Permafrost, Lakes, and Climate-Warming Methane Feedback: What is the Worst We Can Expect?

Xiang Gao, C. Adam Schlosser, Andrei Sokolov, Katey Walter Anthony, Qianlai Zhuang and David Kicklighter
The MIT Joint Program on the Science and Policy of Global Change is an organization for research, independent policy analysis, and public education in global environmental change. It seeks to provide leadership in understanding scientific, economic, and ecological aspects of this difficult issue, and combining them into policy assessments that serve the needs of ongoing national and international discussions. To this end, the Program brings together an interdisciplinary group from two established research centers at MIT: the Center for Global Change Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEPR). These two centers bridge many key areas of the needed intellectual work, and additional essential areas are covered by other MIT departments, by collaboration with the Ecosystems Center of the Marine Biology Laboratory (MBL) at Woods Hole, and by short- and long-term visitors to the Program. The Program involves sponsorship and active participation by industry, government, and non-profit organizations.

To inform processes of policy development and implementation, climate change research needs to focus on improving the prediction of those variables that are most relevant to economic, social, and environmental effects. In turn, the greenhouse gas and atmospheric aerosol assumptions underlying climate analysis need to be related to the economic, technological, and political forces that drive emissions, and to the results of international agreements and mitigation. Further, assessments of possible societal and ecosystem impacts, and analysis of mitigation strategies, need to be based on realistic evaluation of the uncertainties of climate science.

This report is one of a series intended to communicate research results and improve public understanding of climate issues, thereby contributing to informed debate about the climate issue, the uncertainties, and the economic and social implications of policy alternatives. Titles in the Report Series to date are listed on the inside back cover.

Ronald G. Prinn and John M. Reilly
Program Co-Directors

For more information, please contact the Joint Program Office
Postal Address: Joint Program on the Science and Policy of Global Change
77 Massachusetts Avenue
MIT E19-411
Cambridge MA 02139-4307 (USA)
Location: 400 Main Street, Cambridge
Building E19, Room 411
Massachusetts Institute of Technology
Access: Phone: +1.617.253.7492
Fax: +1.617.253.9845
E-mail: globalchange@mit.edu
Web site: http://globalchange.mit.edu/

Printed on recycled paper
Permafrost, Lakes, and Climate-Warming Methane Feedback: What is the Worst We Can Expect?

Xiang Gao, C. Adam Schlosser, Andrei Sokolov, Katey Walter Anthony, Qianlai Zhuang, and David Kicklighter

Abstract

Permafrost degradation is likely enhanced by climate warming. Subsequent landscape subsidence and hydrologic changes support expansion of lakes and wetlands. Their anaerobic environments can act as strong emission sources of methane and thus represent a positive feedback to climate warming. Using an integrated earth-system model framework, which considers the range of policy and uncertainty in climate-change projections, we examine the influence of near-surface permafrost thaw on the prevalence of lakes, its subsequent methane emission, and potential feedback under climate warming. We find that increases in atmospheric CH$_4$ and radiative forcing from increased lake CH$_4$ emissions are small, particularly when weighed against unconstrained human emissions. The additional warming from these methane sources, across the range of climate policy and response, is no greater than 0.1°C by 2100. Further, for this temperature feedback to be discernable by 2100 would require at least an order of magnitude larger methane-emission response. Overall, the biogeochemical climate-warming feedback from boreal and Arctic lake emissions is relatively small whether or not humans choose to constrain global emissions.

Contents

1. INTRODUCTION ... 1
2. MODELS AND METHOD .. 2
3. RESULTS AND ANALYSIS .. 3
 3.1 Trends in Near-surface Permafrost Extents 3
 3.2 Trends in Saturated Area/ Lake Extent 4
 3.3 Methane Emission from Lake Expansion 5
 3.4 Climate Feedback .. 6
4. DISCUSSIONS AND CONCLUSIONS 8
5. REFERENCES .. 8
APPENDIX A: Downscaling Scheme ... 12
APPENDIX B: Temperature Dependence of Methane Ebullition Flux ... 13
APPENDIX C: IGSM Estimated Human Global CH$_4$ Emissions 14
APPENDIX D ... 15

1. INTRODUCTION

Arctic and boreal permafrost represent significant yet vulnerable carbon reservoirs (Zimov et al., 2006; Schuur et al., 2008). There is general agreement that 21st century warming would be pronounced at higher latitudes (Solomon et al., 2007). Considerable concern has been placed on the permafrost in near-surface, ice-rich soils (Lawrence and Slater, 2005; Jorgenson et al., 2006; Zhang et al., 2008) as thaw-inducing temperature increases can cause landscape subsidence as well as sub-surface hydrologic change and thus form saturated areas such as thermokarst lakes.
and wetlands. Subsequently, anaerobic decomposition of thawed organic carbon results in emission of methane, a potent greenhouse gas, which could fuel a positive feedback to the global climate system (Walter et al., 2006, 2007b; Zimov et al., 1997; McGuire et al., 2006; Anisimov, 2007; Shindell et al., 2004). Permafrost thaw also strongly influences local hydrology, vegetation composition, ecosystem functioning as well as surface albedo and surface-energy partitioning (Smith et al., 2005; Jorgenson et al., 2001; Christensen et al., 2004).

2. MODELS AND METHOD

We use the MIT Integrated Global System Model (IGSM) that allows for quantifying uncertainties in projected future climates (Sokolov et al., 2005). In the IGSM, we employ the Community Land Model (CLM) version 3.5 (Oleson et al., 2008) to: estimate near-surface permafrost extent; project permafrost degradation; quantify methane emissions fueled by subsequent lake expansion; and assess the extent these emissions provide a feedback to global climate warming. The atmospheric data that drive CLM are from the IGSM transient 20th and 21st century climate-change integration (Sokolov et al., 2009; Webster et al., 2012). Further, the simulation framework accounts for uncertainties in: the transient climate response (TCR) that aggregates the effect of three climate parameters (climate sensitivity, rate of ocean heat uptake, and aerosol forcing); emissions under climate policy goals; and regional climate change.

Table 1. Summary of Simulation Experiments Conducted in This Study.

<table>
<thead>
<tr>
<th>TCR</th>
<th>Emission</th>
<th>Notes</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>High (95%)</td>
<td>Median (1330 ppm CO₂-Eq)</td>
<td>+17 regional patterns</td>
<td>HTCR</td>
</tr>
<tr>
<td>Median (50%)</td>
<td>Baseline</td>
<td></td>
<td>MTCR</td>
</tr>
<tr>
<td>Low (5%)</td>
<td>+17 regional patterns</td>
<td></td>
<td>LTCR</td>
</tr>
<tr>
<td>Median (50%)</td>
<td>High (95%) (1660 ppm CO₂-Eq)</td>
<td></td>
<td>MTCR_HEM</td>
</tr>
<tr>
<td></td>
<td>Low (95%) (970 ppm CO₂-Eq)</td>
<td></td>
<td>MTCRLEM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TCR</th>
<th>Emission</th>
<th>Notes</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>High (95%)</td>
<td>560 ppm CO₂-Eq</td>
<td>+17 regional patterns</td>
<td>H560</td>
</tr>
<tr>
<td>Low (5%)</td>
<td>+17 regional patterns</td>
<td></td>
<td>L560</td>
</tr>
</tbody>
</table>

The IGSM sub-model of atmospheric dynamics and chemistry is 2-dimensional (2D) in altitude and latitude and coupled to a mixed-layer ocean (Sokolov et al., 2005). Yet, the IGSM consistently depicts the global and zonal profiles of climate change when compared with the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report (AR4) archive (Sokolov et al., 2009; Webster et al., 2012; Schlosser et al., 2012). The suite of simulations encompasses the range in emission pathways (an unconstrained and stabilization emission
scenario) as well as the large-scale climate response (Table 1). Parameter values were chosen to produce the high (95%), median (50%), and low (5%) TCR response of a 400-member ensemble simulation (Webster et al., 2012). A downscaling technique (Schlosser et al., 2012) expands the IGSM zonal near-surface meteorology (precipitation, surface air temperature, and radiation) to generate corresponding longitudinal patterns (Appendix A). Climatology of these patterns is derived from observations (Huffman et al., 2009; Mitchell and Jones, 2005; Ngo-Duc et al., 2005; Qian et al., 2006; Betts et al., 2006), and pattern shifts in response to human-forced change are based on climate-model results from the IPCC AR4 archive (Schlosser et al., 2012). As such, the uncertainty in regional climate change can be considered. With these meteorological variables, CLM simulations (Table 1) of the 21st century were conducted at a 2° by 2.5° resolution to assess potential shifts in permafrost/lake extent and corresponding emissions of methane.

3. RESULTS AND ANALYSIS

3.1 Trends in Near-surface Permafrost Extents

Each model grid, having a 3.5 meter soil-column depth, is identified as containing permafrost if monthly soil temperature in at least one subsurface soil layer remains at or below 0°C for two or more consecutive years. Given this, we simulate a near-surface (down to 3.5 meter below the surface) permafrost area (poleward of 45°N and excluding glacial regions) of 11.2 x 10^6 km^2 from 1970 to 1989, which falls on the lower bound of the observationally based range of continuous

![Figure 1. Fractional change in the total area containing near-surface permafrost (NSP) (poleward of 45°N and excluding glacial regions) with respect to 2012 (around 1.02 x 10^13 m^2) under various climate projections. Thick solid lines represent the use of climatological geographic patterns in precipitation, temperature, and radiation throughout the 21st century. Thin solid lines represent the inclusion of additional model-dependent geographic pattern shifts in precipitation, temperature, and radiation derived from the IPCC AR4 climate model projections throughout the 21st century. The definition of figure legend is detailed in Table 1.](image-url)
and discontinuous permafrost extent (11.2 to 13.5 x10^6 km^2) over the same period (Zhang et al., 2000). Through the 21st century, the simulations indicate a nearly linear near-surface permafrost (NSP) degradation rate, with the potential for 75% loss for the low TCR and nearly 100% loss for the high TCR cases by 2100 under an unconstrained emissions scenario (UCE) (Figure 1). We also find that uncertainty in emissions (dotted lines) are as important as climate-response uncertainty (thick solid lines), in terms of contributing to the total uncertainty in projected NSP changes. Under a greenhouse-gas stabilization target (GST) scenario of 560 ppm CO2-equivalent concentration by 2100 (Webster et al., 2012), NSP degradation reduces substantially, with 20% loss for low TCR and 40% loss for high TCR by 2100. Compared with previous work (Lawrence et al., 2008), our simulated NSP loss rate through the 21st century is somewhat slower. In addition, uncertain regional climate change (Figure 1, thin lines) may accelerate the NSP thaw by 5% ~10% due to enhanced warming over land imposed by the climate-model patterns (Schlosser et al., 2012).

3.2 Trends in Saturated Area/ Lake Extent

From these NSP projections, we next determine the potential lake methane-emission increase and climate-warming feedback. To characterize an upper-limit to this feedback, we draw from pervious work (Gedney et al., 2004) and interpret the models diagnoses of a change in land area where the water table has reached the ground surface (or saturated land area) as a concurrent and equal increase in lake area. This interpretation, clearly, approximates the true fate of future lake extent. Indeed, the intent here is not to provide a deterministic prediction, but rather, the maximum lake expansion anticipated under these model projections. Further considerations are discussed in the closing section. Nevertheless, the model explicitly accounts for the major

![Figure 2. Same as Figure 1, but for the total saturated area (poleward of 45°N and excluding glacier) with respect to 2010. The total saturated area at 2010 is estimated to be around 7.73x10^{11} m^2.](image-url)
hydrologic and topographic controls of water table variations (for an unconfined aquifer). By this measure, modeled lake area north of 45°N (excluding glacier) increases 15% to 25% by 2100 for the low and high TCR response, respectively, under the UCE scenario (Figure 2). Under the GST scenario, the expansion of lakes is limited to 5% and 15%, respectively. Uncertain regional climate-change can enhance lake expansion, especially for the UCE scenario and high TCR, causing a 30% to 50% increase by 2100 (Figure 2, thin red lines). Overall, the total estimated lake area increases from 5% to 50% by 2100 across all the projections.

3.3 Methane Emission from Lake Expansion

To convert our inferred lake-area expansion into CH$_4$ emission estimates, we account for a key distinction: yedoma versus non-yedoma (Walter et al., 2006; Walter Anthony et al., 2012). Yedoma regions are underlain by organic-rich Pleistocene-age soil with ice content typically from 50% to 90% by volume (Walter et al., 2006; Zimov et al., 1997), and measurements taken at yedoma lakes show significantly higher ebullition CH$_4$ fluxes than non-yedoma counterparts (Walter et al., 2006; Walter Anthony et al., 2012). From these field measurements, we can directly infer a corresponding CH$_4$ flux from our estimated lake-area expansion (Appendix B). We pool all measured CH$_4$ fluxes into yedoma and non-yedoma categories, based on their

![Figure 3. Increases in decadal averaged (2091-2100) annual CH$_4$ emission (Tg-CH$_4$yr$^{-1}$, poleward of 45°N) with respect to 2011-2020 as a result of the expansion of yedoma lakes (Y), non-yedoma (NY) lakes, and all lakes for the low and high TCR cases under the UCE and GST scenarios, respectively. Each scenario contains a total of 18 ensemble members (17 members of model-based pattern shifts and one member of climatological pattern). Whisker plots show the minimum, maximum, and plus/minus one standard deviation about the ensemble mean.](image-url)
location with respect to a contemporary atlas of yedoma regions (Walter et al., 2007a). Average yedoma and non-yedoma lake methane-flux values are obtained from these pooled measurements. These representative CH$_4$ fluxes are then applied to each model grids simulated lake-area expansion according to whether the grid lies over a dominantly covered yedoma or non-yedoma zone. Their product results in an emission rate for that grid. Additionally, a Q$_{10}$ relation (Appendix B) approximates the lake sediment temperature dependency of microbial activity leading to ebullition flux. By this method, we estimate an average annual CH$_4$ emission of 6.8 Tg-CH$_4$yr$^{-1}$ from lakes poleward of 45°N from 2011 to 2020, which falls within the range of the previous estimates (Walter et al., 2007b; Huissteden et al., 2011). By the end of the 21st century, under the UCE scenario, increases in decadal averaged (2091-2100) annual CH$_4$ emission from lake expansion range between 5.4 to 9.7 Tg-CH$_4$yr$^{-1}$ (79% to 143% increase) and 9.5 to 16.1 Tg-CH$_4$yr$^{-1}$ (140% to 237% increase) for the low and high TCR cases, respectively, of which approximately 50% is contributed by yedoma lake expansion (Figure 3). Nevertheless, these changes are considerably lower than the IGSM estimated human global CH$_4$ emission increase of 349 Tg-CH$_4$yr$^{-1}$ (Appendix C). Under the GST scenario, the CH$_4$ emission increases by 2100 are substantially lower relative to the UCE scenario. The decadal averaged annual emission increases are 0.9 to 2.0 Tg-CH$_4$yr$^{-1}$ (13% to 29% increase) and 2.3 to 4.5 Tg-CH$_4$yr$^{-1}$ (34% to 66% increase) for the low and high TCR cases, respectively. However, unlike the UCE scenario, these increases are comparable to the corresponding IGSM estimated global CH$_4$ human-emission increase at 4 Tg-CH$_4$yr$^{-1}$ (Appendix C).

3.4 Climate Feedback

To assess the potential climate-warming feedback from the increased lake emissions, we then run the IGSM and exogenously prescribe the aforementioned lake CH$_4$ flux increases through the 21st century. For the UCE scenario, the ensemble-mean result shows no discernable temperature feedback as the increases in anthropogenic emissions overwhelm the lake emission increase (not shown). For the ensemble-mean of the GST scenario, no salient global surface-air temperature feedback is discernable for either the high or low TCR case in response to the added lake CH$_4$ emission (Figure 4a). Among all the simulations performed (Table 1), only one member of the model ensemble exhibits a small temperature feedback of approximately 0.1°C towards the end of this century (not shown), although the salient additional warming is somewhat overshadowed by interannual variability. Although the range of the end-of-century increase in lake CH$_4$ emission (0.9 to 4.5 Tg-CH$_4$yr$^{-1}$ is comparable to the human-emission increase (4 Tg-CH$_4$yr$^{-1}$) under the GST scenario, it is still quite low (on the order of 1%) when compared with the current level of human emission rates (345 Tg-CH$_4$yr$^{-1}$ at 2010, Appendix C), and particularly when considering all greenhouse gas emissions. Further IGSM tests indicate that a 1% increase of CH$_4$ concentration, consistent with the aforementioned CH$_4$ flux increases, has a very minor effect on radiative forcing (Appendix D).

To characterize the relative scale of the derived CH$_4$ lake-emission response, particularly with respect to additional CH$_4$ emissions needed for a more salient climate-warming feedback, we
perform sensitivity experiments by augmenting the CH$_4$ emissions and repeating the 21$^{\text{st}}$ century IGSM projections. Each run separately considers: scaling the CH$_4$ lake-emission increases by 10, 25, 50 and 100-fold; and applying only the CH$_4$ human-emission increases of the UCE scenario. Notable results are obtained for the GST scenario at the high TCR. The results (Figure 4b) indicate the 10-fold increase would not support a salient temperature-feedback response. The

![Figure 4](image)

Figure 4. a) Global temperature feedback from the increased lake CH$_4$ emissions for the low and high TCR cases under the GST scenario. LE in the legend refers to the lake emission. b) The sensitivity of global temperature change (°C) to the increased lake CH$_4$ emission for the high TCR case under the GST scenario. *10, *25, *50, and *100 refer to the experiments with the CH$_4$ lake-emission increases scaled by 10, 25, 50 and 100-fold, respectively. Also shown is the global temperature change by applying only the CH$_4$ human-emission increases of the UCE scenario.
100-fold increase produces a temperature response of about 0.8°C by 2100, but salient only after mid-century. The UCE human CH$_4$ emission increases cause temperature to rise about 1.5°C by 2100. However, at a 25-fold lake-emission increase, the model exhibits a discernable, additional warming of 0.2°C, but evident only in the last decade of the 21st century.

4. DISCUSSIONS AND CONCLUSIONS

Overall, these results present, for the first time, a quantitative insight on the scale of the climate-warming feedback from permafrost thaw and subsequent CH$_4$ lake emission. The increase in CH$_4$ emission due to potential Arctic/boreal lake expansion represents a weak climate-warming feedback within this century. This is consistent with previous studies (Anisimov, 2007; Huissteden et al., 2011; Delisle, 2007) that also imply a small Arctic lake/wetland biogeochemical climate-warming feedback. Our experimental design does not explicitly consider the wetlands potential CH$_4$-emissions response (Shindell et al., 2004). As previously noted, the additional saturated area projected by our model is characterized to be lake in terms of a CH$_4$ emission source (to gauge an upper bound). Yet, in this way, if any presumed, additional lake area would alternatively be wetland, to first order we still account for this in terms of a CH$_4$-emission response. Our lake identification scheme also does not explicitly consider lake thermodynamics or thermo-geomorphologic distinction (e.g. thermokarst). Further, buffering effects from near-surface drainage (Huissteden et al., 2011; Avis et al., 2011) are not explicitly considered, however these drainage effects would further weaken the already small feedback found. Other secondary factors not explicitly considered in this study include: the insulating properties of soil organic matter (Lawrence et al., 2008), the response of CH$_4$ emission to soil-moisture dynamics, fire disturbance, vegetation dynamics, as well as lake freeze-depth. Nevertheless, these considerations will likely not change our overall conclusion: the biogeochemical climate-warming feedback via boreal and Arctic lake methane emissions is relatively small, whether or not humans choose to constrain global emissions.

Acknowledgements

This work was supported under the Department of Energy Climate Change Prediction Program Grant DE-PS02-08ER08-05. The authors gratefully acknowledge this as well as additional financial support provided by the MIT Joint Program on the Science and Policy of Global Change through a consortium of industrial sponsors and Federal grants. Development of the IGSM applied in this research is supported by the U.S. Department of Energy, Office of Science (DE-FG02-94ER61937); the U.S. Environmental Protection Agency, EPRI, and other U.S. government agencies and a consortium of 40 industrial and foundation sponsors. For a complete list see http://globalchange.mit.edu/sponsors/current.html.

5. REFERENCES

Avis, C. A., A. J. Weaver and K. J. Meissner, 2011: Reduction in areal extent of high-latitude

APPENDIX A: Downscaling Scheme

We employ the following scheme to expand the latitudinal zonal (mean) field of IGSM state or flux variables across the longitude (Schloesser et al., 2012).

\[
V_{IGSM}^{x,y} = \left(C_{x,y} + \frac{dC_{x,y}}{dT_{Global}} \Delta T_{Global} \right) \cdot V_{IGSM}^{y} , \quad C_{Obs/AR4}^{x,y} = \frac{V_{Obs/AR4}^{x,y}}{V_{y}^{Obs/AR4}}
\]

where \(V_{IGSM}^{x,y} \) and \(V_{Obs/AR4}^{x,y} \) are transformed IGSM and any desired data set (observations or IPCC AR4 archive) at the longitudinal point (x) and given latitude (y), respectively; \(C_{x,y} \) is the transformation coefficient for any reference or climatological time period under contemporary conditions, which basically reflects the relative value of any given variable at a longitudinal point in relation to its zonal mean; \(V_{y}^{IGSM} \) and \(V_{y}^{Obs/AR4} \) are specific latitudinal zonal field of IGSM and any desired data set, respectively; derivative of the transformation coefficient \(\frac{dC_{x,y}}{dT_{Global}} \) is the rate of transformation coefficient change with any human-forced global temperature change. It is calculated based on the difference in 10-year climatology of \(C_{x,y} \) between the doubling of CO\(_2\) in the IPCC SRES simulations at a transient rate of 1% per year (equivalent to 70 years) and the end of the 20\(^{th}\) century in the transient CO\(_2\) increase simulations (2xCO\(_2\)), then normalized by the global temperature difference of the same time period. \(\Delta T_{Global} \) is the change in global temperature relative to the reference or climatological period. We examine the use of various SRES emissions scenarios (A2, A1B, B1) to calculate \(\frac{dC_{x,y}}{dT_{Global}} \) and found a high degree of spatial consistency across these scenarios for all the seasons with their cross spatial-correlation coefficients mostly larger than 0.8 (Schloesser et al., 2012). In this study we employ \(\frac{dC_{x,y}}{dT_{Global}} \) calculated from climate simulations forced by the SRES A2 (17 climate models) emission scenario. The scheme is applied only to the precipitation, temperature, and radiation (longwave and shortwave) with other variables (surface pressure, specific humidity, and wind) simply taking the IGSM zonal mean across each longitudinal point along the latitude.

The transformation coefficients \((C_{x,y}) \) at contemporary conditions are derived from multiple state-of-the-art observational datasets, including 31-year (1979-2009) climatology of the monthly GPCP v2.1 data set at 2.5\(^{\circ}\) for precipitation (Huffman et al., 2009), 27-year (1979-2005) climatology of the gridded land-only Climatic Research Unit (CRU) Time Series (TS) 3.0 at 0.5\(^{\circ}\) for surface air temperature (Mitchell and Jones, 2005). Three other data sets are utilized to derive the shortwave and longwave radiation, including a 53-year (1948-2000) NCEP/NCAR corrected by CRU (NCC) forcing data set (Ngo-Duc et al., 2005), a 57-year (1948-2004) forcing data set (Qian et al., 2006), and the Global Offline Land-surface Dataset (GOLD) version 2 data set (Betts et al., 2006). We compare the \(C_{x,y} \) of the radiation calculated from the 22-year (1979-2000) climatology of all three forcing data sets and find small differences over most of areas. Therefore, the averaged values of \(C_{x,y} \) are used in this study. Besides the derivative of the transformation coefficient determined by the 17 climate models from IPCC SRES A2 archive, we also examine the use of constant \(C_{x,y} \) under contemporary conditions throughout the 21\(^{st}\) century.
APPENDIX B: Temperature Dependence of Methane Ebullition Flux

The temperature dependency of methane ebullition flux is approximated by the empirical Q_{10} function as follows:

$$F = F_0 \cdot Q_{10}^{(T-T_0)/10}$$

The above relationship is applied for the yedoma and non-yedoma lakes, respectively. F is future methane ebullition flux in g CH$_4$m$^{-2}$yr$^{-1}$, F_0 is the methane ebullition flux in g CH$_4$m$^{-2}$yr$^{-1}$ under contemporary condition, which is based on > 16,000 measurements conducted at multiple sites in Alaska and Siberia (Walter et al., 2006; Walter Anthony et al., 2012). The averaged F_0 for non-yedoma lakes is 5.9 g CH$_4$m$^{-2}$yr$^{-1}$. For yedoma lakes, flux number (139 g CH$_4$m$^{-2}$yr$^{-1}$) at the thermokarst fringe of yedoma lakes (i.e. ebullition survey areas running perpendicular ∼50 m from a thermokarst shore towards the lake center) is used, which represents ebullition from yedoma land areas that will become yedoma lakes in the future. Q_{10} takes the value of 3.0. Since CLM does not simulate the lake dynamics, we use the soil temperature at around 2m depth (layer 9) instead. Layered soil temperatures are obtained from the off-line CLM simulations driven by the downscaled IGSM forcings. T_0 takes 2003-2009 climatology of 2-meter soil temperature under the IGSM forcing with median TCR and median emission parameters (MTCR run). T is the soil temperature of the same depth under various climate projections. The temperature is averaged for multiple grids corresponding to the multiple field locations of Alaska and Siberia. The resulting methane ebullition fluxes for yedoma and non-yedoma lakes will change annually from 2010 throughout the 21st century.
APPENDIX C: IGSM Estimated Human Global CH$_4$ Emissions

Figure C1. Changes in the IGSM estimated human global CH$_4$ emissions (Tg-CH$_4$yr$^{-1}$) under various climate policy scenarios. Global emissions are 345 Tg-CH$_4$yr$^{-1}$ at 2010 and increases by 349 and 4 Tg-CH$_4$yr$^{-1}$ under the UCE and GST scenarios, respectively.
Figure D1. The IGSM-estimated a) CH$_4$ concentration (ppm), b) CH$_4$ forcing (W/m2), and c) Total greenhouse gas (GHGs) forcing (W/m2) without and with the increased lake CH$_4$ emissions for the HTCR case under the GST scenario. As can be seen, a 1% increase of CH$_4$ concentration has a very minor effect on radiative forcing.
FOR THE COMPLETE LIST OF JOINT PROGRAM REPORTS:
http://globalchange.mit.edu/pubs/all-reports.php

175. Potential Climatic Impacts and Reliability of Very Large Scale Wind Farms Wang & Prinn June 2009
179. Assessing Evapotranspiration Estimates from the Global Soil Wetness Project Phase 2 (GSWP-2) Simulations Schlosser and Gao September 2009
180. Analysis of Climate Policy Targets under Uncertainty Webster et al. September 2009
183. Canada's Bitumen Industry Under CO₂ Constraints Chan et al. January 2010
188. On the Correlation between Forcing and Climate Sensitivity Sokolov August 2010
192. The Impact of Border Carbon Adjustments under Alternative Producer Responses Winchester February 2011
196. Health Damages from Air Pollution in China Matus et al. March 2011
201. Russia’s Natural Gas Export Potential up to 2050 Paltsev July 2011
204. Implementation of a Cloud Radiative Adjustment Method to Change the Climate Sensitivity of CAM3 Sokolov and Monier September 2011
208. Influence of Air Quality Model Resolution on Uncertainty Associated with Health Impacts Thompson and Selin December 2011
211. Emissions Pricing to Stabilize Global Climate Bosetti et al. March 2012
212. Effects of Nitrogen Limitation on Hydrological Processes in CLM4-CN Lee & Felzer March 2012
215. The Role of China in Mitigating Climate Change Paltsev et al. April 2012