
� 

� 

Massachusetts Institute of Technology

6.042J/18.062J, Fall ’02: Mathematics for Computer Science

Prof. Albert Meyer and Dr. Radhika Nagpal


Solutions to In-Class Problems — Week 13, Mon 

Problem 1. Consider the following two gambling games. 

Game A: We win $2 with probability 2/3 and lose $1 with probability 1/3. 

Game B: We win $1002 with probability 2/3 and lose $2001 with probability 1/3. 

(a) What is the expected win in each case? 

Solution. From the Notes: Let random variables A and B be the payoffs for the two games. For 
example, A is 2 with probability 2/3 and -1 with probability 1/3. We can compute the expected 
payoff for each game as follows: 

2 1
E [A] = 2 · 

3 
+ (−1) · 

3 
= 1, 

2 1
E [B] = 1002 · 

3 
+ (−2001) · 

3 
= 1. 

We have the same probability, 2/3, of winning each game and the same expected return for each 
game. � 

(b) What is the variance in each case? 

Solution. The variances of the two games are very different. We can compute the Var [A] by 
working “from the inside out” as follows: 

1 with probability 2 
3A − E [A] = −2 with probability 1 
3 

1 with probability 2 
3(A − E [A])2 =

4 with probability 1 
3 

2
E 

� 
(A − E [A])2

� 
= 1 · 

3 
+ 4 · 1 

3 
Var [A] = 2. 
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Similarly, we have for Var [B]: 

1001 with probability 2 
3B − E [B] = −2002 with probability 1 
3 

1, 002, 001 with probability 2 
3(B − E [B])2 =

4, 008, 004 with probability 1 
3 

2
E 

� 
(B − E [B])2

� 
= 1, 002, 001 · 

3 
+ 4, 008, 004 · 1 

3 
Var [B] = 2, 004, 002. 

The variance of Game A is 2 and the variance of Game B is more than two million! Intuitively, 
this means that the payoff in Game A is usually close to the expected value of $1, but the payoff 
in Game B can deviate very far from this expected value. 

High variance is often associated with high risk. For example, in ten rounds of Game A, we expect 
to make $10, but could conceivably lose $10 instead. On the other hand, in ten rounds of game B, 
we also expect to make $10, but could actually lose more than $20,000! � 

Problem 2. Suppose you have learned that the average graduating MIT student’s total number of 
credits is 200. 

(a) Knowing only this average, use Markov’s inequality to find a best possible upper bound for 
the fraction of MIT students graduating with at least 235 credits. 1 

Solution. Let X be a random variable with a distribution equal to that of the graduating MIT 
students’ credit count. We are given that E [X] = 200. By Markov’s inequality: 

E [X] 200
Pr {X ≥ 235} ≤ 

235 
= 

235 
≈ 0.85 

(b) Demonstrate that this is a best possible bound by giving a distribution for which this bound 
holds with equality. 

Solution. The bound is attained with equality at the two-point distribution which has non-zero 
values only at 0 and 235, i.e. 

Pr {X = 235} = 200/235 

Pr {X = 0} = 35/235 

Pr {X = x} = 0 for all other x 
1Ignore the fact that there are practical limits to the amount of time a student can stay at MIT and remain sane; That 

is, assume that there is no bound on the number of credits a student may earn. 
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You might wonder how we got to this particular distribution, since the space of all possible prob­
ability functions is very large :-). This function could be derived intuitively as follows. 

Consider any distribution with the given mean, E [X] = 200. We can ‘shift’ this distribution 
around, like sand on a see-saw, subject to the constraint that it remains balanced around the mean. 
We want to maximize the portion of the distribution that is to the right of the point x = 235. 

How can we do this? Look at the portion of the distribution to the right of x = 235. We need to 
minimize this portion’s contribution to the mean (so we can then maximize its volume). For this, 
we must move it as close to the mean as possible, i.e. we pile it all up at the point x = 235. 

Similarly, we need to maximize the contribution of the distribution to the left of the mean. To do 
this, we move it away from the mean, i.e. to the left as far as possible. Since X is non-negative, this 
means that it all piles up at the point x = 0. 

Mathematically, 

E [X ] = E [X | X ≥ c] Pr {X ≥ c} + E [X | X < c] Pr {X < c}
≥ c · Pr {X ≥ c} + 0 · Pr {X < c} 

= c · Pr {X ≥ c} 

Equality holding iff E [X | X ≥ c] = c AND E [X | X < c] = 0, i.e. x ≥ c ⇒ x = c and x < c ⇒ x = 
0. � 

(c) Suppose you are now told that no student can graduate with fewer than 170 units. How does 
this allow you to improve your previous bound? As before, show that this is the best possible 
bound. 

Solution. We can now apply Markov’s inequality to the nonnegative variable Y = X − 170, with 
expectation E [Y ] = E [X − 170] = E [X ] − 170 = 30. So, 

Pr {X ≥ 235} = Pr {X − 170 ≥ 235 − 170} = Pr {Y ≥ 65} 

Therefore: 

Pr {X ≥ 235} = Pr {Y ≥ 65}
E [Y ]≤ 
64 

≤

30 
65 
≈ 0.46 

As above, we achieve an optimum (equality in the bound) when our distribution consists of two 
spikes: one at (x − 170) = c − 170, i.e. x = 235, and one at (x − 170) = 0, i.e. x = 170. 

Pr {X = 235} = (200 − 170)/(235 − 170) = 30/65 

Pr {X = 170} = 35/65 

Pr {X = x} = 0 for all other x 
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(d) Now suppose you further learn that the standard deviation of the total credits per graduating 
student is 7. Give a best possible bound on the fraction of students who can graduate with at least 
235 credits. 

Solution. Use the Chebyshev inequality to bound the probability. The variance of X is the square 
of the standard deviation, or 49. The variance of Y is the same as that of X , by the linearity of 
variance. That is, Var [Y ] = Var [X − 170] = Var [X] − Var [170] = 49 − 0. (The variance of a 
constant is 0). 

Pr {X ≥ 235}	 = 

= 

= 

≤ 

≤ 

≤ 

This is a much better bound than before! 

Pr {Y ≥ 65}
Pr {Y − E [Y ] ≥ 65 − E [Y ]}
Pr {Y − 30 ≥ 35}
Pr {|Y − 30| ≥ 35}
Var [Y ] 

352 

49 1 
= 

1225 25 

Problem 3. In this problem we will derive Chebyshev’s Theorem from a corollary of Markov’s 
Theorem. 

(a) Explain why the following corollary of Markov’s theorem holds: 

Corollary. For any random variable R, any positive integer k, and any x > 0, 

E |R|k 

Pr {|R| ≥ x} ≤ 
xk . 

Solution. This can be seen by letting the random variable in Markov’s theorem be |R|k , which is 
nonnegative for any random variable R and positive integer k. Notice as well that since |R| ≥ x 
iff |R|k ≥ xk , the probabilities of the two events are the same. Combining these facts we get, 

� � E |R|k 

Pr {|R| ≥ x} = Pr |R|k ≥ x k ≤ 
xk . 

Note: Even though Markov’s theorem applies only to nonnegative random variables, this corol­
lary applies to all random variables. This implies that Chebyshev’s theorem, derived in the next 
part, also applies to all random variables. � 



� � 

� 

� 

� � � � 

� � � � � � 

� 

Solutions to In-Class Problems — Week 13, Mon 5 

(b) Use the above corollary to prove the following: 

Theorem (Chebyshev). Let R be a random variable, and let x be a positive real number. Then 

Var [R]
Pr {|R − E [R]| ≥ x} ≤ 

x2 . 

(Hint: Consider the case where k = 2). 

Solution. The special case of this corollary when k = 2 can be applied to bound the random 
variable, |R − E [R]|, that measures R’s deviation from its mean. Namely 

Pr {|R − E [R]| ≥ x} = Pr 
� 
(R − E [R])2 ≥ x 2

� 
≤ 

E (R − 

x2 

E [R])2 

, 

where the inequality follows from the corollary applied to the random variable, |R − E [R]|. So we 
can bound the probability that the random variable R deviates� from its mean by more than x by 
an expression decreasing as 1/x2 multiplied by the constant E (R − E [R])2 . This constant is the 
variance of R. Hence, 

Var [R]
Pr {|R − E [R]| ≥ x} ≤ 

x2 . 

Problem 4. Prove that the following two formulas for calculating variance are equivalent: 

Var [R] ::= E (R − E [R])2
� 
. 

Var [R] = E R2
� 
− E2 [R] , 

Solution. From the Notes: Remember that E R2 is generally not equal to E2 [R]. The expected 
value of a product is the product of the expected values only for independent variables, and R is 
not independent of itself unless it is constant. 

Proof. Write µ = E [R]. Then 

Var [R]	 = E 
= E 
= E 
= E 
= E 
= E 

(R − µ)2
�


R2 − 2R · µ + µ 2
�


R2
� 
− E [2R · µ] + E 

� 
µ 2

�


R2
� 
− 2 E [R] · µ + µ 2


R2
� 
− 2E2 [R] + E2 [R] (definition of µ)


R2
� 
− E2 [R] .


The first step uses the definition of variance. In the second step, we multiply out the squared term. 
The third step uses linearity of expectation. There are two transformations on the fourth line. In 
the second term, we pull the constant 2µ out of the expectation. In the third term, we use the fact 
that the expectation of a constant, namely µ2 , is that constant. The final step is simplification. 
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