy.

� We show that the requirement of accuracy can be traded o� by adding the image

gradients along the contours.

93
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� The accuracy of edges can be traded o�, if instead of edges, the sign-bits are given

everywhere. This possibility is shown to be the most appealing computationally and

provides a connection to our previous observation that edges alone are in some cases

insu�cient for visual interpretation, but sign-bits are su�cient.

6.1 Photometric Alignment from Contours

Proposition 8 The coe�cients that span an image I from three model images, as described

in proposition 6, can be solved, up to a common scale factor, from just the contours of I,

zero-crossings or level-crossings.

Proof: Let �j be the coe�cients that span I by the basis images Ij , j = 1; 2; 3, i.e.

I =
P

j �jIj . Let f; fj be the result of applying a Laplacian of Gaussian (LOG) operator,

with the same scale, on images I; Ij, j = 1; 2; 3. Since LOG is a linear operator we have

f =
P

j �jfj . Since f(p) = 0 along zero-crossing points p of I , then by taking three zero-

crossing points, which are not on a cast shadow border and whose corresponding surface

normals are non-coplanar, we get a homogeneous set of equations from which �j can be

solved up to a common scale factor.

Similarly, let k be an unknown threshold applied to I . Therefore, along level crossings

of I we have k =
P

j �jIj ; hence four level-crossing points that are visible to all four light

sources are su�cient for solving �j and k.

The result is that in principle we could cancel the e�ects of illumination directly from

the zero-crossings (or level-crossings) of the novel image instead of from the raw grey-values

of the novel image. Note that the model images are represented as before by grey-values

(or a continuous transformation of grey-values). Because the model images are taken only

once, it is not unreasonable to assume more strict requirements on the quality of those

images. We therefore make a distinction between the model acquisition, or learning, phase

for which grey-values are used and the recognition phase for which a reduced representation

of the novel image is being used.

The result that contours may be used instead of grey-values is not surprising at a

theoretical level, considering the literature in image compression. Under certain restrictions

on the class of signals, it is known that the zero-crossings form a complete representation

of an arbitrary signal of that class. The case of one-dimensional bandpass signals, with

certain conditions on the signals' Hilbert transform, is provided by Logan (1977). The
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more general case is approached by assuming the signal can be represented as a �nite

complex polynomial (Curtis, Oppenhiem and Lim 1985, Sanz and Huang 1989). Complex

polynomials have the well known property that they are fully determined by their analytic

varieties (curves in the one-dimensional case) using analytic continuation methods (see for

example, Sa� and Snider 1976). It is well known that analytic continuation is an unstable

process (Hille, 1962) and therefore, the reconstruction of the image from its zero-crossings

is likely to be unstable. Curtis et. al. report, for instance, that zero-crossings must be

recorded with great precision, at sub-pixel accuracy of 14 digits.

The result of Proposition 8 can be viewed as a model-based reconstruction theorem,

that applies to a much less restricted class of signals (images do not have to be bandpass,

for instance). The process is much simpler, but on the other hand it is restricted to a spe-

ci�c model undergoing a restricted group of transformations (changing illumination). The

simplicity of the model-based reconstruction, however, is not of great help in circumventing

the problem of instability. Stability depends on whether contours are recorded accurately

and whether those contours are invariant across the model images.

The assumption that the value of f at a zero-crossing location p is zero, is true for a

subpixel location p. In other words, it is unlikely that f(p) = 0 for some integral location

p. This introduces, therefore, a source of error whose magnitude depends on the `strength'

of the edge that gives rise to the zero-crossing in the signal f , that is, the sharper and

stronger the discontinuity in image intensities along an edge in the image I is, the larger

the variance around f(p). This suggests that `weak' edges should be sampled, with more

or less the same strength, so that by sampling more than the minimum required number

of points, the error could be canceled by a least squares solution.

The second source of error has to do with the stability of the particular edge under

changing illumination. Assume, for example, that the zero-crossing at p (recorded accu-

rately) is a result of a sharp change in surface reectance. Although the image intensity

distribution around p changes across the model images, the location of the discontinuity

does not, i.e. the zero-crossing is stable. In this case we have that f(p) = fj(p) = 0,

j = 1; 2; 3. Therefore, such a point will not contribute any information if recorded ac-

curately and will contribute pure noise if recorded with less than the required degree of

accuracy. This �nding suggests, therefore, that zero-crossings should be sampled along

attached shadow contours or along valleys and ridges of image intensities (a valley or a

ridge gives rise to two unstable zero-crossings, see Moses 1988).
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The situation with reconstruction from level-crossings is slightly di�erent. The �rst

source of error, related to the accuracy in recording the location of level-crossings, still

applies, but the second source does not. In general, the variance in intensity around a

level crossing point p is not as high as the variance around an edge point. A random

sampling of points for a least squares solution is not likely to have a zero mean error,

however, and the mean error would therefore be absorbed in the unknown threshold k.

The least squares solution would be biased towards a zero mean error solution that will

a�ect both the recovered threshold and the linear coe�cients �j . The solution, therefore,

does not necessarily consist of a correct set of coe�cients and a slightly o� threshold k, but

a mixture of both inaccurate coe�cients and an inaccurate threshold. This implies that

level-crossings should be sampled at locations that do not correspond to zero-crossings in

order to minimize the magnitude of errors.

To summarize, the reconstruction of the novel image from three model images and the

contours of the novel image is possible in principle. In the case of both zero-crossings

and level-crossings, the locations of the contours must be recorded at sub-pixel accuracy.

In the case of zero-crossings, another source of potential error arises, which is related to

the stability of the zero-crossing location under changing illumination. Therefore, a stable

reconstruction requires a sample of points along weak edges that correspond to attached

shadow contours or to ridges and valleys of intensity. Alternatively, the locations of contour

points must be recorded at sub-pixel accuracy, given also that the sample is large enough

to contain unstable points with respect to illumination. Experimental results show that

a random sample of ten points (spread evenly all over the object) with accuracy of two

digits for zero-crossings and one digit for level-crossings is su�cient to produce results

comparable to those produced from sampling image intensities directly. The performance

with integral locations of points sampled over edges p that have no corresponding edges in

a 3� 3 window around p in any of the model images was not satisfactory.

These results show that reconstruction from contours does not appear to be generally

useful for the photometric alignment scheme because of its potential instability. It is

also important to note that in these experiments the viewing position is �xed, thereby

eliminating the correspondence problem that would arise otherwise and would most likely

increase the magnitude of errors.
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6.2 Photometric Alignment from Contours and Gradients

When zero-crossings are supplemented with gradient data, the reconstruction does no

longer su�ers from the two sources of errors that were discussed in the previous sec-

tion. We can can use gradient data to solve for the coe�cients, because the operation

of taking derivatives (continuous and discrete) is linear and therefore leaves the coe�cients

unchanged. The accuracy requirement is relaxed because the gradient data is associated

with the integral location of contour points, not with their sub-pixel location. Stable zero-

crossings do not a�ect the reconstruction, because the gradient depends on the distribution

of grey-values in the neighborhood of the zero-crossing, and the distribution changes with

a change in illumination (even though the location of the zero-crossing may not change).

Errors, however, may be more noticeable once we allow changes in viewing positions

in addition to changes in illumination (when solving the combined recognition problem).

Changes in viewing positions may introduce errors in matching edge points across images.

Because the change in image intensity distribution around an edge point is localized and

may change signi�cantly at nearby points, then errors in matching edge points across the

model images may lead to signi�cant errors in the contribution those points make to the

system of equations.

6.3 Photometric Alignment from Sign-bits

Reconstruction from contours, general or model-based, appears to rely on the accurate

location of contours. This reliance, however, seems to be at odds with the intuitive inter-

pretation of Mooney-type pictures, like those in Figures 4.3. These images suggest that,

instead of contours being the primary vehicle for shape interpretation, the regions bounded

by the contours (the sign-bit regions) are primarily responsible for the interpretation pro-

cess. It is also worthwhile noting that, theoretically speaking, only one bit of information

is added in the sign-bit displays. This is because zero-crossings and level-crossings form

nested loops (Koenderink and Van Doorn, 1980), and therefore the sign-bit function is

completely determined up to a common sign ip. In practice, however, this property of

contours does not emerge from edge detectors because weak contours are often thresholded

out since they tend to be the most sensitive to noise (see, for example, Figure 4.1). This

may also explain why our visual system apparently does not use this property of contours.

We therefore do not make use of the global property of the sign-bit function; rather, we

treat it as a local source of information, i.e. one bit of information per pixel.
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Because the location of contours is an unreliable source of information, especially when

the e�ects of changing viewing positions are considered, we propose to rely instead only

on the sign-bit source of information. From a computational standpoint, the only informa-

tion that a point inside a region can provide is whether the function to be reconstructed

(the �ltered image f , or the thresholded image I) is positive or negative (or above/below

threshold). This information can be incorporated in a scheme for �nding a separating

hyperplane, as suggested in the following proposition:

Proposition 9 Solving for the coe�cients from the sign{bit image of I is equivalent to

solving for a separating hyperplane in 3D or 4D space in which image points serve as

\examples".

Proof: Let z(p) = (f1; f2; f3)
T be a vector function and ! = (�1; �2; �3)

T be the unknown

weight vector. Given the sign-bit �ltered image f̂ of I , we have that for every point p,

excluding zero-crossings, the scalar product !T
z(p) is either positive or negative. In this

respect, points in f̂ can be considered as \examples" in 3D space and the coe�cients

�j as a vector normal to the separating hyperplane. Similarly, the reconstruction of the

thresholded image Î can be represented as a separating hyperplane problem in 4D space,

in which z(p) = (I1; I2; I3;�1)T and ! = (�1; �2; �3; k)
T
:

The contours lead to a linear system of equations, whereas the sign-bits lead to a linear

system of inequalities. The solution to a linear system of inequalities Aw < b can be

approached using Linear Programming techniques or using Linear Discriminant Analysis

techniques (see Duda and Hart 1973 for a review). Geometrically, the unknown weight

vector w can be considered as the normal direction to a plane, passing through the origin,

in 3D Euclidean space, and a solution is found in such a way that the plane separates

the \positive" examples, !T
z(p) > 0, from the \negative" examples, !T

z(p) < 0. In the

general case, where b 6= 0, the solution is a point inside a polytope whose faces are planes

in 3D space.

The most straightforward solution is known as the perceptron algorithm (Rosenblatt,

1962). The basic perceptron scheme proceeds by iteratively modifying the estimate of w

by the following rule:

w
n+1 = w

n +
X
i2M

z
i

where wn is the current estimate of w, and M is the set of examples zi that are incorrectly

classi�ed by wn. The critical feature of this scheme that it is guaranteed to converge to a
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solution, irrespective of the initial guess w0, provided that a solution exists (examples are

linearly separable). Another well known method is to reformulate the problem as a least

squares optimization problem of the form

min
w
jAw � bj2

where the i'th row of A is zi, and b is a vector of arbitrarily speci�ed positive constants

(often b = 1). The solution w can be found using the pseudoinverse of A, i.e.

w = A

+
b = (At

A)�1At
b;

or iteratively through a gradient descent procedure, which is known as the Widrow-Ho�

procedure. The least squares formulation is not guaranteed to �nd a correct solution but

has the advantage of �nding a solution even when a correct solution does not exist (a

perceptron algorithm is not guaranteed to converge in that case).

By using the sign-bits instead of the contours, we are trading a unique, but unstable,

solution for an approximate, but stable, solution. The stability of reconstruction from

sign-bits is achieved by sampling points that are relatively far away from the contours.

This sampling process also has the advantage of tolerating a certain degree of misalign-

ment between the images as a result of less than perfect correspondence due to changes in

viewing position (this feature is discussed further in Chapter 8). Experimental results (see

Figures 6.1 and 6.2) demonstrate that 10 to 20 points, distributed over the entire object,

are su�cient to produce results that are comparable to those obtained from an exact so-

lution. The experiments were done on images of `Ken' and on another set of face images

taken from a plaster bust of Roy Lamson (courtesy of the M.I.T Media Laboratory). We

tried both the perceptron algorithm and the least-squares approach and found that both

yielded practically the same results. The sample points were chosen manually, and over

several trials we found that the reconstruction is not sensitive to the particular choice of

sample points, as long as they are not clustered in a local area of the image and are sam-

pled a few pixels away from the contours. The results (see Figures 6.1 and 6.2) show the

reconstruction of a novel thresholded images from three model images. The linear coe�-

cients and the threshold are recovered from the system of inequalities using a sample of 16

points; the model images are then combined and thresholded with the recovered threshold

to produce a synthesized thresholded image. Recognition then proceeds by matching the

novel thresholded image given as input against the synthesized image.
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Figure 6.1: Reconstruction from sign-bits. Top Row (left to right): the input novel im-

age; the same image but with the sample points marked for display. Bottom Row: the

reconstructed image; the overlay of the original level-crossings and the level-crossings of

the reconstructed thresholded image.
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Figure 6.2: Reconstruction from sign-bits. Row 1: three model images. Row 2: novel

image; thresholded input; reconstructed image (same procedure as described in the previous

�gure). Note that the left ear has not been reconstructed; this is mainly because the ear is

occluded in two of the three model images. Row 3: the level-crossings of the novel input;

level-crossings of the reconstructed image; the overlay of both level-crossing images.
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6.4 Summary of Part II

In this part of the thesis we addressed the problem of recognition under changing illumina-

tion conditions. Unlike the geometric problem of recognition, the photometric problem has

not received much attention in the past and, therefore, we devoted Chapter 4 for motivat-

ing and exploring this problem by use of examples drawn from empirical observations on

human vision and from computational schemes in related areas of visual analysis. We have

arrived at two conclusions. First, there appears to be a need for a model-based approach

to the photometric problem. Second, the process responsible for factoring out the illumi-

nation during the recognition process appears to require more than contour information,

but just slightly more.

We have seen that a possible model-based method for dealing with illumination changes

is photometric stereo. In this method multiple images of the same object taken from dif-

ferent illumination conditions are recorded and are then used to recover scene information.

We have seen that the major problem with photometric stereo is that one must either

assume that illumination parameters are known a priori or instead assume that the surface

albedo is uniform across the surface. We suggested as an alternative using a method, we

call photometric alignment, that is also based on recording multiple images of the object.

We do not use these images in order to recover intrinsic properties of the object, as used

in photometric stereo, but rather to directly compensate for the change in illumination

conditions for any other novel image of the object. This di�erence is critical, for it enables

us to avoid the limitations of photometric stereo by allowing an arbitrary distribution of

surface albedo and by not having to assume or recover the parameters associated with the

light sources.

Assuming that the photometric alignment scheme is the process responsible for factoring

out the illumination during the recognition process, our objective in this chapter was to

explore the possibilities of using less than image grey-values for this purpose. Speci�cally,

we were interested in making a computational connection with the empirical observation

made in Chapter 4 that sign-bits appear to be su�cient for visual interpretation, whereas

edges alone do not. The connection was made by introducing two new results: �rst, step

edges and level-crossings of the novel image are theoretically su�cient for the photometric

alignment scheme. This result, however, assumes that edges be given at sub-pixel accuracy

| a �nding that implies di�culties in making use of this result in practice. Second, the

sign-bit information can be used instead of edges.
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Photometric alignment using sign-bits is a region-based process by which points inside

the binary regions of the sign-bit image are sampled and each contributes a partial obser-

vation. Taken together, the partial observations are su�cient to determine the solution for

compensating for illumination. The more points sampled, the more accurate the solution.

Experimental results show that a relatively small number of points (10 to 20) are generally

su�cient for obtaining solutions that are comparable to those obtained by using the image

grey-levels. This method agrees with the empirical observations that were made in Chap-

ter 4 regarding the possibility of having a region-based process rather than a contour-based

one, the possibility of preferring sign-bits over edges, and the su�ciency of sign-bits for

factoring out the illumination. Finally, the possibility of using sign-bits instead of edges

raises a potentially practical issue related to changing viewing positions. A region-based

computation has the advantage of tolerating a small degree of misalignment between the

images due to changing viewing positions. This �nding implies that the illumination can

be factored out even in the presence of small changes in viewing positions without explic-

itly addressing the geometric problem of compensating for viewing transformations. We

discuss this property further in Chapter 8.
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Part III

Geometry and Photometry:

Correspondence and the

Combined Recognition Problem
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The Problem of Achieving Full Correspondence

Chapter 7

In this chapter we address the problem of achieving full correspondence between the

model views. This problem arises during the model acquisition stage of representing the

object by a small number of images. In the geometric domain the model images were taken

from di�erent viewing positions, and in the photometric domain those images were taken

from di�erent illumination conditions. In the generl case, we must deal with the problem

of achieving correspondence between all interest points across the model images which are

taken under di�erent viewing positions and di�erent illumination conditions. Achieving

full correspondence is a critical component of the overall scheme of combining geometric

and photometric sources of variabilities for purposes of recognition.

In Part I we distinguished between two kinds of correspondences: minimal correspon-

dence and full correspondence. Minimal correspondence involves matching a small number

of points (four, six, or eight) between the novel image and the model images in order

to recover the alignment transformation. This matching is assumed to take place dur-

ing recognition based on a small number of distinct features which, presumably, can be

detected regardless of changing viewing positions and illumination conditions. Full corre-

spondence involves the matching of all points of interest across the model images. Note

that the phrase all interest points actually means all image points across the model views

because re-projection is to be achieved at both the geometric and photometric levels. Full

correspondence is assumed to take place during the model acquisition stage, rather than

during recognition. Unlike the problem of minimal correspondence, however, we cannot

simply assume that points can be matched across images una�ected by changing viewing

positions and changing illumination.

We approach the problem of achieving full correspondence between two images of an

object in the following manner: �rst, we assume that minimal correspondence is available

between the two images. Second, we assume that the images are taken under similar
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illumination conditions. The �rst assumption enables us to apply the geometric results

described in Part I, that is, recovering the epipolar geometry between the two views. The

second assumption enables the use of changing grey-levels between the two images in order

to solve for correspondence wherever the image gradients are not vanishing and are not

perpendicular to the epipolar line direction. We will see in the next chapter that this

basic approach is su�cient for achieving full correspondence between the model views of

the combined recognition problem, i.e., in the situation where the model images are taken

from di�erent viewing positions and di�erent illumination conditions.

Similar to the analogy between the geometric problem of recognition and the problem

of structure from motion, there is a strong connection between the problem of achieving

full correspondence and the problem of visual motion (the analogy between the two is

discussed in more detail in the next section). We will, therefore, use terms taken from

from the area of visual motion | such as optical ow or dense ow | interchangeably

with full correspondence throughout this chapter.

7.1 Correspondence and Optical Flow: Brief Review

The general problem of achieving correspondence or optical ow, is to recover the two-

dimensional displacement �eld between points in both images. The problem is generally

di�cult and various approaches have been proposed in the literature. The di�culty arises

primarily because the displacement �eld depends on the three-dimensional structure of the

scene and the particular viewing geometry or motion of the camera, niether of which are

known in advance.

One generally distinguishes between attempts to recover a sparse and discrete type

of correspondence and attempts to recover a dense and often continuous type of corre-

spondence. The discrete correspondence methods generally aim at establishing a discrete

point-to-point match between a sparse set of points in both images. The methods of so-

lution to this type of problem tend to focus less on the geometrical aspects of 3D to 2D

in terms of viewing geometry and projections, and more on the combinatorial aspect of

searching for a best match under various optimization constraints for reducing the search,

such as uniqueness, continuity along curves, order constraint, measures of a�nity (Ullman

1979, Marr and Poggio 1979, Thompson and Barnard 1981, Grimson 1982, Hildreth 1984,

Baird 1985).

The dense correspondence methods often assume small, or in�nitesimal motion, in

which case the displacement �eld is a velocity �eld. The methods of solution to this type
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of problem tend to rely entirely on the instantaneous spatio-temporal patterns of image

grey-values, and are often referred to as optical ow methods. Optical ow techniques can

be divided into three major classes: (i) di�erential techniques, (ii) region-based matching

techniques, and (iii) energy-based techniques. Di�erential techniques rely on the instanta-

neous spatial and temporal derivatives of image intensity in order to determine the velocity

vector up to an unknown component in the direction perpendicular to the intensity gradi-

ent vector. This assumes that the change in image intensity is due entirely to the motion

of the camera or the scene, and not to photometric e�ects, such as changing direction of

light sources. The remaining component of the velocity vector is determined by using some

form of smoothness constraint, or by introducing higher order derivatives at the expense of

restricting further the admissible velocity �eld (Horn and Schunk 1981, Lucas and Kanade

1981, Glazer et. al. 1983, Verri and Poggio 1989, Nagel 1987).

Using cross-correlations or sum of squares di�erence (SSD) measures of matching qual-

ity, region-based techniques of optical ow attempt to �nd the best match between image

regions in one view and neighboring regions in the other view (Lucas 1984, Anandan 1987).

Energy-based methods rely on the response of velocity-tuned �lters, such as oriented Gabor

�lters or Reichardt detectors (Adelson and Bergen 1985, Van Santen and Sperling 1985,

Heeger 1987).

The methods for achieving optical ow share a fundamental limitation known as the

aperture problem: the spatio-temporal pattern of intensity can provide only one component

of the velocity vector. The remaining component can be recovered provided we assume that

velocity does not change across the region of inspection and, in addition, that the region

contains su�cient intensity structure (su�cient amount of variation in gradient direction

across the region, which often occurs at corners, or high curvature, of intensity).

The correspondence methods (discrete and continuous) described so far do not make

signi�cant use of the geometrical constraints that follow from having two projections of

a three-dimensional scene. Waxman and Wohn (1985) and Bachelder and Ullman (1992)

suggest methods for correspondence that account for the 3D to 2D geometry in a way that

is limited to locally planar surfaces. Waxman and Wohn suggest an approach by which

the surface is broken down into local planar patches, and they derive correspondence using

the observation that planar surfaces under perspective projection give rise to a quadratic

ow �eld (Waxman and Ullman, 1985). As with the method of Waxman and Ullman,

the smaller the patch size the more unstable the system becomes because of narrowing

of the �eld of view (see Adiv, 1989). Bachelder and Ullman (1992) suggest a method for
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measuring correspondence along curves, using orthographic projection; they also assume

local planarity. The di�erence is that planarity is assumed along curves, rather than over

patches, which has the advantage that the plane is not restricted to being tangent to the

surface, thereby locations that require a large support for reliably measuring correspon-

dence may still satisfy the planarity assumption, even though the surface is not planar.

The general idea behind the approach presented in this chapter is to put together the

source of information coming from the spatio-temporal pattern of image intensity (as in

optical-ow techniques) and the geometric source of information that arises from assuming

a rigid world projected onto the image plane. The geometrical source of information can

be captured by having a small number of corresponding points between the two images.

Another way to view this approach is that a small number of correspondences are su�cient

for recovering correspondences everywhere else. Minimal correspondence can be found

using standard optical ow techniques that are applied over regions associated with surface

markings (see for instance Anandan 1987, Tomasi 1991, for automatically detecting such

regions).

7.2 Correspondence from two Views Under Parallel Projection

Consider again the equations 2.1 and 2.2 relating the a�ne coordinates b1; b2; b3 of an object

point P (with respect to a basis O; P1; P2; P3 of four other non-coplanar object points) with

the corresponding points p and p
0 in two views of the object created by means of parallel

projection. These equations are reproduced below:

op =
3X

j=1

bj(opj)

o
0
p
0 =

3X
j=1

bj(o
0
p
0

j):

These equations were introduced in Section 2.2 for purposes of recovering the a�ne

coordinates of P , given that we have all the correspondences we need. We can also view

these equations from the standpoint of obtaining the location of p0, given the correspon-

dences due to the four reference points and the a�ne coordinates of P . Since we do not

have a su�cient number of observations to recover the a�ne coordinates, we need to look

for an additional source of information.
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We assume that the correspondences due to the four reference points are known, that

is, we have solved for minimal correspondence, and that both views are taken under similar

illumination conditions:

I(x+�x; y +�y; t+ 1) = I(x; y; t);

where v = (�x;�y) is the displacement vector, i.e., p0 = p+v. We assume the convention

that the two views were taken at times t and t+1. A �rst order approximation of a Taylor

series expansion leads to the following equation which describes a linear approximation to

the change of image grey-values at p due to motion:

rI � v + It = 0; (7:1)

where rI is the gradient at point p, and It is the temporal derivative at p. Equation 7.1

is known as the \constant brightness equation" and was introduced by Horn and Schunk

(1981). In addition to assuming that the change in grey-values is due entirely to motion,

we have assumed that the motion (or the size of view separation) is small, and that the

surface patch at P is locally smooth. In practice, the size of view separation can be traded

o� with the smoothness of the surface by using coarse-to-�ne techniques | as described

later in this chapter.

The constant brightness equation provides only one component of the displacement

vector v, the component along the gradient direction, or normal to the isobrightness con-

tour at p. This \normal ow" information is su�cient to uniquely determine the a�ne

coordinates bj at p, as shown next. By subtracting equation 2.1 from equation 2.2 we get

the following relation:

v =
3X

j=1

bjvj + (1�
X
j

bj)vo; (7:2)

where vj (j = 0; ::; 3) are the known displacement vectors of the points o; p1; p2; p3. By

substituting equation 7.2 in the constant brightness equation, we get a new equation in

which the a�ne coordinates are the only unknowns:X
j

bj[rI � (vj � vo)] + It +rI � vo = 0: (7:3)

Equations 2.1, and 7.3, provide a complete set of linear equations to solve for the a�ne

coordinates at all locations p that have a non-vanishing gradient, which is not perpendic-

ular to the direction of the epipolar line passing through p
0. Once the a�ne coordinates

are recovered, the location of p0 immediately follows. We have, therefore, arrived to the

following result:



112 The Problem of Achieving Full Correspondence

Proposition 10 (4pt + brightness) Two parallel projected images of a shaded 3D sur-

face with four clearly marked reference points admit a complete set of linear equations

representing the a�ne coordinates of all surface points, provided that the surface is un-

dergoing an in�nitesimal a�ne transformation and that the two images are taken under

identical illumination conditions.

In practice, it is more convenient to recover p0 using the a�ne structure representation,

rather than using a�ne coordinates. The derivation of a�ne structure in Section 2.3

concluded with,

o

0
p

0 = A(op) + pw;

wherew = o
0
p
0

3�A(op3) is the epipolar line direction, A is the matrix [o0p01; o
0
p
0

2][op1; op2]
�1,

and p is an invariant measure of a deviation of P from the reference plane passing through

O; P1; P2. The unknown parameter p can be recovered from the equation,

p =
�It �rI � [A� I ](op)

rI �w :

A convenient way to view this result is that the location of the corresponding point o0p0 is

determined by a \nominal motion", described by A(op) and a \residual motion", described

by pw. The nominal motion component is determined only from the minimal correspon-

dence information (the correspondence due to the four reference points), and the residual

motion component is determined with the help of the constant brightness equation 7.1.

There are two reasons for considering the overall displacement as composed of two

components, nominal and residual. First, from a practical point of view we would like to

handle situations of long range motion (relatively wide view separation) between the two

views, and therefore, limit as much as possible the contribution of the constant brightness

equation. Because p is a measure of \a�ne depth", the smaller the depth variation

between the surface and the reference plane, the smaller the residual motion component

becomes (assuming rigid motion and approximately orthographic projection). Therefore,

with surfaces that do not extend much in depth we can achieve longer ranges of motion

by �rst compensating for the nominal motion and then recovering the residual motion

component. This process is described in more detail in Section 7.4. The second reason is

more speculative in nature: the separation of overall motion into two components suggests

that the measurement of motion is conducted relative to a frame of reference. The frame

of reference is determined by the motion of a small number of key points, and these, in

turn, provide a �rst approximation for motion everywhere else within that frame. The
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approximation is accurate if the moving object is a plane, otherwise it is re�ned by solving

for the residual motion component. In the next section we attempt to draw a connection

with empirical observations of human vision. This connection may support the existence

of this kind of a two-stage computation in the measurement of visual motion.

7.2.1 Frame of Reference and the Measurement of Motion

The notion of a frame of reference that precedes the computation of motion may have some

support, albeit indirectly, in human vision literature. The phenomenon of \motion cap-

ture" introduced by Ramachandran (Ramachandran 1986, Ramachandran and Cavanagh

1985, Ramachandran and Inada 1985) is suggestive to the kind of motion measurement

presented here. Ramachandran and his collaborators observed that the motion of certain

salient image features (such as gratings or illusory squares) tend to dominate the perceived

motion in the enclosed area by masking incoherent motion signals derived from uncorre-

lated random dot patterns, in a winner-take-all fashion. Ramachandran therefore suggested

that motion is computed by using salient features that are matched unambiguously and

that the visual system assumes that the incoherent signals have moved together with those

salient features. The scheme suggested in this chapter may be viewed as a re�nement of

this idea. Motion is \captured" in Ramachandran's sense for the case of a planar surface

in motion, not by assuming the motion of the the salient features, but by computing the

nominal motion transformation. For a non-planar surface the nominal motion is only a

�rst approximation which is further re�ned by use of spatio-temporal detectors, provided

that the remaining residual displacement is in their range, namely, the surface captured

by the frame of reference is su�ciently at. In this view the e�ect of capture attenuates

with increasing depth of points from the reference plane, and is not a�ected, in principle,

by the proximity of points to the salient features in the image plane.

The motion capture phenomenon also suggests that the salient features that are se-

lected for providing a frame of reference must be spatially arranged to provide su�cient

cues that the enclosed pattern is indeed part of the same surface. In other words, not any

arrangement of four non-coplanar points, although theoretically su�cient, is an appropriate

candidate for a frame of reference. This point has also been raised by Subirana-Vilanova

and Richards (1991) in addressing perceptual organization issues. They claim that convex

image chunks are used as a frame of reference that is imposed in the image prior to con-

structing an object description for recognition. The frame then determines inside/outside,

top/bottom, extraction/contraction and near/far relations that are used for matching im-
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age constructs to a model.

Other suggestive data include stereoscopic interpolation experiments by Mitchison and

McKee (1985). They describe a stereogram with a central periodic region bounded by

unambiguously matched edges. Under certain conditions the edges impose one of the

expected discrete matchings (similar to stereoscopic capture, see also Prazdny 1986 ). In

other conditions a linear interpolation in depth occurred between the edges violating any

possible point-to-point match between the periodic regions. The linear interpolation in

depth corresponds to a plane passing through the unambiguously matched points. This

observation may support the idea that correspondence starts with the computation of

nominal motion, which is determined by a small number of salient unambiguously matched

points, and is later re�ned using short-range motion mechanisms.

7.3 Correspondence under a Wide Field of View

The assumption of parallel projection holds approximately for settings in which the object

occupies a relatively narrow �eld of view. One way to extend this method to wider �elds

of view is to assume central projection instead. Under central projection a similar corre-

spondence method would require eight corresponding points as a minimal correspondence

requirement, rather than four. The details are apparent once we consider the correspon-

dence method as proceeding by �rst recovering the epipolar geometry (with which we

can determine correspondence up to an unknown location along the epipolar line passing

through p0) followed by the use of the constant brightness equation to determine the loca-

tion of p0 along its epipolar line. Section 3.8 provides the details of recovering the epipolar

geometry from eight points under central projection.

Another approach is to apply the correspondence method locally by making use of the

geometric interpretation of having a reference plane and a reference point for the nominal

transformation. Given that we have a set of n > 4 corresponding points, we can form a

triangulation on the set of points. The triangulation divides the image into regions, each

with three corresponding points, within which the correspondence method can be applied

independently of other regions (the fourth point can be taken from a neighboring triangle).

Because all neighboring triangles share an edge, the particular solution for triangulation

does not a�ect the resulting ow �eld (Huttenlocher and Ullman 1987 used triangulation

for extending the three-point alignment method to non-rigid objects).
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7.4 Implementation Using a Coarse-to-�ne Architecture

The use of the constant brightness equation for determining the residual motion term �w

assumes that jpwj is small. In practice, the residual motion is not su�ciently small ev-

erywhere and, therefore, a hierarchical motion estimation framework is adopted for the

implementation. The assumption of small residual motion is relative to the spatial neigh-

borhood and to the temporal delay between frames; it is the ratio of the spatial to the

temporal sampling step that is required to be small. Therefore, the smoother the surface

the larger the residual motion that can be accommodated. The Laplacian Pyramid (Burt

and Adelson, 1983) is used for hierarchical estimation by re�ning the estimation of p at

multiple resolutions. The rationale being that large residuals at the resolution of the origi-

nal image are represented as small residuals at coarser resolutions, therefore satisfying the

requirement of small displacement. The p estimates from previous resolutions are used to

bring the image pair into closer registration at the next �ner resolution.

The particular details of implementation follow the \warp"motion framework suggested

by Lucas and Kanade (1981), Bergen and Adelson (1987) and by Bergen and Hingorani

(1990). Described in a nutshell, a synthesized intermediate image is �rst created by ap-

plying the nominal transformation to the �rst view. To avoid subpixel coordinates, we

actually compute ow from the second view towards the �rst view. In other words, the

intermediate frame at location p contains a bilinear interpolation of the brightness values

of the four nearest pixels to the location ~p0 = A(op) + o
0 in the �rst view, where the 2D

a�ne transformation A is computed from view 2 to view 1. The  �eld is estimated incre-

mentally by projecting previous estimates at a coarse resolution to a �ner resolution level.

Gaps in the estimation of p, because of vanishing image gradients or other low con�dence

criteria, are �lled-in at each level of resolution by means of membrane interpolation. Once

the  �eld is projected to the �ner level, the displacement �eld is computed (the vector

pw) and the two images, the intermediate and the second image, are brought into closer

registration. This procedure proceeds incrementally until the �nest resolution has been

reached.

7.4.1 Experimental Results

The correspondence method was applied to images of `Ken' undergoing rigid rotation,

mainly around the vertical axis. Four snapshots were taken covering a range of about 23

degrees of rotation. The light setting consisted of two point light sources located in front
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of the object, 60 degrees apart.

Minimal correspondence of four points was obtained from the ow �eld generated by

the warp motion algorithm (Lucas and Kanade 1981, Bergen and Adelson 1987, Bergen

and Hingorani 1990) along points having good contrast at high spatial frequencies, e.g., the

tip of the eyes, mouth and eye-brows (those points were selected manually, but in principle

they can be determined automatically using measures of con�dence, such as in Anandan

1987, Tomasi 1991).

The combination of the particular light setting and the complexity of the object make

it a challenging experiment for two reasons: (i) the object is su�ciently complex to have

cast shadows and specular points, both of which undergo a di�erent motion than the object

itself, and (ii) because of the light setting, the change in grey-values across the views is not

due entirely to motion but also due to change in relative illumination conditions between

the object and the light sources.

The results of correspondence in all these experiments are displayed in several forms.

The ow �eld is displayed to illustrate the stability of the algorithm, indicated by the

smoothness of the ow �eld. The �rst image is `warped', i.e., all image points are displaced

by the amount speci�ed by the computed ow to create a synthetic image that should

match the second image. The warped image is displayed in order to check for deformations

(or lack there of). Finally, the warped image is compared with the second image by

superimposing, or taking the di�erence of, their edge images that were produced using a

Canny (1983) edge detector with the same parameter settings.

7.4.2 Incremental Long Range Motion

In this experiment, ow was computed independently between each consecutive pair of

images, using a �xed set of four reference points, and then combined to form a ow from

the �rst image, Ken1, to the fourth image, Ken4. The rationale behind this experiment is

that because shape is an integral part of computing correspondence/ow, then ow from

one consecutive pair to the next should add up in a consistent manner.

Figure 7.1 shows the results on the �rst pair of images, Ken1 and Ken2, separated by 6o

rotation. As expected, the location of strong cast shadows (one near the dividing hair line)

and specular points in the warped image do not match those in Ken2. The superimposed

edge images illustrate that correspondence is accurate, at least up to a pixel accuracy level.

The ow �eld is smooth even in the case where no explicit smoothing was done.
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Figure 7.1: Results of shape and correspondence for the pair Ken1 and Ken2. First (top)

K 1 K 2 d th d i K 1 2 S d Ed f K 1 d K 2
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Figure 7.2: Results of combining ow from Ken1 to Ken4. First row: Ken1,Ken4 and the

warped image Ken1-4. Second row: edges of Ken1, Ken4 and edges of both superimposed.

Third row: edges of Ken1-4, edges of Ken4 and edges of Ken1-4 superimposed, ow �eld

from Ken1 to Ken4 (scaled for display).
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Figure 7.2 shows the results of combining ow across consecutive pairs computed in-

dependently (using the same four reference points) to produce ow from Ken1 to Ken4.

Except for the point specularities and the strong shadow at the hair line, the di�erence

between the warped image and Ken4 is only at the level of di�erence in brightness (because

of change in viewing angle). No apparent deformation is observed in the warped image.

The ow �eld is as smooth as the ow from Ken1 to Ken2, implying that ow was combined

in a consistent manner.

7.4.3 Comparison With Optical Flow Methods

With the correspondence method presented here we have exchanged the smoothness as-

sumption, used in optical ow methods, with the assumption that the world is rigid (under-

going parallel or central projection). The rigidity-based approach is, therefore, less general

than smoothness-based optical ow methods. The question we address in this section is

whether there is a practical reason for preferring the rigidity-based method over other, more

general, optical ow methods. In many practical situations full correspondence is being

sought for purposes of recovering rigid structure from motion, or for purposes of modeling

a rigid structure by full correspondence between two or more of its views. The images

of `Ken', for example, are particularly challenging for smoothness-based methods because

of the relative small number of intensity corners in the image. As a result, a relatively

small number of \good" correspondences would determine, by means of smoothness, the

correspondences everywhere else.

We applied two well-known optical ow methods: a di�erential technique following

Lucas and Kanade (1981) and Adelson and Bergen (1987), and a region-based technique

due to Anandan (1987). Both algorithms received good reviews in a recent quantitative

study held by Barron, Fleet, Beauchemin and Burkitt (1991). We used the implementation

of Anandan's method found in KB-Vision (image processing shell) written at the University

of Massachusetts. The implementation of the Lucas-Kanade technique was adopted from

Bergen and Hingorani (1990).

Figure 7.3 displays the resulting ow �eld produced by both algorithms on the pair

Ken1 and Ken2 (short-range motion). The quality of the ow �eld (in subjective terms of

smoothness and regularity) is slightly better with Lucas-Kanade's algorithm, than Anan-

dan's. The ow �eld produced by our method looks smoother and has fewer ow vectors

that change direction in an abrupt manner. We applied next Lucas-Kanade's algorithm

to the sequence Ken1 to Ken4 to see how stable the ow �eld is when ow is combined
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Figure 7.3: Flow �eld on the pair Ken1 and Ken2, produced by alternative methods.

Row 1: left image is the ow produced by Lucas-Kanade algorithm, right image is the

ow produced by Anandan's algorithm. Row 2: The ow produced by our algorithm (for

comparison).
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Figure 7.4: Flow �eld incrementally added from Ken1 to Ken4. Top Row: left image is

the ow produced by Lucas-Kanade algorithm, right image is the warped image created

by warping Ken1 using the computed ow. Bottom Row: The ow and warped image

produced by our algorithm (for comparison).
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incrementally along each consecutive pair. If the ow between each consecutive pair is not

su�ciently accurate, then the incremental addition will cause errors to accumulate and

produce an overall distorted ow �eld. As we saw in Figure 7.2, this did not happen with

our algorithm and the ow was added in a consistent manner. Figure 7.4 shows the results

for the Lucas-Kanade algorithm. The ow �eld is considerably less smooth than before and

has several distinct pockets of discontinuity in the direction of ow vectors. Also shown

is the `warped' image using the Lucas-Kanade ow �eld where the lack of smoothness is

apparent in several distinct deformations in the warped image.

7.4.4 Long Range Motion

The two-stage scheme for measuring motion | nominal motion followed by a short-range

residual motion detection | suggests that long-range motion can be handled in an area

enclosed by the privileged points. The restriction of short-range motion is replaced by

the restriction of limited depth variation from the reference plane. As long as the depth

variation is limited, then correspondence should be obtained regardless of the range of

motion. Note that this is true as long as we are su�ciently far away from the object's

bounding contour. The larger the rotational component of motion | the larger the number

of points that go in and out of view. Therefore, we should not expect good correspondence

at the boundary. The claim that is tested in the following experiment, is that under long

range motion, correspondence is accurate in the region enclosed by the frame of reference,

i.e., points that are relatively far away from the boundary.

Figure 7.5 shows the results of computing ow directly from Ken1 to Ken4. Note the

e�ect of the nominal motion transformation applied to Ken1. The nominal motion brings

points closer together inside the frame of reference; points near the boundary are taken

farther apart from their corresponding points because of the large depth di�erence between

the object's rim and the reference plane. The warped image looks very similar to Ken4

except near the boundary. The deformation at the boundary may be due to both the

relatively large residual displacement, remaining after nominal motion was applied, and to

the repetitive intensity structure of the hair; Therefore it may be that the frequency of the

hair structure caused a misalignment at some level of the pyramid which was propagated.
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Figure 7.5: Results of computing long-range ow from Ken1 to Ken4. First (top) row:

Ken1,Ken4 and the warped image Ken1-4. Second row: Edges of Ken1 and Ken4 super-

imposed, edges of Ken4 and edges of Ken1-4. Third row: Edges of Ken4 superimposed

on edges of the nominal transformed Ken1, edges of Ken4 and Ken1-4 superimposed, and

di�erence between edges of Ken4 and edges of Ken1-4.
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7.5 Chapter Summary

We have approached the correspondence problem by combining two sources of information

into a single computational scheme. One source of information comes from assuming that

the object is rigid, and therefore a small number of known correspondences can constrain

correspondences everywhere else, and the second source of information comes from the

spatio-temporal image intensity distribution. Taken together, these sources of information

completes the system of equations for determining correspondence for all other points. The

full correspondence problem is, therefore, reduced to the problem of achieving minimal

correspondence, i.e., �nding a small number of corresponding points whose detection is

una�ected by geometric and photometric transformations.



The Combined Recognition Problem: Geometry and

Illumination

Chapter 8

We have described so far three components that are necessary building blocks for dealing

with recognition via alignment under the geometric and photometric sources of variability.

First, is the component describing the geometric relation between two model views and a

novel view of an object of interest. Second, is the component describing the photomet-

ric relation between three model images and a novel image of the object. Third, is the

correspondence component with which it becomes possible to represent objects by a small

number of model images. The geometric and photometric components were treated inde-

pendently of each other. In other words, the photometric problem assumed the surface is

viewed from a �xed viewing position. The geometric problem assumed that the views are

taken under a �xed illumination condition, i.e., the displacement of feature points across

the di�erent views is due entirely to a change of viewing position. In practice, the visual

system must confront both sources of variability at the same time. The combined geometric

and photometric problem was de�ned in Section 1.2 and is reproduced below:

Combined Problem: We assume we are given three model images of a 3D matte object

taken under di�erent viewing positions and illumination conditions. For any input image,

determine whether the image can be produced by the object from some viewing position and

by some illumination condition.

The combined problem de�nition suggests that the problem be solved in two stages:

�rst, changes in viewing positions are compensated for, such that the three model images

are aligned with the novel input image. Second, changes of illumination are subsequently

compensated for, by using the photometric alignment method. In the following sections we

describe several experiments with `Ken' images starting from the procedure that was used

for creating the model images, followed by three recognition situations: (i) the novel input

image is represented by its grey-levels, (ii) the input representation consists of sign-bits,

and (iii) the input representation consists of grey-levels, but the model images are taken

125
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from a �xed viewing position (di�erent from the viewing position of the novel image). In

this case we make use of the sign-bits in order to achieve photometric alignment although

the novel image is taken from a di�erent viewing position.

8.1 Creating a Model of the Object

The combined recognition problem implies that the model images represent both sources of

variability, i.e., be taken from at least two distinct viewing positions and from three distinct

illumination conditions. The three model images displayed in the top row of Figure 8.1 were

taken under three distinct illumination conditions, and from two distinct viewing positions

(23o apart, mainly around the vertical axis). In order to apply the correspondence method

described in the previous chapter, we took an additional image in the following way. Let

the three illumination conditions be denoted by the symbols S1; S2; S3, and the two viewing

positions be denoted by V1; V2. The three model images, from left to right, can be described

by < V1; S1 >;< V2; S2 > and < V1; S3 >, respectively. Since the �rst and third model

images are taken from the same viewing position, the two images are already aligned. In

order to achieve full correspondence between the �rst two model images, a fourth image

< V2; S1 > was taken. Correspondence between < V1; S1 > and < V2; S1 > was achieved

via the correspondence method described in the previous chapter. Since < V2; S1 > and

< V2; S2 > are from the same viewing position, then the correspondence achieved previously

holds also between the �rst and second model images. The fourth image < V2; S1 > was

then discarded and did not participate in subsequent recognition experiments.

8.2 Recognition from Grey-Level Images

The method for achieving recognition under both sources of variability is divided into

two stages: �rst, the three model images are re-projected onto the novel image. This is

achieved by solving for minimal correspondence between the novel image and one of the

model images. With minimal correspondence of four points across the images (model and

novel) we can predict the new locations of model points that should match with the novel

image (in central projection we need six or eight points). Second, photometric alignment

is subsequently applied by selecting a number of points (no correspondence is needed at

this stage because all images are now view-compensated) to solve for the linear coe�cients.

The three model images are then linearly combined to produce a synthetic image that is

both view and illumination compensated, i.e., should match the novel image.
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Figure 8.1: Recognition from full grey-level novel image (see text for more detailed de-

scription). Row 1 (left to right): Three model images (the novel image is shown third

row lefthand display). Row 2: View-compensated model images | all three model images

are transformed (using four points) as if viewed from the novel viewing position. Row 3:

Novel image, edges of novel image, photometric alignment of the three view-compensated

model images (both view and illumination compensated). Row 4: Edges of the resulting

synthesized image (third row righthand), overlay of edges of novel and synthesized image.
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Figure 8.1 illustrates the chain of alignment transformations. The novel image, dis-

played in the third row left image, is taken from an in-between viewing position and

illumination condition. Although, in principle, the recognition components are not lim-

ited to in-between situations, there are few practical limitations. The more extrapolated

the viewing position is, the more new object points appear and old object points disap-

pear, and similarly, the more extrapolated the illumination condition is, the more new cast

shadows are created (see Section 5.1.1). Minimal correspondence was achieved by manually

selecting four points that corresponded to the far corners of the eyes, one eye-brow corner,

and one mouth corner. These points were matched across the model views by applying the

warp motion algorithm (Lucas and Kanade 1981, Bergen and Adelson 1987). Re-projection

was then achieved by using the a�ne structure method, described in Section 2.3 (which

is the same as applying the linear combination of views method). Then the model views

were re-projected onto the novel view, and their original grey-values retained. As a result,

we have created three synthesized model images (shown in Figure 8.1, second row) that

are from the same viewing position as the novel image, but have di�erent image intensity

distributions due to changing illumination. The photometric alignment method was then

applied to the three synthesized model images and the novel image, without having to deal

with correspondence because all four images were already aligned. The sample points for

the photometric alignment method were chosen automatically by searching over smooth

regions of image intensity (as described in Section 5.1.3). The resulting synthesized image

is displayed in Figure 8.1, third row right image. The similarity between the novel and the

synthesized image is illustrated by superimposing the step edges of the two images (Figure

8.1, bottom row right image).

Almost identical results were obtained by assuming central projection and using the

6-point scheme. Two additional points for the minimal correspondence were selected: an

eye-brow corner, and the other mouth corner (the two eye corners and the two mouth

corners are approximately coplanar). The 8-point method requires in practice slightly

more corresponding points (10 points in a least-squares solution for the epipoles were

su�cient for achieving comparable results), which was partly due to the fact that this

particular object does not contain many points that can be reliably matched using optical

ow techniques (i.e., points at corners of intensity).

Since `Ken' images in this experiment are approximately orthographic, the remaining

experiments were done under the assumption of parallel projection, i.e., we used either

the a�ne structure method or the linear combination of views. It is worthwhile noting,
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that with parallel projection, the combined recognition problem can be solved by simply

applying certain linear combinations of the model views.

8.3 Recognition from Reduced Images

A similar procedure to the one described above can be applied to recognize a reduced

novel image. In this case the input image is taken from a novel viewing position and

illumination condition followed by a thresholding operator (unknown to the recognition

system). Figure 8.2 illustrates the procedure. We applied the linear combination method

of re-projection and used more than the minimum required four points. In this case it is

more di�cult to extract corresponding points between the thresholded input and the model

images reliably. Therefore, seven points were manually selected and their corresponding

points were manually estimated in the model images. The linear combination method

was then applied using a least squares solution for the linear coe�cients to produce three

synthesized view-compensated model images. The photometric alignment method from

sign-bits was then applied (Section 6.3) using a similar distribution of sample points as

shown in Figure 6.1.

We consider next another case of recognition from reduced images, in which we make

use of the property exact alignment is nor required when using sign-bits.

8.4 Recognition from a Single Viewing Position

Photometric alignment from sign-bits raises the possibility of compensating for changing

illumination without needing an exact correspondence between the model images and the

novel image. The reason lies in the way points are sampled for setting the system of inequal-

ities, that is, points are sampled relatively far away from the contours (see Section 6.3).

In addition, the separation of image displacements into nominal and residual components

(Section 7.2) suggests that in an area of interest bounded by at least three reference points,

the nominal transformation alone may be su�cient to bring the model images close enough

to the novel image so that we can apply the photometric alignment from sign bits method.

Consider, for example, the e�ect of applying only the nominal transformation between

two di�erent views (Figure 8.3). Superimposing the two views demonstrates that the

displacement is concentrated mostly in the center area of the face (most likely the area in

which we would like to select the sample points). By selecting three corresponding points
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Figure 8.2: Recognition from a reduced image. Row 1 (left to right): novel thresholded im-

age; its level-crossings (the original grey-levels of the novel image are shown in the previous

�gure, third row on the left). Row 2: the synthesized image produced by the recognition

procedure; its level-crossings. Row 3: overlay of both level-crossings for purposes of veri-

fying the match.
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Figure 8.3: Demonstrating the e�ect of applying only the nominal transformation between

two distinct views. Row 1: edges of two distinct views. Row 2: overlay of both edge image,

and overlay of the edges of the left image above and the nominally transformed righthand

image.

covering the center area of the face (two extreme eye corners and one mouth corner), the

2D a�ne transformation (nominal transformation) accounts for most of the displacement

in the area of interest at the expense of large displacements at the boundaries (Figure 8.3,

bottom row on the right).

Taken together, the use of sign-bits and the nominal transformation suggests that

one can compensate for illumination and for relatively small changes in viewing positions

from model images taken from the same viewing position. We apply �rst the nominal

transformation to all three model images and obtain three synthesized images. We then

apply the photometric alignment from sign-bits to recover the linear coe�cients used for

compensating for illumination. The three synthesized images are then linearly combined

to obtain an illumination-compensated image. The remaining displacement between the

synthesized image and the novel image can be recovered by applying the residual motion

transformation (along the epipolar direction using the constant brightness equation).

Figure 8.4 illustrates the alignment steps. The three model images are displayed in the
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top row and are the same as those used in Chapter 5 for compensating for illumination

alone. The novel image (second row, left display) is the same as in Figure 8.1, i.e., it is

taken from a novel viewing position and novel illumination condition. The image in the

center of the second row illustrates the result of attempting to recover the correspondence

(using the full correspondence method described in the previous chapter) between the novel

image and one of the model images without �rst compensating for illumination. The image

on the left in the third row is the result of �rst applying the nominal transformation to the

three model images followed by the photometric alignment using the sign-bits (the sample

points used by the photometric alignment method are displayed in the image on the right

in the second row). The remaining residual displacement between the latter image and the

novel image is recovered using the full correspondence method and the result is displayed

in the center image in the third row. The similarity between the �nal synthesized image

and the novel image is illustrated by superimposing their step edges (fourth row, right

display).
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Figure 8.4: Recognition from a single viewing position (see text for details).
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Conclusions and Discussion

Chapter 9

This chapter provides an opportunity to step back and look over the range of issues and

technical results presented in this thesis. Our major goal was to gain new understandings

of geometric and photometric issues relevant to visual recognition. The starting point of

our research was that computer visual recognition has almost exclusively focused on only

one source of variability, i.e., the geometric problem of recognition under changing viewing

positions. Moreover, the methods for handling the geometric problem, both in recognition

as well as in SFM, leaves open many important issues. For example, we have argued that

the transition between orthographic and perspective models is problematic, the notion of

camera calibration is also problematic, and the representation of structure is largely an

open issue that has not received much attention, yet has signi�cant rami�cations on the

kind of technical results that can be obtained.

The new technical results presented in this thesis are largely based on the way we viewed

the range of geometric and photometric issues. In the geometric domain we emphasized

three central issues: �rst and foremost, is that the transition from parallel to central

projection can be made natural and transparent if we have the same representation of

structure under both projection models. This, for example, implied that previous work on

a�ne structure should be extended in the way of introducing a new geometric invariant,

rather than to recover projective coordinates. Second, is the use of non-metric methods

for recognition and SFM by means of adopting the model of central projection. Third,

is the connection between alignment-based recognition and SFM. We have emphasized

the similarity between the two by showing that in parallel projection one can derive an

alignment scheme (the linear combination of views) that appears not to involve structure

nor camera geometry from a SFM method (a�ne structure from two views). This implies

that although our main interest is to achieve recognition via alignment, it may be useful

to approach the problem from the standpoint of SFM.

In the photometric domain we observed, both from a practical point of view and from
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empirical observations of human vision, that changing illumination is a source of variability

that in some cases appears to be factored out during the recognition process in a model-

based manner. Related to that we have also observed that edges alone are sometimes

not su�cient for visual interpretation, but slightly more than edges are su�cient. The

central question is then, what information from the image should be carried on to high

level visual processes, and how is this information used within the context of recognition?

This direction is substantially di�erent from the mainstream approach of treating the

photometric aspect mostly at the level of feature or edge detection.

The technical contributions made in this thesis can be divided into three parts: geomet-

ric related contributions, photometric related, and contributions related to the combination

of both sources of information.

� The major technical contribution in the geometric part was made in Theorem 1 by

showing that besides recovering the epipoles, parallel projection and central projec-

tion are essentially the same. In other words, a relative structure invariant, that

holds under both projection models, can be de�ned relative to four points in space

and, moreover, it can be uniquely recovered from two views regardless of whether

one or the other was created by means of parallel or central projection.

� The technical contributions in the photometric part included the photometric align-

ment method, and the use of sign-bit information for achieving recognition.

� The method for achieving full correspondence between two views provided a technical

contribution in the domain of putting together geometry (assumption of rigidity)

and grey-values into a single computational scheme. This approach di�ers from

the mainstream of current methods for achieving correspondence or optical ow.

Instead of assuming an arbitrary smooth transformation between the two images,

we assumed that the two images are di�erent projections (parallel or central) of the

same rigid object. This assumption together with the spatio-temporal image intensity

distribution is su�cient for obtaining correspondence.

Finally, we have shown how the geometric, photometric, and the correspondence compo-

nents can be put together to solve for the combined recognition problem, i.e., recognition of

an image of a familiar object taken from a novel viewing position and a novel illumination

condition.
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9.1 Future Directions

The photometric part of this thesis has been developed to a lesser extent than the geometric

part. The reason is partly due to the lack of prior research in this domain, and partly due

to the relatively large number of related issues that did not fall within the scope of this

thesis. We sketch below some of these issues.

The ability to interpret Mooney images of faces may suggest that these images are

an extreme case of a wider phenomenon. Some see it as a tribute to the human ability

to separate shadow borders from object borders (Cavanagh, 1990); in this thesis we have

noted that the phenomenon may indicate that in some cases illumination is factored out

in a model-based manner and that the process responsible apparently requires more than

just contour information, but only slightly more. A possible topic of future research in

this domain would be to draw a connection, both at the psychophysical and computational

levels, between Mooney images and more natural kinds of inputs. For example, images

seen in newspapers, images taken under poor lighting, and other low quality imagery have

less shading information to rely on and their edge information may be highly unreliable,

yet are interpreted without much di�culty by the human visual system. Another related

example, is the image information contained in draftsmen's drawings. Artists rarely use

just contours in their drawings and rely on techniques such as \double stroking" to create

a sense of relief (surface recedes towards the contours) and highlights to make the surface

protude. These pictorial additions that artists introduce are generally not interpretable at

the level of contours alone, yet do not introduce any direct shading information.

Another related topic of future interest is the level at which sources of variability

are compensated for. In this thesis the geometric and photometric sources of variability

were factored out based on connections between di�erent images of individual objects.

The empirical observations we used to support the argument that illumination should be

compensated for in a model-based manner, actually indicate that if indeed such a process

exists, it is likely to take place at the level of classifying the image as belonging to a

general class of objects, rather than at the level of identifying the individual object. This

is simply because the Mooney images are of generally unfamiliar faces, and therefore, the

only model-based information available is that we are looking at an image of a face. A

similar situation may exist in the geometric domain as well, as it is known that humans

can recognize novel views just from a single view of the object.

There are also questions of narrower scope related to the photometric domain that may
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be of general interest. The question of image representation in this thesis was applied only

to the novel image. A more general question should apply to the model acquisition stage

as well. In other words, what information needs to be extracted from the model images, at

the time of model acquisition, in order to later compensate for photometric e�ects? This

question applies to both the psychophysical and computational aspects of the problem. For

example, can we learn to generalize to novel images just from observing many Mooney-type

images of the object? (changing illumination, viewing positions, threshold, and so forth).

A more basic question is whether the Mooney phenomenon is limited exclusively to faces.

And if not, what level of familiarity with the object, or class of objects, is necessary in

order to generalize to other Mooney-type images of the same object, or class of objects.

At a more technical level, there may be interest in further pursuing the use of sign-bits.

The sign-bits were used as a source of partial observations that, taken together, can restrict

su�ciently well the space of possible solutions for the photometric alignment scheme. In

order to make further use of this idea, and perhaps apply it to other domains, the question

of how to select sample points, and the number and distribution of sample points, should

be addressed in a more systematic manner.

Finally, regarding the connection between projective structure and alignment under

central projection. We have shown that in parallel projection the linear combination of

views can be derived from the method of recovering a�ne structure from two views. In order

to close the loop, it may be of interest to show a similar connection in central projection and

as a result extend the linear combination result to one that applies to central projection.

We know that this is possible and plan to do it in the future.



Fundamental Theorem of Plane Projectivity

Appendix A

The fundamental theorem of plane projectivity states that a projective transformation

of the plane is completely determined by four corresponding points. We prove the theorem

by �rst using a geometric drawing, and then algebraically by introducing the concept of

rays (homogeneous coordinates). The appendix ends with the system of linear equations

for determining the correspondence of all points in the plane, given four corresponding

points (used repeatedly throughout this paper).

De�nitions: A perspectivity between two planes is de�ned as a central projection

from one plane onto the other. A projectivity is de�ned as made out of a �nite sequence

of perspectivities. A projectivity, when represented in an algebraic form, is called a pro-

jective transformation. The fundamental theorem states that a projectivity is completely

determined by four corresponding points.

Geometric Illustration

Consider the geometric drawing in Figure A.1. Let A;B;C; U be four coplanar points in

the scene, and let A0
; B

0
; C

0
; U

0 be their projection in the �rst view, and A
00
; B

00
; C

00
; U

00 be

their projection in the second view. By construction, the two views are projectively related

to each other. We further assume that no three of the points are collinear (four points form

a quadrangle), and without loss of generality let U be located within the triangle ABC.

Let BC be the x-axis and BA be the y-axis. The projection of U onto the x-axis, denoted

by Ux, is the intersection of the line AU with the x-axis. Similarly Uy is the intersection

of the line CU with the y-axis. because straight lines project onto straight lines, we have

that Ux; Uy correspond to U
0

x; U
0

y if and only if U corresponds to U 0. For any other point P ,

coplanar with ABCU in space, its coordinates Px; Py are constructed in a similar manner.

We therefore have that B;Ux; Px; C are collinear and therefore the cross ratio must be
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Figure A.1: The geometry underlying plane projectivity from four points.

equal to the cross ratio of B0
; U

0

x; P
0

x; C
0, i.e.

BC � UxPx
BPx � UxC

=
B
0
C
0 � U 0

xP
0

x

B
0
P
0
x � U 0

xC
0
:

This form of cross ratio is known as the canonical cross ratio. In general there are 24

cross ratios, six of which are numerically di�erent (see Appendix B for more details on

cross-ratios). Similarly, the cross ratio along the y-axis of the reference frame is equal to

the cross ratio of the corresponding points in both views.

Therefore, for any point p0 in the �rst view, we construct its x and y locations, p0x; p
0

y,

along B0
C
0 and B

0
A
0, respectively. From the equality of cross ratios we �nd the locations

of p00x; p
00

y , and that leads to p
00. Because we have used only projective constructions, i.e.

straight lines project to straight lines, we are guaranteed that p0 and p
00 are corresponding

points.

Algebraic Derivation
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From an algebraic point of view it is convenient to view points as laying on rays ema-

nating from the center of projection. A ray representation is also called the homogeneous

coordinates representation of the plane, and is achieved by adding a third coordinate. Two

vectors represent the same point X = (x; y; z) if they di�er at most by a scale factor (di�er-

ent locations along the same ray). A key result, which makes this representation amenable

to application of linear algebra to geometry, is described in the following proposition:

Proposition 11 A projectivity of the plane is equivalent to a linear transformation of the

homogeneous representation.

The proof is omitted here, and can be found in Tuller (1967, Theorems 5.22, 5.24). A

projectivity is equivalent, therefore, to a linear transformation applied to the rays. Because

the correspondence between points and coordinates is not one-to-one, we have to take scalar

factors of proportionality into account when representing a projective transformation. An

arbitrary projective transformation of the plane can be represented as a non-singular linear

transformation (also called collineation) �X 0 = TX , where � is an arbitrary scale factor.

Given four corresponding rays pj = (xj ; yj ; 1)  ! p
0

j = (x0j ; y
0

j ; 1), we would like to

�nd a linear transformation T and the scalars �j such that �jp
0

j = Tpj . Note that because

only ratios are involved, we can set �4 = 1. The following are a basic lemma and theorem

adapted from Semple and Kneebone (1952).

Lemma 1 If p1; :::; p4 are four vectors in R
3, no three of which are linearly dependent,

and if e1; :::; e4 are respectively the vectors (1; 0; 0); (0; 1; 0); (0; 0; 1); (1; 1; 1), there exists

a non-singular linear transformation A such that Aej = �jpj, where the �j are non-zero

scalars; and the matrices of any two transformations with this property di�er at most by a

scalar factor.

Proof: Let pj have the components (xj ; yj ; 1), and without loss of generality let �4 = 1.

The matrix A satis�es three conditions Aej = �jpj , j = 1; 2; 3 if and only if �jpj is the

j'th column of A. Because of the fourth condition, the values �1; �2; �3 satisfy

[p1; p2; p3]

0
BB@

�1

�2

�3

1
CCA = p4

and since, by hypothesis of linear independence of p1; p2; p3, the matrix [p1; p2; p3] is non-

singular, the �j are uniquely determined and non-zero. The matrix A is therefore deter-

mined up to a scalar factor.
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Theorem 4 If p1; :::; p4 and p
0

1; :::; p
0

4 are two sets of four vectors in R
3, no three vectors

in either set being linearly dependent, there exists a non-singular linear transformation T

such that Tpj = �jp
0

j (j = 1; :::; 4), where the �j are scalars; and the matrix T is uniquely

determined apart from a scalar factor.

Proof: By the lemma, we can solve for A and �j that satisfy Aej = �jpj (j = 1; :::; 4),

and similarly we can choose B and �j to satisfy Bej = �jp
0

j ; and without loss of generality

assume that �4 = �4 = 1. We then have, T = BA
�1 and �j =

�j

�j
. If, further, Tpj = �jp

0

j

and Upj = �jp
0

j , then TAej = �j�jp
0

j and UAej = �j�jp
0

j ; and therefore, by the lemma,

TA = �UA, i.e., T = �U for some scalar � .

The immediate implication of the theorem is that one can solve directly for T and

�j (�4 = 1). Four points provide twelve equations and we have twelve unknowns (nine

for T and three for �j). Furthermore, because the system is linear, one can look for a

least squares solution by using more than four corresponding points (they all have to be

coplanar): each additional point provides three more equations and one more unknown

(the � associated with it).

Alternatively, one can eliminate �j from the equations, set T3;3 = 1 and set up directly

a system of eight linear equations as follows. In general we have four corresponding rays

pj = (xj ; yj; zj) ! p
0

j = (x0j ; y
0

j; z
0

j), j = 1; :::; 4, and the linear transformation T satis�es

�jp
0

j = Tpj . By eliminating �j , each pair of corresponding rays contributes the following

two linear equations:

xjt1;1 + yjt1;2 + zj t1;3 �
xjx

0

j

z
0

j

t3;1 �
yjx

0

j

z
0

j

t3;2 =
zjx

0

j

z
0

j

xjt2;1 + yj t2;2 + zjt2;3 �
xjy

0

j

z
0

j

t3;1 �
yjy

0

j

z
0

j

t3;2 =
zjy

0

j

z
0

j

A similar pair of equations can be derived in the case z0j = 0 (ideal points) by using

either x0j or y
0

j (all three cannot be zero).

Projectivity Between Two image Planes of an Uncalibrated Camera

We can use the fundamental theorem of plane projectivity to recover the projective

transformation that was illustrated geometrically in Figure A.1. Given four corresponding

points (xj ; yj) ! (x0j ; y
0

j) that are projected from four coplanar points in space we would

like to �nd the projective transformation A that accounts for all other correspondences

(x; y) ! (x0; y0) that are projected from coplanar points in space.
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Figure A.2: Setting a projectivity under parallel projection.

The standard way to proceed is to assume that both image planes are parallel to their

xy plane with a focal length of one unit, or in other words to embed the image coordinates

in a 3D vector whose third component is 1. Let pj = (xj ; yj; 1) and p
0

j = (x0j ; y
0

j; 1)

be the the chosen representation of image points. The true coordinates of those image

points may be di�erent (if the image plane are in di�erent positions than assumed), but

the main point is that all such representations are projectively equivalent to each other.

Therefore, �jpj = Bp̂j and �jp
0

j = Cp̂
0

j , where p̂j and p̂
0

j are the true image coordinates of

these points. If T is the projective transformation determined by the four corresponding

points p̂j  ! p̂
0

j , then A = CTB
�1 is the projective transformation between the assumed

representations pj  ! p
0

j .

Therefore, the matrix A can be solved for directly from the correspondences pj  ! p
0

j

(the system of eight equations detailed in the previous section). For any given point

p = (x; y; 1), the corresponding point p
0 = (x0; y0; 1) is determined by Ap followed by

normalization to set the third component back to 1.

A.1 Plane Projectivity in A�ne Geometry

In parallel projection we can take advantage of the fact that parallel lines project to parallel

lines. This allows to de�ne coordinates on the plane by subtending lines parallel to the
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axes (see Figure A.2). Note also that the two trapezoids BB0
p
0

xpx and BB
0
C
0
C are similar

trapezoids, therefore,
BC

pxC
=
B
0
C
0

p
0
xC

0
:

This provides a geometric derivation of the result that three points are su�cient to set up

a projectivity between any two planes under parallel projection.

Algebraically, a projectivity of the plane can be uniquely represented as a 2D a�ne

transformation of the non-homogeneous coordinates of the points. Namely, if p = (x; y)

and p
0 = (x0; y0) are two corresponding points, then

p
0 = Ap+ w

where A is a non-singular matrix and w is a vector. The six parameters of the transforma-

tion can be recovered from two non-collinear sets of three points, po; p1; p2 and p
0

o; p
0

1; p
0

2.

Let

A =

2
4 x

0

1 � x
0

o; x
0

2 � x
0

o

y
0

1 � y
0

o; y
0

2 � y
0

o

3
5
2
4 x1 � xo; x2 � xo

y1 � yo; y2 � yo

3
5
�1

and w = p
0

o � Apo, which together satisfy p
0

j � p
0

o = A(pj � po) for j = 1; 2. For any

arbitrary point p on the plane, we have that p is spanned by the two vectors p1 � po and

p2 � po, i.e., p � po = �1(p1 � po) + �2(p2 � po); and because translation in depth is lost

in parallel projection, we have that p0 � p
0

o = �1(p
0

1 � p
0

o) + �2(p
0

2 � p
0

o), and therefore

p
0 � p

0

o = A(p� po).



Cross-Ratio and the Linear Combination of Rays

Appendix B

The cross-ratio of four collinear points A;B;C;D is preserved under central projection

and is de�ned as:

� =
AB

AC

� DB

DC

=
A
0
B
0

A
0
C
0
� D

0
B
0

D
0
C
0
;

(see Figure B.1). All permutations of the four points are allowed, and in general there

are six distinct cross-ratios that can be computed from four collinear points. Because the

cross-ratio is invariant to projection, any transversal meeting four distinct concurrent rays

in four distinct points will have the same cross ratio | therefore one can speak of the

cross-ratio of rays (concurrent or parallel) a; b; c;d.

The cross-ratio result in terms of rays, rather than points, is appealing for the reasons

that it enables the application of linear algebra (rays are represented as points in homo-

geneous coordinates), and more important, enables us to treat ideal points as any other

point (critical for having an algebraic system that is well de�ned under both central and

parallel projection).

The cross-ratio of rays is computed algebraically through linear combination of points

in homogeneous coordinates (see Gans 1969, pp. 291{295), as follows. Let the the rays

a; b; c;d be represented by vectors (a1; a2; a3); :::; (d1; d2; d3), respectively. We can represent

the rays a;d as a linear combination of the rays b; c, by

a = b+ kc

d = b+ k

0
c

For example, k can be found by solving the linear system of three equation �a = b + kc

with two unknowns �; k (one can solve using any two of the three equations, or �nd a

least squares solution using all three equations). We shall assume, �rst, that the points are

Euclidean. The ratio in which A divides the line BC can be derived by:

AB

AC

=

a1
a3
� b1

b3
a1
a3
� c1

c3

=

b1+kc1
b3+kc3

� b1
b3

b1+kc1
b3+kc3

� c1
c3

= �kc3
b3
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A

B

C

D

A’

B’

C’

D’

a

b

c

d

Figure B.1: The cross-ratio of four distinct concurrent rays is equal to the cross-ratio of

the four distinct points that result from intersecting the rays by a transversal.

Similarly, we have DB
DC

= �k0 c3
b3

and, therefore, the cross-ratio of the four rays is � = k
k0 .

The same result holds under more general conditions, i.e., points can be ideal as well:

Proposition 12 If A;B;C;D are distinct collinear points, with homogeneous coordinates

b+ kc; b; c; b+ k
0
c, then the canonical cross-ratio is k

k0 .

(for a complete proof, see Gans 1969, pp. 294{295). For our purposes it is su�cient to

consider the case when one of the points, say the vector d, is ideal (i.e. d3 = 0). From the

vector equation �d = b+ k
0
c, we have that k0 = � b3

c3
and, therefore, the ratio DB

DC
= 1. As

a result, the cross-ratio is determined only by the �rst term, i.e., � = AB
AC

= k | which

is what we would expect if we represented points in the Euclidean plane and allowed the

point D to extend to in�nity along the line A;B;C;D (see Figure B.1).

The derivation so far can be translated directly to our purposes of computing the

projective shape constant by replacing a; b; c;d with p
0
; ~p0; p̂0; Vl, respectively.



On Epipolar Transformations

Appendix C

Proposition 13 The epipolar lines pVr and p
0
Vl are perspectively related.

Proof: Consider Figure C.1. We have already established that p projects onto the

left epipolar line p0Vl. By de�nition, the right epipole Vr projects onto the left epipole Vl,

therefore, because lines are projective invariants the line pVr projects onto the line p
0
Vl.

The result that epipolar lines in one image are perspectively related to the epipolar

lines in the other image, implies that there exists a projective transformation F that

maps epipolar lines lj onto epipolar lines l0j , that is Flj = �jl
0

j , where lj = pj � Vr and

l
0

j = p
0

j � Vl. From the property of point/line duality of projective geometry (Semple and

Kneebone, 1952), the transformation E that maps points on left epipolar lines onto points

on the corresponding right epipolar lines is induced from F , i.e., E = (F�1)t.

Proposition 14 (point/line duality) The transformation for projecting p onto the left

epipolar line p0Vl, is E = (F�1)t.

Proof: Let l; l0 be corresponding epipolar lines, related by the equation �l0 = Fl. Let p; p0

be any two points, one on each epipolar line (not necessarily corresponding points). From

the point/line incidence axiom we have that lt � p = 0. By substituting l we haveh
�F

�1
l

0

it
� p = 0 =) �l

0t �
h
F

�t
p

i
= 0:

Therefore, the collineation E = (F�1)t maps points p onto the corresponding left epipolar

line.

It is intuitively clear that the epipolar line transfomation F is not unique, and there-

fore the induced transformation E is not unique either. The correspondence between the

epipolar lines is not disturbed under translation along the line V1V2, or under non-rigid

camera motion that results from tilting the image plane with respect to the optical axis

such that the epipole remains on the line V1V2.
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Figure C.1: Epipolar lines are perspectively related.

Proposition 15 The epipolar transformation F is not unique.

Proof: A projective transformation is determined by four corresponding pencils.

The transformation is unique (up to a scale factor) if no three of the pencils are linearly

dependent, i.e., if the pencils are lines, then no three of the four lines should be coplanar.

The epipolar line transformation F can be determined by the corresponding epipoles,

Vr  ! Vl, and three corresponding epipolar lines lj  ! l
0

j . We show next that the

epipolar lines are coplanar, and therefore, F cannot be determined uniquely.

Let pj and p
0

j , j = 1; 2; 3, be three corresponding points and let lj = pj � Vr and

l
0

j = p
0

j � Vl. Let �p3 = �p1 + �p2, �+ � = 1, be a point on the epipolar line p3Vr collinear

with p1; p2. We have,

l3 = p3 � Vr = (a�p3 + bVr)� Vr = a�p3 � Vr = a�l1 + a�l2;

and similarly l
0

3 = �
0
l
0

1 + �
0
l
0

2.



Computational Background on Image Formation

Appendix D

D.1 The Standard Model of Image Formation

Image formation in a biological system is formed by the response of retinal photo-receptors,

called cones, to incoming light from the scene, also referred to as scene radiance. Retinal

cones come in three types which vary in their spectral sensitivity, or how the absorption of

light varies with wavelength. The peak sensitivity of the three types of cones in the human

retina lie in the violet, the green and the yellow-green, respectively (also referred to as

short-wave, middle-wave and long-wave receptors). Similarly, when an image is captured

with a CCD camera, �lters of di�erent spectral sensitivity are used, often Red, Green and

Blue �lters, to form the image (which is composed of three images, one per �lter). The

quantum catch or the measured signal from a cone or CCD �lter is given by

Ik(p) =

Z �2

�1

S(�)�p(�)G(s; v;np)Rk(�)d�;

where k = 1; 2; 3 represents the cone type or the �lter type, and Ik(p) is the image signal

(image irradiance) associated with �lter k at image location p. The wavelengths �1 =

400nm and �2 = 700nm cover the range of the visible spectrum.

The function Rk(�) represents the spectral sensitivity of the k'th cone or �lter, and

it is a function of wavelength alone, there is no dependence on spatial location. The

product L(�; s; v;np) = S(�)�p(�)G(s; v;np) represents the scene radiance and it is a

function of illumination S, surface reectance � and the viewing and scene geometry G.

The illumination is composed of light sources, that have a direction in space, represented by

vector s, and a spectral power distribution S(�), i.e. the intensity of light as a function of

wavelength. For simplicity, light sources are assumed to be located relatively far away from

the scene, therefore the light rays arriving from each source meet the surface in parallel

rays (point light sources). The surface reectance function �p(�) represents the percentage
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of light reected back as a function of wavelength at position p. Surface reectance is also

called albedo and depends on surface material and surface color. The geometric component

G depends on the direction of light sources s, the viewer's direction v, and the surface

normal np at the scene point P that is projecting to image point p (model of projection

is not important here). An important assumption with the standard model is that the

e�ect of multiple light sources is additive, and therefore it is mathematically convenient

to assume a single point light source when writing down the image formation equation.

The detailed relationship S(�)�p(�)G(s; v;np) is referred to as the reectance model and

is described below.

D.2 The Standard Reectance Model

The standard reectance model applies to inhomogeneous `rough' surfaces, such as plastic,

paint and many dielectric surfaces. These reectance models rely on the application of

geometric optics which holds under the assumption that the wavelength of light is much

smaller than the roughness of the surface, or to the dimensions of the microscopic sur-

face undulations. Geometric optics models such as the Torrance-Sparrow (1967), or the

Trowbridge-Reitz (1975) provide a good approximation for shiny smooth materials that

would otherwise require the application of physical optics, based on the electromagnetic

wave theory, to provide an exact model (Beckmann and Spizzichino, 1963).

An optically inhomogeneous material consists of carrier material, which is largely trans-

parent, and of pigment particles embedded in the carrier. The light that is reected from

such a surface is, in general, composed of two types: a di�use component, referred to as

the Lambertian component or the body reection, and a specular or interface component

(Shafer, 1985). When light reaches the surface some portion of it is refracted into the car-

rier where it is scattered from the pigment particles. Some of the scattered rays �nd their

way back to the surface in a variety of directions, resulting in di�use reection. Depending

on the pigment material and its distribution, the di�use component undergoes a spectral

change which is represented by the product of the spectral composition function of the light

source and the albedo of the surface. Therefore, the di�use component carries the color

of the surface (together with the color of the illuminant). Another property of the di�use

component is the Lambertian property due to the randomness of the re-emitted light that

is scattered by the pigments. The Lambertian property is that the amount of reected

light does not depend on the viewing direction, but only on the cosine angle between the
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incidence light ray and the normal to the surface, i.e.

L(�; s; v;np) = L(�; s;np) = S(�)�p(�)np � s;

where np �s is the dot product between the unit vectors np and s, representing the normal

direction at surface point P and the direction of the light source, respectively. The image

irradiance due to the Lambertian component becomes

Ik(p) =

"Z �2

�1

S(�)�p(�)Rk(�)d�

#
np � s = �k(p)np � s; (D:1)

where k = 1; 2; 3 represents the CCD �lter, i.e. the R,G,B �lters. The second component of

the surface reectance is due to external scatter, or reection from the air-surface interface,

and is narrowly di�used around a single direction, called the specular direction. The exter-

nal scattering depend on the roughness of the surface; light rays are reected between the

surface's micro-facets before they are scattered into space. The smoother the surface the

less scattering occurs and the more reections in the specular direction (making an equal

angle of incidence around the surface normal). The roughness of the surface determines,

therefore, the scatter around the specular direction, which is also referred to as the specu-

lar lobe, or the forescatter lobe. For a perfectly smooth surface, like a mirror, there is no

scattering and the specular lobe turns into a specular spike. A simple model of the specular

lobe, using geometric optics, is the microscopic facet model which goes as follows: A rough

surface is modeled as being made up of microscopically planar reectors that are inclined

randomly about the mean surface. The distribution of facets about the mean causes the

reected ux to distribute around the specular direction. Accurate mathematical descrip-

tions of the shape of the specular lobe can be made from such a facet model (Torrance and

Sparrow 1967, Phong 1975, Trowbridge and Reitz 1975). The specular component due to

Phong's model has the form

F (�;np; v; s) = �S(�)(np � h)c;

where h is a bi-sector of the vectors pointing to the viewer and to the light source, c � 50 is

a constant that represents the degree of sharpness or extent of scatter around the specular

direction, and � is a �xed constant. Note that the color of the specular reection is the

same is the color of the light source and this is because the index of refraction of the carrier

is constant with respect to wavelength and is independent of the imaging geometry (this

is generally not true for homogeneous surfaces). The overall image irradiance is a linear

combination of Lambertian component and the specular component, and has the form

Ik(p) = �k(p)np � s + �k(np � h)c: (D:2)
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The specular term takes di�erent forms depending on the reectance model, and the one

we used here (Phong's model) is the simplest. The main point is that for rough surfaces,

such as paint, paper, plastic and so forth, the reectance is dominantly Lambertian because

the specular reection falls o� exponentially from the specular direction. Therefore, if the

surface is not at we expect the specular reections to occupy only small regions in the

image, and the rest is dominated by di�use reection. The approach we take is to assume

Lambertian reection as the model of surface reection and deal with the specularities

separately, by detecting and removing them from the image.
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