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The Briefest of Glances: The Time Course of Natural Scene
Understanding

Michelle R. Greene1 and Aude Oliva1

1Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology

Abstract
What information is available from a brief glance at a novel scene? Although previous efforts to
answer this question have focused on scene categorization or object detection, real-world scenes
contain a wealth of information whose perceptual availability has yet to be explored. We
compared image exposure thresholds in several tasks involving basic-level categorization or
global-property classification. All thresholds were remarkably short: Observers achieved 75%-
correct performance with presentations ranging from 19 to 67 ms, reaching maximum
performance at about 100 ms. Global-property categorization was performed with significantly
less presentation time than basic-level categorization, which suggests that there exists a time
during early visual processing when a scene may be classified as, for example, a large space or
navigable, but not yet as a mountain or lake. Comparing the relative availability of visual
information reveals bottlenecks in the accumulation of meaning. Understanding these bottlenecks
provides critical insight into the computations underlying rapid visual understanding.

Catching meaning at a glance is a survival instinct, and a uniquely human talent that movie
producers manipulate to their advantage when making trailers: By mixing snapshots of
meaningful scenes in a rapid sequence, they can convey in a few seconds an evocative story
from unrelated pictures of people, events, and places. In the laboratory, now-classic studies
have shown that novel pictures can be identified in a 10-Hz sequence, although they are
quickly forgotten when new images come into view (Intraub, 1981; Potter, 1975; Potter &
Levy, 1969). Although several studies have investigated the availability of visual features
over the course of a glance, in the study reported here we investigated the early perceptual
availability of a number of semantic features used in scene classification. What types of
meaningful information can human observers perceive from the briefest glances at images of
novel scenes?

A typical scene fixation of 275 to 300 ms (Henderson, 2003; Rayner, 1998) is often
sufficient to understand the gist of an image, namely, its semantic topic (e.g., “birthday
party”; Intraub, 1981; Potter, 1975; Tatler, Gilchrist, & Risted, 2003). It takes slightly more
exposure to recognize small objects in the scene (Fei-Fei, Iyer, Koch, & Perona, 2007) or to
report their locations and spatial relations (Evans & Treisman, 2005; Tatler et al., 2003).

There is also evidence that observers can accomplish sophisticated scene analysis after
viewing a novel scene for a single monitor refresh (10-40 ms) without masking. With such a
brief exposure, observers can detect how pleasant a scene is (Kaplan, 1992) or whether it is
natural or urban (Joubert, Rousselet, Fize, & Fabre-Thorpe, 2007); they can also determine
the basic- or superordinate-level categories of a scene (Oliva & Schyns, 2000; Rousselet,
Joubert, & Fabre-Thorpe, 2005) or detect the presence of a large object (Thorpe, Fize, &
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Marlot, 1996; Van Rullen & Thorpe, 2001). Although the extraordinarily high level of
performance in these studies may be partially mediated by persistence in iconic memory,
high performance is seen on similar tasks using masking paradigms (Bacon-Mace, Mace,
Fabre-Thorpe, & Thorpe, 2005; Fei-Fei et al., 2007; Greene & Oliva, 2009; Grill-Spector &
Kanwisher, 2005; Maljkovic & Martini, 2005).

Although many studies of natural scene understanding have focused on basic-level
categorization or object identification, real-world scenes contain a wealth of structural and
functional information whose time course of perceptual availability has not yet been
determined. For example, determining how navigable a place is or whether it affords
concealment is a perceptual decision with high survival value (Kaplan, 1992). Similarly,
how the surfaces in a scene extend in space and change over time may influence how
observers would behave in the scene. Properties of spatial layout, such as an environment’s
mean depth and openness, also influence its affordances (Oliva & Torralba, 2001). One can
run in an open field, but not in a small and enclosed cave. Some materials of natural
environments have a high transience, so that the scene changes very rapidly from one glance
to the next (e.g., a rushing waterfall or a windy, sand-covered beach), whereas other surfaces
(e.g., cliff rocks) have low transience, changing mostly in geological time. Similarly,
material properties of surfaces, along with the interplay of atmospheric elements (e.g., water,
wind, heat), give a place a particular physical temperature, another global property of the
natural environment that strongly influences observers’ behavior. All of these properties
(and certainly more) combine in forming the understanding of a scene, much as recognition
of a person depends on his or her gender, race, and facial expression, or recognition of an
object depends on its shape, material, or position.

In the present study, we established perceptual benchmarks of early scene understanding by
estimating the image exposure thresholds needed to perform two types of tasks: basic-level
scene categorization (identifying an image as an ocean, a mountain, etc.) and global-
property categorization (classifying spatial and functional properties of a scene, such as
whether it is a hot place or a large environment). Different theories suggest different
predictions for the results. Prototype theorists might predict that basic-level categories
should be available first, as the basic level is privileged in object-naming experiments (e.g.,
Rosch, 1978). However, formal and experimental work has shown that global-property
information is highly useful for basic-level scene categorization (Greene & Oliva, 2009;
Oliva & Torralba, 2001), which suggests that global properties might have an early
advantage. However, recent work examining the perceptual availability of object
information at different levels of categorization showed that although subordinate-level
categorizations required more image exposure than basic-level categorizations, knowing
what an object was at the basic level did not require more image exposure than knowing that
an object (vs. noise) was present (Grill-Spector & Kanwisher, 2005). This latter finding
indicates that there may be no substantial threshold differences between the two types of
tasks we examined.

In psychophysics, staircase methods have been used to determine human perceptual abilities
efficiently (Klein, 2001). We measured presentation-duration thresholds to determine
perceptual benchmarks for both global-property classification and basic-level categorization.

METHOD
Participants

Twenty participants (8 males, 12 females; ages 18-35 years) completed the psychophysical
threshold experiment. They all had normal or corrected-to-normal vision and provided
written informed consent. They received $10 for the 1-hr study.
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Stimuli
The stimuli used in this experiment were 548 full-color photographs of natural landscapes
(see Fig. 1) selected from a large scene database (Greene & Oliva, 2009;Oliva & Torralba,
2001). The images measured 256 × 256 pixels.

To compare performance in the tasks, it was necessary to have normative rankings of the
images’ prototypicality as regards basic-level categories and global properties.
Prototypicality regarding basic-level categories was assessed in a previous study (Greene &
Oliva, 2009): Using a scale from 1 (atypical) to 5 (highly prototypical), 10 naive observers
ranked 500 scenes in terms of how typical they were for each of several different basic-level
category labels. For each basic-level category, we selected at least 25 images with a mean
rank of 4 or higher. To obtain additional exemplars for each category, we visually matched
the ranked prototypes with images from a database of approximately 10,000 natural
landscapes. For basic-level categorization, we used prototypical scenes from seven natural
landscape categories (desert, field, forest, lake, mountain, ocean, and river). In each block of
trials, 50 images were from a single target category (e.g., forest), and 50 images were
randomly selected from all the other categories (selection was constrained so that roughly
equal numbers of images were taken from these categories).

For the global-property tasks, we used images that had been ranked as poles for one of seven
global properties (concealment, mean depth, naturalness, navigability, openness, transience,
and temperature; see Greene & Oliva, 2009, and Table 1 for descriptions). The same 500
natural scenes were ranked along each of the global properties (except naturalness) by
observers who performed a hierarchical grouping task (at least 10 observers per property),
organizing groups of 100 images at a time from lowest to greatest degree of a property (e.g.,
in the case of mean depth, ranking the images from the most close-up to the farthest view).
Images with ranks within the first (< 25%) or last (> 75%) quartiles for a given property
were considered typical poles for that property and were used in the current experiment. For
the naturalness task, the target images were sampled from this pool of natural images, and
urban images were added to serve as distractors. For global-property classification, each
block contained 50 images from the high pole of a property (targets) and 50 images from the
low pole of the same property (distractors).

As far as possible, test images for basic-level categorization and global-property
classification were drawn from the same population of pictures. About half of all the images
served as both targets and distractors (in different blocks). This helped to ensure that image-
level differences were balanced across the experiment.

To produce reliable perceptual benchmarks, it is necessary to effectively limit additional
sensory processing following image presentation. To this end, we used a dynamic masking
paradigm (Bacon-Mace et al., 2005) consisting of rapid serial visual presentation of a
sequence of mask images. The use of multiple mask images minimizes interactions between
the visual features of target images and masks, ensuring a more complete masking of image
features.

Mask images (see Fig. 2) were synthesized images created from the test images, using a
texture-synthesis algorithm designed by Portilla and Simoncelli (2000). We used the Matlab
code provided on their Web site (http://www.cns.nyu.edu/~eero/texture/), enhancing it to
include the color distribution of the model input image. The texture-synthesis algorithm uses
a natural image as input, then extracts a collection of statistics from multiscale, multi-
orientation filter outputs applied to the image, and finally coerces noise to have the same
statistics. This method creates a nonmeaningful image that conserves marginal and first-
order statistics, as well as higher-order statistics (cross-scale phase statistics, magnitude
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correlation and autocorrelation), while discarding object and spatial layout information.
Power spectrum slopes for natural images and their masks were not significantly different
(prep= .76).

Design and Procedure
Participants sat in a dark room about 40 cm away from a 21-in. CRT monitor (100-Hz
refresh rate). Stimuli on the screen subtended 7°× 7° of visual angle. Each participant
completed seven 100-image blocks of basic-level categorization (one block for each target
category) and seven 100-image blocks of global-property classification (one block for each
property). The order of blocks was randomized and counterbalanced across participants. For
each block, participants performed a yes/no forced-choice task; they were instructed to
indicate as quickly and accurately as possible whether each briefly presented image was of
the target category or global-property pole.

During each block, a linear 3-up/1-down staircase was employed. The first image in each
block was shown for 50 ms; subsequent presentation times were determined by the accuracy
of the observer’s previous response, increasing by 10 ms (to a ceiling of 200 ms) if the
response was incorrect and decreasing by 30 ms (to a floor of 10 ms) if the response was
correct. With this procedure, performance converges at 75% correct (Kaernbach, 1990).

At the beginning of each experimental block, an instruction page appeared on the screen,
describing the task (i.e., the basic-level category or property pole to be detected; see Table
1) and giving a pictorial example of a target and a nontarget. Figure 2 is a pictorial
representation of a trial. Each trial commenced with a fixation point for 250 ms, followed by
a test image. As noted, the presentation time of the test image varied (10-200 ms, as
determined by the staircase method). The test image was immediately followed by a
sequence of four randomly drawn mask images, presented for 20 ms each, for a total of 80
ms. After the mask sequence, participants were to indicate as quickly and accurately as
possible whether or not the test image was the target. Visual feedback was provided for
incorrectly classified images (the word “Error” was displayed for 300 ms following the
response). Participants were first given a practice block of 20 trials to get used to the
staircase procedure. The task for the practice block was to categorize scenes as indoor or
outdoor, a classification not used in the main experiment. This experiment was run using
Matlab and the Psychophysics Toolbox (Brainard, 1997;Pelli, 1997).

RESULTS
For all blocks, the image presentation threshold was the presentation duration required for a
participant to achieve 75% accuracy on the task. For some participants, not all blocks
yielded a stable threshold. Because of the adaptive nature of the staircasing algorithm, very
poor performance at the beginning of a block could lead to a considerable number of trials at
the 200-ms image duration (the ceiling duration), resulting in artificially high final threshold
calculations. For all analyses reported, we excluded data from blocks in which more than
10% of trials were spent at the maximum duration of 200 ms. Altogether these trials
constituted only 5% of the data, and were evenly distributed between global-property and
basic-level classification, t(13) < 1. We discuss here two processing benchmarks: (a) the
upper bound of the exposure duration necessary for a given categorization block (the
maximum image duration for each participant during that block) and (b) the duration at
which participants achieved 75%-correct performance (used to compare the time needed for
equivalent performance across blocks).

To ensure that the tasks were equally difficult, we compared the maximum image exposures
needed. As image presentation times were controlled adaptively in the staircase procedure,
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the longest presentation time for a participant corresponds to the duration at which that
participant made no classification errors (recall that errors resulted in increased subsequent
presentation times). If the global-property and category tasks were of comparable difficulty,
we would expect them to have similar maximum durations. Indeed, the mean maximum
duration was 102 ms for the global-property tasks and 97 ms for the category tasks, t(19) < 1
(see Table 2). This result indicates that the two types of tasks were of similar difficulty.

A classic method for estimating thresholds from up-down staircases such as ours is to take
the mode stimulus value for a participant (Cornsweet, 1962; Levitt, 1971). The logic in this
experiment is simple: Because presentation duration was reduced by 30 ms following a
correct response and increased by 10 ms following an incorrect response, participants
converged on 75%-correct performance over the course of a block (Kaernbach, 1990),
viewing more trials around the perceptual threshold than above or below it.

As estimation with the mode is a rather coarse method, we also estimated thresholds by
fitting a Weibull function to the accuracy data for each participant for each block (using the
maximum likelihood procedure) and solving for the threshold. This function typically
provides very good fits to psychometric data (Klein, 2001). Figure 3 shows the Weibull fits
and histograms of presentation times for 1 participant for a global-property block and a
category block.

The thresholds reported in Table 2 are the averages of the estimates obtained using the two
methods. The presentation-time thresholds for all 14 blocks were remarkably short:

All were well under 100 ms; values ranged from 19 ms (naturalness) to 67 ms (river).

We compared the threshold values for the global-property blocks with the threshold values
for the categorization blocks and found that the mean threshold (based on the average of the
Weibull fit and mode value) was significantly lower for global-property classification (34
ms) than for basic-level categorization (50 ms), t(19) = -7.94, prep= .99; the difference was
also significant when we used the Weibull fits only, t(19) = 7.38, prep > .99, and when we
used the modes only, t(19) = 3.51, prep= .98. Note that to compare performance for different
features, it is necessary to ensure that there were equivalently difficult distractor images. On
the one hand, a distractor that differed from the target by only 1 pixel would produce
extremely large presentation-time thresholds (if observers could perform the task at all). On
the other hand, distinguishing targets from white-noise distractors should result in ceiling
performance. In our tasks, distractors were always prototypically different from targets. That
is, in the global-property blocks, the distractors represented the opposite pole of the queried
property, and both targets and distractors came from several basic-level categories. In the
categorization blocks, the distractors were prototypes of a variety of nontarget categories
and were chosen so as to show the greatest variety of category prototypes. In this way,
targets and distractors were chosen, to the extent possible, to vary only in the attribute being
tested. Recall that ceiling performance was reached at similar presentation durations in the
global-property and category tasks, which indicates that although performance had an early
advantage in global-property blocks, this advantage was not due to the blocks of basic-level
categorization being harder than the global-property blocks.

Figure 4a shows the distributions of participants’ presentation-duration thresholds for both
types of tasks, using a Gaussian fit. The distributions of participants’ thresholds in
categorization blocks were rather homogeneous in terms of both means and variances (see
Fig. 4b). In contrast, the distributions of thresholds in global-property blocks (Fig. 4c) were
more heterogeneous, with some coming very early and others more closely resembling the
categorization thresholds. We calculated 95% confidence intervals around the means and
found that the presentation-duration threshold was significantly shorter for forest than for

Greene and Oliva Page 5

Psychol Sci. Author manuscript; available in PMC 2009 September 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



other basic-level categories, and was significantly longer for openness and transience than
for other global properties.

DISCUSSION
A large amount of meaningful information can be gleaned from a single glance at a scene
(Bacon-Mace et al., 2005; Biederman, Rabinowitz, Glass, & Stacy, 1974; Castelhano &
Henderson, 2008; Fei-Fei et al., 2007; Grill-Spector & Kanwisher, 2005; Joubert et al.,
2007; Maljkovic & Martini, 2005; Oliva & Schyns, 2000; Potter & Levy, 1969; Schyns &
Oliva, 1994; Thorpe et al., 1996; Renninger & Malik, 2004; and many other studies), but our
study is the first to establish perceptual benchmarks comparing the types of meaningful
information that can be perceived during very early perceptual processing.

What meaningful perceptual and conceptual information can be understood from
extraordinarily brief glances at a novel scene? We have provided insight into this question
by comparing the shortest image exposures required for participants to achieve equivalent
performance (75% correct) on a number of tasks involving classification of naturalistic
scenes. We found that this threshold ranged from 19 ms to 67 ms, and that performance
reached asymptote at about 100 ms of image exposure (range: 63-123 ms; see Table 2).
Remarkably, the threshold presentation duration was, on average, shorter for perception of a
scene’s global properties than for perception of the scene’s basic-level category. These
results are related to other work in ultrarapid scene perception (Joubert et al., 2007;Rousselet
et al., 2005), which has demonstrated that participants can classify a scene as natural versus
man-made more quickly than they can make a semantic classification of the scene (e.g.,
mountain, urban). Indeed, we also found that the image exposure thresholds were shortest
for classifying images according to whether or not they were natural (19 ms).

Our results are complementary to those of studies examining the accrual of image
information over time (Fei-Fei et al., 2007; Intraub, 1981; Rayner, Smith, Malcolm, &
Henderson, 2009; Tatler et al., 2003). For instance, Rayner et al. (2009) found that although
participants rapidly understood the overall semantic topic of a scene, they required at least a
150-ms fixation to find an object within that scene (e.g., a broom in a warehouse image).
Likewise, in the study by Fei-Fei et al. (2007), observers viewed briefly masked pictures
depicting various events and scenery (e.g., a soccer game, a busy hair salon, a choir, a dog
playing fetch) and then described in detail what they saw in the pictures. Global scene
information, such as whether an outdoor or indoor scene was depicted, was perceived well
above chance (50%) with less than 100 ms of exposure. Although free-report responses may
be confounded with inference (observers may overestimate the information seen in a brief
glance of an image on the basis of knowledge of the covariance among features and objects
in the real world; see Brewer & Treyans, 1981), and may be biased toward reporting
verbally describable information, this study is consistent with others (e.g., Biederman et al.,
1974; Intraub, 1981; Potter, 1975; Schyns & Oliva, 1994; Tatler et al., 2003) finding that as
exposure duration increases, observers are better able to fully perceive the details of an
image.

Our findings agree with a global-to-local view of scene perception (Navon, 1977; Oliva &
Torralba, 2001; see also, e.g., Joubert et al., 2007; Schyns & Oliva, 1994). We have shown
that at the very early stages of visual analysis, certain global visual information can be more
easily gleaned from an image than even its basic-level category. This result suggests the
intriguing possibility that there exists a time during early visual processing when an observer
will know, for example, that a scene is a natural landscape or a large space, but does not yet
know that it is a mountain or a lake scene. Our result may be predicted by computational
work showing that basic-level scene categories cluster along global-property dimensions
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describing the spatial layout of scenes (the spatial-envelope theory; Oliva & Torralba, 2001).
Furthermore, for human observers rapidly categorizing scenes at the basic level, more false
alarms are produced by distractors that share global properties with the target category than
by distractors that do not share such properties with the target category (e.g., more false
alarms to images showing a closed, rather than open, space when the target category is
forest; Greene & Oliva, 2009). The current results lend credence to the possibility that rapid
categorization of a scene may be achieved through the perception of a few robust global
properties of the scene.

In the current study, the range of presentation-time thresholds was large (19-67 ms), but
remained well below 100 ms. There was also a large range of thresholds within both types of
classifications (19-47 ms for global-property classification and 30-67 ms for basic-level
categorization). This suggests that there is substantial diversity in the diagnostic image
information used by observers to perform these tasks, and that these pieces of information
may be processed with different time courses.

It remains for future work to determine which image features observers use to reach these
remarkable levels of performance. Recent studies in visual cognition suggest the intriguing
possibility that the brain may be able to rapidly calculate robust statistical summaries of
features and objects—such as the mean size of a set of shapes (Ariely, 2001; Chong &
Treisman, 2005), the average orientation of a pattern (Parkes, Lund, Angelucci, Solomon, &
Morgan, 2001), the center of mass of a set of objects (Alvarez & Oliva, 2008), or even the
average emotion of a set of faces (Haberman & Whitney, 2007)—in an automatic fashion
(Chong & Treisman, 2005) and outside the focus of attention (Alvarez & Oliva, 2008). This
suggests that some tasks might be performed with shorter presentation times than others
because their diagnostic features are coded somewhat more efficiently. For instance,
naturalness classification had the fastest threshold in our study and the fastest reaction time
in Joubert et al. (2007), and has been shown to be correlated with low-level features,
distributed homogeneously over the image (Torralba & Oliva, 2003). Likewise, Renninger
and Malik (2004) demonstrated that texture statistics provided good predictions of human
scene categorization at very short presentation times. By abstracting statistical
homogeneities related to structural and functional properties of a scene, the human brain
may be able to comprehend complex visual information in a very short time.

Although people feel as if they instantaneously perceive a full, rich, and meaningful world,
this full understanding accumulates over time. By understanding the time course of visual
processing, researchers can uncover bottlenecks in the accumulation of this information.
Uncovering the benchmarks of visual processing at the feature level will be a significant
step forward in understanding the algorithms of human visual processing.
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Fig. 1.
Example images from the low and high poles of four global properties examined in this
experiment. These images also illustrate the basic-level categories used in the experiment
(river, mountain, field, and field, from left to right in the top row; forest, forest, desert, and
lake, from left to right in the bottom row).
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Fig. 2.
Illustration of an experimental trial. The presentation duration of each test image was
determined using a linear 3-up/1-down staircase, with the first trial of each block presented
for 50 ms. Test images were dynamically masked using four colored textures.
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Fig. 3.
Example of threshold computation for (a) a block of global-property classification
(concealment) and (b) a block of basic-level categorization (ocean). Each graph shows data
from the same participant. The top row shows accuracy as a function of presentation
duration. The curves are Weibull fits, and thresholds for 75%-correct performance are
indicated. The bottom row shows histograms of presentation times; the mode in each
distribution was another measure of the threshold. The thresholds reported in Table 2 are the
averages of the estimates obtained using the two methods.
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Fig. 4.
Distributions of observers’ presentation-duration thresholds for (a) global-property
classification and basic-level categorization, (b) each block of basic-level categorization,
and (c) each block of global-property classification. All shown curves are best-fitting
Gaussians.
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TABLE 1
Descriptions of the Global Properties, as Presented to Participants in the Experiment

Global Property Target description Nontarget description

Concealment The scene contains many accessible hiding spots, and there
may be hidden objects in the scene.

If standing in the scene, one would be easily seen.

Mean depth The scene takes up kilometers of space. The scene takes up less than a few meters of space.

Naturalness The scene is a natural environment. The scene is a man-made, urban environment.

Navigability The scene contains a very obvious path that is free of
obstacles.

The scene contains many obstacles or difficult terrain.

Openness The scene has a clear horizon line with few obstacles. The scene is closed, with no discernible horizon line.

Temperature The scene environment depicted is a hot place. The scene environment depicted is a cold place.

Transience One would see motion in a video made from this scene. The scene is not changing, except for patterns of daylight.
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TABLE 2
Presentation-Time Thresholds and Maximum Image Exposures

Block Threshold for 75%-correct performance (ms) Maximum image exposure (ms)

Global-property classification

 Concealment 35 (2.7) 97 (7.9)

 Mean depth 26 (2.8) 75 (4.9)

 Naturalness 19 (1.9) 63 (4.9)

 Navigability 36 (4.5) 120 (9.2)

 Openness 47 (4.6) 119 (9.5)

 Temperature 29 (2.4) 119 (9.5)

 Transience 45 (4.0) 123 (8.8)

 Mean 34 (10) 102 (24)

Basic-level categorization

 Desert 47 (4.7) 93 (7.2)

 Field 55 (4.6) 95 (7.3)

 Forest 30 (3.4) 78 (6.6)

 Lake 51 (3.7) 100 (7.1)

 Mountain 46 (3.3) 95 (6.2)

 Ocean 55 (3.9) 105 (6.5)

 River 67 (5.1) 113 (6.1)

 Mean

Note. For the specific blocks, standard errors of the means are given in parentheses; for the means, standard deviations are given in parentheses.
The reported thresholds are the means of modal presentation durations and thresholds estimated from Weibull fits.
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