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Solutions to In-Class Problems — Week 12, Fri

Problem 1. Consider the excerpt from Herbert Simon’s paper “The Architecture of Complexity”

(a) What is wrong with the analysis?

(b) What is the correct expected time for Hora and Tempus to complete a watch?

Solution. The expected time for Tempus to complete an assembly is (expected length of a try) x
(expected number of tries). Success is if he assembles all n parts correctly, which is probability
(1 − p)n. By mean time to failure, the expected number of rounds is 1/(1 − p)n. The expected
length of a try (how far he expected to get before a piece breaks, is again a mean time to failure
type argument but over a finite range. Turns out that E[length of a try] = 1− (1− p)n/p.

So the expected number of steps E[T] is 1/p((1/(1− p)n)− 1).

If p = .01 and n = 1000 this is roughly 2 million steps.

Hora on the other hand uses a heirarchy of subassemblies, where each subassembly has 10 ele-
ments. The expected time E[T] for n = 10 is about 10.57, same formula as above. But now if
you draw out the tree with 1000 leaves, then there are 111 subassemblies (nodes) that need to get
created. So total time = 111 x 10.57 = 1173.

�

Problem 2. The St. Petersburg Casino offers the following game: the gambler bets a fixed wager,
and then the dealer flips a fair coin (dealers do not flip coins in US casinos, but they do in St.
Petersburg) until it comes up heads. The gambler receives $1 if the coin shows heads the first
time, $2 if it shows the first head at second toss, and in general $ 2k−1 if the dealer tosses the coin
k times to get the first head.

(a) Suppose the fixed wager is $10. What is the expected amount of money that the gambler will
win in this game? Suppose the fixed wager is $10,000?
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Solution. Let V be the random variable corresponding to the amount of money that the gambler
is paid by the dealer. The distribution of V is as follows: for any n ≥ 1,

Pr
{
V = 2n−1

}
= 2−n,

where the probability refers to the event that the dealer tosses n− 1 tails followed by a head. The
average of V is

E [V ] =
∞∑
n=1

[2−n2n−1] =
∞∑
n=1

1/2 =∞.

So whatever the fixed wager, the gambler expects to win an infinite amount. �

(b) What is the probability that the gambler does not lose money in a game when the fixed wager
is $10,000?

Solution. The probability of recovering the money of the wager is only

Pr {V ≥ 10, 000} = Pr
{
V ≥ 214

}
= Pr {dealer flips at least 14 consecutive tails}

= 2−14 =
1

16, 384

�

(c) In reality, it would not be reasonable for the gambler to play the game with the fixed wager
at $10,000. Why? (Hint: Suppose the casino has a limit of a billion dollars.)

Solution. Above, we concluded that a $10,000 wager still “makes sense” because the expected
amount of money (payoff) that the gambler will get from the casino is infinite. However, in reality,
the casino can only pay back a certain amount of money before it goes bankrupt. This restriction
has a dramatic impact on the expected value of the payoff. Consider, for example, the following,
more realistic setting:

The gambler still receives $ 2k−1 if he flips k−1 tails before flipping a head, but this only
holds for profits up to $ 230 (i.e. about a billion dollars). If the gambler flips 31 tails or
more before he gets a head, he still only gets $ 230.

Notice that the probability of flipping 31 or more tails in a row is 2−31.

Under this scenario, the expected amount of money that the gambler will receive from the casino
is

E [V ] =
31∑
n=1

1
2

+ 2−31 · 230

= 31 · 1
2

+
1
2

= 16
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So, in our “realistic” scenario, the expected payoff is just $ 16. which is considerably less than
infinity. The $ 10 wager makes sense, but not the $ 10, 000 one.

You should note that the infinite expectation we got in part (a) was due to the (infinite) contri-
bution of ridiculously high payoffs which, even though they happen with inversely ridiculously
low probability, still contribute 1

2 each to the sum. Since there is an infinite number of (different)
ridiculously high payoffs, we have an infinite number of 1

2 terms in the sequence, which makes
the sum infinite.

Optional exercise: Above, by setting the maximum payoff at $230, we brought the expected
payoff down to just $ 16. What should the maximum payoff be for the expected payoff to be
greater than $ 10, 000, so that the $ 10, 000 wager makes sense?

Answer: Around $ 220,000. For comparison, note that there are 2300 particles in the universe. �

Problem 3. Just like event probabilities, expectations can be conditioned on some event. We de-
fine conditional expectation, E [R | A], of a random variable, R, given event, A:

E [R | A] ::=
∑
r

r · Pr {R = r | A} . (1)

In other words, it is the expected value of the variable R once we skew the distribution of R to
be conditioned on event A. A real benefit of conditional expectation is the way it lets us divide
complicated expectation calculations into simpler cases.

Theorem 3.1. [Law of Total Expectation] If the sample space is the disjoint union of events A1, A2, · · · ,
then

E [R] =
∑
i

E [R | Ai] Pr {Ai} .

Prove the above theorem.
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Solution. Proof.

E [R] ::=
∑
r

r · Pr {R = r}

=
∑
r

r ·
∑
i

Pr {R = r | Ai}Pr {Ai} (Total Probability)

=
∑
r

∑
i

r · Pr {R = r | Ai}Pr {Ai} (distribute constant r)

=
∑
i

∑
r

r · Pr {R = r | Ai}Pr {Ai} (exchange order of summation)

=
∑
i

Pr {Ai}
∑
r

r · Pr {R = r | Ai} (factor constant Pr {Ai})

=
∑
i

Pr {Ai}E [R | Ai] (Def. 1).

�

Problem 4. Compute the expected value for each of the following random variables. (Assume
that all dice are fair and six-sided and that dice rolls are mutually independent.)

(a) The sum of the rolls of three dice.

Solution. The expected value of one die roll is

1 · 1
6

+ 2 · 1
6

+ 3 · 1
6

+ 4 · 1
6

+ 5 · 1
6

+ 6 · 1
6

=
7
2
.

By linearity of expectation, the sum three rolls is

7
2

+
7
2

+
7
2

=
21
2
.

�

(b) The product of the rolls of three dice.

Solution. For independent random variables, the expectation of the product is the product of the
expectations. Therefore, the expected product is

7
2
· 7

2
· 7

2
=

343
8
.

�
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(c) The sum of the rolls of a number of dice that is given by the roll of a single die. (For example,
if you roll a 3 on the single die, then you take the sum of 3 dice rolls; if you roll a 5 on the single
die, then you take the sum of 5 dice rolls.)

Solution. By Wald’s Theorem, the answer is the expected number of dice rolled multiplied by the
expected roll of one die, which is

7
2
· 7

2
=

49
4
.

�

(d) Suppose now that the dice rolls are not guaranteed to be mutually independent. Which of
your answers above must still be correct?

Solution. The first and third answers remain valid because linearity of expectation and Wald’s
Theorem do not require independence. The remaining answer about the product of the dice is
does make use of independence. �

A Appendix

The expectation of random variable, R, is:

E [R] ::=
∑

r∈range(R)

r · Pr {R = r} .

If R has codomain N, then this definition can also be written as

E [R] =
∑
r∈N

Pr {R > r}

Theorem. Let C1, C2, . . . , be a sequence of nonnegative random variables, and let Q be a positive integer-
valued random variable, all with finite expectations. Suppose that

E [Ci | Q ≥ i] = µ

for some µ ∈ R and for all i ≥ 1. Then

E [C1 + C2 + · · ·+ CQ] = µE [Q] .
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