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Abstract

A novel semi-implicit scheme for the Navier-Stokes equations is presented and evalu-
ated. The semi-implicit scheme combines an implicit temporal integration in the body-
normal directions with explicit temporal integrations in the streamwise and cross stream
directions. Thus, advantages of both explicit and implicit schemes are retained in the
semi-implicit scheme. Numerical stiffness due to disparate physical scales in the normal
direction is eliminated, since stability of the algorithm depends only on relatively coarse
streamwise and cross stream grid spacing, not on the typically fine normal spacing. Ap-
proximate factorization is unnecessary and only one matrix inversion per multi-stage
time step is required. Computations show that while a explicit scheme employing multi-
grid and residual smoothing and a fully implicit scheme are competitive for inviscid
calculations, the semi-implicit scheme is superior for viscous flow calculations.

Efficiency of the semi-implicit scheme is exploited in a study of flow separation
around delta wings with blunt leading edges. Three-dimensional laminar vortical flows
over two 65* swept semi-infinite elliptical wings of thickness to chord ratio 1 : 11.55 and
1 : 20 at Moo = 1.6, ReL = 106, and angles of attack of 40, and 8*, and a 60* swept
elliptical wing with t/c = 1 : 11.55 at Moo = 1.4, ReL = 2 x 106 and a = 14* are
considered. In these flow cases, separation line locations are fixed not by a particular
geometric factor (eg. sharp leading edge), but by interaction of physical and geometric
factors. Solutions with the semi-implicit scheme are shown to be significantly more
efficient than solutions with a corresponding explicit scheme. Two distinct leading edge
separation processes are identified: separation due to shock-less flow recompression lee-
ward of the leading edge expansion in the t/c = 11.55, a = 40 case and separation
involving a leading edge shock in the remaining cases.

Thesis Supervisor: Earll M. Murman
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Chapter 1

Introduction

1.1 Background

Flight vehicles have played an important role in human society for the better part

of this century. Especially in the last fifty years, increases in our understanding of the

technology of air transportation and the physics of fluid flow have contributed to a rapid

decrease in the cost of air travel and an associated explosion of growth in transportation

of humans and freight by air.

Acquisition of this knowledge, especially in the field of fluid dynamics, has been and

continues to be a difficult process. While the physical laws governing the dynamics of a

fluid were formulated in mathematical terms many years ago [Navier 1823] [Stokes 1845]

and are well known today, analytical solutions to these differential relations for general

flow cases have eluded generations of mathematicians and physicists. Moreover, the

degree of mathematical complexity of the Navier-Stokes relations is such that the prob-

ability of finding meaningful analytical solutions in the future is minimal.

Coupled with this is the fact that flight testing as a means of advancing the sci-

ence of aeronautics or even exploring the characteristics of a specific vehicle has always

been a precarious and expensive undertaking. Instead, early aerodynamicists resorted

to testing scale models of flight vehicles in earth bound wind tunnels and attempting



to analytically scale those results to obtain forces and moments on the actual vehicle at

flight conditions. The successes of wind tunnel testing are tremendous and this tech-

nology continues to be a mainstay of aerodynamic design and development. However,

wind tunnel testing has many limitations: extreme, even normal, flow conditions are

difficult to simulate; flow data is difficult to acquire and subject to experimental error;

and, the cost of manufacturing models and running the tests is high.

The numerical approach to investigating the aerodynamics of flight vehicles has re-

cently emerged as an alternative. In this approach, the physical region of interest is

divided into many small computational volumes in each of which the governing differen-

tial relations are approximated by discrete equations. Numerical constraints that model

physical boundary conditions are imposed at boundary cells adjacent to the body and

at the outer farfield surface of the computational domain. Computers are then used to

numerically integrate the discrete equations from an assumed set of initial conditions

to a set of invariant flow conditions (for steady flow). Forces and moments acting on a

body can be deduced from this solution. For unsteady flow, the boundary conditions

and numerical integration must be time accurate.

The computational approach has its own set of fundamental problems. First, be-

cause both consistency and accuracy of the numerical approximation to the governing

equations are often difficult to determine, numerical algorithms must be validated, by

comparison of their output to accepted "baseline" numerical results or to experimen-

tal data. Even getting to this point can be difficult since convergence of the temporal

integration is not guaranteed.

Second, much like a wind tunnel, the computer model necessarily imposes artificial

limits on the flow field. Although the limits of the computational domain can extend



much further away from the computational model than the walls of the wind tunnel

extend from the scale model, inaccuracies in the flow conditions imposed at the farfield

boundaries will affect the solution.

Finally, the cost of computer time limits the types of flow problems that can rea-

sonably be modeled and the level of accuracy that can be achieved in a simulation.

This is because some of the flow phenomena of interest occur at a physical scale much

smaller than the overall dimensions of the test object. Since the computational grid

must contain cells small enough to resolve these features, the total number of cells in

a grid becomes large. Solutions with 100,000+ cell grids are not uncommon in 1988.

The extreme computational cost of these solutions can be reduced by improving the

efficiency of the numerical solver. This thesis reports one such attempt.

1.2 Overview

This thesis describes a new "semi-implicit" method for solving the Navier-Stokes

equations and its application to calculation of flow about delta wings with rounded

leading edges. In the semi-implicit approach the spatial discretization in the direc-

tion normal to a body is treated implicitly in time, while the streamwise and cross

stream directions are treated explicitly. The approach eliminates the numerical "stiff-

ness" that is introduced into the governing equations by the small grid spacing in the

normal direction necessary to resolve viscous regions. The goals of the thesis are, first,

to demonstrate the efficiency of the semi-implicit approach compared to conventional

explicit and implicit approaches and, second, to investigate the phenomenon of flow

separation around blunt leading edges.

This chapter serves as an introduction to the remainder of the thesis. Section 1.3



presents the Navier-Stokes equations and some derivative equation sets thereof. Section

1.4 describes some of the difficult issues associated with obtaining numerical solutions

to these equations, and Section 1.5 gives a brief survey of existing solution algorithms.

In the final sections, the aims of this research effort are discussed in more detail, the

semi-implicit algorithm is described, and the remainder of the thesis is outlined.

1.3 Navier-Stokes and Derivative Equations

A continuum fluid is governed by the principles of classical mechanics and thermo-

dynamics which require the conservation of mass, momentum and energy. Stated in

mathematical terms, these principles yield a coupled system of five partial differential

equations known as the Navier-Stokes equations1 . Due to their complexity and mixed

mathematical character, these equations have not yielded to analytical investigations.

Numerical solution of the equations is possible, however, it can be prohibitively expen-

sive. For this reason a number of simplified equation sets have been used in numerical

simulations.

Solution schemes based on simplified equations usually require less computational

grid resolution, fewer arithmetic operations on a given grid, and/or fewer iterations for

convergence, than solutions based on the full Navier-Stokes equations. Thus, the cost

of obtaining a solution is usually lower. In general, derivatives of the Navier-Stokes

equations are based on the assumption that the overall flow field is not significantly

affected by one or more physical characteristics of the fluid, thus allowing elimination

of the relevant mathematical terms from the equations. Several simplified inviscid and

'Strictly speaking the Navier-Stokes equations are a mathematical formulation of the law of conser-

vation of momentum only. This definition is broadened here to include the laws of mass and energy

conservation.



viscous equation sets are discussed below.

1.3.1 Inviscid Flow Equations

The Euler equations are derived by eliminating viscosity from the Navier-Stokes

equations, and thus should not be used to model flows in which viscous effects are

important. Solution of these equations is relatively efficient because viscous terms need

not be calculated and because the absence of shear layers reduces the number of grid

points needed to resolve the flowfield.

The potential equation can be derived from the Euler equations with the additional

assumption that the flow is irrotational. Solutions to this scalar equation can be ob-

tained at relatively small cost and this equation is the basis of many aerodynamic design

and analysis programs. However, the equation is valid only in flows where shock waves

are weak and where the separation line can be determined a priori such that "equivalent"

vorticity in the form of some kind of singularity can be introduced into the simulation.

For these reasons, the potential equation is unsuited for simulation of most separated

flows.

1.3.2 Conical Flow Equations

Conical flow equations can be used to calculate three dimensional flows if the body

of interest is "conical" and no length scale exists in the radial direction from the apex.

In these cases, the radial dimension can be eliminated from the governing equations,

and numerical solution is relatively inexpensive.

Inviscid supersonic flow about conical bodies with attached shocks falls into this



category. Viscous flows have a radial length scale dependence due to the Reynolds

number which precludes true conical flow. Nonetheless, a number of investigators (e.g.

[McRae 76], [Thomas & Newsome 86], [Bluford 79], [Ruffin 87]) have justified use of

the conical Navier-Stokes equations with the observation that the viscous regions in

supersonic flow around conical bodies are dominated by the surrounding approximately

conical inviscid flow [Cross 71]. The validity of this assumption is especially questionable

in separated flows because of their inherent elliptical nature. This question will be

explored in Chapter 6.

1.3.3 Parabolized Navier-Stokes Equations

An attractive approach to reducing the cost of computing steady viscous domi-

nated flows is to alter the mixed mathematical character of the governing equations

to something more amenable to numerical solution. The partially elliptic nature of

the Navier-Stokes equations is eliminated in the "parabolized" Navier-Stokes equations

by deleting the streamwise diffusion terms and prescribing the streamwise pressure

gradient terms in the momentum equations while retaining the body-normal terms as

unknowns. Solutions can then be obtained by "marching" downstream san8 global it-

eration [Rudman & Rubin 68]. The boundary layer equations [Prandtl 04] assume, in

addition, that momentum transfer in the direction normal to a body is negligible so that

the normal momentum equation can be replaced by a condition of zero normal pressure

gradient.

Solutions to the parabolized Navier-Stokes equations give a large improvement in

computational efficiency compared to solution of the full equations, but require a priori

knowledge of initial conditions and streamwise pressure distributions. If this information

is not available, the parabolized equations must be coupled with a solution scheme that,



by solving the outer inviscid flow, provides it.

Implementation of this coupling for complex three dimensional geometries is difficult

and the coupling often does not work well in flow cases in which there is a strong

interaction between the viscous and inviscid flow regions [Davis & Rubin 80]. In any

case, the parabolized equations are not valid in flows with substantial separation which,

due to their upstream regions of influence, violate the assumption of parabolicity.

1.3.4 Use of the Simplified Equations

The price of simplifications is a loss of generality. The simplified systems do not have

the capability to predict a full range of flow characteristics and may require a priori

information about certain flow features. In addition, some simplified relations such as

the potential equation may permit non-unique solutions [Salas et al. 83]. Thus, any use

of a simplified system of equations must be justified by the particular characteristics of

the flow being investigated.

None of the simplified systems described above retains the capability of modeling the

massively separated flows that are of interest in this thesis. For this reason the Navier-

Stokes equations are preferred. Some problems and issues related to their solution are

examined below.

1.4 Numerical Solution - Problems and Issues

Several fundamental issues associated with the numerical approach to solving the

Navier-Stokes equations - consistency and accuracy of the discretization, effect of bound-

ary conditions, cost - were introduced in Section 1.1. In this section, four practical



problems that stem from these issues are discussed. They are turbulence modelling,

spatial accuracy, grid generation, and numerical boundary conditions at farfield bound-

aries. These problems result result from a need to minimize computational expense and

are inherent in a numerical modelling approach.

1.4.1 Modelling Turbulence and Transition to Turbulence

Although all flow calculations described in this thesis are laminar, flows of aeronauti-

cal interest have streamwise Reynolds numbers of 105 - 107 and generally are turbulent.

The present calculations are of intrinsic interest and represent a first step towards calcu-

lating turbulent flows. Because turbulence can greatly affect the character of the flow,

the ability to accurately simulate it is essential. Thus, a central problem in solving the

Navier-Stokes equations for high Reynolds number flow is that of modelling turbulence

and transition to turbulence.

Present modelling capabilities fall short of that task. While, in principle, turbulent

flow can be simulated by direct solution of the unsteady Navier-Stokes equations, in

practice, the temporal and spatial scales associated with turbulent fluctuations in a flow

are orders of magnitude smaller than its gross time and length scales. Resolving them

would require commitment of excessive computational resources. [Chapman 79] and

others estimate that a several order of magnitude improvement in speed and memory

size of current supercomputers is necessary before flow at microscopic scales such as the

Kolmogoroff scale can be directly simulated.

Instead, turbulent flows are usually treated by time-averaging the variables in the

governing equations (e.g. [Anderson et al. 84]). The "Reynolds averaged" equations

that are obtained are identical to the original equations except for the presence of ap-



parent stress gradients and heat flux terms that embody the effect of sub-scale turbulent

motion. A solution can be sought on the scale of the laminar flow problem if the new

terms are related to the mean flow variables through some ad hoc model of turbulence.

Numerous turbulence models ranging from algebraic (e.g. [Cebeci 74], [Baldwin & Lomax 78]
and, recently, [Johnson & King 84]), to two-equation (e.g. k-e [Harlow & Nakayama 68]),

and multi-equation Reynolds stress models such as those based on [Rotta 511, have been

reported in the scientific literature. These models are at various levels of sophistication

and empiricism. Some of them have become widely used. However, the models are all

based on an incomplete understanding of the physical processes and are wed to simplify-

ing assumptions about the nature of the flowfield. Most work well for a particular class

of flows for which the free numerical parameters were "tuned", but none is successful

for a large range of flow conditions.

Modelling the transition from laminar to turbulent flow is an equally difficult and

poorly understood task. It is often ignored by numerical analysts who, for simplicity,

assume an "instantaneous" transition to turbulent flow. The task is composed of two

separate problems: predicting onset of transition and calculating turbulence quantities

in the transition region. There are a number of numerical transition models, albeit

with limited applicability, described in the scientific literature. The Orr-Sommerfeld

equation (e.g. [Obremski et al. 69]) is often used to define the onset of transition. A

number of approaches have been used to then formulate governing equations for the

flow in the transition region (see, e.g. [Drela 861).



1.4.2 Farfield Boundary Conditions

Farfield flow conditions must be imposed at the finite bounds of the computational

domain. In the case of inviscid flows calculated with the unsteady Euler equations, the

theory of characteristics mandates the type and number of boundary conditions to be

specified. At a freestream boundary in three-dimensional subsonic flow, for example,

four characteristics enter the domain from the exterior and one exits the domain from

the interior. Characteristics theory decrees that, correspondingly, four characteristic

variables be specified, with the fifth being extrapolated from the interior.

A similar well established boundary treatment does not exist for use in Navier-

Stokes simulations. The characteristic treatment for the Euler equations is based on

their hyperbolic nature in time and does not extend to time-dependent viscous flows,

which have mixed parabolic/hyperbolic character. A number of investigations of the

subject have been published (e.g. [Ababarnel et al. 86]), however research in this field

is not yet conclusive.

Instead, investigators solving the Navier-Stokes equations have fashioned a variety

of ad hoc treatments to find values of variables at farfield boundaries. For example, in

this thesis a simple extrapolation of all variables from the interior of the domain to the

outflow boundaries is used. While many of these treatments seem to work well, further

research in this area is desirable.



1.4.3 Spatial Accuracy

Numerical solutions to the NS equations are useful only if they accurately represent

the real flow field. Thus, for a steady flow, spatial accuracy is of prime importance2 .

One means of quantifying the accuracy of a solution is to examine the truncation error

of the discretization. Unfortunately, even though the truncation error of a spatial dis-

cretization can usually be derived by Taylor series analysis of the discrete operator on

idealized Cartesian grids, the actual truncation error for non-Cartesian grids is difficult

to obtain and inevitably larger. The accuracy of several kinds of spatial operators in

common use is discussed in general terms below.

Central difference approximations to the first and second derivative terms in the

Navier-Stokes equations are in widespread use. These approximations are generally

implemented in finite volume form thus ensuring conservation of mass, momentum,

and energy and enabling accurate modeling of shock waves [Lax & Wendroff 60]. The

approximations are termed "cell centered" or "vertex based" depending on whether the

variables are stored at the centers or vertices of each grid cell.

In a cell centered discretization (e.g. [Beam & Warming 76], [Jameson et al. 81]),

fluxes of mass, momentum, and energy from one cell to the next are calculated by

surface integration of values at adjacent cell centers averaged to the cell faces. This

results in a second order truncation error on Cartesian grids (see Appendix D). On

stretched grids the accuracy of the first and second derivative approximations decreases

to one and zero3 , respectively.
2 In this discussion, the flow problem is assumed to be well posed and the discrete approximation

consistent and stable [Richtmyer & Morton 67].
8 Although the formal order of accuracy of the second derivative approximation is sero, numerical

experiments in Appendix D show that the variation of truncation error with number of grid points is



Vertex based central difference approximations such as those of [Ni 81] and [Jameson 86]

allow trapezoidal integration of the inviscid fluxes across cell faces. This portion of the

integration promises higher accuracy. However, since the second derivative terms must

still be computed at the vertices by central differences, vertex based Navier-Stokes

schemes have the same formal order of accuracy as cell centered scheme

Artificial dissipation terms add to the truncation error in both cell centered and ver-

tex based central difference schemes. These terms are needed to stabilize the otherwise

neutrally stable temporal integration. Their detrimental effect on solution accuracy

is difficult to quantify (see, eg., [Lindquist 88]), but can be substantial and should be

monitored during a calculation.

Upwind difference discretizations for the inviscid terms (e.g. [Thomas & Newsome 86],

[Roe 86]), have emerged as viable alternatives to central differencing 4. These schemes

are an attempt to model the physics of the fluid more closely by aligning the differences

with the characteristic directions of the signal propagation. Upwind difference schemes

require no artificial dissipation per se and can be constructed to contain only terms

which have second and higher order truncation error on Cartesian grids5 . Two disad-

vantages of upwind schemes are that a dissipative first order form often must be used

in high gradient flow areas to obtain convergence, and that the leading truncation error

term, which has the form of an artificial viscosity term [Pulliam 85], may introduce

excessive dissipation in viscous regions [Hiinel et al. 87].

A number of other approaches to obtaining accurate viscous solutions are reported

almost linear, ie. in practice the terms are nearly first order accurate
4Most upwind schemes use the same centered differences for the viscous terms as do central difference

schemes.

"The coeficienta of the truncation terms of a second order accurate upwind scheme are larger than

those of a second order accurate centered discretization, as can be shown by a Taylor series analysis.



in the literature. Schemes based on triangular or, in three dimensions, tetrahedral un-

structured grids promise less grid distortion at wing-body junctions and other regions of

high surface curvature and, possibly, easier grid generation [Baker 87], [L6hner 88]. A

review of some of this work is given by [Baker 88]. The accuracy of these discretizations,

especially of second derivative terms, on these grids is difficult to assess. A number of re-

searchers have combined unstructured grids in the external inviscid flow with structured

(quadrilateral or hexahedral) grids in viscous zones.

In "box"-type schemes the governing equations are reduced to a coupled system of

first order equations which is discretized with a vertex based spatial operator. This

discretization allows a trapezoidal interation that gives grid independent second order

accuracy. Box schemes have been applied to Prandtl's boundary layer equations (e.g.

see [Keller 70], [Drela 83], [Loyd & Murman 86]) where they result in implicit block

tridiagonal systems for the incompressible and compressible equations, of block size

three and five, respectively, which can be solved efficiently by direct matrix inversion.

[Allmaras & Giles 89] have applied features of this work to their algorithm for the two-

dimensional thin shear layer (TSL) Navier-Stokes equations. These equations differ from

the Prandtl boundary layer equations due to their retention of a normal momentum

equation (inviscid terms only). Thus, they are intermediate in complextiy between the

boundary layer equations and the thin layer Navier-Stokes equations. Discretization of

these equations results in a block tridiagonal system of block size six.

Box discretizations of the full or thin layer Navier-Stokes equations would result in

an implicit system with significantly more first-order equations and thus a larger block

size than that of box discretizations of the boundary layer or TSL Navier-Stokes equa-

tions. This is due to the presence of numerous second order terms in the Navier-Stokes

equations. These larger systems would present a challenging and costly inversion prob-



lem since the number of operations associated with the Gaussian elimination used to

invert the component block matrices in the tridiagonal system increases with approxi-

mately the third power (nS) of the block size. The author is not aware of any work in

this area.

Other strategies for obtaining high accuracy include instituting adaptive gridding

procedures and increasing the overall grid density. The former approach increases the

number of grid cells in flow regions that contain high gradients via some kind of auto-

mated error minimizing procedure. Although these types of scheme can be complicated

and may require significant computational overhead they have been used by a number

of investigators (e.g. [Kallinderis & Baron 881 and [Davis & Dannenhoffer 89]). The

latter grid refinement approach is simple but often very expensive. Regardless of which

of the above approaches is employed, careful design of the inital grid can significantly

reduce overall computational cost and improve accuracy.

1.4.4 Grid Generation

The discussion in Section 1.4.3 points out the vital role of the computational grid in

determining spatial accuracy. The order of the truncation error of each of the schemes

discussed, with the exception of the box scheme, is grid dependent, and the magnitude

of the coefficients of the truncation terms in all cases depends on grid smoothness 6 .

The difficulty of generating appropriate grids for complex configurations is, how-

ever, in itself a major impediment to the use of numerical techniques. Text books by

[Anderson et al. 84] and [Thompson et al. 85] give a summary of available grid gener-
6 The decrease in accuracy due to grid stretching or skewness is independent of whether discretization

is performed in physical space or whether the physical space is transformed to computational coordinates

before discretization (see e.g. [Peyret & Taylor 83 1 pp. 108-112 or, for 1-D analysis, Appendix D).



ation techniques. While many of the methods described in these references work well

for simple geometries, none comes close to being applicable to general geometries. Most

investigators attempting to model complex configurations resort to using a patchwork

of grids generated by one or more methods. Because of this difficulty flow calculations

are often limited to relatively simple problems.

The focus in this thesis is on the numerics and physics of a complicated flowfield

around a simple conical geometry. Grids for the conical geometry are calculated by

simply stacking a number of two-dimensional sections. Since the emphasis is on al-

gorithm development it is important to review existing numerical algorithms for the

Navier-Stokes equations.

1.5 Survey of Navier-Stokes Solution Methods

A large number of Navier-Stokes solution methods have been developed in the last

20 years. A primary focus of this research has been the development of efficient cost-

effective algorithms. This brief survey describes some of those approaches that have

been or could straightforwardly be applied to compressible three dimensional flows.

The schemes are grouped by their use of explicit or implicit temporal integration.

1.5.1 Explicit Schemes

In an explicit scheme the unknown solution at each cell at time tn+l depends on

the known values of variables in surrounding cells at the previous time step tn only

(Figure 1.1). This decoupling of time levels t" and t"n+ yields a temporal operator that

can be readily combined with different spatial operators. It also results in a restriction
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Figure 1.1: Difference Stencil in Explicit Scheme

of the maximum size of the time step by the Courant-Friedrichs-Levy (CFL) criterion,

which requires that the numerical zone of dependence must include the physical zone

of dependence.

The CFL criterion describes information propagation requirements in inviscid flow.

Consider one spatial dimension in Figure 1.1. According to characteristics theory the

solution of the inviscid flow described by the model wave equation, utt - c2uZ, = 0, at

grid point zi and time tn+' depends on information in the region enclosed by the forward

and backward sloping characteristics u + c and u - c. Thus the CFL condition requires

that for numerical stability the time step must be chosen so that all this information is

used in the numerical prediction of u+'1 ; that is,

At < ' (1.1)Iu + ICI
where At = t"j+ - t", Ax = xi+l - zi. and the vertical bars denote absolute values.

Although this criterion is derived here for a model equation representing inviscid one-

dimensional flow, numerical calculations show that it holds approximately for viscous

4- -



multi-dimensional flows (see also Section A.5 in Appendix A).

In practice, Equation (1.1) is a mild constraint if the spatial dimensions of the cells

as represented by cell aspect ratios AR.y = Az/Ay and ARy = Az/Ay are roughly

uniform, that is ARV, AR, , -- 1. This usually is the case in Euler computations.

In viscous flows, however, the small body normal grid spacing (Ay, say) necessary to

resolve the viscous gradients near a body results in AR,., AR,, > 1, which severely

restricts the size of the time step. The resulting large number of iterations required

for convergence is indicative of what is commonly referred to as a "stiff" system of

equations.

Nonetheless, many investigators have had considerable success in using explicit Eu-

ler solvers as "stepping stones" to developing schemes for the Navier-Stokes equations,

with the added viscous terms typically approximated by central differences. The Euler

scheme of [Jameson et al. 81] combines a central difference spatial discretization and a

blend of second and fourth order artificial viscosity with a multistage time integration

to achieve a flexible numerical algorithm. Variants of this scheme have been extended

to the Navier-Stokes equations by several investigators (eg. [Agarwal & Deese 85],

[Martinelli 86], [Swanson & Turkel 85], [Miiller & Rizzi 87], [Bussing 85], [Jayaram & Jameson 88]).

The explicit two-stage scheme of [MacCormack 69] (e.g. [Deiwert 75]) and various ver-

sions of Lax-Wendroff integrators (e.g. [Ni 81], [Davis et al. 87), [Kallinderis & Baron 87])

have also been used. Because of the long computational times and correspondingly

high CPU costs of explicit solvers, convergence acceleration techniques such as local

time stepping, implicit residual smoothing, and multigrid are often used. With these

schemes, viscous solutions in a wide range of Mach and Reynolds numbers have been

obtained.



Explicit solution methods based on unstructured grids promise easier adaptability to

complex configurations than those based on structured grids and have recently been ap-

plied to the Navier-Stokes equations (e.g. [Peraire et al. 87], [Kallinderis & Baron 88],

[Davis & Dannenhoffer 89], [Mavriplis et al 89]). Kallinderis and Baron use a vari-

ant of the Lax-Wendroff scheme due to [Ni 81] with an adaptive gridding algorithm.

[Peraire et al. 87] use a Taylor-Galerkin method for the spatial discretization with a

four stage Runge-Kutta temporal integrator and an adaptive gridding algorithm.

A number of researchers have combined structured and unstructured grid methods

in an attempt to capitalize on the strengths of each approach. A promising recent devel-

opment is the structured/unstructured approach of [Nakahashi 88], who uses prismatic

elements with triangular bases as grid cells. The triangular bases of the elements cover

body surfaces in an unstructured manner, thus providing geometric flexibility. The sides

of the elements are quadrilaterals, thus giving the grid structure in the body-normal

direction. Because of this grid structure, multi-grid and implicit residual smoothing

can be easily implemented in the body-normal direction to relax the severe At con-

straints, and the thin-layer approximation and Baldwin-Lomax turbulence model can

be straightforwardly applied.

Despite this myriad of approaches, computation times for explicit solutions are usu-

ally long at Reynolds numbers of interest. With increasing Reynolds number and hence

decreasing body-normal spacing the computation times become longer and implicit

methods become competitive.
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Figure 1.2: Schematic of Difference Stencil in Implicit Scheme

1.5.2 Implicit Schemes

Implicit schemes eliminate the numerical stiffness due to the small cells needed

in shear layers by solving the equations implicitly in time. Unlike explicit schemes,

which use only functions of the known solution at t" to calculate the solution at tn+1 ,

implicit schemes base that calculation both on the known solution at t" and the unknown

solution at all (z, y, z) locations at tn+l. Figure 1.2 shows a schematic at (z, y)i,j of a

2-D implicit difference stencil. Because the node points at tn+" are linked, unknowns

at any spatial location at tn+l receive information from all unknowns in the z and y

directions at that time level and from the known quantities at t".

The implicit discretization gives a coupled system of equations for the unknowns at

t"n+ that, from linear stability analysis, is stable regardless of the size of the time step.

Non-linear effects such as the movement of a shock wave over several cells in one time

step may lead to instability even with implicit methods. Since direct solution of the



coupled system is prohibitively expensive, the system is usually approximately factored

before inversion or solved via a relaxation algorithm. Both of these processes result in

a limit in the size of the time step that can actually be used, although that limitation

is usually much less restrictive than the CFL condition. Even if an approximate fac-

torization or a relaxation algorithm is used, one implicit iteration is still considerably

more expensive than an explicit iteration. Thus, implicit schemes are more efficient

than explicit schemes only if the smaller number of iterations necessary for convergence

of the implicit solution outweighs their higher computational cost per iteration.

In the alternating directing implicit (ADI) method (e.g. [McDonald & Briley 75],

[Beam & Warming 76]) the coupled system is approximately factored along the spatial

dimensions of the difference operators. Thus the full matrix is replaced by a product of

three block tridiagonal matrices, one for each coordinate direction. The block tridiag-

onal nature of the new system is due to the use (or assumption of use of) three point

central difference stencils in each coordinate direction7 . Unfortunately, the approximate

factorization introduces a slight instability in three dimensions [Dwoyer & Thomas 81]

which must be suppressed, and the size of the optimal time step for convergence is

limited by growth of the approximate factorization error. The ADI method has found

widespread use in the work of [Steger 77], the zonal approaches of [Norton et al. 84],

[Benek 87], [Krouthen 88], and [Holst et al. 87], and in the ARC2D and ARC3D codes

of [Pulliam 84].

A number of implicit upwind methods have been extended from the Euler to the

Navier-Stokes equations. These discretizations result in systems with increased diago-

nally dominance. Thus, the systems may be solved with ADI methods [Thomas et al. 87]
7The block tridiagonal system may be diagonalized for more efficient solution

[Pulliam & Chaussee 81).



or relaxation [Thomas & Walters 85].

[Fuji & Obayashi 86] have introduced an LU-ADI method in which the ADI equa-

tions of [Beam & Warming 76] are decomposed into upper and lower bidiagonal ma-

trices using the flux vector splitting technique. This ensures diagonal dominance of

the implicit system. The explicit portion of the operator is the same as that used in

[Beam & Warming 76].

While implicit schemes tend to require less CPU time than explicit schemes for high

Reynolds number cases, the cost of solutions can still be large. Thus, new algorithm

development is a priority and is the focus of this thesis.

1.6 The Semi-Implicit Approach

An alternative semi-implicit approach to solving the Navier-Stokes equations is de-

scribed in this thesis. The semi-implicit algorithm combines elements of the explicit

and implicit approaches by treating body normal terms in the equations implicitly, but

the streamwise and cross stream terms explicitly. The concept is illustrated in Figure

1.3, which shows the schematic at (X, Y)ij of an semi-implicit difference stencil. It is a

composite of the fully explicit and implicit stencils shown in Figures 1.1 and 1.2.

The semi-implicit concept is based on the observation that resolution for Navier-

Stokes simulations is often necessary only in the direction normal to a body. At the

ordinary differential equation level this implies that only boundary layer like viscous

terms need to be retained in addition to the normal and cross stream momentum equa-

tions, leading to the so-called thin layer Navier Stokes equations. At the discrete level

it implies that mesh cells will have a much smaller dimension in the body normal di-
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Figure 1.3: Schematic of Difference Stencil in Semi-Implicit Scheme

rection compared to the streamwise and cross stream directions. Thus, the stability

restriction for explicit schemes in body fitted grid systems is usually dominated by the

small normal spacing and the resulting numerical "stiffness" in the equations.

The scheme is an attempt to exploit the advantages of explicit and implicit schemes

while minimizing their disadvantages. The semi-implicit algorithm eliminates the sta-

bility restriction due to the normal spacing by solving the flow equations implicitly

in the normal direction. However, the solver is explicit in the tangential (flow) and

cross stream direction, thereby avoiding factorization schemes, CFL limitations associ-

ated with the approximate factorization error, and a costly second or second and third

block-tridiagonal inversions in two or three dimensions, respectively. The scheme is

incorporated in a multi-stage time-stepping algorithm which, as a result of the implicit

treatment of the body-normal terms, has a stability restriction that depends only on

the grid spacing in the streamwise and cross stream directions.



A related concept was developed by [Rizk & Chausee 83] and used subsequently by

[Miiller & Rues 86] and [Riedelbauch & Miiller 87]. In their approach the block tridi-

agonal matrices corresponding to the streamwise and cross stream directions of a Beam

& Warming solver were simply eliminated. This produces a "forward time centered

space" algorithm in the explicit directions that can easily be shown to be uncondi-

tionally unstable for the inviscid equations. Nevertheless, these authors report stable

calculations.

1.7 Thesis Outline

Roughly the first half of this thesis (Chapters 1 - 5) presents a discussion of the

characteristics and efficiency of a semi-implicit algorithm as compared to two popular

conventional schemes. Chapter 2 presents the Navier-Stokes equations and discusses

implementation of the thin layer approximation. Chapter 3 describes the finite volume

discretization of the spatial derivatives, and Chapter 4 introduces the semi-implicit

temporal integration. Stability of the scheme is shown to be dependent on the spacing

in the explicit direction(s) only. In Chapter 5 the semi-implicit scheme is evaluated

by comparison of two dimensional results with those obtained from fully explicit (with

multigrid and residual smoothing) and implicit schemes.

The second half of this thesis describes application of the semi-implicit scheme to the

calculation of separated flow about delta wings with rounded leading edges. Chapter 6

describes the geometry and boundary conditions of the flow case, and validation of the

numerical algorithm. Chapter 7 displays characteristic features of the fiow about delta

wings with rounded leading edges, and a discussion of specific features of flow separation

in given in Chapter 8. Conclusions and recommendations for further research are found



in Chapter 9.



Chapter 2

3-D Navier-Stokes Equations

The Navier-Stokes equations are a mathematical formulation of the laws of con-

servation of mass, momentum, and energy applied to a continuum fluid. Since mass

and energy are scalar quantities and momentum is a vector quantity this gives in three

dimensions a system of five equations. These five equations contain eight unknowns:

the thermodynamic variables density, pressure, and temperature, three velocity compo-

nents, the transport coefficient of viscosity, and the Prandtl number. A sixth equation is

obtained from the equation of state which relates the thermodynamic properties of the

fluid. The viscosity is obtained from Sutherland's formula and the Prandtl number is

set to a constant, thus closing the system of equations.

The Navier-Stokes equations may be derived by applying the conservation laws to

an arbitrary control volume. To conserve mass, the rate of mass flux passing into

the control volume must equal the time rate change of mass in the control volume.

Conservation of momentum requires that the rate of momentum gained by convection

through the control surface, plus surface and body forces must equal the rate of increase

of momentum within the control volume. Finally, conservation of energy requires that

energy convection and heat conduction at the surfaces and addition through external

agents balance the rate of growth of total energy.

The three-dimensional Navier-Stokes equations integrated in Cartesian coordinates



Figure 2.1: Control Volume

over a control volume V with boundary aV (see Fig. 2.1) are:

(2.1)

The vector of state variables is W = (p pu pv pw pE)T, where p is the density, u,

v, w are z, y, and z components of velocity, and E is energy per unit mass. The flux

vector F is composed of inviscid and viscous parts

= (F, - Fv)'+ (GI - Gv)j+ (Hr - Hv)k (2.2)

in the z, y, and z coordinate directions denoted by the unit vectors i, j, and k, respec-

tively.

The inviscid fluxes are

pu pv pw

PU2 + P puV puw

F1 = put , GI = pv2 +P , HI = pvw

pow pvw pw 2 + P

puH pvH jpwH

where H is the stagnation enthalpy, H = E + P/p, and P is the static pressure.

(2.3)

In a viscous fluid the rate of increase of the state variables in a control volume will

also be affected by shearing stresses and heat conduction on the surface of the volume.

_ f~ W dV + F(W) -ndS = 0.
at ffa lv



These viscous fluxes are given by
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The heat flux terms are
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or, using the perfect gas relation H = CpT+.5(u 2 +v2 +w2) to eliminate the temperature

T, and introducing the Prandtl number Pr = -- ,8v 8

p (OH

qz = -Pr 49
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The value of the Prandtl number Pr was taken as 0.72 for the laminar flow solutions

presented in this thesis.

(2.4)

(2.5)
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The coefficient of viscosity is related to the local enthalpy by the Sutherland formula

[Cebeci 741

A h )3/2 h® + h1  (2.)
= 1 ho h(2.8)Poo h-/ h+ h '

where hi is a dimensional constant (= 111421 in SI units), and oo refers to free stream

conditions. This relation closes the system of equations.

Equations 2.1 are written with the assumption that body forces such as gravity or

electromagnetic forces are negligible and that there are no internal heat or mass sources.

Also, the Stokes hypothesis is assumed to hold for the viscous terms. The form of (2.1)

indicates'that the change of the state vector W with time in a given volume is due to a

net vector flux of F into that volume. Although the steady solutions to these equations

are sought, one retains the unsteady terms to allow a time-like integration to steady

state. There is no guarantee that steady solutions exist and/or are unique.

2.0.1 Nondimensionalization

Nondimensionalization of variables in the governing equations allows characteristic

flow parameters such as the Mach number and Reynolds number to be identified and

varied independently. The free stream values of density, speed of sound, and viscosity

Poo, am, om, and a characteristic length c were chosen as reference values. Introducing

these quantities gives the nondimensional variables:

zt= _ =Y z= z
C C C

moo aoo aoo (2.9)
P P P 2 = t

Poo Pooaoo c/a,
, U Moo , E H H

Poo ReO a2 a0- 0-



The forms of the nondimensional governing equations, equation of state, and viscos-

ity model are identical to that of the dimensional equations. The free stream vector in

terms of nondimensional variables is

1

MO cos a

Woo = 0 , (2.10)

MO sin a

1 M'
( - 1) 2

where a is the angle of attack and the yaw angle is assumed zero. The free stream pres-

sure is p, = 1/',. For convenience the primes are dropped and reference is henceforth

made to the nondimensional variables only.

2.1 Thin Layer Approximation

The viscous terms in the governing equations can be simplified if one asssumes

that gradients of viscous stress and heat flux in directions parallel to the body are

negligible compared to those gradients in the direction normal to the body. All viscous

terms that contain derivatives parallel to the body surface can then be eliminated,

giving the thin layer form of the Navier-Stokes equations [Baldwin & Lomax 78]. In

a real flow this assumption holds only in attached, high Reynolds number regimes.

However, in a numerical solution the assumption is convenient, regardless of Reynolds

number or whether the flow is attached or separated, if the computational grid does not

adequately resolve gradients of viscous stress and heat flux in the streamwise or cross

stream directions. The latter justification of the thin layer approximation is usually

appropriate since computer memory restrictions and high CPU costs limit the total

number of cells that can be employed in a computation.



For a computational grid with a given number of grid cells, grid surfaces are typically

clustered in the normal direction in order to resolve the rapid flow changes through the

boundary layer. This strategy is appropriate since quantities such as the skin friction

can be predicted accurately only if the boundary layer is well resolved. However, the

strategy leaves few grid surfaces available to resolve gradients in the cross stream or

streamwise directions.

Because the thin layer form of the Navier Stokes equations retains the viscous terms

in the direction normal to a body only, and these terms are discretized along grid lines,

the computational grid must be constructed such that it contains a family of lines that is

body normal. In addition, the viscous stresses must be transformed from the Cartesian

X, y, z system to body normal C, tj, and S coordinates, since in general no Cartesian

coordinate direction corresponds to the normal direction qt. This transformation is

described below.

Derivative terms with respect to z, y, and z may be expressed in C, 17, and ý coor-

dinates via the chain rule of differentiation:

a a1 a a9 81 s a 8 a aT= __++ Y = + T+X 5 +S F
ax aa~3 aC ,7 a a a9 aa

S= a + = C + v + (2.11)
ay ay aC ya ay a Y B1 +8 89 8

= + + = + ti= + + Ta z aza a azl a8zas - a a
By the thin layer assumption, derivatives in the downstream C and cross stream S

directions are small compared to derivatives in the v7 direction; that is,

a a a
T >> a (2.12)

so that all C and ý derivative terms may be dropped from (2.11) to obtain

a a a a a a
-- -a- -- "ty , and - •--- (2.13)



Inserting (2.13) into (2.5) and (2.7) gives the thin layer shear stresses
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While these expressions seem no simpler than the original stress tensor and heat flux

terms, they in fact allow considerable computational savings, since derivatives in this

approximation need be evaluated only on the two faces of each volume that are parallel

to the body. Evaluating the thin layer terms on the other four faces is unnecessary

since, by assumption, face-to-face changes in the streamwise and cross stream viscous

terms are small.

While the thin layer simplifications result in a saving of CPU time and in memory

required, they do not change the character of the governing equations. Unlike the bound-

ary layer equations, the normal momentum equation is retained. Unlike "parabolized"

sets of the Navier-Stokes equations, the pressure gradient in the streamwise momentum

equation is retained and no assumption is made about the pressure variation in the

streamwise direction.

(2.14)

(2.15)



2.2 Solutions to the Navier-Stokes Equations

While the Navier-Stokes equations were formulated more than a century ago, solu-

tions to them have been obtained only for very special cases. The complexity of th•

nonlinear coupled system of equations and their mixed mathematical character - they

are hyperbolic-parabolic for unsteady flow and elliptic-parabolic for steady flow - make

future analytical solutions to general problems unlikely. The next two chapters explore

numerical means of efficiently solving the equations for cases of real interest.



Chapter 3

Spatial Discretization

The governing equations must be discretized before numerical solution can be at-

tempted. Discretization involves identification of a computational region around the

body of interest, division of that region into many cells or volumes, and approximation

of the governing equations on each of these control volumes by discrete representations.

Boundary conditions representing conditions in the physical flow field must be imposed

at the outer surface of the computational region and at body surfaces. An initial state

for each of the finite cells is assumed and the approximation in each is integrated for-

ward in time. The final solution is obtained when the temporal changes of the values

of the state vector become appropriately small.

A number of problems complicate the process of discretization. Some of these are:

generation of an "acceptable" computational grid around the body of interest, stability

of the temporal integration, efficiency of the numerical calculation, accuracy of the

spatial approximation, and, for time-accurate calculations, accuracy of the temporal

integration. Some of these problems will be addressed in the remainder of this thesis.

Discretization may proceed in two steps, spatial and temporal. Even though the

two steps are connected due to dependence of the stability of the temporal integra-

tion on the form of the spatial operator, it is convenient to consider them separately.

This chapter presents the spatial discretization, treatment of flow conditions at grid

boundaries, and added artificial viscosity. The next chapter gives an explicit temporal



discretization used in many conventional schemes and derives from it a semi-implicit

temporal discretization. Appendix A combines temporal and spatial operators in an

analysis of the temporal stability.

3.1 Spatial Difference Operators

The area integrals in (2.1) represent the flux of mass, momentum, and energy into

and out of a given control volume. While the equations hold regardless of the shape

of this volume, the formulation in this thesis assumes that the flow area of interest is

divided a priori into hexahedral volumes organized in a logical (I : Ima, J : Ja, K

Kmaz) matrix, commonly referred to as a "structured" grid, and that the vectors of

state variables are stored at the centers of each of these volumes.

The discretization scheme assumes that the flux at each face of a volume is constant

on that face. The area integrals (2.1) are then the sums of the products of the flux

vector F with the projected surface areas

6

ffa ()(W).dS = U(W)6 * O
f-1 (3.1)6

= 1(FS, + GS, + HS,),
f=1

over the six cell faces (see Figure 3.1). In particular, the flux out of a cell in the y

direction is given by

6

Z(GS), = (GS,) 1 + (GSV) 2 + (GS)s + (GS) 4 + (GS,)5 + (GS,) 6 , (3.2)
f=1

where Sy is the projected area on the zz plane of a cell face. In the z and z directions

the summations are obtained by replacing (GS,) by (FSz) and (HS,), respectively.

Because it is written in finite volume form and the flux out of any given cell goes directly



A1 Uth• V

Figure 3.1: Cell Nomenclature (Body Surface is Tangent to Face 6)

into neighboring cells this cell-centered discretization scheme identically conserves mass,

momentum, and energy.

For the inviscid portions of the flux vectors (2.3) a simple average of the values at

the cell centers of the two adjoining cells is used to calculate the face centered flux:

G1 = .5(Gli+,i,k + Gri,,,) G2 = .5(GI,_l,,a + GI,,,)

G3 = .5(Gli,,i+1 , + Gli,,j,) G4 = .5(Gi,i_-,k, + Gi,j,A) (3.3)

G5 = .5(GI,,k+l + Gi,,,,) G 6 = .5(Gli,j,A-1 + GI,,d,k)

The values of the viscous terms are evaluated in finite difference form as either

( ) -or ) (3.4)
a1n AV? a q An '

depending on whether the viscous flux at Face 5 or at Face 6 is desired. The definitions

(3.3) and (3.4) are convenient because they give a compact three point difference stencil

for the thin layer Navier Stokes equations. The appropriate prefix qr, rly, or %r, is defined

by centered differences (see Appendix E). Consistent with the thin layer approximation

(2.12), the viscous fluxes across Face8 1 and 2, and 3 and 4 are discarded since these

correspond to changes in the C and S directions respectively, which are, by assumption,

small compared to changes in the direction normal to the body.



3.1.1 Accuracy of the Discretization

The discretizations (3.1 - 3.4) reduce to second order accurate central difference

approximations for first derivatives (inviscid terms) and second derivatives (viscous

terms) on uniform grids. However, that order of accuracy is not maintained on arbitrary

grids. A simple analysis of the accuracy of these and several alternate operators on

stretched grids is given in Appendix D. It is easy to show that the maximum order of

accuracy for a three point approximation of first and second derivatives on non-uniform

grids is two and one, respectively, regardless of whether discretization is performed in

physical or mapped (transformed) coordinates1 .

The discretization for inviscid terms described in the previous section has a first

order truncation error but is conservative. While three point discretizations of inviscid

terms with second order truncation error can be constructed, these discretizations are

necessarily non-conservative.

The finite volume approximation to the viscous terms is not formally first order

accurate even on a stretched one-dimensional grid. However, computational results

show that the magnitude of its truncation error is almost identical to that of the non-

conservative centered finite difference approximation. Thus, in practice, the scheme

is first order accurate. The analysis also shows that it is important that grids vary

smoothly to limit degradation in accuracy.

Higher order accurate difference approximations to let and 2nd order derivatives

using a cell-centered approach can be constructed by using more points in the difference

stencil. This is usually not practical since the higher order of accuracy is achievable

1While discretization in computational space is nominally second order accurate when AC = A=r =

AS, the numerical mapping of variables to and from that space is not.



only on the grid for which the approximation is designed. For example, a higher order

accurate representation can be designed for a Cartesian grid with a given stretching.

However, when the stretching varies non-analytically or when the grid becomes skewed

(due, say, to a third dimension) the difference approximation reverts to lower order.

Also, each additional point in the difference stencil increases the bandwidth of the

matrix that must be solved in an implicit sweep, thus increasing the computational cost

of inversion.

3.2 Boundary Conditions

Flow conditions at grid boundaries must be imposed to fully specify any flow prob-

lem. The boundary conditions are implemented in the computer code by creating a

surface of "ghost" cells outside the boundary and setting the state vector in those cells

to such values that Equation 3.3 gives the correct values at boundary faces. For exam-

ple, Wghosti,k is set to -Wi,l,k if a body is located adjacent to the j = 1 surface of cells

and W = 0 is desired on those boundary faces. In general, Wghosti,k = 2W 8 pec - Wi,l,k

where Wpec is the value to be specified at the boundary. Different kinds of boundary

conditions are applied at solid walls, in the far field, and at symmetry planes. They are

discussed below.

3.2.1 Solid Wall

At solid boundaries it is experimentally observed that the flow of a continuum fluid

obeys a "no-slip" condition of zero velocity: u = v = w = 0. The value of the pressure

in the ghost cells is calculated by assuming Op/in = 0, consistent with classical bound-

ary layer treatment. Isothermal or adiabatic boundary conditions are implemented by



setting the appropriate values of total enthalpy in the ghost cells.

3.2.2 Far Field Boundary Conditions

Two kinds of boundary conditions are used at far field boundaries of the grid, de-

pending on whether the flow through the boundary contains viscous-dominated or in-

viscid flow. For inviscid flow a Riemann invariant boundary condition treatment is used

following [Jameson & Baker 83]. These Riemann conditions are based on the theory of

characteristics which describes the information transfer in the one dimensional flow nor-

mal to a boundary. For subsonic flow, the incoming and outgoing Riemann invariants

are

aoo aR_ = _ -n'- 2 =n - 2 (3.5)
7-1 p-1

and

aez a
R1 = We -n'+ 2 un + 2 (3.6)

where the subscript oo identifies freestream values and ez denotes values extrapolated

from the first interior cell. The vector n' is the outward pointing normal to the cell.

The normal velocity and speed of sound are obtained by adding and subtracting the

invariants,

un = (R- + R+) , (3.7)

and

a = -- (R_ + R+) . (3.8)

The velocity vector can then be calculated for an outflow boundary by extrapolating

the tangential component from the interior solution,

= We + (u, - We, ' ii) (3.9)



and, for an inflow boundary by specifying it from the freestream,

W = Woo + (un - Woo - ) . (3.10)

Similarly, the entropy at an outflow boundary is extrapolated

8 = 8ez = (3.11)

and specified at an inflow boundary

8 = ,oo = 1/ . (3.12)

For supersonic flow, all characteristics point in the direction of the flow and all

quantities are correspondingly extrapolated from the interior at an outflow boundary

and set to freestream at an inflow boundary.

The Riemann invariant treatment is not appropriate for boundaries that cut through

regions of viscous-dominated flow. Boundaries downstream of solid bodies fall in this

category since they usually contain wakes or boundary layers. At these boundaries all

flow variables were extrapolated from the interior. This treatment is consistent with the

parabolic nature of most boundary layer flows, but may lead to some wave reflection

in regions of the outflow that contain subsonic inviscid flow. Numerical models that

are consistent with the dual character of the outflow (e.g. [Ababarnel et al. 86]) are a

matter of current research and were not considered for this investigation.

3.2.3 Symmetry Planes

Several of the test cases shown in later chapters will make use of one or more

symmetry conditions. These are grid planes at which the exterior flow is assumed

to be the mirror image of the interior flow. Symmetry boundary conditions are easily



implemented by setting all variables in the plane of ghost cells equal to the corresponding

variables at the first interior grid plane, except for the component of the velocity normal

to the boundary which is reflected, •ghost • = -Winterior " R.

3.3 Artificial Viscosity

Artificial viscosity is added to the physical fluxes to damp out non-physical odd-

even oscillations and to stabilize the integration in areas of discontinuos flows. The

discretization for the inviscid terms described above allows odd-even decoupling of flux

values at adjacent points. This decoupling may lead to aliasing errors that inhibit

convergence of the temporal integration. Also, the truncation terms of central difference-

type discretizations on a Cartesian grid are not dissipative and, in inviscid regions, one

finds that discontinuities in the flow field may cause divergence of the algorithm. For

both these reasons artificial viscosity is added to the solution. While its presence is

essential, it is important that the artificial viscosity terms be kept as small as possible

to minimize degradation of solution accuracy.

A blend of nonlinear second and fourth difference terms that has been established

as particularly effective in damping out nonphysical oscillations [Jameson 83] is used in

this thesis. Consider a 3-D damping operator:

D(W) = De(W) + D^(W) + D,(W), (3.13)

where Df, Dý, and D, are undivided differences across the cell in the streamwise, cross



stream, and normal directions, respectively:

DC(W) = di+l/2,j,k - di-1/2,Y,k

Dr(W) = di,j,k+1/2 - d,,jt-1/2 (3.14)

D,(W) = di,i+/2,k - di,j-/2,k .

The damping flux terms di+1/2,j,k, di-1/2,J,k, etc. are constructed such that D(W)

is a sum of 2nd and 4th differences across the cell. Each d is the sum of a first and third

difference, for example,

di1/2 ()i+ 12 [ l(2) (Wi+l - W,) -
(3.15)

w,+,(W i+2 - 3Wi+1 + 3W,- Wi-)]
and

d /= ) i-1/2 - 1) 3.16)

S(4)Wi - 3Wi + 3Wi- - Wi-)]

where the indices j, k have been suppressed for clarity. Analogous difference stencils are

used for di,j+1/2,k, di,,-1/2,k, di,j,,k+l/, and di,j,k-1/2. With this formulation and the

factor of V/At, the artificial viscosity terms are conservative.

The coefficients C(2) and E(4) contain pressure weighting and on/off switches. They

are defined as:

ý2 1/= (2) (vi+, + v•,)/2 , (3.17)

(,4) = max(O,+ (t ) _- (2) . (3.18)

The factor v provides scaling by the local pressure gradient:

jIP,+ - 2P + P1 (3.19)i + (3.19)-Pi+ + 2Pi + PiI

With the above switches, 2
"d and 4th difference smoothing terms are nearly mutually

exclusive: At shocks lying in the (C, r) plane, v,•i, for example, is large; thus, C(4) =



0, C(2) # 0; in regions of small gradients E(2) f 0, e(4) $ 0. Stencils at the other cell faces

are defined similarly. The coefficients ,c(2) and #c(4) for each calculation are given in the

results sections.

In addition to the scaling done via the pressure weighting and on/off switches above,

a boundary layer scaling of the artificial viscosity was implemented in two-dimensional

test cases. In this scaling, the normal component of the artificial viscosity D, was

set to zero to avoid contamination of the "real" physical viscosity of the fluid with the

artificial viscosity of the numerical scheme in boundary layer regions. The scaling region

was defined by an a posteriori inspection of the flowfield.

3.3.1 Boundary Formulation

The dissipation operators above require special treatment at the boundaries of the

computational grid since, at the boundary cell, the second difference operator extends

one cell and the fourth difference extends two cells out of the computational domain.

Two different approaches were used in this thesis and are described below. Two-

dimensional solutions obtained with the two approaches showed no significant differ-

ences.

Eriksson Boundary Treatment

A boundary treatment that guarantees a globally dissipative artificial dissipation oper-

ator was developed by [Eriksson & Rizzi 83] and is applied for three-dimensional calcu-

lations this thesis. In Eriksson's treatment the second difference operator is adjusted by

setting the coefficient C(2) at boundary faces to zero. This changes the character of this

artificial viscosity term at the boundary from dissipative to convective, but eliminates



the need for any sort of extrapolation.

For the fourth difference operator, values of the state vector are obtained by linearly

extrapolating the values from the first two cells inside the domain to two dummy cells

outside the body

Wo= 2W 1 - W 2  (3.20)

W-1= 3W 1 - 2W ,

where the subscript o indicates the plane of ghost cells adjacent to the boundary and

-1 denotes the next plane of ghost cells.

"Zero Smoothing" Formulation

A simple means of eliminating the boundary formulation problem is to set the artificial

viscosity terms normal to that boundary to zero. This can be easily done by setting e(2)

to zero at the first boundary cell face normal to the body and E(4) to zero at the first

two cell faces normal to the body. This approach, together with the boundary layer

scaling described earlier, was used for two-dimensional calculations.



Chapter 4

Semi-Implicit Temporal Integration

This chapter describes the semi-implicit temporal discretization of the governing

equations in semi-discrete form1:

dW 6V dt = - E (FS, + GS, + HS,)1  , (4.1)
f=1

Conventional approaches integrate (4.1) explicitly or implicitly in time. For a model

equation ut = g(u), where ut = du/dt and g(u) is a semi-discrete term, the explicit and

implicit integrations can be represented by, respectively,

Ut = q(un )  (Explicit) (4.2)

ut = g(un, u' + 1) (Implicit).

Explicit methods use functions of u at time t" only to compute ft, while implicit methods

base that calculation on functions of u at both t" and tn+ 1.

In the semi-implicit approach, the semi-discrete right-hand side of (4.1) is divided

into two parts, a part containing streamwise and cross stream flux terms, and a part

containing body normal flux terms. Integration of the streamwise and cross stream

terms is explicit, since grid spacing in these directions imposes relatively mild restrictions

on the time step. However, integration of the flux terms in the normal direction is

implicit, since the small normal grid spacing necessary in viscous calculations would

otherwise impose severe limits on the size of the time step.
1The left hand side of Equation 2.1 has now been integrated over the volume V with the assumption

that the state vector in each cell is constant throughout the cell.



The next section presents a widely used explicit multistage approach and its stability

constraints, followed by derivation of the semi-implicit scheme in Section 4.2. Analyses

of the stability characteristics of the semi-implicit scheme and comparison with the

characteristics of both the explicit and a fully implicit scheme are given in Appendix A.

4.1 Explicit Multi-Stage Integration

A popular multistage algorithm for fluid dynamic calculations [Jameson et al. 81] is

the four stage scheme given by

Wo = .wn

Wl -= o [6=1, (FOS. + GSy + OSz), - DO

W2  - Wo - aC29 [ 1(F ' [~ G1IS H1 S) D- DO] (4.3)
W3 = Wo - f [- =1(F2S. + G's + H2S, - DO

W' = Wo - 4 [C• , (FS+ G3S, + H3S) - DO

Wn+1 = W 4 ,

where the temporal level is identified by superscripts and the multistage coefficients

used are

1 1 1
al = -, Qa = -, 3S = a4 -=1. (4.4)

The terms F, G, and H are flux vectors in the z, y, and z directions, respectively.

The artificial viscosity D is calculated at the first stage and frozen for the remainder of

that iteration to minimize computational expense. The temporal integration scheme is

explicit, since, at each stage, values of the state vector used in the flux calculation are

the known values calculated in the previous stage.



The time step At that may be taken with (4.3) is limited by the Courant-Friedrichs-

Lewy condition. This condition limits the propagation rate of numerical information

in explicit schemes for hyperbolic equations to ensure that the numerical domain of

dependence of the difference scheme includes the physical domain of dependence. The

time step is also restricted by a physical limit on the numerical diffusion time.

The stability criterion for the explicit multi-stage central difference scheme can be

derived as (see Appendix A.5)

At 2A (4.5)
W Sla + CISmazl + Sn' (4.5)

where C is speed of sound, V is volume of the cell, and W and S are vector velocity

and projected surface area, W = ui + vj + wkl and S = Sis+ SY + S,k, respectively.

Al is the "height" of a cell in the direction normal to the body and Sn is the projected

area of the cell normal to In. The coefficient A for a four stage scheme may be taken as

A < 2 V.

Examination of the time step constraint (4.5) immediately provides incentive to

search for a temporal integration scheme that allows larger steps in time. For simplicity,

assume a two-dimensional viscous flow on a rectangular grid with aspect ratio AR =

Az/Ay where Ay is the spacing in the direction normal to a body. Expanding the

denominator of (4.5) gives approximately

A t A A (4.6)J1I + C + AR(IvI + C + 14p/AYI)
As the Reynolds number of the flow increases, grids with smaller and smaller normal

grid spacing Ay must be used to resolve the boundary layer. Thus, the aspect ratio AR

of the cells increases, the magnitude of the denominator increases and the magnitude

of the time step rapidly decreases. Since aspect ratios of 104 and even 105 are not

uncommon in turbulent flows, restrictions on the size of the time steps can be severe.



4.2 Semi-Implicit Integration

The stability restriction due to small grid spacing in the normal direction can be

eliminated by treating fluxes in that direction implicitly, while retaining the explicit

character of fluxes in streamwise and cross stream directions. Consider the first stage

of (4.3) with implicit treatment of the normal component of the flux vectors

W1 - W = -i - [ (FoS, + GoSV + HOS,), + (FOSx + GoSy + H°Sz) 2+

(FoS, + GoSy + HoSz) 3 + (FOS, + GOSy + HoSz) 4+

(F'S, + G'Sy + H'S,)s + (F'S, + G'S, + H'S,)6 - DO) i
(4.7)

Each term in parentheses in (4.7) gives the flux across one of six cell grid faces (see

Figure 3.1); however, while fluxes through Faces 1,2,3,4 are based on values of the

state vector at time to, fluxes through Faces 5 and 6 are based on the unknown values

of the state vector at time t'. Thus, the discretization of the fluxes is explicit in the

cross stream and streamwise directions, but implicit in the normal direction. Numer-

ical experimentation shows that it is not necessary to treat the body normal artificial

viscosity terms implicitly.

Since the flux vectors (2.3) - (2.4) are nonlinear with respect to the state vector

W, the fluxes at Faces 5 and 6 must be linearized in time to allow calculation of W 1 .

Newton type linearization for F, G, and H gives,

aFOF' - F + t At + O(At2 ) = Fo + [A]0AWl + O(At 2)

G = Go + At + O(At 2) = GO + [B]oAW' + O(At 2) (4.8)

H'= H + At + O(At2 ) = H o + [C]oAW' + O(At 2)

where [A], [B], and [C] are the 5 x 5 Jacobian matrices [aF/BW], [aG/aW], and

[aH/aW], respectively, and the vector of changes AW is defined as AW1 _= W 1 - WO.



Inserting (4.8) into (4.7) gives

AW = - ( =1 (FS ,+ GS + HS,) - D)

+ [[A]sSz6 + [A]6S.6 + [B]sSy + [B]6Sy, + [C]5Sz + [C]6Ss] AW}

(4.9)

or

[[I + a ([A]S +[A] +[B] + [A] 6 + [B5  + [BieS.6 + [C]sS,. + [C]eS 6 )] AW =
a [ (FS. + FS, + HSIS), -D],

(4.10)

where the quantity in the square brackets [ ] prefacing AW is a matrix which operates

on the 5 x J,,a, vector of changes AW at a given (i, k). Thus, (4.10) is an implicit

matrix equation for the changes in the state vector W at a line of cells (i, k). The right-

hand side is the usual semi-discrete form of the residual, while the left-hand side differs

from the identity matrix [I] due to introduction of the terms from the time linearization

of F, G, and H.

Subsequent steps in a multistage scheme have the same form. For a four stage

scheme:

WO = W n

[LHSI] AW 1 = Reso

[LHS]1 AW 2 = Res1 - AW 1

(4.11)

[LHS 12 AW3 = Res 2 - (AW 2 + AW 1 )

[LHS]S AW 4 = Res3 - (AW 3 + AW 2 + AW 1)

W-+l = W3 + AW 4

where

Res = At [6 1nes=-an (FS+GS,+HS,) - D o  , (4.12)
Sf=1



[LHS]" = [I] + aAt ([A]sS,, + [A)6S,, + [B]sSu, + [B]6 S, , + [C]5 Sz + [C]6eS,)" ,

(4.13)

and

AW s = WS WS- 1 . (4.14)

Although the RHS of stages two and three contain more than one vector AW, only

one AW needs to be stored. Subsequent AW's are simply added to the stored vector

to give E 1 AW.2 The explicit scheme is recovered when [LHS] = [1].

The LHS contains dependent variables at (j - 1, j, j + 1), only, due to the compact

three point stencil used in the spatial discretization of the viscous and inviscid terms.

Thus, (4.11) is a block tridiagonal system of equations, which can be efficiently inverted

with a Gauss elimination routine. Setup of the matrices and solution of the matrix

system is discussed in Appendix B.

The time step in the semi-implicit integration is limited only by the tangential and

cross stream flux terms, which are treated explicitly. It is derived in Appendix A and

given by

At < 2 V (4.15)
(Iv. Sl),mnaz,i + (IV SlI)ma., 4 + CISmaZi1, 2,3,4

Faces 1 and 2, and 3 and 4 are in the tangential and cross stream directions, respectively.

As with the explicit scheme, A may be taken as 2V2.
2Equations 4.11 imply that we use G 2 = G1 + [B](W 2 - W 1 ) for the second stage, and similarly

for stages three and four. Alternatively, one might might use G2 = GO + [BI(W 2 - Wo), where the

temporal linearisation at each stage refers back to time level 0. Using the latter form eliminates the

need for AW's on the RHS and sets W'+1 = W' + AW'. However, numerical experimentation shows

this form results in slower convergence. It was therefore discarded.



4.3 Matrix Conditioning

For grids with high aspect ratio cells the matrix (4.13) becomes increasingly ill

conditioned. Consider, for example, a rectangular mesh with Ax = Const. and AR =

Az/Ay, where ARy is the aspect ratio. Then,

[LHS]=[II + a A s  [[B 5A - [BI6SA2

(4.16)
=1[I +a AXtA [[Bji+1 - [B]i-1f]

and diagonal dominance is lost as the off diagonal terms increase with AR, while At,

which is not a function of AR, remains constant. The loss of diagonal dominance may

result in instability of the numerical calculation.

To increase the diagonal dominance of [LHS] implicit smoothing can be added. It

is similar to the implicit residual smoothing that is often used with explicit schemes (see

Section 5.1.2). If [D] is the diagonal block and [LD] and [RD] are the off-diagonal blocks

in [LHS] the implicit smoothing is added as a nonlinear second difference operator:

AtsIi V " V'+1
[D]i,i = [D]i,i + a x Ps( i+ 1

Vtl Atejzp, At,+1

[LD]i,i = [LD]J,i - a x Ps Vi (4.17)
V I Ateli

[RD]i,i = [RDJ~,i - a S Ai -x +s

Vi Atas9,i+1
The subscripts SI and ezp denote semi-implicit and explicit, and i and j denote the

matrix element and normal (to the body) grid line counter, respectively. This form

is chosen because the ratio Atsl/Atep varies inversely with the normal dimension of

computational cellss . Thus the implicit smoothing is largest in the boundary layer

region where the matrix would otherwise be very poorly conditioned, and is O(JIs) in

coarse grid regions. The implicit smoothing does not affect the steady state solution;

8 The factor of V is included because it is the ratio At/V that is computed in the code, not just At



however, large jIs may decrease the rate of convergence to steady state. Although

this option was implemented in the numerical code, it was not used for any of the final

calculations.

4.4 Code Validation

Consistency of the finite volume approximation to the thin layer Navier-Stokes equa-

tions with the governing equations can be investigated by computing a well known test

case and comparing with results obtained by other investigators. This is also a valuable

test for coding errors in the computer program and a means of validating numerical

results. Computational efficiency will be addressed in the next chapter.

The viscous, M,, = 0.5, Re = 8065 flow in a channel with a bump on the lower wall

was chosen as the test case. Mach contours of this problem are shown in Figure 4.4.

The flow field begins at z = -1. A 5% (of channel height) circular arc bump begins at

z = 0 and ends at z = 1. The chanel extends to z = 2. Symmetry boundary conditions

are applied at y = 0 (-1 < x < 0) and y = 1 (-1 < x < 2). This case has been

calculated by [Chima 85], [Whitfield 86], and [Davis et al. 87] and others.

The case was computed on a rectangular grid, with 65 evenly spaced streamwise

nodes. Thirty-three nodes were placed in the cross-stream direction, with the first

node at yl = 1.4 x 10- ' and subsequent node locations defined by Ayi+ 1 = 1.16Ayij.

This ensures adequate resolution of the boundary layer. Artificial viscosity effects were

minimized by choosing very small smoothing coefficients: '2 = 0.0, v4 = 0.002.

Normalized pressure distribution and skin friction results for this case are shown in

Figures 4.2 and 4.3, respectively, along with numerical data from [Chima 85], [Davis et al. 87],
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Figure 4.1: Flow geometry and Mach contours for code validation

and [Whitfield 86].

P

All three calculations predict a small separation zone near the cor-

A - Chima

o - Davis
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Figure 4.2: Normalized pressure at lower surface

ner at x = 1. Aside from differences near the discontinuity and a small discrepency in

the pressure near the inlet, agreement is excellent.
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Figure 4.3: Skin friction
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Chapter 5

Computational Efficiency of the Temporal

Integration

This chapter compares the efficiency of the semi-implicit scheme to that of an ex-

plicit four stage multi-stage scheme [Jameson et al. 81] and a fully implicit algorithm

[Beam & Warming 76]. The Beam & Warming scheme [Anderson et al. 84] uses a three

point backward temporal integration, although backward Euler temporal integration

was also tried with similar results. The measure of efficiency used is CPU time re-

quired for the solution to reach a measure of convergence. The three schemes were

compared by calculating several inviscid and viscous problems in two dimensions only,

since comparisons in three dimensions are prohibitively expensive.

Considerable care was taken to ensure a fair comparison. All of the computer pro-

grams were written "from scratch" by the author. Boundary condition, artificial vis-

cosity, and flux balance modules in the codes were identical, and the CFL numbers

that resulted in the quickest convergence were chosen. The explicit form of the time

step (Equation 4.5) was used for the fully implicit scheme, together with the largest

coefficient A consistent with stability. Implicit smoothing was used for the fully implicit

scheme. The magnitudes of the implicit smoothing factor and time step factor A were

optimized for each case calculated with the implicit scheme.

The explicit scheme was obtained by setting the left hand side of SINSS (4.11)



to the identity matrix. Since explicit schemes often use one or more techniques to

accelerate convergence of the solution to steady state, a number of these techniques were

implemented to ensure a fair comparison. Various implementations of the acceleration

techniques were examined to determine the optimal conditions.

The next section describes the convergence acceleration techniques that were imple-

mented for each of the schemes, and the following section gives the results of applying

the schemes to the model problems. Despite efforts at creating a fair comparison, be-

cause of possible differences between actual and "ideal" coding, machine efficiency and

utilization, etc., the numerical comparisons shown below should be considered accurate

to no more than approximately 25% of stated CPU times.

5.1 Convergence Acceleration Techniques

Straightforward solution of the discrete governing equations usually results in very

long computation times due either to the large number of iterations needed to achieve

steady state, to the large number of operations needed per iteration, or to a combination

of these two factors. Because large CPU times translate directly into a high dollar cost

of computations and long turn-around times, numerous techniques to speed convergence

have been proposed for Navier-Stokes calculations. Below is a list of some acceleration

techniques along with a brief description of each and a literature reference:

1. Implicit residual smoothing: The residuals of the discrete equations are smoothed

implicitly giving the algorithm a larger effective difference stencil, and, correspond-

ingly, a less stringent CFL condition [Jameson & Baker 83], [Lerat & Sides 79].



2. Grid sequencing: Preliminary solutions are calculated on coarse grids to supply

improved initial conditions to the fine grid calculation.

3. Multigrid: Calculations are cycled between a fine and one or more coarse grids in

an attempt to attain the rapid information transfer characteristics of the coarse

grid and achieve optimum error smoothing rates while maintaining the spatial

accuracy of the fine grid [Brandt 80], [Jameson 83], [Ni 81].

4. Matrix diagonalization: Matrices in implicit methods are diagonalized to re-

duce computational effort of the matrix inversion [Pulliam & Chaussee 81].

5. Wynn's c Algorithm: Approximate solutions at different iteration levels are

used to predict the final result [Hafez et al. 87].

6. GMRES: Generalized minimal residual algorithm that uses a conjugate gradient

approach to accelerate convergence of nonlinear systems [Wigton 85].

7. Local time stepping: Each grid cell is advanced by its own (maximum) time step

thus giving a higher average time step for the entire grid [Eriksson & Rizzi 83],

[Jameson et al. 81].

Each of these techniques has a unique numerical character which may or may not be

compatible with the host algorithm and the nature of the desired solution. For example,

several of these techniques apply specifically to explicit or implicit schemes, only. All of

the techniques give the same steady state solution as the original discrete equations if the

solution converges at all, but some destroy its temporal accuracy. Many were developed

to be used with Euler methods and work very well for inviscid solutions, but perform

poorly on the highly stretched grids commonly used for viscous calculations. Because

of these and other reasons implementation and use of the techniques is, unfortunately,

often as much art as it is science.



Local time stepping, residual smoothing and multigrid are three acceleration tech-

niques that have come into widespread use with explicit schemes, and were therefore

included in the comparison. Implementation of these techniques results in a scheme

that is not time accurate but, one hopes, has better convergence properties. A more

detailed description of each technique is given below.

5.1.1 Local Time Stepping

Local time stepping is implemented by applying the stability criterion (4.5), in the

explicit and implicit schemes, or (4.15) in the semi-implicit scheme, locally in each cell.

Thus, each cell is advanced at a time step corresponding to the local stability restriction,

and large cells are not unduly restricted by the stability limit due to the smallest cell

in the grid. Temporal accuracy is lost, but the improvement in convergence rate can be

impressive, especially if the computational grid contains cells of disparate sizes. Local

time stepping is very simple to implement, and can be used with explicit and implicit

schemes. All results shown in this thesis were calculated with local time stepping.

5.1.2 Implicit Residual Smoothing

The CFL number limitation for explicit and semi-implicit schemes can be relaxed

by implicitly smoothing the residuals [Jameson & Baker 831. In one dimension residual

smoothing is applied via

(1 - /AR8q)Res' = Res, (5.1)

where Res is the vector of residuals in (4.12), 6,, is the undivided second difference

operator 8q, = ( )+li-2( )i+( )i-1, and MR is a smoothing constant. Application of this

operator increases the stencil of influence of the difference scheme and thus increases



the permissible time step. The original residuals Res are replaced in the computation

by the vector of smoothed residuals Res'. The left hand side of Equation 5.1 gives a

scalar tridiagonal matrix. Details of matrix setup and inversion are given in Appendix

C.

In multiple dimensions Equation 5.1 is applied successively in each direction. For

example in three dimensions (C, rq, I):

(1 - pRSj6)Res' = Res

(1 - pRgn,)Res" = Res' (5.2)

(1 - pURSb)Res' = Res" ,

and Res is now replaced by Res"' in the calculation. Residual smoothing in a given

direction is superfluous if the discrete fluxes are already treated implicitly as in a semi-

implicit or fully implicit scheme. In a semi-implicit scheme it may still be profitably

applied in the explicit direction(s).

Residual smoothing (RS) may be implemented in a number of different ways, each

of which has unique convergence characteristics. A large number of versions were imple-

mented and tested on a viscous channel flow as part of this study. It was found for the

explicit scheme that computation was most efficient if residual smoothing was applied

after alternate stages and run with a smoothing coefficient of 1.75 and a CFL number of

approximately 5. In the semi-implicit solver RS was applied in the explicit direction(s)

only, after the implicit portion of the integration of the fourth stage. Values of the

smoothing coefficient and CFL number were approximately 2.0 and 3.5, respectively.



5.1.3 Multigrid

Multigrid was originally developed for systems of elliptic equations by [Brandt 80]

and others, but has recently been applied to systems of equations with mixed character

such as the Euler or Navier-Stokes equations (e.g. [Ni 81], [Jameson 831). It is generally
used for explicit calculations, and thus was implemented only in the explicit multistage

scheme. Multigrid accelerates the propagation of information across a grid and dissi-

pates low frequency error by solving the conservation equations on successively coarser

grids. Solution corrections on the coarse grids are intermittently interpolated up to the

fine grid solution which drives the scheme.

Any number of multigrid cycling strategies is possible. In the comparisons to follow,

a simple V-type strategy was used. In this strategy, one multistage iteration on the fine

grid is followed by one iteration on each of a number of successively coarser grid. After

completing calculation on the coarsest grid, corrections on that grid are interpolated

back up to the finest grid without further iteration.

In the following discussion, h denotes the finest level, 2h the first coarsening, 4h the

next, etc., so that at a level nh the next coarser level is 2nh. A coarse (2nh) grid is

defined by dropping alternate grid lines in the next (nh) grid. The areas of 2nh cells

must be defined in terms of areas of nh cells,

Arh = AX% + Ai+, + A, + Alj+l , (5.3)

and state variables at 2nh are inferred by an area weighted average of the included nh

cells:

W2.nh (wnh Anh W nh Anh +Wnh Anh Wnh Anh /-2nh (5.4)

Each stage of the multistage scheme at coarse levels uses a restriction operator in

Each stage of the multistage scheme at coarse levels uses a restriction operator in



place of the customary residual. The restriction operator is a forcing function that uses

the fine grid solution and previous coarse solutions to drive the solution at the current

coarse level. For the first coarse stage the restriction operator is defined as

p2h = -Resh(Wh) - Res2h(Wo2 h) (5.5)

where Res is the residual and the sum is over the 4 included cells. For subsequent

coarse level the restriction operator is

p2nh [Res"n(Wnh) + Pnh] - e2nh (W02 ) . (5.6)

At coarse grid levels it is important to damp out errors at short wave lengths, such

as the odd-even decoupling allowed by the difference scheme. For this reason 2nd and

4 th difference artificial viscosity is added to the fluxes at the coarse grids, which does not

affect the steady state solution. The artificial viscosity is calculated before the second

stageI and then frozen.

After calculation on the coarsest grid, repeated bilinear interpolation is used to

transfer changes at level 2nh to level nh and eventually to level h. Contributions are

taken from the host and the nearest three coarse cells weighed as k, , , . At grid

boundaries, interior cell changes are reflected to ghost cells to allow this interpolation.

' This prevents the artificial viscosity from being identically zero at coarse levels due to the definition

of the restriction operator.



The solution is updated via the modified multi-stage scheme:

W 1  =Wo- alt [Res2nho +p2nh

W 2  = - a 2 4 [Re2nhl + p2nh]

-= WO_- a [Res'"2 + p2nh (5.7)

W4  = W_ [Res2nh + 2nh

Wn+ 1 = W 4

where the coefficients a, = 0.25, a 2 = 0.5, and as = 0.55 are chosen to optimize the

temporal damping properties of the scheme [Jameson 831. When residuals on the fine

grid are zero, the right hand sides of the first and all subsequent stages are zero. Thus,

the steady state solution is unaffected by anything done on coarser grids.

5.2 Results

Figures 5.1 and 5.2 give geometries and typical Mach number contours of the two

sets of cases considered below. The first is inviscid flow at Moo = 0.5 in a channel over

a circular arc bump with thickness/chord ratio t/c = 0.1. The second is laminar viscous

flow at Moo = 0.5 in a channel, with a lower wall beginning 1/3 of the way into the

channel. In both cases, symmetry is assumed at the upper boundaries. Because the

flows are subsonic no second difference smoothing is added to the spatial operator. A

small amount of fourth difference smoothing (v4 = 0.002) is added.

Grids for both cases were calculated algebraically, with constant spacing in the

streamwise direction. A stretching factor A = Ayi+I/Ayi was used to cluster grid lines

in the normal direction.
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5.2.1 Convergence Criteria

The convergence criterion used in inviscid cases was

1 { Apu __pE _)IJ I' At + + ApE } < 5 < x 10-4 (5.8)
Ix J . At Ai t At -

where I = I,n. - 1, J = J,,n - 1, and Apu, Apv, and ApE are the changes in pu,

pv, and pE calculated during one iteration. This criterion ensures that the solution is

globally converged and allows fair comparison of convergence histories calculated with

different methods and time steps.

In viscous flow cases, the accurate prediciton of skin friction is of importance. To

ensure that this quantity is converged the percentage change in skin friction coefficient

over time was required to satisfy the criterion

n-2 1 [CIn _ n-1 n

ZAt )CN=n t C

was used in addition to (5.8). Summing over three iterations in (5.9) helps eliminate

spurious small values of C7 - Cn- 1 that may be due to oscillatory convergence of the

skin friction coefficient. Atave is the average time step of the row of cells adjacent to

the body.

5.2.2 Inviscid Flow Cases

Table 5.1 gives the iteration histories for inviscid cases calculated with the explicit

scheme. Each calculation was made on a grid with 48 streamwise cells and 16, 24, or

32 cells in the cross stream direction, with a stretching factor, A = 1.05. The second

and third columns give the MicroVAX II CPU time (in minutes) and iteration count for

the "standard" scheme with only local time stepping. The fourth and fifth give those

results for the scheme with multigrid (MG) and residual smoothing (RS).



Table 5.1: Inviscid Solution with Explicit Scheme

Standard MG & RS

# cells CPU(m) ITER CPU(m) ITER

16 291 4177 19 155

24 754 7295 37 208

32 1370 9970 71 306

Explicit solutions without multigrid and residual smoothing are characterized by a

very slow convergence rate, due, in part, to slow damping of pressure waves. Multigrid

and residual smoothing is very effective for these cases, resulting in an iteration count

reduction of up to a factor of 35 giving a factor of 20 savings in CPU time.

Table 5.2 gives convergence histories for the same flow cases using the semi-implicit

and fully implicit schemes. The semi-implicit scheme uses residual smoothing in the

streamwise direction. The iteration count is much smaller with both the semi-implicit

and the fully implicit algorithm than with the explicit scheme. However, each iteration

takes proportionally more CPU time, resulting in an efficiency similar to that of the

explicit scheme with multigrid and residual smoothing. Note that the semi-implicit

scheme's iteration counts appear to be unaffected by the number of normal grid cells.

This is a result of the instantaneous information transfer in the body-normal direction

due to the implicit treatment of the discrete operator in that direction.



Table 5.2: Inviscid Solutions with semi-implicit and Beam & Warming Scheme

5.2.3 Viscous Flow Cases

Table 5.3 gives the iteration histories for the viscous cases at Reynolds numbers

(based on channel height and U,,) of 2 x 10S , 104, and 10s . All cases have 48 cells in

the streamwise direction and 24, 32, or 32 cells across the half-channel. The grids were

generated with stretchings of 1.12, 1.15, and 1.18, respectively. The second column gives

the acceleration mechanism: residual smoothing (RS) and/or multigrid (MG) for the

explicit code. The semi-implicit code used only residual smoothing (in the streamwise

direction). The implicit code used neither multigrid nor residual smoothing.

The semi-implicit scheme does significantly better than the explicit or the implicit

scheme at all Reynolds numbers. The implicit scheme converged with difficulty at the

highest Reynolds number, despite attempts with a variety of parameter values. The

grid stretching at high Reynolds numbers renders the explicit solver increasingly stiff

and decreases the effectiveness of multigrid. The Reynolds number 105 case converged

only without multigrid.

Semi-Implicit B & W

# cells CPU(m) ITER CPU(m) ITER

16 42 118 30 190

24 63 117 62 264

32 83 115 63 203.



Table 5.3: Viscous Channel Flow

Explicit Semi-Implicit B & W

Re # Accel. CPU(m) ITER CPU(m) ITER CPU(m) ITER

2 x 10 MG & RS 99 493 - -

RS - - 59 97 - -

Standard 219 1678 76 127 75 298

1 x 104  MG & RS 366 1385 - - - -

RS - - 72 89 - -

Standard 574 3345 101 125 142 421

1x 105  MG & RS DNC DNC - - - -

RS 548 2820 59 73 - -

Standard 758 4418 82 102 550 1500

5.3 Discussion

The semi-implicit scheme is superior to both the explicit and fully implicit schemes

for all viscous flow cases in these comparisons. In three dimensions, the relative efficiency

of semi-implicit to fully implicit scheme is expected to increase, since the Beam &

Warming scheme then requires one additional block tridiagonal inversion while the semi-

implicit scheme requires no additional inversions.

The results above show that while the conventional explicit scheme with acceleration

techniques works well in inviscid calculations, where speedup factors of over 30 (in terms

of iterations) were achieved, it does not perform nearly as well in viscous cases. Less

than a factor of 2 improvement was achieved in the highest Reynolds number case.



It is important to note, however, that viscosity in or of itself is not the culprit. If it

were, then differences between the efficencies of viscous and inviscid calculations would

decrease with increasing Reynolds number. The opposite is true. Instead, the decrease

in efficiency seems to be due to the presence of very high aspect ratio AR,2 = Az/Ay

cells. The convergence rate decreases as the Reynolds number increases and grids with

higher and higher aspect ratios are used to provide adequate resolution of the boundary

layer.

It is these high aspect ratio cells that cause a numerical "stiffness" in the discrete

equations [Eriksson & Rizzi 83] which results in a drastically reduced convergence

rate. Although little analysis of acceleration techniques on non-Cartesian grids has been

done, it is clear that they do not perform well on stretched grids. Other investigators

have observed that multigrid techniques fail when the aspect ratios are too large (e.g.

[Melnik 87], [Shmilovich & Caughey 81]) and the nature of the grid appears to have the

same detrimental effect on residual smoothing.

A concern with the semi-implicit and fully implicit schemes is the poorly conditioned

left hand side matrix (B.13). For a given grid this matrix becomes more ill-conditioned

as the stabilizing effect of the viscous terms decreases with increasing Reynolds number.

If the matrix is sufficiently ill-conditioned the temporal iteration may diverge. Although

it is always possible to stabilize the matrix by adding an appropriate amount of implicit

smoothing, this may reduce the convergence rate of the solution. An alternate solution

to this problem is use a spatial discretization for the inviscid terms such as an upwind

method which results in a more diagonally dominant system [MacCormack 84].



5.3.1 Effect of Computer Architecture on Efficiency

While the calculations above were made on a scalar computer with a single processor,

performance of the schemes on vector machines with multiprocessors is an important

issue since computational efficiency of any numerical algorithm is affected by the archi-

tecture of the computer system used. Thus, the flexibility with which an algorithm can

be adapted to different architectures is an important factor in its use. In general, the

simpler a scheme is the more likely it is that it will run efficiently on vector and parallel

processors as well as on more conventional scalar computers.

The explicit scheme maps easily onto vector and/or parallel processors, since each

cell at a given time level is independent of all other cells at that time-level, and all

cells may be operated on in parallel. The semi-implicit and implicit schemes can also

be efficiently run on vector and/or parallel processors, despite the recursive nature of

the matrix inversions that the require. The Gaussian elimination of the left hand side

matrices must be structured such that a plane of grid cells is treated simultaneously,

rather than the inversion being line-by-line of grid cells. Because the inner loop can

then be run in vector and/or parallel mode, the recursive nature of the algorithm is

circumvented.

When the computer coding is done in this manner the relative efficiencies of the

three methods remains constant2 unless the computer system is so massively parallel,

or has such a long optimal vector length, that the speedup of treating all cells in parallel

exceeds that of treating them plane by plane. If this were the case the explicit scheme's

efficiency relative to semi-implicit and fully implicit schemes would improve.

2This was verified by running the codes on a Cray XMP.
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Chapter 6

Blunt Leading Edge Delta Wing Calculations

This chapter and the following two describe three dimensional calculations of flow

past delta wings with blunt leading edges. The following introductory section presents

a description of the flow physics and a brief survey of relevant computational research

on delta wings with sharp and rounded leading edges. After this, the wing geometry,

computational grids, and test parameters are presented, the computational code is de-

scribed, and initial and boundary conditions are dicussed. Finally, numerical aspects

of the solutions are discussed and their accuracy is determined by comparison with

experiment and by examining the effect of various numerical parameters. Chapter 7

describes features of the flow solutions, and Chapter 8 examines separation processes

at the rounded leading edges.

Semi-implicit calculations of separated flows with local time steps were found to di-

verge. The computations converged only when the time step was set equal to a constant

at each streamwise station. Thus, the numerical time step that is used in a typical cell is

smaller than if true local time-stepping were used. Nevertheless, comparison of the ex-

plicit (with local time-stepping) and semi-implicit schemes in terms of CPU time shows

that semi-implicit integration is considerably more efficient than explicit integration for

all cases considered.

The effect of numerical parameters on global features of the solution was found to

be small. Grid resolution, artificial viscosity, and location of the starting solution were



examined. In each case, the effect of varying the parameter on the computed pressure

distribution was noticeable; however, no fundamental changes in the flow character

were detected. Comparison with experiment established the accuracy of the numerical

solution.

6.1 Introduction

Flows about delta wings contain a variety of interesting and intricate patterns. At

low angles of attack the flow is usually attached to the body and can be modelled with

inviscid potential aerodynamic theory. At sufficiently high angles of attack the flow sep-

arates at or near the leading edge to form cores of spiralling fluid - leading edge vortices

- that lie above the wing. The adverse pressure gradient induced by the recompression

just inboard of the expansion around the leading edge may cause the outboard flowing

fluid beneath the vortex to separate, resulting, in turn, in secondary and even tertiary

vortices. Shock waves that interact with the boundary layer and vortices may also com-

plicate the flow picture. The intricacy of possible flow patterns makes vortical delta

wing flows fascinating to examine. However, the complex interaction between inviscid

and viscous effects makes this examination difficult.

Apart from the esthetic qualities of these patterns, vortical flow around delta wings

is of interest for several reasons. If the vortices are symmetric and stable they result

in pressure suction peaks on the leeward side that lend high lift characteristics to the

wing. If, on the other hand, the vortices become asymmetric or unstable while above the

wing, they may induce catastrophic spin or stall. Finally, if the vortices remain strong

and coherent even in the wake of the wing they pose a hazard to following aircraft or

interact with tail surfaces.



6.1.1 Flow about Delta Wings with Sharp Leading Edges

Flow about delta wings with sharp leading edges has been the subject of numerous

numerical investigations (eg. [Murman et al. 85], [Powell 87], [Thomas & Newsome 86],

[Rizzi 861). Flow separation in these cases occurs at the sharp leading edges of the wing

where, it is argued, it is triggered by a Kutta condition enforced by truncation error

and/or artificial viscosity effects. Thus, these investigations have typically been made

with the Euler or conical Euler equations, whose solution is less expensive than that of

the Navier Stokes equations. While these inviscid solutions are admissible solutions to

the discrete equations and often show reasonable agreement with experiment, they do

not capture real viscous effects and may model the physical character of the separation

process incorrectly.

For flows about delta wings with sharp leading edges [Stanbrook & Squire 64] col-

lapsed the three parameter space (A, a, M,.) into a (MN,ar) plane defined by

MN- = M. cos A1 + sin 2 a tan2 A (6.1)

and

aN = tan a . (6.2)
cos A

These parametes give the Mach number and angle of attack of the flow in the direction

normal to the leading edge.

[Miller & Wood 83] used experimental data and previous results from [Stanbrook & Squire 64]

to postulate a flow region diagram (Figure 6.1) that characterizes sharp leading edge

flow cases by vortex and shock structure. To the left of the MN -- 1 line the leading

edge is contained in the Mach cone and flow separates at the leading edge. The sep-

aration at the sharp leading edge is thought to be due to the equivalent of a Kutta

condition (eg. [Powell 87]). For normal Mach numbers greater than approximately one,
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Figure 6.1: Flow regime character for flat plate delta wings

the flow is attached at the leading edge and goes through a Prandtl-Meyer expansion

[Salas & Daywitt 79].

6.1.2 Delta Wings with Blunt Leading Edges

Unlike flow about delta wings with sharp leading edges, the locations of separation

lines in flow about wings with blunt leading edges are not well defined. Table 6.1 gives

flow parameters and values of MN and aN for each of the cases considered as well as

MN and aN. All of the cases being considered have subsonic flow normal to the leading

edge.

While the parameter and flow regime descriptions in Table 6.1 and Figure 6.1 give

useful characterizations of flows about delta wings with sharp leading edges, they are

less useful for flows about delta wings with rounded leading edges. This is because the

location of the primary flow separation line in flows around blunt leading edges is not



Table 6.1: Flow Parameters

fixed as is the separation line at a sharp leading edge. Depending on flow conditions

and curvature of the leading edge, separation may occur at the leading edge, at some

location inboard of the leading edge, or not at all. The location of the separation lines

is determined by a complex interaction of viscous and inviscid effects that can not be

modeled with the Euler or other inviscid sets of equations1

Similarly, two viscous equation sets that are alternatives to the full Navier-Stokes

equations, the parabolized Navier-Stokes (PNS) and the conical Navier-Stokes (CNS)

equations, are of questionable validity when applied to study the flow separation around

blunt leading edges. These equation sets are less expensive to solve than the full Navier-

Stokes equations, but have limited generality. PNS schemes require apriori knowledge

of streamwise pressure gradients in the flow, which must be supplied from experimental

data or from an inviscid solver coupled to the PNS scheme. Alternatively, the pres-

sure gradient terms in the original equations must be modified. These modifications,

however, lack rigorous theoretical basis. Moreover, PNS schemes tend to be poorly

conditioned in flows with extensive separation or strong viscous-inviscid interaction.

Schemes based on the conical Navier-Stokes (CNS) equations have been used to

'[Newsome 85], for example, finds that, for wings with blunt leading edges, the conical Euler equa-

tions admit grid-dependent solutions that are inconsistent with the real flow.

Test Case ReL M, a A MN aNv

Wing F & T 106 1.6 40 650 0.68 9.40

Wing F & T 106 1.6 80 65* 0.71 18.40

Rogers wing 2 x 106 1.41 140 600 0.76 26.50



predict overall features of supersonic flow over conical delta wings (e.g. [McRae 76],

[Bluford 79], [Ruffin 87]). However, the conical self similarity assumption used to derive

these equations is not valid in viscous regions, solutions obtained with these equations

lack rigorous justification, and the class of flow cases that can be investigated is small.

Nevertheless the CNS equations can give a useful approximation.

For these reasons, examination of the flow separation process at the rounded leading

edges of delta wings requires use of the full three-dimensional Navier-Stokes equations.

Primarily because of the high computational cost of these solutions, limited numerical

research has been done in this area (e.g. [Miiller & Rizzi 871, [Newsome & Thomas 85],

[Fuji & Kutler 83]). [Miiller & Rizzi 87] investigated the laminar transonic flow over a

cropped delta wing with an explicit Runge-Kutta solver. A flow case at angle of attack

of 100, Moo = 0.85, and ReL = 2.4 x 106 was calculated on a 400,000 point grid. The

solution was compared to experimental data and Euler results, however convergence

of the viscous calculation was questionable despite use of local time steps and grid

sequencing.

[Newsome & Thomas 85] used an upwind-difference method to compare Euler and

thin-layer Navier-Stokes solutions for the flow about rounded and sharp leading edge

delta wings.

[Fuji & Kutler 83] solved the three-dimensional thin-layer Navier-Stokes equations

with an implicit Beam & Warming solver. They use this scheme to to calculate the

Moo = 0.5 flow about a delta wing and a strake delta wing with rounded leading edges

[Fuji & Kutler 83], and, subsequently, to perform a more realistic calculation about

the previously used 76* swept delta wing [Fuji & Kutler 84]. While the first set of

calculations showed only primary separation, both primary and secondary separation



was observed in the latter computation which utilized an improved computational grid.

However, comparison of the results with experimenal data showed discrepancies on the

leeward side, notably in the prediction of a sharp negative pressure peak at the leading

edge which was not evident in the experiment. This was ascribed to the fact that the

numerical model of the wing leading edge was not as sharp as that of the experimental

model.

Two goals of this research program were, first, to examine and characterize the

flow separation processes at blunt leading edges, and, second, to decrease the cost of

these calculations by using the semi-implicit approach. Thus, the semi-implicit Navier-

Stokes solver was implemented in an existing 3-D Euler scheme, and a number of flow

calculations were performed to gain an understanding of the flow physics and, especially,

of the separation phenomena at the leading edge. The following four sections present

the computational code, wing geometry and grid generation, and boundary and initial

conditions of the test cases. The final section describes the accuracy of the code by

comparing its numerical results with experimental data and by examining the effect of

various numerical parameters on the solution. The next two chapters discuss the features

of the flow solution in more detail and explore the phenomena that characterize flow

separation near the blunt leading edges.

6.2 Computational Code

The computer code used in the 3-D delta wing calculations was adopted from a

3-D Euler solver written by [Roberts 86] and modified by [Goodsell 87]. The original

solver combined a multistage scheme with central differences as described in Sections

4.1 and 3.1. The inviscid scheme was extensively used, validated, and compared with



experiments in the above references.

The code was converted to a semi-implicit Navier-Stokes solver by adding thin layer

Navier-Stokes terms (Section 2.1), boundary conditions appropriate for viscous flow

(Section 3.2), and the LHS matrix (Equation 4.11) for the semi-implicit temporal in-

tegration. In addition, the residual smoothing found in the original code was adapted

for semi-implicit operation (Section 5.1.2), and the "enthalpy damping" convergence

acceleration mechanism found in the original code, which is unsuited for calculation of

viscous flows, was removed.

6.3 Wing Geometry & Test Parameters

Two idealized semi-infinite wings with elliptical cross sections were chosen as test

cases. "Wing T(hin)" has a thickness to span ratio of 1 : 20, giving an eccentricity of

c = 0.99875. Test cases involving Wing T were constructed to compare with the conical

Navier-Stokes solutions generated by Naomi McMillan at NASA Langley using Thomas'

code2. "Wing F(at)" has a thickness to span ratio of 11.55 giving an eccentricity of

c = 0.99624. Wing F was designed to allow examination of the effect of leading edge

curvature via comparison of solutions obtained with Wing F and Wing T. Both wings

have 65* sweep.

A number of laminar flows at a Reynolds number of 106 (based on chord), Mach

number of 1.6, and angles of attack of 4, 8, and 12 were considered. The computational

domain was limited to the volume between -= 0.13 and z = 1.0. All calculations were

made at zero yaw; therefore, only half of the wing was computed and is shown in plots

2At the time of this writing, no results were available for comparison.

sSee discussion of initial conditions in Sec. 6.5.
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Figure 6.2: Idealized Delta Wing with Elliptical Cross Sections

of the results. Wing F as defined by a surface grid is shown in Figure 6.2.

6.4 Grid Generation

Three-dimensional grids around the wing were constructed by "stacking" two-dimensional

grids at a number of streamwise stations. At each station the inner boundary of the grid

is defined by elliptical cross sections and the outer boundary by ellipses centered some

distance z' above the wing centerline. Each 2-D grid is calculated with the conformal

transformation

a2 + b2y + i = = 2 (6.3)

which transforms the elliptical inner and outer grid boundaries

)2 2 = 1 and + ( 2 = Ro (6.4)
ai bi ao b



into circles of radius 1/2(a i + bi) and Ro/2(ao + bo) in the complex S plane. The outer

boundaries of the grid and the center point z' are chosen such that the Mach cone

emanating from the wing apex is captured. The grid is generated around the circle

in the S computational plane by forming a mesh of rays normal to the circle, with

concentric circles at appropriate radial locations, and is transformed back into physical

(y, z) coordinates via (6.3). Details of the grid generation process may be found in the

Fortran code (Appendix G).

The (k), (j), and (i) indices are assigned to the circumferential, normal, and stream-

wise directions, respectively. With the minimum and maximum values of the indices

being 1 and K,ma, Jmaz, and Imax, respectively, the computational cells in the domain

are indexed by k = 1, Kma - 1, j = 1, J,ma - 1, and i = 1, I,, - 1.

Grid line families in each 2 - D section (j, k) of the 3-D grid are orthogonal, due

to the conformal nature of the transformation. However, near the leading edges, the

(j) and (k) families are not orthogonal to the (i) family of lines, since the wing sweep

is not equal 90*. Because the derivation of the thin layer viscous terms assumes grid

orthogonality, this may affect the accuracy of the solution. Unlike the extreme non-

orthogonality that often occurs at complicated shapes such as wing tips, blunt trailing

edges and wing-body junctions, the small degree of non-orthogonality of the present

grid makes accuracy problems unlikely.

6.4.1 Normal, Circumferential, and Streamwise Grid Definition

Proper choice of radial (body-normal) location of the concentric circles is essential

for constructing grids that resolve flow gradients in the wing boundary layer, in the

vortex core, and in the farfield. The radial locations are assigned via an exponential



stretching in the computational plane:

radi+1 = rad3 + Ari , where
(6.5)

Arj = (1 + c)Arjl .

The user defined stretching factor e gives grid clustering near the boundary at j = 1 for

c > 0. It should be large enough to provide adequate grid resolution in the boundary

layer, but not so large that the high stretching seriously degrades solution accuracy.

Control of grid point location is enhanced by allowing c to vary. In the calculations,

E was set at

(6.6)

=2 15 < j < J,a

These regions correspond approximately to viscous and inviscid flow zones. Typical

values of the stretching coefficients were E1 = 0.2 and C2 = 0.15.

The circumferential distribution of grid points should result in high grid point density

in regions of high flow gradients. In the vortical flows studied, this implies high grid point

density at the leading edge and near the primary and secondary vortices and relatively

low grid point density on most of the windward side of the wing. The circumferential

spacing was controlled by separating the wing into windward and leeward sections and

defining independent exponential stretchings, following (6.5), from the leading edge to

the windward and leeward symmetry planes.

Spacing of streamwise stations was defined such that the ratio of spacing to stream-

wise distance remains constant:

Ax- Ai (6.7)
xi Zi+1

The stations were calculated by an iterative solution of Equation 6.7. With this defi-

nition the fractional streamwise spacing at any given station is invarient with respect
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to translation in the streamwise direction. The spacing is designed to maintain, for a

fictitious conical flow, the conical nature of a numerical three dimensional solution.

One of two grids, "medium" (110,600 cells) or "fine" (172,800 cells), was used in

the calculations. Both grids have 36 streamwise stations and 48 grid points in the body

normal directions, computed with el = 0.2 and E2 = 0.15. The grids differ in the number

and location of grid points in the circumferential direction. The medium grid has 65

points in the circumferential direction (Figure 6.3), spaced evenly in the computational

plane. The fine grid has 101 points in the circumferential direction (Figure 6.4), of

which 40 points are distributed with exponential stretching e. of 0.08 on the windward

side (including a point at the leading edge) and 61 points with cl = 0.04 on the leeward

side. A plot of the surface fine grid about Wing F is given in Figure 6.2. Due to the

perspective view, the wing dimensions are somewhat distorted. This grid gives excellent
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resolution of the leading edge region, with 60% of circumferential grid points located

in the outer 10% of span. Grid resolution at the leading edge of the medium and

fine grids is shown in Figures 6.5 and 6.6, respectively. Locations of streamwise and

circumferential node points on the body are given in Appendix F.

This choice of grid refinement was made after examination of solutions calculated on

the medium grid. Velocity vectors in cross stream and streamwise planes demonstrated

that the boundary layer is adequately resolved on the medium grid. Because streamwise

variation of flow quantities is relatively small, the streamwise grid density is satisfactory.

However, large flow gradients in the circumferential direction, especially at the leading

edge, indicated a need for further refinement in this direction. Despite these conclusions,

an attempt to further refine the body-normal grid was made. Due to computer resource

limitations, calculations on this "extra fine" grid could not be completed.
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6.5 Boundary and Initial Conditions

Flow conditions at grid boundaries at the body and farfield (j = 1, J,az), first and

final stations (i = 1, Imaz), and at windward and leeward (k = 1, Kmaz) symmetry

planes must be prescribed in a numerical calculation. Conditions at the body were

discussed in Section 3.2. The symmetry boundary conditions implemented at k = 1 and

k = Kmai do not require further explanation. Treatment of boundaries at j = Jmaz,

and i = 1, I'az is discussed below.

Characteristics theory dictates that flow variables in the inviscid supersonic flow

at the outer surface (J = J,,.) are imposed by the free stream. This condition is

implemented by computing values of the state vector at a dummy layer of cells at

Jmaz, Wjmaz = 2Woo - Wjv.c,-1, such that, upon forming the linear average with the

variables at J,,, - 1, the correct free stream values are obtained.

For computational efficiency, the idealized semi-infinite wings were truncated at x =

0.1 and z = 1.0, and inflow and outflow boundary conditions, respectively, were applied

at these stations. The location of initial and final stations is arbitrary. Of importance

is the ratio zm,,/z 1 , which defines the Reynolds number range of the solution. It is

also important that the flow domain be large enough so that the effect of potential

inaccuracies in the boundary conditions at the inflow is limited to a small percentage

of the flow region.

The conical Navier-Stokes (CNS) code of [Ruffin 87] was used to calculate approx-

imate flow conditions at the inflow. Ruffin's code solves the thin layer form of the

equations with van Leer flux splitting and MUSCL differencing [van Leer 82]. It uses a

pressure weighted flux limiter which makes the solution nominally (on Cartesian grids)

second order accurate in smooth flow regions. However, [van Leer et al. 87] note that
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this difference scheme is excessively diffusive in the boundary layer, which may result

in inaccurate modelling of the primary and secondary vortices.

Two alternative methods of treating the upstream boundary conditions were con-

sidered but discarded. The "standard" appproach of modelling the wing from apex

to trailing edge and of applying free stream conditions at some surface upstream of

the apex was discarded because this approach requires a sophisticated grid generation

procedure and is computationally more expensive due to the need to resolve high flow

gradients at the wing apex. Even with sophisticated techniques, the requirement that

a body-normal family of grid lines exist near the apex may be violated, and subsequent

inaccuracies due to the thin layer Navier-Stokes approximation may be appreciable.

Alternatively, free stream conditions could be applied directly at x = 0.1. While this

option is simple, the boundary conditions are a poor model of the real flow at that

station.

The grid at Station 1 (z = 0.1) was used as input geometry for the CNS solver.

A CNS solution at the local Reynolds number was then obtained on the equivalent

spherical computational surface. In most cases, a two or more order decrease in the

magnitude of the residuals was achieved. However, in some cases convergence to steady

state was questionable 4. A similar procedure to calculate initial conditions was used

by [Thomas & Newsome 86].

The results from the CNS calculation were used directly as boundary conditions at

the planar grid at the inflow of the three dimensional domain. While the extrapolation

from spherical to planar grid introduces numerical error, the use of the CNS solution

clearly results in higher accuracy than the alternate assumption of freestream flow at

"Solutions at 120 and 14* did not converge further than 2E-4 after several thousand CNS iterations.
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z = 0.1. In addition, the solution was used as initial conditions throughout the flow

field. This removes the need to start the calculation impulsively, and thereby reduces

computational cost.

The treatment of outflow boundary conditions for the Navier-Stokes equations is a

topic of current research (eg. [Ababarnel et al. 86]). This research effort has not yet

resulted in a "standard" approach comparable to the use of characteristics theory for

Euler computations. The ad hoc approach used in this thesis was to compute values

at outflow boundaries by extrapolation of the interior solution. Inspection of the flow

solution near the outflow boundary showed that the linear extrapolation WImaz

2WImaz-1 - WImaz-2 modelled the variation of the flow variables more accurately

than the first order approximation, Wmz,, = WIma,- 1. It was therefore used in all

flow calculations. This extrapolation is theoretically valid in supersonic zones of inviscid

flow since it maintains the physical region of dependence inherent in this flow. It is also

valid in the boundary layer if no reverse flow in the streamwise direction occurs. No

significant retardation of the convergence rate of the algorithm due to the boundary

conditions was observed.

6.6 Post-Processing and Graphical Display

Display and visualization of numerical flow data is crucial to gaining an understand-

ing of the flow features and phenomena of any complex flowfield. The primary tool used

in this respect was PLOT3D, a post-processing/graphics program developed at NASA

Ames Research Center by [Buning & Steger 85]. Its capability of generating a variety

of 2-D and 3-D line and color contour plots was employed to generate many of the plots

presented below. A number of 2-D line plots of the pressure coefficients are also shown.
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These were generated with the QPLOT program of [Kennelly 87].

A very useful feature of PLOT3D is its ability to generate 3-D particle paths. When

the flow is steady, these particle paths are equivalent to streamlines. They are generated

in PLOT3D by using trilinear interpolation of values of the vector velocity inside a

computational cell and second order Runge-Kutta steps to advance the particle in time.

In addition, projections of the velocity vectors onto a surface may be used to create

"sectional" streamlines. This capability can be used to generate flow patterns on a

surface that mimic oil flows used in experimental work. Both of these features were

used extensively to analyze the flow field.

The structure of the flow field can also be explored by examining vector plots of the

cross stream velocity (v, w). Although plots of the two-dimensional projections of three-

dimensional vectors can be misleading, these plots are particularly useful in the present

flow cases because the cross stream planes intersect the vortical structures at nearly 90*.

Thus, most features of the vortices are visible and relatively free of distortion. Primary

and secondary separation points can be easily located. A three dimensional "look" of

the plots is obtained if the vectors are colored by a local scalar quantity such as the

Mach number or pressure coefficient.

PLOT3D requires flow data at points corresponding to grid point locations. For this

reason the numerical solution was pre-processed to transfer the solution from the centers

of computational cells to cell nodes. In the interior of the computational domain this was

achieved by forming a linear average of state vector values at the eight cells adjacent to

each node. At boundaries of the domain, appropriate one-sided averages were computed.

No pre-processing was done before application of the QPLOT program. Instead, the

values of the pressure coefficient plotted were calculated directly from values of the state

103



vectors at cell centers. Due to the zero normal pressure gradient boundary condition

(see Section 3.2) used at the body surface these values give the surface pressure.

6.7 Code validation

Validity of the three dimensional semi-implicit solutions was established by studying

the convergence histories of the solutions, by comparing computed results with experi-

mental data from [Rogers & Berry 55], and by considering the effect of various numerical

parameters on the solution. To examine the influence of numerical parameters, the flow

around Wing T at M = 1.6, Re = 106, and a = 40 was calculated with a number of

different parameters, and compared to baseline results calculated on the medium grid

with coefficients of artificial viscosity of X2 = 0.1 and K4 = 0.01.

All cases were run on a Cray-2 supercomputer of the National Aerodynamic Simula-

tion (NAS) Program at NASA Ames Research Center. CPU time requirements for the

fully vectorized codes on the fine grid was 21 seconds per iteration for the semi-implicit

and 5 seconds per iteration for the explicit scheme.

6.7.1 Convergence to Steady State

Convergence of the solution to steady state was verified by examining the iteration

history of the sum of residuals of the five discrete equation and by comparing pressure

coefficients calculated at different iteration levels. Other measures of convergence, such

as convergence of skin friction values, can be defined and are often used. However, previ-

ous two-dimensional numerical experiments showed that convergence of the skin friction

was comparable to that of RMS residuals. Thus, the above measures of convergence
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were deemed to be sufficient.

Both the explicit and semi-implicit schemes were run at the maximum CFL number

for stability. However, it was found that convergence for separated flows (a > 4) could

be attained in the semi-implicit mode only if the time step used was set to a constant at

each streamwise station. This phenomenon may be due to nonlinear behaviour of the

separated flow which is not captured in the linear stability analysis given in Appendix

A. Residual smoothing (in the (i) and (k) directions) was used in the semi-implicit

scheme, but not in the explicit scheme where it did not seem to have much effect.

Semi-implicit calculations for Wing T at a = 4V on medium and fine grids were

run 450 and 1300 iterations, respectively, and the explicit calculation on the medium

grid was run 3200 iterations (Figure 6.7). Despite the high CPU cost of the semi-

implicit (approximately 4.2 times higher per iteration than the explicit scheme), it

outperforms the explicit scheme by a significant margin. As might be expected, the

fine grid calculation with the semi-implicit scheme takes substantially more iterations

to converge than the medium grid case. Because of its low convergence rate in medium

grid calculations, the explicit scheme was not applied to any fine grid case.

Convergence of the iterations was verified by comparing solutions at several different

iteration levels. Profiles of the pressure coefficient at the final station (35) after 200, 350,

and 450 semi-implicit iterations (Figure 6.8) show a suction peak on the leeward side

that indicates the presence of a primary vortex. The small and decreasing differences

between the profiles indicate convergence of the solution.

Further comparisons of the efficiency of semi-implicit and explicit calculations can

be made by considering the convergence histories of the a = 8* and a = 12* cases.

Figures 6.9 and 6.10 confirm the improvement in efficiency given by the semi-implicit
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Figure 6.9: Semi-implicit and Explicit Convergence Histories, a = 8, Med. Grid

scheme. In fact, the explicit scheme's convergence difficulties seem to increase as the

angle of attack is increased. Thus, for a = 80 and 12*, the semi-implicit scheme is the

only viable mode of calculation, both for medium and fine grid cases.

6.7.2 Comparison with Experiment

An experimental test case used by [Rogers & Berry 55] was used to examine the

accuracy of the Navier-Stokes scheme. The geometry of the Rogers and Berry experi-

ments corresponds to Wing F with 65* sweep. Mach number of the experiment was 1.41

and free stream Reynolds number was 2 x 106. An angle of attack of 140 was chosen

for comparison. Unfortunately the experimental data indicated significant regions of

turbulent flow which was not modeled in the calculations.
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Figure 6.10: Semi-implicit and Explicit Convergence Histories, a = 12, Med. Grid

A vector plot of the velocity in the cross stream plane (Figure 6.11) shows an elon-

gated primary vortex that lies very close to the leeside boundary layer. The calcula-

tion was performed on the fine grid. Boundary layer separation occurs almost directly

underneath the primary vortex and results in the formation of a secondary vortex out-

board of its center. This secondary vortex appears to be absent in the experiments

[Rogers & Berry 55]. It is likely that the turbulent mixing in the boundary layer pre-

vented boundary layer separation in the experiment and the subsequent appearance of

a secondary vortex. [Thomas & Newsome 86] note that the effect of turbulence on a

flow about a elliptic cone at Moo = 1.8, a = 10*, and ReL = 2.1 x 106, calculated

with a CNS solver is to eliminate a tertiary vortex and to decrease the strength of the

secondary vortex.

The effect of this discrepancy between experiment and computation is also seen in
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Figure 6.11: Velocity vectors for Rogers and Berry case1

comparison of pressure coefficients (Figure 6.12). Agreement is good on the windward

side; however, the laminar computation overpredicts the pressure suction peak on the

leeward side. Despite this, the location of the primary vortex and the behaviour of the

pressure at the leading edge are predicted fairly well.

6.7.3 Effect of Artificial Viscosity

Artificial viscosity in a numerical scheme can have a significant effect on solutions

of rapidly varying flowfields such as vortex flows. This effect is not physical because

the artificial viscosity terms, unlike the "real" viscous terms contained in the Navier-

Stokes equations, have no physical basis. The effect of artificial viscosity was examined

by reducing the smoothing coefficients used in the baseline calculation by a factor of 2

from X2 = 0.1 to PC' = 0.05 and from N4 = 0.01 to IC = 0.005.

'Med. grid solution. Subsequent plots are of fine grid solution.
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Figure 6.12: Pressure coefficients for Rogers and Berry case

Comparison of pressure coefficient profiles at Station 35 shows that the pressure

suction peak is higher in the reduced smoothing solution than in the baseline solution.

This indicates that the additional artificial viscosity in the basline solution acts to

"smooth out" high velocity gradients, thus resulting in a weaker primary vortex. The

profiles are virtually identical in other regions of the flow field.

6.7.4 Effect of Starting Solution

The effect of the starting solution was investigated by comparing the baseline so-

lution with a solution calculated on a truncated wing (Figure 6.14), which begins at

Station 11 (z = 0.206) of the baseline wing. Thus, the ratio za,,/zl for the truncated

wing is approximately half that of the baseline wing. A starting solution at that sta-

tion was calculated with the CNS scheme and the semi-implicit flow calculation was
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Figure 6.13: Effect of Artificial Viscosity on Solution

performed on the final 25 stations.

Differences between the two solutions are quantified by plotting the streamwise pres-

sure coefficient profiles (Figure 6.15) at circumferential locations k=40 and 45. These

locations are beneath the vortex in a region that is characterized by rapid surface pres-

sure changes. There are consistent differences between the two sets of profiles. Errors

in the starting solution can be expected to persist because, although numerical errors

in viscous regions of the CNS solution are naturally dissipated due to the elliptic nature

of the flow, errors in inviscid regions are propagated along characteristic lines without

dissipation. The maximum difference between the two sets of profiles is approximately

2%.

The effects of artificial viscosity and location of the starting solution can be compared

by superimposing profiles of the pressure coefficients. Figure 6.16 shows that the effect
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Figure 6.15: Effect of initial conditions: Streamwise Cp's at K=40,45
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Figure 6.16: Effect of artificial visc. & init. conditions: Cp's at Station 35:

of a change the starting location is significantly smaller than the effect of reducing the

artificial viscosity by a factor of two.

6.8 Effect of Grid Density

The effect of grid density on solution accuracy can be significant, especially when the

flow field contains multiple spatial scales which must be resolved. In the present delta

wing calculations, identifiable length scales are those of the body and displacement of

the bow shock wave from the body, the thickness of the attached boundary layer, the

dimensions of the primary and secondary vortex cores, and the spatial scales associated

with location of the primary and secondary separation lines. In addition, other length

scales not easily identified a priori may be present in a given flow and must be resolved.
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Figure 6.17: Pressure coefficients on medium and fine grid: Station 35

To determine whether the medium grid resolves the important features and scales

in the flow field, the baseline flow calculation was repeated on the fine grid. The high

resolution at the leading edge of the fine grid enables a more accurate modeling of the

leading edge flow physics than is possible on the medium grid. However, profiles of the

pressure coefficients at Station 35 calculated from the medium and fine grid solutions

(Figure 6.17) show only small differences. The vortex in the medium grid solution

is located slightly inboards of the vortex in the fine grid calculation. Both solutions

indicate a leading edge negative pressure spike. The spike in the fine grid solution

has smaller magnitude but, as might be expected, is more sharply defined. These flow

structures at the leading edge are examined in detail in Chapter 8.
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Chapter 7

Features of the Flow Solution

This chapter describes characteristic features of the laminar supersonic flow about

delta wings with blunt leading edges. Flows over two 65* swept elliptical wings with

thickness to chord ratios of 1:20 (Wing T) and 1:11.55 (Wing F) are considered at

Moo = 1.6, ReL = 106, and a = 40 and 80. Solutions for these four cases were com-

puted on a grid with 36, 101, and 48 points in the streamwise, cross stream and body-

normal directions, respectively. Contour and vector plots of various solution variables

are examined in Sections 7.1 and 7.2 to give insight into the flow topology.

Dominating feature of the flow is the massive separation and subsequent rollup

of the boundary layer near the leading edge. This separated fluid forms elongated

vortical structures - leading edge vortices - that lie very close to the leeward body

surface. Separation of the boundary layer beneath the primary vortex, resulting in the

formation of a secondary vortex, occurs in the a = 40 Wing T case and the a = 80

Wing F and Wing T cases. In the first and second of these cases secondary separation

occurs some distance downstream of the inflow station, while in the third, it begins at

the inflow station. No secondary separation is observed in the a = 40 Wing F case. The

mechanism of leading edge separation - of primary interest in this thesis - appears to

differ among the test cases. This topic is discussed in Chapter 8.

In the final section (7.3), accuracy and relevance of the conical assumption for the

Navier-Stokes equations is discussed. For three of the cases studied, a = 8* Wing F
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and a = 40 Wing T and Wing F cases, flow profiles vary considerably with streamwise

location. This variation is due in part to the development of a secondary vortex, a

process that can not be predicted by a solution of the CNS equations at a single station.

For this and other reasons it is suggested that the CNS equations are a not very useful

tool if details are to be adequately resolved.

7.1 Flow About Wing F and Wing T at a = 40

The flow about Wing F and Wing T at 40 angle of attack is considered in this

section. First, the vortical structure of the flow field is investigated by examination of

two- and three-dimensional particle paths. Then, variation of flow variables at several

streamwise stations is shown in contours of Mach number and pressure and stagnation

pressure coefficients. Finally, the topology of the flow as indicated by vector plots of

the cross flow velocity is studied.

7.1.1 Vortical Structures

Vortical structures in a flow field can be identified and examined by plotting paths

of particles released in the flowfield. If the initial locations of these particles are well

chosen, the resulting patterns give a good sense of overall flow features. The 3-D

particle plots below (Figures 7.1, 7.3) were generated by tracking particles released near

the leading edge and in the boundary layer on the leeward side of Wing F and Wing T,

respectively1 . Primary vortices on the leeward sides of Wing F and Wing T are visible.
1Particles in Figure 7.1 were released at alternate streamwise stations and k = 40 and 55. Figure

7.3 was generated by releasing colored particles at alternate streamwise stations at the circumferential

stations k = 40 (green) and k = 64 and 68 (blue or red).
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No secondary separation in the flow about Wing F can be seen2 . Secondary separation

does occur in the flow about Wing T (Figure 7.3). It results in a secondary vortex which

lies within the leeside boundary layer,

These three dimensional plots are complemented by particle paths projected on the

cross stream (y-z) plane at Station 36 of each flow case (Figures 7.2, 7.4). The patterns

simulate cross stream streamlines. The plots are generated by releasing particles at a

number of body normal and circumferential grid point locations and integrating the

projection of their spatial motion onto the y-z plane. The local slope of each path at

any y-z location gives the 2-D flow direction at that point.

The vortex above Wing F lies very close to the body. It is weak, and can barely be

seen in 2-D particle particle paths (Figure 7.2). Flow acceleration due to the vortex

area is small and the peak Mach number (1.82) of the flow is only slightly higher than

that of the freestream.

The higher leading edge curvature of Wing T results in a stronger leading edge

vortex (Figures 7.3, 7.4) than found in the Wing F flow. The core of this vortex is well

defined and lies just above the leeside boundary layer at approximately 82% chord.

Boundary layer separation and the secondary vortex in the Wing T case develop at

approximately Station 30. This is highlighted in Figure 7.3 by use of the color red for

particles released at k = 64&68 downstream of Station 32.

Another view of the flow topology in two cases can be obtained by examining plots

of numerical "oil flow" calculations. These plots are generated by projecting paths of

particles released just above the wing surface onto that surface. (The same process in the

2 This was verified by scanning the leeside flow field by releasing particles at a number of circumfer-

ential locations.
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Figure 7.1: Vortical Structures: Wing F, a = 40
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Figure 7.2: Primary vortex in cross flow plane: Wing F, a = 4

118

eRm

TIlE
GRID



Figure 7.3: Vortical Structure: Wing T, a = 40
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Figure 7.7: Mach number contours at Station 36: Wing F, a = 4V
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F are given in Figures 7.9 and 7.10, respectively. The high concentration of pressure

coefficient contours near the leading edge indicate high pressure gradients in this region.

Stagnation press j r c losses help identify regions of vortical flow, such as found in bound-

ary layers arid vortices'. In this case (Figure 7.10), the primary vortex is too weak to

be clearly identified, although a small bulge in the leeside contours can be seen.

Similar results for Wing T are given in Figures 7.11 (Stations 5, 15, 25, 35) and

7.12 (Stations 36). The maximum Mach number in this flow solution is 1.85 and the

minimum pressure coefficient is -0.26.

aThe definition of the stagnation pressure coefficient is identical to that of the pressure coefficient

with the pressures replaced by stagnation pressures.
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Figure 7.11: Pressure coefficient contours: Wing T, a = 4V

Figure 7.12: Stagnation pressure coefficient contours: Wing T, a = 40
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7.1.3 The Cross Stream Velocity Field

Although velocity fields in all of these solutions are clearly three-dimensional, useful

insights can be obtained by examining cross stream velocities. A convenient way of

doing so is to graph v - w velocity vectors in the region of interest. It is important to

remember, however, that in most cases the streamwise component of the velocity is sub-

stantially larger than the displayed cross stream vectors. A sense of three-dimensionality

is obtained when the velocity vectors are colored by a local scalar quantity such as the

Mach number.

Figure 7.13 gives a global view of the cross stream velocity vector field, colored by

Mach number, at Station 36. Large cross stream velocities near the leading edge are

evident. However, as shown by the small size of the differences between the maximum

local (1.82) and freestream (1.6) Mach numbers, the cross stream velocity is significantly

smaller than the streamwise component of the velocity.

Velocity vectors at the leading edge and in the vortex area are given in Figure 7.14.

They are colored by the local pressure coefficient. Large gradients of the velocity and

pressure coefficient are again evident at the leading edge. As noted above, secondary

boundary layer separation does not occur in Wing F flow at a = 4*, and indeed no

reverse flow in the boundary layer can be seen. This is not the case in the a = 4*

Wing T solution (Figure 7.15), where a very small reverse flow region can be detected

outboard of the primary vortex.

Formation of the secondary vortex in the case of Wing T may be explained by using

a two-dimensional analogy in cross flow planes. The thinner wing has a relatively strong

vortex which causes a high pressure peak and adverse pressure gradient immediately
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Figure 7.16: Cp profiles at Station 35: Wing T & F, a = 4'

outboard of the primary vortex (Figure 7.16). The outward flowing fluid can not nego-

tiate this pressure rise and separates to form a secondary vortex. The adverse pressure

gradient on Wing F, on the other hand, is too mild to induce secondary separation.

Separation processes at the leading edge will be discussed in Chapter 8.
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7.2 Solutions for Wing T and Wing F at a = 80

In general, the flows around Wing F and Wing T have stronger, better developed

vortex systems than the corresponding flows at a = 40. Both of the 8' cases have well

defined primary and secondary vortices. Flow topology and characteristics are discussed

in a manner similar to Section 7.1, below.

7.2.1 Vortical Structures

The vortex system on the leeward side of Wing F at 80 (Figure 7.17) has a primary

vortex present over the entire chord of the wing and a secondary vortex beginning at

approximately 30% chord4 . The core of the leading edge vortex is located just above the

leeside boundary layer. The sense of rotation with respect to an upstream view point

of the left portion of the wing is clockwise for the primary vortex and counterclockwise

for the secondary vortex.

The core of the primary vortex is clearly visible at approximately 70% chord in the

sectional streamlines (Figure 7.18). A maximum Mach number of 2.01 is at (j, k) =

(24, 81) in the feeding sheet just above it. The secondary vortex can not be seen clearly,

because it is much weaker than the primary vortex and located in the boundary layer

very close to the wing.

Three-dimensional particle paths and two-dimensional particle path projections are

combined in Figure 7.19 to give a composite picture of the vortical structure and surface

streamlines. The dark blue particle paths correspond to low Mach number flow and are

'Particles in this plot were released at the k = 40 (leading edge) and k = 75 circumferential locations

at every third streamwise station.
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Figure 7.17: Vortical Structures: Wing F, a = 8*

Figure 7.18: Primary vortex in cross flow plane: Wing F, a = 8*
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due to the particle path integrations constrained to the j = 2 surface ("oil flows").

Convergence of these lines shows that secondary separation on Wing F occurs just

outboard of the primary vortex core. The core of the secondary vortex (as indicated

by green and light blue particle paths) is located few points outboard of the secondary

separation line. Although the separation line is present even at the first stations of the

flowfield no secondary vortex appears to be present at this point.

An interesting feature of the flow in all of these cases is its directionality in the

windward boundary layer. Oil flow lines on the windward surface (Figure 7.20) indicate

that the direction of the flow in the windward boundary layer is towards the wing

symmetry plane. This is a result a slightly decreasing pressure towards the windward

symmetry plane (Figure 7.21). However, flow outside of the boundary layer actually

has a slight directionality towards the leading edge, as might be expected with this

geometry and angle of attack. On the leeward side (eg. Figures 7.5 & 7.6) the flow in

the boundary layer inboard of the primary vortex is approximately parallel to the body

centerline.

Figure 7.22 shows the vortex system of the Wing T solution at a = 8*. The effect

of the higher leading edge curvature at a = 80 is similar to that at a = 4' . The

leading edge vortex is somewhat stronger than that in the Wing F flow, and secondary

separation begins a short distance downstream of the inflow solution.

7.2.2 Mach and Pressure Contours

As might be expected, vortices in flows around Wing F and Wing T at 80 angle of

attack are stronger than those in the a = 4* flow. Mach and pressure coefficient contour

plots for Wing F (Figure 7.23, 7.24) and Wing T (Figure 7.25, 7.26) show higher peak
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Figure 7.19: 3-D/2-D Composite particle paths: Wing F, a = 80
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Figure 7.20: Numerical oil flow on windward surface: Wing F, a = 8*
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Figure 7.21: Pressure profile at Station 35: Wing F, a = 8*
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Figure 7.22: Vortical Structures: Wing T, a = 8*

Mach numbers and steeper pressure gradients in the vortical region than seen in the

a = 4 solutions.

Similar results for Wing T are given in Figures 7.25 and 7.26.

7.2.3 Cross Flow Velocity Vectors

Figure 7.27 gives a global view of the velocity vectors at the leading edge of Wing

F and near the primary and secondary vortices. The vectors are colored by the local

pressure coefficient. The cross stream velocities at the leading edge are large and the

feeding sheet is visible. The core of the primary vortex and the location of the separated

boundary layer that constitutes the secondary vortex are seen. A closer view of the

leading edge region and of the primary separation point is given in Figure 7.28. Because
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Figure 7.29: Mach number contours: Wing F, a = 8*

Figure 7.24: Premure coaflcient contours: Wing F, a = 8*
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of the curvature of the leading edge, location of the separation line is several grid points

leeward of the leading edge.

Similar results are seen in plots of vector velocities around Wing T (Figures 7.29 &

7.30).
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7.3 Flow Conicality

The question of whether viscous supersonic flows over conical geometries can be

considered locally conical has been an issue of contention in the literature, and will

be addressed briefly here. As discussed in the introduction to Chapter 6 a num-

ber of investigators have used the conical assumption to justify application of the so-

called conical Navier-Stokes equations with a "local" Reynolds number. Others (e.g.

[Rogers & Berry 55]) have used experimental data to argue to the contrary.

From.a theoretical standpoint the conical assumption has limited validity. Deriva-

tives in the streamwise direction are certainly non-zero in the boundary layer, as any

elementary viscous fluids textbook will attest to. This includes first and, in the case

of the full Navier-Stokes equationsi, second (viscous) derivatives. Because viscous layers

tend to grow in the streamwise direction, the external inviscid flow necessarily varies

with streamwise distance. Both of these factors are assumed to be negligible in CNS so-

lutions. While numerous comparisons have been made between CNS and NS solutions,

and varied conclusions have been drawn, there appears to be a lack of rigorous analysis

of the effects of discarding these terms.

It is clear from the solutions above that the streamwise variation can be substantial.

In three of four cases, the variation is due in part to the development of secondary

separation downstream of the inflow station. This development as well as the normal

growth of the boundary layer can not be predicted by a CNS computation at a single

station. At best, it may be predicted by solving the CNS equations at several streamwise

stations. For example, secondary and even tertiary vortical structures were found to

develop with streamwise distance by [Thomas & Newsome 86], who solved the CNS

equations at several Reynolds numbers.
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While solving the CNS equations at several Reynolds numbers is an option, this

approach has a serious theoretical deficiency: three-dimensional solutions composed of

several CNS calculations at different values of ReL do not, in the limit of AReL -

0 (that is, # of stations -- 0), reduce to the corresponding Navier Stokes solution.

Moreover, the cost of solution increases with every station added thus reducing the

comparative efficiency of CNS solutions. For these reasons, the author feels that use

of the conical Naver-Stokes equations for research purposes is not to be recommended.

Instead, solution of the three-dimensional Navier-Stokes equations on a grid in which

the density of streamwise stations is determined by the level of streamwise gradients

expected in a flow field is the preferred approach.
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Chapter 8

Flow Separation Mechanisms at Blunt Leading

Edges

At sufficiently high Mach numbers and angles of attack the flow about delta wings

separates and forms a system of primary, and, in some cases, secondary and tertiary

vortices. For wings with sharp leading edges, separation lines are located at the sharp

edges and fluid mechanic processes leading to separation have been fairly well character-

ized. Leading edge separation in flows around delta wings with rounded leading edges,

is less well understood. It is clear, however, that the locations of separation lines on

blunt delta wings are not fixed by geometry, but are determined by an interaction of

geometric and fluid dynamic factors.

Since the general features of vortical flows about blunt delta wings were described

in Chapters 6 and 7, this chapter examines details of the separation mechanisms. The

flows about the 650 swept Wing F and Wing T at 4V and 8* angle of attack and about

the 600 swept Wing F [Rogers & Berry 55] discussed in Chapters 6 and 7 are considered.

Wing F and Wing T are elliptical wings with thickness-to-chord ratios of 1 : 11.55 and

1 : 20, respectively. The flow physics is examined through pressure and density profiles,

Mach number contours, and projected streamline patterns near the leading edge.

Two distinct flow separation mechanisms are observed:
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1. Separation near the leading edge due, at least in part, to a shock-induced pressure

rise; and,

2. Separation due to shock-less flow recompression just leeward of a leading edge

expansion.

The first mechanism occurs in flows about the [Rogers & Berry 55] case, Wing F and

Wing T at 8*, and Wing T at 40 and is discussed in Section 8.2. The second mechanism

is observed in flow about Wing F at 40 and is considered in Section 8.3. In the final

section, the characterization of flows around rounded leading edges is discussed. While

flows about delta wings with sharp leading edges can be usefully described by Mach

number and angle of attack normal to the leading edge, this is not the case for flows

about wings with blunt leading edges. In the latter cases factors such as leading edge

curvature and flow Reynolds number must be considered.

8.1 Flow Structure Identification

In most flow cases, examination of Mach number and pressure profiles suffices to

identify shock structures and shear layers. Because of the physical proximity of shock

and boundary layer in the present case, the conventional shock indicators - steep neg-

ative gradients of Mach number linked with positive gradients of pressure - are not

sufficient. This is because any coherent shear layer displays a strong Mach number

gradient across it; therefore, a sharp drop in the Mach number even when accompa-

nied with a pressure increase (which may be due to shock-less recompression) does not

necessarily imply existance of a shock1 . Rather, the existance of a sharp density rise
1Similarly, changes in entropy or stagnation pressure are ambiguous since these quantities increase

and decrease, respectively, through both shear layers and shock waves.
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in addition to appropriate Mach number and pressure gradients is required to identify

shock locations2 , and changes must correspond to the Rankine-Hugeniot shock jump

relations. Identification of a shock wave may also complicated by its small size.

To examine the flow structures flow variables are plotted against a conveniently

defined arclength. Each profile in the figures below plots a scalar quantity at a given

streamwise station along a particular (j) family of (k) points, where (j) is the coordinate

direction away from the body, and (k) runs cross stream from the windward to the

leeward symmetry planes.

The initial value of the arclength is set to t- 1 and subsequent values are defined

by subtracting the arclength between two adjacent (k) points from previous values:

sl+l = sl - As. In all cases the initial cross stream station I = 0 is fixed at k = 40

(leading edge) and Iaz = k = 75,- although, ideally, a station normal to the leading

edge would be considered. Thus, quantities plotted are in the vicinity of the leading

edge, corresponding to 0.9 < t/c < 1.0. Values plotted were taken directly from the

flow solution without any post-processing.
2The density in the shear layer usually decreases as M -* 0 since temperature increases and pressure

is relatively constant. Thus a sharp increase in p is an unambiguous indication of presence of a shock

layer if it occurs together with gradient in the Mach number and pressure.
8The initial value 8o is defined as

ao = - + , (8.1)
yi,1,4o 2

and As is calculated along the a = const. station as

As = (Vi,ij,k+1 - vij,i)2 + (zi,i,s+1 - zi,j,) 2 , (8.2)
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8.2 "Shock-Induced" Separation

Cross stream pressure coefficient profiles of flow past Wings T and F at 80 angle

of attack, Wing T at 40, and the Rogers and Berry wing at 14* (Figures 7.21, 7.16,

6.12) all show sharp negative pressure coefficient spikes that appear to indicate a shock

wave lying in the vicinity of the leading edge. Examination of the results reveals a weak

shock that impinges on the boundary layer and extends a small distance into the outer

flow. The sharp pressure gradient due to the shock wave apparently induces boundary

layer separation near the leading edge.

This section identifies the shock structure and describes interaction of the shock

wave and shear layers and the separation process. The flow phenomena in the cases are

similar, but, are especially well defined in the 14* Rogers and Berry case. Thus, this

case is used to describe the flow physics.

8.2.1 Rogers & Berry Case

The [Rogers & Berry 55] wing case will be examined first because, due to its higher

angle of attack, it displays a number of flow features relatively clearly. The flow about

the Rogers wing has a characteristic vortical pattern: a primary vortex due to boundary

layer separation near the leading edge and a developing secondary vortex underneath

and somewhat outboards the core of the primary vortex. As in all cases considered

here, the primary vortex shows a very flat elongated structure on the leeward side of

the wing.

The flow at the leading edge is shown in the Mach and stagnation pressure contours

of Figures 8.1 and 8.2. Separation of the shear layer is marked by divergence of contours
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from the body on the leeward side of the wing just inboard of the leading edge. It is

seen that the flow immediately inboard and outboard of the stem of this shear layer

is supersonic, reaching values of approximately 2. The fluid originating from the inner

region of the boundary layer has the highest stagnation pressure loss and is entrained

into the core of the vortical layer. Although stagnation pressure changes are usually a

clue to the location of shock layers this clearly is not the case here4 .

To characterize the Mach number, pressure coefficient, and density variations in

this region, plots of these quantities were made along a path at constant (j) values,

tangent to the leading edge (Figure 8.3). Figures 8.4, 8.5, and 8.6 contain the sum

of information necessary to identify the shock structure. In this case a shock wave of

very limited extent is present near the leading edge. Although this shock is weak it

apparently induces separation by turning the leeward flowing boundary layer fluid at

the leading edge away from the body.

A schematic of the flow structure near the leading edge is given in Figure 8.7. A

shock wave inclined at approximately 30* to the vertical lies parallel to the leading edge.

It extends approximately from gridlines j = 8 to j = 20, and, at Station 36, intersects

the computational grid at (j,k) - (10,44),(15,45) and (20,47). This shock layer is

indicated by sharp increases in the density and decreases in Mach number and negative

pressure coefficient at those (j, k) locations.

Although the total Mach number deficit just leeward of this region is substantial,

density and pressure ratios across the shock at j = 10 of 8% and 12%, respectively,

indicate a relatively weak shock with Mach number normal to the shock of approximately

1.05. This is approximately consistent with the Rankine-Hugeniot relations. The bulk

4As shown by [Powell 87], the vortex itself also gives rise to a stagnation pressure loss.
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Figure 8.1: Mach number contours: Rogers Wing, Station 36
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Figure 8.2: Stagnation pressure co cotours: Rogers Wing, Station 36
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Figure 8.3: Location of profiles: Rogers Wing, Station 36
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Figure 8.4: Mach number profiles: Rogers Wing, Station 36
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Figure 8.5: Pressure coefficient profiles: Rogers Wing, Station 36

of the Mach number deficit can be attributed to the velocity defect in the separated

shear layer leeward of the shock. However, the inertia of the boundary layer fluid in the

cross stream direction is sufficiently small so that the adverse pressure gradient appears

to be sufficient to induce separation of the flow.

Existance of a leading edge shock is also indicated by curvature of projections of the

three-dimensional streamlines on the y - z plane in this area (Figure 8.8). This figure

contains grid lines at j = 1, 11, 21 and all (k) lines at the leading edge. Particles were

released at j = 2 and all k from k = 40 (leading edge) to k = 60. The outbound flow on

the leeward side acts as a displacement surface which deflects streamlines originating

near the leading edge from the body. The concavity of the streamlines in the flow

direction indicates that flow compression takes place. Because the component of the flow

in the y - z plane is supersonic a leading edge shock develops. By Crocco's theorem, the
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Figure 8.6: Density profiles: Rogers Wing, Station 36

varying strength of the shock results in a variation of vorticity normal to the streamlines,

which may aid the separation process. Curvature of streamlines ahead of the shock may

be due to the upstream influence of the pressure rise that is transmitted in the subsonic

portion of the boundary layer.

Immediately after the leading edge expansion and shock wave, a second region of

rapid variation of density, Mach number, and pressure coefficient can be seen at j = 10

and j = 15. In this region, the flow is headed outboards and is about to be entrained

with the separated windward side boundary layer. Although a compression is evident,

especially at j = 10, the relatively slow variation of the density and pressure coefficient

indicates that this occurs without the presence of a shock.
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Figure 8.7: Schematic of Proposed Leading Edge Flow Structure

Figure 8.8: Streamlines at the leading edge: Rogers Wing, Station 36
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8.2.2 Wing F & Wing T - 8 Degrees

Mach contours near the leading edge of Wing F and Wing T at 8* angle of attack

are given in Figures 8.9 and 8.10. Even though the curvature of the leading edges of

the two wings are quite different the flow structures near the leading edge appear very

similar. The shock structures are very similar to the structure described above.

Profiles of the pressure coefficients given in Figure 7.21 show sharp negative pressure

coefficient spikes at the leading edges. Figures 8.11 and 8.12 show density variation as

a function of arclength in the vicinity of the leading edges. The shock wave at the

leading edge of Wing F intersects Station 35 at approximately (j, k) = (8,45), (12,45)

and (16,46). The shock at the leading edge of Wing T is of somewhat more limited

extent than that in the Wing F solution, where no evidence of a shock compression is

seen at j = 16. The shock wave intersects Station 35 at approximately (j, k) = (8,42)

and (12,48).

The characteristic bending of streamlines at the leading edge seen in Figure 8.8 can

be also observed in Figures 8.13 and 8.14. An effect of the higher leading edge curvature

is a movement of the separation line towards the leading edge. While the separation

point at Station 36 of Wing F is at k = 47 it is at approximately k = 43 on Wing T.

However, the fundamental flow structure is not altered.

8.2.3 Wing T - 4 Degrees

Mach contours for the leading edge flow for Wing T and Wing F at 40 angle of

attack are given in Figures 8.16 and 8.17. (The latter will be discussed in the next

section.) Because of the low angle of attack the maximum Mach number in this case
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Figure 8.11: Density profiles: Wing F, a = 8*, Station 36
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Figure 8.12: Density profiles: Wing T, a = 80, Station 36
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Figure 8.13: Streamlines at the leading edge: Wing F, a = 80, Station 36

Figure 8.14: Streamlines at the leading edge: Wing T, a = 8*, Station 36
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Figure 8.15: Density profiles: Wing T, ac = 40, Station 36

is substantially smaller than those found in the above cases. Thus, the existance of a

leading edge shock and shock-induced separation becomes less likely. Nevertheless, Wing

T displays a flow structure, complete with shock, similar to the previously discussed

cases.

Profiles of the density versus arclength in the leading edge area of Wing T are given

in Figure 8.15. A weak shock is located at (j, k) = (8,45) and (12,45). The streamlines

pattern near the leading edge of the Wing T solution (Figure 8.18) is similar to patterns

observed above. The primary separation line at Station 36 is located at k = 47.
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Figure 8.16: Mac number contours: Wing T, a = 4* Station 36
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Figure 8.17: Mac number contours: Wing F, a = 4V Station 36
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Figure 8.18: Streamlines at the leading edge: Wing T, a = 4*, Station 36
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8.3 Separation Due to Shock-Less Recompression

In viscous calculations a shock wave or Kutta condition are not necessary to induce

separation, since vorticity is introduced by the no-slip condition at body surfaces. The

adverse pressure gradient that is required by classical boundary layer theory for sepa-

ration is, in these cases, supplied by flow recompression inboards of the rapid leading

edge expansion. This separation mechanism is found in the Wing F, a = 4* solution.

8.3.1 Wing F - 4 Degrees

Pressure profiles of the 4* Wing F solution indicate a strong recompression just

inboard of the leading edge (Figure 8.19). This recompression is not, however, a shock

wave. Figure 8.20 "unwraps" the wing to show Mach number profiles at Station 35 and

j = 10, 15, 20,25 versus y that, for j > 15, are entirely supersonic in the leading edge

area, and that have no rapid gradients that might indicate a cross flow shock. The flow

at j = 10 is in the boundary layer, which thickens for a short distance just leeward of

the leading edge. The Mach number in the inviscid flow increases monotonically just

leeward of the leading edge, indicative of a smooth shock-less expansion of the flow

around the blunt leading edge. Profiles of the density (Figure 8.21) at j = 8, 12, 16

also show no rapid shock-induced increases of that quantity. Separation is due to the

inability of the boundary layer at the leading edge to negotiate the adverse pressure

gradient which is due to flow recompression following the leading edge expansion.

The streamline pattern around the leading edge of Wing F (Figure 8.22 is signif-

icantly different from any of the previously examined patterns. Because the adverse

pressure gradient at the leading edge of this case is relatively benign (Figure 7.16) the

flow remains attached remains attached longer - at Station 36 up to k = 55 or 99.2%
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Figure 8.19: Pressure coefficient profilesat Station 35: Wing F, a = 40
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Figure 8.21: Density profiles: Wing F, a = 4V, Station 36

span. An outward displacement of

to that seen in the previous cases.

prevent the development of a shock.

the projected streamlines is seen, which is similar

Apparently, the lower Mach numbers in this area

162

1.2

1.0

0.8

0.6

0.4
0.92 1.02



Figure 8.22: Streamlines at the leading edge: Wing F,a = 40, Station 36
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8.4 Discussion

The preceding sections have examined the flow separation processes at the leading

edges of several test cases. In each of the cases examined, the flow separated near the

leading edge of the elliptical delta wing. Location of the separation line and flow phe-

nomena at the leading edge varied from case to case, with a weak shock wave appearing

near the leading edge in four of five cases. These results indicate that it is not possible

to characterize flows around delta wings with blunt leading edges on the basis of only

Mach number and angle of attack normal to the leading edge (eg. see discussion for

delta wings with sharp leading edges in Chapter 6). Additional factors such as leading

edge curvature and flow Reynolds numbers must be considered. Further discussion of

the leading edge flow phenomena is given below.

Table 8.1 presents a summary of leading edge flow information at the final station

(Station 35) of the test cases. Mshock and keep are the approximate Mach number

normal to the shock wave and the circumferential station at which separation takes

place, respectively. The final two columns give the pressure ratios corresponding to

Mhock and the pressure ratios actually observed. Values of M5 hock were calculated

from the density jump data in Figures 8.6, 8.12, 8.11, 8.15, and 8.21. The separation

point was identified by inspection of particle paths of the v - w velocity (Figures 8.8,

8.14, 8.13, 8.18, 8.22).

Table 8.1 indicates that wing geometry and flow conditions influence flow separation

phenomena for delta wings with blunt leading edges. Four of the five cases in Table 8.1,

the Rogers wing at 14*, Wing T & F at 8* and Wing T at 4* angle of attack, appear

to involve a shock wave as part of the separation process. Separation in the Wing F

flow at 4' angle of attack is due to a shock-less recompression near the leading edge.

164



Table 8.1: Summary of leading edge flow data

Separation occurs relatively close to the leading edge for Wing T compared to Wing

F, the latter having a more blunt leading edge. This behaviour is expected since, in

the limit of infinite leading edge curvature, separation is fixed at the leading edge. An

increase in the angle of attack of the wing results in an increase of the local turning

angles near the leading edges and, thus, in a movement of the separation lines move

towards the leading edges (k = 40). This is observed in both the Wing T and Wing F

cases, where keep moves from 47 to 43 and 55 to 47, respectively, as the angle of attack

increases.

The extent to which the shock waves "induce" flow separation is unclear. In classical

boundary layer theory, an adverse pressure gradient is a necessary though not sufficient

criterion for separation. The magnitude of the adverse pressure gradient required in

this theory depends on flow conditions and body geometry, and usually can not be

determined apriori. Certainly, the proximity of the shock wave with the separation

point indicates that the shock is at least in part the cause of separation. Because the

shock waves in these cases are quite weak, it seems clear, however, that the shock wave

induced pressure rises are at the lower limits of what might be required. Moreover, the
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Test Case a keep Mhock (P2/P1).hock (P2/Pl)actual

Rogers wing 14* 45 1.05 1.12 1.16

Wing T 80 43 1.03 1.07 1.25

Wing F 80 47 1.02 1.05 1.21

Wing T 40 47 1.02 1.05 1.20

Wing F 40 55 N/A N/A 1.14



actual pressure rise at the leading edges of three of the four cases that contain shock

waves is significantly higher than that calculated from the Rankine-Hugeniot relations.

The pressure increase rnot, due to the shock might be ascribed to flow recompression

just leeward of the leading edge that results when the outward flowing fluid under the

primary vortex slows down as it is turned and entrained by the separated boundary

layer at the leading edge.
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Chapter 9

Concluding Remarks

The goals of the research effort described in this dissertation were to develop an

efficient numerical algorithm method for solving the Navier-Stokes equations, to use the

new method to study vortical flow about delta wings with rounded leading edges, and,

in particular, to examine flow separation processes near the leading edges of these wings.

Thus, a novel 8emi-implicit temporal integration algorithm was developed and applied to

the Navier-Stokes equations. Efficiency of the algorithm was established by comparison

with conventional explicit and implicit methods. Subsequently, the scheme was used to

calculate the laminar vortical flow about several delta wings with rounded leading edges.

Flow separation occured near the leading edges of the five cases examined. In four of

these cases, a shock wave contributed to the pressure rise that induced flow separation.

In the fifth case, flow separation was due to shock-less recompression leeward of the

leading edge expansion. The following three sections describe these contributions and

offer recommendations for future research.

9.1 Development of a Semi-Implicit Navier-Stokes Solver

The goal of developing an efficient algorithm for the Navier-Stokes equations is

approached with introduction of a semi-implicit temporal integration scheme in this

dissertation. In the semi-implicit approach, temporal integration of discrete terms in
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the body-normal direction is treated implicitly thus ensuring that information transfer

in this direction is instantaneous, much like information transfer across shear layers in

"classical" boundary layer theory. Terms in the streamwise and cross stream directions

are treated explicitly, thus modeling the hyperbolic nature of the information transfer

in those directions.

Linear stability analysis of the scheme shows that this approach results in an elim-

ination of that portion of the stability restriction that is due to grid spacing in the

body-normal direction. Instead, the maximum time step is restricted only by grid spac-

ing in the streamwise and cross stream directions. Thus, the numerical stiffness that is

due to disparate physical scales found in viscous flows is eliminated, and the governing

partial differential equations can be integrated with relative efficiency.

The scheme is applied to several inviscid and viscous problems, and its performance

is compared to that of a fully-implicit scheme and an explicit scheme equipped with

multigrid and residual smoothing. Results confirm the efficiency of this approach. While

the explicit scheme is slightly more efficient for the inviscid solutions, the semi-implicit

algorithm performed better than the explicit and implicit schemes on the model viscous

problem, where highly stretched grids are required. Compared to the explicit method,

the semi-implicit method was 3 - 10 times faster for the three Reynolds numbers in-

vestigated. Similar comparisons with the implicit method gave up to seven times faster

calculations.
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9.2 Study of Flow Separation near the Blunt Leading

Edges of Delta Wings

The second goal of this research, to examine and identify flow separation mechanisms

at rounded leading edges, is achieved by studying leading edge flows at several test

conditions. Three-dimensional laminar vortical flows over two 65* swept semi-infinite

elliptical wings of thickness to chord ratio 1 : 11.55 and 1 : 20 at Moo = 1.6, ReL = 106,

and angles of attack of 40, and 8", and a 60* swept elliptical wing with t/c = 1 : 11.55

at Moo = 1.4, ReL = 2 x 106 and a = 14* are considered. The elliptical wings are

truncated at z = 0.1 and z = 1.0 and a conical Navier-Stokes solver is used to supply

boundary conditions at z = 0.1 and initial conditions.

The thin layer form of the three-dimensional Navier-Stokes equations is used to

calculate solutions on computational grids with 112000 and 175000 grid points. A

nonlinear instability is found for semi-implicit calculations of separated flows. Calcu-

lations of separated flows diverge when local time-stepping is used. The instability is

not well understood. It appears to be numerical in nature. Nevertheless, convergence

is obtained if time steps are set to a constant at each streamwise station, and the semi-

implicit scheme is significantly more efficient than the corresponding explicit scheme.

Computations are validated by a examination of the effect of numerical parameters such

as artificial viscosity coefficients, grid refinement, and location of the starting solution,

and by comparison of numerical results to experimental data. Overall features of the

flow are discussed and a consistent description of the flow field is given.

The leading edge flow is examined with the aid of velocity vector plots, particle

path integrations, Mach number and stagnation pressure contour plots and profiles of

pressure, Mach number, and density near the leading edges. Primary and, in some
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cases, secondary separation is observed In all cases, primary separation occurs on the

leeward side of the wing somewhat inboard of the leading edge. Separation lines are

found to move towards the leading edges as the angle of attack is increased and the

curvature of the leading edge is decreased.

Two distinct leading edge separation mechanisms are identified. The flow at the

leading edges of the t/c = 20 (a = 80) and t/c = 11.55 (a = 40, 80, 140) cases is

characterized by a weak shock wave that impinges on the boundary layer just leeward

of the leading edge and extends a short distance into the flow field. The shock wave

is precipitated by a wedge-like displacement of the supersonic leading edge flow, which

is due to recirculating flow underneath and outbords of the primary vortex core. A

pressure jump associated with the shock wave and, in some cases, with additional flow

recompression in this region induces boundary layer separation.

In the t/c = 11.55 (a = 40) solution, separation is caused by an adverse pressure

gradient due to flow shock-less recompression inboards of the leading edge expansion.

This case differs from the t/c = 20 test cases in its lower leading edge curvature, and

corresponding lower maximum Mach number near the leading edge. Thus, although

cross flow streamlines at a typical wing station still show a wedge-like flow diversion

near the leading edge, no shock wave forms. The separation is located several cross

stream stations inboard of the separation lines in the shock-induced separation cases.

9.2.1 Recommendations for Future Research

A number of areas of research merit further attention:
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* Altkough the semi-implicit scheme showed substantial improvement in efficiency

compared to conventional schemes, further improvement of its performance seems

possible. Different implementations of the semi-implicit time stage should be

investigated, especially for steady state calculations. For example, performing a

semi-implicit integration on every second or third stage, or "freezing" values of

the implicit matrix for several stages may save CPU expenses. Use of the semi-

implicit scheme in viscous regions of the flow field only might be advantageous.

Exploratory research in these areas by the author has given promising results.

* The nonlinear instability of the scheme found to occur in calculations of separated

flows should be examined, and, if possible, removed.

* Other "acceleration" mechanisms such as grid-sequencing and matrix diagonal-

ization might be implemented to attain additional improvements in efficiency.

* Use of the semi-implicit approach in conjunction with other spatial approximations

should be considered. In particular, use with a higher order difference scheme

or an upwind scheme is of interest. Issues to be considered in this context are

computational efficiency of the matrix inversion and possible use of an approximate

linearization for the implicit terms to reduce matrix bandwidth.

* Characterization of flow separation processes for blunt delta wings should be con-

tinued. Of special interest would be a study of flow cases with leading edge cur-

vatures ranging between that of the current "Wing T" and infinity (flat plate). A

parametric computational and experimental study similar to that of [Miller & Wood 83]

but with wings of several different leading edge curvature and different Reynolds

numbers would be expensive but could be very instructive.

* Extension of the classical separation criterion by examination of the full or thin

layer Navier-Stokes equations could prove to be fruitful.
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* The effect of turbulence on vortical flow features and flow separation process

should be considered.
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Appendix A

Stability Characteristics of the Temporal

Integration

This appendix presents derivations and comparisons of the stability characteristics of

the semi-implicit scheme with those of the four stage explicit scheme given in Chapter

4, and of the fully implicit algorithm of [Beam & Warming 76]. The scalar 2 - D

convection/diffusion equation

8u a u a9u au-= +  +  -2 (A.1)

is used to model the thin layer Navier-Stokes equations. The constant p is the coef-

ficient of viscosity and, consistent with the thin layer assumption, the viscous terms

in the tangential x direction are assumed to be zero. Von Neumann stability analyses

[Richtmyer & Morton 67] are performed to to evaluate and compare the three schemes.

The analysis is done in two dimensions to allow straightforward graphical represen-

tation of the results. The conclusions, however, apply as well to the three dimensional

case, except for the approximate factorization used with the fully implicit scheme. Al-

though stability analyses of the explicit and fully implicit schemes can be found in the

technical literature, a review of that analysis is given below for background and to allow

comparison with the semi-implicit scheme.
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A.1 Stability of the Explicit Multistage Scheme

The four stage explicit scheme of Chapter 4 applied to Equation A.1 can be written

as

U9, = U!. .
1,3

ua,i = ui + ajAt(53 + by + •Svy)ui

j+ = + 2A +bt( y -- , +p•)ui (A.2)

Ui = ui + At(6 + 6y + •6yy)ui

n+l 4U.j = Uj,

with the discrete operators, b8, s6, and 6,, defined as

,i= 2Az

6V U=i+ - 2 + i-1

By implication, the computational grid is rectangular and has constant spacing in the

z and y directions.

The stages in (A.2) may be combined to give

S [1 + At(6, + B, + ,CP,) + 0s(At)'(63 + ~ + ,,)(A.4)

+Qsa 2(At) 3(6. + 6, + p8,,) 3 + cSc92a(At)4(8, + Sy + p8,,)4] U ..
The algorithm is stable if, for all possible values of u, the magnitude of the amplification

factor is less than unity1:

|GI = j•n+Z/-"l < 1. (A.5)
'The strict criterion due to von Neumann is that ju"+1/u"J 5 1 + O(At). This allows the discrete

solution to model problems whose exact solutions grow exponentially in time. It does not apply to

steady-state problems.
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To explore this condition, assume that an admissible solution can be represented by a

sum of sinusoidal error modes 2

= , (A.6)
e,#=0

and examine the decay or amplification of each of these modes separately.

Now, set

U, e= oes o, (A.7)

where the Fourier coefficient W'. is the amplitude of a particular mode at time t",

= f--T, and 0 and 0 are the phase angles in the z and y directions, respectively.

Inserting (A.7) into (A.4) gives the amplification factor

G = 1 - z + a3sz - asczCz + asa2alz , (A.8)

where the complex expression z is

z = (A, sin 0 + A, sin () - A, ( sin2(/2) , (A.9)

and Az = At/Az, A, = At/Ay. After some algebra, one finds that for the "classical"

choice of integration constants

al = 1/4 a2 = 1/3 as = 1/2 , (A.10)

the scheme is stable for jzI 5 2\/, that is, IGI < 1 if

(A + A,,)z  + A, \ 2 2 , (A.11)

or

At _ 2 1 . (A.12)

[(This Fourier pproch lso implies tht boundry conditions of the solution re lso periodic.

2 This Fourier approach also implies that boundary conditions of the solution are also periodic.
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The factor multiplying this expression, commonly referred to as the CFL number,

gives the maximum At for which the numerical domain of dependence of the scheme

includes the physical domain of dependence. The viscous portion of (A.12) ensures that

the numerical diffusion time does not exceed the physical diffusion time.

The At limitation can result in a high cost of computation. While each cell may

be advanced by its own time step for steady-state solutions, the minimum Ati,j must

be used in the temporal integration of all cells in time-accurate calculations. In either

case, severe restrictions on the size of the time step occur if the computational grid

is fine such that Az, Ay < 1, or if grid spacing in one coordinate direction is much

smaller than spacing in another. The latter condition is usually present in Navier-Stokes

calculations because rapid changes of velocity and temperature through the boundary

layer must be resolved. Thus, the time steps in explicit Navier-Stokes algorithms are

usually smaller than needed for temporal accuracy and result in large iteration counts

and correspondingly high CPU costs.

A.1.1 Graphical Analysis

Study of the variation of amplification factor with error phase angles can give ad-

ditional insight into the temporal characteristics of the scheme. In steady-state calcu-

lations large areas of IG(0, 0)I <« 1 are desirable since this implies that errors at most

frequencies will be rapidly damped. All stability graphs shown in this appendix will

assume an infinite Reynolds number. This eliminates the problem of having to choose a

particular value. Since viscous effects due to a finite Reynolds number tend to stabilize

calculations, this assumption presents a worst case scenario.

Figure A.1 shows contours of the amplification factor for the four stage explicit
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Figure A.1: Stability Contours of Explicit Scheme

scheme for A = A, + A, = 2.8 and p = 0. The value of the contour at each pair of wave

numbers is the magnitude of G. The wave numbers are the frequencies of the error

modes, and the magnitude of the amplification factor IG(k,, kI)j is the rate of temporal

growth of that error mode. Modes corresponding to jGI greater than one will grow and

eventually cause divergence of the solution algorithm.

Contours of IGI are concentric circles3, with Gi = 1 at (k,,ky) = (0,0),(r,2r), as

required for consistency of the scheme, and IGI = 1 at (k.,,ky) = (7r/2,r/2) as well.
8In this case, IGI is only a function of one variable (z) and could be displayed as a line plot. For

consistency with later stability contours we show it as as contour plot. The distortion is due to the

plotting package.
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A.2 Stability of a Fully Implicit Scheme

The general form of the Beam & Warming temporal discretization can be written

as [Beam & Warming 76]

A"t = At (&"nu)+ (Un)+ &n-IU (A.13)1 + e 2  t 1) + 1 2 at 1+ 2

where A"u = "n+l - u". Setting 8r = 1 and 02 = 0 in Equation A.13 gives the implicit

backward Euler algorithm

a a
A&u = At (A&u) + At (ju) . (A.14)

Using (A.14) and (A.3) to discretize Equation A.1 gives

[1 - At(6, + 6, + Ap6,)] An" = At(6. + 6, + 1,6,,)" . (A.15)

Equation (A.15) has a matrix with large bandwidth on the left hand side which

is very expensive to invert. Because of this, Equation A.15 is usually approximately

factored to give:

[1 - At6,] [1 - At(6, + pu6,,)I Anu - At(6 -+ 6, + pS,,)un (A.16)

While this approximately factored (AF) scheme is used in nearly all computational

work, it is instructive to examine first the stability characteristics of the unfactored

algorithm.

Transposing the LHS of Equation A.15 and using the definition of Anu gives the

amplification factor for the unfactored algorithm

G =+ At(61 + 6,V- -• )
1 - At(6. + 6, + ,) (A.17)

1 - At(6, + 8 + pS6v ) '
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Figure A.2: Stability Contours of Un-Factored Backward Euler Scheme

or, after Fourier decomposing and reordering

1 + y, -i(z+y) ' (A.18)

where z = A, sin 0, y = AY sin ~, and y, = Ay(4M/Ay) sin2 (0/2). Since the real part of

the denominator of (A.18) alone is always greater than unity (y, 2 0), the amplification

factor IGI < I and the scheme is unconditionally stable.

The contour plot of IGI is given in Figure A.2. The magnitude of G in the unfactored

algorithm approaches zero as At increases, thus giving the unfactored scheme excellent

damping properties.
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The approximately factored scheme is solved in two stages

[1 - At6z] Anu' = At(6z + 6, + pI6,,)Un
(A.19)

[1 - At(S, + p,,)] Anu = Anu' ,

which may be combined to give

G =1+ At(6, + , + 6,,)
[1 - At6,] [1 - At(6, + p1,,)] (A.20)
1 + At2 63 (8, + p 1yy)

[1 - Ats,] [1 - At(6, + pS,,)]

Fourier decomposition gives the AF amplification factor

1 - sy - izyG 1 = - Y - i(A.21)
(1 - iz)(1 - iy + Y;) '

Contours of IGI for y,. = 0 (Re -. oo) are shown for A = 5 in Figure A.3. Unlike

the unfactored scheme, [GI -+ 1 over most of the domain as At -+ oo. This is due to

the factorization error which grows at At2 . Thus, large At do not necessarily lead to

fast convergence in an approximately factored implicit scheme. Numerical experiments

show that there is in fact an optimal time step Aot which, for a given problem, gives

the fastest convergence.
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Figure A.3: Stability Contours olcactored Backward Euler Scheme

A.3 Stability of the Semi-Implicit Scheme

The semi-implicit 4-stage algorithm may be written in delta form as:

U0..

(1 - a3d6Y)A,,i

(,j

S13

SaiAt[6z + 6, + 0G1 yiU4

= a2At1[ + 6 + p6,]usi - Aul

= 3At[ + + 6y + ,,yyj, - (Au2 + Au1)

- At[Sz + by + - 6yyusI - (Au 3 + A 2 + AtU 1 )

$us3 + Au 4
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where Au" = u" - Un - 1. Equations A.22 can be simplified by inserting the appropriate

definitions for Au, giving the system of equations:

O nU9 = U0 .
t,3 1,3

(1 - cait(6b +vb8yy))',= uL + aiAt6:u?,

(1 - a2At(6 + p6yy))u?,i = Ui + c2Adt6,u,( (A.23)

(1 - asAt(5b + pyy))tuS r= -u + aAt6z,u?,

(1 - At(6, + p6/y))u,i =u,i + Atbf

1,3 1,3

Inserting each stage in turn gives

•i+ 1 Atbs
( t + ) (++ +,t' = 1 - At(b, + psyy) (1 - At(by + pAyY))(1 - asat(bv + pAYy))

(1 - At(6, + p6yy))(1 - asAt(s, + p8yy))(1 - a2At(B, + p8Jyy))

as3C Atsz3t S + a3 a2 alAt4' 6u
(1 - At(6, + p6yy))(1 - asAt(6, + M6yy)(1 - a2At(y + .

6bYY))(1 - acrAt(y + jSyy)) t'j
(A.24)

Fourier decomposing this equation as before gives the amplification factor:

1 ix
G= + +1 - iy+ , (1 - iy + y,)(1 - as(iy - y)

ft (iz)2 + (A.25)
(1 - iy + y,))(l - as(iy - y,))(1 - cr2(iy - y;))

aas (ix)3 + csa 2a1z(ix)4
(1 - iy +- y))(1 - as 3(iy - y))(1 - aC2(iy - Y.))(1 - al(iy - y&)) '

where x, y, and y,, are defined as before.

The "worst case" IGI occurs when at y = y; = 0, such that the denominator of each

term in (A.25) is unity, giving

G = 1 + iX + as(ix)2 + a3sa (iz) + aga3 ac(iz)) . (A.26)
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The form of expression A.26 is identical to the form of the amplification factor of the

explicit case and the magnitudes of the two factors are identical if z in (A.8) is replaced

by ix. The stability is limited only by spacing in the z direction, which is treated

explicitly, and a maximum time step A, < 2V2 or

At < 2vfAx (A.27)

may be taken.

Equation (A.27) shows that only the characteristic in the x-direction limits the prop-

agation of numerical information. The physical domain of dependence corresponding to

the characteristic in the y-direction is instantaneously accounted for by the simultane-

ous solution of the governing equations (A.24). The criterion is also independent of the

level of viscosity. It is less restrictive than the explicit criterion (A.12) even for inviscid

cases that have grid cells with Ax = Ay. When A, is large stability is enhanced, unlike

the fully implicit AF scheme, since A. appears as a factor in the denominator of (A.25)

only.

Amplification contours of the four stage semi-implicit scheme are given in Figure

A.4, for AX = 2.8 and A, = 50. The contours are similar to contours of the unfactored

implicit scheme in that IGI s 0 almost everywhere. The one dimensional nature of the

temporal discretization is evident.

A.4 Extension to Three Dimensions

Analysis for the three dimensional versions of the explicit, semi-implicit, and fully

implicit schemes proceeds much like the analyses above. In the explicit and semi-implicit

cases the stability criterion is altered only by inclusion of appropriate terms correspond-
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Figure A.4: Stability Contours of Four Stage Semi-Implicit Scheme A, = 50
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ing to the third dimension. The terms 6, and XA are replaced by the sums 6. + 6z

and A. + X,, respectively. The forms of the stability criteria are unchanged. For the

semi-implicit case, stability is still independent of spacing in the y-direction. However,

stability analysis of the implicit scheme reveals the well known unconditional insta-

bility of approximately factored schemes in three dimensions [Warming & Beam 79],

[Dwoyer & Thomas 811. Although the instability is weak and can be suppressed by

artificial viscosity, it merits concern.

A.5 Time Step Definition for the Thin Layer Navier-

Stokes Equations

The stability constraints for explicit and semi-implicit schemes for the thin layer

Navier stokes equations in generalized coordinates can be derived from their Cartesian

counterparts for the convection/diffusion equation. The primary difference between

the two, apart from the differing coordinate systems is in the number and form of the

characteristics of the inviscid equations. The following two sections describe how the

preceding results for the model equation may be used to deduce the form of the stability

constraint for the thin layer Navier-Stokes equations.

A.5.1 Explicit Time Step

The explicit time step can be derived by requiring that the numerical domain of

dependence of the scheme include the physical domain of dependence. This domain

can be estimated by considering the Euler equations written in coordinates normal

and tangential to a cell face. In the analysis that follows, C, f, and r; are coordinates
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Figure A.5: One-Dimensional Domains of Dependence

in physical space with the body of interest located at a rV = Const. surface. The

coordinates ( and S are in the streamwise and cross stream directions, respectively.

One can show (e.g. [Roberts 86]) that the Euler equations have five eigenvalues

(u, , ut , ui + C, ut - C), where uf is the velocity in the C direction (normal to a 6t1

cell face), and C is the speed of sound. The physical domain of the solution is contained

within the characteristics of this equation (see Fig. A.5). Thus, in one dimension the

CFL condition requires that
1

At =A

(A.28)
UC+C

The constant A is the CFL number that was determined to be < 2V2 from the stability

analysis.

In multiple spatial dimensions the CFL condition is somewhat of an approximation.
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One assumes that the CFL condition must be satisfied in each of the dimensions and

writes
1

At -=A._•C + U_+C + ._+C
AC An At (A.29)

uCATJAý + unACAC + uAAcAtl + C(AqAs + ACAC + A•Aq)

Each of the velocity terms in the denominator is nothing but the flux of velocity through

one of the faces of the volume and the upper bound for the three terms may be written

as

ueafACA + uACAC + uUA• Ar= IuSl,,mz + IVSvlma + IWSzlmaz (A.30)

where Sz, Sy, and S, are the projected areas of the cell in the z, y, and z directions,

respectively. The product ACAYIAC is approximately the volume of the cell, and the

speed of sound terms can be safely taken as

C(ATIAC + ACAC + AcAt) = CISmaI (A.31)

All of this can be combined in a somewhat ad hoc fashion with the viscous restriction

to obtain

V
At A L + (A.32)Iv . SI,, + ClS,,Il + 4s.

A.6 Semi-Implicit Time Step

The three dimensional semi-implicit stability limit can be derived from the two-

dimensional explicit criterion. The convective and the viscous restrictions in the direc-

tion normal to a body are eliminated due to the implicit treatment of those fluxes.

Consider the 2-D criterion written in body tangential and cross stream coordinates

1
At =A

.•.£ + 1C+C •aC at (A.33)

(u+ C)A + (ur + C)A "
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where C corresponds to the streamwise direction and f to the cross-stream direction.

Multiplying the top and bottom by the cell's normal dimension Aq

At = AAAA
(uf + c)ACAq + (uf + c)Aý~A (A.34)

Vol
ufAtArl + uAeArl + C(Aý + AC)Ai 1

and realizing that ueAdArl is just the flux of velocity through Face 1 or 2, while u CA1A7

is the flux through Face 3 or 4:

ueAArl = MAX(IV. S1i, IV S21) (A.35)

uAeAq = MAX(IV- Ssl, IV S4 )

and

C(AC + AO)AI) = C1Stand1,2,3,4 (A.36)

Combining all these terms gives

At 2V Vol (A.37)
(Iv S-I)MaX,. 2 + (IV. SI)M8 aZ, 4 + CIS,,.., 1, I(A.37)
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Appendix B

Implicit Formulation

This appendix describes in detail the system of equations that results from semi-

implicit treatment of the governing equations and the efficient solution of that system.

Each stage of SINSS has the form

[[I] + c'VAt ([A],S., + [A]6S2 , + [B]5S,, + [B]6S,, + [C]sSz + [C]eS 6)-] AW' =

-a, (FS, + GS, + HS,)7 1 - Do AW-1
J=1

(B.1)
This is a matrix equation for the changes AW" in the state vector from stage a - 1 to

stage s. The first two sections below present derivations of the terms on the implicit left

hand side due to linearization of inviscid and viscous flux terms, respectively. The third

and final section presents the variant of the Thomas algorithm that is used to invert

the system.

B.1 Formulation of Left Hand Side for Inviscid Fluxes

The Jacobian matrices of the inviscid fluxes, [Al] = 8FI/OW, [B1 ] = aGl/8W, and

[Ci] = aH 1/aW, must be defined and discretized. It is convenient to define character-
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istic variables U .. - Us

pu

Pt)
pw
pw

ALE A

I V
U1

Us

U3

U4

U.

so that the flux vectors Fr, GI, HI can be written as

pu

pu2 + P

puv

pow

L nPt(E+- P/p) i

Pt'

pUv

pv 2 + P

pow

and

U2

Us UsUU2 .+

US

U,

I -

U, "

U2Us
U1

rIoT1.
-- ±

U1
UsUs UsL I
U1 U1

H =-

/

U4 I

Us U4

UU3

U1
U4U5  U4L + P)
U, U,

The pressure in terms of the characteristic variables (B.2) is

P = (y - 1) (Us 1 U+U2 + U
-2 U .
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The Jacobians 8F/aoW, aGi/aW, and alHI/aW, are found by performing the

indicated differentiation,

[Ar] =

0
OP
aP

-ul +

-U)

-uw

+P
-uH + u-

BUI

1

2u +
a U2

v

w

H+u 2aU2

0 0

aos a

u 0

0
OPa
U-s

u

ap
aU-
aU4

0

"P

aus

0

0
8Pu(1+ )aUs

(B.7)

-u v
+P dP

-v2 +
aU1 aU2

-vw 0
8P 8P-vH + v P
5U1 VaU2

0

-uwt

-vw

OP-w + -

-wH + to
BUI

u 0

OP OP2v + --
aUs aU4

w

8P
H+v-

OUS

v

"U4

0 0

w 0

ap
aU2
8P

WU2

ap
aUs
WP

0

0

"P

0

vi+

0

0

0

OP OP2w + -aU

H+w ,w(1 + a)

For clarity, partial derivatives with respect to P were not expanded in (B.7) - (B.9).

They are
Pap

"U1
8Pap

8P

"U5

- I (u + v( + w2 )
2

8Pap= - -I)
aPap= - (, - 1)w
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(" - 1)
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In a computer code it is convenient to define these terms in similar fashion to minimize

coding complexity and computational cost.

To examine the structure of Equation B.1 ignoring, for now, linearization of the

boundary points j = 1 and j = JM, expand (B.1) for each control volume (i, j, k)

[LH ] =at [A]i+1 + [A]i S.. + [A]i + [Ai-
V 2 + 2

[Bj],12+ [Bl ,j + [Br]1 +[BIli-1 (B
2 2 (B.11)

[Cl j+1 + [CIlj + [Cly] + [C]i_-1 }+I]
2 2

where the i and k indices and temporal superscript a have been suppressed for clarity.

Rearranging slightly gives

[At
[LHSI] = *& { [Al]+ 1Sz," + [AI]j(S2 , + Sz,) + [AI] j-Sz,

[B]i+SVr,, + [B,]i(S,, + S,) + [Bi]i_ 1S,6  (B.12)

[C,],+IS5. + [C1 ](SZ, + S.6 ) + [CA]j_..1S, } + [I]

Equations B.11 and B.12 are simply the implicit analog of the finite volume flux inte-

gration over Faces 5 and 6 found on the right hand side of Equation B.1.

Writing (B.12) at all cells and ordering in the index j gives a block tridiagonal

matrix of equations:

[Mill [M 1]1 0 0 0

[Mi]- ([MI] [Mf+]2 0 0

[Mfli [M1 l] [Mf]l

0 0 ...

O 0 0 [M]MIJM [MI]J,

x

AW1

AW 2

AWJMAWiM

Res,

Res2

..

Resj

Res.TMM
(B.13)
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Each vector Res contains the residual of the five conservation equations in a cell (i, j, k)

given by the right hand side of Equation B.1. The vectors AW are the unknown changes

in the state vector; and, [MI] are 5 x 5 matrices composed of the matrices [A 1], [BI],

and [CI] and the identity matrix [I]:

uAdt
[Mr ); = 2V [[AljJ1iS 5, + [Bi]i 1+iS + [C1]i+14,+]1 • i < JM

[Mri = [I] + 2V[[A](S + ) + [B +[B ( [C,],(S,5 + ,,)] 1 < j < JM
cAt[MT]i = 2V [[A,]i-,S., + ([B]i-1 S,. + [C]ji-1S,.] 1 <j 5 JM

(B.14)

B.1.1 Boundary Conditions for the Inviscid Terms

At boundary cells (j = 1, j = JM), boundary conditions affect the definitions in

(B.14). If a time-accurate solution is sought it is important to linearize these bound-

ary fluxes accurately. If only a steady-state solution is required, an exact boundary

condition treatment is necessary only if its absence causes a decay in the convergence

rate. Below are described implicit treatment of boundary conditions at a wall and at

a supersonic outer boundary. Other boundary conditions can be treated by writing

out the appropriate discrete terms at the boundary and linearizing. In some cases not

linearizing the boundary conditions does not appear to decrease the convergence rate

of the calculation.

While the implementation of implicit boundary conditions in general can be com-

plicated, implicit treatment of a wall boundary condition is straightforward. At a walls

only the pressure flux is retained in the Euler equations, all other fluxes are set to zero.

Moreover the pressure at the wall is calculated by simple extrapolation, Po = P1 if the

wall is at j = 0. Thus, [M[]1 contains all terms corresponding to fluxes through Face 5
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but only the pressure fluxes across Face 6

[Mill t [[A]S6, + [Bt]IS,, + [Ct],S,
[ = V (B.15)

+2([A,p]S,, + [B,,1S,, + [C,]S,6,)] + [I].

The matrices [Ap], [Bp], and [Cp] are equivalent to [Al], [Bi], and [C,] with all terms

except the pressure terms in the z, y, and z momentum equations, respectively, deleted.

Linearization of supersonic boundary conditions is even simpler since the values of

the variables at the boundary are constant in time. Therefore, no additional terms are

added to [MIIJM.

B.2 Linearization of Viscous Fluxes

The linearization process described in the previous section for

must also be applied to the viscous fluxes,

F = r. , G = jry , and Hv =

Twa 'r.

Fv. Gy6

the inviscid flux terms

u

axz

Hv-

(B.16)

where

W. =

Gy, =

Iv, =

utzz + 'f-w + W,,, - qz

ut&1 + t 19 + wrv1 - qy

IS 3, + liT15 + wr,, - q

(B.17)

As before, the fluxes are written in terms of the characteristic variables (B.2) and
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the Jacobians can be easily calculated. A cumulative "Jacobian" is given by

[Mv] = W-(FvS, + GvS, + HvS,)

8r,, , s " s OTS

ar() a2+ + aU1

tUi)JsZ+ O(Ul) sy + ,o(U1

Vill

k( Ss + ASY + s.

r Vs, aOr., Sz+ Or. SA(2)Z -r(UU27)S

V5,2

___ Or3 SYS, o(Us) + O(U3+

v(U.) 0

8TUL S+ Ycl~S
Vs6s

Brar sy + Or (

(U-41 0 SU4 aUn4)Szo

V5,4
(B.18)

where

Vsi = Drx ave +

( ave +
=8(U1) +
=( Uav +a(u +1)

V6,2 = a(r2)"v +
a(U2) "c+

( D~rxysave +a (U2)
a(U2)"
.a,22  azur a

V5,3 = ( v.avA +  as) -Aq tl,)S,+
9 a(U3 ) av+(U 3) cU3
(Or20  + rj,, are, A( u•)e +  a-s)e + --( wave -A U,7,)S,+

a(U3) a8(U3) a(U3) -U3

(Or, r,, a_( V). +  waove - IA--,)s" '
a(U3)av+ a(U3) 4U3

Vs,4 = (4)oue +
S(U4)

( v. +a(U4)

(U1) avea(ul) V0,

a(u1) V

a(US)

c(U2)
a(U2)

a w ( ave
a(U2)

+ Wave
8(U1)

+ tO1,'+ a(u) Wave

8rs,
+ tWave

a(U2)W
- A abqi)SAU2
*-A A q)S5
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and

Vs,. = -A 4 S.- - A-a- V.VS - A f•, S ,
aU5 aU5 aU5

The heat flux terms in (B.19 - B.23) have been premultiplied by

A = (.ljI/Pr + st,j,IPret)/l(pi,t + ,tik.)

to allow eventual multiplication of B.18 by p.

The derivatives of the stress and heat flux terms are defined as

Ord7
a(U1)

2 a( a u)(2 a(U)3 cl(Ul)
8(Av)
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0(Au)a-ul)

a(U1) a(U1)'
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a(U2)
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Derivatives of the total enthalpy are

8H
a(U1)
aH

a(U3)
aH

8(U5)
The definitions above utilize the fact that Ar may be set to unity arbitrarily, such that

for example, and, therefore,

8(9 U) U2
a(U1) p2

a(Au)

a(U2)
1P
P

The metric terms are defined as

s 2 = .5(SX2 3 + SX2 J- 1)

SY= .5(SV2 , + SY2,i-l1)

S. = .5(s,2,, + SX,2, 3)

tlv = *5 (qix,+ n i-,)

fly = . 5('7Vi + ?iVi-_)

fx= .5(1ix, + 'hx.. 1)

where i and k indices have been omitted for clarity.

The definition of the viscous contribution to [LHS] is completed by setting [M] =

[Mi] + [Mv] in (B.13) where

[Mv]f = -aAdti[My]i+l

[Mvli = 2aAti[Mv]i

[Mv]; = -aAti[M•V]i-1 .

Several simplifying assumptions were made to obtain the linearizations that lead to

(B.32). Implicit in the definitions above is the assumption that, for a discrete quantity

A,
aAjWi+1

8A
j+1i

dA
and =a-

TWi
aA

alwi ~
(B.33)
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This is true for stress terms with constant coefficients such as aor , but not for

most terms that ake the product of a sum and a difference such as va,,". To handle

these terms with the above treatment one must assume that v does not vary from j"- 1

to j + 1. The difference in the linearization is slight for most terms and numerical

experiments with the 2D scheme did not show appreciable differences in convergence.

In addition, the temporal variation of viscosity with the state vector was assumed to be

negligible, an assumption that usually holds in laminar flow, and the metrics defined in

(B.31) are an approximation to those on the right hand side of Equation B.1.

B.3 Solution of Block Tridiagonal System

For a computational grid with JM cells in the normal direction (B.13) is a matrix

of size 5JM x 5JM. Each unknown is the change of some quantity, 6(pU) for example,

over one stage in a cell. Due to the compact nature of the discretization, each unknown

depends only on the unknowns in its own and in the two neighboring cells at (j - 1)

and (j + 1). Those unknowns, in turn depend on their immediate neighbors, thus

establishing a domain of dependence from j = 1 to j = JM. This gives the matrix a

block tridiagonal structure, each block having dimension five, equal to the number of

conservation equations. It is essential that the inversions be computationally efficient

on computers with scalar or parallel architectures.

Block tridiagonal matrices can be inverted very efficiently. Their solution is equiva-

lent to solution of a scalar tridiagonal matrix, with scalar operations replaced by matrix

operations. A specialized form of Gaussian elimination known as the Thomas algorithm
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can be employed. Form the recurrence relations

[D] 1 = [M] 1

[Eli = [D];'[M+]i 1 < j J (B.34)

[D]i = [M i - [M-][E]i-i 2 < j I J.

The 5 x 5 matrix equation [Eli = [D]~1 [M+]J can be solved by Gaussian elimination.

Applying the same operations to the right hand side gives

Z = [D] 1-'Resl

Zj = [D], (Resi - [M-]Zi,-i)

These operations require little additional memory since

Zi in Resj.

Combining left and right hand sides gives

[ I) [El
[I] [E12

[I]

(B.35)
2 j <J

[E]i can be stored in [Ci) and

the intermediate result

AWl Z

AW 2  Zz

AWJM Z j

where [I] is the identity matrix.

Finally, to eliminate the upper band of E matrices subtract [E]j-1x row j from row

j - 1 to get

where,

AW 1

AW 2

ZZi

ZZ2

ZZJ

ZZj

zZi-

(B.37)

(B.38)
2< j<J.
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B.3.1 CPU Requirements

While this algorithm is relatively efficient it is not well suited to vector processing

because, as written above, it is recursive in the index j, and thus can not be vectorized.

This problem can be circumvented by inverting (B.13) "plane by plane", rather than

one (i, k) location at a time by taking either K = 1, KM or I = 1, IM as an inner loop

in (B.34) - (B.38). With this approach the sections of computer code that perform the

inversions can be completely vectorized. The price in memory required paid for this

inversion is small if the Thomas algorithm is integrated into the Fortran routines that

setup the matrix B.13 (see Appendix H).
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Appendix C

Residual Smoothing Implementation

In three dimensions residual smoothing can be written as:

(1 - pR86,)Res' = Res

(1 - p~R6)Res" = Res' (C.1)

(1 - IPRf6)Res"' = Res"

The LHS of each equation is a scalar tridiagonal matrix. The difference operator 6,7,

for example, is here taken to be 6,,( ) = ( )i+l - 2( )i + ( )i-1. At grid boundaries a

"ghost" value of the residual must be defined. Two possible boundary conditions are to

set the ghost residual to zero or to the value of the first residual inside the domain. Both

boundary conditions were tried and no significant difference in convergence acceleration

was found. The first boundary condition (ghost residual equal to zero) was used since

it leaves the diagonal of the implicit residual smoothing matrix constant:
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-IAR

-IAR 1+ 2 pAR

0 0 0

-JR 0 0

-IR 1 + 2pR -PaR

0 0

This system can be inverted very efficiently. The solution algorithm is [Acton 70]

Res' = SN
N aN

Si + PARRes+ 1Resý =2 i

(C.3)
l<_i<N-1

where

al = 1+ 2pR ai = 1+ 2p• -
ai-I 

( )(C.4)
S1 = Res1  Si = Res + /R"S-

ai-1

Since ai are invariant, they must be calculated only once (for the largest dimension) in

the entire simulation.
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Res1
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Appendix D

Accuracy of the Difference Operators

This appendix explores the accuracy of the difference operator used in Chapter 3

and of several other difference operators. Because accuracy of approximations to the

full governing equations is difficult to assess, representative first derivative and second

derivative terms on a one dimensional stretched grid are examined. The purpose of the

analysis is to provide insight into the accuracy of popular discretizations on Navier-

Stokes type grids, without having to consider complications due to factors such as

artificial viscosity, solution convergence, grid skewness in multiple dimensions, etc. As

such, this analysis gives an upper bound of attainable accuracy and results given should

be interpreted cautiously.

This appendix examines first the accuracy of approximations to df/dx, correspond-

ing to an inviscid term, and then to the "viscous" term d2f/dz 2. In each case three

methods are considered: the finite volume, finite difference, and box-type approaches.

The one-dimensional test geometry is given in Figure D.1.1. Nodes points are denoted

by bullets, cell centers by (. The grid is defined by the coordinates of the nodes. Differ-

ences (Az, Ay) are calculated with a counterclockwise orientation. The magnitude Ay

is taken as unity. Spacing in z is computed from z+l1 = zx + Azi where Azi+l = aAxi,

and a is a stretching parameter defined by a = 1 + c. This formulation is commonly

used in generating Navier-Stokes grids about simple geometries (see 5.2).
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Figure D.1: One Dimensional Grid

D.1 Approximations to Inviscid Terms

D.1.1 The Standard Finite Volume Approach

The "standard" finite volume approach is a cell centered conservative discretization.

In this formulation flow variables are stored at the centers of each cell. Fluxes through

each of the cell sides are defined by some combination of the variables at nearby cell

centers. The difference is formed via a line integration of the fluxes around the cell:

df 1
dX= (FEAY~ + FNAYN + FPW'Y + FsAYs)dz Areal (D.1)

FE - Fw

AX

since AyE = 1 = -Ayw, Ays = AyN = 0, and the area of Cell 1 is Ay x Ax = Az.

Equation D.1 is written in finite difference form to allow comparison with formulae

constructed with a finite difference approach. The discretization is conservative because

the flux out of each cell flows entirely into the adjacent cell.

Discretizations differ by their definition of fluxes and accuracy of the resulting dis-

cretization. Two methods of defining the fluxes are "straight" averaging and "weighted"

averaging.

219

*--,&x/a a- -4 1 Ax -a~x



Finite Volume Straight Averaging

In this widely-used formulation (used in this thesis and many others) the flux is approx-

imated by a simple average of the variables at the adjacent cell centers:

FE a .5(f2 +/I) (D.2)

Fw .5(fi +fo);

or, with [D.1]
df 12 - fo (D.3)
dx Ax(D.3)

Finite Volume Weighed Averaging

Instead of using a simple average, this method interpolates linearly between the cell

centers to get the fluxes FE and Fw:

FE 2(A/2) + f,(aA•I/2)
Ax/2 + aA/2

! fo(Ax/2) + f,(Ax/(2a))Fw---
Az/2 + Ax/(2a)

giving

df f + (a - 1)f -ao(D.5)
dx (a + 1)Ax

D.1.2 Box-Type Finite Volume Integration

In a box-type scheme the governing equations are written as a system of first order

partial differential equations, with flow variables stored at the nodes of each cell. The

system of equations is typically solved simultaneously via a Newton-type algorithm'.

'See, for example, boundary layer solvers by [Keller 70], [Loyd & Murman 86], and the Euler solver

of (Drela 83].
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Although this approach has not (so far) proved practical for solution of the Navier-Stokes

equations, it is included here because it gives very accurate results.

Fluxes in a box-type scheme are calculated by averaging variables at adjacent node

points. This results in a second order accurate trapezoidal integration on arbitrary

grids. In one dimension this corresponds to knowing FE and Fw exactly in Equation

D.1. Thus the box scheme is second order accurate regardless of the grid.

D.1.3 Finite Difference Approximations

Finite difference approximations are easily derived from Taylor series expansions.

The resulting expressions also give immediate notice of their order of accuracy. Consider

expansions about cell center 1:

S= l + z+ '&+ -- fil + -- f' +...

fi =i (D.6)

fo = f, - Az-f 2 + 6-- f

where the prime (') denotes differentiation with respect to z and where Az + = Az/2 +

aAx/2 and Az- = Az/2+ Az/(2a). Approximations to arbitrary order of accuracy can

be attained by appropriate combinations of these and Taylor series at other adjacent

points. Consider centered first and second order accurate discretizations to fl.

Finite Difference First Order Accurate

Only two points are necessary for a first order accurate discretization. Set Af 2 + Bfo =

fl. Then by requiring that the coefficient of fi term be zero, and coefficient of fl term
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be 1 one gets

df 12-fod - A- fo + O(Az) (D.7)

(A = 1, B = -1) as expected. This operator is identical to the standard finite volume

operator [D.3].

Finite Difference Second Order Accurate

Second order accuracy can be attained with knowledge of fi, since, with a third available

equation, one may also require the coefficient of the fl' terms to vanish. The three

equations in three unknowns can be solved to give:

= Af 2 + Bfi + Cfo + O(Azx) (D.8)
dz

where

A=A-AX Az+(Az+ + AX-)

C =-A (D.9)Ax- (Az+ + AX-)

B= -(A+C)
Since this solution is unique, no other combination of f2, fI, and fo can be second

order accurate. 2 Thus the finite volume weighted averaging formulation (D.5) is not, in

general, second order accurate. Conversely, the second order accurate finite difference

form is not conservative.
2 0f course, second order accurate up or downwind discretisations can be constructed which involve

three different points. While these can also be made second order accurate, in general, the centered

formulation has the smallest truncation error.
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D.2 Approximations to Viscous Terms

Viscous terms present a more difficult discretization problem then inviscid terms

because for the same order of accuracy (if it is at all obtainable) they generally require

more points. The section begins with examination of the finite difference approach,

which quickly illustrates the problem.

D.2.1 Finite Difference Viscous Derivatives

Finite Difference First Order Accurate

Set Af 2+Bfi+Cfo = fl', where f2, fi, and fo are defined as the Taylor series expansions

D.6. This equation implies three relations: the coefficients of coefficients of f and f'

must vanish, and the coefficient of f " must be equal one. Solving the three equations

for A, B, and C gives:

dz -= Af 2 + Bf1 + Cfo + O(Az) (D.10)

where
2

A=
Ax+(AXz+ + AX-)

C = 2 (D.11)Ax-(Ax+ + AX-)

B= -(A+C)
Second order accuracy would require the satisfaction of a fourth constraint (the coeffi-

cient of f'm equals zero) which is impossible with a three point stencil.
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A Simple Minded Approach

An unthinking approach is to take the approximation

df - 2f + fo(D.12)
dz Az2

which is second order accurate on a Cartesian grid and apply it to the stretched grid.

Insertion of the Taylor series D.6 into (D.12) shows immediately that this is an incon-

sistent approximation.

D.2.2 Finite Volume Viscous Derivative

A finite volume discretization for f" consistent with the discretization of f' is to treat

the second derivative as the difference of two first derivatives. This is the approach used

in Chapter 3. Define

f12-li
, AX+ (D.13)

Az-
and then simply apply Equation D.1 to get in finite difference form

f f2AZ- - fi(A- + A ) + fo+(D.14)
AA+A(D.14)

Note that this form is equivalent to the first order accurate finite difference operator

constructed previously only in the limit of a = 1 (ie. no stretching).

D.2.3 Box Scheme for Viscous Terms

In a box-type scheme the governing equations are written as a system of first order

equations, so that the first difference terms are obtained from solution of the governing

equations. A numerical first difference approximation only must be constructed to get
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the second derivatives. Because of this, second derivatives obtained with a box scheme

are necessarily second order accurate on arbitrary grids. The procedure and accuracy

is identical to that of the box scheme for inviscid terms discussed above.

D.2.4 Numerical Study of Accuracy

The analyses above give some indication of the relative accuracy of a number of

difference operators. It is of interest, however, to examine a numerical comparison of

the operators to quantify the differences between them. For this study the function

f(z) = ein(-x) (D.15)

was chosen. Equation D.15 is smooth, infinitely differentiable, and a good approxima-

tion to the velocity profile in a laminar boundary layer [Schlichting 681. To compare the

difference operators, we construct exponentially stretched grids from x = 0 to z = 1.

The grids start with NX = 5 (Ax = .2) and are successively refined by a factor of

2. Different values of the stretching factor a were chosen to simulate stretching in a

boundary layer type grid. The first and second differences were calculated analytically

and with the above operators at each cell center. The root mean square of the error

RMS Error = Exact )(D.16)Jmr~as Exacti=1

was used to measure the deviation from the exact solution. For a second order accurate

scheme this quantity should decrease quadratically with x, for a first order scheme,

linearly.

Table D.1 and D.2 show the effect of stretching and grid line density on the accuracy

of the four discrete operators for inviscid terms. Table D.1 gives the accuracy on a

Cartesian grid. The first column gives the magnitude of Az. The second through fourth
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columns give the RMS error of the standard FV or first order accurate FD approach,

the weighted FV method, the second order accurate FD approach and the trapezoidal

integration.

Table D.1: First Derivative Accuracy on Cartesian Grid (a = 1.0)

Because the grid is unstretched the first three schemes are identical and yield second

order accuracy with a low truncation error. Even so their accuracy is surpassed by the

trapezoidal scheme. In this idealized survey almost twice the number of grid points are

required by the non-trapezoidal schemes to duplicate its accuracy.

This disparity increases on a stretched grid. Table D.2 gives results computed on a

grid with stretching factor of 1.2. A factor of this magnitude is often used to construct

grids for Navier-Stokes and boundary layer equation simulations (see (5.2)). Accuracy of

the FV/FD1 (first order accurate finite volume and finite difference) schemes decreases

significantly. The truncation error is much larger, especially for the standard scheme

and the order of accuracy has reverted to first order for both schemes. The second order

FD scheme and the trapezoidal scheme are unaffected by the stretching.

Tables D.3 and D.4 give the RMS errors for approximations to the second derivative
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AX FV/FD 1 FV Mod. FD 2" O. Box Sch.

0.2 0.007320 0.007320 0.007320 0.001837

0.1 0.001299 0.001299 0.001299 0.000325

0.05 0.000229 0.000229 0.000229 0.000058

0.025 0.000040 0.000040 0.000040 0.000010

0.0125 0.000009 0.000009 0.000009 0.000002



Table D.2: First Derivative Accuracy on Stretched Grid (a = 1.2)

Az FV/FD 1 FV Mod. FD 2nd O. Box Sch.

0.2 0.041028 0.024457 0.00717 0.001837

0.1 0.019239 0.010656 0.001287 0.000325

0.05 0.009481 0.005126 0.000229 0.000058

0.025 0.004763 0.002541 0.000041 0.000010

0.0125 0.002438 0.001265 0.000007 0.000002

of (D.15). Table D.3 gives results for an unstretched grid where the schemes uniformly

exhibit second order accuracy and a small truncation error. Table D.4 gives results on

Table D.3: Second Derivative Accuracy on Cartesian Grid (a = 1.0)

a grid with stretching factor A = 1.2. Column 2 displays the expected characteristics

of an inconsistant scheme: as Ax is decreased accuracy decreases. As expected the first

order accurate FD scheme (Column 3) shows linear increase in accuracy as Ax is halved.

The weighted FV scheme (which is not formally first order accurate) results are only
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Ax Simple FD FD 1at O. FV Stan. Box Sch.

0.2 0.003666 0.003666 0.003666 0.001837

0.1 0.000650 0.000650 0.000650 0.000325

0.05 0.000115 0.000115 0.000115 0.000058

0.025 0.000021 0.000021 0.000021 0.000010

0.0125 0.000024 0.000032 0.000024 0.000002



slightly less accurate than the FD results.

Table D.4: Second Derivative Accuracy on Stretched Grid (a = 1.2)

AX Simple FD FD 1"t O. FV Stan. Box Sch.

0.2 .739131 0.023144 0.025629 0.001837

0.1 1.58466 0.012835 0.014489 0.000325

0.05 3.24706 0.006648 0.007713 0.000058

0.025 6.554687 0.003369 0.004068 0.000010

0.0125 13.1607 0.001704 0.002177 0.000002

D.3 Accuracy in Generalized Coordinates

A popular approach to discretizing a set of equations is to first transform the equa-

tions to general curvilinear form by writing them in body normal and tangential coor-

dinates (rl, C). This is done by application of the chain rule. In one dimension x -,

via:

=aa:C9C (4 = I •(D.17)

Discretization of 8/8a now proceeds as before with a/az. In addition, the metric term

C. must be defined. For consistency the metric term must be defined precisely where the

difference is defined: in a centered difference about point i, Cz must also be computed

at i. Comparison with (D.3) shows that this procedure results in a conservative dis-

cretization. Second differences should be defined as the difference of two first differences

with ~, defined appropriately.
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The accuracy of the first derivative written in generalized coordinate form depends

on the accuracy with which both the metric and the actual difference terms are eval-

uated. Since the computational grid (, rl) may be defined as Cartesian, the centered

approximations to the first and second derivatives are second order accurate. However,

to maintain that order of accuracy, the metric term C. must also be evaluated with

second (or higher) order accuracy. This is usually possible only for analytically defined

grids'. If the metrics are computed with the same difference formulae as the flow deriva-

tives, the truncation error of the scheme will be identical to that of the scheme written

in physical coordinates.

sThese are notoriously scarce in two and three dimensions.
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Appendix E

Calculation of Metrics

The metric coefficients rz., qlv, rit found in Equations 2.14 and 2.15 may be found

by considering the differential expressions from the chain rule

&dx + Gdy + Gdz

tidx + t1 dy + ildz

ý.dx + gtdy + Sgdz ,

that is

and similarly

ex dx

7X X dy

Idz

(E.1)

(E.2)

dx

dy

dz

(E.3) by Cramer's rule

9Yy r J -(ye z

Ye y, y = .An

zn ze n z i A]

and equating with (E.2) gives

- IICZ~I

- Y Zse)

Yt Zf

-(xnztt -Zzftl)
xfzf - xztq

-Xczq - xqzce
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Inverting

(E.3)

(E.4)

xnyt - xfy,

-(Xcyt - z 1I)

2cyt? - Iye



where J is the Jacobian of the transformation

G y G

j z ny

= 1/ [z (ynz - ytz") - Z1(yot - yrzt) + xt~yez, - y, 1ze)]

(E.5)

and, from (E.2)

-J(yYftf - y~zf)

J(xfzf -xfZC)
-J(zccaf -xfyf)

(E.6)

t1s

In the Fortan code the derivatives with respect to Cartesian coordinates are needed

at the center of each face. They are obtained by computing values at the center of each

edge with centered differences and averaging to obtain the face centered values required

in (2.14) and (2.15).
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Appendix F

Wing Grid Definition

Below are coordinates of the streamwise and circumferential (normalized by half

span) grid point locations of the medium and fine grids. The grid was generated using

the Fortran code in Appendix G.

Location of streamwise stations:

Streamwise Station

i=1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

X coordinate

0.1000000
0.1068000
0.1140625
0.1218188
0.1301025
0.1389496
0.1483982
0.1584893
0.1692667
0.1807769
0.1930698
0.2061986
0.2202202
0.2351953
0.2511887
0.2682696
0.2865120
0.3059950
0.3268028
0.3490255
0.3727594
0.3981072
0.4251787
0.4540910
0.4849694
0.5179476
0.5531682
0.5907840
0.6309575
0.6738629
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0.7196859
0.7686249
0.8208917
0.8767127
0.9363296
1.000000

Medium grid circumferential locations:

Circumferential loc. Y Coordinate

0.0000000E+00
4.9067654E-02
9.8017134E-02
0.1467305
0.1950902
0.2429802
0.2902846
0.3368899
0.3826834
0.4275551
0.4713967
0.5141027
0.5555702
0.5956993
0.6343933
0.6715589
0.7071068
0.7409512
0.7730104
0.8032075
0.8314696
0.8577287
0.8819213
0.9039893
0.9238795
0.9415441
0.9569404
0.9700313
0.9807853
0.9891766
0.9951847
0.9987954
1.000000
0.9987954
0.9951847
0.9891766
0.9807853
0.9700313
0.9569404
0.9415441

Z Coordinate

-5.0000504E-02
-4.9940266E-02
-4.9759798E-02
-4.9459293E-02
-4.9039796E-02
-4.8502065E-02
-4.7847454E-02
-4.7077641E-02
-4.6194427E-02
-4.5199927E-02
-4.4096500E-02
-4.2886861E-02
-4.1573882E-02
-4.0160805E-02
-3.8650859E-02
-3.7047926E-02
-3.5355635E-02
-3.3578303E-02
-3.1719983E-02
-2.9785288E-02
-2.7778795E-02
-2.5705412E-02
-2.3570077E-02
-2.1377981E-02
-1.9134356E-02
-1.6844654E-02
-1.4514369E-02
-1.2149133E-02
-9.7546075E-03
-7.3365844E-03
-4.9009109E-03
-2.4534089E-03
0.0000000E+00
2.4534089E-03
4.9009109E-03
7.3365844E-03
9.7546075E-03
1.2149133E-02
1.4514369E-02
1.6844654E-02
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0.9238795
0.9039893
0.8819213
0.8577287
0.8314696
0.8032075
0.7730104
0.7409512
0.7071068
0.6715589
0.6343933
0.5956993
0.5555702
0.5141027
0.4713967
0.4275551
0.3826834
0.3368899
0.2902846
0.2429802
0.1950902
0.1467305
9.8017134E-02
4.9067654E-02
0.0000000E+00

1.9134356E-02
2.1377981E-02
2.3570077E-02
2.5705412E-02
2.7778795E-02
2.9785288E-02
3.1719983E-02
3.3578303E-02
3.5355635E-02
3.7047926E-02
3.8650859E-02
4.0160805E-02
4.1573882E-02
4.2886861E-02
4.4096500E-02
4.5199927E-02
4.6194427E-02
4.7077641E-02
4.7847454E-02
4.8502065E-02
4.9039796E-02
4.9459293E-02
4.9759798E-02
4.9940266E-02
5.0000504E-02

Fine grid circumferential locations:

Circumferential loc.

k= 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Y Coordinate

0.0000000E+00
0.1221366
0.2336354
0.3342313
0.4241185
0.5037954
0.5739482
0.6353631
0.6888653
0.7352764
0.7753860
0.8099346
0.8396040
0.8650135
0.8867190
0.9052153
0.9209397
0.9342766
0.9455620
0.9550884
0.9631100
0.9698462
0.9754869

Z Coordinate

-5.0000504E-02
-4.9626183E-02
-4.8616704E-02
-4.7125015E-02
-4.5280814E-02
-4.3191597E-02
-4.0944993E-02
-3.8611036E-02
-3.6244839E-02
-3.3888750E-02
-3.1574685E-02
-2.9326305E-02
-2.7160212E-02
-2.5087669E-02
-2.3115689E-02
-2.1247901E-02
-1.9485427E-02
-1.7827630E-02
-1.6272269E-02
-1.4816190E-02
-1.3455539E-02
-1.2185992E-02
-1.1002984E-02
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24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

0.9801953
0.9841117
0.9873562
0.9900325
0.9922282
0.9940189
0.9954687
0.9966323
0.9975563
0.9982802
0.9988374
0.9992564
0.9995613
0.9997723
0.9999065
0.9999784
1.000000
0.9999800
0.9999169
0.9998054
0.9996399
0.9994140
0.9991213
0.9987540
0.9983044
0.9977636
0.9971218
0.9963688
0.9954931
0.9944825
0.9933233
0.9920012
0.9905001
0.9888027
0.9868904
0.9847429
0.9823383
0.9796527
0.9766603
0.9733334
0.9696416
0.9655526
0.9610311
0.9560394
0.9505364
0.9444786
0.9378185
0.9305055
0.9224851
0.9136992
0.9040854
0.8935770
0.8821033
0.8695885
0.8559526
0.8411106
0.8249727
0.8074445
0.7884266
0.7678154
0.7455025
0.7213761
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-9.9017732E-03
-8.8776452E-03
-7.9259165E-03
-7.0420532E-03
-6.2216623E-03
-5.4604942E-03
-4.7545689E-03
-4.1000778E-03
-3.4934350E-03
-2.9312631E-03
-2.4104011E-03
-1.9278848E03
-1.4809514E-03
-1.0670180E-03
-6.8368023E-04
-3.2869991E-04
0.0000000E+00
3.1604434E-04
6.4471620E-04
9.8650414E-04
1.3419170E-03
1.7114739E-03
2.0957130E-03
2.4951908E-03
2.9104769E-03
3.3421551E-03
3.7908396E-03
4.2571523E-03
4.7417120E-03
5.2451780E-03
5.7682167E-03
6.3115028E-03
6.8757092E-03
7.4615260E-03
8.0696819E-03
8.7008551E-03
9.3557714E-03
1.0035128E-02
1.0739590E-02
1.1469876E-02
1.2226655E-02
1.3010557E-02
1.3822161E-02
1.4662084E-02
1.5530799E-02
1.6428791E-02
1.7356504E-02
1.8314075E-02
1.9301843E-02
2.0319769E-02
2.1367794E-02
2.2445738E-02
2.3553042E-02
2.4689123E-02
2.5852967E-02
2.7043436E-02
2.8258907E-02
2.9497487E-02
3.0756779E-02
3.2033868E-02
3.3325493E-02
3.4627546E-02



0.6953208
0.6672184
0.6369491
0.6043923
0.5694283
0.5319400
0.4918149
0.4489476
0.4032431
0.3546200
0.3030155
0.2483891
0.1907293
0.1300590
6.6444002E-02
0.0000000E+00

3.5935350E-02
3.7243534E-02
3.8545687E-02
3.9834738E-02
4.1102458E-02
4.2339578E-02
4.3535478E-02
4.4678412E-02
4.5755036E-02
4.6750974E-02
4.7649808E-02
4.8433479E-02
4.9082577E-02
4.9575854E-02
4.9890015E-02
5.0000504E-02
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Appendix G

Wing Grid Generation Code

Below is the Fortran code (and a sample input file) used to generate computational

grids around the wings.

c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C THIS PROGRAM GENERATES A 3-D O-H GRID FOR AN ELLIPTICAL DELTA WING
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

PARAMETER(ISIZ85, JSIZ=85,KSIZ=111)
IMPLICIT REAL (A-H,O-Z)
REAL AOA.MACH,SWDEGDX,DXO
DIMENSION X(ISIZ,JSIZ,KSIZ),Y(ISIZ.JSIZ,KSIZ),Z(ISIZJSIZ,KSIZ),
k& OUTER(KSIZ),ZOUTER(KSIZ) ,YCON(JSIZ.KSIZ)
& ZCON(JSIZ,KSIZ), (ISIZ) ,PSI(KSIZ)

COMMON/GRID/IMAX,JMAX,KMAX.,LEN.CON,ZCON,YOUTER. ZOUTER,PSI
COMMON/ANGLES/SWEEPR,CONEANGR,SYM,ECC
COMMON/CHANGE/IVALUE
COMMON/VISC/VISSTRI,JVIS,VISSTRO
CHARACTER*30 GRNAME
LOGICAL SYM
OPEN(UNIT=15.STATUS='OLD',FORM='FORMATTED',FILE='wingn.inp')
OPEN(UNIT-4,STATUS-'UNKNOWN ,FORM='FORMATTED',FILE='wing.dat')

READ(15,*) IMAX
READ(15,*) JMAX
READ(16,*) KMAX
READ(15,*) ECC
READ(15,*) SYM
READ(15,*) SWEEP
READ(15,*) AMACH
READ(156,*) ALPHA
READ(15,*) AFAC
READ(16.,) BFAC
READ(15,*) ZFAC
READ(15,*) ITE
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READ(15,*) XSTART,XEND
read(15,*) VISSTRI,JVIS,VISSTRO
READ(15,*) KHALF,TTOP, TBOT
READ(16,*) GRNAME

PI - 4.DO*DATAN(1.DO)
RAD - PI/180.DO
TANANG = TAN(ALPHA*RAD)
SWEEPR - SWEEP * RAD
CONEANGR - PI*O.6DO-SWEEPR
ALPHAR - ALPHA * RAD
ANGM - DASIN(1.DO/AMACH)

C.... angles with respect to freestream dir
SHCKANGW - ANGM + ALPHAR
SHCKANGL - ANGM

ILE = 1
DELX = 2.0/REAL(IMAX-1)
IMAXN = IMAX
ITEN - ITE

cray WRITE(10) IMAXN,JMAX,KMAX,ILE,ITEN
c WRITE(4,*) 'ijk,ile,ite=',IMAXN,JMAX,KMAX,ILE,ITEN

IF(SYM) THEN
ISYM=1

ELSE
ISYM=O

ENDIF
AOA-ALPHA
MACH - AMACH
SWDEG - SWEEP

cray WRITE(10) MACH,AOA,SWDEG,ISYM
c WRITE(4,*) 'MACH,AOA=',MACH,AOA
c WRITE(4,*) 'SWEEP,SYM',SWDEG,ISYM

C........ set up x-distribution ( dx_(i+1)/dx-i = x_(i+l)/x-i )
DXO - .01
URELAX - 0.5
XX(1) - XSTART
KITER - 0

9 DX - DXO
KITER - KITER + 1
DO 10 I - 1,IMAX

XX(I+1) - XX(I) + DX
10 DX - (XX(I+1)/XX(I))*DX
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C
C---- Check whether iteration has converged

IF (KITER .GT. 1000) THEN
WRITE(4,*) 'X calculation did not converge -- Stop'
STOP

ENDIF
write(4,*) 'xx(imax),kiter' ,xx(imax),kiter
IF (ABS(XX(IMAX) - XEND) .LT. .000001) GOTO 8
DIO - DXO*((XEND-XSTART) / (X(IMAX) -ISTART) )**URELAX
GOTO 9

8 CONTINUE
WRITE(4,*) 'KITER - ',KITER

C
C---- Calculate circumferential spacing: Allow assymetric point distribution
C---- and clustering for symmetric sections

IF(.NOT. SYM) GOTO 95
PSI(1) a -PI/2
PSI(KMAX) - PI/2

C
C---- Top half of symmetric body

DPSI - 1.
DO 90 K - KHALF,KMAX-1

PSI(K+1) * PSI(K) + DPSI
90 DPSI - DPSI*TTOP

DO 91 K = KHALF,KMAX
91 PSI(K) = (PSI(K)/PSI(KMAX))*(PI/2)

C
C---- Bottom half

DPSI - 1.
DO 92 K = KHALF,2,-1

PSI(K-1) * PSI(K) - DPSI
92 DPSI - DPSI*TBOT

DO 93 K = KHALF,1,-1
93 PSI(K) - (PSI(K)/PSI(1))*(-PI/2)

C
C---- Check on "smoothness" of transition from bottom to top

SMOOTH - ABS(PSI(KHALF+1)/PSI(KHALF-1))
WRITE(6,*) 'DPSI+/DPSI- =',SMOOTH

C
C---- Limit transition to 1.5 times stretching max.

TSTRETCH - .6*(TTOP+TBOT)
SMO - 1 + 1.5*(TSTRETCH-1)
IF (SMOOTH .GT. SMO .OR. SMOOTH .LT. 1/SMO) THEN

WRITE(6,*) 'Transition is too rough!! Stop.'
STOP

END IF
GOTO 97
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C
C---- If not symmetric, do even circumferential spacing
95 DO 96 K = 1,KMAX
CSYMMETRIC PSI(K)PI*REAL(K-1)/(KI4AX-1)-o.5*PI

PSI(K)2. O*REAL(K-1)/(KMAX-1)-0. 50PI
96 CONTINUE
97 CONTINUE

DO 110 I = 1,IMAX
write(4,*) '\> ',i,' \>', xx(i),'\\'
DO 110 J - 1,JMAX
DO 110 K = 1,KMAX

110 X(I.J,K) - XX(I)

DO 11 I=1,IMAX
ILEN a X(I.1.1)

C.... major axis of ellipse which forms outer boundary
AMAJ a AFAC*XLEN*TAN(SHCKANGL)

C... minor axis of ellipse which forms outer boundary
SAFE1 - 2.05

Bi - SAFE1*ANGM

BMIN 1 BFAC*XLEN*TAN(ANGM)
ZWING - ZFAC*3.DO*XLEN*TAN(ALPHAR)

DO 3 K-1.KMAX

T - PSI(K)
AA a SIN(T)**2/AMAJ**2+COS (T)**2/BMIN**2
BBE -2.0*ZWING*SIN(T)/AMAJ**2
CC = ZWING**2/AMAJ**2-1.0

RAD1 = (-BB+SQRT(BB**2-4.0*AA*CC))/(2.0*AA)
RAD2 - (-BB-SQRT(BB**2-4.0*AA*CC))/(2.0*AA)
RAD = MAX(RAD1.RAD2)
YOUTER(K) = RAD*COS(T)
ZOUTER(K) = RAD*SIN(T)
kk- k

3 CONTINUE

IVALUE - I

CALL GENGRD

chord - ycon(1,40)

IF (KMAX .LT.70)chord = ycon(1,(KMAX-1)/2+1)
if(i.eq.1)write(4,*)'i,chord-',i,chord
if(i.eq.imax)write(4,*)'i,chord',i,chord
DO 15 J-I.JMAX
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DO 16 K=1.KMAX
Y(I.J,K) = YCON(J.K)
Z(I,J,K) - ZCON(J,K)

if(i.eq.1 .and.j.eq.1)
kwrite(4,*) '\> ',k,' \>',ycon(j,k)/chord,'\>',zcon(j,k)/chord,'\\'

16 CONTINUE
15 CONTINUE

11 CONTINUE
C
C---- Check whether the grid extends beyond the body

KMID = (KMAX+1)/2
RAT1 = Y(1,JMAX,.KMID)/Y(1.1,KMID)
RAT2 = Z(1,JMAX,KMAX)/Y(1,1,KMID)
RAT3 = ABS(Z(1,JMAX.1)/Y(1.1,KMID))
WRITE(6,*) 'RATIO AT TIP=',RATI
WRITE(6,*) 'RATIO AT TOP=',RAT2
WRITE(6,*) 'RATIO AT BOT=',RAT3
IF(RATI .LT. 1. .OR. RAT2 .LT. 1. .OR. RAT3 .LT. 1.)THEN
WRITE(6.*) 'Grid outer boundary intersects body: STOP'

WRITE(6,*) 'Adjust AFAC, BFAC, and/or ZFAC and re-run!'
ENDIF

C
OPEN(UNITIO. STATUS-'UNKNOWN',FORM='UNFORMATTED',FILE=GRNAME)
WRITE(10) IMAX, JMAX,KMAX
WRITE(IO) (((X(I,J,K),I-1,IMAX),J=1,JMAX),K=1,KMAX),

k (((Y(I,J,K),I=1,IMAX),J=1,JMAX),K=1,KMAX),
k (((Z(I,J,K),I=1,IMAX),J=1,JMAX),K=1,KMAX)
STOP
END

SUBROUTINE GENGRD
C
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
c$$$$$ $$$$$
C$$$$$ This subroutine generates the grid at each chordwise $$$$$
C$$$$$ station given the location of the outer boundary and $$$$$
C$$$$$ body geometry. $$$$$
c$$$$$ $$$$$

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C

PARAMETER(ISIZ=85 JSIZ=85,KSIZ=111)
IMPLICIT REAL (A-H,O-Z)
DIMENSION X(ISIZ),YCON(JSIZ,KSIZ),ZCON(JSIZ,KSIZ),
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& YOUTER(KSIZ),ZOUTER(KSIZ) E(KSIZ)Y(JSIZ,KSIZ),
& Z(JSIZ.KSIZ) PSI(KSIZ)

COMMON/GRID/IMAX, JMAX,KMAX,LEN.YCON,ZCON, OUTER,ZOUTERPSI
COMMON/ANGLES/SWEEPR,CONEANGR.SYM.ECC
COMMON/CHANGE/IVALUE
LOGICAL SYM
COMPLEX ZETATMP,ZETAOUT,ZETABOD.ZETA,ZETAV(JSIZ)
COMMON/VISC/VISSTRI.JVIS,VISSTRO

C
C
C .......... Major and minor axes of wing
C

PI * 4.O*ATAN(1.)
A XLEN*TAN(CONEANGR)
B - A*SQRT(I.-ECC**2)

C
C .......... Parameters for Joukowski transformation.
C

C=.5*(A+B)
=. 5*SQRT(A**2-B**2)

CS - CMPLX(S,O.O)
C
C........... Loop over rays.
C

DO 2 K=1,KMAX
C
C .......... Generate transformed body pts
C
C IF(SYM) THEN
C T=PI*REAL(K-1)/(KMAX-I)-PI*O.5
C ELSE
C T=2.*PI*REAL(K-1)/(KMAX-1)-PI*0.5
C ENDIF

T - PSI(K)
C

ZETABOD=C*CMPLX(COS(T).SIN(T))
C
C .......... Transform outer boundary points
C

ZETATMP - CMPLX(YOUTER(K),ZOUTER(K))
IF(K.EQ.1) THEN
ZETABOD=CMPLX (0.,-C)
ZETATMP-CMPLX(0 .0ZOUTER(K))

ELSEIF(K.EQ.KMAX) THEN
ZETABOD=CMPLX(O.0,C)
ZETATMP-CMPLX(0.O.ZOUTER(K))
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ENDIF
C
C .......... Choose root by quadrant of shock point.
C

IF(K.GT.1) THEN
ZETAOUT = .50*ZETATMP+.50*CSqRT(ZETATMP**2-4.0*CS**2)

ELSE
ZETAOUT = .50*ZETATMP-.50*CSQRT(ZETATMP**2-4.0*CS**2)

ENDIF
C
C----- Viscous stretching in JVIS points ala BLoyd
C JVIS = 15
C JVIS = jmax

DVIS = 1.
ZETAV(1) = 0.
DO 11 J = 1,JMAX-1

ZETAV(J+1) = ZETAV(J) + DVIS
if(ivalue .eq. 25.and.k.eq.kmax)write(4,*)zetav(j+1),j+1

IF (J .LT. JVIS)DVIS = DVIS*VISSTRI
11 IF (J .ge. JVIS)DVIS = DVIS*VISSTRO

DO 12 J = 1,JMAX

12 ZETAV(J) = ZETABOD +

& (ZETAV(J)/ZETAV(JMAX))*(ZETAOUT-ZETABOD)
c if(ivalue .eq.25) write(4,*)'zb,zo=',zetabod,zetaout
C
C .......... Divide ray into segments, with exponential stretching.
C

DO 1 J=1,JMAX
c COMPX=REAL(J-1.)/(JMAX-1.)
c RBAR=-LOG(1.0-(1.0-EXP(-BETA))*COMPX)/BETA
c ZETATMP=ZETABOD+(ZETAOUT-ZETABOD)*RBAR
c ZETA=ZETATMP+(S**2)/ZETATMP

ZETA=ZETAV(J) + (S**2)/ZETAV(J)
C

Z(J,K)=REAL((0.,-1.)*ZETA)
Y(J,K)=REAL(ZETA)

C
1 CONTINUE
2 CONTINUE

DO 21 J=1,JMAX
Y(J,1) = 0.0
Y(J,KMAX) = 0.0

21 CONTINUE
c DO 22 K=1,KMAX
c Z(1,K) = 0.0
c 22 CONTINUE
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DO 3 J=1,JMAX
DO 4 K=1,KMAX

YCON(J,K) = Y(J,K)
ZCON(J,K) = Z(J,K)

4 CONTINUE
3 CONTINUE

99 RETURN
END

Sample input file:

64
101
.9987492
.TRUE.
65.
1.6
8.0
1.5
1.5
0.175
36
0.1 1.
1.20 15 1.15
40 1.04 1.08
'test.gri'

IMAX
JMAX
KMAX
ECC - Eccentricity (1=line,O=circle)
SYM
SWEEP
AMACH
ALPHA
AFAC: Makes up and down larger
BFAC Makes grid wider
ZFAC When increased, moves grid up
ITE
XSTART,Xend
VISSTR
Grid circumferential definition
GRNAME
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Appendix H

Computer Program Listings

SINSS - Semi-Implicit Navier-Stokes Solver

Copyright @1989 Massachusetts Institute of Technology

Permission to use, copy, modify and distribute this software and its documentation

for any purpose and without fee is hereby granted provided that the above copyright

notice appear on all copies, and that both the copyright notice and this permission

notice appear in all supporting documentation, and that the name M.I.T. not be used

in advertising or publicity pertaining to the distribution of this software for any purpose.

This software is provided "as is" without any warranties whatsoever, either express or

implied, including but not limited to the implied warranties of merchantability and

fitness for a particular purpose.

For further information, a listing, or a tape of SINSS, please contact

M.I.T. Software Center

Technology Licensing Office

M.I.T. Room E19-722

77 Massachusetts Avenue

Cambridge, MA 02139.

A listing of SINSS may be obtained for $15.00. A 9 track tape copy written in the

TAR format may be obtained for $200.00. Make checks payable to MIT and send to

the above address.
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PROGRAM SINSS

C Semi-Implicit solution of the thin layer Navier-Stokes equations *
C

Bernard Loyd
Computational Fluid Dynamics Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts USA
6 February 1989

*

C Fortran code based on 3-D Euler equations code by Roberts/Goodsell *

include 'euler.inc'
include 'blvisc.inc'
COMMON/SHCK/ JSM,ADDSMO
OPEN(UNIT=15,STATUS='OLD',FORM='FORMATTED',FILE='sinss.inp')

C---

C
C---

C

VERSION BL1 CREATED 8/25/88 AT 03:10
WRITE(6,*) '***** VERSION BLi *****'
VERSION BL2 (TEST) CREATED 9/15/88 AT 15:00
DT set to minimum at each streamwise station (S-I only)
WRITE(6,*) '***** VERSION BL2 (TEST) *****'

READ(15,*)
READ(15,*)
READ(15 ,)

READ(15 ,)

READ(15 ,*)
READ (15,*)
READ (15,*)
READ(15,*)
READ(16,*)
READ(15,*)
READ(15,)

READ (15,*)
READ(15,*)
READ(15,*)
READ(15,*)

DATE i date
MACH i mach number
ADA ! angle of attack
YAW i yaw angle
GAM i gas constant
KAP2 1 2nd order art.visc. constant
KAP4 I 4th order art.visc. constant
ADDSMO,JOUT !Add'l shock smoothing faired in Qjsm=jmax-jout
CFL i cfl number
AENTH I enthalpy damping coef.
ITMAX ! maximum number of iterations
ITCOEF I number of iter for force calculations
ITPRIN i number of iter for printing
BIN I if .true. then output is given in binary form
CFBIN I if .true. then force coefficients in binary

READ(15,*) ITER
C If the code is being restarted from a previous solution, the value
C input for ITER must be > 1 (assign input to unit 8);
C if you're starting from scratch, ITER = 1

READ(15,*) ICON I used only with supersonic flows
C if ICON = 0 then initial conditions are set to the conical soln
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C if ICON = 1 then initial conditions are the soln to a lower alpha
C (assign input to unit 12) ICON=1 OPTION NOT IMPLEMENTED -- USE RESTART
C***** assign conical solution to unit 11 ******

READ(15,*) ILE
READ(15,*) ITE
READ(15,*) RE
READ(15,*) EPSR
READ(15,*) GRNAME
READ(15,*) RSNAME
READ(15,*) STNODE
READ(15,*) SVNAME
READ(15,*) CFNAME
READ(15,*) RESTRT
READ(15,*) INPDAT
READ(15,*) LOWANG
READ(15,*) OLDRES
READ(15,*) CONSOLN

C
CViscous

READ(15,*) SEMIIMP
READ(15,*) MUSI
READ(15,*) REYNUM
READ(15,*) TINF,TWALL
READ(15,*) PR,PRT
RE = REYNUM

C
C---- Consistent units here...

RGAS = 287.
TCONST = 110.
ACONST = (GAM*RGAS*TINF)**.5
HWALL = (GAM*RGAS/(GAM- 1)) *TWALL/ACONST**2
SHCONST = (GAM*RGAS/(GAM-1))*TCONST/ACONST**2
write(6,*) 'ac,sh,hwALL',ACONST,SHCONST,HWALL

CViscous
C

OPEN(UNIT=1,STATUS=' OLD',FORM'UNFORMATTED',FILE=GRNAME)
OPEN(UNIT=2STATUS- 'NEW',FORM='FORMATTED' FILE=RSNAME)
OPEN(UNIT4 ,STATUS= NEW' FORM='UNFORMATTED',FILE=SVNAME)
CLOSE(4)
IF(CFBIN) THEN

OPEN(UNIT=7,STATUS-'aunknown',FORM='UNFORMATTED',FILE=CFNAME)
ELSE

OPEN(UNIT=7,STATUS='unknown',FORM='FORMATTED',FILE=CFNAME)
ENDIF

PI = 4.*ATAN(i.)
C
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C--- Read in the coordinates of the grid cell vertices and initialize
C the grid from a binary data file. An O-H mesh topology is assumed.

C

READ (1) IMAX,JMAX,KMAX
IM = IMAX - 1
JM = JMAX - 1

KM = KMAX - 1
WRITE(6,*) MACH,AOA
WRITE(6,*) IM,JM,KM,ITE
NCELLS = IM*JM*KM
READ(l) (((X(I,J,K),I=1,IMAX),J=1,JMAX),K=1,KMAX),

1 (((Y(I,J,K),I=1,IMAX),J=1,JMAX),K=1,KMAX),
2 (((Z(I,J,K),I=1,IMAX),J=1,JMAX),K=1,KMAX)
CLOSE (1)

C

write(6,*) 'imax,isiz=',imax,isiz
IF(IMAX .GT. ISIZ .OR. JMAX .GT. JSIZ .OR. KMAX .GT. KSIZ)THEN
WRITE(6,*) 'DIMENSIONS ARE IMPROPER -- STOP!'
STOP

ENDIF
SYM = .FALSE.

c IF(YAW .EQ. 0.) SYM = .TRUE.
IF(YAW .EQ. 0. .and. grname .ne. 'ni.gri') SYM = .TRUE.
IF(GRNAME .EQ. 'ni.gri')then
write(6,*) 'Reactivate commented out lines in DTSIZE

& (twice)'
STOP

ENDIF
C
C---- Define location for additional shock smoothing:

JSM = JMAX - JOUT
IF(1.*JSM .LT. 1.*(JMAX/2))THEN
WRITE(6,*) 'Shock smoothing too near body: STOP!'
WRITE(6,*) 'Decrease JOUT'
STOP

ENDIF

CALL PROUT

CALL NORMAL

CALL AMEAN
CViscous

IF (REYNUM .GT. 0. .OR. SEMIIMP) CALL BLETA
CViscous

ALPHA1 = 0.25
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ALPHA2 = 1./3.
ALPHA3 = 0.5

C--- initialize the state vector; note that density and speed of sound

C are non-dimensionalized by their freestream values

C

PIFAC = PI/180.
ALPHA = AOA
ADA = AOA*PIFAC
YAW = YAW*PIFAC
UIN = MACH*COS(AOA)
WIN - MACH*SIN(AOA)
PIN = 1./GAM
EIN = PIN/(GAM-1.) + 0.5*MACH*MACH
HIN = EIN + PIN
CIN = 1.

! free stream x-velocity

! free stream z-velocity

! free stream pressure

! freestream energy

! free stream total enthalpy

C--- DELNORM is used to normalize the residuals later
DELNORM(1) = 1.

DELNORM(2) = 1./UIN
DELNORM(3) = 1./UIN
DELNORM(4) = 1./UIN
DELNORM(5) = 1./EIN

IF (ITER.GT.1) THEN
CALL RESTART

ELSE IF(MACH.GT.1.0) THEN
CALL SUPERIC

ELSE
CALL SUBSONIC

ENDIF
IF(ITMAX.EQ.0) GO TO 11

start Euler solution procedure; establish boundary conditions,

C dissipation, determine initial value of residuals, and determine
C size of local time step
C
1 CALL BNDRYC

CALL FLUX
CALL DTSIZE
CALL DISSIP

C
C--- call four-stage time stepping procedure
C

CALL TIMSTP

C--- calculate force and moment coefficients every ITCOEF iterations,
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C and when done.
C

IF(MOD(ITER,ITCOEF).EQ.0 .OR. ITER .EQ. ITMAX) THEN
CALL COEF

ENDIF
C
C--- write out solution (restart file) every ITPRIN iterations,
C or when done (ITER = ITMAX)
C

IF (MOD(ITER,ITPRIN). EQ .0. OR .ITER. Eq .ITMAX) THEN
CALL SAVESET

ENDIF
C

ITER = ITER + 1

IF (ITER. GT .ITMAX) GO TO 10
GO TO 1

10 CONTINUE

C--- calculate the state vector at the nodes for plotting
11 CALL BNDRYC

CALL UNODES
C

STOP
END
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C
C
C SUBROUTINE AMEAN: determines mean projected area in x,y,and z
C directions of each grid cell for use in calculation of time step
C
C For semi-implicit runs, this subroutine is repeated so that semi-implicit
C and explicit (for use in LHSSMO) can be calculated...
C

SUBROUTINE AMEAN
include 'euler.inc'
include 'blvisc.inc'
LOGICAL SEMISTO
COMMON/AEXP/AXEXP(ISIZ,JSIZ,KSIZ),AYEXP(ISIZ,JSIZ,KSIZ),
& AZEXP(ISIZ,JSIZ,KSIZ)

C
C---- Determine whether to run twice

SEMISTO - .FALSE.
IF (SEMIIMP) THEN

SEMIIMP = .FALSE.
SEMISTO = .TRUE.

ENDIF
1 CONTINUE

C
C---- Do interior and i=1,IM

DO 30 I = 1,IM
II = I - 1
DO 20 J = 2,JM

JJ =J -I
DO 10 K = 2,KM
KK = K-1
Al = ABS(FACEX(1II,J,K))
A2 = ABS(FACEX(2,I,J,K))
A3 = ABS(FACEX(3,I,J,K))
A4 = ABS(FRONT(J,K))
IF(II.GT.0) A4 = ABS(FACEX(1,II,J,K))
A5 - ABS(FACEX(2,I,JJ,K))
A6 = ABS(FACEX(3,I,J,KK))
AX = 0.
IF (SEMIIMP) THEN

A2 = 0.
A5 - 0.

ENDIF
AX = MAX(AX,(AI + A2 + A3))
AX = MAX(AX,(A2 + A3 + A4))
AX - MAX(AX,(A2 + A4 + A8))
AX = MAX(AX,(A1 + A2 + A6))
AX - MAX(AX,(Al + A3 + As))
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AX = MAX(AX,(A3 + A4 + A5))
AX = MAX(AX,(A4 + A5 + A6))

AX = MAX(AX,(Al + A5 + A6))
AXM(I,J,K) = AX

C
Al = ABS(FACEY(1,I,J,K))
A2 = ABS(FACEY(2,I,J,K))
A3 = ABS(FACEY(3,I,J,K))
A4 = 0.
IF(II.GT.0) A4 = ABS(FACEY(1,II,J,K))
A5 = ABS(FACEY(2,I,JJ,K))
A6 = ABS(FACEY(3,I,J,KK))
IF (SEMIIMP) THEN

A2 = 0.
AS = 0.

ENDIF
AY = 0.
AY = MAX(AY,(A1 + A2 + A3))

AY = MAX(AY,(A2 + A3 + A4))
AY = MAX(AY,(A2 + A4 + A6))
AY = MAX(AY,(A1 + A2 + A6))
AY = MAX(AY,(A1 + A3 + A5))

AY = MAX(AY,(A3 + A4 + AS))
AY = MAX(AY,(A4 + A5 + A6))
AY = MAX(AY,(Al + A5 + A6))

AYM(I,J,K) = AY
C

Al = ABS(FACEZ(I,I,J,K))
A2 = ABS(FACEZ(2,I,J,K))
A3 = ABS(FACEZ(3,I,J,K))
A4 = 0.
IF(II.GT.0) A4 = ABS(FACEZ(I,II,J,K))
A5 = ABS(FACEZ(2,I,JJ,K))
A6 = ABS(FACEZ(3,I,J,KK))
IF (SEMIIMP) THEN

A2 = 0.
AS = 0.

ENDIF
AZ = 0.

AZ = MAX(AZ,(A1 + A2 + A3))
AZ = MAX(AZ,(A2 + A3 + A4))
AZ = MAX(AZ,(A2 + A4 + A6))
AZ - MAX(AZ,(A1 + A2 + A6))
AZ = MAX(AZ,(A1 + A3 + A5))
AZ = MAX(AZ,(A3 + A4 + AS))
AZ = MAX(AZ,(A4 + A5 + A6))
AZ = MAX(AZ,(A1 + A5 + A6))
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AZM(I,J,K) = AZ
C

10 CONTINUE
20 CONTINUE
30 CONTINUE

C
C---- Do k = 1

DO 50 I = 1,IM
II = I - 1

DO 40 J = 2,JM
JJ = J - 1
Al = ABS(FACEX(1,I,J,1))
A2 = ABS(FACEX(2,I,J,1))
A3 = ABS(FACEX(3,I,J,1))
A4 = FRONT(J,1)
IF(II.GT.O) A4 = ABS(FACEX(1,II,J,1))
AS = ABS(FACEX(2,I,JJ,1))
A6 = 0.
IF (SEMIIMP) THEN

A2 = 0.
AS = 0.

END IF
AX = 0.
AX = MAX(AX,(Al + A2 + A3))
AX = MAX(AX,(A2 + A3 + A4))
AX = MAX(AX,(A2 + A4 + A6))
AX = MAX(AX,(A1 + A2 + A6))
AX = MAX(AX,(A1 + A3 + AS))
AX = MAX(AX,(A3 + A4 + AS))
AX = MAX(AX,(A4 + A5 + A6))
AX = MAX(AX,(A1 + A5 + A6))
AXM(I,J,1) = AX

C

Al = ABS(FACEY(1,I,J,1))
A2 = ABS(FACEY(2,I,J,1))
A3 = ABS(FACEY(3,I,J,1))
A4 = 0.
IF(II.GT.O) A4 = ABS(FACEY(1,II,J,1))
AS = ABS(FACEY(2,I,JJ,1))
A6 = ABS(WALLB(I,J))
IF (SEMIIMP) THEN

A2 = 0.
AS = 0.

ENDIF
AY = 0.

AY = MAX(AY,(A1 + A2 + A3))
AY = MAX(AY,(A2 + A3 + A4))
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AY = MAX(AY,(A2 + A4 + A6))
AY = MAX(AY,(Al + A2 + A6))
AY = MAX(AY,(A1 + A3 + AS))

AY = MAX(AY,(A3 + A4 + AS))
AY = MAX(AY,(A4 + A5 + A6))
AY = MAX(AY,(Al + A5 + A6))
AYM(I,J,1) = AY

C
Al = ABS(FACEZ(1,I,J,1))
A2 - ABS(FACEZ(2,I,J,1))

A3 - ABS(FACEZ(3,I,J,1))

A4 = 0.
IF(II.GT.0) A4 = ABS(FACEZ(1,II,J,1))
AS = ABS(FACEZ(2,I,JJ,1))
A6 = 0.
IF (SEMIIMP) THEN

A2 = 0.
AS = 0.

ENDIF
AZ = 0.
AZ = MAX(AZ,(A1 + A2 + A3))
AZ - MAX(AZ,(A2 + A3 + A4))
AZ = MAX(AZ,(A2 + A4 + A6))
AZ = MAX(AZ,(Al + A2 + A6))
AZ = MAX(AZ,(Al + A3 + A5))
AZ = MAX(AZ,(A3 + A4 + A5))
AZ - MAX(AZ,(A4 + A5 + A6))
AZ = MAX(AZ,(Al + A5 + A6))
AZM(I,J,1) = AZ

40 CONTINUE
50 CONTINUE

C
C---- Do j = 1

DO 70 I - 1,IM
II = I-1
DO 60 K = 1,KM

KK = K - 1
Al - ABS(FACEX(1,I,1,K))
A2 = ABS(FACEX(2,I,I,K))
A3 - ABS(FACEX(3,I,1,K))
A4 - FRONT(1,K)
IF(II.GT.0) A4 = ABS(FACEX(1,II,1,K))
A5 = ABS(FACEX(2,I,O,K))
A6 - 0.
IF (KK. GT .0) A6 = ABS(FACEX(3,I,I,KK))
IF (SEMIIMP) THEN

A2 = 0.
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A5 = 0.
ENDIF

AX = 0.
AX = MAX(AX,(Al + A2 + A3))
AX = MAX(AX,(A2 + A3 + A4))
AX - MAX(AX,(A2 + A4 + A6))
AX = MAX(AX,(Al + A2 + A6))
AX = MAX(AX,(A1 + A3 + A5))
AX = MAX(AX,(A3 + A4 + A5))
AX = MAX(AX,(A4 + A5 + A6))
AX - MAX(AX,(A1 + A5 + A6))
AXM(I,1,K) = AX

C

Al = ABS(FACEY(1,I,1,K))
A2 = ABS(FACEY(2,I,1,K))
A3 = ABS(FACEY(3,I,1,K))
A4 = 0.
IF(II.GT.0) A4 = ABS(FACEY(1,II,1,K))
A5 = ABS(FACEY(2,I,O,K))
A6 = ABS(WALLB(I,1))
IF (KK. GT .0) A6 = ABS(FACEY(3,I,1,KK))
IF (SEMIIMP) THEN

A2 = 0.
A5 = 0.

ENDIF
AY = 0.
AY - MAX(AY,(Al + A2 + A3))
AY = MAX(AY,(A2 + A3 + A4))
AY = MAX(AY,(A2 + A4 + A6))
AY = MAX(AY,(A1 + A2 + A6))

AY = MAX(AY,(Al + A3 + A5))

AY = MAX(AY,(A3 + A4 + AS))
AY = MAX(AY,(A4 + A5 + A6))
AY = MAX(AY,(A1 + A5 + A6))
AYM(I,1,K) = AY

C

Al = ABS(FACEZ(1,I,1,K))
A2 = ABS(FACEZ(2,I,1,K))
A3 - ABS(FACEZ(3,I,1,K))
A4 = 0.
IF(II.GT.O) A4 = ABS(FACEZ(I,II,1,K))
A5 = ABS(FACEZ(2,I.0,K))
A6 = 0.
IF (KK. GT .0) A6 - ABS(FACEZ(3,I,1,KK))
IF (SEMIIMP) THEN

A2 = 0.
A5 = 0.
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ENDIF
AZ = 0.
AZ = MAX(AZ,(A1 + A2 + A3))
AZ = MAX(AZ,(A2 + A3 + A4))
AZ = MAX(AZ,(A2 + A4 + A6))
AZ = MAX(AZ,(A1 + A2 + A6))
AZ = MAX(AZ,(A1 + A3 + A5))
AZ = MAX(AZ,(A3 + A4 + AS))
AZ = MAX(AZ,(A4 + A5 + A8))
AZ - MAX(AZ,(A1 + A5 + A6))
AZM(I,1,K) = AZ

60 CONTINUE
70 CONTINUE

C
C---- Store explicit stuff for use in calculating explicit dt's

IF(SEMISTO) THEN
SEMIIMP = .TRUE.
SEMISTO = .FALSE.
DO 100 I = 1,IM
DO 100 J = 1,JM
DO 100 K = 1,KM

AXEXP(I,J,K) = AXM(I,J,K)
AYEXP(I,J,K) = AYM(I,J,K)

100 AZEXP(I,J,K) = AZM(I,J,K)
GOTO 1

ENDIF

c do 80 j=1,10
c do 80 k=l,km
c 80 write(6,81) axm(1,j,k),aym(1,j,k),azm(1,j,k),j,k
c 81 format('ax,ay,az=',3E18.3E2,' jk-',2i3)

RETURN
END
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C
C
C SUBROUTINE BNDRYC: sets the far-field and solid wall boundary
C conditions for Jameson's explicit four-stage scheme. At the
C wing surface, the pressure is extrapolated from interior values;
C far-field conditions are determined by assuming one-dimensional
C flow normal to the boundary, and using Riemann invariants in
C the normal direction.
C

SUBROUTINE BNDRYC
include 'euler.inc'

C
C--- first, determine the pressure field
C

DO 30 I = O,IM
DO 20 J = 1,JM
DO 10 K = 1,KM
RHO a U(I,I,J,K)
U1 a U(2,I,J.K)/RHO
V1i U(3,I,J,K)/RHO
Wi = U(4,I,J,K)/RHO
EN - U(5,I,J,K)
P(I,J,K) - (EN - .5*(U1**2 + V1**2 + W1**2)*RHO)*

& (GAM - 1.)

10 CONTINUE
20 CONTINUE
30 CONTINUE

IPNEG = 0
IDNEG = 0

C
C---- Prevent pressure from going negative during iteration

DO 21 1 a 0,IM
DO 21 J - 1,JM
DO 21 K a 1,KM

IF(P(I,J,K) .LE. 0.00000001) THEN
P(I,J,K) = 0.000000001
IPNEG - 1

ENDIF
IF(U(1,I,J,K) .LE. 0.000000001) THEN

U(1,I,J.K) - 0.000000001
IDNEG - I

ENDIF
21 CONTINUE

IF (IPNEG .EQ. I)WRITE(6,*) 'Pressure wants to go negative'
IF (IDNEG .EQ. 1)WRITE(6,*) 'Density wants to go negative'
IF(.NOT. SYM) THEN
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DO 31 I = 1,IM
P(I,1,O) = P(I,1,KM)
P(I,1.KMAX) = P(I,I,1)

31 CONTINUE
ENDIF

IF(MACH.GT.1.0) GO TO 99
C
C--- first, determine the far-field conditions at the upstream boundary
C

DO 62 J = 1,JM
DO 52 K 1,KM

C
C--- find density, velocity, and pressure at the first point
C inside the computational domain, (1,j,k)
C

RHOEX = U(1,1,J,K)
UEX = U(2,1,J,K)/RHOEX
VEX = U(3,1,J,K)/RHOEX
WEX - U(4,1,J,K)/RHOEX
PEX = P(1,J,K)

C IF(PEX.LT.O.) GO TO 200
C IF(RHOEX.LT.O.) GO TO 201
C
C--- find the outward unit normal to the computational domain
C and determine the normal component of the free stream and
C extrapolated velocities and sonic speeds
C

ONX - -FRONT(J,K)
ONY - 0.
ONZ - 0.
ON = SQRT(ONX**2 + ONY**2 + ONZ**2)
ONX = ONX/ON
ONY ONY/ON
ONZ = ONZ/ON

C
UINN - ONX*UIN + ONZ*WIN
UEXN = ONX*UEX + ONY*VEX + ONZ*WEX
CEX a SQRT(GAM*PEX/RHOEX)
EV4 - UINN + CIN
EV5 - UEXN - CEX

C
C--- compute the incoming and outgoing Riemann invariants
C

RIN = UINN - 2.*CIN/(GAM - 1.)
REX = UEXN + 2.*CEX/(GAM - 1.)

C

258



C--- supersonic inflow: all variables specified

IF (EV4. LT .0.) REX = UINN + 2.*CIN/(GAM - 1.)

C--- supersonic outflow: all variables extrapolated

IF (EV5. GT .0.) RIN = UEXN - 2.*CEX/(GAM - 1.)

C--- these two lines are the Cray vectorizable statements that do the
C same thing as the above IF statements
C
C REX = CVMGM((UINN + 2.*CIN/(GAM - 1.)),(UEXN + 2.*CEX/(GAM -
C & 1.)),EV4)
C RIN = CVMGP((UEXN - 2.*CEX/(GAM - 1.)),(UINN - 2.*CIN/(GAM -
C k 1.)),EV5)
C
C--- determine the normal velocity and the sonic speed at the boundary
C cell (1.jk)
C

UN = (REX + RIN)/2.
C = (REX - RIN)*(GAM - 1.)/4.
IF (UN. GT .0.) THEN

C--- outflow boundary: extrapolate tangential velocity, entropy

UP = UEX + (UN - UEXN)*ONX
VP = VEX + (UN - UEXN)*ONY
WP = WEX + (UN - UEXN)*ONZ

S - PEX/RHOEX**GAM

ELSE

C--- inflow boundary: free stream tangential velocity, entropy
C

UP = UIN + (UN - UINN)*ONX
VP = (UN - UINN)*ONY
WP = WIN + (UN - UINN)*ONZ
S = PIN

END IF
C
C--- these four lines are the Cray vectorizable statements that do the
C same thing as the above IF THEN ELSE block
C
C UP = CVMGP((UEX + (UN - UEXN)*ONX).(UIN + (UN - UINN)*ONX),
C k UN)
C VP = CVMGP((VEX + (UN - UEXN)*ONY),((UN - UINN)*ONY),
C & UN)
C WP - CVMGP((WEX + (UN - UEXN)*ONZ),(WIN + (UN - UINN)*ONZ),
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C & UN)
C S - CVMGP((PEX/RHOEX**GAM),PIN,UN)
C
C
C--- determine density, energy; set conservation variables at boundary
C cell
C

ENER = (UP**2 + VP**2 + WP**2)/2. + C**2/(GAM*C(GAM - 1.))
RHO = (C**2/(GAM*S))**(1./(GAM - 1.))

C
cbl U(1,0,J,K) = RHO
cbl U(2,0,J,K) = RHO*UP
cbl U(3,0,J,K) = RHO*VP
cbl U(4,0,J,K) = RHO*WP
cbl U(5.0,J,K) = RHO*ENER
cbl P(0,J,K) = RHO*C**2/GAM

U(1,0,JK) = 2*RHO - U(1,1.J,K)

U(2,0,J,K) = 2*RHO*UP - U(2,1,J,K)

U(3,0,J,K) = 2*RHO*VP - U(3,1.J,K)

U(4,0,J,K) = 2*RHO*WP - U(4,1,J,K)

U(5,0,J,K) = 2*RHO*ENER - U(5,1,J,K)

P(O,J,K) = 2*RHO*C**2/GAM - P(1,J,K)

52 CONTINUE
62 CONTINUE

C GO TO 99
C 200 WRITE(6,*) 'UPSTREAM BOUNDARY CONDITION'
C WRITE(6,*) 'NEGATIVE PEX AT I,J,K - 1,',J,K
C STOP
C 201 WRITE(6,*) 'UPSTREAM BOUNDARY CONDITION'
C WRITE(6.*) 'NEGATIVE RHOEX AT I,J,K = i.',J,K
C STOP

99 CONTINUE
C
C--- next, determine the far-field conditions at the downstream boundary
C
C
C---- For viscous flow, extrapolate linearly (this is generally much better
C than assuming constant):

IF (RE .GT. 0.) THEN
DO 55 J=1.JM
DO 55 K=1,KM

U(1,IMAX,J.K) - 2*U(1,IM.J.K) - U(1.IM-I,J,K)
U(2,IMAX,J,K) - 2*U(2,IM,J,K) - U(2,IM-I,J,K)
U(3,IMAX,J.K) = 2*U(3,IM.J,K) - U(3.IM-1,J,K)
U(4.IMAX,J,K) - 2*U(4,IM,J,K) - U(4,IM-1,J,K)
U(5,IMAX,J,K) = 2*U(5,IM,J,K) - U(5,IM-1,J.K)

55 P(IMAX,J,K) = P(IM,J,K)
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C---- For inviscid flows use Riemann invarients
ELSE
DO 61 J = 1,JM
DO 51 K = 1,KM

C
C--- find density, velocity, and pressure at the last point
C inside the computational domain, (I-l,j,k)
C

RHOEX = U(I,IM,J,K)
UEX - U(2,IM,J,K)/RHOEX
VEX - U(3,IM,J,K)/RHOEX
WEX - U(4,IM,J,K)/RHOEX
PEX - P(IM,J,K)

C IF(PEX.LT.0O.) GO TO 210
C IF(RHOEX.LT.O.) GO TO 211
C
C--- find the outward unit normal to the computational domain
C and determine the normal component of the free stream and
C extrapolated velocities and sonic speeds
C

ONX = FACEX(1,IM,J,K)
ONY - FACEY(1,IM,J,K)
ONZ a FACEZ(1,IM,J,K)
ON = SQRT(ONX**2 + ONY**2 + ONZ**2)
ONX = ONX/ON
ONY = ONY/ON
ONZ = ONZ/ON

C
UINN = ONX*UIN + ONZ*WIN
UEXN = ONX*UEX + ONY*VEX + ONZ*WEX
CEX - SQRT(GAM*PEX/RHOEX)
EV4 = UINN + CIN
EV5 = UEXN - CEX

C
C--- compute the incoming and outgoing Riemann invariants
C

RIN = UINN - 2.*CIN/(GAM - 1.)
REX = UEXN + 2.*CEX/(GAM - 1.)

C
C--- supersonic inflow: all variables specified
C

IF (EV4. LT .0.) REX = UINN + 2.*CIN/(GAM - 1.)
C
C--- supersonic or viscous outflow: all variables extrapolated
C

IF (EV5. GT .0.)
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RIN = UEXN - 2.*CEX/(GAM - 1.)
C
C--- these two lines are the Cray vectorizable statements that do the
C same thing as the above IF statements (NOT FOR VISCOUS FLOW!)
C
C REX - CVMGM((UINN + 2.*CIN/(GAM - 1.)),(UEXN + 2.*CEX/(GAM -
C 1.)),EV4)
C RIN = CVMGP((UEXN - 2.*CEX/(GAM - 1.)),(UINN - 2.*CIN/(GAM -
C & 1.)),EV5)
C
C--- determine the normal velocity and the sonic speed at the boundary
C cell (I,j,k)
C

UN = (REX + RIN)/2.
C = (REX - RIN)*(GAM - 1.)/4.
IF (UN. GT .0.) THEN

C
C--- outflow boundary: extrapolate tangential velocity, entropy
C

UP - UEX + (UN - UEXN)*ONX
VP = VEX + (UN - UEXN)*ONY
WP = WEX + (UN - UEXN)*ONZ
S = PEX/RHOEX**GAM
ELSE

C
C--- inflow boundary: free stream tangential velocity, entropy
C

UP = UIN + (UN - UINN)*ONX
VP = (UN - UINN)*ONY
WP = WIN + (UN - UINN)*ONZ
S = PIN
END IF

C
C--- these four lines are the Cray vectorizable statements that do the
C same thing as the above IF THEN ELSE block
C
C UP - CVMGP((UEX + (UN - UEXN)*ONX),(UIN + (UN - UINN)*ONX),
C & UN)
C VP = CVMGP((VEX + (UN - UEXN)*ONY).((UN - UINN)*ONY),
C & UN)
C WP = CVMGP((WEX + (UN - UEXN)*ONZ).(WIN + (UN - UINN)*ONZ),
C UN)
C S = CVMGP((PEX/RHOEX**GAM),PIN.UN)

C
C--- determine density, energy; set conservation variables at boundary
C cell
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ENER = (UP**2 + VP**2 + WP**2)/2. + C**2/(GAM*(GAM - 1.))

RHO = (C**2/(GAM*S))**(C./(GAM - 1.))
C
CBL U(1,IMAX,J,K) a RHO
CBL U(2,IMAX,J,K) a RH0*UP
CBL U(3,IMAX,J,K) a RHO*VP
CBL U(4,IMAX,J,K) a RHO*WP
CBL U(5,IMAX,J,K) = RHO*ENER
CBL P(IMAX,J,K) = RHO*C**2/GAM

U(1,IMAX,J,K) = 2*RHO - U(1,IM,J,K)

U(2,IMAX,J,K) - 2*RHO*UP - U(2,IM,J,K)

U(3,IMAX,J,K) - 2*RHO*VP - U(3,IM,J,K)

U(4,IMAX,J,K) = 2*RHO*WP - U(4,IM,J,K)

U(5,IMAXJK) a 2*RHO*ENER - U(5,IM,J,K)
P(IMAX,J,K) a 2*RHO*C**2/GAM - P(IM,J,K)

C if (j.eq.1 .and. (k .gt.19 .and. k .lt.26))then
C WRITE(6,*) J,K
C WRITE(6,*) 'ex:',RHO,UEX,VEX,WEX,PEX
c write(6,*) 'im:'
c WRITE(6,*) U(1,IM,J,K),U(2,IM,J.K),U(3,IM,J,K),
c & U(4.IM,J,K),U(5,IM,J,K)
c write(6,*) 'imax:'
c WRITE(6,*) U(1,IMAX,J,K),U(2,IMAX,J,K),U(3,IMAX,J,K),
c & U(4,IMAX,JK).U(5,IMAX,J.K)
c endif

51 CONTINUE
61 CONTINUE

ENDIF
C GO TO 299

C 210 WRITE(6,*) 'DOWNSTREAM BOUNDARY CONDITION'
C WRITE(6,*) 'NEGATIVE PEX AT I,J,K = ',IM,J,K
C STOP
C 211 WRITE(6,*) 'DOWNSTREAM BOUNDARY CONDITION'
C WRITE(6,*) 'NEGATIVE RHOEX AT I,J,K =',IM,J,K
C STOP
C 299 CONTINUE
C
C--- next, determine the far-field conditions on the outer boundary
C

DO 60 I = 1,IM
DO 50 K = 1,KM

C
C-BL--- FOR NI BUMP ONLY**************************************************

IF(grname .NE. 'ni.gri') goto 1001
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U(1,I,JMAX,K) = U(II,JM,K)
U(2,I,JMAX,K) = U(2,I,JM.K)
U(3,I,JMAX,K) =-U(3,I,JM.K)
U(4,I,JMAX,K) = U(4,I,JM,K)
U(5,I,JMAX,K) = U(6,I,JM,K)
P(I,JMAX,K) = P(I,JM,K)
goto 50

1001 continue
C-BL--- ABOVE IS FOR NI BUMP ONLY********************************************
C
C--- find density, velocity, and pressure at the last point
C inside the computational domain, (i,J-1,k)
C

RHOEX = U(1,I,JM,K)
UEX = U(2,I,JM,K)/RHOEX

VEX = U(3,I,JM,K)/RHOEX
WEX = U(4,I,JM,K)/RHOEX

PEX = P(I,JM,K)

C IF(PEX.LT.O.) GO TO 220
C IF(RHOEX.LT.O) GO TO 221
C
C--- find the outward unit normal to the computational domain

C and determine the normal component of the free stream and
C extrapolated velocities and sonic speeds
C

ONX = FACEX(2,I,JM,K)

ONY - FACEY(2,I,JM,K)
ONZ = FACEZ(2,I.JM,K)
ON = SQRT(ONX**2 + ONY**2 + ONZ**2)
ONX = ONX/ON

ONY = ONY/ON

ONZ = ONZ/ON

C
UINN = ONX*UIN + ONZ*WIN

UEXN = ONX*UEX + ONY*VEX + ONZ*WEX
CEX = SQRT(GAM*PEX/RHOEX)
EV4 = UINN + CIN
EV5 = UEXN - CEX

C
C--- compute the incoming and outgoing Riemann invariants

C
RIN - UINN - 2.*CIN/(GAM - 1.)
REX = UEXN + 2.*CEX/(GAM - 1.)

C
C--- supersonic inflow: all variables specified
C

IF (EV4. LT .0.) REX = UINN + 2.*CIN/(GAM - 1.)
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C

C--- supersonic outflow: all variables extrapolated

C

IF (EV5. GT .0.) RIN = UEXN - 2.*CEX/(GAM - 1.)

C

C--- these two lines are the Cray vectorizable statements that do the

C same thing as the above IF statements

C

C REX = CVMGM((UINN + 2.*CIN/(GAM - 1.)),(UEXN + 2.*CEX/(GAM -
C & 1.)),EV4)

C RIN = CVMGP((UEXN - 2.*CEX/(GAM - 1.)),(UINN - 2.*CIN/(GAM -
C & 1.)),EV5)
C

C--- determine the normal velocity and the sonic speed at the boundary

C cell (i,J,k)
C

UN = (REX + RIN)/2.

C = (REX - RIN)*(GAM - 1.)/4.
IF (UN. GT .0.) THEN

C

C--- outflow boundary: extrapolate tangential velocity, entropy
C

UP = UEX + (UN - UEXN)*ONX

VP = VEX + (UN - UEXN)*ONY

WP = WEX + (UN - UEXN)*ONZ

S = PEX/RHOEX**GAM
ELSE

C
C--- inflow boundary: free stream tangential velocity, entropy
C

UP = UIN + (UN - UINN)*ONX
VP = (UN - UINN)*ONY

WP = WIN + (UN - UINN)*ONZ

S = PIN

END IF
C
C--- these four lines are the Cray vectorizable statements that do the
C same thing as the above IF THEN ELSE block
C
C UP - CVMGP((UEX + (UN - UEXN)*ONX),(UIN + (UN - UINN)*ONX),
C & UN)
C VP = CVMGP((VEX + (UN - UEXN)*ONY),((UN - UINN)*ONY),
C & UN)
C WP = CVMGP((WEX + (UN - UEXN)*ONZ),(WIN + (UN - UINN)*ONZ),
C & UN)
C S = CVMGP((PEX/RHOEX**GAM),PIN,UN)
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determine density, energy; set conservation variables at boundary
cell

ENER = (UP**2 + VP**2 + WP**2)/2. + C**2/(GAM*(GAM - 1.))

RHO = (C**2/(GAM*S))**(1./(GAM - 1.))

U(1,I,JMAX,K) = RHO
U(2,I,JMAX,K) a RHO*UP
U(3,I,JMAX,K) = RHO*VP
U(4,I,JMAX,K) a RHO*WP
U(5,I,JMAX,K) I RHO*ENER
P(I,JMAX,K) = RHO*C**2/GAM

U(1,I,JMAX,K) = 2*RHO - U(1,I,JM,K)
U(2,I,JMAX,K) - 2*RHO*UP - U(2,I,JM,K)
U(3,I,JMAX,K) - 2*RHO*VP - U(3,I,JM,K)
U(4,I,JMAX,K) = 2*RHO*WP - U(4,I,JM,K)
U(5,I,JMAX,K) = 2*RHO*ENER - U(5,I,JM,K)
P(I,JMAX,K) = 2*RHO*C**2/GAM - P(I.JM,K)

WRITE(34,*) I,K
WRITE(34,*) ONX,ONY,ONZ
WRITE(34,*) UINN,UN,ENER
WRITE(34,*) U(1,I,JMAX,K),U(2.I,JMAX,K),U(3,I,JMAX,K),

U(4,I,JMAX,K),U(5,I,JMAX,K)
50 CONTINUE
60 CONTINUE

C GO TO 399

WRITE(6,*)
WRITE(6, *)
STOP
WRITE (6, *)
WRITE(6, *)
STOP

'OUTER BOUNDARY'
'NEGATIVE PEX AT I,J,K = ',I,JM,K

'OUTER BOUNDARY'
'NEGATIVE RHOEX AT I,J,K =',I,JM,K

C
C 399 CONTINUE

IF(SYM) THEN
C
C--- determine the pressure at the symmetry plane by extrapolation
C from the interior--set (dP/dn) = 0 at the symmetry plane;
C
C--- First, do the symmetry plane
C

DO 80 J = 1,JM
DO 70 I - 1,IM
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PRESYMB(I,J) = P(I.J,1)
PRESYMT(I,J) = P(I,J,KM)

70 CONTINUE
80 CONTINUE

ENDIF
C
C--- Next, do the wing surface (pressure b.c.'s using normal momentum
C equation is in PRESSURE.SAV). The normal momentum equation is used to
C determine the pressure on the wing. On the wing, the local
C coordinates xi,eta,zeta correspond to the indice k,i,j,
C respectively (that is not a typo).
C

DO 100 I = ILE,ITE-1
DO 90 K = 1,KM

PRESWG(I,K) = P(I,1,K)
90 CONTINUE
100 CONTINUE

RETURN
END
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C
C SUBROUTINE COEF: this subroutine calculates the coefficients of
C lift, drag, root bending moment, and moment about the apex for
C the whole wing.
C

SUBROUTINE COEF
include 'euler.inc'

C--- initialize coefficients for summing
CZ = 0.
CX = 0.
CMR - 0.
CMLE = 0.
S = 0.

C--- calculate pressure coefficient at each cell on wing surface and
C use for force calculations

KTIP - (KMAX+1)/2

DO 10 I=ILE,ITE-1
DO 11 K=1,KM

CP - 2.*(PRESWG(I,K) - PIN)/(MACH*MACH)

CZ = CZ - CP*FACEZ(2,I,O,K)
CX - CX - CP*FACEX(2,I,O,K)

CMR = CZ*0.5*(Y(I,1,K) + Y(I,1,K+I))
CMLE - CZ*0.5*(X(I+1.1,K) + X(I,1,K+1))

IF(K.LT.KTIP) S = S + ABS(FACEZ(2,I,O,K))

11 CONTINUE
10 CONTINUE

IF (S .NE. 0.) THEN
CL - (CZ*COS(AOA) - CX*SIN(AOA))/S
CD = (CZ*SIN(AOA) + CX*COS(AOA))/S

CMROOT = CMR/S
CMAPEX - CMLE/S

IF(CFBIN) THEN
WRITE(7) ITER,CL,CD,CMROOT,CMAPEX

ELSE
WRITE(7,*) ITER,CL,CD,CMROOT,CMAPEX

ENDIF
ENDIF
RETURN
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END
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SUBROUTINE DISSIP: calculates second- and fourth-order
dissipation terms in Jameson's explicit, multi-stage Euler

C scheme
C

SUBROUTINE DISSIP
include 'euler.inc'
COMMON/SHCK/ JSM,ADDSMO
DIMENSION EP2(O:JSIZ,O:KSIZ), EP4(0:JSIZ,O:KSIZ),
& UCON(5,JSIZ,KSIZ),PCON(JSIZ,KSIZ)
REAL NUM, NUP, NUMM, NUPM, MM, MP
IF(IMAX.GT.JSIZ .OR. JMAX.GT.JSIZ .OR. KMAX.GT.KSIZ)THEN

WRITE(6,*) '[DISSIP]DIMENSIONS ARE IMPROPER'
STOP

ENDIF

C--- The value for the dissipation is found from the operator

C
D D + + D - D(u)

X Y Z ijk

as defined by Jameson, yielding second- and fourth-order
differences. The operator in the X,Y,Z (I,J,K) coordinate
directions are determined in order. Eriksson's treatment of the

C smoothing at the solid wall and far-field boundaries is used.
C
C--- store upstream boundary condition in temporary array

C
DO 52 J=1,JM
DO 62 K=I,KM

UCON(1,J,K)
UCON(2,J,K)
UCON(3,J,K)
UCON(4,J,K)
UCON(5,J,K)
PCON(J,K)

CONTINUE
CONTINUE

U(1,0,J,K)
U(2,0,J,K)
U(3,0,J,K)
U(4,0,J,K)
U(5,0,J,K)
P(0,J,K)

C--- set-up dummy points in the i-, j-, and k-directions.
C

DO 10 I - ILE,ITE-1
DO 20 K = 1,KM
if(grname .ne. 'ni.gri')THEN

U(I,I,JMAX+I,K) = 3.*U(1,I,JM,K) - 2.*U(1,I,JM-1,K)
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U(2,I,JMAX+1,K) - 3.*U(2,I,JM,K) - 2.*U(2,I,JM-1,K)

U(3,I,JMAX+1,K) = 3.*U(3,I,JM,K) - 2.*U(3,I,JM-1,K)

U(4,I,JMAX+1,K) = 3.*U(4,I,JM,K) - 2.*U(4,I,JM-1,K)

U(5,I,JMAX+1,K) = 3.*U(5,I,JM,K) - 2.*U(5,I,JM-1,K)

P(I,JMAX+1,K) = 3.*P(I,JM,K) - 2.*P(I,JM-1,K)

U(1,I,JMAX,K) = 2.*U(1,I,JM,K) - U(1,I,JM-1,K)

U(2,I,JMAX,K) = 2.*U(2,I,JM,K) - U(2,I,JM-1,K)

U(3,I,JMAX,K) - 2.*U(3,I,JM,K) - U(3,I,JM-1,K)
U(4,I,JMAX,K) = 2.*U(4,I,JM,K) - U(4,I,JM-1,K)

U(5,I,JMAX,K) = 2.*U(5,I,JM,K) - U(5,I,JM-1,K)

P(I,JMAX,K) - 2.*P(I,JM,K) - P(I,JM-1,K)

ELSE

PERIODICITY CONDITION

U(1,I,JMAX,K) = U(1,I,JM,K)
U(2,I,JMAX,K) - U(2,I,JM,K)

U(3,I,JMAX,K) =-U(3,I,JM,K)

U(4,I,JMAX,K) = U(4,I,JM,K)
U(5,I,JMAX,K) = U(5,I,JM,K)
P(I,JMAX,K) = P(I.JM,K)

U(1,I,JMAX+1,K) = U(1,I,JM-1,K)
U(2,I,JMAX+1,K) = U(2,I,JM-1,K)
U(3,I,JMAX+1,K) =-U(3,I,JM-1,K)
U(4,I,JMAX+I,K) = U(4,I,JM-1,K)
U(5,I.JMAX+1,K) = U(5,I,JM-1,K)
P(IJMAX+1,K) = P(I,JM-1,K)

ENDIF

U(1,I,O,K) = 2.*U(1,I,1,K)
U(2,I,O,K) = 2.*U(2,I,1,K)
U(3,I,O,K) = 2.*U(3,I,1,K)
U(4,I,O,K) = 2.*U(4,I,1,K)
U(5,I,O,K) = 2.*U(5,I,1,K)

P(I,O,K) = 2.*P(I,1,K)

U(1,I,-1,K) = 3.*U(1,I,1,K)
U(2,I,-1,K) 3.*U(2I,1,K)
U(3,I,-1,K) = 3.*U(3,I,1,K)
U(4,I,-1,K) - 3.*U(4,I,1,K)
U(5,I,-1,K) = 3.*U(5,I,1,K)

P(I,-1,K) - 3.*P(I,1,K)

DT(I,JMAX,K) = DT(I,JM,K)
DT(I,O,K) = DT(I,1,K)

20 CONTINUE

U(1,I,2,K)
U(2,I,2,K)
U(3,I,2,K)
U(4,I,2,K)
U(5,I,2,K)

P(I.2,K)

- 2.*U(1.I,2,K)
- 2.*U(2,I,2,K)
- 2.*U(3,I,2,K)
- 2.*U(4,I,2,K)
- 2.*U(5,I,2,K)
- 2.*P(I,2,K)

271

C
CVIS



10 CONTINUE

IF(MACH .GT. 1.) THEN

DO 12 I=1,ILE-1

CVD$ NODEPCHK

CVD$ NOSYNC

DO 11 K=1,KM

U(1,I,JMAX+1,K) - 3.*U(1,I,JM,K) - 2.*U(1,I,JM-1,K)

U(2,I,JMAX+1,K) - 3.*U(2,I,JM,K) - 2.*U(2,I,JM-1,K)
U(3,I,JMAX+,1K) - 3.*U(3,I,JM,K) - 2.*U(3,I,JM-1,K)

U(4,I,JMAX+1,K) = 3.*U(4,I,JM,K) - 2.*U(4,I,JM-1,K)

U(5,I,JMAX+1,K) = 3.*U(5,I,JM,K) - 2.*U(5,I,JM-1,K)
P(IJMAX+1,K) = 3.* P(I,JM,K) - 2.* P(I,JM-1,K)

U(1,I,JMAX,K) = 2.*U(1,I,JM,K)
U(2,I,JMAX,K) = 2.*U(2,I,JM,K)
U(3,I,JMAX,K) = 2.*U(3,I,JM,K)
U(4,I,JMAX,K) = 2.*U(4,I,JM,K)
U(5,I,JMAX,K) = 2.*U(5,I,JM,K)
P(I,JMAX,K) = 2.* P(I,JM,K)

U(1,I,0,K) = U(1,I,1,KMAX-K)
U(2,I,0,K) - U(2,I,1,KMAX-K)
U(3,I,0,K) = U(3,I,1,KMAX-K)
U(4,I,0,K) = U(4,I,1,KMAX-K)
U(5,I,0,K) = U(5,I,1,KMAX-K)
P(I,0,K) = P(I,1,KMAX-K)

U(1,I,-1,K)

U(2,I,-1 ,K)

U(3,I,-1,K)

U(4,I,-1,K)

U(5,I,-1 ,K)
P(I, -1,K)

- U(1,I,JM-1,K)

- U(2,I,JM-1,K)

- U(3,I,JM-1,K)
- U(4,I,JM-1,K)

- U(5,I,JM-1,K)
- P(I,JM-1,K)

= U(1,I,2,KMAX-K)
= U(2,I,2,KMAX-K)
= U(3,I,2,KMAX-K)
= U(4,I,2,KMAX-K)
= U(5,I,2,KMAX-K)
= P(I,2,KMAX-K)

DT(I,O,K) - DT(I,1,KMAX-K)

DT(I,JMAX,K) = DT(I,JM,K)
CONTINUE

CONTINUE

ELSE

DO 140 I=1,ILE-1
CVD$ NODEPCHK
CVD$ NOSYNC

DO 141 K=1,KM
if(grname .ne. 'ni.gri')THEN
U(1,I,JMAX+1,K) = 3.*U(1,I,JM,K) - 2.*U(1,I,JM-1,K)
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U(2,I,JMAX+I,K) = 3.*U(2,I,JM,K) - 2.*U(2,I,JM-1,K)

U(3,I,JMAX+1,K) = 3.*U(3,I,JM,K) - 2.*U(3,I,JM-1,K)

U(4,I,JMAX+1,K) = 3.*U(4,I,JM,K) - 2.*U(4,I,JM-1,K)

U(5,I,JMAX+1,K) = 3.*U(5,I,JM,K) - 2.*U(5,I,JM-1,K)
P(I,JMAX+1,K) = 3.* P(I,JM,K) - 2.* P(I,JM-1,K)

U(1,I,JMAX,K) = 2.*U(1,I,JM,K)
U(2,I,JMAX,K) = 2.*U(2,I,JM,K)
U(3,I,JMAX,K) = 2.*U(3,I,JM,K)
U(4,I,JMAX,K) = 2.*U(4,I,JM,K)
U(5,I,JMAX,K) = 2.*U(5,I,JM,K)
P(I,JMAX,K) = 2.* P(I,JM,K)

- U(1,I,JM-1,K)
- U(2,I,JM-1,K)

- U(3,I,JM-1,K)
- U(4,I,JM-1,K)

- U(5,I,JM-1,K)
- P(I,JM-1,K)

ELSE
C
CVIS --- PERIODICITY CONDITION

U(1,I,JMAX,K) = U(1,I,JM,K)
U(2,I,JMAX,K) = U(2,I,JM,K)
U(3,I,JMAX,K) =-U(3,I,JM,K)
U(4,I,JMAX,K) = U(4,I,JM,K)
U(5,I,JMAX,K) = U(5,I,JM,K)
P(I,JMAX,K) = P(I,JM,K)

U(1,I,JMAX+1,K) = U(1,I,JM-1,K)
U(2,I,JMAX+1,K) - U(2,I,JM-1,K)
U(3,I,JMAX+I,K) --U(3,I,JM-1,K)
U(4,I,JMAX+1,K) = U(4,I,JM-1,K)
U(5,I,JMAX+1,K) = U(5,I,JM-1,K)

P(I,JMAX+1,.K) = P(I,JM-1,K)
ENDIF

U(1,I,O,K) -
U(2,I,O,K) =
U(3,I,O,K) -
U(4,I,O,K) =
U(5,I,O,K) =

P(I, 0,K) =

U(1,I,-1,K) =
U(2,I,-1,K) =

U(3,I,-1,K) =
U(4,I,-1,K) =

U(5,I,-1,K) -

P(I,-1,K) =

U(1,I,1,KMAX-K)
U(2,I,1,KMAX-K)
-U(3,I,1,KMAX-K)
U(4,I,1,KMAX-K)
U(5,I,1,KMAX-K)
P(I,1,KMAX-K)

U(1,I,2,KMAX-K)
U(2,I,2,KMAX-K)

-U(3,I,2,KMAX-K)
U(4,I,2,KMAX-K)
U(5,I,2,KMAX-K)
P(I,2,KMAX-K)

DT(I,O,K) = DT(I,1,KMAX-K)
DT(I,JMAX,K) = DT(I,JM,K)

141 CONTINUE
140 CONTINUE
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ENDIF

DO 14 I=ITE,IM
CVD$ NODEPCHK
CVD$ NOSYNC

DO 13 K=1,KM
U(1,I,JMAX+1,K) = 3.*U(1,I,JM,K) - 2.*U(1I,JM-1,K)
U(2,I,JMAX+1,K) = 3.*U(2,IJM,K) - 2.*U(2,I,JM-1,K)
U(3,I,JMAX+1,K) = 3.*U(3,I,JM,K) - 2.*U(3,IJM-1,K)
U(4,I,JMAX+1,K) = 3.*U(4,I,JM,K) - 2.*U(4,I,JM-1,K)
U(5,I,JMAX+1,K) - 3.*U(5,I,JM,K) - 2.*U(5,I,JM-1,K)
P(I,JMAX+1.K) - 3.* P(I,JM,K) - 2.* P(I,JM-1,K)

U(1,I,JMAX,K) = 2.*U(1,I,JM,K) - U(1,I,JM-1,K)
U(2,I,JMAX,K) = 2.*U(2,I,JM,K) - U(2,I,JM-1,K)
U(3,I,JMAX.K) = 2.*U(3,I,JM,K) - U(3,I,JM-1,K)
U(4,I,JMAX,K) = 2.*U(4,I,JM,K) - U(4,I,JM-1,K)
U(5 , I,JMAX,K) = 2.*U(5,I,JM,K) - U(5,I,JM-1,K)

P(I,JMAX,K) = 2.* P(I,JM,K) - P(I,JM-1,K)

U(1,I,0,K) = U(1,I,1,KMAX-K)
U(2,I,O,K) = U(2,I,1,KMAX-K)
U(3,I,O,K) = U(3,I,1,KMAX-K)
U(4,I,O,K) = U(4,I,1,KMAX-K)
U(5,I,O,K) = U(5,I,1,KMAX-K)

P(I,O,K) = P(I,1,KMAX-K)

U(1,I,-I,K) = U(1,I,2,KMAX-K)
U(2,I,-1,K) = U(2,I,2.KMAX-K)
U(3,I,-1,K) = U(3,I,2,KMAX-K)
U(4,I.-1,K) = U(4,I,2,KMAX-K)
U(5,I,-I,K) - U(5,I,2,KMAX-K)
P(I,-1,K) = P(I,2,KMAX-K)

DT(I,O,K) = DT(I,1,KMAX-K)
DT(I,JMAX,K) = DT(I,JM,K)

CONTINUE
CONTINUE

IF(SYM) THEN
DO 40 I - 1,IM
DO 30 J = 1,JM

U(1,I,J,KMAX) = U(1,I,J,KMAX-1)
U(2,I,JKMAX) = U(2,I,J,KMAX-1)
U(3,I,J,KMAX) = -U(3,I,J,KMAX-1)
U(4,I,J,KMAX) = U(4,I,J,KMAX-1)
U(5,I,J,KMAX) = U(5,I,J,KMAX-1)
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C

U(1,I,J,KMAX+I) - U(1,I,J,KMAX-2)
U(2,I,J,KMAX+1) = U(2,I,J,KMAX-2)
U(3,I,J,KMAX+1) = -U(3,I,J,KMAX-2)
U(4,I,J,KMAX+1) = U(4,I,J,KMAX-2)
U(5.I,J,KMAX+1) = U(5,I,J,KMAX-2)

P(I,J,KMAX+1) - P(I,J,KMAX-2)
C

U(1,I,J,O) = U(1,I,J,1)
U(2,I,J,O) = U(2,I,J,1)
U(3,I,J,O) = -U(3,I,J,1)
U(4,I,J,O) = U(4,I,J,1)
U(5,I,J,O) = U(5,I,J,1)
P(I,J,O) = P(I,J,1)

C

U(1,I,J,-i) = U(1,I,J,2)
U(2,I,J,-1) = U(2,I,J,2)
U(3,I,J,-1) = -U(3,I,J,2)
U(4,I,J,-1) = U(4,I,J,2)

U(5,I,J,-1) = U(5,I,J,2)
P(I,J,-1) = P(I,J,2)

C

DT(I,J,O) = DT(I,J,1)
DT(I,J,KMAX) = DT(I,J,KM)

30 CONTINUE
40 CONTINUE

ELSE
DO 51 I=1,IM

DO 61 J=1,JM
U(1,I,J,KMAX+1) = U(1,I,J,2)
U(2,I,J,KMAX+1) = U(2,I,J,2)
U(3,I,J,KMAX+l) = U(3,I,J,2)
U(4,I,J,KMAX+1) - U(4,I.J.2)
U(5,I,J,KMAX+1) = U(5,I,J,2)
P(I,J,KMAX+1) = P(I,J,2)

U(1,I,J,KMAX) - U(1,I.J,1)
U(2,I.J,KMAX) - U(2,I,J.1)
U(3,I,J,KMAX) - U(3,I.J,1)
U(4,I,J,KMAX) = U(4,I,J,1)
U(5,I,J,KMAX) = U(5,I.J,1)
P(I,J,KMAX) = P(I,J,1)

U(1,I,J,O) = U(1,I,J,KM)
U(2,I,J,O) = U(2,I,J,KM)
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U(3,I,J,O) = U(3,I,J,KM)
U(4,I,J,O) = U(4,I,J,KM)
U(5,I,J,O) - U(5,I,J,KM)

P(I,J,O) = P(I,J,KM)

U(1,I,J,-1) = U(1,I,J,KM-1)
U(2,I,J,-1) = U(2,I,J,KM-1)
U(3,I,J,-1) = U(3,I,J,KM-1)
U(4,I,J,-1) = U(4,I,J,KM-1)
U(5,I,J,-1) = U(5,I,J,KM-1)

P(I,J,-1) = P(I,J,KM-1)

DT(I,J,O) = DT(I,J,KM)
DT(I,J,KMAX) = DT(I,J,1)

CONTINUE

CONTINUE

ENDIF

IF (GRNAME .ne. 'ni.gri')then
DO 50 J = 1,JM

DO 60 K = 1,KM
U(1,IMAX+1,J,K) = 3.*U(1,IM,J,K) - 2.*U(1,IM-1,J,K)
U(2,IMAX+1,J,K) = 3.*U(2,IM,J,K) - 2.*U(2,IM-1,J,K)
U(3,IMAX+1,J,K) = 3.*U(3,IM,J,K) - 2.*U(3,IM-1,J,K)
U(4,IMAX+1,J,K) = 3.*U(4,IM,J,K) - 2.*U(4,IM-1,J,K)
U(5,IMAX+1,J,K) = 3.*U(5,IM,J,K) - 2.*U(5,IM-1,J,K)

P(IMAX+1,J,K) = 3.*P(IM,J,K) - 2.*P(IM-1,J,K)

U(I,IMAX,J,K) = 2.*U(1,IM,J,K) - U(1,IM-1,J,K)
U(2,IMAX,J,K) - 2.*U(2,IM,J,K) - U(2,IM-1,J,K)
U(3,IMAX,J,K) = 2.*U(3,IM,J,K) - U(3,IM-1,J,K)

U(4,IMAX,J,K) = 2.*U(4,IM,J,K) - U(4,IM-1,J,K)
U(5,IMAX,J,K) = 2.*U(5,IM,J,K) - U(5,IM-1,J,K)
P(IMAX,J,K) = 2.*P(IM,J,K) - P(IM-1,J,K)

U(1,0,J,K) - 2.*U(1,1,J,K) - U(1,2,J,K)

U(2,0,J,K) = 2.*U(2,1,J,K) - U(2,2,J,K)

U(3,0,J,K) = 2.*U(3,1,J,K) - U(3,2,J,K)
U(4,0,J,K) - 2.*U(4,1,J,K) - U(4,2,J,K)

U(5.0,J,K) = 2.*U(5,1,J,K) - U(5,2,J,K)

P(O,J,K) - 2.*P(1,JK) - P(2,J,K)

U(1,-1,J,K) = 3.*U(1,1,J,K) - 2.*U(1,2,J,K)
U(2,-1,J,K) - 3.*U(2,1,J,K) - 2.*U(2,2,J,K)

U(3,-1,J,K) - 3.*U(3,1,J,K) - 2.*U(3,2,J,K)
U(4,-1,J,K) = 3.*U(4,1,J,K) - 2.*U(4,2,J,K)
U(5,-1,J,K) = 3.*U(5,1,J,K) - 2.*U(5,2,J,K)
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P(-1,J,K) = 3.*P(1,J,K) - 2.*P(2,J,K)

C

DT(IMAX,J,K) = DT(IM,J,K)
DT(O,J,K) = DT(1,J,K)

60 CONTINUE

50 CONTINUE

ELSE

c
C---- Ni bump ....

DO 15 J = 1,JM
DO 16 K = 1,KM

U(1,IMAX+1,J,K) = U(1,IM,J,K)
U(2,IMAX+1,J,K) - U(2,IM,J,K)

U(3,IMAX+1,J,K) = U(3,IM,J,K)
U(4,IMAX+1,J,K) = U(4,IM,J,K)
U(5,IMAX+1,J,K) = U(5,IM,J,K)
P(IMAX+1,J,K) = P(IM,J,K)

C

U(1,IMAX,J,K)
U(2,IMAX,J,K)
U(3,IMAX,J,K)
U(4,IMAX,J,K)
U(5,IMAX,J,K)
P(IMAX,J,K)

U(1,O,J,K) =
U(2,0,J,K) =
U(3,0,J,K) =

U(4,0,J,K) =

U(5,O,J,K) =
P(0,J,K) =

U(1,-1,J,K)
U(2,-1 ,J,K)
U(3,-1,J,K)

U(4,-1,J,K)

U(5,-1,J,K)

P(-1,J,K)

= U(1,IM,J,K)
= U(2,IM,J,K)
= U(3,IM,J,K)
= U(4,IM,J,K)
= U(5,IM.J,K)
- P(IM,J,K)

2.*U(1,1 ,J,K)
2.*U(2,1,J,K)
2.*U(3,1,J,K)
2.*U(4,1,J,K)
2.*U(5,1,J,K)

2.*P(1,J,K)

3.*U(1,1,J,K)
3.*U(2,1,J,K)

3.*U(3,1,J,K)

3.*U(4,1,J,K)
3.*U(5,1,J,K)

3.*P(1 ,J,K)

U(1,2,J,K)
U(2,2,J,K)
U(3,2,J,K)
U(4,2,J,K)
U(5,2,J,K)

P(2, J, K)

- 2.*U(1,2,J,K)
-2.*U(2,2,J,K)
- 2.*U(3,2,J,K)
- 2.*U(4,2,J,K)
- 2.*U(5,2,J,K)

2.*P(2,J,K)

DT(IMAX,J,K) - DT(IM,J,K)
DT(O,J,K) - DT(1,J,K)

16 CONTINUE

15 CONTINUE
ENDIF

DO 100 J = 1,JM
DO 110 I - O,IM
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C--- begin with the i-direction: find the values of the
C dissipation coefficients
C

DO 70 K = 1,KM
NUM = ABS((P(I+1,J,K) - 2.*P(I,J,K) + P(I-1,J,K))/

& (P(I+I,J,K) + 2.*P(I,J,K) + P(I-1,J,K)))
NUP = ABS((P(I+2,J,K) - 2.*P(I+I,J,K) + P(I,J,K))/

& (P(I+2,J,K) + 2.*P(I+I,J,K) + P(I,J,K)))
DTH - CFL/(0.5*(DT(I+I,J,K) + DT(I,J,K)))
EP = KAP2 * 0.5*(NUM+NUP)
EP2(I,K) = EP*DTH
EP4(I,K) = MAX(O.,(KAP4 - EP))*DTH

70 CONTINUE
110 CONTINUE

DO 770 K=I,KM
EP2(0,K) = 0.
EP2(IM,K)= 0.

770 CONTINUE

c IF(AOA .Eq. 0.) GO TO 73
c IF(J.EQ.1) THEN
c DO 71 I=ILE,ITE-1
c KTIP = (KMAX+I)/2

c K = KTIP+2
c DTH = CFL/(0.5*(DT(I+I,J,K) + DT(I,J,K)))
c EP2(I,KTIP+2) = KAP2*DTH
c EP4(I,KTIP+2) = 0.

c K = KTIP + 1
c DTH = CFL/(0.5*(DT(I+1,J,K) + DT(I,J,K)))
c EP2(I,KTIP+1) = KAP2*DTH
c EP4(I,KTIP+1) = 0.

c K = KTIP
c DTH = CFL/(0.5*(DT(I+1,J,K) + DT(I,J,K)))
c EP2(I,KTIP) = KAP2*DTH
c EP4(I,KTIP) = 0.

c K = KTIP-1
c DTH = CFL/(0.5*(DT(I+1,J,K) + DT(I,J,K)))
c EP2(I,KTIP-1) = KAP2*DTH
c EP4(I,KTIP-1) = 0.

c K = KTIP-2
c DTH = CFL/(0.5*(DT(I+1,J,K) + DT(I,J,K)))
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EP2(I,KTIP-2) = KAP2*DTH
EP4(I,KTIP-2) = 0.

71 CONTINUE

ENDIF

IF(J.EQ.2) THEN
DO 72 I=ILE,ITE-1

KTIP = (KMAX+1)/2

K - KTIP+2

DTH = CFL/(O.5*(DT(I+1,J,K) + DT(I,J,K)))
EP2(I,KTIP+2) = KAP2*DTH
EP4(I,KTIP+2) = 0.

K = KTIP+1
DTH = CFL/(O.5*(DT(I+1,J,K) + DT(I,J,K)))
EP2(I,KTIP+1) = KAP2*DTH
EP4(I,KTIP+I) = 0.

K = KTIP
DTH = CFL/(0.5*(DT(I+1,J,K) + DT(I,J,K)))
EP2(I,KTIP) = KAP2*DTH
EP4(I,KTIP) = 0.

72 CONTINUE
ENDIF

vis IF(J.EQ.1) THEN
IF(J.EQ.1 .AND. ITE .LT. IMAX) THEN
KTIP = (KMAX + 1)/2
DO 725 K=KTIP,KM

I=ITE-1
DTH - CFL/(O.5*(DT(I+I,J,K)
EP2(I,K) = KAP2*DTH
EP4(I,K) = 0.
I=ITE-2
DTH - CFL/(0.5*(DT(I+1,J,K)
EP2(I,K) = KAP2*DTH
EP4(I,K) = 0.
I=ITE
DTH = CFL/(O.5*(DT(I+1,J,K)
EP2(I,K) = KAP2*DTH
EP4(I,K) = 0.
I=ITE+1
DTH - CFL/(0.5*(DT(I+I1J,K)
EP2(I,K) = KAP2*DTH
EP4(I,K) = 0.

CONTINUE

+ DT(I,J,K)))

+ DT(I,J,K)))

+ DT(I.J,K)))

+ DT(I,J,K)))
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c ENDIF

C
C--- calculate dissipation d(i,j,k)
C
c 73 CONTINUE

C
C---- For ni Bump zero at inflow

IONE = 1

IF (GRNAME .EQ. 'ni.gri') IONE = 3
c DO 111 I=1,IM

DO 111 I=IONE,IM

DO 80 K = 1,KM

DS1 = EP2(I,K)*(U(1,I+1,J,K) - U(1,I,J,K))

DF1 = EP4(I,K)*(U(1,I+2,J,K) - 3.*(U(1,I+1,J,K) -
& U(1,I,J,K)) - U(1,I-1,JK))

DS2 = EP2(I,K)*(U(2,I+1,J,K) - U(2,I,J,K))

DF2 = EP4(I,K)*(U(2,I+2,J,K) - 3.*(U(2,I+1,J,K) -

& U(2,I.J,K)) - U(2,I-1,J,K))

DS3 = EP2(I,K)*(U(3,I+1,J,K) - U(3,I,J,K))

DF3 = EP4(I,K)*(U(3,I+2,J,K) - 3.*(U(3,I+1,J,K) -
& U(3,I,J,K)) - U(3,I-1,J,K))

DS4 = EP2(I,K)*(U(4,I+1,J,K) - U(4,I,J,K))

DF4 = EP4(I,K)*(U(4,I+2,J,K) - 3.*(U(4,I+1,J,K) -
& U(4,I,J,K)) - U(4,I-1,J,K))

DS5 = EP2(I,K)*(U(5,I+1,J,K) - U(5,I,J,K) + P(I+1,J,K) -

& P(I,J,K))
DF5 = EP4(I,K)*(U(5,I+2,J,K) - 3.*(U(5,I+1,J,K) -

& U(5,I,J,K)) - U(5,I-1,J,K) + P(I+2,J,K) - 3.*
& (P(I+1,J,K) - P(I,J,K)) - P(I-1,J,K))

C

D(1,I,J,K) = DS1 - DF1
D(2,I,J,K) = DS2 - DF2
D(3,I,J,K) = DS3 - DF3
D(4,I,J,K) = DS4 - DF4
D(5.I,J,K) = DS5 - DF5

80 CONTINUE

C

DO 90 K = 1,KM
DS1M - EP2(I-1,K)*(U(1,I,J.K) - U(1,I-1,J,K))
DF1M - EP4(I-1,K)*(U(1,I+1,JK) - 3.*(U(1,I,J,K) -

& U(1,I-1,J,K)) - U(1,I-2,J,K))
DS2M = EP2(I-1,K)*(U(2,I,J,K) - U(2,I-1,J,K))
DF2M = EP4(I-1,K)*(U(2,I+1,J,K) - 3.*(U(2,I,J,K) -

& U(2,I-1,J,K)) - U(2,I-2,J,K))
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DS3M = EP2(I-1,K)*(U(3,I,J,K) - U(3,I-1,J,K))

DF3M - EP4(I-1,K)*(U(3,I+1,J,K) - 3.*(U(3,I,J,K) -
& U(3,I-1,J,K)) - U(3,I-2,J,K))

DS4M = EP2(I-1,K)*(U(4,I,J,K) - U(4,I-1,J,K))
DF4M = EP4(I-1,K)*(U(4,I+1,J,K) - 3.*(U(4,I,J,K) -

& U(4,I-1,J,K)) - U(4,I-2,J,K))

DS5M = EP2(I-1,K)*(U(5,I,J,K) - U(5,I-1,J,K) + P(I,J,K) -
& P(I-1,J.K))

DF5M = EP4(I-1,K)*(U(5,I+1,J,K) - 3.*(U(5,I,J,K) -
& U(5,I-1,J,K)) - U(5,I-2,J,K) + P(I+I,J,K) - 3.*
& (P(I,J,K) - P(I-1,J,K)) - P(I-2,JK))

C
D(1,I,J,K) = D(1,I,J,K) - DSIM + DF1M
D(2,I.J,K) = D(2,I,J,K) - DS2M + DF2M
D(3,I,J,K) = D(3,I,J,K) - DS3M + DF3M
D(4,I,J,K) = D(4,I,J,K) - DS4M + DF4M
D(5,IJ,K) = D(5,I,J,K) - DS5M + DF5M

90 CONTINUE
111 CONTINUE
100 CONTINUE

C
C--- next do the j-direction: find the values of the
C dissipation coefficients
C

DO 121 I=1,IM
DO 122 J-O,JM

DO 120 K = 1,KM
NUM = ABS((P(I,J+1,K) - 2.*P(I,J,K) + P(I,J-1,K))/

& (P(I,J+1,K) + 2.*P(I,J.K) + P(I,J-1,K)))
NUP a ABS((P(I,J+2,K) - 2.*P(I,J+I,K) + P(I,J,K))/

& (P(I,J+2,K) + 2.*P(I,J+I,K) + P(I,J,K)))
DTH = CFL/(0.5*(DT(I,J+1,K) + DT(I,J,K)))
EP = KAP2 * 0.5*(NUM+NUP)
EP2(J,K) - EP*DTH

EP4(J,K) - MAX(O.,(KAP4 - EP))*DTH

120 CONTINUE
122 CONTINUE

IF(I.GE.ILE .OR. I.LT.ITE) THEN
DO 1200 K=1,KM

EP2(0,K) - 0.

EP2(JM,K) - 0.
1200 CONTINUE

ENDIF
C
C---- Put in additional (faired) smoothing in j-direction to stabilize shock
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DO 1201 K = 1,KM
EP2(JSM-4,K) = EP2(JSM-4,K) + EP2(JSM-4,K)*.2*ADDSMO
EP2(JSM-3,K) = EP2(JSM-3,K) + EP2(JSM-3,K)*.4*ADDSMO
EP2(JSM-2,K) = EP2(JSM-2,K) + EP2(JSM-2,K)*.6*ADDSMO
EP2(JSM-1,K) = EP2(JSM-1,K) + EP2(JSM-1,K)*.8*ADDSMO
DO 1201 J = JSM,JM
EP2(J,K) - EP2(J,K) + EP2(J,K)*ADDSMO
CONTINUE

IF(AOA .EQ. 0.) GO TO 74

IF(I.LT.ILE .OR. I.GT.ITE-1) GO TO 74
KTIP a (KMAX+1)/2

K = KTIP-2
DTH - CFL/(O.5*(DT(I,2,K)
EP2(1,KTIP-2) = KAP2*DTH
EP4(1,KTIP-2) a 0.

K = KTIP-1
DTH - CFL/(0.56(DT(I,2,K)
EP2(1,KTIP-1) = KAP2*DTH
EP4(1,KTIP-1) = 0.

K = KTIP
DTH - CFL/(0.5*(DT(I,2,K)
EP2(1,KTIP) = KAP2*DTH
EP4(1,KTIP) - 0.

+ DT(I,1,K)))

+ DT(I,1,K)))

+ DT(I,1,K)))

K = KTIP+2
DTH = CFL/(O.*C(DT(I,2,K) + DT(I,1,K)))
EP2(1,KTIP+2) - KAP2*DTH
EP4(1,KTIP+2) - 0.

K a KTIP+1
DTH - CFL/(0.5*(DT(I,2,K)
EP2(1,KTIP+1) - KAP2*DTH
EP4(1,KTIP+1I) - 0.

K - KTIP
DTH - CFL/(O.5*(DT(I,3,K)
EP2(2,KTIP) - KAP2*DTH
EP4(2,KTIP) w 0.

K = KTIP+2
DTH - CFL/(0.5*(DT(I.3,K)
EP2(2,KTIP+2) - KAP2*DTH
EP4(2,KTIP+2) - 0.

+ DT(I,1,K)))

+ DT(I,2,K)))

+ DT(I,2,K)))
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C K = KTIP+1
C DTH = CFL/(0.5*(DT(I,3,K) + DT(I,2,K)))
C EP2(2,KTIP+I) = KAP2*DTH
C EP4(2,KTIP+1) = 0.

C
C--- calculate dissipation d(i,j,k)
C

74 CONTINUE
C
CVIS*** Erricson's treatment seems to add too much smoothing near lower
Cvis*BL boundary, so set smoothing there to zero

JONE = 1

IF (RE .GT. 1.)THEN
JONE = 3

ENDIF
C DO 132 J=1,JM

DO 132 J=JONE,JM
DO 130 K - 1,KM

DS1 a EP2(J,K)*(U(1,I,J+1,K) - U(1,I,J,K))
DF1 = EP4(J,K)*(U(1,I,J+2,K) - 3.*(U(1,I,J+1K) -

& U(1,I,JK)) - U(1,IJ-1,K))

DS2 - EP2(J,K)*(U(2,I,J+1,K) - U(2,I,J,K))
DF2 = EP4(J,K)*(U(2,I,J+2,K) - 3.*(U(2,I,J+I,K) -

& U(2,IJK)) - U(2,IJ-1,K))
DS3 a EP2(J,K)*(U(3,I,J+IK) - U(3,I,J.K))
DF3 - EP4(J,K)*(U(3,I,J+2,K) - 3.*(U(3,I.J+I,K) -

& U(3,IJ,K)) - U(3,I,J-1,K))
DS4 = EP2(J,K)*(U(4,I,J+1,K) - U(4,I,JK))
DF4 - EP4(JK)*(U(4,I,J+2,K) - 3.*(U(4,I,J+1,K) -

& U(4,I.J,K)) - U(4,I,J-1,K))
DS5 = EP2(JK)*(U(5,I,J+I,K) - U(B,I,J,K) + P(I,J+1,K) -

& P(I.J,K))
DF5 - EP4(J,K)*(U(5,I,J+2,K) - 3.*(U(5.I,J+1,K) -

& U(5,IJ,K)) - U(5,I,J-1,K) + P(I,J+2,K) - 3.*
& (P(I,J+1,K) - P(I,J,K)) - P(I,J-1.K))

C

D(1,I,J,K) = D(1,I,J,K) + DS1 - DF1
D(2,I,J,K) = D(2,I,J,K) + DS2 - DF2
D(3,I,J,K) - D(3,I,J,K) + DS3 - DF3
D(4,I,J,K) - D(4,I,JK) + DS4 - DF4
D(5,I,J,K) - D(5,I,J,K) + DS5 - DF5

130 CONTINUE
C

DO 150 K = 1,KM
DS1M - EP2(J-1,K)*(U(1,I,J,K) - U(I,I,J-1,K))
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DF1M = EP4(J-1,K)*(U(1,I,J+1,K) - 3.*(U(1,I,J,K) -
& U(1,I,J-1,K)) - U(1,I,J-2,K))

DS2M = EP2(J-1,K)*(U(2,I,J,K) - U(2,I,J-1,K))

DF2M = EP4(J-1,K)*(U(2,I,J+1,K) - 3.*(U(2,I,J,K) -

& U(2,I,J-1,K)) - U(2,I,J-2,K))
DS3M = EP2(J-1,K)*(U(3,I,J,K) - U(3,I,J-1,K))
DF3M = EP4(J-1,K)*(U(3,I,J+1,K) - 3.*(U(3,I,J,K) -

& U(3.I,J-1,K)) - U(3,I,J-2,K))

DS4M = EP2(J-1,K)*(U(4,I,J,K) - U(4,I,J-1,K))

DF4M = EP4(J-1,K)*(U(4,I,J+1,K) - 3.*(U(4,I,J,K) -
& U(4,I.J-1,K)) - U(4,I,J-2,K))

DS5M = EP2(J-1,K)*(U(5,I,J,K) - U(5,I,J-1,K) + P(I,J,K) -
& P(I,J-1,K))

DF5M = EP4(J-1,K)*(U(5,I,J+1,K) - 3.*(U(5,I,J,K) -

& U(5,I,J-1,K)) - U(5,IJ-2,K) + P(I,J+1,K) - 3.*
& (P(I,J,K) - P(I,J-1,K)) - P(I,J-2,K))

C
D(1,I,J,K) = D(1,I,J,K) - DS1M + DF1M

D(2,I,J,K) = D(2,I,J,K) - DS2M + DF2M
D(3,I,J,K) = D(3,I,J,K) - DS3M + DF3M

D(4,I,J,K) = D(4,I,J,K) - DS4M + DF4M

D(5,I,J,K) = D(5,I,J,K) - DS5M + DF5M

150 CONTINUE

132 CONTINUE

121 CONTINUE

C

DO 230 I = 1,IM
DO 220 J = 1,JM

C
C--- next do the k-direction: find the values of the

C dissipation coefficients
C

DO 180 K = O,KM
NUM = ABS((P(I,J,K+I) - 2.*P(I,J,K) + P(I,J,K-1))/

& (P(I,J,K+1) + 2.*P(I,J,K) + P(I,J,K-1)))

NUP = ABS((P(I,J,K+2) - 2.*P(I,J,K+1) + P(I,J,K))/

& (P(I,J,K+2) + 2.*P(I,J,K+1) + P(I,J,K)))

DTH = CFL/(0.5*(DT(I,J,K+1) + DT(I,J,K)))
EPP - KAP2 * 0.5*(NUM+NUP)
EP2(J,K) = EPP*DTH
EP4(J,K) = MAX(0.,(KAP4 - EPP))*DTH

180 CONTINUE

C IF(AOA .EQ. 0.) GO TO 75
C IF(I.LT.ILE .OR. I.GT.ITE-1) GO TO 75
C KTIP = (KMAX+1)/2
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IF(J.EQ.1) THEN

K=KTIP-2
DTH = CFL/(0.5*(DT(I,J,K+1)
EP2(1,KTIP-2) = KAP2*DTH
EP4(1,KTIP-2) = 0.

K=KTIP-1
DTH = CFL/(O.5*(DT(I,J,K+1)
EP2(1,KTIP-1) = KAP2*DTH
EP4(1,KTIP-1) = 0.

K=KTIP
DTH = CFL/(O.5*(DT(I,J,K+1)
EP2(1,KTIP) = KAP2*DTH
EP4(1,KTIP) = 0.

+ DT(I,J,K)))

+ DT(I,J,K)))

+ DT(I,J,K)))

K=KTIP +1
DTH = CFL/(0.5*(DT(I,J,K+1) + DT(I,J,K)))
EP2(1,KTIP+1) = KAP2*DTH
EP4(1,KTIP+1) = 0.

K=KTIP+2
DTH = CFL/(O.5*(DT(I,J,K+1) + DT(I,J,K)))
EP2(1,KTIP+2) = KAP2*DTH
EP4(1,KTIP+2) = 0.

ENDIF

IF(J.EQ.2) THEN
K=KTIP
DTH = CFL/(O.5*(DT(I,J,K+1) + DT(I,J,K)))
EP2(2,KTIP) = KAP2*DTH
EP4(2.KTIP) = 0.

K=KTIP+1
DTH = CFL/(0.5*(DT(I,J,K+1) + DT(I,J,K)))
EP2(2,KTIP+1) - KAP2*DTH
EP4(2.KTIP+1) , O.

K=KTIP+2
DTH = CFL/(0.5*(DT(I,J,K+1) + DT(I,J,K)))
EP2(2,KTIP+2) - KAP2*DTH

EP4(2,KTIP+2) = 0.
ENDIF

C
C--- calculate dissipation d(i,j,k)
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75 DO 190 K = 1,KM
DS1 = EP2(JK)*(U(1,I,J,K+1) - U(1,I,J,K))
DF1 = EP4(J,K)*(U(1,I,J,K+2) - 3.*(U(1,I,J,K+1) -

& U(1,I,JK)) - U(1,I,J,K-1))
DS2 = EP2(J,K)*(U(2,I,J,K+1) - U(2,I,J,K))
DF2 = EP4(J,K)*(U(2,I,J,K+2) - 3.*(U(2,I,J,K+1) -

& U(2,I,J,K)) - U(2,I,J,K-1))
DS3 = EP2(J,K)*(U(3,I,J,K+I) - U(3,I,J,K))
DF3 = EP4(J,K)*(U(3,I,J,K+2) - 3.*(U(3,I,J,K+1) -

& U(3,I,J,K)) - U(3,I,J,K-1))

DS4 = EP2(JK)*(U(4,I,J,K+1) - U(4,I,J,K))
DF4 = EP4(J,K)*(U(4,I,J,K+2) - 3.*(U(4,I,J,K+1) -

& U(4,I,J,K)) - U(4,I,J,K-1))

DS5 = EP2(J,K)*(U(5,I,J,K+1) - U(5,I,J,K) + P(I,J,K+1) -
& P(I,J,K))

DF5 = EP4(J,K)*(U(5,I,J,K+2) - 3.*(U(5,I,J,K+1) -
& U(5,I,J,K)) - U(5,I,J,K-1) + P(I,J,K+2) - 3.*
& (P(I,J,K+1) - P(I,J,K)) - P(I,J,K-1))

C

D(1,I,J,K) = D(1,I,J,K) + DS1 - DF1
D(2,I,J,K) = D(2,I,J,K) + DS2 - DF2

D(3,I,J,K) = D(3,I,J,K) + DS3 - DF3
D(4,I,J,K) = D(4,I,J,K) + DS4 - DF4
D(5,I,J,K) = D(5,I,J,K) + DS5 - DF5

190 CONTINUE
C

DO 210 K = 1,KM
DSIM = EP2(J,K-1)*(U(1,I,J,K) - U(1,I,J,K-1))
DFlM = EP4(J,K-1)*(U(1,I,J,K+1) - 3.*(U(1,I,J,K) -

& U(1,I,J,K-1)) - U(1,IJ,K-2))
DS2M = EP2(J,K-1)*(U(2,I,J,K) - U(2,I,J,K-1))
DF2M = EP4(J,K-1)*(U(2,I,J,K+1) - 3.*(U(2,I,J,K) -

& U(2,I,J,K-1)) - U(2,I,J,K-2))
DS3M = EP2(J,K-1)*(U(3,I,J,K) - U(3,I,J,K-1))
DF3M = EP4(J,K-1)*(U(3,I,J,K+1) - 3.*(U(3,I,J,K) -

& U(3,I,J,K-1)) - U(3,I,J,K-2))
DS4M = EP2(J,K-1)*(U(4,I,J,K) - U(4,I,J,K-1))
DF4M = EP4(JK-I)*(U(4,I,J,K+I) - 3.*(U(4,I,J,K) -

& U(4,I,J,K-1)) - U(4,I,J,K-2))
DS5M = EP2(JK-1)*(U(5,I,JK) - U(5,I,J,K-1) + P(I,J,K) -

& P(I,J,K-1))
DF5M = EP4(J,K-1)*(U(5,I,J,K+I) - 3.*(U(5,I,J,K) -

& U(5,I,J,K-1)) - U(5,I,J,K-2) + P(I,J,K+1) - 3.*
& (P(I,J,K) - P(I,J,K-1)) - P(I,J,K-2))

C
D(1,I,J,K) = D(1,IJ,K) - DS1M + DF1M
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D(2,I,J,K) = D(2,I,J,K) - DS2M + DF2M
D(3,I,J,K) = D(3,I,J,K) - DS3M + DF3M
D(4,I,J,K) = D(4,I,J,K) - DS4M + DF4M
D(5,I,J,K) = D(5,I,J,K) - DS5M + DF5M

210 CONTINUE
220 CONTINUE
230 CONTINUE

DO 53 J=1,JM
DO 63 K=1,KM

U(1,0,J,K) = UCON(I,J,K)
U(2,0,J,K) = UCON(2,J,K)
U(3,0,J,K) = UCON(3,J,K)
U(4,0,J,K) = UCON(4,J,K)
U(5,0,J,K) - UCON(5,J,K)
P(O,J,K) = PCON(J,K)

63 CONTINUE
53 CONTINUE

RETURN
END
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C
C
C SUBROUTINE DTSIZE: calculates the value of the local time step
C size based on the local CFL number restriction
C

SUBROUTINE DTSIZE
include 'euler.inc'
INCLUDE 'blvisc.inc'
REAL DTVISC
COMMON/DTE/DTEXP(ISIZ,JSIZ,KSIZ)
COMMON/AEXP/AXEXP(ISIZ,JSIZ,KSIZ),AYEXP(ISIZ,JSIZ,KSIZ),
& AZEXP(ISIZ,JSIZ,KSIZ)

C
C---- Check for negative density

DO 5 I = I,IM
DO 5 J = 1,JM
DO 5 K = 1,KM

IF (P(I,J,K) .LT. 0.) GO TO 71
5 IF (U(1,I,J,K) .LT. 0.) GO TO 70

C
C---- Time step...

DO 10 I = 1,IM
DO 10 J = 1,JM

DO 10 K = 1,KM
DTVISC - 0.

RHO = U(1,I,JK)
U1 = U(2,I,J,K)/RHO
V1 = U(3.I,J,K)/RHO
Wi - U(4.I,J,K)/RHO

C
C = SQRT(GAM*P(I,J.K)/RHO)

C
C---- (Note: Semi-implicit stuff is implemented in AMEAN.F)

AX = AXM(IJ,K)
AY - AYM(I , J,K)
AZ = AZM(I,J.K)
AR - SQRT(AX**2 + AY**2 + AZ**2)

Cdebug for debuggin purposes only
cdb IF(GRNAME .EQ. 'ni.gri')AR = SQRT(AX**2 + AY**2)
cdb IF(GRNAME .NE. 'ni.gri') write(6,*)
cdb & 'dtsize: Remove Ni Bump Fudege!'
cdb IF(GRNAME .NE. 'ni.gri') stop
Cdebug

UA = ABS(U1*AX)
VA = ABS(V1*AY)
WA - ABS(W1*AZ)
CA = C*AR
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CViscous
C---- Viscous restriction is eliminated by S-I treatment

IF (.NOT. SEMIIMP) THEN
DNN = MAX(1E-16,DNORM(I,J,K))
DTVISC = 4.*(MUL(I,J.K)+MUT(I,J,K))*NAREA(I,J,K)/DNN

ENDIF
C
C---- Time step

DT(I,J.K) - CFL/(UA + VA + WA + CA + DTVISC)
Cviscous
C
C---- Calculate explicit dt's for lhs smoothing if semiimplicit

IF (SEMIIMP) THEN
AX = AXEXP(I,J,K)
AY = AYEXP(I,J,K)
AZ = AZEXP(I,J,K)

AR = SQRT(AX**2 + AY**2 + AZ**2)
Cdebug for debuggin purposes only
cdb IF(GRNAME .EQ. 'ni.gri')AR = SQRT(AX**2 + AY**2)
cdb IF(GRNAME .NE. 'ni.gri') write(b,*)
cdb & 'dtsize: Remove Ni Bump Fudege!'
cdb IF(GRNAME .NE. 'ni.gri') stop
Cdebug

UA = ABS(U1*AX)
VA = ABS(V1*AY)
WA = ABS(W1*AZ)
CA = C*AR

DNN = MAX(1E-16,DNORM(I,J,K))
DTVISC = 4.*(MUL(I,J,K)+MUT(I,J.K))*NAREA(I.J.K)/DNN
DTEXP(I,J.K) = CFL/(UA + VA + WA + CA + DTVISC)

ENDIF
10 CONTINUE

C
C---- Set DT in each row equal to minimum FOR SEMI-IMPLICIT OPERATION

IF (.NOT. SEMIIMP) GOTO 60
DO 60 I = 1, IM

DTMIN = 10E13
DO 55 J = 1,JM
DO 55 K = 1,KM

DT(I,J,K) = DT(I,J,K)*VOL(I,J,K)
55 DTMIN = MIN(DTMIN,DT(I,JK))

DO 56 J = 1,JM
DO 56 K = 1,KM

DT(I,J,K) = DTMIN
56 DT(I,J,K) - DT(I,J,K)/VOL(I,J,K)

50 CONTINUE
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60 CONTINUE
GOTO 99

70 WRITE(6,*) 'DTSIZE: Negative density at i,j,k-',i,j,k
STOP

71 WRITE(6,*) 'DTSIZE: Negative pressure at i,j.k=',i,j,k
STOP

99 CONTINUE
C

RETURN
END

C
C---This would work if FACEX,Y,Z were defined at the boundaries
c AX = MAX(ABS(FACEX(1,I,J.K)),ABS(FACEX(1.,I-1,J,K))) +
c k MAX(ABS(FACEX(3,I,J,K)),.ABS(FACEX(3.I,J,K-1)))
c AY = MAX(ABS(FACEY(1.IJ,K)),ABS(FACEY(1,I-1,JK))) +
c & MAX(ABS(FACEY(3,I,JK)),ABS(FACEY(3,I,J,K-1)))
c AZ - MAX(ABS(FACEZ(1.I,J,K)),ABS(FACEZ(1.I-1,JK))) +
c & MAX(ABS(FACEZ(3,I,JK)).ABS(FACEZ(3,IJ,K-1)))
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C
C
C SUBROUTINE FLUX: determine the fluxes across each finite volume cell
C face, and the residual R for each cell. This is done by averaging
C the flux vectors between neighboring cells
C
C NOTE: The form of the flux balance used by Roberts/Goodsell has
C been replaced with a modified version that is second order accurate
C on Cartesian grids (R/G is not). To recover the R/G version
C simply comment out the two lines: QA=.5(QA+QAP) , QAP=QA
C occuring at several locations in the subroutine. 8/1/88
C

SUBROUTINE FLUX
include 'euler.inc'
include 'blvisc.inc'

C
C--- set-up dummy points at kmax
C

IF(SYM) GO TO 5
DO 20 I = 1,IM
DO 10 J = 1,JM

U(1,I,J,KMAX) = U(I.I,J.1)
U(2,I,J,KM AX) = U(2,I.J,1)
U(3,I,JKMAX) = U(3,I.J,1)
U(4,I,J,KMAX) = U(4,IJ,1)
U(5,I,J,KMAX) = U(5,I.J,1)
P(I,J,KMAX) = P(IJ,1)

10 CONTINUE
20 CONTINUE

C
C--- first, initialize the residual field
C
5 DO 70 I = 1,IMAX

DO 60 J = 1,JMAX
DO 50 K = 1,KMAX
R(1,I,J,K) = 0.
R(2,I,J,K) = 0.
R(3,I,J,K) = 0.
R(4,I,J,K) = 0.
R(5,I,J,K) = 0.

50 CONTINUE
60 CONTINUE
70 CONTINUE

IF(SYM) THEN
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C
C--- determine the residual at the symmetry plane cells

DO 90 I = 1,IM
DO 80 J = 1,JM
R(3,I,J,1) = WALLB(I,J)*PRESYMB(I,J)
R(3,I,J,KM) = WALLT(I,J)*PRESYMT(I,J)

CONTINUE
CONTINUE
ENDIF

C--- add contribution due to pressures at the wing surface
C

DO 110 I = ILE,ITE-1
DO 100 K = 1,KM
R(2.I.I,1K) = R(2,I,1,K) + FACEX(2,I,0,K)*PRESWG(I,K)
R(3,I,1,K) = R(3,I,1,K) + FACEY(2,I,O,K)*PRESWG(I,K)
R(4,I.1,K) = R(4.I,1,K) + FACEZ(2,I,0,K)*PRESWG(I,K)

100 CONTINUE
110 CONTINUE

C
C--- set up dummy points at j=O for upstream and downstream pts
C

DO 21 I=I,ILE-1
DO 11 K=1,KM
U(1,I,O,K)
U(2,I.0,K)
U(3,IOK)
U(4,I,0,K)
U(5,I0,,K)
P(T AI--

CONTINUE
CONTINUECONTINUE

DO 22 I=ITE,IM
DO 12 K=1,KM

U(1,I,0,K)
U(2,I,0,K)
U(3,I,0,K)
U(4,I,0,K)
U(5,I,0,K)
P(IO,K)

12 CONTINUE
22 CONTINUE

U(1,I,1,KMAX-K)
U(2,I,1,KMAX-K)
-U(3,I,I,KMAX-K)
U(4,I,1,KMAX-K)
U(5,I,1KMAX-K)
P(I,1,KMAX-K)

U(1,I,1.KMAX-K)
U(2,I,1,KMAX-K)
U(3,I,1.KMAX-K)
U(4.I,1.KMAX-K)
U(5,I,1 ,KMAX-K)
P(I.1,KMAX-K)

C--- do the flux across the j=0-face downstream and upstream
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J=O

DO 132 I = 1,ILE-1
DO 131 K=1,KM

C
C--- find the flux vector for cells (i,O,k) and (i,1,k)
C

QA = (U(2,IJ,K)*FACEX(2,I,J,K) + U(3,I,J,K)*FACEY(2,I,J,K)
& + U(4,I,J,K)*FACEZ(2,I,J,K))/U(1,I,J,K)

QAP = (U(2,I,J+1,K)*FACEX(2,I,J,K) + U(3,I,J+1,K)*
& FACEY(2,I,J,K) + U(4,I,J+1,K)*FACEZ(2,I,J,K))/U(1,I,J+1,K)

QA = .5*(QA+QAP)
QAP - QA

H1 = U(1,I,J,K)*QA

H2 = U(2,I,J,K)*QA + P(I,J,K)*FACEX(2,I,J,K)
H3 = U(3,I,J,K)*QA + P(I,J,K)*FACEY(2,I,J,K)
H4 = U(4,I,J,K)*QA + P(I,J,K)*FACEZ(2,I,J,K)
H5 = (U(5,I,J,K) + P(I,J,K))*QA

C

H1P = U(1,I,J+1,K)*QAP
H2P = U(2,I,J+1,K)*QAP + P(I,J+1,K)*FACEX(2,I,J,K)
H3P = U(3,I,J+1,K)*QAP + P(I.J+1,K)*FACEY(2,I,J,K)
H4P = U(4,I,J+1,K)*QAP + P(I,J+I,K)*FACEZ(2,I,J,K)
H5P = (U(5,I,J+1,K) + P(I,J+1,K))*QAP

C
C--- find the average flux vector between cells (i,O,k) and (i,1,k)

C
DR1 = .5*(HI + H1P)
DR2 = .5*(H2 + H2P)
DR3 = .5*(H3 + H3P)
DR4 = .5*(H4 + H4P)
DR5 - .5*(H5 + H5P)

C

C--- add flux to cell (i,1,k)
C

R(I,I,J+1,K) = R(1,I,J+1,K) + DRi
R(2,I,J+1,K) = R(2.I,J+1,K) + DR2
R(3,I,J+I,K) - R(3,I,J+1,K) + DR3
R(4,I,J+1,K) - R(4,I,J+1,K) + DR4
R(5,I,J+1,K) - R(5,I,J+1,K) + DR5

C

131 CONTINUE
132 CONTINUE

DO 134 I = ITE,IM

DO 133 K=1,KM
C
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C--- find the flux vector for cells (i,O,k) and (i,l,k)
C

QA = (U(2,I.,JK)*FACEX(2.,IJ.K) + U(3.I,J,K)*FACEY(2,I,JK)
& + U(4,I,J,K)*FACEZ(2,I,J,K))/U(1,I,J,K)

QAP = (U(2,I,J+I,K)*FACEX(2,I,J,K) + U(3,I,J+1,K)*
& FACEY(2,I,J,K) + U(4.I,J+1,K)*FACEZ(2,I,J.K))/U(I,I,J+I,K)

QA = .5*(QA+QAP)
QAP , QA
H I U(1,I,JK)*QA

H2 = U(2,I.J,K)*QA + P(I,J,K)*FACEX(2.I,J,K)
H3 = U(3,I,J,K)*QA + P(I,J.K)*FACEY(2,I,J,K)
H4 = U(4,I,J,K)*QA + P(I,J,K)*FACEZ(2,I,J,K)
H5 = (U(5,I,J,K) + P(I,J,K))*QA

C
HIP = U(1,I,J+1,K)*QAP
H2P = U(2,I,J+1,K)*QAP + P(I,J+1,K)*FACEX(2,I,J.K)
H3P = U(3,I,J+1,K)*QAP + P(I,J+I,K)*FACEY(2,I,J,K)
H4P = U(4,I,J+1,K)*QAP + P(IJ+I,K)*FACEZ(2,I,JK)
HSP a (U(5,I,J+I,K) + P(I,J+1,K))*QAP

C
C--- find the average flux vector between cells (i,O,k) and (i,1,k)
C

DR1 = .5*(H1 + HIP)
DR2 = .5*(H2 + H2P)
DR3 - .5*(H3 + H3P)
DR4 = .5*(H4 + H4P)
DR5 = .5*(H5 + HSP)

C
C--- add flux to cell (i,1,k)
C

R(1,I,J+1,K) = R(1,I,J+1,K) + DR1
R(2,IJ+1,K) - R(2.I,J+1,K) + DR2
R(3,I,J+I.K) = R(3,I,J+1,K) + DR3
R(4,I,J+1,K) = R(4,IJ+I,K) + DR4
R(5,I,J+1,K) = R(5,IJ+1,K) + DR5

C
133 CONTINUE
134 CONTINUE

I = 0O
DO 161 J = 1,JM
DO 151 K - 1,KM

C
C--- do the flux across the i=0-face
C--- find the flux vector for cells (O,j,k) and (1,j,k)
C

QA = (U(2,I,J,K)*FRONT(J,K))/U(1,I,J,K)
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QAP = (U(2,I+I,J,K)*FRONT(J,K))/U(1,I+1,J,K)
QA = .5*(QA+QAP)
QAP = QA
H1 = U(1,I,J,K)*QA
H2 = U(2,I,J,K)*QA + P(I,J,K)*FRONT(J,K)
H3 = U(3,I,J,K)*QA
H4 = U(4,I,J,K)*QA
H5 = (U(5,IJ,K) + P(I,J,K))*QA

C

H1P = U(1,I+1,J,K)*QAP

H2P = U(2,I+1,J,K)*QAP + P(I+I,J.K)*FRONT(J,K)
H3P = U(3,I+i,J,K)*QAP
H4P = U(4,I+1,J,K)*QAP
H5P = (U(5,I+1,J,K) + P(I+1,J,K))*QAP

C
C--- find the average flux vector between cells (O,j,k) and (1,j,k)
C

DR1 = .5*(H1 + HIP)
DR2 = .5*(H2 + H2P)
DR3 = .5*(H3 + H3P)
DR4 = .5*(H4 + H4P)
DR5 = .5*(H5 + H5P)

C
C--- add flux to cell (1,j,k)
C

R(1,I+I,J,K) = R(1,I+1,J,K) + DR1
R(2,I+1,J,K) = R(2,I+1,J,K) + DR2
R(3,I+1,J,K) = R(3,I+1,J,K) + DR3
R(4,I+1,J,K) = R(4,I+1,J,K) + DR4
R(5,I+1,J,K) = R(5,I+1,J,K) + DR5

C

151 CONTINUE
161 CONTINUE

C

DO 120 I = 1,IM
DO 160 J = 1,JM

C
C--- first do the flux across the i-face

C

DO 150 K = 1,KM
C
C--- find the flux vector for cells (i,j,k) and (i+l,j,k)
C

QA = (U(2,I,J,K)*FACEX(1,I,J,K) + U(3,I,J,K)*FACEY(1,I,J,K)
& + U(4,I.J,K)*FACEZ(IIJ,K))/U(1,I,J,K)

QAP = (U(2,I+1,J,K)*FACEX(1,I,J,K) + U(3,I+1,J,K)*
& FACEY(1,I,J,K) + U(4,I+1,J,K)*FACEZ(1,I,J,K))/U(I,I+1,J,K)
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QA = .5*(QA+QAP)

QAP - QA

H1 = U(1,I,J,K)*QA
H2 = U(2,I,J,K)*QA + P(I,J,K)*FACEX(1,I,J,K)
H3 = U(3,I,J,K)*QA + P(I,J,K)*FACEY(1,I,J,K)
H4 = U(4,I,J,K)*QA + P(I.J,K)*FACEZ(1,I,J,K)
H5 = (U(5,I.J,K) + P(I,J,K))*QA

C
H1P = U(1.I+1,J,K)*QAP
H2P = U(2,I+1,J,K)*QAP + P(I+I,J,K)*FACEX(1,I,J,K)
H3P - U(3,I+1,J,K)*QAP + P(I+I,JK)*FACEY(1,I,J,K)
H4P - U(4,I+1IJ.K)*QAP + P(I+I,J,K)*FACEZ(1,I,J,K)
HSP - (U(5,I+1,J,K) + P(I+1,J,K))*QAP

C
C--- find the average flux vector between cells (i,j,k) and (i+1,j,k)
C

DR1 - .5*(Hl + HIP)

DR2 = .5*(H2 + H2P)

DR3 = .5*(H3 + H3P)

DR4 = .5*(H4 + H4P)
DR5 = .5*(H5 + H5P)

C
C--- subtract outgoing flux from cell (i,j,k) and add it to
C cell (i+l,j,k)
C

R(1,I+IJ.K) = R(1.I+1,J,K) + DR1
R(2,I+1,J,K) = R(2,I+1,J,K) + DR2
R(3,I+1,J,K) = R(3,I+I,J,K) + DR3
R(4,I+1,J,K) = R(4,I+1,J,K) + DR4
R(5,I+1,J,K) = R(5,I+1,J.K) + DR5

C
R(1,I,J,K) - R(1,I,J,K) - DR1
R(2,I,J,K) = R(2,I,J,K) - DR2
R(3,I.J,K) = R(3,I,J,K) - DR3
R(4,I,J,K) * R(4,I,J,K) - DR4
R(5,I,JK) a R(5,I,J,K) - DR5

C
150 CONTINUE

C
C--- next do the flux across the j-face
C

DO 130 K = 1,KM
C
C--- find the flux vector for cells (i,jk) and (i,j+l,k)
C

QA = (U(2.I.J,K)*FACEX(2,I,J,K) + U(3.I,J,K)*FACEY(2,I,JK)
k + U(4,I,J,K)*FACEZ(2,I,J,K))/U(1,I,J,K)
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QAP = (U(2,I,J+I,K)*FACEX(2,I,J.K) + U(3,I,J+1,K)*
& FACEY(2,I,J,K) + U(4,I,J+1,K)*FACEZ(2,I,J,K))/U(1,I,J+1,K)

QA = .5*(QA+QAP)
QAP - QA
H1 = U(1,I,J,K)*QA
H2 a U(2,IJ,K)*QA + P(I,J,K)*FACEX(2,I,J,K)

H3 - U(3,I,J,K)*QA + P(I,J.K)*FACEY(2,I,J,K)
H4 - U(4,I,J,K)*QA + P(I,J,K)*FACEZ(2,I,J,K)
H5- (U(5,IJ.K) + P(I,J.K))*QA

C
H1P = U(1,I,J+.1,K)*QAP
H2P = U(2,I,J+I,K)*QAP + P(I,J+1,K)*FACEX(2,I,J,K)
H3P = U(3,I,J+I,K)*QAP + P(I,J+I,K)*FACEY(2,I,J,K)
H4P = U(4,I,J+I,K)*QAP + P(I,J+1,K)*FACEZ(2,I,J,K)
H5P = (U(5,I,J+1,K) + P(I,J+1,K))*QAP

C
C--- find the average flux vector between cells (i,j,k) and (i,j+1,k)
C

DR1 = .5*(Hl + HIP)
DR2 = .5*(H2 + H2P)
DR3 = .5*(H3 + H3P)
DR4 = .5*(H4 + H4P)
DR5 = .5*(H5 + H5P)

C if(i.eq.30 .and. j.eq.1 .and. k.eq.1) then
C write(6,*) 'dr2,h2,h2p',dr2*4,h2*4,h2p*4
C write(6,*) 'pdy,uq=',
C & .5*(p(i,j,k)+p(i,j+l,k))*facex(2,i,j,k)*4,
C k .5*(u(2,i,j,k)*qa+u(2,i,j+l,k)*qap)*4
C write(6,*) 'u2*qa,*qap=',u(2,i,j,k)*qa*4,u(2,i,j+i,k)*qap*4
C write(6,*) 'qa,qap,p(j),p(jp)',qa*2,qap*2,
C & p(i,j,k)*4,p(i,j+l,k)*4
C endif
C
C--- subtract outgoing flux from cell (i,j,k) and add it to
C cell (i,j+l,k)
C

R(1,I,J.K) = R(1,I,J.K) - DR1
R(2.I,J,K) = R(2,IJ,K) - DR2
R(3,I,J,K) a R(3,I,J,K) - DR3
R(4,I,J,K) = R(4,IJ,K) - DR4
R(5,I.J,K) = R(5,I,J,K) - DRS

C
R(1,I,J+I,K) = R(1,I,J+I,K) + DR1

R(2,I,J+IK) = R(2.I,J+I.K) + DR2
R(3,I,J+I,K) = R(3,I,J+1,K) + DR3
R(4,I,J+1,K) = R(4,I,J+1,K) + DR4
R(5,I,J+i,K) = R(5,I,J+I,K) + DR5
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130 CONTINUE
160 CONTINUE
120 CONTINUE

C
C--- finally do the flux across the k-face
c--- for an asymmetric case you will want to loop from k=1,km
C

KLOOP = KM
IF(SYM) KLOOP = KM-1
DO 152 K=1,KLOOP
DO 140 I=1,IM

DO 162 J=1,JM
C
C--- find the flux vector for cells (i,j,k) and (i,j,k+1)
C

QA = (U(2,I,J,K)*FACEX(3,I,J,K) + U(3,I,J,K)*FACEY(3,I,J,K)
& + U(4,I,J,K)*FACEZ(3,I,J,K))/U(1,I,J,K)

QAP = (U(2,I,J,K+1)*FACEX(3,I,J,K) + U(3,I,J,K+1)*
& FACEY(3,I,J,K) + U(4,I,J,K+1)*FACEZ(3,I,J,K))/U(1,I,J,K+1)

QA = .5*(QA+QAP)
QAP = QA
H1 = U(1,I,J,K)*QA
H2 = U(2,I,J,K)*QA + P(I,J,K)*FACEX(3,I,J,K)
H3 = U(3,I,J,K)*QA + P(I,J,K)*FACEY(3,I,J,K)
H4 = U(4,I,J,K)*QA + P(I,J,K)*FACEZ(3,I,J,K)
H5 = (U(5,I,J.K) + P(I,J,K))*QA

C

H1P = U(1,I,J,K+I)*QAP

H2P - U(2,I,J,K+i)*QAP + P(I,J,K+1)*FACEX(3,I,J,K)
H3P = U(3,I,J,K+I)*QAP + P(I,J,K+1)*FACEY(3,I,J,K)
H4P - U(4,I,J,K+I)*QAP + P(I,J,K+I)*FACEZ(3,I,J,K)
H5P - (U(5,I,J,K+1) + P(I,J,K+I))*QAP

C
C--- find the average flux vector between cells (i,j,k) and (i,j,k+l)
C

DR1 - .6*(H1 + H1P)

DR2 = .5*(H2 + H2P)
DR3 - .6*(H3 + H3P)
DR4 - .5*(H4 + H4P)
DR5 - .5*(H5 + H5P)

C
C--- subtract outgoing flux from cell (i,j,k) and add it to
C cell (i,j,k+l)
C

R(1,I,J,K) = R(1,I.J,K) - DR1
R(2,I,J,K) = R(2,I,J,K) - DR2
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R(3,I,JK) =
R(4,I,J,K) =
R(5,I,J,K) =

R(1,I,J,K+1)

R(2,I,J,K+1)
R(3,I,J,K+1)

R(4,I,J,K+1)

R(5,I,J,K+1)

R(3,I,J,K) - DR3

R(4,I,J,K) - DR4
R(5,I,J,K) - DR5

R(1,I,J,K+1)
R(2,I,J,K+1)

R(3,I,J,K+I)
R(4,I,J,K+1)

R(5,I,J,K+1)

DR1

DR2

DR3

DR4

DR5

162 CONTINUE
140 CONTINUE
152 CONTINUE

IF(.NOT. SYM) THEN

fix-up the residuals across the coordinate cut in the
k-direction (spanwise)

DO 180 I = 1,IM
C CVD$ NODEPCHK

DO 170 J = 1,JM
R(1,I,J,1) = R(1,I,J,1)
R(2,I.J,1) = R(2,I,J,1)

R(3,I,J,1) = R(3,I,J,1)

R(4,I,J,1) = R(4,I,J,1)
R(5,I,J,1) R(S5,I,J,1)

170 CONTINUE
180 CONTINUE

ENDIF

R(1.I,J,KMAX)
R(2,I,J,KMAX)
R(3,I,.J,KMAX)
R(4,I,J,KMAX)
R(5,I,J,KMAX)

C
C---- Add in viscous fluxes on j faces
CViscous

IF (REYNUM .GT. 0.) CALL BLVISC
CViscous
C

RETURN

END
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C
C
C SUBROUTINE NORMAL: This subroutine calculates the cell-face
C normals of the finite volume cells
C

SUBROUTINE NORMAL
include 'euler.inc'

C
C--- determine the outward pointing normal on each cell face.

C The name of the variable (FACEX, FACEY, FACEZ) identifies the
C physical space component of the normal, and the first index of

C the variable (1, 2, 3) identifies the computational space com-
C ponent of the normal. For example, FACEX(2,I,J,K) is the
C x-component of the normal pointing in the j-direction out of cell

C (I,J,K). (You'll figure it out, don't worry.)
C
C********** NOTE: THIS SUBROUTINE HAS BEEN MODIFIED SO THAT THE
C********** COMP. COORDINATES FORM A RIGHT-HANDED SYSTEM
C
C--- first, the I - face
C

DO 30 I = 1,IM
DO 20 J = 1,JM
DO 10 K = 1,KM

X1 = X(I+1,J+I,K) - X(I+1,J,K+1)

Y1 = Y(I+1,J+1,K) - Y(I+1,J,K+1)

Z1 = Z(I+1,J+1,K) - Z(I+1,J,K+1)

X2 = X(I+1,J+1,K+1) - X(I+1,J,K)

Y2 = Y(I+1,J+1,K+1) - Y(I+1,J,K)

Z2 = Z(I+1,J+1,K+1) - Z(I+I,J,K)

C

FACEX(1,I,J,K) = (Y1*Z2 - Z1*Y2)*0.5

FACEY(1,I,J,K) = (Z1*X2 - X1*Z2)*0.5

FACEZ(1,I,J,K) = (X1*Y2 - Y1*X2)*0.5
C
C--- second, the J - face
C

X1 = X(I+1,J+I,K+1) - X(I,J+I,K)

Y1 = Y(I+1,J+1,K+I) - Y(I,J+1,K)

Z1 = Z(I+1,J+1,K+l) - Z(I,J+I,K)

X2 - X(I+1,J+I,K) - X(I,J+I,K+I)

Y2 = Y(I+1,J+1,K) - Y(I,J+I,K+l)
Z2 - Z(I+I,J+1,K) - Z(I,J+1,K+1)

C
FACEX(2,I,J,K) = (Y1*Z2 - Z1*Y2)*0.5
FACEY(2,I,J,K) = (Z1*X2 - X1*Z2)*0.5
FACEZ(2,I,J,K) = (X1*Y2 - Y1*X2)*0.5
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C
C--- third, the K - face
C

Xl1 = X(I+1,J+1.K+l) - X(I,J,K+1)
Yl = Y(I+1,J+1,K+1) - Y(I,J,K+1)
Z1 = Z(I+1,J+1,K+1) - Z(I,J,K+1)
X2 = X(I,J+1,K+1) - X(I+1,J,K+l)
Y2 = Y(I,J+1,K+I) - Y(I+1,J,K+1)
Z2 = Z(I,J+1,K+1) - Z(I+1,J,K+1)

FACEX(3,I,J,K) = (Y1*Z2 - Z1*Y2)*0.5
FACEY(3,I,J,K) = (Z1*X2 - X1*Z2)*0.5
FACEZ(3,I,J,K) = (X1*Y2 - Y1*X2)*0.5

CONTINUE
CONTINUE

CONTINUE

IF(SYM) THEN
C
C--- find the normals on the symmetry plane
C

DO 50 I = 1,IM
DO 40 J = 1,JM

Xl = X(I+1,J,1) - X(I,J+1,1)
21 = Z(I+l,J,1) - Z(I,J+1,1)
X2 = X(I+l,J+1,1) - X(I,J,1)
Z2 = Z(I+1,J+1.1) - Z(I,J,1)

C....

40

50

WALLB(I,J) = (Z1*X2 - Xl*Z2)*0.5

X1 = X(I+1,J+1,KMAX) - X(I,J,KMAX)

Z1 = Z(I+1,J+1,KMAX) - Z(I,J,KMAX)
X2 = X(I,J+1,KMAX) - X(I+1,.J,KMAX)
Z2 = Z(I.J+1,KMAX) - Z(I+1,J,KMAX)

WALLT(I,J) = -(Z1*X2 - Xl*Z2)*0.5
this is the same as -FACEY(3,I,J,KM)

CONTINUE
CONTINUE
ENDIF

C--- find the normals at the upstream boundary cells (i=l)
C

DO 51 J=1,JM

DO 41 K=1,KM
Y1 - Y(1,J+1,K) - Y(1,J,K+1)
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Z1 = Z(1,J+1,K) - Z(1,J,K+1)

Y2 = Y(1,J+1,K+1) - Y(1,J,K)

Z2 = Z(1,J+1,K+1) - Z(1,J,K)

FRONT(J,K) = (Y1*Z2 - Y2*Z1)*0.5

41 CONTINUE
51 CONTINUE

C

C--- find the normals on the wing

C
DO 70 I = 1,IM

DO 60 K = 1,KM
Xl = X(I+1,1,K+1) - X(I,I,K)
Y1 = Y(I+1,1,K+1) - Y(I,1,K)

Zl = Z(I+1,1,K+1) - Z(I.1,K)
X2 = X(I,1,K+1) - X(I+1,1,K)
Y2 = Y(I,1,K+1) - Y(I+1,1,K)

Z2 - Z(I,1,K+1) - Z(I+11,K)

C

FACEX(2,I,O,K) = -(Y1*Z2 - Z1*Y2)*0.5

FACEY(2,I,O,K) = -(Zl*X2 - X1IZ2)*0.5
FACEZ(2,I,O,K) = -(X1*Y2 - Y1*X2)*O.5

60 CONTINUE

70 CONTINUE

RETURN

END
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SUBROUTINE PROUT: this subroutine prints out the input data
for each case.

SUBROUTINE PROUT
include 'euler.inc'

OPEN(UNIT=16,STATUS='unknown',FORM='FORMATTED',FILE=INPDAT)
KTIP = (KMAX+I)/2

WRITE(16,*) DATE,' DATE'
WRITE(16,*) MACH, ' MACH'

WRITE(16,*) ADA,' ANGLE OF ATTACK'
WRITE(16,*) YAW,' YAW ANGLE'
WRITE(16,*) GAM,' GAMMA'
WRITE(16,*) KAP2,' KAP2'
WRITE(16,*) KAP4,' KAP4'
WRITE(16,*) CFL,' CFL'
WRITE(16,*) AENTH,' AENTH'
WRITE(16,*) ITMAX,' MAX ITER'
WRITE(16,*) ITCOEF,' ITCOEF'
WRITE(16,*) ITPRIN,' ITPRIN'
WRITE(16,*) BIN,' BIN'
WRITE(18,*) CFBIN,' CFBIN'
WRITE(16,*) ITER,' ITER'
If the code is being restarted from a previous solution, the value
input for ITER must be > 1 (assign input to unit 8);
if you're starting from scratch, ITER - 1
WRITE(16,*) ICON,' ICON'
if ICON = 0 then initial conditions are set to the conical soln
if ICON = I then initial conditions are the soln to a lower alDha

C (assign input to unit 12)
C***** assign conical solution to unit 11 ******

WRITE(16,*) ILE,' ILE'
WRITE(16,*) ITE,' ITE'
WRITE(16,*) RE,' RE'
WRITE(16,*) EPSR,' EPSR'
WRITE(16,*) GRNAME,' GRID'
WRITE(16,*) RSNAME,' RESIDUAL HISTORY'
WRITE(16,*) STNODE,' U AT NODES'
WRITE(16,*) SVNAME,' U AT CENTERS'
WRITE(168,*) CFNAME,' COEFFICIENTS'
WRITE(16,*) RESTRT,' RESTART DATA'
WRITE(16,*) INPDAT,' INPUT'
WRITE(16,*) LOWANG,' LOWER ANGLE SOLN'
WRITE(16,*) OLDRES,' OLD RESIDUAL HISTORY'

RETURN
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C
C SUBROUTINE RESTART: initializes the state vector for the Euler
C solver by reading in old solution to restart a calculation
C

SUBROUTINE RESTART
include 'euler.inc'

C
C--- read in old solution

C
cbl IF(MACH.GT.1.0) THEN

ISTART = 0
cbl ELSE
cbl ISTART = 1
cbl ENDIF

IF(BIN) THEN
OPEN(UNIT8, STATUS='OLD',FORM= 'UNFORMATTED',FILE=RESTRT)
READ(8) DATE
READ(8) IIN,JIN,KIN
WRITE(6,*) 'IIN=',IIN,' JIN-',JIN,' KIN=',KIN
IF(IIN.NE.IM .OR. JIN.NE.JM .OR. KIN.NE.KM) THEN
WRITE(6,*) 'INPUT ARRAY DOES NOT HAVE THE CORRECT DIMENSIONS'
STOP

ENDIF
DO 13 I=ISTART,IIN+1
DO 14 J=O,JIN+1

DO 15 K=O,KIN+1
READ(8) (U(L,I,J,K),L=1,5)

15 CONTINUE
14 CONTINUE
13 CONTINUE

ELSE

25 FORMAT(A20)
OPEN(UNIT8,STATUS=' OLD',FORM 'FORMATTED'.FILE=RESTRT)
READ(4,*) DATE
READ(8,*) IIN,JIN,KIN
WRITE(8,*) 'IIN=',IIN,' JIN=',JIN,' KIN-',KIN
IF(IIN.NE.IM .OR. JIN.NE.JM .OR. KIN.NE.KM) THEN
WRITE(6,*) 'INPUT ARRAY DOES NOT HAVE THE CORRECT DIMENSIONS'
STOP

ENDIF
DO 10 I=ISTART,IIN+1
DO 11 J=0,JIN+1
DO 12 K=O,KIN+1

READ(8,*) (U(L,I,J,K),L=1,5)
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12 CONTINUE
11 CONTINUE
10 CONTINUE

ENDIF
OPEN(UNIT=15,STATUS='OLD' ,FORM='FORMATTED' ,FILE=LDRES)
DO 26 II=1,ITER-1

READ(15,28) NN,RMS(II),RMS2(II),RMS3(II),RMS4(II),
& RMS5(II) ,RESMAX(II)

26 CONTINUE
28 FORMAT(I6,6E12.4E2)

DO 27 II=1,ITER-1
WRITE(2,28) II, RMS(II) ,RMS2(II) ,RMS3(II), RMS4(II),

& RMS5(II),RESMAX(II)

27 CONTINUE

RETURN
END
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C
C
C SUBROUTINE SAVESET: stores the state vector in the cell centers
C to use as a restart file
C

SUBROUTINE SAVESET

include 'euler.inc'

IF(BIN) THEN
OPEN(UNIT=4. STATUS='OLD',FORM='UNFORMATTED',FILE=SVNAME)

ELSE
OPEN(UNIT=4 ,STATUS=' OLD' , FOORMATTED' ,FILE=SVNAME)

ENDIF

cbl IF(MACH.GT.1.) THEN

IF(BIN) THEN
REWIND (4)
WRITE(4) DATE
WRITE(4) IM.JM,KM
DO 20 I=0,IMAX

DO 21 J=OJMAX
DO 22 K=O,KMAX

WRITE(4) (U(L,I,J,K),L=1,5)
22 CONTINUE
21 CONTINUE
20 CONTINUE

ELSE
REWIND (4)
WRITE(4,*) DATE
WRITE(4,*) IM,JM,KM
DO 23 I=O,IMAX

DO 24 J-O,JMAX
DO 25 K=O,KMAX
WRITE(4,*) (U(L,I,J,K),L=1,5)

25 CONTINUE
24 CONTINUE
23 CONTINUE

ENDIF

cbl ELSE

cbl IF(BIN) THEN
cbl REWIND(4)
cbl WRITE(4) DATE
cbl WRITE(4) IM,JM,KM
cbl DO 30 I=1,IM
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cbl DO 31 J=1,JM
cbl DO 32 K=1,KM
cbl WRITE(4) (U(L,I,J,K),L=1,5)
cbl 32 CONTINUE
cbl 31 CONTINUE
cbl 30 CONTINUE
cbl ELSE
cbl REWIND(4)
cbl WRITE(4,*) DATE
cbl WRITE(4,*) IM,JM,KM

cbl DO 33 I=1,IM
cbl DO 34 J=1,JM

cbl DO 35 K=1,KM
cbl WRITE(4,*) (U(L,I,J,K),L=1,5)
cbl 35 CONTINUE
cbl 34 CONTINUE
cbl 33 CONTINUE
cbl ENDIF
cbl
cbl ENDIF

CLOSE(4)

RETURN
END
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C
C SUBROUTINE SUBSONIC: initializes the state vector for the Euler
C solver when running cases which have a subsonic freestream Mach
C number.
C

SUBROUTINE SUBSONIC
include 'euler.inc'

IF(ICON.EQ.1) THEN
C.... if starting from a lower angle solution then read in data file

OPEN(UNIT=12, STATUS='OLD',FORM='UNFORMATTED',FILE=LOWANG)
READ(12) IMO,JMO,KMO
IF(IMO.NE.IM .OR. JMO.NE.JM .OR. KMO.NE.KM) THEN
WRITE(6,*) 'IMJM,KM FROM INPUT DOES NOT MATCH CASE RUNNING'
STOP

ENDIF
cbl DO 20 I=1,IMO

DO 20 I=O,IMO
DO 21 J=1,JMO
DO 22 K=1,KMO
READ(12) (U(L,I,J,K),L=1,5)

22 CONTINUE
21 CONTINUE
20 CONTINUE

C.... calculate initial pressure field
cbl DO 23 Ii=,IM

DO 23 I=O,IM
DO 24 J=1,JM

DO 25 K=1,KM
RHO = U(1,I,J,K)
Ul = U(2,I,J,K)/RHO
VI = U(3,I,J,K)/RHO
W1 = U(4,I,J,K)/RHO
EN = U(5,I,J,K)
P(I,J,K) = (EN - .5*(Ul**2+V1**2+W1**2)*RHO)*(GAM-1.)

25 CONTINUE
24 CONTINUE
23 CONTINUE

ELSE

C.... initializing to freestream conditions
DO 10 I=0,IM
DO 11 J=1,JM

DO 12 K-1,KM
U(I,I,J,K) - 1.
U(2,I,JK) = UIN
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U(3,I,J,K) = 0.
U(4,I,J,K) = WIN
U(5,I,J,K) = EIN

P(I,J,K) = PIN
12 CONTINUE

11 CONTINUE

10 CONTINUE

ENDIF

RETURN

END
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C
C
C SUBROUTINE SUPERIC: initializes the state vector for the
C solver by setting the upstream variables at i=O to a conical (or
C some other) solution and using that as the
C initial condition everywhere in the field.
C

SUBROUTINE SUPERIC
include 'euler.inc'
CHARACTER*20 FNAME,TITLE,DATEOLD

C
C---- For zero angle of attack Euler problems or problems where no upstream
C---- solution is available initialize flow to freestream:

IEULER = 0
IF(AOA .EQ. 0. .AND. REYNUM .EQ. 0.) IEULER = 1
IF(CONSOLN .EQ. 'freestream' .OR. IEULER .Eq. 1) THEN
I=0
write(6,*) 'Initial conditions are freestream...'
DO 15 J=1,JM
DO 16 K=1,KM

U(1,I,J,K)=1.

U(2,I.J,K)=UIN
U(3,I,J,K)=O.
U(4,I,J,K)=WIN
U(5,I,J,K)=EIN

P(I,J,K)-PIN
16 CONTINUE
15 CONTINUE

DO 12 I=1,IM
DO 13 J=1,JM

DO 14 K-1,KM
U(1,IJ,K)-I.

U(2,I,J,K)=UIN
U(3,I,J,K)=O
U(4,I,J.K)=WIN
U(5,I,J,K)-EIN

P(I,J,K)=PIN
14 CONTINUE
13 CONTINUE
12 CONTINUE

RETURN
ELSE
write(6,*) 'Conical starting solution'

C
C----- (Assume its unformatted)

OPEN(UNIT11 ,STATUS='OLD'.FORM='UNFORMATTED',FILE=CONSOLN)
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READ(11) TITLE
READ(11) JIN,KIN
IF(JIN .NE. JM .OR. KIN .NE. KM) THEN
WRITE(6,*) 'JIN/KIN DO NOT EQUAL JM/KM'
STOP

ENDIF
DO 10 K-1,KIN

DO 20 J=1,JIN
READ(11) (U(L,O,J,K),L=1,5)

20 CONTINUE
10 CONTINUE

CLOSE(11)
C
C--- storing conical flow data as boundary condition at i=0
C
c write(6,*) 'before 11'

DO 11 J=1,JM
c write(6,*) 'U(1,j,1)='.u(2,0.j,1).j

DO 21 K=1,KM
UTEMP a U(3,0,J,K)
U(3.0,J.K) = U(4,0,J,K)
U(4,0,J,K) - UTEMP

21 CONTINUE
11 CONTINUE

C
DO 41 J=1,JM

c write(6,*) 'j=',j

DO 51 K=1,KM
c write(6,*)'rho,u=',u(1,O,j,k).u(2,0.j.k).' *',j,k

RHO = U(1,0,J,K)
UCOMP = U(2,0,J,K)/RHO
VCOMP - U(3,0.J.K)/RHO
WCOMP = U(4,0,J,K)/RHO
EN = U(5,0,J,K)
P(O,J,K) - (EN - .5*(UCOMP**2 + VCOMP**2 + WCOMP**2)*

& *RHO)*(GAM - 1.)
51 CONTINUE
41 CONTINUE

C
C--- using conical flow solution as initial guess everywhere

DO 30 I=1,IM
DO 40 J=1,JM
DO 50 K=I,KM

U(1,I,J,K) = U(1,0,J,K)
U(2,I,J,K) a U(2,0,J.K)
U(3,I,JK) = U(3,0,J,K)
U(4,I,J.K) - U(4,0,J,K)
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U(5,I,J,K) = U(5,0,J,K)
P(I,J,K) = P(O,J,K)

50 CONTINUE

40 CONTINUE

30 CONTINUE

ENDIF
write(6,*) 'after consoln'

RETURN
END
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C
C
C SUBROUTINE TIMSTP: advances solution Euler equations by a four-
C stage time stepping scheme, using a spacially varying time step
C and frozen dissipative terms in order to speed convergence
C

SUBROUTINE TIMSTP
INCLUDE 'euler.inc'
INCLUDE 'blvisc.inc'
REAL DWL(5,ISIZ,JSIZ,KSIZ)

C
C--- start four-stage time stepping procedure
C

DO 10 I = 1,IM
DO 10 J = 1,JM
DO 10 K = 1,KM

DTLOC = ALPHAI*DT(I,J,K)
R(1.I,J.K) - DTLOC*(R(1,IJ,K) + D(1,I,J,K))
R(2,I,J,K) = DTLOC*(R(2,I,J,K) + D(2,I,J,K))
R(3,I,J.K) = DTLOC*(R(3,I,J,K) + D(3,IJ,K))
R(4,I,J,K) = DTLOC*(R(4,I,J,K) + D(4,I,J,K))
R(5,I,J,K) = DTLOC*(R(5,I,J,K) + D(5.I,J,K))

10 CONTINUE
C
C---- Semi-implicit:

IF (SEMIIMP) CALL LHSINV(ALPHA1)
C

DO 14 I = 1,IM
DO 14 J = 1,JM
DO 14 K = 1,KM

DWL(1,I,J,K) = R(1,I,J,K)
DWL(2,I,J.K) = R(2,IJ,K)
DWL(3,I,J,K) = R(3,I,J,K)
DWL(4,I,J.K) - R(4,I,JK)
DWL(5,I,J,K) = R(5,I.J,K)

14 CONTINUE
call dbg
DO 16 I = I,IM
DO 16 J = 1,JM
DO 16 K a 1,KM

U(1,I,J,K) = U(1,I,J,K) + R(1,I,J.K)
U(2,I,J,K) = U(2.I,J,K) + R(2,I,J,K)
U(3.IJ.K) - U(3,I,J,K) + R(3,I,J.K)
U(4,I,J,K) = U(4,I,JK) + R(4,I,J,K)
U(5,I,J,K) - U(5,I,J,K) + R(5,I,J.K)

16 CONTINUE
CALL BNDRYC
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CALL FLUX

C
C---

C
second stage

DO 20 I = 1,IM

DO 20 J = 1,JM
DO 20 K = 1,KM

DTLOC = ALPHA2*DT(I,J,K)
R(1,I,J,K) = DTLOC*(R(1,I,J,K) + D(1,I,J,K))
R(2,I,J,K) = DTLOC*(R(2,I,J,K) + D(2,I,J,K))

R(3,I,J,K) = DTLOC*(R(3,I,J,K) + D(3,I,J,K))
R(4,I,J,K) = DTLOC*(R(4,I,J,K) + D(4,I,J,K))
R(6,I,J,K) = DTLOC*(R(5,I,J,K) + D(5,I,J,K))

20 CONTINUE

C

C---- Residual smoothing?
IF (EPSR .GT. 0. .AND. .NOT. SEMIIMP)CALL RESMOOTH

C

DO 22 I = 1,IM
DO 22 J = 1,JM
DO 22 K = 1,KM

R(1,I,J,K) = R(1,I,J,K) - DWL(1,I,J,K)

R(2,I,J,K) = R(2,I,J,K) - DWL(2,I,J,K)
R(3,I,J,K) = R(3,I,J,K) - DWL(3,IJ,K)

R(4,I,J,K) = R(4,I,J,K) - DWL(4,I,J,K)

R(5,I,J,K) = R(5,I,J,K) - DWL(5,I,J,K)

22 CONTINUE

C

C---- Semi-implicit:

IF (SEMIIMP) CALL LHSINV(ALPHA2)
C

DO 24 I = 1,IM
DO 24 J = 1,JM
DO 24 K = 1,KM

DWL(1,I,J,K) = R(I,I,JK) + DWL(1,I,J,K)
DWL(2,I,J,K) = R(2,I,J,K) + DWL(2,I,J,K)
DWL(3,I,J,K) - R(3,I,J,K) + DWL(3,I,J,K)

DWL(4,I,J,K) = R(4,I,J,K) + DWL(4,I,J,K)
DWL(5,I,J,K) = R(5,I,J,K) + DWL(5,I,J,K)

24 CONTINUE

call dbg

DO 26 I = 1,IM
DO 26 J = 1,JM

DO 26 K = 1,KM
U(1,I,J,K) = U(1,I,J,K) + R(1,I,J,K)
U(2,I,J,K) = U(2,I,J,K) + R(2,I,J,K)
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U(3,I,J,K) = U(3,I,J,K) + R(3,I,J,K)
U(4,I.J,K) = U(4,I,J,K) + R(4,I,J,K)
U(5,I,J,K) - U(5,I,J,K) + R(5,I,J,K)

26 CONTINUE

CALL BNDRYC

CALL FLUX

C

C--- third stage
C

DO 30 I = 1,IM
DO 30 J = 1,JM
DO 30 K = 1,KM

DTLOC = ALPHA3*DT(I,J,K)
R(1,IJ,K) = DTLOC*(R(1,I,J,K) + D(1,I,J,K))
R(2,I,J,K) = DTLOC*(R(2,I,J,K) + D(2,I,J,K))

R(3,I,J,K) = DTLOC*(R(3,I,J,K) + D(3,I,J,K))

R(4,I,J,K) = DTLOC*(R(4,I,J,K) + D(4,I,J,K))

R(5,I,J,K) = DTLOC*(R(5,I,J,K) + D(5,I,J,K))
30 CONTINUE

C

C---- Residual smoothing?

C

DO 32 I = 1,IM
DO 32 J = 1,JM
DO 32 K = 1,KM

R(1,I,J,K) = R(1,I,J,K)
R(2,I,J,K) = R(2,I,J,K)
R(3,I,J,K) = R(3,I,J,K)
R(4,I,J,K) = R(4,I,J,K)
R(5,I,J,K) = R(6,I,J,K)

32 CONTINUE

- DWL(1,I,J,K)

- DWL(2,I,J,K)

- DWL(3,I,J,K)

- DWL(4,I,J,K)
- DWL(5,I,J,K)

C---- Semi-implicit:
IF (SEMIIMP) CALL LHSINV(ALPHA3)

C
DO 34 I - 1,IM
DO 34 J - 1,JM
DO 34 K - 1,KM

DWL(1,I,J,K) = R(1,I,J.K)
DWL(2,I,J,K) - R(2,I,J,K)
DWL(3,I,J,K) = R(3,I,J,K)
DWL(4,I,J,K) - R(4,I,J,K)
DWL(5,I,J,K) = R(5,I,J,K)

34 CONTINUE

+ DWL(1,I,J,K)

+ DWL(2,I,J,K)
+ DWL(3,I,J,K)

+ DWL(4,I,J,K)

+ DWL(5,I,J,K)
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call dbg
DO 36 I = 1,IM

DO 36 J = 1,JM

DO 36 K = 1,KM

U(1,I,J,K) = U(1,I,J,K) + R(1,I,J,K)
U(2,I,J,K) = U(2,I,J,K) + R(2,I,J,K)

U(3,I,J,K) = U(3,I,J,K) + R(3,I,J,K)

U(4,I,J,K) = U(4,I,J,K) + R(4,I,J,K)

U(5,I,J,K) = U(5,I,J,K) + R(5,I,J,K)
36 CONTINUE

CALL BNDRYC

CALL FLUX

C---

C
final stage

DO 40 I = 1,IM
DO 40 J = 1,JM
DO 40 K = 1,KM

DTLOC = DT(I,J,K)
R(1,I,J,K) = DTLOC*(R(1,I,J,K)
R(2,I,J,K) = DTLOC*(R(2,I,J,K)
R(3,I,J,K) = DTLOC*(R(3,I,J,K)
R(4,I,J,K) = DTLOC*(R(4,I,J,K)
R(5,I,J,K) = DTLOC*(R(5,I,J,K)

40 CONTINUE

+ D(1,I,J,K))
+ D(2,I,J,K))
+ D(3,I,J,K))
+ D(4,I,J,K))
+ D(5,I,J,K))

C---- Residual smoothing?

IF (EPSR .GT. 0. .AND. .NOT. SEMIIMP)CALL RESMOOTH
C

DO 42 I = 1,IM

DO 42 J = 1,JM

DO 42 K - 1,KM

R(1,I,J,K) - R(1,I,J,K) - DWL(1,I,J,K)

R(2,I,J,K) = R(2,I,J,K) - DWL(2,I,J,K)

R(3,I,J,K) = R(3,I,J,K) - DWL(3,I,J,K)

R(4,I,J,K) = R(4,I,J,K) - DWL(4,I,J,K)

R(5,I,J,K) - R(6,I,J,K) - DWL(5,I,J,K)

42 CONTINUE

C

C---- Semi-implicit:

IF (SEMIIMP) CALL LHSINV(1.)

IF (EPSR .GT. 0. .AND. SEMIIMP)CALL RESMOOTH
C

DO 44 I = 1,IM

DO 44 J = 1,JM

DO 44 K = 1,KM
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DWL(1,I,J,K) = R(1,I,J,K) + DWL(1,I,J,K)
DWL(2,I,J,K) = R(2,I,J,K) + DWL(2,I,J,K)
DWL(3,I,J,K) = R(3,I,J,K) + DWL(3,I,J,K)
DWL(4,I,J,K) = R(4,I,J,K) + DWL(4,I,J,K)
DWL(5,I,J,K) = R(5,I,J,K) + DWL(5,I,J,K)

44 CONTINUE

call dbg

DO 46 I = 1,IM
DO 46 J = 1,JM
DO 46 K - 1,KM

U(1,I,J,K) = U(1,I,J,K) + R(1,I,J,K)
U(2,I,J,K) = U(2,I,J,K) + R(2,I,J,K)
U(3,I,J,K) = U(3,I,J,K) + R(3,IJ,K)
U(4,I,J,K) = U(4,I,J,K) + R(4,I,J,K)
U(5.I,J,K) = U(5,I,J,K) + R(5.I,J,K)

46 CONTINUE

C

C--- add enthalpy damping and determine the pressure field
C

IF (AENTH .LE. 0.) GOTO 180

DO 160 K=1,KM

DO 160 J=1,JM

DO 160 I=1,IM
RHO = U(1,I,J,K)
Ul = U(2,I,J,K)/RHO
V1 = U(3,I,J,K)/RHO
Wi = U(4,I,J,K)/RHO
EN = U(5,I,J,K)
PR = (EN - .5*(Ul**2 + V1**2 + W1**2)*RHO)*(GAM-1.)

HMH = (EN+PR)/RHO - HIN
H = 1./(1. + AENTH*HMH)

U(1,I,J,K) = RHO*H
U(2,I,JK) = RHO*U1*H
U(3,I,J,K) = RHO*Vl*H
U(4,I,J,K) = RHO*W1*H
RH = ((RHO*HMH - PR) - AENTH*PR)/(1. + AENTH)
U(5,I,J,K) = RH + RHO*H*HIN
P(I,J,K) = RHO*H*HMH - RH

160 CONTINUE
180 CONTINUE

C
C--- calculate the residual, rms(delta-U)
C

RMS(ITER) = 0.
RMS2(ITER) = 0.
RMS3(ITER) = 0.
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RMS4(ITER) = 0.
RMS5(ITER) = 0.
RESMAX(ITER) = 0.
DO 210 I = 1,IM

DO 200 J = 1,JM
DO 190 K = 1,KM

c DO 191 L=1,5
DTT = 1./(DT(I,J,K)*vol(i,j,k))
RES = (DWL(1,I,J,K)*DELNORM(1)*DTT)**2
RES2 = (DWL(2,I,J,K)*DELNORM(2)*DTT)**2
RES3 = (DWL(3,I,J,K)*DELNORM(3)*DTT)**2
RES4 a (DWL(4,I,J,K)*DELNORM(4)*DTT)**2
RES5 = (DWL(5,I,J,K)*DELNORM(5)*DTT)**2
RMS(ITER) = RMS(ITER) + RES
RMS2(ITER) = RMS2(ITER) + RES2
RMS3(ITER) = RMS3(ITER) + RES3
RMS4(ITER) a RMS4(ITER) + RES4
RMS5(ITER) = RMSS(ITER) + RES5
IF(RES2 .GT. RESMAX(ITER)) THEN
RESMAX(ITER) = RES2
IRES = I
JRES = J
KRES - K

LMAX - 2

ENDIF
c 191 CONTINUE

190 CONTINUE
200 CONTINUE
210 CONTINUE

c write(6,99) iter,rmsres(iter),dwl(lmax,ires,jres,kres)
RMS(ITER) - SQRT(RMS(ITER)/(FLOAT(NCELLS)))
RMS2(ITER) = SQRT(RMS2(ITER)/(FLOAT(NCELLS)))
RMS3(ITER) - SQRT(RMS3(ITER)/(FLOAT(NCELLS)))
RMS4(ITER) = SQRT(RMS4(ITER)/(FLOAT(NCELLS)))
RMS5(ITER) - SQRT(RMS5(ITER)/(FLOAT(NCELLS)))
RESMAX(ITER) = DELNORM(2)*ABS(DWL(2,IRES,JRES,KRES))

C
C---- Output

WRITE(6,96) ITER
WRITE(6,95) RESMAX(ITER) ,IRES,JRES,KRES

96 FORMAT('Iter #',I4)
95 FORMAT('Max=',E12.3E2,' G',313)

WRITE(6,97) RMS(ITER) ,RMS2(ITER),RMS3(ITER) ,RMS4(ITER) ,RMS5(ITER)
C WRITE(6,*) 'P -',P(IRES,JRES,KRES),' DT -',DT(IRES,JRES,KRES)
C WRITE(6,98) U(1,IRES,JRES,KRES),U(2,IRES,JRES,KRES),U(3,IRES,JRES,
C * KRES),U(4,IRES,JRES,KRES),U(5,IRES,JRES,KRES)
C WRITE(6,98)D(1,IRES,JREESKRES).D(2,IRRS,JRES,KRES),D(3,IRES,JRES,
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C * KRES),D(4, IRES, JRES,KRES),D(5,IRES,JRES,KRES)
C WRITE(6,98)R(1,IIRES,JRES,KRES) ,R(2, IRESRESRRES,JRES,
C * KRES),R(4,IRES,JRES,KRES),R(5,IRES,JRES,KRES)

WRITE(6,*)

WRITE(2 ,99) ITER,RMS(ITER) ,RMS2(ITER) ,RMS3(ITER) ,RMS4(ITER),
* RMS5(ITER), RESMAX(ITER)

98 FORMAT(5E13.3E3)
97 FORMAT('RMS ',5E10.3E2)
99 FORMAT(I6,6E12.4E2)

RETURN
END
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C
C
C SUBROUTINE UCALC: calculates the state vector at the grid points
C
C

SUBROUTINE UCALC
include 'euler.inc'

IF (GRNAME .EQ. 'ni.gri') GOTO 98
C... interior points

CON - 1./8.
DO 10 I-I,IMAX
DO 20 J=2,JMAX

DO 30 K=2 , KM
UO(1,I,J,K) - CON*(U(I,I-1,J-1,K-I)+U(1,IJ-1,K-1)+

& U(1,I,J,K-1)+U(1,I-1,J,K-1)+U(1,I-1,J-1,K)+U(1,I,J-1,K)
& +U(1,I,J,K)+U(1,I-I,J,K))

UO(2,I,J,K) = CON*(U(2,I-1.J-1,K-I)+U(2,I,J-1,K-I)+
& U(2,I,J,K-1)+U(2,I-1,J,K-1)+U(2,I-1,J-1,K)+U(2,I,J-1,K)
& +U(2,I,J,K)+U(2,I-1,J,K))

UO(3,I,J,K) a CON*(U(3,I-1,J-1,K-1)+U(3,I,J-1,K-I)+
& U(3,I,J,K-1)+U(3,I-1,J,K-1)+U(3,I-1,J-1,K)+U(3,I,J-1,K)
& +U(3,I,J,K)+U(3,I-1,J,K))

UO(4,I,J,K) = CON*(U(4,I-1,J-1,K-I)+U(4,I,J-1,K-1)+
& U(4,I,J,K-1)+U(4,I-1,J,K-1)+U(4,I-1,J-1,K)+U(4,I,J-1,K)
& +U(4,I,J,K)+U(4,I-1,J,K))

UO(5,I,J,K) = CON*(U(5,I-1,J-1,K-1)+U(5,I,J-1,K-1)+
k U(5,I,J,K-1)+U(5,I-1,J,K-1)+U(5,I-1.J-1,K)+U(5,I,J-1,K)
& +U(5,I,J,K)+U(5,I-1,J,K))

30 CONTINUE
20 CONTINUE
10 CONTINUE

C... Jul LINE AND WING SURFACE
J=l
IF(MACH.GT.1.) THEN
DO 12 I=1,ILE-1
DO 22 K=2,KM

UO(1,I,J,K) - CON*(U(1,I-I,J,K-I)+U(1,I,J,K-1)+
& U(1,I,J,K)+U(1,I-I.J.K)+U(1,I-1,J,KMAX-(K-1))+
& U(I,I,J,KMAX-(K-1))+U(1,I,J,KMAX-K)U(,I-1,J,KMAX-K)

UO(2,I,J,K) - CON*(U(2,I-I,J,K-I)+U(2,I,J,K-1)+
k U(2,I,J,K)+U(2,I-1,J,K)+U(2,I-1,J,KMAX-(K-1))+
& U(2,I,J,KMAX-(K-1))+U(2,I,J,KMAX-K)+U(2,I-1 ,JKMAX-K))

UO(3,I,J,K) = CON*(U(3,I-1,J,K-1)+U(3,I,J.K-1)+
& U(3,I,J,K)+U(3,I-I,J,K)+U(3,I-1,J,KMAX-(K-1))+
& U(3,I,J,KMAX-(K-1))+U(3,I,J,KMAX-K)U(3,I-1 ,J,KMAX-K))
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UO(4,I,J,K) = CON*(U(4,I-1,J,K-1)+U(4,I,J,K-1)+
& U(4,I,J,K)+U(4,I-1,J,K)+U(4,I-1,J,KMAX-(K-1))+

& U(4,I,J,KMAX-(K-1))+U(4,I,J,KMAX-K)+U(4,I-1,J,KMAX-K))

UO(5,I,J,K) - CON*(U(5,I-1,J,K-I)+U(5,I,J,K-1)+

& U(5,I,J,K)+U(5,I-1,J,K)+U(5,I-1,J,KMAX-(K-1))+

& U(5,I,J,KMAX-(K-1))+U(5,I,J,KMAX-K)+U(5,I-1,J,KMAX-K))

22 CONTINUE

12 CONTINUE

ELSE

DO 120 I=1,ILE-1

SUM1 = 0.

SUM2 = 0.
SUM3 = 0.

SUM4 = 0.
SUM5 = 0.

DO 121 K=1,KM

SUM1 = SUM1+1.5*(U(1,I-1,J,K)+U(1,I ,J,K))-.5*(U(1,I-1,J+1,K)

& +U(1,I,J+1,K))

SUM2 = SUM2+1.5*(U(2,I-1,J,K)+U(2,I,J,K))-.5*(U(2,I-1,J+1,K)
& +U(2,I,J+1,K))

SUM3 = SUM3+1.5*(U(3,I-1,J,K)+U(3,I,J,K))-.5*(U(3,I-1,J+1,K)
& +U(3,I,J+1,K))

SUM4 = SUM4+1.5*(U(4,I-1,J,K)+U(4,I,J,K))-.5*(U(4,I-1,J+1,K)
& +U(4,I,J+1,K))

SUM5 = SUM5+1.5*(U(5,I-1,J,K)+U(5,I,J,K))-.5*(U(5,I-1,J+1,K)
& +U(5,I,J+1,K))

121 CONTINUE

DO 122 K=1,KMAX

UO(1,I,J,K) - SUM1/(2.*KM)

UO(2,I,J,K) = SUM2/(2.*KM)

UO(3,I,J,K) = SUM3/(2.*KM)
UO(4,I,J,K) = SUM4/(2.*KM)
UO(5,I,J,K) = SUM5/(2.*KM)

122 CONTINUE

120 CONTINUE

ENDIF

DO 14 I=ITE+1,IMAX

DO 24 K=2,KM

UO(1,I,J,K) = CON*(U(1,I-1,J,K-1)+U(1,I,J,K-1)+
& U(1,I,J,K)+U(1,I-1,J,K)+U(1,I-1,J,KMAX-(K-1))+

& U(1,I,J,KMAX-(K-1))+U(1,I,JJ,KMAX-K)+U(1))

UO(2,I,J,K) = CON*(U(2,I-1,J,K-1)+U(2,I,J,K-1)+
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& U(2,I,J,K)+U(2,I-1,J,K)+U(2,I-1,J,KMAX-(K-1))+
& U(2,I,J,KMAX-(K-1))+U(2,I,J,KMAX-K)+U(2,I-1,J,KMAX-K))

UO(3,I,J,K) = CON*(U(3,I-1,J,K-1)+U(3,I,J,K-1)+
& U(3,I,J,K)+U(3,I-1,J,K)+U(3,I-1,J,KMAX-(K-1))+
& U(3,I,J,KMAX-(K-1))+U(3,I,J,KMAX-K)+U(3,I-1 ,J,KMAX-K))

UO(4,I,J,K) = CON*(U(4,I-1,J,K-1)+U(4,I,J,K-1)+
& U(4,I,J,K)+U(4,I-1,J,K)+U(4,I-1,J.KMAX-(K-1))+

& U(4,I,J,KMAX-(K-1))+U(4,I,J,KMAX-K)+U(4,I-1,J,KMAX-K))

UO(5,I,J,K) - CON*(U(5,I-1,J,K-1)+U(5,I,J,K-1)+
& U(5,I,J,K)+U(5,I-1,J,K)+U(5,I-1,J,KMAX-(K-1))+
& U(5,I,J,KMAX-(K-1))+U(5,I,J,KMAX-K)+U(5,I-1,J,KMAX-K))

24 CONTINUE
14 CONTINUE

IF(MACH .GT. 1.) THEN
IWING - ILE

ELSE
IWING = ILE+1

ENDIF

CON = 1./4.
DO 11 I=IWING,ITE

DO 21 K=2,KM
UO(1,I,J,K) = CON*(1.5*(U(1,I-1,J,K)+U(1,I,J,K))-

& .5*(U(1,I-1,J+1,K)+U(1,I,J+1,K))+1.5*(U(1,I-1,J.K-1)+
& U(1,I,J,K-1))-.5*(U(1,I-1,J+1,K-1)+U(1,I,J+1,K-1)))

UO(2,I,J,K) = CON*(1.5*(U(2,I-1,J,K)+U(2,I,J,K))-
& .5*(U(2,I-1,J+1,K)+U(2,I,J+1,K))+1.5*(U(2,I-1,J,K-1)+
& U(2,I,J,K-1))-.5*(U(2,I-1,J+I,K-1)+U(2,I,J+1,K-1)))

UO(3,I,J,K) = CON*(1.5*(U(3,I-1,J,K)+U(3,I,J,K))-
& .5*(U(3,I-1,J+1,K)+U(3,I,J+1,K))+1.5*(U(3,I-1,J,K-1)+

& U(3,I,J,K-1))-.5*(U(3,I-1,J+1,K-1)+U(3,I,J+1,K-1)))
UO(4,I,J,K) = CON*(1.5*(U(4,I-1,J,K)+U(4,I,J,K))-

& .5*(U(4,I-1,J+I,K)+U(4,I,J+1,K))+1.5*(U(4,I-1,J,K-1)+

& U(4,I,J,K-1))-.5*(U(4,I-1,J+1,K-1)+U(4,I,J+I,K-1)))
UO(5,I,J,K) = CON*(1.5*(U(5,I-1,J,K)+U(5,I,J,K))-

& .5*(U(5,I-1,J+1,K)+U(5,I,J+1,K))+1.5*(U(5,I-1,J,K-1)+
& U(5,I,J,K-1))-.5*(U(5,I-1,J+I,K-1)+U(5,I,J+1,K-1)))

21 CONTINUE
11 CONTINUE

IF(SYM) THEN
DO 16 I=O,IMAX

DO 26 J=1,JMAX

U(1,I,J,O) = U(1.I,J,1)
U(2,I,J,O) = U(2,I,J,1)

U(3,I,J,O) = -U(3,I,J,1)
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U(4,I,J,O) = U(4,I,J,1)
U(5,I,J,O) = U(5,I,J,1)

U(1,I,J,KMAX) = U(1,I,J,KM)
U(2,I,J,KMAX) = U(2,I,J,KM)

U(3,I,J,KMAX) = -U(3,I,J,KM)
U(4,I,J,KMAX) = U(4,I,J,KM)
U(5,I,J,KMAX) = U(5,I.J,KM)

26 CONTINUE
16 CONTINUE

K=KMAX

CON=1./8.
DO 17 I=1,IMAX
DO 27 J=2,JMAX

UO(1,I,J,K) = CON*(U(1,I-1,J-1,K-)+U(1I,I,J-1,K-1)+
& U(1,I-1,J-1,K)+U(1,I,J-1,K)+U(1,I-1,J,K)+U(1,I,JK)+
& U(1,I-1,J,K-1)+U(1,I,J,K-1))

UO(2,I,J,K) = CON*(U(2,I-1,J-1,K-1)+U(2,I,J-1,K-1)+
& U(2,I-1,J-1, K)+U(2,I,J-1,K)+U(2,I-1.J,K)+U(2,I,J.K)+
& U(2,I-1,J,K-1)+U(2,I,J,K-1))

UO(3,I,J,K) = CON*(U(3,I-1,J-1,K-1)+U(3,I,J-1,K-1)+
& U(3,I-1,J-1,K)+U(3,I,J-1,K)+U(3,I-1,J,K)+U(3,IJK)+
& U(3,I-1,J,K-1)+U(3,I,J,K-1))

UO(4,I,J,K) = CON*(U(4,I-1,J-1,K-1)+U(4,I,J-1,K-1)+
& U(4,I-1,J-1,K)+U(4,I,J-1,K)+U(4,I-1,J,K)+U(4,I,J,K)+
& U(4,I-1,J,K-1)+U(4,I,J,K-1))

UO(5,I,J,K) = CON*(U(5,I-1,J-1,K-1)+U(5,I,J-1,K-1)+
& U(5,I-1,J-1,K)+U(5.I,J-1,K)+U(5,I-1,J,K)+U(5,I,J,K)+
& U(5,I-1,J,K-1)+U(5,I,J,K-1))

27 CONTINUE
17 CONTINUE

J=1
CON = 1./4.
DO 31 I=IWING,ITE

UO(1,I,J,K) = CON*(1.5*(U(1,I-1,JK)+U(1,I,J,K))-
& .5*(U(1,I-1,J+1,K)+U(1,I,J+1,K))+1.5*(U(1, I-1J,K-1)+
& U(1,I,JK-1))-.5*(U(1,I-1,J+1,K-1)+U(1,I,J+I,K-1)))

U0(2,I,J,K) = CON*(1.5*(U(2,I-1,J,K)+U(2,I,J.K))-
& .5*(U(2,I-1,J+1,K)+U(2,I,J+1,K))+1.5*(U(2,I-1,J,K-1)+
& U(2,I,J,K-1))-.5*(U(2,I-1,J+1,K-1)+U(2,I,J+1,K-1)))

UO(3,I,J,K) = CON*(1.5*(U(3,I-1,J,K)+U(3,I,J,K))-
& .5*(U(3,I-1,J+1,K)+U(3,I,J+1,K))+1.5*(U(3,I-1,J,K-1)+
& U(3,I,J,K-1))-.5*(U(3,I-1,J+l,K-1)+U(3,I,J+1,K-1)))

UO(4,I,J,K) = CON*(1.5*(U(4,I-1,J,K)+U(4,I,J,K))-
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& .5*(U(4,I-1,J+1,K)+U(4,I,J+1,K))+1.5*(U(4,I-1,J,K-1)+
& U(4,I,J,K-1))-.5*(U(4,I-1,J+1,K-1)+U(4,I,J+1,K-1)))

UO(5,I,J,K) = CON*(1.5*(U(5,I-1,J,K)+U(5,I,J,K))-
& .5*(U(5,I-1,J+1,K)+U(5,I,J+1,K))+1.5*(U(5,I-1,J,K-I)+
& U(5,I,J,K-1))-.5*(U(5,I-1,J+1,K-1)+U(5,I,J+1,K-1)))

31 CONTINUE

CON = 1./8.
DO 40 I=ITE+1,IMAX

UO(1,I , J,K) = CON*(U(1,I-1,J,K-1)+U(1,IJ,K-1)+
& U(1,I,J,K)+U(1,I-1,J,K)+U(I,I-1,J,KMAX-(K-1))+
& U(1,I,J,KMAX-(K-1))+U(1,I,J,KMAX-K)+U(1,I-1,J,KMAX-K))

UO(2,I,J,K) = CON*(U(2,I-1,J,K-1)+U(2,I,J,K-1)+
& U(2,I,J,K)+U(2,I-1,J,K)+U(2,I-1,J,KMAX-(K-1))+
& U(2,I,J,KMAX-(K-1))+U(2,I,J,KMAX-K)+U(2,I-1,J,KMAX-K))

UO(3,I,J,K) = CON*(U(3,I-1,J,K-1)+U(3,I,J,K-1)+
& U(3,I,J,K)+U(3,I-1,J,K)+U(3,I-1,J,KMAX-(K-1))+
& U(3,I,J,KMAX-(K-1))+U(3,I,J,KMAX-K)+U(3,I-1,J,KMAX-K))

UO(4,I,J,K) = CON*(U(4,I-1,J,K-I)+U(4,I,J,K-1)+
& U(4,I,J,K)+U(4,I-1,J,K)+U(4,I-1,JKMAX-(K-1))+
& U(4,I,J,KMAX-(K-1))+U(4,I,J,KMAX-K)+U(4,I-1,J,KMAX-K))

UO(5,I,J,K) = CON*(U(5,I-1,J,K-1)+U(5,I,J,K-1)+
& U(5,I,J,K)+U(5,I-1,J,K)+U(5,I-1,J,KMAX-(K-1))+
& U(5,I,J,KMAX-(K-1))+U(5,I,J,KMAX-K)+U(5,I-1,J,KMAX-K))

40 CONTINUE

IF(MACH .LT. 1.) THEN
I=ILE-1
J=1
KTIP = (KMAX +1)/2
KTIPM = KTIP - 1

SUM1 = 0.
SUM2 = 0.
SUM3 = 0.

SUM4 = 0.
SUM5 = 0.

DO 180 K=KTIP,KM

SUM1 = SUM1 + 1.5*U(1,I,J,K) - .5*U(1,I,J+1,K)
SUM2 - SUM2 + 1.5*U(2,I,J,K) - .5*U(2,I,J+1,K)
SUM3 = SUM3 + 1.5*U(3,I,J,K) - .6*U(3,I,J+I,K)

SUM4 - SUM4 + 1.5*U(4,I,J,K) - .5*U(4,I,J+1,K)
SUM5 = SUM5 + 1.5*U(5,I,J,K) - .5*U(5,I,J+1,K)

180 CONTINUE

UTI = SUM1/KTIPM
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UT2 = SUM2/KTIPM
UT3 = SUM3/KTIPM

UT4 = SUM4/KTIPM
UT5 - SUM5/KTIPM

I=ILE

J=1

K=KMAX

UTT1=.6*(1.5*(U(1,I,J,K)+U(1,I,J,K-1))-.5*(U(1,I,J+1,K)
& +U(1,I,J+1,K-1)))

UTT2=.5*(1.6*(U(2,I,J,K)+U(2,I,J,K-1))-.5*(U(2,I,J+1,K)
& +U(2,I,J+1,K-1)))

UTT3=.5*(1.5*(U(3,I,J,K)+U(3,I,J,K-1))-.5*(U(3,I,J+1,K)
& +U(3,I,J+1,K-1)))

UTT4=.5*(1.5*(U(4,I,J,K)+U(4,I,J,K-1))-.5*(U(4,I,J+1,K)
& +U(4,I,J+1,K-1)))

UTT5=.5*(1.5*(U(5,I,J,K)+U(5,I,J,K-1))-.5*(U(5,I,J+1,K)
& +U(5,I,J+1,K-1)))

DO 182 K=KTIP,KMAX

UO(1,ILE,1,K) = .5*(UT1 + UTT1)
U0(2,ILE,1,K) = .65*(UT2 + UTT2)

U0(3,ILE,1,K) = .5*(UT3 + UTT3)
UO(4,ILE,1,K) = .5*(UT4 + UTT4)
UO(5,ILE,1,K) = .5*(UT5 + UTT5)

182 CONTINUE

ENDIF

ELSE
DO 18 I=O,IMAX

DO 28 J=1,JMAX

U(1,IJ,O) = U(1,I,J,KM)
U(2,I,J,O) = U(2,I,J,KM)
U(3,I,J,O) = U(3,I,J,KM)
U(4,I,J,O) = U(4,I,J,KM)
U(5,I,J,O) = U(6,I,J,KM)

28 CONTINUE

18 CONTINUE

ENDIF

C... J=1 AND WING SURFACE

J=l
K=1
CON =1./8.

IF(MACH.GT.1.) THEN
DO 32 I=1,ILE-1
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UO(1,I,J,K) = CON*(U(1,I-1,J,K-1)+U(1,I,J,K-1)+
& U(1,I,J,K)+U(1,I-1,J,K)+U(1,I-1,JKMAX-(K-1))+
& U(1,I,J,KMAX-(K-1))+U(1,I,J,KMAX-K)+U(1,I-1,J,KMAX-K))

UO(2,I,J,K) = CON*(U(2.I-1,J,K-1)+U(2,I,J,K-1)+
& U(2,I,J,K)+U(2,I-1,J,K)+U(2,I-1,J,KMAX-(K-1))+
& U(2,I,J,KMAX-(K-1))+U(2,I,J,KMAX-K)+U(2,I-1,J,KMAX-K))

UO(3,I,J,K) = CON*(U(3,I-1,J,K-1)+U(3,I,J,K-1)+
& U(3,I,J,K)+U(3,I-1,J,K)+U(3,I-1,J,KMAX-(K-1))+
& U(3,I,J,KMAX-(K-1))+U(3,I,J,KMAX-K)+U(3,I-1,J,KMAX-K))

UO(4,I,J,K) = CON*(U(4,I-1,J,K-1)+U(4,I,J,K-1)+
& U(4,I,J,K)+U(4,I-1,J,K)+U(4,I-1,J,KMAX-(K-1))+
& U(4,I,J,KMAX-(K-1))+U(4,I,J,KMAX-K)+U(4,I-1,J,KMAX-K))

U0(5,I,J,K) = CON*(U(5,I-1,J,K-1)+U(5,I,J,K-1)+
& U(5,I,J,K)+U(5,I-1,J,K)+U(5,I-1,J,KMAX-(K-1))+
& U(5,I,J,KMAX-(K-1))+U(5,I,J,KMAX-K)+U(5,I-1,J,KMAX-K))

32 CONTINUE
ENDIF

DO 34 I=ITE+1,IMAX
UO(1,I,J,K) = CON*(U(1,I-1,J,K-1)+U(1,I,J,K-1)+

U(1,I,J,K)+U(1,I-1,J,K)+U(1,I-1,J,KMAX-(K-1))+
U(1,I,J,KMAX-(K-1))+U(1,I,J,KMAX-K)+U(1,I-1,J,KMAX-K))

UO(2,I,J,K) = CON*(U(2,I-1,J,K-1)+U(2,I,J,K-1)+
U(2,I,J,K)+U(2,I-1,J,K)+U(2,I-1,J,KMAX-(K-1))+
U(2,I,J,KMAX-(K-1))+U(2,I,J,KMAX-K)+U(2,I-1,J,KMAX-K))

UO(3,I,J,K) = CON*(U(3,I-1,J,K-I)+U(3,I,J,K-1)+

U(3,IJK)+U(3,I-1,JK)+U(3,I-1,JKMAX-(K-1))+

3(U I J KMAX- (K-1))+U(3 I J KMAX- )

UO(4,I,J,K) = CON*(U(4,I-1,JK-1)+U(4,I,J,K-1)+
U(4,IJK)+U(4,I-1,JK)+U(4,I-1,JKMAX-(K-1))+

U(4,IJKMAX-(K-1))+U(4,IJKMAX-K)+U(4,I-1,JKMAX-K))

UO(5,I,J,K) = CON*(U(5,I-1,J,K-1)+U(5,I,J,K-1)+
U(5,IJK)+U(5,I-1,JK)+U(5,I-1,JKMAX-(K-1))+

k U(5,I,J,KMAX-(K-1))+U(5,I,J,KMAX-K)+U(5,I-1,J,KMAX-K))
34 CONTINUE

CON = 1./4.
DO 36 I=IWING,ITE

UO(1,I,J,K) - CON*(1.5*(U(1,I-1,J,K)+U(1,I,J,K))-
& .5*(U(1,I-1,J+1,K)+U(1,I,J+1,K))+1.5*(U(1,I-1,J,K-1)+
& U(1,I,J,K-1))-.5*(U(1,I-1,J+1,K-1)+U(1,IJ+1,K-1)))

UO(2,I,J,K) - CON*(1.5*(U(2,I-1,J,K)+U(2,I,J,K))-
& .5*(U(2,I-1,J+1,K)+U(2,I,J+1,K))+1.5*(U(2,I-1,J.K-1)+
& U(2,I,J,K-1))-.5*(U(2,I-1,J+1,K-1)+U(2,I,J+I,K-1)))

UO(3,I,J,K) = CON*(1.5*(U(3,I-1,J,K)+U(3,I,J,K))-
& .5*(U(3,I-1,J+1,K)+U(3,I,J+1,K))+1.5*(U(3,I-1,J,K-1)+
& U(3,I,J,K-1))-.5*(U(3,I-1,J+1,K-1)+U(3,I,J+1,K-1)))
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UO(4,I,J,K) - CON*(1.5*(U(4,I-1,J,K)+U(4,I,J,K))-

& .5*(U(4,I-1,J+1,K)+U(4,I,J+1,K))+1.5*(U(4,I-1,J,K-1)+

& U(4,I,J,K-1))-.5*(U(4,I-1,J+1,K-1)+U(4,I,J+1,K-1)))

UO(5,I,J,K) = CON*(1.5*(U(5,I-1,J,K)+U(5,I,J,K))-
& .5*(U(5,I-1,J+1,K)+U(5,I,J+1,K))+1.5*(U(5,I-1,JK-1)+

& U(5,I,J,K-1))-.5S(U(5,I-1,J+1,K-1)+U(5,I,J+1,K-1)))

36 CONTINUE

K=1

CON=1./8.

DO 15 I=1,IMAX
DO 25 J=2,JMAX

UO(1,I,J,K) = CON*(U(1,I-1,J-1,K-1)+U(1,I,J-1,K-1)+
& U(1,I-1,J-1,K)+U(1,I,J-1,K)+U(1,I-1,J,K)+U(1,I,J,K)+

& U(1,I-1,J,K-1)+U(1,I,J,K-1))

UO(2,I,J,K) = CON*(U(2,I-1,J-1,K-1)+U(2,I,J-1,K-1)+
& U(2,I-1,J-1,K)+U(2,I,J-1,K)+U(2,I-1,J,K)+U(2,I,J,K)+

& U(2,I-1,J,K-1)+U(2,I,J,K-1))

UO(3,I,J,K) = CON*(U(3,I-1,J-1,K-1)+U(3,I,J-1,K-1)+

& U(3,I-1,J-1,K)+U(3,I,J-1,K)+U(3,I-1,J,K)+U(3,I,J,K)+

& U(3,I-1,J,K-1)+U(3,I,J,K-1))

UO(4,I,J,K) = CON*(U(4,I-1,J-1,K-1)+U(4,I,J-1,K-1)+
& U(4,I-1,J-1,K)+U(4,I,J-1,K)+U(4,I-1,J,K)+U(4,I,J,K)+

& U(4,I-1,J,K-1)+U(4,I,J,K-1))

UO(5,I,J,K) = CON*(U(5,I-1,J-1,K-1)+U(5,I,J-1,K-1)+
& U(5,I-1,J-1,K)+U(5,I,J-1,K)+U(5,I-1,J,K)+U(5,I,J,K)+

& U(5,I-1,J,K-1)+U(5,I,J,K-1))

25 CONTINUE

15 CONTINUE

IF(MACH .LT. 1.) THEN

I=ILE-1

J=l1

KTIP = (KMAX +1)/2
KTIPM = KTIP - 1

SUM1 = 0.
SUM2 - 0.
SUM3 - 0.
SUM4 - 0.
SUM5 = 0.

DO 181 K=1,KTIPM
SUM1 - SUM1 + 1.5*U(1,I,J,K) - .5*U(1,I,J+1,K)

SUM2 = SUM2 + 1.5*U(2,I,J,K) - .5*U(2,I,J+1,K)
SUM3 = SUMS + 1.5*U(3,I,J,K) - .5*U(3,I,J+1,K)
SUM4 - SUM4 + 1.5*U(4,I,J,K) - .5*U(4,I,J+1,K)
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SUM5 = SUM5 + 1.5*U(5,I,J,K) - .5*U(5,I,J+1,K)
181 CONTINUE

UB1 = SUM1/KTIPM
UB2 = SUM2/KTIPM
UB3 = SUM3/KTIPM
UB4 = SUM4/KTIPM
UB5 = SUM5/KTIPM

I=ILE

J=l

K=1

UBB1=.5*(1.5*(U(1,I,J,K)+U(1,I,J,K-1))-.5*(U(1,I,J+1,K)
& +U(1,I,J+1,K-1)))

UBB2=.5*(1.5*(U(2,I,J,K)+U(2,I,J,K-1))-.5*(U(2,I,J+1,K)

& +U(2,I,J+1,K-1)))

UBB3=.5*(1.5*(U(3,I,J,K)+U(3,I,J,K-1))-.5*(U(3,I,J+1,K)
& +U(3,I,J+1,K-1)))

UBB4=.5*(1.5*(U(4,I,J,K)+U(4,I,J,K-1))-.5*(U(4,I,J+1,K)

& +U(4,I,J+1,K-1)))

UBB5=.5*(1.5*(U(5,I,J,K)+U(5,I,J,K-1))-.5*(U(5,I,J+1,K)
& +U(5,I,J+1,K-1)))

DO 183 K=1,KTIPM

UO(1,ILE,1,K) = .5*(UB1 + UBB1)
UO(2,ILE,1,K) = .5*(UB2 + UBB2)
UO(3,ILE,1,K) = .5*(UB3 + UBB3)
UO(4,ILE,1,K) = .5*(UB4 + UBB4)
UO(5,ILE,1,K) = .5*(UB5 + UBB5)

183 CONTINUE

ENDIF

IF( .NOT. SYM) THEN

DO 38 I=1,IMAX
DO 37 J=1,JMAX

UO(1,I,J,KMAX) - UO(1,I,J,1)
UO(2,I,J,KMAX) = U0(2,I,J,1)
UO(3,I,J,KMAX) = UO(3,I,J,1)
UO(4,I,J,KMAX) = UO(4,I,J,1)
UO(5,I,J,KMAX) - UO(5,I,J,1)

37 CONTINUE
38 CONTINUE

ENDIF

GOTO 99
C
C**************** A SIMPLE MINDED APPROACH FOR NI'S BUMP GEOMETRY **********
C
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C---- interior points and 8 faces
98 CON = 1./8.

DO 100 I=1,IMAX
DO 100 J=1,JMAX

DO 100 K=1,KMAX
UO(1,I,J,K) = CON*(U(1,I-1,J-1,K-1)+U(1,I,J-1,K-1)+

& U(1,I,J,K-1)+U(1,I-1,J,K-1)+U(1,I-1,J-1,K)+U(1,I,J-1,K)

& +U(1,I,J,K)+U(1,I-1,J,K))

UO(2,I,J,K) = CON*(U(2,I-1,J-1,K-1)+U(2,I,J-1,K-1)+
& U(2,I,J,K-1)+U(2,I-1,J,K-1)+U(2,I-1,J-1,K)+U(2,IJ-1,K)

& +U(2,I,J,K)+U(2,I-1,J,K))

UO(3,I,J,K) = CON*(U(3,I-1,J-1,K-1)+U(3,I,J-1,K-1)+
& U(3,I,J,K-1)+U(3,I-1,J,K-1)+U(3,I-1,J-1,K)+U(3,I,J-1,K)

& +U(3,I,J,K)+U(3,I-1,J,K))

UO(4,I,J,K) = CON*(U(4,I-1,J-1,K-1)+U(4,I,J-1,K-1)+
& U(4,I,J,K-1)+U(4,I-1,J,K-1)+U(4,I-1,J-1,K)+U(4,I,J-1,K)

& +U(4,I,J,K)+U(4.I-1,J,K))

UO(5,I,J,K) = CON*(U(5,I-1,J-1,K-1)+U(5,I,J-1,K-1)+

& U(5,I,J,K-1)+U(5.,I-1,J,K-1)+U(5,I-1,J-1,K)+U(5,IJ-1,K)

& +U(5,I,J,K)+U(5,I-1,J,K))

100 CONTINUE

DO 150 L = 1,5
C

C---- Do I seams (AVERAGE ADJACENT VOLUMES)

DO 110 I = 1,IMAX
UO(L,I,1,1 ) - UO(L,I,1,2)

UO(L,I,1,KMAX) = UO(L,I,1,KM)
UO(L,I,JMAX,1 ) = UO(L,I,JMAX,2)

110 UO(L,I,JMAX,KMAX) = UO(L,I,JMAX,KM)
C

C---- Do j seams

Do 115 J = 1,JMAX
UO(L,1,J,1 ) = UO(L,1,J,2)
UO(L,1,J,KMAX) = UO(L,1,J,KM)

UO(L,IMAX,J,1 ) = UO(L,IMAX,J,2)
115 UO(L,IMAX,J,KMAX) = UO(L,IMAX,J,KM)

C

C---- Do k seams
DO 130 K = 1,KMAX
UO(L,1 1,K) - .5*(U(L,1 ,1,K-1)+U(L,1 .1,K))

UO(L,IMAX,1,K) - .5*(U(L,IM,1,K-1)+U(L,IM,1,K))
UO(L,1 ,JMAX,K) = .5*(U(L,1 ,JM,K-1)+U(L,1 ,JM,K))

130 UO(L,IMAX,Jmax,K) = .6*(U(L,IM,JM,K-1)+U(L,IM,JM,K))
C

C---- corners (simple extrapolation from interior OR seam)
UO(L,1,1,1) = UO(L,1,1,2)
UO(L.,1,,KMAX) = UO(L,1,1,KM)
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UO(L,1,JMAX,1) - UO(L,1,JMAX.2)
UO(L.1,JMAX,KMAX) = U(L,1,JMAX,KM)

UO(L,IMAX,1,1) = UO(L,IMAX,1,2)
UO(L,IMAX,1,KMAX) = UO(L,IMAX,1,KM)
UO(L,IMAX,JMAX,1) = U(L,IMAX,JMAX,2)
UO(L,IMAX,JMAX,KMAX) = U(L,IMAX,JMAX,KM)

150 CONTINUE
99 RETURN

END
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C
C
C SUBROUTINE UNODES: calculates the state vector at the grid points
C and writes them to a data file which is used to plot the data
C

SUBROUTINE UNODES
include 'euler.inc'
DIMENSION Q(ISIZ+1,JSIZ+1,KSIZ+1,5)

C--- filling in outer boundary points at the upstream
C--- and downstream bondary used for plotting

DO 50 K-1,KM
DO 51 L=1,5
U(L,O,JMAX,K) = U(L,O,JM,K)
U(L,IMAX,JMAX,K) = U(L,IMAX,JM,K)

51 CONTINUE
50 CONTINUE

C--- calculate the state vector at the nodes
CALL UCALC

C IF(BIN) THEN

DO 14 I=1,IMAX
DO 24 J=1,JMAX
DO 34 K=I,KMAX

DO 44 L=1,5
Q(I,J,K,L) = UO(L,I,J,K)

44 CONTINUE
34 CONTINUE
24 CONTINUE
14 CONTINUE

RTIME=REAL(ITMAX)
OPEN(UNIT=3,STATUS=' NEW',.FORM= 'UNFORMATTED',FILE=STNODE)
WRITE(3) IMAX, JMAX,KMAX
WRITE(3) MACH,ALPHA,RE,RTIME
WRITE(3) ((((Q(I, J,K,L) ,I=1, IMAX) ,J=1,JMAX),K=1,KMAX),L=1,5)

C ELSE
C
C DO 10 I=1,IMAX
C DO 23 J=I,JMAX
C DO 33 K=1,KMAX
C WRITE(3,*) UO(1,I,J,K),UO(2,I.J,K),UO(3.I,J,K),
C & UD(4,I,J.K),UD(5,I,J,K)
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C 33 CONTINUE

C 23 CONTINUE

C 10 CONTINUE

C

C ENDIF

RETURN

END

333



C
C

C SUBROUTINE RESMOOTH: implicity smooths the flux part of the
C residuals before each time step.
C

SUBROUTINE RESMOOTH
include 'euler.inc'
include 'blvisc.inc'

DIMENSION B(KSIZ),RR(ISIZ,JSIZ,KSIZ)

DO 40 L=1,5

C....... Store the flux and dissipation terms in array RR
DO 50 I=I,IM

DO 51 J-1,JM
DO 52 K=1,KM
RR(I,J,K) = R(L,I,J,K)

52 CONTINUE
51 CONTINUE
50 CONTINUE

C........ Set up the tridiagonal coefficients for all three directions
A = -EPSR
C a -EPSR

AC = EPSR*EPSR

C......... store and forward sweep to find new diagonal coefficient
B(1) = 1.+2.*EPSR
IJKMAX = MAX(IM,JM,KM)
DO 11 I=2,IJKMAX

B(I) = 1.+2.*EPSR
B(I) a B(I) - AC/B(I-1)

11 CONTINUE

C........ First, solve the tridiagonal matrix in the i-direction

C........ Forward sweep to find new right hand side coefficients
DO 14 I=2,IM

DO 13 J=1,JM
DO 15 K=1,KM

RR(I.J,K) = RR(I.J,K) - A*RR(I-1,J,K)/B(I-1)
15 CONTINUE
13 CONTINUE
14 CONTINUE

C......... Backward sweep to solve for updated residuals
DO 12 J=1,.JM
DO 18 K1l,KM
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RR(IM,J,K) =
CONTINUE

CONTINUE

DO 16 I=1,IM-1
II = IM-I
DO 10 J=1,JM

DO 17 K=1,KM
RR(II,J,K)

CONTINUE
CONTINUE

CONTINUE

RR(IM, J,K)/B(IM)

= (RR(II,J,K) - C*RR(II+I,J,K))/B(II)

C........ Second, solve the tridiagonal matrix in the j-direction
C.......... (If not semi-implicit)

IF (SEMIIMP) GOTO 199
C........ Forward sweep to find new

DO 24 J=2,JM
DO 23 I=1,IM

DO 25 K-I,KM
RR(I.J,K) = RR(I,J,K) -

25 CONTINUE
23 CONTINUE
24 CONTINUE

right hand side coefficients

A*RR(I,J-1,K)/B(J-1)

C......... Backward sweep to solve for updated residuals
DO 22 I=1,IM
DO 28 K=1,KM

RR(I.JM,K) = RR(I,JM,K)/B(JM)
28 CONTINUE
22 CONTINUE

DO 26 J=I,JM-1
JJ = JM-J
DO 21 I-1,IM
DO 27 K=1,KM

RR(I,JJ,K)
CONTINUE

CONTINUE
CONTINUE

CONTINUE
.... Finally, solve

= (RR(I,JJ,K) - C*RR(I,JJ+1,K))/B(JJ)

the tridiagonal matrix in the k-direction

C........ Forward sweep to find new right hand side coefficients
DO 34 K=2,KM

DO 33 I=1,IM
DO 35 J=1,JM
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RR(I,J,K) = RR(I,J,K) - A*RR(I,J,K-1)/B(K-1)
35 CONTINUE
33 CONTINUE
34 CONTINUE

C......... Backward sweep to solve for updated residuals
DO 32 I=1,IM

DO 38 J=1,JM
RR(I,J,KM) = RR(I,J,KM)/B(KM)

38 CONTINUE
32 CONTINUE

DO 36 K=I,KM-1
KK = KM-K
DO 30 I=1,IM

DO 37 J=1,JM
RR(I,J,KK) = (RR(I,J,KK) - C*RR(I,J,KK+1))/B(KK)

37 CONTINUE
30 CONTINUE
36 CONTINUE

C........ Send the updated residual vector back in the flux vector
DO 41 I=1,IM

DO 42 J=1,JM
DO 43 K=I,KM

R(L,I,J,K) = RR(I,J,K)
43 CONTINUE
42 CONTINUE
41 CONTINUE

40 CONTINUE

RETURN
END
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SUBROUTINE LHS(A1,I,J)

THIS SUBROUTINE SETS UP THE LHS (KMPLICIT) OF EACH SEMI-KMPLICIT FLUX
BALANCE

IA C I
IB AC I
I BAC I LHS

I . . .I

I B A

INCLUDE 'euler.inc'
INCLUDE 'blvisc.inc'
INCLUDE 'invert.inc'
INCLUDE 'conven.inc'
REAL COEFF(KSIZ) ,BCX(KSIZ) ,BCY(KSIZ) ,BCZ(KSIZ),
& BX(KSIZ),BY(KSIZ) .BZ(KSIZ),CX(KSIZ)CY(KSIZ).CZ(KSIZ)

C---- Calculate all coefficients
DO 8 K=1,KM

8 COEFF(K) = AI*DT(I,J,k)
DO 9 K=1,KM

BY(K) =-.5*COEFF(K)*FACEY(2,I,J-1,K)
BX(K) =-.5*COEFF(K)*FACEX(2,I,J-1,K)
BZ(K) =-.5*COEFF(K)*FACEZ(2,I,J-1,K)

CY(K)
CX(K)
CZ(K)
by(k)
bx(k)
bz(k)
cy(k)
cx(k)
cz(k)

- .5*COEFF(K)*FACEY(2,I,J,K)
a .5*COEFF(K)*FACEX(2,I,J,K)
S.5*COEFF(K)*FACEZ(2,I,J,K)

= 1.

= 1.

I 1.

--1.
-- 1.

-- 1.

9 continue
DO 7 K=1,KM

BCY(K) = BY(K)+CY(K)
BCX(K) - BX(K)+CX(K)

7 BCZ(K) - BZ(K)+CZ(K)

C---- Choose proper forms

IF (J .EQ. 1) GOTO I
IF (J .EQ. JM) GOTO 3
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GOTO 2

C
C---- Set Matrix elements at lower boundary first -- sweep through all I

1 DO 10 K=1,KM
C
C

C---- Matrix A at lower boundary: this is [C] modified by bc's(changes
C---- in pressure terms) and addition of [I]

AA(K.1.1) = 1.
AA(K,1,2) = CX(K)
AA(K,1,3) - CY(K)

AA(K,1,4) = CZ(K)
AA(K,1.5) = 0.

C

AA(K,2,1) =
& HW(K,J,2,1)*CZ(K)

AA(K,2,2) = 1. +
& HW(K,J.2,2)*CZ(K)

AA(K.2.3) -

AA(K,2,4) =
& HW(K,J.2,4)*CZ(K)

AA(K,2,5) =

AA(K,3.1) =
& HW(K.J,3,1)*CZ(K) + GW(K,J,3,1)*CY(K)
& + 2*DPDU1(K,J)*BY(K)
AA(K,3,2) =

GW(K, J,3,2)*CY(K)
+ 2*DPDU2(K J)*BY(K1)

AA(K,3,3) = 1. +
& HW(K,J , 3,3)*CZ(K) + GW(K,J,3S,3)*CY(K)
& + 2*DPDU3(K,J)*BY(K)
AA(K,3,4) -

& HW(K,J.3,4)*CZ(K) + GW(K.J,3,4)*CY(K)
& + 2*DPDU4(K,J)*BY(K)
AA(K,3,5) =

+ GW(K,J,2,1)*CY(K) + FW(K,J,2,1)*CX(K)
+ 2*DPDU1(K.J)*BX(K)

+ GW(K,J,2,2)*CY(K) + FW(K,J,2,2)*CX(K)
+ 2*DPDU2(K,J)*BX(K)

GW(K,J,2,3)*CY(K) + FW(K,J,2,3)*CX(K)
+ 2*DPDU3(K,J)*BX(K)

+ FW(K,J.2,4)*CX(K)
+ 2*DPDU4(K,J)*BX(K)

+ FW(K,J,2,5)*CX(K)
+ 2*DPDU5*BX(K)

+ FW(K,J.3,1)*CX(K)

+ FW(K,J,3,2)*CX(K)

+ FW(K.J,3,3)*CX(K)

GW(K.J.3.6)*CY(1O
+ 2*DPDUS*RY(JO
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AA(K,4,1) =
& HW(K,J,4,1)*CZ(K) + GW(K,J,4,1)*CY(K) + FW(K,J,4,1)*CX(K)
&+2*DPDU1(K,J)*BZ(K)
AA(K,4,2) =
& HW(K,J,4,2)*CZ(K) + FW(K,J,4,2)*CX(K)
&+2*DPDU2(K,J)*BZ(K)
AA(K,4,3) =
& HW(K,J,4,3)*CZ(K) + GW(K,J,4,3)*CY(K)
&+2*DPDU3(K,J)*BZ(K)
AA(K,4,4) = 1. +
& HW(K,J,4,4)*CZ(K) + GW(K,J,4,4)*CY(K) + FW(K,J,4,4)*CX(K)
&+2*DPDU4(K,J)*BZ(K)
AA(K,4,5) =
& HW(K,J,4,5)*CZ(K)
&+2*DPDU5*BZ(K)

AA(K,5,1) =
& HW(K,J,5,1)*CZ(K) + GW(K,J,5,1)*CY(K)
AA(K,5,2) =
& HW(K,J,5,2)*CZ(K) + GW(K,J,5,2)*CY(K)
AA(K,5,3) =
& HW(K,J,5,3)*CZ(K) + GW(K,J,5,3)*CY(K)
AA(K,5,4) =
& HW(K,J.5,4)*CZ(K) + GW(K,J,5,4)*CY(K)
AA(K,5,5) = 1. +
& HW(K,J,5,5)*CZ(K) + GW(K,J,5,5)*CY(K)

C
C---- MATRIX C at lower boundary

+ FW(K,J,5,1)*CX(K)

+ FW(K,J,5,2)*CX(K)

+ FW(K,J,5,3)*CX(K)

+ FW(K,J,5,4)*CX(K)

+ FW(K,J,5,5)*CX(K)

C(K,J,1,1) = 0.
C(K,J,1,2) = CX(K)
C(K,J,1,3) = CY(K)
C(K,J,1,4) = CZ(K)
C(K,J,1,5) = 0.

C---- d(RUV)/d(Ul,U2,U3)
C(K,J,2,1)=
& HW(K,J+1,2,1)*CZ(K)+GW(K,J+1,2,1)*CY(K)+FW(KJ+1,2,1)*CX(K)
C(K,J,2,2,2)=
& HW(K,J+1,2,2)*CZ(K)+GW(K,J+1,2,2)*CY(K)+FW(K,J+1,2.2)*CX(K)
C(K,J,2,3)-

GW(KJ+1,2,3)*CY(K)+FW(KJ+1,2,3)*CI(K)

C(K,J,2,4)=
& HW(K,J+1,2,4)*CZ(K)
C(K,J,2,5)=
&

+FW(K,J+1,2,4)*CX(K)

+FW(K,J+1,2,5)*CX(K)
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C---- d(RVV+P)/d(U1,U2,U3,U4)
C(K,J,3,1)=
& HW(K,J+1,3,1)*CZ(K)+GW(K,J+1,3,1)*CY(K)+FW(K,J+1,3,1)*CX(K)
C(K,J,3,2)=
& GW(K,J+1,3,2)*CY(K)+FW(K,J+1,3,2)*CX(K)
C(K,J,3,3)=
& HW(K,J+1,3,3)*CZ(K)+GW(K,J+1,3,3)*CY(K)+FW(K,J+1,3,3)*CX(K)
C(K,J,3,4)=
& HW(K,J+1,3,4)*CZ(K)+GW(K,J+1,3,4)*CY(K)
C(K,J,3,5)=
& GW(K,J+1,3,5)*CY(K)

C
C---- d(U3H)/d(U1,U2,U3,U4)

C(K,J,4,1)=
& HW(K,J+1,4,1)*CZ(K)+GW(K,J+1,4,1)*CY(K)+FW(K,J+1,4,1)*CX(K)
C(K,J,4,2)=
& HW(K,J+1,4,2)*CZ(K)+ FW(K,J+1,4,2)*CX(K)
C(K,J,4,3)=
& HW(K,J+1,4,3)*CZ(K)+GW(K,J+1,4,3)*CY(K)
C(K,J,4,4)=
& HW(K,J+1,4,4)*CZ(K)+GW(K,J+1,4,4)*CY(K)+FW(K,J+1,4,4)*CX(K)
C(K,J,4,5)=

& HW(K,J+1,4,5)*CZ(K)
C

C(K,J,5,1) =
& HW(K,J+1,5,1)*CZ(K)+GW(K,J+1,5,1)*CY(K)+FW(K,J+1,5,1)*CX(K)
C(K,J,5,2) =
& HW(K,J+1,5,2)*CZ(K)+GW(K,J+1,5,2)*CY(K)+FW(K,J+1,5,2)*CX(K)
C(K,J,5,3) =
& HW(K,J+1,5,3)*CZ(K)+GW(K,J+1,5,3)*CY(K)+FW(K,J+1,5,3)*CX(K)
C(K,J,5,.4) =
& HW(K,J+1,5,4)*CZ(K)+GW(K,J+1,5,4)*CY(K)+FW(KJ+1,5.4)*CX(K)
C(K,J,5,5) =
& HW(K,J+1,5,5)*CZ(K)+GW(K,J+1,5,5)*CY(K)+FW(K,J+1,5,5)*CX(K)

C
DO 11 L=1,5
DO 11 M=1,5

11 B(K,L,M) = 0.
10 CONTINUE

GOTO 99
C
C---- Regular matrices ( 2 < j < JM-1 )
2 DO 20 K=1,KM

C
C---------------------
C---- MATRIX A
C---------------------
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C
C---- In 1st order acc. discret. interior AA contains smoothing & [I] only.
C---- These are added on at end.

AA(K,1,1) = 1.
AA(K,1,2) = BCX(K)
AA(K,1,3) = BCY(K)
AA(K,1,4) = BCZ(K)
AA(K,1,5) = 0.

C
AA(K,2,1) -

& HW(K,J,2,1)*BCZ(K) + GW(K,J,2.,1)*BCY(K) + FW(K,J,2,1)*BCX(K)
AA(K,2,2) = 1. +
& HW(K,J,2,2)*BCZ(K) + GW(K,J,2,2)*BCY(K) + FW(K,J,2,2)*BCX(K)
AA(K,2,3) =
& GW(K,J,2,3)*BCY(K) + FW(K,J,2,3)*BCX(K)
AA(K,2,4) =
& HW(K,J,2,4)*BCZ(K) + FW(K,J,2,4)*BCX(K)
AA(K,2,5) =
& + FW(K,J,2,5)*BCX(K)

C
AA(K,3,1) a
& HW(K,J,3,1)*BCZ(K)
AA(K,3,2) =
&k
AA(K,3,3) = 1. +

k HW(K,J,3,3)*BCZ(K)
AA(K,3,4) =

k HW(K,J,3,4)*BCZ(K)
AA(K,3.5) =

k

AA(K,4.1) =
& HW(K,J,4,1)*BCZ(K)
AA(K,4,2) -

& HW(K,J,4,2)*BCZ(K)
AA(K,4,3) =
& HW(K.J.4,3)*BCZ(K)
AA(K,4,4) = 1. +
k HW(K.J.4.4)*BCZ(K)
AA(K,4,5) =
k HW(K,J,4,5)*BCZ(K)

C
AA(K,5,1) =
& HW(K,J,5,1)*BCZ(K)
AA(K,5,2) =
& HW(K,J,5,2)*BCZ(K)
AA(K,5,3) -

+ GW(K,J,3,1)*BCY(K) + FW(K,J,3,1)*BCX(K)

GW(K,J,3,2)*BCY(K) + FW(K,J,3,2)*BCX(K)

+ GW(K,J,3,3)*BCY(K) + FW(K,J,3,3)*BCX(K)

+ GW(K,J,3,4)*BCY(K)

GW(K.J,3,5)*BCY(K)

+ GW(K,J,4,1)*BCY(K) + FW(K,J,4,1)*BCX(K)

+ FW(K,J,4,2)*BCX(K)

+ GW(K.J.4.3)*BCY(K)

+ GW(K.J,4,4)*BCY(K) + FW(K,J.4,4)*BCX(K)

+ GW(K,J.5,1)*BCY(K) + FW(K,J,5.1)*BCX(K)

+ GW(K,J,5,2)*BCY(K) + FW(K,J.5,2)*BCX(K)
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& HW(K,J,5,3)*BCZ(K) + GW(K,J,5,3)*BCY(K) + FW(K,J,5,3)*BCX(K)
AA(K,5,4) =

& HW(K.J,5,4)*BCZ(K) + GW(K,J,5.4)*BCY(K) + FW(K,J,5,4)*BCX(K)
AA(K,5,6) = 1. +
& HW(K,J,5,5)*BCZ(K) + GW(K,J,5,5)*BCY(K) + FW(K,J,5,5)*BCX(K)

C
C----------------------------------------------------------
C---- "Regular" submatrices [B] k [C) for I < j < JM-1 -
C----------------------------------------------------------
C---- MATRIX C

C(K,J,1,1) = 0.
C(K,J,1,2) - CX(K)
C(K,J,1,3) = CY(K)
C(K.J,1.4) = CZ(K)
C(K,J,1,5) = 0.

C

C---- d(RUV)/d(U1,U2,U3)
C(K.J,2,1)=
& HW(K,J+1,2,1)*CZ(K)+GW(K,J+1,2,1)*CY(K)+FW(K,J+1,2.1)*CX(K)
C(K.J.2.2)-

& HW(K,J+1,2,2)*CZ(K)+GW(K,J+1,2,2)*CY(K)+FW(K,J+1,2.2)*CX(K)
C(K,J,2,3)=
& GW(K,J+1,2,3)*CY(K)+FW(K,J+1,2,3)*CX(K)
C(K,J,2,4)=
& HW(K,J+1,2,4)*CZ(K) +FW(K,J+1,2,4)*CX(K)
C(KJ,2,5)=
& +FW(K,J+1.2.5)*CX(K)

C

C---- d(RVV+P)/d(U1,U2,U3.U4)
C(K.J,3,1)=
& HW(K,J+1,3,1)*CZ(K)+GW(K,J+1.3,1)*CY(K)+FW(KJ+1,3.1)*CX(K)

C(K.J,3.2)=
& GW(K,J+1,3.2)*CY(K)+FW(K,J+1.3,2)*CX(K)

C(K,J.3.3)=
& HW(K,J+1,3,3)*CZ(K)+GW(K,J+1,3,3)*CY(K)+FW(K,J+1.3,3)*CX(K)
C(K,J,3,4)=
& HW(K,J+1,3,4)*CZ(K)+GW(K,J+1.3,4)*CY(K)
C(K,J,3,5)=
& GW(K,J+1,3,5)*CY(K)

C
C---- d(U3H)/d(U1,U2,U3,U4)

C(KJ.4,1)-
& HW(K,J+1,4,1)*CZ(K)+GW(K,J+1,4,1)*CY(K)+FW(K,J+1.4.1)*CX(K)
C(K.J,4,2)=
& HW(K,J+1,4,2)*CZ(K)+ FW(K.J+1,4,2)*CX(K)
C(K,J,4.3)=
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& HW(K,J+1,4,3)*CZ(K)+GW(K,J+1,4,3)*CY(K)
C(K,J,4,4)=
& HW(K,J+1,4,4)*CZ(K)+GW(K,J+1,4,4)*CY(K)+FW(K,J+1,4,4)*CX(K)
C(K,J,4,5)=
& HW(K,J+1,4,5)*CZ(K)

C
C(K,J,5,1) =
& HW(K,J+1,5,1)*CZ(K)+GW(K,J+1,5,1)*CY(K)+FW(K,J+1,5,1)*CX(K)
C(K,J,5,2) =
& HW(K,J+1,5,2)*CZ(K)+GW(K,J+1,5,2)*CY(K)+FW(K,J+1,5,2)*CX(K)
C(K,J,5,3) =

& HW(K,J+1,5,3)*CZ(K)+GW(K,J+1,5,3)*CY(K)+FW(K,J+1,5,3)*CX(K)
C(K,J,5,4) =
& HW(K,J+1,5,4)*CZ(K)+GW(K,J+1,5,4)*CY(K)+FW(KJ+1,5,4)*CX(K)
C(K,J.5,5) =

& HW(K,J+15,5,)*CZ(K)+GW(K,J+1,5,5)*CY(K)+FW(K,J+1,5,5)*CX(K)
C
C---------------------
C---- MATRIX B
C---------------------
C

B(K,1,1) = 0.
B(K,1,2) = BX(K)
B(K,1,3) = BY(K)
B(K,1,4) = BZ(K)
B(K,1,5) = 0.

C
B(K,2,1)=
& HW(K,J-1 , 2,1)*BZ(K)+GW(K,J-1,2,1)*BY(K)+FW(K,J-1.2,1)*BX(K)
B(K,2,2)=
& HW(K,J-1,2,2)*BZ(K)+GW(K,J-1,2,2)*BY(K)+FW(K,J-1,2,2)*BX(K)

B(K,2,3)-
& GW(K,J-1,2,3)*BY(K)+FW(K,J-1,2,3)*BX(K)
B(K,2,4)=
& HW(K,J-1,2,4)*BZ(K) +FW(K,J-1,2,4)*BX(K)
B(K,2,5)=
& +FW(K,J-1,2,5)*BX(K)

B(K,3,1)-
& HW(K,J-1,3,1)*BZ(K)+GW(K,J-1,3,1)*BY(K)+FW(K,J-1,3,1)*BX(K)
B(K,3,2)=
& GW(K,J-1,3,2)*BY(K)+FW(K,J-1,3,2)*BX(K)
B(K.3,3)=
& HW(K,J-1,3,3)*BZ(K)+GW(K,J-1,3,3)*BY(K)+FW(K,J-1,3,3)*BX(K)
B(K,3,4)=
& HW(K,J-1,3,4)*BZ(K)+GW(K,J-1,3,4)*BY(K)
B(K,3,5)=
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GW(K,J-1,3,5)*BY(K)
C

B(K,4.1)=
& HW(K,J-1,4,1)*BZ(K)+GW(K,J-1.4,1)*BY(K)+FW(KJ-1,4,1)*BX(K)
B(K,4,2)=

k HW(K.J-1,4,2)*BZ(K)+ FW(K.J-1,4,2)*BX(K)
B(K,4,3)=

k HW(K.J-1,4,3)*BZ(K)+GW(K,J-1,4,3)*BY(K)
B(K,4,4)-
& HW(K,J-1,4,4)*BZ(K)+GW(K.J-1,4,4)*BY(K)+FW(K,J-1.4,4)*BX(K)

B(K,4,5)=
& HW(K,J-1,4,6)*BZ(K)

C
B(K,5,1) =

k HW(K,J-1,5,1)*BZ(K)+GW(K,J-1,5.,1)*BY(K)+FW(KJ-1.5.1)*BX(K)
B(K,5,2) =
& HW(K,J-1,5,2)*BZ(K)+GW(K,J-1,5,2)*BY(K)+FW(K,J-1,5,2)*BX(K)
B(K.5,3) =
& HW(K,J-1,5,3)*BZ(K)+GW(K,J-1.5,3)*BY(K)+FW(K.J-1.5,3)*BX(K)
B(K.5,4) =
k HW(K,J-1,5,4)*BZ(K)+GW(K.J-1,5,4)*BY(K)+FW(K,J-1,5,4)*BX(K)
B(K,5,5) =
& HW(K,J-1,5,5)*BZ(K)+GW(K,J-1,5,5)*BY(K)+FW(K,J-1.,,5)*BX(K)

C
20 CONTINUE

GOTO 99
C
C----------------------------
C---- Now do upper boundary -
C----------------------------
3 DO 30 K=1,KM

C
C---- Matrix A at upper boundary: for supersonic flow this is =[A]interior

AA(K,1,1) = 1.
AA(K,1,2) = BX(K)
AA(K,1,3) = BY(K)
AA(K,1,4) = BZ(K)
AA(K,1,5) = 0.

C
AA(K,2,1) =

k HW(K,J,2.1)*BZ(K) + GW(K,J,2,1)*BY(K) + FW(K,J,2,1)*BX(K)
AA(K,2,2) = 1. +

& HW(K,J,,22)*BZ(K) + GW(K,J,2,2)*BY(K) + FW(K,J,2,2)*BX(K)
AA(K,2,3) -
& GW(K,J,2,3)*BY(K) + FW(K,J,2,3)*BX(K)
AA(K,2,4) =

& HW(K,J,2,4)*BZ(K) + FW(K,J,2,4)*BX(K)

344



AA(K,2,5) =

AA(K,3.1) =
& HW(K,J,3,1)*BZ(K)
AA(K,3,2) =

AA(K,3,3) = 1. +
& HW(K,J,3,3)*BZ(K)
AA(K,3,4) =
& HW(K,J,3,4)*BZ(K)

AA(K,3,6) =
&

AA(K,4,1) =
& HW(K,J,4,1)*BZ(K)
AA(K,4,2) =
& HW(K,J,4,2)*BZ(K)
AA(K,4,3) =
& HW(K,J,4,3)*BZ(K)
AA(K,4,4) = 1. +
& HW(K,J,4,4)*BZ(K)
AA(K,4,5) =
& HW(K,J,4,5)*BZ(K)

C
AA(K,5,1) =
& HW(K,J,5,1)*BZ(K)
AA(K,65.2) =
& HW(K,J,5,2)*BZ(K)
AA(K,5,3) =
& HW(K,J,5,3)*BZ(K)
AA(K,5,4) =
& HW(K,J,6,4)*BZ(K)
AA(K.5,5) = 1. +
& HW(K,J,5,5)*BZ(K)

+ GW(K,J,3,1)*BY(K)

GW(K,J,3,2)*BY(K)

+ GW(K,J,3,3)*BY(K)

+ GW(K,J,3,4)*BY(K)

GW(K,J,3,5)*BY(K)

+ GW(K,J,4,1)*BY(K)

+ GW(K,J,4,3)*BY(K)

+ GW(K,J,4,4)*BY(K)

+ FW(K,J,2,5)*BX(K)

+ FW(K,J,3,1)*BX(K)

+ FW(K,J,3,2)*BX(K)

+ FW(K,J,3,3)*BX(K)

+ FW(K,J,4,1)*BX(K)

FW(K,J,4,2)*BX(K)

+ FW(K,J,4,4)*BX(K)

+ GW(K,J,5,1)*BY(K) + FW(K,J,5,1)*BX(K)

+ GW(K,J,5,2)*BY(K) + FW(K,J,5,2)*BX(K)

+ GW(K,J,5,3)*BY(K) + FW(K,J,5,5)*BX(K)

+ GW(K,J,5,4)*BY(K) + FW(K,J,5,4)*BX(K)

+ GW(K,J,5,5)*BY(K) + FW(K,J,5,5)*BX(K)

C---- Matrix B at upper boundary

C
B(K,1,1) = 0.
B(K.1,2) = BX(K)
B(K,1,3) = BY(K)
B(K,1,4) = BZ(K)
B(K.1,5) = 0.

C
B(K,2,1)=
& HW(K,J-1,2,1)*BZ(K)+GW(K,J-1,2,1)*BY(K)+FW(K,J-1,2,1)*BX(K)
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B(K,2,2)=
& HW(K,J-1.2,2)*BZ(K)+GW(K,J-1,2,2)*BY(K)+FW(KJ-1,2,2)*BX(K)
B(K,2,3)=
& GW(K,J-1,2,3)*BY(K)+FW(K,J-1,2,3)*BX(K)
B(K,2,4)=
& HW(K,J-1,2,4)*BZ(K) +FW(K,J-1,2,4)*BX(K)
B(K,2,5)=

+FW(K,J-1,2,5)*BX(K)

B(K,3,1)=
& HW(K,J-1,3,1)*BZ(K)+GW(K,J-1,3,1)*BY(K)+FW(K.J-1,3,1)*BX(K)
B(K,3,2)=
& GW(K,J-1.3,2)*BY(K)+FW(K,J-1,3,2)*BX(K)
B(K,3,3)=
& HW(K,J-1,3,3)*BZ(K)+GW(K,J-1,3,3)*BY(K)+FW(K.J-1.3.3)*BX(K)

B(K,3,4)-
& HW(K,J-1,3,4)*BZ(K)+GW(K,J-1,3,4)*BY(K)
B(K,3,5)=
& GW(K,J-1,3,5)*BY(K)

B(K,4, 1)=
& HW(K,J-1,4,1)*BZ(K)+GW(K,J-1,4,1)*BY(K)+FW(K,J-1,4,1)*BX(K)
B(K,4,2)=
& HW(K,J-1,4,2)*BZ(K)+ FW(K,J-1,4,2)*BX(K)
B(K,4,3)=
& HW(K,J-1,4,3)*BZ(K)+GW(K,J-1,4,3)*BY(K)
B(K,4,4)=
& HW(K,J-1,4,4)*BZ(K)+GW(K,J-1,4,4)*BY(K)+
B(K,4,5)=
& HW(K,J-1,4,5)*BZ(K)

C
B(K,5,1) =
& HW(K,J-1,5,1)*BZ(K) + GW(K,J-1,5,1)*BY(K) + FW(K,J-1,5,1)*BX(K)
B(K,5,2) =
& HW(K,J-1,5,2)*BZ(K) + GW(K,J-1,5,2)*BY(K) + FW(K,J-1,5,2)*BX(K)
B(K,5,3) =
& HW(K,J-1,5,3)*BZ(K) + GW(K,J-1,5,3)*BY(K) + FW(K,J-1,5,3)*BX(K)
B(K,5,4) =

& HW(K,J-1,5,4)*BZ(K) + GW(K,J-1,5,4)*BY(K) + FW(K,J-1,5,4)*BX(K)
B(K,5,5) =
& HW(K,J-1,5,5)*BZ(K) + GW(K,J-1,5,5)*BY(K) + FW(K,J-1,5,5)*BX(K)
DO 31 L=1,5
DO 31 M=1,5

C(K,J,L,M) = 0.
31 C(K,J+1,L,M) = 0.

30 CONTINUE
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C
C
99 CONTINUE

RETURN
END

C
SUBROUTINE LHSSMO(A1,I,J)

C
C THIS SUBROUTINE ADDS THE IMPLICIT SMOOTHING TERMS TO THE LHS
C

INCLUDE 'euler.inc'
INCLUDE 'blvisc.inc'
INCLUDE 'invert.inc'
INCLUDE 'conven.inc'
COMMON/DTE/DTEXP(ISIZ,JSIZ,KSIZ)

C
REAL ST(KSIZ)

C
c write(6,*) 'i,j=',i,j

DO 10 K=1,KM
ST(K) = Al*MUSI*(DT(I,JK)/DTEXP(I,J.K))

10 CONTINUE
C

DO 20 K=1,KM
AA(K,1,1) = AA(K,1,1) + 2*ST(K)
AA(K,2,2) = AA(K,2,2) + 2*ST(K)
AA(K,3,3) = AA(K,3,3) + 2*ST(K)
AA(K,4,4) = AA(K,4,4) + 2*ST(K)
AA(K,5,5) = AA(K,5,5) + 2*ST(K)
B(K,1,1) = -ST(K)
B(K,2,2) = B(K,2,2) - ST(K)

B(K,3,3) = B(K,3,3) - ST(K)
B(K.4,4) = B(K,4,4) - ST(K)
B(K.5,5) = B(K,5,5) - ST(K)
C(K,J,1,1) = -ST(K)
C(K,J.2,2) = C(K,J,2,2) - ST(K)
C(K,J,3,3) = C(K,J,3,3) - ST(K)
C(K,J.4,4) = C(K,J,4,4) - ST(K)
C(K,J,5,5) = C(K,J,5.5) - ST(K)

20 CONTINUE
C

RETURN
END
SUBROUTINE CONVEN(I)

C
C---- Calculate some convenient quantities for all I and J
C ---------------------------------------------------------
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INCLUDE 'euler.inc'
INCLUDE 'blvisc.inc'
INCLUDE 'conven.inc'
REAL ORHO(KSIZ)

REAL DUDUI(KSIZ,JSIZ),DUDU2(KSIZ,JSIZ),

& DVDU1(KSIZ,JSIZ),DVDU3(KSIZ,JSIZ),OPR,

& DRUDU1(KSIZ,JSIZ),DRUDU2(KSIZ,JSIZ),DRUDU3(KSIZ,JSIZ),

& UU(KSIZ,JSIZ).VV(KSIZ,JSIZ),WW(KSIZ,JSIZ),H(KSIZ,JSIZ)

C

GM1 = GAM - 1
OPR = 1/PR
DPDU5 = GMI

C

DO 1003 J=1,JM
c write(6,*) '[conven] j=',j

DO 1001 K=1,KM
ORHO(K) = 1/U(1,I,J,K)
UU(K,J) = U(2,I,J,K)*ORHO(K)
VV(K,J) - U(3,I,J,K)*ORHO(K)
WW(K,J) - U(4,I,J,K)*ORHO(K)

1001 H(K,J) = (U(5,I,J,K) + P(I,J,K))*ORHO(K)

DO 1002 K=1,KM

C

DUDU1(K,J) = -UU(K,J)*ORHO(K)
DUDU2(K,J) = ORHO(K)

C
DVDUI(K,J) = -VV(K,J)*ORHO(K)
DVDU3(K,J) = ORHO(K)

C
C------ ! d (RUV)/dR

DRUDU1(K,J) = -UU(K,J)*VV(K,J)
C------ !d(RUV)/d(U2)

DRUDU2(K,J) = VV(K,J)

C------ !d(RUV)/d(U3)
DRUDU3(K,J) - UU(K,J)

C
DPDU1(K,J) = .5*GM1*(UU(K,J)**2+VV(K,J)**2+WW(K,J)**2)

DPDU2(K,J) - -GM1*UU(K,J)

DPDU3(K,J) = -GM1*VV(K,J)
1002 DPDU4(K,J) = -GM1*WW(K,J)
C

DO 1003 K=1,KM

DHDU1(K,J) = (DPDU1(K,J) - H(K,J))*ORHO(K)
DHDU2(K,J) = DPDU2(K,J)*0RHO(K)
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DHDU3(K,J) = DPDU3(K,J)*ORHO(K)
DHDU4(K,J) - DPDU4(K,J)*ORHO(K)

C------- != GAM/rho(K,J)
1003 DHDU5(K,J) = (DPDU5 + 1)*ORHO(K)

C
C
c write(6.*) '[conven2] before dgfw'

DO 10 J"I,JM
DO 10 K=1,KM

C
C----------------------------------------------------------
C---- dG/dW

C----------------------------------------------------
C

C

C

C---- d(RUV)/d(U1 ,U2,U3)

GW(K,J,2,1) =-UU(K,J)*VV(K,J)

GW(K,J,2,2) = VV(K,J)
GW(K,J,2,3) = UU(K,J)

GW(K,J,2,4) = 0.

GW(K,J,2,5) = 0.
C

C---- d(RVV+P)/d(U1,U2,U3,U4,US)
GW(KJ,3,1) = -VV(K,J)**2 + DPDU1(K,J)
GW(K,J.3,2) = DPDU2(K,J)

GW(K,J,3,3) = 2*WVV(K,J) + DPDU3(K,J)
GW(K,J,3,4) = DPDU4(K,J)

GW(K,J,3,5) = DPDU5
C

C---- d(RVW)/d(U1,U2,U3,3 U4,U5)

GW(K,J,4,I) =-WW(K,J)*VV(K,J)
GW(K,J,4,2) - 0.

GW(K,J,4,3) = WW(K,J)

GW(K,J,4,4) = VV(K,J)

GW(K,J,4,5) = 0.
C

C---- d(U3H)/d(U1 ,U2,U3,U4,U5)

GW(K,J,5,1) = VV(KJ)*(DPDUI(K,J) - H(K,J))

GW(K,J,5,2) = VV(K,J)*DPDU2(K,J)
GW(K,J.5,3) = H(K,J) + VV(K,J)*DPDU3(K,J)
GW(K,J,5,4) = VV(K,J)*DPDU4(K,J)
GW(K,J5,5) = VV(K,J)*(I. + DPDU5)

C

C

C

349



C---- dF/dW
C----------------------------------------------------------C-
C

C---- d(RUU+P)/d(U1,U2,U3,U4,U5)
FW(K,J.,2.1) =-UU(K,J)**2 + DPDUI(K,J)
FW(K,J,2,2) = 2*UU(K,J) + DPDU2(K,J)
FW(K.J.2,3) = DPDU3(K.J)
FW(K,J,2,4) = DPDU4(K,J)
FW(K,J,2,5) = DPDU5

C
C---- d(RUV)/d(U1,U2,U3)

FW(K,J,3,1) =-UU(K,J)*VV(K,J)
FW(K,J.3,2) - VV(K,J)
FW(K.J,3.3) = UU(K,J)
FW(K,J,3,4) = 0.
FW(K.J,3,5) = 0.

C
C---- d(RUW)/d(UI,U2,U3)

FW(KJ,4,1) -- UU(KJ)*WW(K,J)
FW(K,J,4,2) - WW(K,J)
FW(K,J,4,3) = 0.
FW(K,J.4,4) = UU(K,J)
FW(K,J,4,5) = 0.

C
C---- d((E+P)U)/d(Ul,U2,U3,U4)

FW(K,J,5,1) = UU(K,J)*(DPDU1(K,J) - H(K,J))
FW(K,J,5,2) = H(K,J) + UU(K,J)*DPDU2(K,J)
FW(K,J,5,3) = UU(K,J)*DPDU3(K,J)
FW(K,J,5,4) = UU(K,J)*DPDU4(K,J)
FW(K,J,5,5) = UU(K,J)*(1. + DPDU5)

C
C----------------------------------------------------------
C---- dH/dW
C----------------------------------------------------------
C
C
C
C---- d(RUW)/d(U1,U2,U3,U4,U5)

HW(K,J,2,1) -- UU(K,J)*WW(K,J)
HW(K,J,2,2) = WW(K,J)
HW(K,J,2,3) = 0.
HW(K,J,2,4) = UU(K,J)
HW(K,J,2,6) = 0.

C
C---- d(RVW)/d(U1,U2,U3,U4,U5)
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HW(K,J,3,1) =-VV(K,J)*WW(K,J)
HW(K,J,3,2) = 0.
HW(K,J,3,3) = WW(K,J)
HW(K,J,3,4) = VV(K,J)
HW(K,J,3,5) = 0.

C
C---- d(RWW+P)/d(U1,U2,U3,U4,U5)

HW(K,J,4,1) =-WW(K,J)**2 + DPDU1(K,J)

HW(K,J,4,2) = DPDU2(K,J)

HW(K,J,4,3) = DPDU3(K,J)
HW(K,J,4,4) = 2*WW(K,J) + DPDU4(K,J)
HW(K,J,4,5) = DPDU5

C
C---- d((E+P)W)/d(U1,U2,U3,U4,U5)

HW(K,J,5,1) = WW(K,J)*(DPDU1(K,J) - H(K,J))

HW(K,J,5,2) = WW(K,J)*DPDU2(K,J)
HW(K,J,5,3) = WW(K,J)*DPDU3(K,J)

HW(K,J,5,4) = H(K,J) + WW(K,J)*DPDU4(K,J)
HW(K,J,5,5) = WW(K,J)*(1. + DPDU5)

C
10 CONTINUE

C
RETURN
END
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SUBROUTINE NSLHS(A1,I,J)
C

INCLUDE 'euler.inc'
INCLUDE 'blvisc.inc'

INCLUDE 'invert.inc'
INCLUDE 'nslhs.inc'
REAL ODIAG(KSIZ),DIAG(KSIZ)

C
C THIS SUBROUTINE ADDS THE NAVIER-STOKES TERMS TO THE LHS
C
C II C
C IB IC I
C I BIC I LHS
C I . . .I
C B II
C
C---- Calculate all coefficients

DO 5 K=1,KM
ODIAG(K) = -Al*DT(I,J,K)*MUL(I,J,K)

5 DIAG(K) - -2.*ODIAG(K)
C
C---------------------------------------
C---- Submatrices [A], [B] & [C] for all J -
C---------------------------------------
C

DO 10 K=1,KM
C
C---- MATRIX C
C

IF(J .EQ. JM) GOTO 2
C(K,J.2.1) = C(K,J.2,1) + ODIAG(K)*VS(K,J+1,2,1)
C(K,J,2,2) - C(K,J,2.2) + ODIAG(K)*VS(K,J+1,2,2)
C(K,J,2,3) = C(K,J,2,3) + ODIAG(K)*VS(K,J+1,2,3)
C(KJ.2,4) - C(K,J,2,4) + ODIAG(K)*VS(K,J+1,2,4)

C
C(K,J.3,1) = C(K,J,3,1) + ODIAG(K)*VS(K,J+1,3,1)
C(K.J,3.2) = C(K,J.3,2) + ODIAG(K)*VS(K,J+1,3,2)
C(K,J,3,3) a C(K,J,3,3) + ODIAG(K)*VS(K,J+1,3,3)
C(K,J,3,4) = C(K,J,3,4) + ODIAG(K)*VS(K,J+1,3,4)

C
C(KJ,4,1) = C(K,J.4,1) + ODIAG(K)*VS(K,J+1,4,1)
C(K,J,4,2) - C(K,J,4,2) + ODIAG(K)*VS(K,J+1,.4,2)
C(K,J,4,3) = C(K,J.4,3) + ODIAG(K)*VS(K,J+1,4,3)
C(K.J,4,4) a C(K.J,4,4) + ODIAG(K)*VS(K,J+1,4,4)

C
C(K,J,5,1) - C(K,J,5,1) + ODIAG(K)*VS(K,J+1,5,1)
C(K,J,5,2) - C(K.J.52) + ODIAG(K)*VS(K,J+1,5,2)
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C(K.J,5,3) = C(K,J,.53) + ODIAG(K)*VS(K,J+1,5,3)
C(K,J,5,4) = C(K,J,5,4) + ODIAG(K)*VS(K,J+1,5,4)
C(K,J,5,5) = C(K,J,5,5) + ODIAG(K)*VS(K,J+1,5,5)

C---------------------------------------------
C---- MATRIX A U(j+1) - 2*U(j) + U(j-1) -
C---------------------------------------------
2 CONTINUE

AA(K,2.1)
AA(K,2,2)
AA(K,2,3)
AA(K,2,4)

AA(K,3,1)
AA(K,3,2)
AA(K,3,3)
AA(K,3,4)

AA(K,4,1)
AA(K,4,2)
AA(K.4,3)
AA(K,4,4)

AA(K,5,1)
AA(K,5,2)
AA(K,5,3)
AA(K,5,4)
AA(K,5,5)

- AA(K,2,1) + DIAG(K)*VS(K,J,2,1)
= AA(K,2.2) + DIAG(K)*VS(K,J,2,2)
= AA(K,2,3) + DIAG(K)*VS(K.J,2,3)
= AA(K,2,4) + DIAG(K)*VS(K,J,2,4)

= AA(K,3,1) + DIAG(K)*VS(K,J,3,1)
= AA(K,3.2) + DIAG(K)*VS(K,J,3,2)
= AA(K,3,3) + DIAG(K)*VS(K,J,3,3)
= AA(K,3,4) + DIAG(K)*VS(K,J,3,4)

= AA(K,4,1) + DIAG(K)*VS(K,J,4,1)
= AA(K,4,2) + DIAG(K)*VS(K,J.4,2)
= AA(K.4,3) + DIAG(K)*VS(K.J,4,3)
- AA(K,4,4) + DIAG(K)*VS(K,J,4,4)

= AA(K,5.1) + DIAG(K)*VS(K,J.5,1)
a AA(K,5,2) + DIAG(K)*VS(K,J.5,2)
= AA(K,5,3) + DIAG(K)*VS(K,J,5,3)
= AA(K,.,4) + DIAG(K)*VS(K,J,5,4)
= AA(K,5,5) + DIAG(K)*VS(K,J,5,5)

C---------------------
C---- MATRIX B
C---------------------
C

IF (J .EQ. 1) GOTO 3
B(K,2,1) - B(K,2,1) + ODIAG(K)*VS(K,J-1,2,1)
B(K,2,2) = B(K,2,2) + ODIAG(K)*VS(K,J-1,2,2)
B(K,2,3) = B(K,2,3) + ODIAG(K)*VS(K,J-1.2,3)
B(K.2,4) = B(K,2,4) + ODIAG(K)*VS(K,J-1,2,4)

B(K.3,1) - B(K,3.1) + ODIAG(K)*VS(K,J-1,3,1)
B(K,3,2) - B(K,3,2) + ODIAG(K)*VS(K,J-1,3,2)
B(K,3,3) - B(K,3,3) + ODIAG(K)*VS(K,J-1,3,3)
B(K,3,4) = B(K,3,4) + ODIAG(K)*VS(K,J-1,3,4)

B(K,4,1) = B(K,4.1) + ODIAG(K)*VS(K,J-1,4,1)
B(K,4.2) - B(K,4.2) + ODIAG(K)*VS(K,J-1,4.2)
B(K,4,3) = B(K,4,3) + ODIAG(K)*VS(K,J-1,4,3)
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B(K,4,4) = B(K,4,4) + ODIAG(K)*VS(K,J-1,4,4)
C

B(K,5,1) = B(K,5,1) + ODIAG(K)*VS(K,J-1,5,1)
B(K,5,2) = B(K,5,2) + ODIAG(K)*VS(K,J-1,5,2)
B(K,5,3) = B(K,5,3) + ODIAG(K)*VS(K,J-1,5,3)
B(K,5,4) = B(K,5,4) + ODIAG(K)*VS(K,J-1,5,4)
B(K,5,5) - B(K,5,5) + ODIAG(K)*VS(K,J-1,5,5)

C
3 CONTINUE
10 CONTINUE

RETURN
END
SUBROUTINE CONVNS(I)

C
INCLUDE 'euler.inc'
INCLUDE 'blvisc.inc'

INCLUDE 'nslhs.inc'

INCLUDE 'conven.inc'
REAL TD,ORHO,MOM,VSX,VSY,VSZ

C
DO 10 K=1,KM
DO 10 J=1,JM

C
C

MOM = (MUL(I,J,K)/PR+MUT(I,J,K)/PRT)/(MUL(I,J,K)+MUTCI ,J,K))
ORHO = 1/U(1,I,J,K)

C
C---- Approximations

UAVE = U(2,I,J,K)*ORHO
VAVE = U(3,I,J,K)*ORHO
WAVE = U(4,I,J,K)*ORHO

FX = .5*(FACEX(2,I,J,K)+FACEX(2,I,J-1,K))
FY = .5*(FACEY(2,I,J,K)+FACEY(2,I,J-1,K))
FZ = .5*(FACEZ(2,I,J,K)+FACEZ(2,I,J-1,K))

EX = .5*(ETX(I,J,K)+ETX(I,J-1,K))
EY = .5*(ETY(I,J,K)+ETY(I,J-1,K))
EZ = .5*(ETZ(I,J,K)+ETZ(I,J-1,K))

C
DUDUl = -U(2,I,J,K)*ORHO*ORHO
DVDU1 = -U(3,I,J,K)*ORHO*ORHO
DWDU1 = -U(4,I,J,K)*ORHO*ORHO
DUDU2 = ORHO
DVDU3 = ORHO
DWDU4 = ORHO
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DUADU1 = .5*DUDU1
DUADU2 = .5*DUDU2
DVADU1 = .5*DVDU1
DVADU3 = .5*DVDU3
DWADU1 = .5*DWDU1
DWADU4 = .5*DWDU4

This does not result in correct linearization
when terms at j+l,j,j-1 are all calculated in
one sweep. Better to assume variation of average
quantities is small from iteration to iteration..

DUADU1
DUADU2
DVADU1
DVADU3
DWADU1
DWADU4

TD = 2./3.

TXYDU1 = DUDUI*EY + DVDU1*EX
TXYDU2 = DUDU2*EY
TXYDU3 = DVDU3*EX

DUDU1*EZ

DUDU2*EZ

DWDU4*EX

DVDU1*EZ

DVDU3*EZ

DWDU4*EY

+ DWDU1*EX

+ DWDU1*EY

TD*(2*DUDU1*EX
TD*(2*DUDU2*EX
TD*(
TD*(

TD*(2*DVDU1*EY
TD*(
TD* (2*DVDU3*EY
TD*(

TD*(2*DWDU1*EZ

TD*(
TD*(
TD*(2*DWDU4*EZ

- DVDUI*EY

- DVDU3*EY)

- DUDU1*EX
- DUDU2*EX

- DVDU1*EY

- DVDU3*EY

- DWDU1*EZ)
)

- DWDU4*EZ)

- DWDU1*EZ)
)
)

- DWDU4*EZ)

- DUDU1*EZ)
- DUDU2*EZ)

)
)

VS(K,J,2,1) = TXXDUI*FX
VS(K,J,2,2) = TXXDU2*FX
VS(K,J,2,3) = TXXDU3*FX

TXYDU1*FY + TXZDU1*FZ
TXYDU2*FY + TXZDU2*FZ
TXYDU3*FY
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TXZDU1
TXZDU2
TXZDU4

TYZDU1
TYZDU3
TYZDU4

TXXDU1
TXXDU2
TXXDU3

TXXDU4

TYYDU1
TYYDU2

TYYDU3

TYYDU4

TZZDU1
TZZDU2
TZZDU3

TZZDU4



VS(K,J,2,4) = TXXDU4*FX

VS(K,J.3.1)
VS(K,J,3,2)
VS(K,J,3,3)

VS(K,J,3,4)

VS(K,J,4,1)

VS(K,J,4,2)

VS(K,J,4,3)
VS(K,J,4,4)

= TXYDU1*FX

= TXYDU2*FX
= TXYDU3*FX

= TXZDU1*FX
- TXZDU2*FX

= TXZDU4*FX

+ TYYDU1*FY

+ TYYDU2*FY

+ TYYDU3*FY

TYYDU4*FY

+ TYZDU1*FY

+ TYZDU3*FY

+ TYZDU4*FY

+ TXZDU4*FZ

+ TYZDU1*FZ

+ TYZDU3*FZ

+ TYZDU4*FZ

+ TZZDU1*FZ

+ TZZDU2*FZ

+ TZZDU3*FZ

+ TZZDU4*FZ

DqDU1 = DHDU1(K,J)

DQDU2 = DHDU2(K,J)

DQDU3 = DHDU3(K,J)

DQDU4 = DHDU4(K,J)

DQDU5 = DHDU5(K,J)

DQXDU1
DQXDU2
DQXDU3
DQXDU4
DQXDU5

DQYDU1
DQYDU2
DQYDU3
DQYDU4
DQYDU5

DQZDU1
DQZDU2
DQZDU3
DQZDU4
DQZDU5

- DUADUI*DU - DVADU1*DV - DWADU1*DW
- UAVE*DUDU1- VAVE*DVDU1- WAVE*DWDU1
- DUADU2*DU
- UAVE*DUDU2

- DVADU3*DV
- VAVE*DVDU3

- DWADU1*DW
- WAVE*DWDU4

DQDU1*EX

DQDU2*EX

DQDU3*EX

DQDU4*EX

DQDU5*EX

DQDU1*EY

DQDU2*EY

DQDU3*EY

DQDU4*EY

DQDU5*EY

DQDU1*EZ

DQDU2*EZ

DQDU3*EZ

DQDU4*EZ

DQDU5*EZ

VS(K,J,.,1) =
- ( DUADU1*TXX(I,J,K) + DVADU1*TXY(I,J,K) + DWADU1*TXZ(I,J,K)
+ TXXDU1*UAVE + TXYDU1*VAVE + TXZDU1*WAVE
- MOM*DQXDU1 )*FX

- ( DUADU1*TXY(I,J,K) + DVADUI*TYY(I,J,K) + DWADU1*TYZ(I,J,K)
+ TXYDU1*UAVE + TYYDU1*VAVE + TYZDU1*WAVE
- MOM*DOYDU1 )*FY
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k - ( DUADU1*TXZ(I,J,K) + DVADUI*TYZ(I,J,K) + DWADU1*TZZ(I,J,K)
& + TXZDU1*UAVE + TYZDU1*VAVE + TZZDU1*WAVE
& - MOM*DQZDU1 )*FZ

VS(K,J,5,2) =
& - ( DUADU2*TXX(I,J,K)
& + TXXDU2*UAVE + TXYDU2*VAVE + TXZDU2*WAVE
& - MOM*DQXDU2 )*FX
& - ( DUADU1*TXY(I,J,K)
& + TXYDU2*UAVE + TYYDU2*VAVE
& - MOM*DQYDU2 )*FY
& - ( DUADU2*TXZ(I,J,K)
& + TXZDU2*UAVE + TZZDU2*WAVE
& - MOM*DQZDU2 )*FZ

c write(6,*) '** 72'

VS(K,J,5,3) =
& - ( + DVADU3*TXY(I,J,K)

& + TXXDU3*UAVE + TXYDU3*VAVE
& - MOM*DQXDU3 )*FX
&- ( + DVADU3*TYY(I,J,K)
& + TXYDU3*UAVE + TYYDU3*VAVE + TYZDU3*WAVE
& - MOM*DQYDU3 )*FY
& - ( + DVADU3*TYZ(I,J,K)

& + TYZDU3*VAVE + TZZDU3*WAVE
& - MOM*DQZDU3 )*FZ
VS(K,J,5,4) =
& - ( + DWADU4*TXZ(I,J,K)
& + TXXDU4*UAVE + TXZDU4*WAVE

& - MOM*DQXDU4 )*FX
& - ( + DWADU4*TYZ(I,J,K)
& + TYYDU4*VAVE + TYZDU4*WAVE
& - MOM*DQYDU4 )*FY
& - ( + DWADU4*TZZ(I,J,K)
& + TXZDU4*UAVE + TYZDU4*VAVE + TZZDU4*WAVE
& - MOM*DQZDU4 )*FZ
VS(K,J,5,5) - MOM*DQXDU5*FX + MOM*DQYDU5*FY + MOM*DQZDU5*FZ

C

10 CONTINUE

C

RETURN

END
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SUBROUTINE INVERT(I,J)
C
C THIS SUBROUTINE INVERTS THE BLOCK TRIDIAGONAL
C
C

INCLUDE 'euler.inc'
INCLUDE 'invert.inc'
REAL BE(KSIZ,5,5).BZ(5),OD

C-------------------------------------
C---- Invert block tridiagonal
C --------------------------------------

JP1 = J + 1
JM1 = J - I

C
C---- Calculate [A(J.j=l)]

IF (J .GT. 1) GOTO 15
GOTO 350

15 CONTINUE
C
C---- Calculate [A(Jj)]

DO 39 M=1,5
DO 39 L=1,5
DO 39 K=1,KM

39 BE(K,L,M) - 0.
DO 40 KK = 1,5
DO 40 L - 1,5

DO 40 M = 1,6
CDIR$ IVDEP

DO 40 K=1,KM
40 BE(K,KK,L) =

DO 50 M - 1,5
CDIR$ IVDEP

DO 50 K=1,KM
AA(K,M,1) = AA(
AA(K,M.2) - AA(
AA(K,M,3) = AA(
AA(K,M,4) = AA(

50 AA(K,M.5) - AA(

- AA(j) - B(j)*C(J-1) for j > 1.

BE(K,KK,L) + B(K,KK,M)*C(K,JM1,M,L)

K,M,1)
K,M,2)
K,M,3)
K,M,4)
K,M,5)

BE(K,M,1)
BE(K,M,2)
BE(K,M,3)
BE(K,M,4)
BE(K,M,6)

C---- Same for RHS
CDIR$ IVDEP

DO 61 K-1,KM
R(1,I,J,K) - R(1,I,J,K)

& - B(K,1,1)*R(1,I,JM1,K)- B(K,1,2)*R(2,I,JM1,K)
k - B(K.1,3)*R(3,I,JM1,K)- B(K,1,4)*R(4,I,JM1,K)
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&

R(2,I,J,K)
&

R(3,I,J,K)
&

R(4,I,J,K)

51 R(5,I,J,K)
&

&

350

- B(K,1,5)*R(5,I,JM1,K)
= R(2,I,J,K)

- B(K,2,1)*R(1,I,JM1,K)- B(K.2,2)*R(2,I,JM1,K)

- B(K,2,3)*R(3,I,JM1,K)- B(K,2,4)*R(4,I,JM1,K)

- B(K,2,5)*R(5,I,JM1,K)
= R(3,I,J,K)

- B(K,3,1)*R(1,I,JM1,K)- B(K,3,2)*R(2,I,JM1,K)
- B(K,3,3)*R(3,I,JM1,K)- B(K,3,4)*R(4,I,JM1,K)
- B(K,3,5)*R(5,I,JM1,K)

= R(4,I,J,K)
- B(K,4,1)*R(1,I,JM1,K)- B(K,4,2)*R(2,I,JM1,K)

- B(K,4,3)*R(3,I,JM1,K)- B(K,4,4)*R(4,I,JM1,K)

- B(K,4,5)*R(5,I,JM1,K)
= R(5,I,J,K)

- B(K,5,1)*R(1,I,JM1,K)- B(K,5,2)*R(2,I,JM1,K)

- B(K,5,3)*R(3,I,JM1,K)- B(K,5,4)*R(4,I,JM1,K)

- B(K,5,5)*R(5,I,JM1,K)
CONTINUE

C---- Use Gauss elimination to invert the systems:
C [Dj][Ej] = [Cj]
C [Dj] ZV -- DW
C
C
C---- Calculate multipliers

DO 121 KK=1,4
DO 110 II = KK+1,5

C------- IN COLUMN KK
CDIR$ IVDEP

110

DO 110 K=1,KM
AA(K,II,KK) = -AA(K,II,KK)/AA(K,KK,KK)

C
C---- Subtract multiples of the pivot row from lower rows.

DO 120 M = KK+1,5
DO 120 N = KK+1,5

CDIR$ IVDEP
DO 120 K=1,KM

120 AA(K,M,N) - AA(K,M,N) + AA(K,KK,N)*AA(K,M,KK)
121 CONTINUE

C---- CALCULATE THE NEW RHS
DO 165 II = 2,65
DO 165 M = 1,II-1

CDIR$ IVDEP
DO 165 K=1,KM

C(K,J,II,1) = C(K,J,II,1) + AA(K,II,M)*C(K,J,M,1)
C(K,J,II,2) = C(KJ,II,2) + AA(K,II,M)*C(K,J,M,2)
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C(K,J,II,3) = C(K,J,II,3) + AA(K,II,M)*C(K,J,M,3)
C(K,J,II,4) = C(K,J,II,4) + AA(K,II,M)*C(K,J,M,4)
C(K,J,II,5) = C(K,J,II,5) + AA(K,II,M)*C(K,J,M,5)165

CDIR$ IVDEP

DO 166 K=1,KM

R(2,I,J,K)

R(3,I,J,K)
= R(2,I,J,K)
= R(3,I,J.K)

R(4,I,J,K) - R(4,I,J,K)

R(5,I,J,K) = R(5,I,J,K)

+ AA(K,2,1)*R(1,I,J,K)
+ AA(K,3,1)*R(1,I,J,K)
+ AA(K,3,2)*R(2,I,J,K)
+ AA(K,4,1)*R(1,I,J,K)
+ AA(K,4,2)*R(2,I,J,K)
+ AA(K,4,3)*R(3,I,J,K)
+ AA(K,5,1)*R(1,I,J,K)
+ AA(K,5,2)*R(2,I,J,K)
+ AA(K,5,3)*R(3,I,J,K)
+ AA(K,5,4)*R(4,I,J,K)

166 CONTINUE

C
C---- Calculate solution vector and put in place of RHS

DO 170 M = 5,1,-1
CDIR$ IVDEP

DO 170 K=1,KM

C(K,J,5,M) = C(K,J,5,M)/AA(K,5,5)

C(K,J,4,M) = C(K,J,4,M) - C(K,J,5,M)*AA(K,4,5)

C(K,J,4,M) = C(K,J,4,M)/AA(K,4,4)

C(K,J,3,M) = C(K,J,3,M) - C(K,J,4,M)*AA(K,3,4)

& - C(K,J,5,M)*AA(K,3,5)

C(K,J,3,M) = C(K,J,3,M)/AA(K,3,3)

C(K,J,2,M) = C(K,J,2,M) - C(K,J,3,M)*AA(K,2,3)

& - C(K,J,4,M)*AA(K,2,4)

& - C(K,J,5,M)*AA(K,2,5)

C(K,J,2,M) = C(K,J,2,M)/AA(K,2,2)

C(K,J,1,M) = C(K,J,1,M) - C(K,J,2,M)*AA(K,1,2)

& - C(K,J,3,M)*AA(K,1,3)
& - C(K,J,4,M)*AA(K,1,4)

& - C(K,J,5,M)*AA(K,1,5)
170 C(K,J,1,M) - C(K,J,1,M)/AA(K,1,1)

DO 171 K=,EKM
R(5,I,J,K) = R(5,I,J,K)/AA(K,5,5)

R(4,I,J,K) = R(4,I,J,K) - R(5,I,J,K)*AA(K,4,5)
R(4,I,J,K) = R(4,I,J,K)/AA(K,4,4)

R(3,I,J,K) = R(3,I,J,K) - R(4,I,J,K)*AA(K,3,4)
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- R(5,I,J,K)*AA(K,3,5)

R(3,I,J,K) = R(3,I,J,K)/AA(K,3,3)

R(2,I,J,K) = R(2,I,J,K) - R(3,I,J,K)*AA(K,2,3)

& - R(4,I,J,K)*AA(K,2,4)

& - R(5,I,J,K)*AA(K,2,5)
R(2,I,J,K) = R(2,I,J,K)/AA(K,2,2)

R(1,I,J,K) = R(1,I,J,K) - R(2,I,J,K)*AA(K,1,2)

& - R(3,I,J,K)*AA(K,1,3)

& - R(4,I,J,K)*AA(K,1,4)

& - R(5,I,J,K)*AA(K,1,5)

171 R(1,I,J,K) = R(1,I,J,K)/AA(K,1,1)
C

C---- When you've reached the top, solve.

IF (J .LT. JM) GOTO 99
C
C---- Eliminate the (upper) off-diagonal of "E" blocks

JMM = JM - 1
DO 70 JJ = JMM,1,-1
JJP1 = JJ + 1

CDIR$ IVDEP

DO 70 K=1,KM

R(1,I,JJ,K) = R(1,I,JJ,K) -

R(2,I,JJ,K) = R(2,I,JJ,K)

R(3,I,JJ,K) = R(3,I,JJ,K)

R(4,I,JJ,K) = R(4,I,JJ,K) -

R(5,I,JJ,K) = R(6,I,JJ,K) -

C(K,JJ,1,1)*R(1,I,JJP1,K)
C(K,JJ,1,2)*R(2,I,JJP1,K)
C(K,JJ,1,3)*R(3,I,JJP1 ,K)
C(K,JJ.1,4)*R(4,I,JJP1,K)

C(K,JJ,1,5)*R(5,I,JJP1 ,K)

C(K,JJ,2,1)*R(1,I,JJP1,K)
C(K,JJ,2,2)*R(2,I,JJP1,K)

C(K,JJ,2,3)*R(3,I,JJP1,K)
C(K,JJ,2,4)*R(4,I,JJP1,K)
C(K,JJ,2,5)*R(5,I,JJP1 ,K)
C(K,JJ,3,1)*R(1,I,JJP1,K)

C(K,JJ,3,2)*R(2,I,JJP1,K)
C(K,JJ,3,3)*R(3,I,JJP1,K)

C(K,JJ,3,4)*R(4,I,JJP1 K)
C(K,JJ,3,5)*R(5,I,JJP1 ,K)
C(K,JJ,4,1)*R(1,I,JJP1,K)
C(K,JJ,4,2)*R(2,I,JJP1,K)
C(K,JJ,4,3)*R(3,I,JJP1,K)
C(K,JJ,4,4)*R(4,I,JJP1,K)

C(K,JJ,4,5)*R(5,I,JJP1,K)
C(K,JJ,5,1)*R(1,I,JJP1,K)

C(K,JJ,5,2)*R(2,I,JJP1,K)
C(K,JJ,5,3)*R(3,I,JJP1,K)
C(K,JJ,5,4)*R(4,I,JJPI,K)
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& - C(K,JJ.5,5)*R(5,I,JJP1,K)
70 CONTINUE
c IF (I .NE. 5 .or. iter .ne. 8) GOTO 99
c k=5
c do 71 j=1,jm
c write(6,*) 'invert: residuals j=',j
c 71 write(6,*)r(1,i,j,k),r(2,i,j,k),r(3,i,j,k),r(4,i,j,k),r(5,i,j,k)
C
99 RETURN

END
C
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SUBROUTINE SUMUL
C
C THIS SUBROUTINE CALCULATES LAMINAR VISCOSITIES
C

C
INCLUDE 'euler.inc'
INCLUDE 'blvisc.inc'

C

C
REAL HOH,HOH3S,M2,SH1,SHO,MUO

C
SHI = SHCONST
SHO = HIN -.5*(UIN*UIN + WIN*WIN)
MUO = 1/REYNUM

C
DO 10 K = 1,KM
DO 10 J = 1,JM
DO 10 I = 1,IM

SH = (U(5,I.J,K) + P(I.J,K))/U(1,I,J.K) -
& .5*(U(2,I,J,K)*U(2,I,J,K) + U(3,I,J,K)*U(3,I,J,K) +
& U(4,I,J,K)*U(4,I,J,K))/(U(1,I,J,K)*U(1,I,J,K))

HOH = SH/SHO
HOH3S = SQRT(ABS(HOH*HOH*HOH))
M2 = (SHO + SH1)/(SH + SH1)

C
MUL(I,J,K) - MUO*HOH3S*M2

C
10 CONTINUE

C
C---- Do boundaries

DO 20 K = 1,KM
DO 20 I = 1,IM

MUL(I.0,K) = MUL(I.1,K)
MUL(I,JM+1,K) = MUL(I,JM,K)

20 CONTINUE
RETURN
END ISUMUL

SUBROUTINE BALO
RETURN
END
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SUBROUTINE BLVISC
C

INCLUDE 'euler.inc'
INCLUDE 'blvisc.inc'

C
REAL QX(ISIZ,O:JSIZ,KSIZ),QY(ISIZ,0:JSIZ,KSIZ),
& QZ(ISIZ,O:JSIZ,KSIZ)
REAL MULT,MULTPR,RHO,RHOP,UAVE,VAVE,WAVE,DU,DV,DW,DH

C
C---- Molecular viscosity

CALL SUMUL
C
C---- Turbulent "viscosity''
c CALL BALO
C
C ---- Define appropriate boundary values for the state vector on airfoil
C---- NOTE: In Roberts/Goodsell code values at U(i,j=O,k) are not
C---- used for flux calculations and are defined appropriately
C---- just before dissipation calculation. Thus the definitions
C---- here can be done with impunity. For other host codes may have
C---- to change values back to original.

DO 10 K - 1,KM
DO 10 I = ILE,ITE-1

U(1,I,0,K) = U(1,I,1,K)
U(2,I,O,K) -- U(2,,I1,K)
U(3,I,O,K) -- U(3,I,I,K)
U(4,I,O,K) -- U(4,I,1,K)

C
C------- Adiabatic conditions (note: this isn't overspecified)

U(6,I,1,K) - U(5,I1,K)
P(I,O0,K) = P(I,I,K)

10 CONTINUE
C
C---- If not adiabatic, correct the density (This then gives correct enthalpy)

IF(HWALL .NE. 0.) THEN
DO 11 K = 1,KM
DO 11 I - ILE,ITE-1

UlWALL = (U(5,I,O,K)+P(I,O,K))/HWALL
11 U(1,I,O,K) = 2*UIWALL-U(1,I,1,K)

ENDIF
C
C---- Calculate viscous terms

DO 250 K I1,KM
DO 250 J - O,JM
DO 250 I - 1,IM

C
C---- Define some convenient quantities

364



RHOP = U(1,I,J+1,K)
RHO = U(1,I,J,K)
UAVE = .5*(U(2,I,J+1,K)/RHOP + U(2,I,J,K)/RHO)
VAVE = .5*(U(3,I,J+1,K)/RHOP + U(3,I,J,K)/RHO)
WAVE = .5*(U(4,I,J+1,K)/RHOP + U(4,I,J,K)/RHO)
DU = U(2,I,J+1,K)/RHOP - U(2,I,J,K)/RHO
DV = U(3,I,J+1,K)/RHOP - U(3,I,J,K)/RHO
DW = U(4,I,J+1,K)/RHOP - U(4,I,J,K)/RHO
DH = (U(5,I,J+1,K)+P(I,J+1,K))/RHOP -
& (U(5,I,J ,K)+P(I,J ,K))/RHO

C---- TXY etc.
TXY(I,J.K)
TXZ(I,J,K)
TYZ(I,J,K)

C---- Tyy
TYY(I,J,K)
&

TXX(I,J,K) =

TZZ(I,J,K) =
&

DU*ETY(I,J,K) + DV*ETX(I,J,K)
DU*ETZ(I,J,K) + DW*ETX(I,J,K)
DV*ETZ(I,J,K) + DW*ETY(I,J,K)

= 1.3333333*DV*ETY(I,J,K)

0.6666667*(DU*ETX(I,J,K)

1.3333333*DU*ETX(I,J,K)

0.6666667*(DV*ETY(I,J,K)

1.3333333*DW*ETZ(I,J,K)

0.6666667*(DV*ETY(I,J,K)

DW*ETZ(I,J,K))

+ DW*ETZ(I,J,K))

DU*ETX(I,J,K))

C---- QX, QY, QZ
QQ = DH -
QX(I,J,K)

QY(I,J,K)
QZ(I,J,K)

UAVE*DU - VAVE*DV - WAVE*DW
= QQ*ETX(I,J,K)
= QQ*ETY(I,J,K)
= QQ*ETZ(I,J,K)

if tL.eq.1.anca.j.eq.U)writeBt,dbl)
& DU,DV,DW,DH.K.QQ

11 LLeq.1.ana.3.eq.u>writeto,2b2)

& U(2,ijk),u(3,ijk),u(4,ijk),u(6,ijk),Kku 
)

250 CONTINUE
251 FORMAT('DU,V,W,H,K,QQ=',4F8.4,I3,F8.4)
252 FORMAT(' U,V,W,E,K,rh=',4F8.4,I3,F8.4)

C
C---- Viscous fluxes. Note: stresses T(j) defined at j+1/2 face
CPUT THESE VISCOSITIES IN STRESS DEFINITIONS

DO 260 K = 1,KM
DO 260 J = 0,JM
DO 260 I - 1,IM

MULT = .5*(MUL(I,J ,K) + MUT(I,J ,K) +
& MUL(I,J+1,K) + MUT(I,J+1,K))

MULTPR = .5*(MUL(I,J ,K)/PR + MUT(I,J ,K)/PRT +

365

- .. ,r

1 ,~ .. ,,,,,\



& MUL(I,J+I,K)/PR + MUT(IJ+I,K)/PRT)
UAVE = .5*(U(2.I,J+1,K)/RHOP + U(2,IJ,K)/RHO)
VAVE = .5*(U(3,I,J+1,K)/RHOP + U(3,I,J,K)/RHO)
WAVE = .5*(U(4,I,J+1,K)/RHOP + U(4,I,J,K)/RHO)

DR2 = -( TXX(I,J,K)*FACEX(2,I,J,K) +
& TXY(I.J,K)*FACEY(2,IJ,K) +
& TXZ(I,J,K)*FACEZ(2,I.J,K) )*MULT

C
DR3 -( TXY(I,J,K)*FACEX(2,I,J,K) +

& TYY(I,J.K)*FACEY(2,I,J,K) +
& TYZ(I,J,K)*FACEZ(2,I,J,K) )*MULT

C
DR4 = -( TXZ(I,J,K)*FACEX(2,I,J,K) +

& TYZ(I,J,K)*FACEY(2,I,J.K) +
& TZZ(I,J.K)*FACEZ(2,I,J,K) )*MULT

C
DR5 =

& - (MULT*(UAVE*TXX(I,J,K) + VAVE*TXY(I,J,K) + WAVE*TXZ(I,J,K))
& + MULTPR*QX(I,J,K) )*FACEX(2,I,J,K)

C
& - (MULT*(UAVE*TXY(I,J.K) + VAVE*TYY(I,J,K) + WAVE*TYZ(I,J,K))
& + MULTPR*QY(I,J,K) )*FACEY(2,I,J,K)

C
& - (MULT*(UAVE*TXZ(I,J,K) + VAVE*TYZ(I,J,K) + WAVE*TZZ(I,J,K))
& + MULTPR*QZ(I,J,K) )*FACEZ(2,I,JK)

C
C---- Subtract outgoing viscous flux from cell (i,j,k) and add it to (i,j+l,k)

R(2,I,J,K) = R(2,I,J,K) - DR2

R(3,I,JK) - R(3,I,J,K) - DR3
R(4,I,J,K) - R(4,I,J,K) - DR4
R(5,I.J,K) = R(5.I,J,K) - DR5

C
R(2,I,J+1,K) = R(2,I,J+I,K) + DR2
R(3,I,J+1,K) - R(3,I,J+I,K) + DR3
R(4,I,J+1,K) - R(4,I,J+1,K) + DR4
R(5,I,J+1,K) = R(5,I,J+I,K) + DR5

c if (i.eq.1.and.j.eq.O)write(6,261)dr2,dr3,dr4,dr5,k
260 CONTINUE
261 format('drs='4F12.9,i3)
262 format('txy,xx,xz=',6F11.3)
263 format('2,3,4,5,p=',F11.6)
264 format(' qx,qy,qzn',3F11.2)
266 format('facexyz,z=',4F11.6)
c I=10
c J=O
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c DO 265 K=1,KM
c write(6,*) ' k=',k
c write(6,262)

c & txy(i,j,k),txz(i,j,k),tyz(i,j,k),txx(i,j,k),tyy(i,j,k),

c & tzz(i,j,k)

c write(6,266)
c & facex(2,i,j,k),facey(2,i,j,k),facez(2,i,j,k),z(i,2,k)

c write(6,264)
c & Qx(ij,k),qy(i,j,k),qz(i,j,k)

c265 write(6,263)
c & R(2,i,1,k),R(3,i,1,k),R(4,i,1,k),r(5,i,1,k),p(i,1,k)
C

RETURN

END
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SUBROUTINE BLETA
C
C---- THIS SUBROUTINE CALCULATE THE METRICS FOR THE GENERALIZED
C---- TRANSFORMATION
C

INCLUDE 'euler.inc'
INCLUDE 'blvisc.inc'
COMMON/DEBUGCOM/ ZEX(ISIZ,JSIZ,KSIZ),ZEY(ISIZ,JSIZ,KSIZ),
& ZEZ(ISIZ,JSIZ,KSIZ)
REAL XXI(ISIZ,JSIZ,KSIZ),XET(ISIZ,JSIZ,KSIZ),
& XZE(ISIZ,JSIZ,KSIZ),
& YXI(ISIZ,JSIZ,KSIZ),YET(ISIZ,JSIZ,KSIZ),
& YZE(ISIZ,JSIZ,KSIZ),ZXI(ISIZ,JSIZ,KSIZ),
& ZET(ISIZ,JSIZ,KSIZ),ZZE(ISIZ,JSIZ,KSIZ),JAC
REAL UU1,UU2,UU3,VV1,VV2,VV3

C
C---- Calculate metrics: (DET = 1, DXI = 1, DZE = 1 BY ASSUMPTION)
C Note: These are defined along cell "edges". Thus, no information
C from outside the grid boundaries is required.

DO 15 I = 1,IM
DO 15 J = 1,JMAX
DO 15 K = 1,KMAX

XXI(I,J,K) = X(I+1,J,K)-X(I,J,K)
YXI(I,J,K) = Y(I+1,J,K)-Y(I,J,K)

15 ZXI(I,J,K) = Z(I+1,J,K)-Z(I,J,K)
DO 16 I = 1,IMAX
DO 16 J = 1,JM

DO 16 K - 1,KMAX

XET(I,J,K) = X(I,J+1,K)-X(I,J,K)
YET(I,J,K) = Y(I,J+I,K)-Y(I,J,K)

16 ZET(I,J,K) = Z(I,J+1,K)-Z(I,J,K)
DO 17 I = 1,IMAX
DO 17 J = 1,JMAX
DO 17 K = 1,KM

XZE(I,J,K) - X(I,J,K+1)-X(I,J,K)
YZE(I,J,K) = Y(I,J,K+1)-Y(I,J,K)

17 ZZE(I.J,K) = Z(I,J,K+1)-Z(I,J,K)

14 format('yxia,et,ze=',1X,3f8.5)
141 format('zxia,et,ze=',1X,3f8.5)
142 format('j,k,jac',1X,212,f15.6)

C
C---- calculate volume centered average metrics

DO 20 I = 1,IM
DO 20 J = 1,JM

DO 20 K = 1,KM

XXIA=.25*(XXI(I,J,K)+XXI(I,J+1,K)+XXI(I,J,K+1)+XXI(I,J+1,K+1))
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YXIA=.25*(YXI(I,J,K)+YXI(I,J+1,K)+YXI(I,J,K+1)+YXI(I,J+1,K+1))
ZXIA=.25*(ZXI(I,J,K)+ZXI(I,J+1,K,K+1)+ZXI(I,J+1,K+1))

XETA=.25*(XET(I,J,K)+XET(I,J,K+1)+XET(I+1,J,K)+XET(I+1,J,K+1))
YETA=.25*(YET(I,J,K)+YET(I,J,K+1)+YET(I+1,J,K)+YET(I+1,JK+1))
ZETA=.25*(ZET(I,J,K)+ZET(I,J,K+1)+ZET(I+1,J,K)+ZET(I+1,J,K+1))

XZEA=.25*(XZE(I,J,K)+XZE(I,J+1,K)+XZE(I+1,J,K)+XZE(I+1,J+1,K))
YZEA=.25*(YZE(I,J,K)+YZE(I,J+1,K)+YZE(I+1,J,K)+YZE(I+1,J+1,K))
ZZEA=.25*(ZZE(I,J,K)+ZZE(I,J+1,K)+ZZE(I+1,J,K)+ZZE(I+1,J+1,K))

C

C---- Calculate Jacobians and inverse metrics (store volume)

JAC - 1/(
& XXIA*(YETA*ZZEA-YZEA*ZETA)
& - XETA*(YXIA*ZZEA-YZEA*ZXIA)

& + XZEA*(YXIA*ZETA-YETA*ZXIA) )
VOL(I,J,K) = 1/JAC

ETX(I,J,K)=-(YXIA*ZZEA-YZEA*ZXIA)*JAC

ETY(I,J,K)= (XXIA*ZZEA-XZEA*ZXIA)*JAC

ETZ(I,J,K)=-(XXIA*YZEA-XZEA*YXIA)*JAC
C

C---- For debugging purposes only

ZEX(I,J,K)= (YXIA*ZETA-YETA*ZXIA)*JAC
ZEY(I,J,K)=-(XXIA*ZETA-XETA*ZXIA)*JAC
ZEZ(I,J,K)= (XXIA*YETA-XETA*YXIA)*JAC
kk = k

ii = i

c vol=ABS((Y(I,J+1,K)-Y(I,J,K))*(X(I+1,J,K)-X(I,J,K))*
c & (Z(I,J,K+1)-Z(I,J,K)))
c volu = facex(l,i,j,k)*(x(i+l,j,k)-x(i,j,k))
c if(i.eq.1 .and.j.eq.1)write(6,*)'1/JAC,VOL=',j,k,1/jac,VOLu
c if(i.eq.10.and.j.eq.1)write(6,*)'1/JAC,VOL=',j,k,1/jac,VOLu
c IF(I.EQ.10.and.j.eq.2)WRITE(6,*) 'K=',KK
c IF(I.EQ.10.and.j.eq.2)WRITE(6,14)
c & yxia,yeta,yzea

c IF(I.EQ.10O.and.j.eq.2)WRITE(6,*) 'i,K=',ii,KK
c IF(I.EQ.10.and.j.eq.2)WRITE(6,141)
c & zxia,zeta,zzea

20 CONTINUE
C

C---- Extrapolate at upper and lower boundaries:
DO 21 I = 1,IM
DO 21 K = 1,KM
ETX(I,JMAX,K) = ETX(I,JM,K)
ETY(I,JMAX,K) = ETY(I,JM,K)
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ETZ(I,JMAX,K) = ETZ(I,JM,K)
ETX(I,O,K) = ETX(I,1,K)
ETY(IO,K) = ETY(I,1,K)
ETZ(I,O,K) i ETZ(I,1,K)

21 CONTINUE

C
C---- Calculate face centered averages at each J surface (FACE 1 & 3 needed)
C as average of the two adjacent volumes. Planes (1->IM)*(1->KM)

DO 41 I = 1,IM
DO 41 J - 0,JM
DO 41 K = 1,KM
ETX(I,J,K) = .5*(ETX(I,J+1,K) + ETX(I,J,K))
ETY(I,J,K) = .5*(ETY(I,J+1,K) + ETY(I,J,K))
ETZ(I,J,K) - .5*(ETZ(I,J+1,K) + ETZ(I,J,K))
ii =i
KK =K

c IF(I.EQ.1O.and.j.eq.O)WRITE(6,*) 'K=',KK
c IF(I.EQ.10.and.j.eq.O)WRITE(6,*)
c & 'EX,Y,Zf',ETX(I,J,K),ETY(I,JK),ETZ(I,J,K)
c IF(I.EQ.24.and.j.eq.O)WRITE(6,*) 'i,K=',ii,KK
c IF(I.EQ.24.and.j.eq.0)WRITE(6,*)
c k 'EX,Y,Z=',ETX(I,J,K),ETY(I,J,,K)
41 CONTINUE

C
C---- Quantities needed for time step calculation:
C
C---- Estimate normal distance as ave of normal distance

DO 50 I=1,IM
DO 50 J=3,JM
DO 50 K=1,KM
DNORM(I,J,K) = .25*

of corner normal lines

(SQRT( (Y(I,J+1,K)-Y(I,J,K))**2 +
(X(I,J+1.K)-X(IJK))**2 +
(Z(I,J+1,K)-Z(IJK))**2) +

SQRT( (X(I+I,J+1,K+I)-X(I+I,J.K+1))**2 +
(Y(I+1,J+1,K+I)-Y(I+1,J,K+1))**2 +

(Z( I+1 
J+1 

K+1)-Z(I+1 

J 

)

SQRT( (X(I+I,J+I,K)-X(I+I,J,K))**2 +
(Y(I+1,J+I,K)-Y(I+I,J,K))**2 +
(Z(I+I,J+1,K)-Z(I+1,J,K))**2) +

SQRT( (X(I,J+1,K+1)-X(I,J,K+1))**2 +
(Y(I,J+I,K+1)-Y(I,J,K+I))**2 +
(Z(I,J+1,K+I)-Z(I.J,K+1))**2) )

C
C---- Calculate area of cell face #5 (parallel to body)

UU1 = X(I+1,J+1,IK+1)-X(I,J+1 ,K)
UU2 = Y(I+1,J+1.K+1)-Y(I,J+1,K)
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UU3 = Z(I+1,J+1,K+1)-Z(I,J+I.K)
W1 = X(I,J+1,K+I)-X(I+1,J+1,K)
W2 = Y(I,J+1, K+) -Y(I+, J+1,K)
W3 = Z(I,J+1,K+1)-Z(I+1,J+1,K)

C
NAREA(I,J,K) = .5*( SQRT((UU2*W3-UU3*W2)**2 +
& (UUI*VV3-UU3*VV)**2 +
& (UUI*VV2-UU2*VV1)**2 ))

50 CONTINUE
RETURN
END
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Common blocks:
PARAMETER (ISIZ - 27, JSIZ = 37, KSIZ = 35,NNRES = 5000)
PARAMETER (ISIZ = 39, JSIZ = 49, KSIZ = 67,NNRES = 15000)
PARAMETER (ISIZ = 39, JSIZ = 65, KSIZ = 103,NNRES = 5000)
IMPLICIT REAL (A-H,O-Z)
REAL KAP2,KAP4,MACH
CHARACTER*20 DATE
CHARACTER*30 GRNAME,RSNAME, STNODE,SVNAME,CFNAME,RESTRT,INPDAT,
& LOWANG, OLDRES,CONSOLN
CHARACTER*50 GRIDNAME
LOGICAL SYM,BIN,CFBIN
COMMON/VAR /
&

&

COMMON/GRID/

COMMON/CELL/
&

COMMON/BOUN/
&

COMMON/DISP/
COMMON/PARA/
COMMON/TIME/

COMMON/AREA/

COMMON/BOU2/

U(5,-1:ISIZ+2,-1:JSIZ+2,-1:KSIZ+2),
P(-1:ISIZ+2.-1:JSIZ.2,-1:KSIZ+2),
R(5,ISIZ+2,JSIZ+2,KSIZ+2),NCELLS,
UO(5.ISIZ+1,JSIZ+1,KSIZ+1),DELNORM(5)
X(ISIZ+I,JSIZ+I,KSIZ+I),Y(ISIZ+1,JSIZ+1,KSIZ+1),
Z(ISIZ+1,JSIZ+1,KSIZ+I),IMAX,JMAX,KMAX,IM,JM,KM,
ILE,ITE,SWEEP
FACEX(3,ISIZ,0:JSIZ,KSIZ),FACEY(3,ISIZ,0:JSIZ,KSIZ),
FACEZ(3,ISIZ,0:JSIZ,KSIZ)
PRESYMB(ISIZ,JSIZ),PRESYMT(ISIZ,JSIZ),
FRONT(JSIZ,KSIZ),WALLB(ISIZ,JSIZ),WALLT(ISIZ,JSIZ),
PRESWG(ISIZ,KSIZ)
D(5,ISIZ,JSIZ,KSIZ),KAP2,KAP4
MACH,GAM,UIN,WIN,HIN,CFL,AENTH,CIN,PIN,EIN,AOA.ALPHA
DT(0:ISIZ+1,0:JSIZ+1,0:KSIZ+1),ALPHA1,ALPHA2,ALPHA3,
ITMAX
AXM(ISIZ,JSIZ,KSIZ),AYM(ISIZ,JSIZ,KSIZ),
AZM(ISIZ,JSIZ,KSIZ)
WUN(3,0: ISIZ+1,0:KSIZ+1)

COMMON/WORDLOG/ SYM,BIN
COMMON/WORDDAT/ DATE.GRIDNAME
COMMON/HIST/ ITER,ITCOEF,ITPRIN
COMMON/RESDATA/ RMS(NNRES),RMS2(NNRES),RMS3(NNRES),RMS4(NNRES),
& RMS5(NNRES),RESMAX(NNRES),RE
COMMON/NAMES/ GRNAME,RSNAME,STNODE,SVNAME,CFNAME,RESTRT,INPDAT,
& LOWANG,OLDRES,CONSOLN
COMMON/COEF1/CFBIN
COMMON/INITCON/ICON
COMMON/RSMOOTH/EPSR
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REAL MUL,MUT
REAL ETX.ETY.ETZ,NAREA,DNORM,MUSI
LOGICAL SEMIIMP
COMMON/VSTUFF/ MUL(ISIZ,O:JSIZ,KSIZ),MUT(ISIZ,O:JSIZ,KSIZ),
& ETX(ISIZ,O:JSIZ,KSIZ),ETY(ISIZ,O:JSIZ,KSIZ),
& ETZ(ISIZ,O:JSIZ,KSIZ),VOL(ISIZ,JSIZ,KSIZ),
& NAREA(ISIZ,JSIZ,KSIZ),DNORM(ISIZ,JSIZ,KSIZ),
& SHCONST,ACONST,HWALL,REYNUM,PR,PRT
COMMON/TAU/ TXX(ISIZ,O:JSIZ,KSIZ),TYY(ISIZ,O:JSIZ,KSIZ),
& TZZ(ISIZ,O:JSIZ,KSIZ),TXY(ISIZ,O:JSIZ,KSIZ),
& TXZ(ISIZ,O:JSIZ,KSIZ),TYZ(ISIZ,O:JSIZ,KSIZ)

COMMON/SISTUFF/ SEMIIMP MUSI
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COMMON/DIFFER/
& DHDU1(KSIZ,JSIZ),DHDU2(KSIZ,JSIZ),DHDU3(KSIZ,JSIZ),
& DHDU4(KSIZ,JSIZ),DHDU5(KSIZ,JSIZ),
& DPDU1(KSIZ.JSIZ),DPDU2(KSIZ,JSIZ),DPDU3(KSIZ,JSIZ),
& DPDU4(KSIZ,JSIZ) .DPDU5

COMMON/DFGW/ GW(KSIZ.JSIZ,2:5,5),FW(KSIZ,JSIZ,2:5,5),
& HW(KSIZ,JSIZ,2:5.5)
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REAL B(KSIZ,5.5),C(KSIZ,JSIZ,5,5).AA(KSIZ,5,5)
COMMON/LHSMAT/ B,C,AA
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COMMON/NSCON/ VS (KSIZ, JSIZ, 5,5)
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Typical in]
'11 June 88'
1.60
0.
0.
1.4
0.02
0.005
0. 0.
1.5
0.0
50
50
50
.TRUE.
.TRUE.
01
0
1
25
0.
.0
'test.gri'
'sires.dat'
'siiris.dat'
'sisv.dat'
'sicf.dat'
'sisv.dat'
'siinp.dat'
'junk'
'sires.dat'
'freestream'
.false.
0.00
.625E5
298., 0.
.72, .9

put file:
DATE

MACH
AOA
YAW
GAM
KAP2
KAP4

Add'1 smoothing at bow shock (set to 0)
CFL (5.0) (.1)
AENTH (0.025)
ITMAX
ITCOEF
ITPRIN
BIN
CFBIN

ITER
ICON
ILE
ITE
RE
EPSR (1.0)
GRNAME - Grid file

RSNAME - Residuals

STNODE - Output for Iris
SVNAME - State vectors saved for resta
CFNAME - Force Coeficients
RESTRT - Restart file: old state vecto
INPDAT - Copy of input dat
LOWANG - Lower angle solution -- NOT I

rt

rs

MPLEMENTED
OLDRES - Old residuals

cones.sol' CONSOLN- Conical starting solution
SEMIIMP- Semi-implicit = true, explicit = false

MUSI-Implicit smoothing coefficient -. 001
REYNUM - Reynolds number = physical/mach number

Tinf,Twall - Temp at inf , wall (if 0 -- adiabatic)
PR,PRT - Laminar, turbulent Reynolds number
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