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Abstract: The Rate-Controlled Constrained-Equilibrium (RCCE) method for the
description of the time-dependent behavior of dynamical systems in non-equilibrium states
is a general, effective, physically based method for model order reduction that was originally
developed in the framework of thermodynamics and chemical kinetics. A generalized
mathematical formulation is presented here that allows including nonlinear constraints
in non-local equilibrium systems characterized by the existence of a non-increasing
Lyapunov functional under the system’s internal dynamics. The generalized formulation
of RCCE enables to clarify the essentials of the method and the built-in general feature
of thermodynamic consistency in the chemical kinetics context. In this paper, we work
out the details of the method in a generalized mathematical-physics framework, but for
definiteness we detail its well-known implementation in the traditional chemical kinetics
framework. We detail proofs and spell out explicit functional dependences so as to bring out
and clarify each underlying assumption of the method. In the standard context of chemical
kinetics of ideal gas mixtures, we discuss the relations between the validity of the detailed
balance condition off-equilibrium and the thermodynamic consistency of the method. We
also discuss two examples of RCCE gas-phase combustion calculations to emphasize the
constraint-dependent performance of the RCCE method.
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1. Introduction

In thermodynamics, gas dynamics, chemical kinetics, control theory, information theory, economics,
ecology, biology, and other sciences, it is increasingly important to determine the non-equilibrium
time-dependent behavior of the state of a system, for which the description of the equilibrium states
is known and given by the solution of a constrained maximization problem. The most accurate way
of doing this consists of specifying the state variables, developing a detailed kinetic model (DKM) of
the non-equilibrium system, obtaining a full set of rate equations for all the state variables based on
the postulated DKM, and integrating this set of equations to yield the time-dependent behavior of the
non-equilibrium state. Since this approach requires, in principle, modeling all the detailed mechanisms,
a potential concern is to obtain the kinetic rate data for all the detailed mechanisms. However, for
example in the context of chemical kinetics, such data are quite uncertain and involve a lot of guess
work. Moreover, when the DKM method must be coupled to transport equations and turbulence models
or interface dynamics, the modeling and computational tasks often become formidable because of the
intrinsic presence of a wide range of time and length scales, which may result in the well-known
stiffness difficulties.

In the framework of chemical kinetics, such difficulties have motivated the development of numerous
model order reduction techniques during the past two decades [1–26]. Moreover, for micro- and
nano-systems in which the small numbers of particles entail that discreteness and stochasticity play
an important role on the time evolution of the species population, similar reduction methods have been
proposed within the growing field of Stochastic Chemical Kinetics [27–29] and Stochastic Simulation
Algorithms [30]. One common feature shared by the aforementioned techniques is that they all need
a large DKM as the starting point. However, even though theoretically the most accurate description
of the kinetics, independent of the context, comes from the corresponding DKM, a general concern in
modeling complex chemical systems for which the underlying DKM involves a large number of reaction
mechanisms stems from the fact that the rates of a vast majority of reactions are unknown or, at best,
highly uncertain.

An alternative method which can help reduce the modeling and computational efforts is the
Rate-Controlled Constrained-Equilibrium (RCCE) method, in which the state of the system at any time
is that which maximizes an entropy function or minimizes an appropriate form of free energy function
subject to a small number of constraints, namely, state functionals. At each instant in time, the state
of the system, which is described in terms of internal variables such as the reaction coordinates (in the
chemical kinetics context), is assumed to be at equilibrium with respect to all the internal dynamical
mechanisms that cannot alter the values of a small number of rate-controlling constraining functionals.
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The mechanisms that instead do contribute to changing the values of the constraints control the time
evolution through their impact on the rate of change of the values of the constraining functionals.
For a closed homogeneous reacting system, the resulting time evolution (trajectory in state space) is
a continuous shifting of the assumed constrained equilibrium state towards higher entropies until the
highest entropy (stable equilibrium) state is reached. For an open heterogeneous system subject to
stationary boundary conditions, transport phenomena will also contribute to the rate of change of the
local values of the constraints, and the continuous shifting of the assumed constrained local equilibrium
states will evolve until the (stable) steady state is reached. The choice in RCCE can also be viewed as the
best pragmatic choice according to Bayesian Inference in the framework of Jaynes’ Maximum Entropy
Principle (see, e.g., [31–33]).

Two familiar examples of RCCE approach are the assumptions of locally complete and locally frozen
chemical equilibrium. The former is characterized by atomic elements as the only constraints to the
composition, subject to which pressure, temperature and Gibbs free energy are defined. The latter instead
treat the entire chemical composition as a constant of the motion. Even in the absence of chemical
reactions, another familiar example of the RCCE approach is the assumption of local thermodynamic
equilibrium employed in the basic equations of fluid dynamics to describe non-equilibrium states by
means of local temperature, pressure, and chemical potentials. Obviously, this assumption breaks down
in the presence of fast diffusion processes, e.g., across a shock wave.

An application of RCCE reduces the total number of equations (algebraic + differential) to the
total number of constraints, which for systems including heavy hydrocarbons can be dramatically
smaller than the number of species in a corresponding DKM. Nonetheless, the dynamic evolution of
all “left-out” species can be determined based on the requirement of constrained equilibrium. This
often provides a good first order estimate of how kinetically important a species is when RCCE is
used for model development. RCCE calculations have provided accurate results in relatively complex
hydrocarbon combustion problems [34,35]. Two typical examples are discussed at the end of the paper.
The effectiveness of the RCCE method and the accuracy of its results depend on the identification of
a proper set of rate-controlling constraining functionals, which requires a fundamental understanding
of the detailed dynamics of the system. In other words, the deeper the physical insight into the
system’s dynamics, the more effective and structurally consistent a set of constraining functionals can
be identified. In each particular field of application, a specific expertise must be developed in order to
identify the controlling mechanisms and to group them into classes which must each be characterized by
one or more functionals that are to become the rate-controlling constraints.

The objective in RCCE is to identify and group the rate limiting mechanisms into classes each
characterized by a functional that is time-invariant within the class and which at least at some stage
during the time evolution is slowly varying with respect to the full dynamics. In general, due to
time-scale diversity and time-varying competition between different mechanisms, not all the constraining
functionals are necessarily slowly varying and rate-controlling during the entire dynamic evolution. By
identifying which constraining functionals are rate controlling during a given stage (for example, the
ignition delay stage in a combustion process) it is possible to identify the corresponding underlying class
of rate limiting mechanisms and gain useful physical insight.
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Furthermore, despite what it may imply, a DKM is a reduced model itself for the simple reason
that it neither includes all possible species in the reactor nor all the complex reactions governing them.
From this point of view, we note that RCCE could be to a large extent independent of the level of
approximation with which the rates of the less important reaction schemes are usually estimated in a
DKM. The reason is that RCCE assumes at each instant in time the complete chemical equilibrium
composition (highest entropy) compatible with the instantaneous local values of the state variables and
the assumed constraining functionals. In other words, an informed application of RCCE puts these
reactions in equilibrium, and it is well known that the complete chemical equilibrium composition is
independent of the underlying detailed kinetic scheme ([36], p. 578). It is true that many of such reactions
do not impose rate limiting constraints on the system’s evolution and are, therefore, eliminated in most
DKM-based model order reduction techniques. But eliminating a reaction means freezing it. Instead, in
RCCE the majority of such reactions are put in (constrained) equilibrium rather than being frozen.

The rates of change of the constraining functionals are to be estimated in principle from the full
dynamics, but in practice only the faster mechanisms within the corresponding class are sufficient.
In general, these faster mechanisms are often the most important in the fully detailed scheme and,
therefore, they are the ones for which the most reliable experimental data on reaction rates are most
likely available. Moreover, the physical insight, which is gained when a new successful constraining
functional is identified and understood in connection with the corresponding underlying class of rate
limiting mechanisms, is likely to be useful also to further improve, simplify, and complete the DKM.

In reacting gas dynamics, the RCCE method has been applied successfully for the description and
simplification of many specific non-equilibrium problems. Sugden and co-workers [37], Kaskan [38],
Schott [39], and Franciscus and Lezberg [40] treated the hydrogen-oxygen combustion problem. Keck
and Gillespie [41] (see also [42,43]) developed a general rate-controlled constrained-equilibrium method
for reacting gas mixtures. Delichatsios and Keck [44], Sarofim and co-workers [45], and Morr and
Heywood [46] applied the method to predict carbon monoxide and nitric oxide formation in hydrocarbon
combustion. Galant and Appleton [47] further developed the method for open reacting systems.
Levine [48] treated reactions in molecular beams. Procaccia and Ross [49] investigated the stability
in highly non-equilibrium systems. It has also formed the basis for Close Parallel Inertial Manifold
(CPIM) [50] and Inertial Constrained-Equilibrium Pre-Image Curve (ICE-PIC) [51]. The method has
been later developed and applied by several others, see e.g., [34,35,50,52–59].

Ideas similar to RCCE have been applied in specific applications also in other fields. For example,
Kerner [60] studied speciation in ecological systems. Dornbush [61] developed a theory of exchange rate
overshooting due to a changing monetary policy based on the notion that asset market prices including
exchange rates adjust to the new equilibrium in practically no time whereas market prices of goods
are “sticky”, adjust in finite time and thus rate-control the relaxation of the system towards the new
equilibrium state.

It should be noted [62] that the entropy maximization done by RCCE at each instant of time does
not necessarily imply that the relaxation is along the path of steepest entropy ascent [63–66]. This is
consistent with the theoretical proof by Ziegler [67] as well as a recent numerical study [17] that maximal
entropy production rate is not a general feature of the standard equations of chemical kinetics.
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The objective of this paper is to present a generalized formulation of the RCCE method valid
also for nonlinear constraints, together with a rigorous step-by-step derivation of its implementation
in the standard framework of chemical kinetics of gas mixtures with linear constraints, a discussion
about its general thermodynamic consistency, and examples about the physical meaning of several
basic constraints that have proved effective in simplifying combustion modeling. The chemical kinetics
implementation is presented with strong emphasis on the thermodynamics aspects, careful discussion of
the assumptions, explicit indication of all functional dependences, and discussion of the most important
features of the RCCE method, but the generalized formulation allows its application also in diverse
nonequilibrium contexts, provided the time evolution is characterized by the existence of a Lyapunov
functional which cannot be increased by the system’s internal dynamics.

The paper is structured as follows. In Section 2, we present a generalized formulation of the
mathematical structure of the problem of describing the time evolution of non-equilibrium states. In
Section 3, we discuss the general ideas behind the constrained-equilibrium method, and we effectively
extend the method to the case of nonlinear constraints. In Section 4, we present a step-by-step
detailed implementation of the foregoing general formulation in the framework of nonequilibrium
thermodynamics of a mixture (ideal and nonideal) subject to complex chemical kinetics. There, by
giving detailed proofs and explicit dependences, we address the subtleties about the domain of validity
of detailed balance and the general nonnegativity of the rate of entropy generation. Finally, in Section 5
we discuss via two examples the physical meaning of the basic constraints that have proved most effective
in reducing combustion modeling. Section 6 draws our conclusions.

2. General Non-Equilibrium Problem

In this and the next sections, we discuss the formulation of non-equilibrium dynamics for a generic
state description which captures the model structure of a large class of systems of interest in various
areas of science and engineering.

Let us start by asserting that when building a mathematical model of a system (physical, biological,
chemical, etc.) we explicitly or implicitly select a “level of description” which postulates the existence
of a set of elementary building blocks which, for the purposes of the model, we consider as indivisible
and unalienable. For example, a given physical object may be described at various levels, depending on
the phenomena we set out to model. In particular, as we further discuss below, the choice of the level
of description is related to the range of time scales which characterize the phenomena of interest. So,
if we are not interested in chemical and nuclear reactions, i.e., we may assume that on the time scale of
interest they are practically “frozen”, then we may assume that the elementary constituents are the atoms
and the molecules, as we do when we study non-reacting transport phenomena. If we are interested in
chemical reactions but not nuclear reactions, we may take the elements (or, more precisely, the atomic
nuclei and the electrons) as the elementary constituents. If we are interested in fission and fusion nuclear
reactions, we may take neutrons, protons, and electrons. Or at a deeper level, we may take quarks and
so on. Again, to describe resonance interactions between electromagnetic radiation and the electrons in
atoms and molecules, it is in many instances sufficient to consider as elementary constituents the photons
and a limited number of electronic levels.
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Once the system’s constituents have been selected, the model defines what variables identify the
different possible states. Let us denote by x = {x1, x2, . . . xnx} the vector of nx variables describing
the state of the system under study [68]. Often, it is convenient to separate the vector x into a vector
of internal state variables that are not directly accessible to external control and a vector of externally
controllable parameters, i.e., x =

{
xint,xext

}
. For example, in a closed chemically reacting system,

species concentrations are internal variables controlled by the internal kinetics, energy and volume may
be considered external when their changes are prescribed by heat and work interactions through the
system’s boundaries and compressing or expanding displacements of the boundaries, respectively.

Next, let us assume that the dynamics of the system is described by a rate equation (equation of
motion) of the form

ẋ = Dint(x) +Dext(x, t) (1)

whereDint(x) represents the internal or endogenous dynamical mechanisms andDext(x, t) the external
or exogenous mechanisms. For example, if the system is a control volume in a reacting fluid flow, the
endogenous mechanisms are those responsible for the spontaneous relaxation towards a local equilibrium
state whereas the exogenous mechanisms are those accounting for the transport of energy, momentum
and matter across the boundaries of the control volume.

The equilibrium states of the system are those that would not be changing in time if the system were
isolated, i.e., ifDext(x, t) = 0. Thus, a state xeq is equilibrium if

Dint(xeq) = 0 (2)

In general, Equation (2) admits more than one solution, namely, the system admits more than one
equilibrium state. For example, the second law of thermodynamics requires that a physical system has
at least one equilibrium state for each of the possible values of the energy [69].

The system’s definition may impose elemental or geometrical constraints implying that a set of
functionals that have values that are either fixed or externally controlled, i.e.,

C∞,stri (x) = bi (3)

for all the states x of the system, where bk are constants or externally specified functions of time. These
functionals generally specify restrictions on the geometry of the state space, or internal interconnections
between internal partitions, or elemental conservation intrinsic in the chosen level of description. The
reason for the superscript∞ will become apparent in the next section. For example, if the state variables
xi represent probabilities then a geometrical constraint is C∞,str1 (x) =

∑
i xi with b1 = 1. Again, if

state variables x1 = V1, x2 = V2, x3 = V3 represent the volumes of three regions of space in which
the overall system is partitioned by means of two moving pistons, they may be constrained by the
condition that C∞,str2 (x) = V1 +V2 +V3 = V is constant or has an externally imposed time dependence.
Another example is the set of stoichiometric relations between species concentrations which, in a detailed
chemical or electrochemical kinetic model of a closed system, is imposed by the assumed scheme of
reaction mechanisms.
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In addition, for most systems of practical interest, such as for those of interest in thermodynamics and
chemical kinetics, the system admits one or more functionals that we denote by C∞,dyn

i (x), which are
time-invariant under the internal dynamicsDint(x), i.e., such that for every state x,

dC∞,dyn
i (x)

dt

∣∣∣∣∣
int

=
nx∑
j=1

a∞,dyn
ij (x)Dint

j (x) = 0 (4)

where we defined the gradient vectors

a∞,dyn
ij (x) =

∂C∞,dyn
i (x)

∂xj
(5)

The functionals C∞,dyn
i (x) are said to represent the constants of the motion of the system. For example,

the energy and the number of atomic nuclei of each type are constants of the motion for a chemically
reacting open system. They are time invariant under the internal dynamics, but their values may change
as a result of external mechanisms such as those of work, heat, bulk flow, and diffusion interactions.

If there are r such constants of the motion, with linearly independent gradient vectors a∞,dyn
ij (x), the

r Equations (4) imply that the set of Equations (2) which define the equilibrium states are not all linearly
independent and, therefore, the solution depends on at least r arbitrary parameters. In other words, the
equilibrium states form at least an r-parameter family.

For each given state x, it is useful to identify, within the combined set of elemental constraints
C∞,stri (x) and constants of the motion C∞,dyn

i (x), a complete subset that we denote simply by C∞i (x)

with i = 1, . . . , n∞c , such that the n∞c gradient vectors a∞ij (x) are linearly independent. The subset must
be complete in the sense that any other functional in the full set has a gradient vector which is a linear
combination of the vectors a∞ij (x).

For many systems of practical interest, there is a state functional F (x) that is non-decreasing under
the internal dynamics of the system [70], i.e., is such that

dF (x)

dt

∣∣∣∣
int

=
nx∑
j=1

Γj(x)Dint
j (x) ≥ 0 (6)

for every x, where we defined the gradient vector Γ with components

Γj(x) =
∂F (x)

∂xj
(7)

Our next step is to assume that the functional F (x) is such that in the neighborhood of each one of
the equilibrium states of interest (the stable equilibrium states, in thermodynamics), the functional

∆F (x) = F (xeq)− F (x) (8)

when restricted to the subset of states

{x with C∞i (x) = C∞i (xeq) for i = 1, . . . , n∞c } (9)

is a Lyapunov functional [71] and, hence, each equilibrium state is conditionally stable [71] with respect
to perturbations that do not alter the values of the C∞i ’s.
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Clearly, ∆F (x) can be a Lyapunov functional when restricted on the set (9) only if ∆F (x) ≥
α(|x− xeq|) where α is some strictly-increasing positive function with α(0) = 0 and, hence, the
equilibrium state xeq is the unique state which maximizes the functional F (x) on the set (9).

To fix ideas, by analogy with the thermodynamics context, we will assume that the functional F (x)

is twice differentiable and at least locally strictly concave in its variables, so that the Hessian matrix of
generalized stiffness moduli

∂Γj(x)

∂xm
=
∂2F (x)

∂xm∂xj
(10)

is well defined, negative semi-definite, and clearly symmetric by Schwarz’s theorem on mixed second
derivatives. Moreover it has a nonzero determinant and, since it is also the Jacobian matrix of the system
Γ = Γ(x) of nx relations

Γj = Γj(x) (11)

it follows that the relations Γ = Γ(x) can be inverted to yield the system x = x̂(Γ) of nx relations

xm = x̂m(Γ) (12)

Using this, we can express the functional F (x) also as a functional of the vector Γ,
i.e., F̂ (Γ) = F (x̂(Γ)), for which x is the gradient vector, with components

x̂m(Γ) =
∂F̂ (Γ)

∂Γm
(13)

and the symmetric, negative semi-definite Hessian matrix of generalized capacities,

∂x̂m(Γ)

∂Γj
=
∂2F̂ (Γ)

∂Γj∂Γm
(14)

is the inverse of the generalized stiffness matrix in Equation (10).
As a result of the above assumptions, the equilibrium states can be found by solving the following

constrained maximization problem

xeq maximizes F (x) subject to
C∞i (x) = c∞i i = 1, . . . , n∞c

(15)

where c∞i is either a fixed value of a geometrical constraint or the value of a constant of the motion. We
have implicitly assumed that the functionals C∞i (x) form a complete set of geometrical constraints and
constants of the motion with linearly independent gradients a∞1j(x), . . . , a∞n∞c j(x). The solution xeq of
the maximization problem satisfies the set of Euler-Lagrange equations

Γj(x
eq) =

n∞c∑
i=1

γ∞i a
∞
ij (xeq) (16)

where γ∞i is the Lagrange multiplier associated with the i-th constraint. Together with the
constraints (15), Equation (16) yields an n∞c -parameter family of equilibrium states

xeq = xeq(c∞1 , . . . , c
∞
n∞c

) (17)
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which are stable with respect to all perturbations [71] if the function xeq(c∞) is continuous in each c∞i .
As is well-known, the standard procedure to obtain (17) is as follows. First we invert Equations (16) to
express the state variables in terms of the multipliers, xeq = xeq(γ∞); these relations are then inserted
into (15) to express the values of the constraints as functions of the multipliers, c∞ = C∞(xeq(γ∞));
these are then inverted to express the multipliers in terms of the values of the constraints, γ∞ = γ∞(c∞),
which inserted into xeq = xeq(γ∞) yields xeq = xeq(γ∞(c∞)), i.e., Equations (17). Moreover, it is
noteworthy that as a result of the last inversion, we have the identity

n∞c∑
m=1

∂C∞i (xeq(γ∞))

∂γ∞m

∂γ∞m (c∞)

∂c∞k
=

n∞c∑
m=1

nsp∑
j=1

a∞ij
∂xeq

j (γ∞)

∂γ∞m

∂γ∞m (c∞)

∂c∞k
= δik (18)

which can also be viewed as a consequence of the condition that the constraints have linearly independent
gradients, as necessary for the assumed invertibilities.

Using Equations (16) and (18) we obtain the relations

∂F (xeq(c∞))

∂c∞k
=

nsp∑
j=1

Γj
∂xeq

j (γ∞(c∞))

∂c∞k
=

nsp∑
j=1

n∞c∑
i=1

γ∞i a
∞
ij

n∞c∑
m=1

∂xeq
j (γ∞)

∂γ∞m

∂γ∞m (c∞)

∂c∞k
= γ∞k (c∞) (19)

which express, geometrically, the general orthogonality condition between the vector γ∞ of Lagrange
multipliers and the constant-F contour surfaces in c∞ space.

An immediate consequence of Equation (19) and Schwarz’s theorem on mixed second derivatives
is the following Maxwell relations expressing the reciprocity of the cross dependence of the
constraint-potentials on the values of the constraints,

∂γ∞i (c∞)

∂c∞k
=
∂2F (xeq(c∞))

∂c∞i ∂c
∞
k

=
∂γ∞k (c∞)

∂c∞i
(20)

Geometrically, the Hessian matrix of F (xeq(c∞)) represents the curvature matrix of the F contour
surfaces in c∞ space.

Similarly, the dual representation of the same surface in γ∞ space is obtained by defining the
Legendre transform of F (xeq(c∞)) as follows,

G(γ∞) =

n∞c∑
i=1

γ∞i C∞i (xeq(γ∞))− F (xeq(γ∞)) (21)

where the family of stable equilibrium states is now re-parametrized in terms of the n∞c Lagrange
multipliers,

xeq = xeq(γ∞1 , . . . , γ
∞
n∞c

) (22)

It is easy to show that in γ∞ space the orthogonality condition is between the vector c∞ of constraint
values and the constant-G contour surfaces,

∂G(γ∞)

∂γ∞k
= c∞k (γ∞) (23)
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Moreover, we have the dual Maxwell relations expressing the reciprocity of the cross dependence of the
values of the constraints on the constraint-potentials,

∂c∞i (c∞)

∂γ∞k
=
∂2G(γ∞)

∂γ∞i ∂γ
∞
k

=
∂c∞k (c∞)

∂γ∞i
(24)

and we can readily show that the Hessian matrix of G in Equation (24), which represents the curvature
matrix of the G contour surfaces in γ∞ space, is the inverse of the Hessian matrix of F in Equation (20).

If the internal dynamics is much faster than the external, we may assume that for all practical purposes
the system always passes through equilibrium states, namely,

x(t) = xeq(c∞(t)) (25)

where the values of the constants of the motion vary according to Equation (1), i.e., in view of
Equation (4),

ċ∞i (t) = Ċ∞i (x(t)) =
nx∑
j=1

a∞ij (x(t))Dext
j (x(t), t) (26)

For example, this is a reasonable assumption for the local description of non-reacting flow fields subject
to moderate spatial gradients. Actually, recent molecular dynamics simulations [72] have shown this to
be an excellent approximation even for very large spatial gradients. But it would not be a reasonable
assumption for reacting flows with reaction time scales of the same order as the transport time scales.

3. Constrained Equilibrium Method

In general, the evolution of the state, x(t), is obtained by solving the differential Equation (1) for
a given initial state x(0) and the exogenous dynamics Dext(x, t). However, the detailed modeling of
Dint(x) may be a formidable task.

Upon gaining a deeper understanding of the dynamics of a system, it is often discovered that many of
the governing kinetic mechanisms are of secondary importance, such that the time dependent behavior
of the system is relatively insensitive to them. For example the three body reactions dominate the
exothermic dynamics of the process of expansion of combustion products within a supersonic nozzle
or in an internal combustion engine, while bimolecular reactions are almost equilibrated [35,73]. Also,
the almost fuel independent burning velocity of the majority of the hydrocarbon fuels suggests the
existence of an intermediate constrained-equilibrium path in which the fuel molecule breaks down into
smaller fragments, mostly C1, C2 and C3, which could drastically simplify kinetic modeling of laminar
flame propagation.

Ideally, by scrutinizing the features of the full endogenous dynamics of a system, we could classify
the various governing mechanisms in a hierarchical structure based on their time scale as follows. We
would single out all the internal mechanisms that act on a time scale shorter than a given scale τ , and
identify a complete set of functionals, additional to the C∞i (x)’s, that are also time invariant if the
internal dynamics of the system is restricted to only those mechanisms that have a time scale shorter
than τ . We denote these additional time-invariant functionals by

Cτ
k (x) k = 1, . . . , nτc (27)
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and we impose the condition that their gradient vectors,

aτkj(x) =
∂Cτ

k (x)

∂xj
(28)

are linearly independent of the gradients a∞kj(x). Clearly, as τ increases, the number nτc of such
functionals decreases to reach n∞c = 0. Conversely, as τ decreases and reaches the limit τ = 0, at which
time scale no mechanism can be active, the number nτc increases to reach n0 = nx − n∞c where nx is the
number of state variables in vector x and n∞c is the number of (τ -independent) time invariants C∞k (x).

In principle, one would have to examine a hierarchy of dynamical equations of the form

ẋ = Dint,≤τ (x) (29)

where Dint,≤τ (x) accounts for all the internal mechanisms with time scale shorter than τ . The
functionalsCτ

k (x) are the additional constants of the motion forDint,≤τ (x) with gradients aτkj(x) that are
linearly independent of the gradients a∞ij (x) of the constants of the motion of the full internal dynamics
Dint,≤∞(x) = Dint(x). This means that no mechanism with time scale shorter than τ is capable of
altering the value of the functionals Cτ

k (x).
If we are interested in describing the dynamics of the system only on a time scale longer than a

certain scale τ , then we are not interested in the details of the time evolution for time scales shorter
than τ . We may therefore assume that the fast mechanisms, described by Dint,≤τ (x), contribute to
the overall evolution by letting the functional F (x) increase in practically no time to the highest value
compatible with the instantaneous values of the functionals C∞i (x)—which are constants of the motion
for the overall dynamics—and the functionals Cτ

k (x)—which are constants of the motion for the fast
dynamics. Thus, we only need to develop a detailed model of the dynamical mechanisms acting on time
scales between τ and∞, which we will denote by the symbol D>τ (x). In other words, we assume that
for all practical purposes the system is at all times in some constrained-equilibrium state xce that can be
found by solving the following constrained maximization problem

xce maximizes F (x) subject to (30)

C∞i (x) = c∞i i = 1, . . . , n∞c (31)

Cτ
k (x) = cτk k = 1, . . . , nτc (32)

The solution xce of the maximization problem satisfies the set of Euler-Lagrange equations

Γj(x
ce) =

n∞c∑
i=1

γ∞i a
∞
ij (xce) +

nτc∑
k=1

γτka
τ
kj(x

ce)) (33)

which, together with the constraints (31) and (32), yields an (n∞c + nτc )-parameter family of
constrained-equilibrium states

xce = xce(c∞1 , . . . , c
∞
n∞c
, cτ1, . . . , c

τ
nτc

) (34)
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Again, Equations (33) imply that, within this family, the function F (xce(c∞, cτ )) satisfies the following
orthogonality relations

∂F (xce(c∞, cτ ))

∂c∞i
= γ∞i ,

∂F (xce(c∞, cτ ))

∂cτk
= γτk (35)

where γ∞i and γτk are the constraint-potentials conjugated to the constraint functionals C∞i (x) and
Cτ
k (x). Therefore, the relations and geometrical representations discussed in the previous section extend

here as well for the constant-F surfaces of the constrained equilibrium states in (c∞, cτ ) space and for
the dual constant-G surfaces in (γ∞,γτ ) space. As a result of this duality, the time dependence can be
followed both in the space of the constraints and in that of the constraint-potentials.

3.1. Rate Equations for the Constraints

If the exogenous dynamics, Dext(x, t), operates on a time scale larger than τ , then we see that the
evolution of the system can be described by modeling only those internal mechanisms with time scale
longer than τ . Indeed,

ċ∞i (t) =
nx∑
j=1

a∞ij (x(t))Dext
j (x(t), t) (36)

ċτk(t) =
nx∑
j=1

aτkj(x(t))
[
Dint,>τ
j (x(t)) +Dext

j (x(t), t)
]

(37)

To follow the evolution of the state variable in (c∞, cτ ) space, we assume at each instant in time

x(t) = xce(c∞1 (t), . . . , c∞n∞c (t), cτ1(t), . . . , cτnτc (t)) (38)

where the function xce(c∞, cτ ) is that found in Equation (34) as a result of the maximization
just discussed.

As a result, the solution of this scheme is based on the set of n∞c + nτc explicit differential
Equations (36) and (37) coupled with the n∞c +nτc +nx Equations (31)–(33), where the nx + 2n∞c + 2nτc
unknown functions of time are xj(t), c∞i (t), cτk(t), γ∞i (t), and γτk (t).

In particular, Equation (37) shows that the only internal mechanisms that determine the rates of change
of the values of the functionals Cτ

i (x) are those acting on time scales between τ and∞. Thus, the set
of Equations (36)–(38) is independent of the details of the dynamical mechanisms whose time scale is
shorter than the given τ .

It is finally noteworthy that Relations (4) and (6) impose important restrictions on the expressions of
Dint,>τ (x) that can be adopted to model the rate-controlling slow endogenous dynamics of the system.
The first condition that we have already used in Equation (36) is that for every constrained-equilibrium
state xce,

ċ∞i |int =
nx∑
j=1

a∞ij (xce)Dint,>τ
j (xce) = 0 i = 1, . . . , n∞c (39)

namely, the functionals C∞i (x) must be time invariants of the endogenous dynamics also in the
constrained-equilibrium scheme. The second, more demanding condition is that the state functional



Entropy 2012, 14 104

F (x) must be non-decreasing under the endogenous dynamics. Setting the exogenous term
Dext(x(t), t) = 0 in Equations (36) and (37) and using Relations (35), this condition requires that at
any constrained-equilibrium state xce(t) along the assumed time evolution,

dF (xce)

dt

∣∣∣∣
int

=
nx∑
j=1

Γj(x
ce)Dint,>τ

j (xce)

=

nτc∑
k=1

γτk (xce)
nx∑
j=1

aτkj(x
ce)Dint,>τ

j (xce)

=

nτc∑
k=1

γτk (xce) ċτk|int(x
ce) ≥ 0 (40)

where in writing the second equality we used Equations (33) and (39), and in the third we used
Equation (37).

For example, like in the application of RCCE to chemical kinetics that we discuss in the next section,
a fully consistent assumption is to use, in Equation (37), Dint,>τ

j (xce) = Dint
j (xce), i.e., to use the full

internal dynamics (the detailed kinetic scheme) to evaluate the rates of change of the slow constraints
once the constrained equilibrium state xce is known. Then, the nonnegativity of Equation (40) is
guaranteed in general by the assumed nonnegativity of Equation (6). See also note [62].

3.2. Rate Equations for the Constraint-Potentials

Although direct integration of the rate-equations (36) and (37) for the constraints is relatively
straightforward and simple to implement, it has proved to be relatively inefficient and time consuming
if, at each time step during the integration, the constrained-equilibrium values (36) of the state variables
corresponding to the values of the constraints are recalculated by solving Equations (33) using a general
purpose maximization code that does not accept as initial guess the composition computed at the
previous time step [52]. For the purpose of an implementation of the method, also an alternative method
has been proposed [53] and implemented [34,50,54,74] which, instead of the direct integration of the
rate-equations for the constraint-potentials, solves the dual problem in terms of an implicit set of rate
equations for the constraint-potentials γi. A general advantage of this method is the reduction by nc

(from nc + nx to nx) of the number of implicit equations that need to be solved during the integration.
For simplicity, let us rewrite the constraints without separating them into two sets, so that (31) and (32)

are united in the single set of constraints,

Ci(x
ce) = ci i = 1, . . . , nc (41)

and the Euler-Lagrange equations are

Γj(x
ce) =

nc∑
k=1

γk akj(x
ce) (42)

and implicitly define the relation
xce = xce(γ) (43)
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By differentiating Equation (42) with respect to time and using (43) in the right-hand side, we may write

nx∑
n=1

∂Γm
∂xn

ẋce
n =

nc∑
k=1

γ̇k akm +
nc∑
i=1

γi

nx∑
n=1

∂aim
∂xn

nc∑
k=1

∂xce
n

∂γk
γ̇k (44)

Defining for convenience the matrix

a′km = akm +
nc∑
i=1

γi

nx∑
n=1

∂aim
∂xn

∂xce
n

∂γk
(45)

multiplying both sides of (44) by ∂x̂j/∂Γm, summing over m and recalling that relations (11) and (12)
are one the inverse of the other, so that

∑
m(∂x̂j/∂Γm)(∂Γm/∂xn) = δjn, we obtain

ẋce
j =

nx∑
m=1

∂x̂j
∂Γm

nc∑
k=1

γ̇k a
′
km (46)

We now use Equation (1) with x given by Equation (43) to evaluate ẋce
j in Equation (46), we multiply

both sides by aij , sum over j, and after a minor rearrangement and re-inserting all dependences explicitly,
we obtain the rate equations

nc∑
k=1

γ̇k

nx∑
j=1

nx∑
m=1

aij(x
ce(γ))

∂x̂j(Γ)

∂Γm

∣∣∣∣
Γ=γ·a(xce(γ))

a′km(xce(γ))

=
nx∑
j=1

aij(x
ce(γ))

[
Dint
j (xce(γ)) +Dext

j (xce(γ), t)
]

(47)

which form a set of nc differential equations for the nc constraint potentials γ.
In summary, the comparison between the dual solution methods presented in this and the preceding

section may be clarified by writing the equations to be solved in compact vector notation. The method
based on the rate equations for the constraints requires the solution of a set of nc explicit differential
equations coupled with nc explicit equations plus nx implicit (usually transcendental) equations, with
the forms

ċ(t) = a(x(t)) ·D(x(t)) (48)

c(t) = C(x(t)) (49)

Γ(x(t)) = γ(t) · a(x(t)) (50)

for the unknown functions c(t), γ(t), and x(t).
The method based on the rate equations for the constraint-potentials requires the solution of a set

of nc implicit differential equations coupled with nx implicit (usually transcendental) equations, with
the forms

d(x(t)) · γ̇(t) = a(x(t)) ·D(x(t)) (51)

Γ(x(t)) = γ(t) · a(x(t)) (52)

for the unknown functions γ(t) and x(t).
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4. Rate-Controlled Constrained-Equilibrium in Chemical Kinetics of Gas Mixtures

The development of models for describing the dynamic evolution of chemically reacting systems
is a fundamental objective of chemical kinetics. As explained in the introduction, the most accurate
way of doing this involves: (i) specifying the state and species variables to be included in the model;
(ii) developing a detailed kinetic model (DKM) that is comprehensive, hierarchical, and includes all
the important reaction pathways governing the state variables; (iii) obtaining accurate rate data for each
individual reaction in the DKM either using experimental techniques or using state-of-the-art quantum
chemistry methods [75]; (iv) compiling a “full set” of rate-equations for these variables based on the
postulated DKM; and (v) integrating this set of equations to obtain the time-dependent behavior of
the system.

For hydrocarbon oxidation, the problem is that the DKMs involving C/H/O/N molecules can easily
involve thousands of chemical species and isomers, and tens of thousands of chemical reactions for
heavy molecules. Aside from the expensive computational effort required to treat such models in realistic
systems involving reacting turbulent flows, one major modeling challenge is to assign reliable rate data
to every individual reaction, especially the intermediate reactions involving heavy radicals and branched
molecules, for which even the current most accurate quantum chemistry calculations offer factor-of-ten
accuracies, and virtually many of which are irrelevant after all.

It is anticipated that the RCCE method, which was originally developed and is mainly understood and
applied as a model order reduction technique, could significantly reduce the modeling effort required in
developing a DKM. One hidden, not very well received promising potential of RCCE is the ability of
bottom-up modeling. One starts with an exhaustive list of species and elemental constraints, which are
sufficient to fix the equilibrium state. No kinetic mechanism is required at this stage in the RCCE model
development, whereas the minimum number of linearly independent reactions in the corresponding
DKM is equal to the number of species only to fix the equilibrium state. The appreciable gain at this
very first stage of modeling is more pronounced when heavy molecules including several thousands of
species are considered, formation of PAH and soot for example. More constraints and more reactions
can be added to improve the accuracy to the desired level. If the only constraints are those imposed by
slowly changing state variables, the RCCE method is equivalent to a “shifting” Local Thermodynamic
(complete chemical) Equilibrium (LTE) calculation. If the number of constraints in an RCCE model is
identical to the number of species in a DKM model, then they are, for all practical purposes, identical.

RCCE fundamentals will be summarized below by starting from the standard treatment of chemical
reactions, briefly reviewed in Sections 4.1 to 4.6, and then by focusing on the RCCE formulation for a
homogeneous system (Section 4.7) and on two examples (Section 5).

4.1. Equilibrium Properties of Non-Reacting Gas Mixtures

In homogeneous, closed-reactor chemical kinetics or RCCE, where the usual frozen chemical
equilibrium assumption is made to calculate the thermodynamic properties, the Lyapunov functional
is the stable-equilibrium fundamental relation for the entropy S of a non-reacting system with the
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instantaneous values of the internal energy U , the volume V , and the numbers Nj of particles of each
different species,

F (x) = S̃(x) =
1

R
S(U, V,N1, . . . , Nnsp) (53)

where R = NAvkB with NAv Avogadro’s number and kB Boltzmann’s constant. Therefore, the state
vector is x = (U, V,N1, . . . , Nnsp). In this context, the components of the gradient vector Γ are the
potentials conjugated with the state variables,

Γ =
[ 1

RT
,
p

RT
,− µ1

RT
, . . . ,−

µnsp

RT

]
(54)

where T is the temperature, p the pressure, and µj the chemical potential or partial molar Gibbs free
energy of species j in the mixture. Under the typical simple-system approximation ([36], p. 263)
whereby the function S(U, V,N1, . . . , Nnsp) is homogeneous of first degree in all its variables, the
validity of the Euler relation, U = TS − p V +

∑
j µjNj , entails a relation among the potentials, which

are, therefore, not all independent of one another. For this reason, it is often more convenient to select
specific properties as state variables, i.e., depending on the context, either

• on a molar basis with

FN(x) =
S̃(x)

N
= s̃(u, v, x1, . . . , xnsp−1) (55)

and s̃ = S̃/N , u = U/N , v = V/N , xj = Nj/N , N =
∑

j Nj , so that in this context the state
vector is x = (u, v, x1, . . . , xnsp−1) and it is easy to show that the gradient vector is

ΓN =
[ 1

RT
,− p

RT
,−

µ1−µnsp

RT
, . . . ,−

µnsp−1−µnsp

RT

]
(56)

• on a mass basis with

Fm(x) =
S̃(x)

m
= s̃m(um, ρ, y1, . . . , ynsp−1) (57)

and s̃m = S̃/m, um = U/m, ρ = m/V is the density, yj = MjNj/m and Mj the mass fraction
and molar mass of species j, and m =

∑
j NjMj the mass, so that in this context the state vector

is x = (um, ρ, y1, . . . , ynsp−1) and it is easy to show that the gradient vector is

Γm =
[ 1

RT
,− p

ρ2RT
,−

µm1 −µmnsp

RT
, . . . ,−

µmnsp−1−µmnsp

RT

]
(58)

where µmj = µj/Mj; or

• on a volume basis with

F V (x) =
S̃(x)

V
= s̃V (uV , [N1], . . . , [Nnsp ]) (59)

and s̃V = S/V , uV = U/V , [Nj] = Nj/V is the concentration of species j, so that in this context
the state vector is x = (uV , [N1], . . . , [Nnsp ]), and it is easy to show that the gradient vector is

ΓV =
[ 1

RT
,− µ1

RT
, . . . ,−

µnsp

RT

]
(60)
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This latter case is convenient in non-homogeneous, reacting and non-reacting flows, where fluid
mechanics and chemical kinetics or RCCE are combined with the methods of non-equilibrium
thermodynamics. The pressure is obtained from the Euler relation, p/RT = s̃V − uV /RT +∑nsp

j=1[Nj]µj/RT .

We start, therefore, with a system consisting of nsp different species confined in a volume V , with
numbers of particles, denoted by Nj , sufficiently large so that the simple system approximation applies.

For a non-reacting mixture in the absence of external fields, the stable-equilibrium-state fundamental
relation for a simple system with volume as the only parameter has the form

S = Soff(U, V,N1, . . . , Nnsp) (61)

where the subscript “off” is a reminder [76] that the functional relation is that of a non-reacting mixture
(all reactions “turned off”).

The Gibbs relation, which is the differential of (61),

dS =
1

T
dU +

p

T
dV −

nsp∑
j=1

µj
T
dNj (62)

allows us to write the rate equation which relates the rates of change of entropy, energy, volume, and
composition when the system is modeled as evolving along a continuous time sequence of states,
each of which would be a stable equilibrium state if the all reactions were inhibited. Introducing,
for convenience, the “dimensionless entropy” S̃, the “entropic temperature” β, and the dimensionless
“entropic chemical potential” λj of species j,

S̃ =
S

R
, β =

1

RT
, λj = − µj

RT
(63)

and assuming that U , V , and the Nj’s are functions of time, and at any instant in time the entropy is
given by Equation (61), it is easy to see that Equation (62) implies the following relation among the time
rates of change,

dS̃

dt
= β

dU

dt
+ βp

dV

dt
+

nsp∑
j=1

λj
dNj

dt
(64)

When applied to an infinitesimal control volume in a flow field, the set of assumptions which lead to
Equation (64) constitutes the so-called “local equilibrium” assumption of fluid mechanics. In this and
the following sections, instead, we restrict the treatment to the simpler case of a homogeneous system.
But it is important to note that the “shifting equilibrium” assumption is adopted also when we deal with
reacting mixtures, for which the thermodynamic properties are assumed to be those of a non-reacting
mixture at stable (frozen) equilibrium with the same energy, volume, and composition.



Entropy 2012, 14 109

4.2. Balance Equations for Species, Energy, and Entropy

Let us now write the rate equations expressing the species, energy, and entropy balances, using the
following general notation

dNj

dt
= −Ṅ→j + V ω̇j (65)

dU

dt
= −Ė→ − p dV

dt
+ V Φ (66)

dS

dt
= −Ṡ→ + V σ (67)

where Ṅ→j , Ė→, and Ṡ→ represent the net rates of outflow (inflow if negative) of species, energy, and
entropy due to interactions across the system’s boundaries such as heat, bulk flow, diffusion, and work
other than the expansion (or compression) work (which is accounted for explicitly in view of the “shifting
equilibrium” assumption). Moreover, ω̇j , Φ, and σ represent the net rates per unit volume of “generation
within the system” of particles of type j, internal energy, and entropy due, respectively, to chemical
reactions, viscous dissipation, and irreversibilities.

Substitution of Equations (65)–(67) in Equation (64) yields the following expression for the rate of
entropy generation by irreversibility per unit volume,

σ = σchem + σflux + σdiss (68)

where

σchem = R

nsp∑
j=1

λj ω̇j ≥ 0 (69)

σflux = R
[

˙̃S→ − βĖ→ −
nsp∑
j=1

λj Ṅ
→
j

]
≥ 0 (70)

σdiss = Rβ Φ ≥ 0 (71)

and, of course, ˙̃S→ = Ṡ→/R.
The principle of entropy non-decrease, which follows from the Second Law, imposes that

σchem +σflux +σdiss ≥ 0. The reason why we write the stronger condition that σchem, σflux, and σdiss must
be independently non-negative, is to be found in the Curie principle of nonequilibrium thermodynamics,
whereby chemical reactions, which are scalar processes, cannot couple to heat and mass fluxes, which
are vectorial, nor to momentum transfer, which is tensorial.

4.3. Complete Chemical Equilibrium

If the composition is allowed to vary subject only to conservation of the atomic nuclei present
in the initial composition Nj,initial, thereby including the formation mechanisms of every possible
chemical species that can be conceivably assembled with the given atomic nuclei, then the corresponding
stable-equilibrium composition is the so-called “complete chemical equilibrium state”. For a given value
of the energy U , the volume V , and the initial numbers of particles Nj,initial of the different species,
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the complete chemical equilibrium state is found by maximizing the entropy subject to the following
constraints, which express conservation of the numbers of atomic nuclei of each kind that of course no
chemical reaction mechanism can change,

C∞i (x) =

nsp∑
j=1

a∞ij Nj = c∞i for i = 1, . . . , nel (72)

where a∞ij is the number of nuclei of type i in one molecule of species j, nel is the number of elemental
species which can be formed with the given initial set of particles, and the superscript ∞ is used here
because we will see below that in RCCE these parameters appear in elemental constraints of the model.

For a closed system, the value of each c∞i is determined once and for all by the “initial” composition
Nj,initial, and it cannot be altered by the chemistry.

In terms of the terminology of Section 2 and the examples discussed at the beginning of Section 4.1,
to proceed without making further modeling assumptions, it is convenient to adopt the state variables
x = (U, V,N1, . . . , Nnsp). Therefore, the complete chemical equilibrium state is obtained by maximizing
the function F (x) = S̃(x) as given by Equation (53) subject to given values of U and V and the
constraint Equations (72). Introducing multipliers γ∞U , γ∞V , and γ∞i for each constraint, and maximizing
the Lagrangian

L(x) = S̃ − γ∞V V − γ∞U U −
nel∑
i=1

γ∞i C
∞
i (x) (73)

yields the necessary conditions

∂L

∂U
= β − γ∞U = 0 that is γ∞U = β (74)

∂L

∂V
= βp− γ∞V = 0 that is γ∞V = βp (75)

∂L

∂Nj

= λj −
nel∑
i=1

γ∞i a
∞
ij = 0 (76)

Because in general λj = λj(U, V,N1, . . . , Nnsp), the latter conditions imply the relations

λj(U, V,N1, . . . , Nnsp) =

nel∑
i=1

γ∞i a
∞
ij (77)

which can be inverted at fixed U and V to give

Nj = Nj(U, V, γ1, . . . , γnel
) (78)

When these are inserted in the constraints (72), the resulting relations can be inverted at fixed U and V
to yield

γi = γi(U, V, c
∞
1 , . . . , c

∞
nel

) (79)

which, in turn, inserted into Equations (78) yields the complete chemical composition corresponding to
the given values of U , V , and initial number of nuclei c∞,

Nj = Nj(U, V, c
∞
1 , . . . , c

∞
nel

) (80)
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So far, no specific assumption has been made regarding the relations between the stable-equilibrium
properties of the mixture and those of the component species when pure. This is where further
assumptions, for example to model a particular non-ideal mixture behavior valid in dense gas, liquid
phase, or phase change, should be considered as additional “elemental” constraints of the model. In the
next section, we exemplify this by assuming an ideal mixture of ideal gases, so as to recover the standard
treatment of chemical kinetics and the original formulation of RCCE.

It is noteworthy that because of conditions (74) and (75), the term S̃−β U−βp V in the right-hand side
of the Lagrangian (73) coincides with−G/RT whereG is the Gibbs free energy. Therefore, maximizing
S̃ subject to given values of U and V is equivalent to minimizing the dimensionless Planck function
K̃ = G/RT . Thus, again, for non-ideal mixture behavior, we must proceed by adopting one of the
many model expressions available in the literature (see, e.g., [77,78]) for the Gibbs free energy G or the
Helmholtz free energy F = G− p V as functions of the other state variables.

4.4. Complete Chemical Equilibrium for Ideal Gas Mixtures

Let us now make and discuss the following standard assumptions in the treatment of ideal gas
mixtures: (i) simple system model; (ii) Gibbs-Dalton ideal mixture behavior; (iii) ideal gas behavior
for each of the component species when pure and at the same temperature of the mixture, in the entire
range between the standard reference pressure po and the pressure of the mixture.

The simple system model ([36], p. 266) implies the validity of the Euler relation which can be written
either as U = TS − p V +

∑
j µjNj or as

S̃ = β U + βp V +

nsp∑
j=1

λj Nj (81)

The Gibbs–Dalton ideal mixture model ([36], p. 481) implies the following relations for the mixture
properties S, U , V , and the pure substance properties of the component species,

S =

nsp∑
j=1

Nj sjj(β, pj) (82)

U =

nsp∑
j=1

Nj ujj(β, pj) (83)

V = Nj vjj(β, pj) for every j = 1, . . . , nsp (84)

where pj denotes the partial pressure of species j in the mixture and sjj , ujj , and vjj the mole specific
properties of pure species j, where the double-j subscript is a reminder that these properties refer to the
species j when pure. Under this model, the Dalton law applies, p =

∑nsp

j=1 pj .
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Finally, assuming ideal gas behavior, vjj(β, p) = βp, for every species j and all values of β and p,
then the partial pressures are given by pj = Nj/βV , and Equations (82)–(84) may be written in the form

S̃ =

nsp∑
j=1

Nj

[
s̃jj(β, po)− ln

p

po
− ln

Nj

N

]
(85)

C∞U (x) =

nsp∑
j=1

Nj ujj(β) = U (86)

C∞V (x) =
1

βp

nsp∑
j=1

Nj = V (87)

where po is the standard reference pressure. We further note that, in our notation, the relations
µjj = hjj − T sjj , hjj = ujj +RT translate into

s̃jj = λjj + β ujj + 1 (88)

so that we may rewrite Equation (85) as

S̃ =

nsp∑
j=1

Nj

[
λjj(β, po) + β ujj(β) + 1− ln

p

po
− ln

Nj

N

]
(89)

As a result, a natural set of state variables in this context is

x = (β, p,N1, . . . , Nnsp) (90)

and so the complete chemical equilibrium state is obtained by maximizing the function F (x) = S̃(x)

as given by Equation (85) subject to the constraints given by Equations (72), (86), and (87). Introducing
multipliers γ∞i , γ∞U , and γ∞V for these constraints, and maximizing the Lagrangian

L(x) = S̃(x)− γ∞V C∞V (x)− γ∞U C∞U (x)−
nel∑
i=1

γ∞i C
∞
i (x) (91)

yields the necessary conditions

∂L

∂p
= N

[
− 1

p
+ γ∞V

1

βp2

]
= 0 that is γ∞V = βp (92)

∂L

∂β
=

nsp∑
j=1

Nj

[
− c̃pjj

β
+ γ∞U

c̃vjj
β2

+
1

β

]
= 0 that is γ∞U = β (93)

∂L

∂Nj

= λjj(β, po)− ln
p

po
− ln

Nj

N
−

nel∑
i=1

γ∞i a
∞
ij = 0 (94)

where we made use of the relations ∂s̃jj/∂β = −c̃pjj/β, ∂ujj/∂β = −c̃vjj/β2, c̃pjj = c̃vjj + 1, where of
course c̃p = cp/R and c̃v = cv/R. Using Equation (87) to eliminate N in Equation (94), finally yields
the relation

Nj = βpoV exp
[
λjj(β, po)−

nel∑
i=1

γ∞i a
∞
ij

]
(95)
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Equations (72), (86), (87), and (95) form a system of nsp +nel + 2 implicit equations which, for given
values of U , V , and the c∞i ’s, can be solved to yield the complete chemical equilibrium values of the
nsp + 2 state variables β, p, Nj , and the nel constraint-potentials γ∞i .

If the values of the energy U , the volume V , and the number of atomic nuclei of each type, c∞i ,
are allowed to vary in time, the system will evolve through a sequence of complete-equilibrium states
at a rate controlled by the imposed rates. This is the well-known case of “shifting complete chemical
equilibrium”, already denoted by LTE.

For completeness, it is convenient to recall and write in more standard notation, that each
(dimensionless) λjj(β, po) in Equations (95) is computed from the molar Gibbs free energies of formation
of the j-th species at standard conditions and the temperature dependence of its molar specific heat
capacity at constant pressure cpjj(T ), via the relation

λjj(1/RT, po) = −∆gof )jj
RT

− 1

RT

[∫ T

To

cpjj(T ) dT − T
∫ T

To

cpjj(T )

T
dT

]
(96)

Similarly each molar specific internal energy ujj(β) may be computed via the relation

ujj(1/RT ) = (∆hof )jj −RT +

∫ T

To

cpjj(T ) dT (97)

4.5. Chemical Equilibrium of Ideal Gas Mixtures with Respect to a Set of Reactions

If the composition is allowed to vary according to one or more chemical reaction mechanisms, the
maximization is to be done for specified values of U and V and the allowed stoichiometric variations in
composition. So, let us assume that the DKM is based on the following nr reaction mechanisms,

nsp∑
j=1

ν+
j`Bj ↔

nsp∑
j=1

ν−j`Bj for ` = 1, . . . , nr (98)

where Bj denotes the chemical symbol of the j-th species, and the net stoichiometric coefficients
νj` = ν−j` − ν

+
j` satisfy the atomic nuclei conservation identities

nsp∑
j=1

a∞ij νj` = 0 for each element i and reaction ` (99)

where again a∞ij is the number of nuclei of type i in one molecule of species j.
As a result of this assumption, the term V ω̇j in the species balance equation (65), which expresses

the rate of formation (consumption, if negative) of particles of species j due to the allowed chemical
reaction mechanisms, must satisfy the so-called proportionality relations

V ω̇j =
nr∑
`=1

νj` ε̇` (100)

where ε` is the so-called coordinate or degree of advancement of the `-th reaction.
The Second Law requires that at stable equilibrium the entropy be maximal within each set of states

that have the same values of the energy U and the volume V , and compositions that are compatible
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(through the allowed reaction mechanisms) with the same initial composition Nj,initial. The set of
compositions compatible with Nj,initial is the r-parameter family of compositions found by integrating
in time Equation (65) with Ṅ→j = 0 and with V ω̇j given by Equation (100). This integration, if we set
for convenience ε`(0), yields

Nj(ε) = Nj,initial +
nr∑
`=1

νj` ε` (101)

Equation (101) together with the additional trivial restriction Nj ≥ 0 defines through the r parameters ε`
the family of compatible compositions over which the entropy maximization is to be restricted. Inserting
this restriction into Equations (85)–(87), they become,

S̃ =

nsp∑
j=1

Nj(ε)

[
s̃jj(β, po)− ln

p

po
− ln

Nj(ε)

N(ε)

]
(102)

C∞U (x) =

nsp∑
j=1

Nj(ε)ujj(β) = U (103)

C∞V (x) =
1

βp

nsp∑
j=1

Nj(ε) = V (104)

Therefore, a natural set of state variables in this more constrained context is

x = (β, p, ε1, . . . , εnr) (105)

and so the chemical equilibrium state is obtained by maximizing the function F (x) = S̃(x) as
given by Equation (102) subject only to the constraints (103) and (104). In fact, we note that the
element-conservation constraint (72) is automatically satisfied because the stoichiometric coefficients
satisfy Equation (99).

Introducing multipliers γ∞U and γ∞V for the two constraints, and maximizing the Lagrangian

L(x) = S̃(x)− γ∞V C∞V (x)− γ∞U C∞U (x) (106)

yields the necessary conditions γ∞V = βp, γ∞U = β as in Equations (92) and (93), and

∂L

∂ε`
=

nsp∑
j=1

νj`

[
λjj(β, po)− ln

p

po
− ln

Nj

N

]
= 0 (107)

where we used ∂Nj/∂ε` = νj` which follows from Equation (101).
By defining the dimensionless equilibrium “constant” of reaction ` at entropic temperature β,

Ko
` (β) = exp

[ nsp∑
j=1

λjj(β, po) νj`

]
(108)

and ν` =
∑nsp

j=1 νj`, Equation (107) takes the familiar form in terms of the species concentrations
[Nj] = Nj/V , namely, at equilibrium,

nsp∏
j=1

[Nj]
νj` = (βpo)

ν`Ko
` (β) (109)
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which is the well-known law of mass action. The right-hand side of Equation (109) defines the so-called
equilibrium constant based on concentrations,

Kco
` (β) = (βpo)

ν`Ko
` (β) (110)

whose dimensions depend on the value of ν`.
We finally note that the potential Γ` conjugated to the reaction coordinate ε`,

Γ` =
∂S̃(x)

∂ε`
=

nsp∑
j=1

νj` λj (111)

is the dimensionless form of the entropic affinity of reaction `, i.e., with the notation of [76], Γ` = Y`/R

and with the usual notation Γ` = A`/RT where A` = −
∑nsp

j=1 νj` µj is the de Donder affinity of
the reaction.

For the discussion in the next section, it is important to note that Γ` may be expressed, using
Equation (102), as

Γ` = lnKo
` (β)− ln

∏nsp

j=1[Nj]
νj`

(βpo)ν`
(112)

Therefore, the chemical equilibrium condition (109) is equivalently expressed by the condition Γ` = 0,
i.e., that the affinity of every reaction vanishes at equilibrium.

However, the entropic affinity Γ` is well defined also off chemical equilibrium. In fact, inserting
Equation (100) in (69) and using Equation (111), the rate of entropy generation due to the r allowed
chemical reactions, may be written as

σchem = R

nsp∑
j=1

λj ω̇j =
R

V

nr∑
`=1

Γ` ε̇` (113)

In the next section, we show that under the standard kinetic modeling assumptions, the Second Law
requirement that σchem be positive semi-definite implies that Γ` can be interpreted as a (dimensionless)
measure of the degree of disequilibrium with respect to the `-th reaction.

4.6. Entropy Production and Detailed Balance

The rate of change of reaction coordinate ε` per unit volume is usually called the net rate of the `-th
reaction, denoted by r` and expressed as the difference between the forward and reverse reaction rates,

r` = ε̇`/V = r+
` − r

−
` (114)

So, the entropy generation rate density is also given by

σchem = R

nr∑
`=1

(r+
` − r

−
` ) Γ` (115)

For ideal gas mixture behavior, the standard model in chemical kinetics is based on the following
expressions for the forward and reverse (positive) reaction rates

r+
` = k+

`

nsp∏
j=1

[Nj]
ν+j` (116)

r−` = k−`

nsp∏
j=1

[Nj]
ν−j` (117)
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where k+
` and k−` are the so-called (positive) rate constants of the reaction.

Recalling that νj` = ν−j` − ν
+
j` and taking the ratio of Equations (117) and (116) yields the relation

nsp∏
j=1

[Nj]
νj` =

r−`
r+
`

k+
`

k−`
(118)

which is valid both at and off equilibrium. Inserting this relation in Equation (112), we obtain, in general,

Γ` = ln
r+
`

r−`
+ ln

(
Kco
` (β)

k−`
k+
`

)
(119)

which inserted in Equation (115) yields, in general,

σchem = R
nr∑
`=1

(r+
` − r

−
` )
[

ln
r+
`

r−`
+ ln

(
Kco
` (β)

k−`
k+
`

)]
(120)

Let us rewrite the expressions just obtained, in terms of two useful parameters. The first, suggested
by one of us [53] as a measure of the departure of reaction ` from equilibrium, is the “degree of
disequilibrium”

φ` = ln
r+
`

r−`
(121)

The second parameter, which we will see can be interpreted as the “degree of departure from detailed
balance”, is

∆` = ln
(
Kco
` (β)

k−`
k+
`

)
(122)

Clearly, Equations (119) and (120) rewrite as

Γ` = φ` + ∆` (123)

σchem = R
nr∑
`=1

r+
` [1− exp(−φ`)] (φ` + ∆`) (124)

= R
nr∑
`=1

r+
` [1− exp(−Γ` + ∆`)] Γ` (125)

So far, we made no assumption about the functional dependence of the rate constants k+
` and k−` , and

hence of ∆`, on the state variables.
Close to chemical equilibrium, in the limit of vanishing net reaction rates r` = r+

` − r−` , i.e., if
φ` → 0 for every `, the affinities must approach their vanishing equilibrium values, i.e., Γ` → 0 for
every `, therefore Equation (123) implies ∆` → 0, which is the so-called rate quotient law or detailed
balance condition, relating the ratio of the forward and reverse rate constants for every reaction to the
corresponding equilibrium constant,

lim
φ`→0

k+
`

k−`
= Kco

` (β) (126)

In general, away from chemical equilibrium, by Equations (122) and (123) we have

k+
`

k−`
= Kco

` (β) exp(φ` − Γ`) (127)
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and the question of the validity of the detailed balance condition ∆` = 0 can be addressed in
various ways [79], mainly depending on the modeling assumptions about the functional dependence
of the rate constants k+

` and k−` . However, the most general and restrictive condition for the
thermodynamic consistency of any set of modeling assumptions is that the expression (124) for σchem

be positive semi-definite over the entire range of compatible compositions, no matter how far from
chemical equilibrium.

For example, let us assume that the rate constants exhibit neither cross effects nor any dependence on
the affinities, so that ∂∆`/∂Γm = 0 for every ` and m. Then it follows that ∆` = 0 is a necessary
and sufficient condition for σchem to be positive semi-definite. That the condition is sufficient is a
straightforward consequence of the nonnegativity of the function [1−exp(−Γ)] Γ. One way to prove that
the condition is also necessary is to require that the minimum value of σchem given by (125) with respect
to variations of Γ be nonnegative (it actually must be zero, since at equilibrium the entropy production
must be zero). Denoting by Γ the location of the minimum, where ∂σchem/∂Γ` = 0 for every `, it is easy
to show that

σchem,min = −R
nr∑
`=1

r+
` Γ

2

` exp(−Γ` + ∆`) (128)

For this to be nonnegative, we must have Γ` = 0 for every `, which inserted back into the condition for
the minimum, ∂σchem/∂Γ` = 0, yields 1− exp(∆`) = 0 for every `, that is, ∆` = 0. An equivalent more
direct proof obtains by differentiating Equation (123) with respect to Γ` under the assumed independence
of ∆` on the affinities. This yields ∂φ`/∂Γ` = 1 which, together with the condition that at chemical
equilibrium both Γ` = 0 and φ` = 0, implies Γ` = φ` and, hence, ∆` = 0.

As a result we find that the detailed balance condition,

k+
`

k−`
= Kco

` (β) (129)

holds also off equilibrium. This means that if the forward rate constant k+
` is assumed, as typical, to be a

function of temperature and pressure only, then Equation (129) implies that also the reverse rate constant
k−` must be a function of temperature and pressure only, with k+

` /k
−
` independent of pressure.

Conversely, if we assume that the forward and reverse rate constants k+
` and k−` are functions of

temperature and pressure only, with k+
` /k

−
` independent of pressure, i.e., we assume that no matter

how far from the chemical equilibrium composition, k+
` /k

−
` is a function of β only, then because of

Condition (126) such function must be equal to Kco
` (β) implying that ∆` = 0 at all compositions.

In summary, any set of assumptions about the dependences of the rate constants that implies the
general validity of detailed balance off-equilibrium implies also that the expressions for the rate of
entropy generation per unit volume reduce to the following equivalent positive semi-definite forms

σchem = R
nr∑
`=1

(r+
` − r

−
` ) ln

r+
`

r−`
(130)

= R
nr∑
`=1

r+
` [1− exp(−φ`)]φ` (131)

= R
nr∑
`=1

r+
` [1− exp(−Γ`)] Γ` (132)



Entropy 2012, 14 118

We finally note that sometimes the term “detailed balance” is used with a different meaning, to express
the condition r−` = r+

` of equality of the forward and reverse reaction rates, i.e., in our language, to the
absence of disequilibrium, φ` = 0. However, it is clear that close enough to equilibrium r−` ≈ r+

` .

4.7. Rate-Controlled Constrained-Equilibrium Formulation for a Closed System

The Rate-Controlled Constrained Equilibrium (RCCE) model assumes a time evolution through
a sequence of states each maximizing the entropy subject not only to the constraints that define
the complete chemical equilibrium state (Sections 4.3 and 4.4), but also to a set of additional
kinetically-controlled constraints. The number of additional constraints may be large or small.

At one extreme is the case that we call Detailed Model (DM) with the largest possible number of
additional constraints. These are the number of particles of a selection of nsp − nel species among
those considered in the underlying DKM scheme. The additional time-dependent constraints are
Cτ

1 (x) = N1,. . . , Cτ
nsp−nel

(x) = Nnsp−nel
, so that the evolution of the system is controlled by the

rate-equations for the species, plus of course the prescribed time changes of U and V . DM and DKM
differ in that once we have the DM calculation, then we may at once calculate the amounts of an
augmented set of species, including any other species which can be made from the given initial nuclei in
the system, even if not included in the underlying DKM scheme.

However, the RCCE method is most interesting when it effectively reproduces DKM results with a
number of time-dependent constraints that is of course higher than in LTE but much smaller than in DM.
So far, RCCE calculations have been based on identifying slow varying functionals Cτ

k (x) that are linear
in the species number of moles Nj , and therefore can be written in the form

Cτ
k (x) =

nsp∑
j=1

aτkj Nj = cτk for k = 1, . . . , nτc (133)

where aτkj represents the marginal impact of a change inNj onto changing the value of the slowly varying
functional. The rate of change of the value cτk is obtained, for the closed system, by using the rates of
change of the amounts Nj which result from using, in the rate-equations (100), the reaction rates r`
known from the DKM scheme.

Because they have identical linear structure, we may formally combine Equations (72) and (133), into
a single set of nc = nel + nτc constraint equations,

Ci(x) =

nsp∑
j=1

aij Nj = ci for i = 1, . . . , nc (134)

So, the maximization procedure that determines the concentrations at time t is formally identical to
that outlined in Section 4.3 except that the number of constraints here is higher, nc instead of nel. The
resulting concentrations are given therefore by the expressions

Nj = βpoV exp
[
λjj(β, po)−

nc∑
i=1

γi aij

]
(135)

which differ from Equations (95) only in the absence of the superscript∞, in accordance with the new,
larger set of constraints (134).
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Equations (86), (87), (134), and (135) form a system of nsp + nc + 2 implicit equations which can be
solved for given values of U , V , and the ci’s, to yield the constrained equilibrium values of the nsp + 2

state variables β, p, Nj , and the nc = nel + nτc constraint-potentials γi.
As the values of the energy U , the volume V , the number of atomic nuclei of each type, c∞i , and the

slowly varying constraints cτi are allowed to vary in time, the system will evolve through a sequence of
constrained-equilibrium states at a rate controlled by the imposed rates.

In view of their particular functional dependences and because the constraint gradients aij are
constants, the RCCE equations can be integrated more efficiently by rewriting them as rate equations
for the constraint-potentials and making use of the species and energy balance Equations (65) and (66),
and the kinetic Equations (100), (114), (116), and (117) that determine the rate of change of the values
ci of the constraints. By differentiating Equations (86), (87), (134), and (135) with respect to time, after
few rearrangements corresponding to the general procedure outlined in Section 3.2 for the general case,
we obtain the following set of rate equations

nc∑
k=1

γ̇k

nsp∑
j=1

akjNjaij = − β̇
β

nsp∑
j=1

Njβujjaij +
V̇

V

nsp∑
j=1

Njaij +

nsp∑
j=1

aijṄ
→
j −


0 , for i = 1, . . . , nel,

ċτi,chem(β, p,N ) ,

for i = nel+1, . . . , nc,
(136)

where

ċτi,chem(β, p,N ) = V
nr∑
`=1

( nsp∑
m=1

aimνm`

)[k+
` (β, p)

V ν+`

nsp∏
j=1

(Nj)
ν+j` − k−` (β, p)

V ν−`

nsp∏
j=1

(Nj)
ν−j`

]
(137)

nc∑
k=1

γ̇k

nsp∑
j=1

akjNjβujj = − β̇
β

nsp∑
j=1

Nj

(
β2u2

jj +
cvjj
R

)
+
V̇

V

nsp∑
j=1

Njβujj + βĖ→ + βp V̇ − βV Φ (138)

nc∑
k=1

γ̇k

nsp∑
j=1

akjNj = − β̇
β

nsp∑
j=1

Nj (βujj + 1)− ṗ

p

nsp∑
j=1

Nj (139)

These nnc +2 implicit differential equations together with the nx Equations (135) can be solved for given
values of Ė→, V (t), and the Ṅ→j , to yield the nx + 2 state variables β(t), p(t), and Nj(t), and the nc

constraint-potentials γi(t).
It is finally important to note that the thermodynamic-consistency condition (40), that the entropy

generation rate be non-negative definite under the endogenous dynamics, is always satisfied, because
in evaluating the rates ċτi we use the full internal dynamics (the detailed kinetic scheme), with forward
and reverse rate constants k+

` and k−` that depend on temperature and pressure only, a condition that
we have seen in Section 4.6 warrants the nonnegativity of the entropy generation rate. As previously
noted (see also [53,76]), whether or not there are kinetically-controlled constraints in addition to element
conservation, all conceivable reactions contribute to the rate of entropy production. However, in the sum
in Equation (120), the contribution of the non-constraint-changing reactions is through the adjustments
in the chemical affinities of the constraint-changing reactions.
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5. Selection of Constraints in Combustion Examples

The careful selection of constraints is the key to the success of the RCCE method. In general, the
constraints must (i) include the elemental constraints; (ii) be linearly independent combinations of the
species molar concentrations; (iii) constrain the system in the specified initial state; (iv) constrain global
reactions in which reactants or intermediates go directly to products; and (v) determine the energy
and entropy of the system within experimental accuracy. In addition, they should reflect whatever
information is available about rate-limiting reactions which control the evolution of the system on the
time scale of interest.

Under broad conditions in the gas phase, two important structural constraints are the total number of
moles and the amount of free valence in a reacting system. The former is controlled by slow three-body
dissociation/recombination reactions and the latter by reactions which make and break valence bonds.
In connection with the ideas presented in Sections 2 and 3, we observe that the total number of moles is
a constant of the endogenous dynamics within the class of bimolecular reactions. Three-body reactions
are generally slow in the endothermic direction because of the high activation energies required, and in
the exothermic direction because of small three-body collision rates and small radical concentrations.
They impose slowly varying constraints on the total molar concentration N and the free valence of the
system. We denote these two constraints by the symbol M and FV, respectively. A finite value of FV is
a necessary condition for chemical reactions to proceed.

A third important structural constraint, accounting for slow O−O bond-breaking reactions, is the free
oxygen, FO, defined as any oxygen atom not directly bound to another oxygen atom. An increase in
FO is a necessary condition for the formation of the major reaction products of hydrocarbon oxidation,
H2O, CO2 and CO. Two additional constraints which slightly improve the agreement between RCCE
and DKM calculations under some conditions are: OHO ≡ OH + O and DCO ≡ HCO + CO. The OHO
constraint is a consequence of the relatively slow constraint-changing reaction RH + OH ↔ H2O + R
coupled with the fast reaction RH + O↔ OH + R which equilibrates OH and O. The DCO constraint is a
consequence of the slow spin-forbidden reaction CO + HO2↔ CO2 + OH coupled with the fast reaction
HCO + O2↔ CO + HO2 which equilibrates HCO and CO.

For systems involving the elements C, H and O, the five nontrivial constraints M, FV, FO, OHO, and
DCO are independent of the initial reactants and may, therefore, be considered structurally “universal”
constraints. Along with the three equilibrium reactions, H2 + O↔ OH + H, H2 + HOO↔ H2O2 + H,
and HCO + O2↔ CO + HO2, they are sufficient to determine the constrained-equilibrium mole fractions
of the 11 major hydrocarbon combustion products (H, O, OH, HO2, H2, O2, H2O, H2O2, HCO, CO and
CO2) under both high and low temperature conditions.

For hydrocarbon oxidation, four additional fuel-dependent constraints have proved to be relevant [34].
The first is a constraint on the fuel, FU, imposed by slow hydrogen-abstraction reactions of the type
FU + O2 ↔ FR + HO2 and even slower dissociation/recombination of the type AB + M↔ A + B + M.
This constraint is necessary to hold the system in its initial state. The second is a constraint on fuel
radicals, FR, which is necessary to prevent the equilibration of forbidden global reactions such as
CH3 + 2O2 + 2H2O↔ CO2 + 2H2O2 + H2 + H which would otherwise convert fuel radicals directly to
major products. The third is a constraint on alkylperoxides, APO ≡ CH3OOH + CH3OO + CH2OOH,
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imposed by slow reactions which convert APO to hydroperoxides coupled with fast reactions which
equilibrate the species comprising APO. The fourth is a constraint on alcohol plus formaldehyde,
ALCD ≡ CH3OH + CH3O + CH2OH + CH2O imposed by relatively slow reactions which
generate/remove ALCD coupled with fast reactions which equilibrate the species comprising ALCD.

The following two combustion examples show typical RCCE results under the constraints discussed
above, in comparison with the corresponding DKM calculations.

Given the fact that the internal dynamics of the system and the controlling constraints depend, in
general, upon the initial distance of the system from its chemical equilibrium state, we consider two
extreme cases below: close-to and far-from equilibrium systems.

5.1. Example 1. Close-to-Equilibrium Oxygen-Methane Combustion

The constraints defined in the previous section are particularly useful for modeling systems driven
away from an initial equilibrium by fast expansions and compressions. They are useful both to increase
the speed and efficiency of calculations and to provide insight about the most important reaction
mechanisms. An example of this is shown in Figure 1 where RCCE calculations of the CO mole
fraction during the expansion of combustion products in an internal combustion engine are compared
with a detailed (DKM) calculation [35]. RCCE calculations are carried out using rate equations for the
constraint-potentials.

Figure 1. (Color online) CO mole fractions as a function crank angle during the expansion
stroke of an internal combustion engine.

RCCE calculations involving only energy and volume constraints are shown by the curve labeled
LTE, i.e., the shifting equilibrium case. The DKM calculation includes 29 species and 132 reactions
abstracted from the GRI-3 mechanism [80] and the compilations in [81,82]. It can be seen that the slow
rate of expansion during the early stages of the power stroke results in local adjustment of composition
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to LTE predictions. However, as the rate of expansion increases, the LTE prediction departs significantly
from the DKM prediction, due to the finite rates of some of the kinetic mechanisms that determine
the relaxation process. The LTE results at the end of the expansion stroke are lower than the DKM
results by about an order of magnitude. Also shown in Figure 1 is the choice-of-constraints dependence
study of the RCCE predictions. Consistently with the Le Châtelier-Braun principle, the shift of the
internal dynamics towards the exothermic direction due to the cooling effect of expansion makes the
recombination reactions an essential part of the energy-restoration dynamics. Just constraining the total
number of moles of gas, M, shows a significant improvement with respect to the LTE predictions.
Adding constraints one at a time shows that only a subset of structural constraints, namely M, FV,
and FO, are sufficient to capture the nonequilibrium dynamics during expansion. Again, we note that
the constraint-potentials obtained from the RCCE calculations can be used to obtain mole fractions not
only for the 29 species in the detailed model but also for any species involving the same elements and
for which the thermodynamic properties are known.

5.2. Example 2. Far-from-Equilibrium Oxygen-Methane Combustion

For far-from-equilibrium systems, it is necessary to use the fuel as a constraint to fix the initial state
of the system. The fuel constraint together with the elemental constraints are sufficient to guarantee that
the system will go to the correct final equilibrium state. However, to obtain the correct time evolution of
the system, additional constraints may be needed and the accuracy of the results depends on the careful
selection of these added constraints.

This case is illustrated in Figure 2 which shows the predicted temperature profiles when constraints
are added one at a time for a homogeneous stoichiometric mixtures of CH4/O2 in a constant volume
adiabatic chamber. The initial temperature is 900 K and the initial pressure 10 atm. The DKM
calculations include 132 reactions and 29 species, and are again based on the GRI-Mech 3.0 and the other
compilations previously cited. The minimum number of reactions needed in the RCCE model, however,
depends on the number and the type of constraints. Nevertheless, since all such calculations involve
elemental constraints, the constrained equilibrium concentration of all 29 species can be obtained. The
improvement in the prediction of the temperature profile can be seen to steadily increase over the entire
range of conditions studied as additional constraints are included in the model.

In general, the accuracy of RCCE calculations improves as the number of constraints increases. In
the limit where the number of constraints approaches the number of species in the DKM, the RCCE
and DKM calculations become almost equivalent, but RCCE allows to evaluate concentrations also of
species not included in DKM.

Although strongly supported by its general thermodynamic consistency, the experience and intuition
dependent “art” of choosing the most appropriate constraints for an RCCE calculation may not be as
effective when experimental data and reliability of the DKM are scarce. In such cases, we suggest that
systematic studies of the DKM based on the tools of dynamical systems theory, such as the eigenvalue
analysis of the local Jacobians [83] and the construction of the slow one-dimensional invariant manifold
(as done in the SIM, ILDM, CSP, MIM, G and other schemes cited in the Introduction), could provide
useful hints for the identification of physically meaningful structural constraining functions that maintain



Entropy 2012, 14 123

their rate-controlling capabilities for a broad class of problems, independently (or for a broad range) of
initial thermodynamic conditions.

Figure 2. (Color online) Constraint-dependence study of RCCE predictions of the
temperature profile during the oxidation of stoichiometric methane-oxygen mixtures at
Ti = 900 K and pi = 10 atm in a constant volume adiabatic chamber.

6. Conclusions

RCCE is a powerful method for simplifying the description of non-equilibrium states and their
tendency to relax towards equilibrium. In this paper, we present its generalization in a generic
mathematical context where the constraints can be nonlinear functions of the state variables. In doing
so, we review the philosophy of the method, we discuss in a careful step-by-step derivation the various
assumptions that underlie its application in chemical kinetics, and by showing the results of two typical
combustion examples we discuss the basic structural constraints which successfully provide accurate
model reduction for two different reacting systems.

We show that in the thermodynamics and statistical mechanics contexts, RCCE is fully compatible
with the Second Law. In fact, it is a logical extension of conventional equilibrium thermodynamics to
nonequilibrium systems. The method has the potential to greatly simplify the treatment of complex
reacting systems for which only incomplete data are available about the reaction rates of the
underlying detailed scheme, which often must be modeled by truncating the species list or introducing
ad hoc global reactions. It can also be used to build combustion models for complex chemical
systems for which standard methods to compute the rate constants are not accurate enough to justify
individual-reaction modeling.
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Among the relevant features of the RCCE method in the chemical kinetics context are the following:

1. By focusing attention on the rate-limiting reactions, the method leads to a better understanding of
the important mechanisms and reaction paths involved in the evolution of a complex system.

2. Since the number of constraints required for RCCE calculations is much smaller than the
number of species required for detailed calculations, the total number of differential plus
algebraic equations to be solved is much smaller than for other models, so that the model
is suitable for coupling with transport equations and turbulence models for turbulent flow
combustion calculations.

3. Since only reactions that change the constraints are needed, the number of reaction rates and the
level of effort required to tabulate and input them are greatly reduced.

4. RCCE combustion calculations can be initiated with only the constraints on the state variables
and the fuel, and then systematically improved by adding constraining functionals of the state
variables, one at a time, until an acceptable level of accuracy is reached. Excellent agreement with
experimental data and validated detailed kinetic model calculations is often reached with a number
of constraints well below the number of species in a detailed model.

5. The entropy production rate in RCCE calculations is always non-negative. Moreover, the correct
final equilibrium state for the fixed atomic-nuclei constraints is always reached, regardless of the
number of constraints employed.

The present generalized mathematical formulation extends the applicability of the RCCE method to
a wider class of relaxation problems and nonequilibrium dynamical systems, possibly even beyond the
framework of chemical kinetics, provided they admit a Lyapunov functional of the state variables which
cannot be increased by the system’s internal dynamics.
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