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Abstract. We introduce a novel cooling technique capable of approaching
the quantum ground state of a kilogram-scale system—an interferometric
gravitational wave detector. The detectors of the Laser Interferometer
Gravitational-wave Observatory (LIGO) operate within a factor of 10 of the
standard quantum limit (SQL), providing a displacement sensitivity of 10−18 m
in a 100 Hz band centered on 150 Hz. With a new feedback strategy, we
dynamically shift the resonant frequency of a 2.7 kg pendulum mode to lie within
this optimal band, where its effective temperature falls as low as 1.4 µK, and its
occupation number reaches about 200 quanta. This work shows how the exquisite
sensitivity necessary to detect gravitational waves can be made available to probe
the validity of quantum mechanics on an enormous mass scale.
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Observation of quantum effects such as ground state cooling [1]–[15], quantum jumps [16],
optical squeezing [17], mechanical squeezing [18]–[20] and entanglement [21]–[26] that
involve macroscopic mechanical systems are the subject of intense experimental effort [27].
The first step toward engineering a non-classical state of a mechanical oscillator is to cool
it, minimizing the thermal occupation number of the mode. Any mechanical coupling to the
environment admits thermal noise that randomly drives the system’s motion, as dictated by the
fluctuation–dissipation theorem [28], but ‘cold’ frictionless forces, such as optical or electronic
feedback, can suppress this motion, hence cooling the oscillator.

Two types of forces have recently proven valuable for cooling. The first is a
frictionless damping force, originating either from an electronic servo system (‘cold damping’)
[4, 29, 30] or from photothermal or radiation pressure forces in a detuned cavity (‘cavity
cooling’) [1]–[3], [5, 6, 8]; this force reduces the motion of the oscillator while also diminishing
its quality factor. The second is an optical restoring force, which increases the resonant
frequency of the oscillator without additional friction, effectively increasing its quality factor
[7, 10]. To reach the quantum regime in experiments exploiting these techniques, a low noise
oscillator’s position must be monitored by a highly sensitive readout device. By providing
both of these features, the Laser Interferometer Gravitational-wave Observatory (LIGO)
interferometers present a unique opportunity to cool kilogram-scale mirrors to enticingly low
temperatures. Although the LIGO interferometers do not have sufficiently large optical restoring
forces for the second effect to be significant, their active control systems may instead be used to
reproduce the effect.
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1. The LIGO interferometers

LIGO operates three kilometer-scale interferometric detectors with the goal of directly detecting
gravitational waves of astrophysical origin [31, 32]. The measurements reported here were
performed at LIGO’s Hanford Observatory. The detector shown in figure 1 comprises a
Michelson interferometer with a 4 km long Fabry–Perot cavity of finesse 220 placed in each
arm to increase the sensitivity of the detector. Each mirror of the interferometer has mass
M = 10.8 kg, and is suspended from a vibration-isolated platform on a fine wire to form a
pendulum with frequency �p = 0.74 Hz, to shield it from external forces and to enable it
to respond to a gravitational wave as a mechanically free mass above the natural resonant
frequency. To minimize the effects of laser shot noise, the interferometer operates with high
power levels; approximately 400 W of laser power of wavelength 1064 nm is incident on the
beam splitter, resulting in over 15 kW of laser power circulating in each arm cavity. The present
detectors are sensitive to changes in relative mirror displacements of about 10−18 m in a 100 Hz
band centered around 150 Hz (figure 2). This low noise level allows for the preparation of low-
energy states for the oscillator mode considered next.

The four mirrors of the LIGO interferometer (figure 1) are each an extended object with
a displacement xi (i = 1, . . . , 4) defined along the optical beam axis. The servo control system
that keeps the interferometer mirrors at the resonant operating point is an essential component
of this study. While all longitudinal and angular degrees of freedom of the mirrors are actively
controlled, our discussion is limited to the differential arm cavity motion, which is the degree of
freedom excited by a passing gravitational wave, and hence also the most sensitive to mirror
displacements. This mode corresponds to the differential motion of the centers of mass of
the four mirrors, xc = (x1 − x2) − (x3 − x4), and has a reduced mass of Mr = 2.7 kg. A signal
proportional to differential length changes is measured at the antisymmetric output of the beam
splitter, as shown in figure 1. This signal is filtered by a servo compensation network before
being applied as a force on the differential degree of freedom by voice coils that actuate magnets
affixed to the mirrors.

2. The cooling mechanism

The degree of freedom that is of interest as a quantum particle is the differential mirror motion
xc. However, optical measurements probe the location of the mirror surface (averaged over the
optical beam), which differs from center-of-mass location due to the mirror’s internal thermal
noise, and include a sensing noise due to the laser shot noise. Combining these noises into a
total displacement noise XN, the output signal is written as

xs = xc + XN. (1)

The center-of-mass motion is also subject to a noise force FN (including, for example, the
thermally driven motion of the mirror suspensions and the seismic motion of the ground that
couples through the suspensions) and a feedback force that is proportional to xs. The resulting
equation of motion in the frequency domain is given by:

−Mr

[
�2

− i � �p φ(�) − �2
p

]
xc = FN − K (�)xs. (2)

Here K (�) is the frequency-domain feedback filter kernel, and the φ(�) term accounts
for mechanical damping. For a viscously damped pendulum with quality factor Qp = �p/0p
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Figure 1. (a) Optical layout of a LIGO interferometer. Light reflected from
the two Fabry–Perot cavities formed by input and end mirrors, M1–M4, is
recombined at the beam splitter (BS). To control the differential degree of
freedom, an optical signal proportional to mirror displacement is measured on
the photodetector (PD), and fed back as a differential force on the mirrors,
after appropriate filtering to form restoring and damping forces. (b) The spectral
displacement noise density of the differential mode of motion of the LIGO 4 km
interferometer at the Hanford Observatory is shown. Also shown is the target
sensitivity and the quantum noise contribution, which consists of shot noise
above 30 Hz and radiation pressure noise below. The standard quantum limit
(SQL) is also shown, and the closest approach to the measured sensitivity is
about a factor of 10 near 150 Hz. (c) An aerial photograph of the LIGO Hanford
site in the state of Washington is shown. (d) A photograph of a 10.8 kg mirror is
shown. Photographs courtesy of the MIT/Caltech LIGO Laboratory.

(�p and 0p correspond to the real part and twice the imaginary part of the complex
eigenfrequency of the pendulum), φ(�) = 1/Qp. If the damping is not viscous, but instead
caused by internal friction, φ(�) takes on a more complex form [28]. Combining equations (1)
and (2), the equation of motion for the center-of-mass is obtained:

−Mr

[
�2

− i � �p φ(�) − �2
p − K (�)/Mr

]
xc = FN − K (�)XN. (3)

In this experiment, the control kernel is adjusted so that

K (�)/Mr ≈ �2
eff + i�0eff (4)
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Figure 2. Response function of mirror displacement to an applied force, for
various levels of damping. The points are measured data, the thin lines are a
zero fit parameter model of the complete feedback loop, and the thick lines
spanning the resonance (shown in the shaded region) are fitted Lorentzians, from
which the effective resonant frequency and quality factor are derived for each
configuration.

with �eff and 0eff much larger than �p and 0p, respectively, such that the modified dynamics of
xc are given by a damped oscillator driven by random forces:

−Mr[�
2
− i�0eff − �2

eff] xc = FN − K (�)XN. (5)

An electro-optical potential well in which the mirrors oscillate is thus created.
The output of our experiment measures xs, and in order to deduce true mirror motion xc,

the limiting sources of noise must be considered. If noise predominantly drives the center-
of-mass motion, i.e. FN � K (�)XN, then xs ≈ xc (see equation (1)) and the measured signal
corresponds to the center-of-mass motion. However, in the case that surface or sensing noise
dominates, i.e. K (�)XN � FN, then a correction factor must be applied to the measured signal
to deduce the center-of-mass motion. Taking equations (1) and (5), in the limit that FN = 0, we
obtain

xc =
K (�)

Mr�2
xs. (6)

If the levels of each noise XN and FN are not precisely known, then one can make a conservative
correction by applying a factor max(1, |K (�)/Mr�

2
|) to determine the worst possible center-

of mass motion, thereby accounting for the fact that the servo can inject noise back onto the
oscillator. The effective temperature of the mode may then be obtained:

Teff =
Mr�

2
effδx2

rms

kB
, (7)
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where

δx2
rms =

∫
∞

0
max

(
1,

K (�)

Mr�2

)2

Sxs(�)d� ≡

∫
∞

0
Sxdd�. (8)

Sx s is the single-sided power spectral density of the measured motion xs and Sxd includes the
correction factor. At large feedback gains, the measured noise Sx s may be arbitrarily suppressed,
however, the mirror motion will reach a finite level as limited by the detection noise XN. This
‘squashing’ effect has been explored previously [9, 33], and the calculation of Sxd avoids
underestimates of the mirror motion. It is impossible to reliably measure the mirror motion at
arbitrarily high frequencies, and the integral in equation (8) will diverge in any real system.
The integration must therefore be limited in its frequency band, as is later discussed. Finally,
the corresponding occupation number may be determined by

Neff =
kBTeff

h̄�eff
. (9)

K (�) of equation (4) is formed by convolving the position-dependent output signal with
filter functions corresponding to the real and imaginary parts of the feedback kernel K (�).
In the LIGO feedback system, there are additional filters and propagation delays that cause
deviations from the ideal cold, damped spring, at high and low frequencies. Below 100 Hz,
K (�) increases sharply to suppress seismically driven motion; at high frequencies (above
a few kilohertz), K (�) decreases precipitously to prevent the control system from feeding shot
noise back onto the mirrors. However, in the frequency band important for this measurement
(near the electro-optical resonance), the feedback is well approximated by a spring and damping
force, as shown in figure 2.

3. Measurement results and discussion

The servo control loops of the LIGO interferometers are optimized to minimize noise coupling
to measurement of the differential mode motion of the mirrors. The modifications to the servo
loops to create a nearly ideal cold spring at �eff = 140 Hz do not significantly affect the noise
limits, shown in figure 1. Figure 3 shows the amplitude spectral density of mirror displacement
for varying levels of cold damping. To infer the effective temperature of the mode, its effective
frequency �eff and an estimation of the root-mean-square displacement fluctuation δxrms must
be determined. First the differential mirror motion is driven and the response is measured, as
shown in figure 2. These response functions are fit to a damped oscillator model; �eff and Qeff

are products of the fit. Then δxrms is computed by integrating the spectrum in the band from 100
to 170 Hz, as described in equation (8). The sensitivity in this frequency band is limited by laser
shot noise that enters into XN. To correct for the finite integration band, the result is scaled by
setting our measured spectrum equal to the integral over the same frequency band of a thermally
driven oscillator spectrum,

Sxth(�) =
4kBTeff0eff/Mr

(�2
eff − �2)2 + �202

eff

. (10)

In this way, a minimum effective temperature Teff = 1.4 ± 0.2 µK is measured, corresponding
to thermal occupation number Neff = 234 ± 35. Systematic error of 15% in the calibration
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Figure 3. Amplitude spectral density of displacement in the frequency band of
integration. The curves (from highest to lowest) were produced by applying
increasingly strong cold damping to the oscillator, corresponding to the
measurements of figure 2. The depression in the lowest curve is due to the
shape of the background noise spectrum; the effects of the servo are corrected
for according to equations (1)–(8). The narrow line features between 100 and
110 Hz are mechanical resonances of auxiliary subsystems, and a 120 Hz power
line harmonic is also visible. The predominant noise is laser shot noise.

dominates statistical error in these uncertainty estimates. The limits to integration were chosen
as a compromise between having a wide limit, and choosing frequencies at which mirror motion
is sensed. In the limit that the width of the integration band approaches 0, the lowest temperature
achieved approaches 0.9 µK. For larger integration limits, the temperature diverges because of
the increased uncertainty at high frequency caused by shot noise (as occurs in all experiments).
The spectra in figure 3 are predominantly limited by shot noise in the measurement band. It
may at first appear unusual to associate a temperature with a device limited by shot noise, rather
than thermal noise. However, the above calculations are justified, since the ultimate limit to
experiments such as this is known to arise from optical noise [34].

4. Cooling to the quantum limit

An interesting question arises as to whether this technique can lead to ground state cooling
of the electromechanical oscillator. To mitigate the shot noise limit, which arises due to the
fluctuating number of photons detected, the laser power could be increased. However, radiation
pressure noise (a fluctuating force exerted on the mirrors due to the shot noise of the laser)
increases with laser power and will ultimately limit the sensitivity. The SQL is obtained when
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shot noise and radiation pressure noise contribute equally to the total quantum noise [35].
Hence, the continuous displacement measurement required for servo feedback does introduce an
additional term to the uncertainty relation for the oscillator position and momentum fluctuations
due to measurement-induced steady state decoherence. If, however, the classical noises (such as
thermal) are reduced significantly below the SQL, active feedback, with the appropriate control
kernel, is capable of cooling the electro-optic oscillator to its motional ground state [36].

5. Future prospects with LIGO

In the coming years, two upgrades of the LIGO detectors are planned. The first, Enhanced
LIGO, is presently underway with an expected completion date in 2009, and seeks to improve
the sensitivity of the instruments above 40 Hz. The improvement in displacement sensitivity in
the frequency band around 150 Hz, where the cold spring measurements were performed, is
expected to be about a factor of 2. Subsequently, a major upgrade, Advanced LIGO, expected
to be completed in 2014, should give a factor of 10–15 improvement in displacement sensitivity
relative to that of the detector used for this work (with a concomitant factor of 4 increase
in mass). In Advanced LIGO, the laser power circulating in the Fabry–Perot cavities should
exceed 800 kW, permitting strong restoring forces to be generated optically. Enhanced LIGO
is expected to reach ∼6 times lower occupation number, approaching 40 quanta, and with
Advanced LIGO, the detectors will be operating at the SQL, allowing the ground state to be
approached.

As they approach the SQL, these devices should enable novel experimental demonstrations
of quantum theory that involve kilogram-scale test masses [25, 37, 38]. The present work,
reaching microkelvin temperatures, provides evidence that interferometric gravitational wave
detectors, designed as sensitive probes of general relativity and astrophysical phenomena, can
also become sensitive probes of macroscopic quantum mechanics.
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