In-Class Problems — Week 3, Mon

Problem 1. Find the flaw in the following false proof, and give a counter-example to the claim.

Claim. Suppose *R* is a relation on *A*. If *R* is symmetric and transitive, then *R* is reflexive.

False proof. Let x be an arbitrary element of A. Let y be any element of A such that xRy. Since R is symmetric, it follows that yRx. Then since xRy and yRx, we conclude by transitivity that xRx. Since x was arbitrary, we have shown that $\forall x \in A (xRx)$, so R is reflexive.

Problem 2. In each case, say whether or not *R* is a equivalence relation on *A*. If it is an equivalence relation, what are the equivalence classes and how many equivalence classes are there?

(a) $R ::= \{(x, y) \in W \times W \mid \text{ the words } x \text{ and } y \text{ start with the same letter} \}$ where *W* is the set of all words in the 2001 edition of the Oxford English dictionary.

(b) $R ::= \{(x, y) \in W \times W \mid \text{ the words } x \text{ and } y \text{ have at least one letter in common} \}.$

(c) $R = \{(x, y) \in W \times W \text{ and the word } x \text{ comes before the word } y \text{ alphabetically} \}.$

(d) $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \text{ and } |x| \leq |y|\}.$

(e) $R = \{(x, y) \in B \times B, \text{ where B is the set of all bit strings and x and y have the same number of 1s.}\}$

Problem 3. Let *R* be an equivalence relation on the set *A*. For an element $a \in A$, let [a] denote the set $\{b \in A \text{ given } aRb\}$. This set is the *equivalence class of a under R* and we call *a* a *representative* of the set [a].

Prove that the sets [a] for all $a \in A$ constitute a partition of A. In other words, prove that for every $a, b \in A$, either [a] = [b] or $[a] \cap [b] = \emptyset$.

Copyright © 2002, Prof. Albert R. Meyer.

Appendix

A binary relation R on a set A is

- *reflexive* if for every $a \in A$, $a \sim_R a$,
- *symmetric* if for every $a, b \in A$, $a \sim_R b$ implies $b \sim_R a$.
- *antisymmetric* if for every $a, b \in A$, $a \sim_R b$ and $b \sim_R a$ implies a = b.
- *asymmetric* if for every $a, b \in A$, $a \sim_R b$ implies $\neg(b \sim_R a)$.
- *transitive* if for every $a, b, c \in A$, $a \sim_R b$ and $b \sim_R c$ implies $a \sim_R c$.

for all $x, y, z \in A$.

A binary relation R on a set A is

• an *equivalence relation* iff it is reflexive, symmetric and transitive.