
MIT Open Access Articles

Radar Open System Architecture provides net centricity

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Nelson, John A. “Radar Open System Architecture Provides Net Centricity.” IEEE
Aerospace and Electronic Systems Magazine 25.10 (2010): 17–20. Web.© 2010 IEEE.

As Published: http://dx.doi.org/10.1109/MAES.2010.5631721

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/70573

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/70573

Radar Open System Architecture

Provides Net Centricity

John A. Nelson
MIT Lincoln Laboratory

ABSTRACT

The second generation of the Radar Open Systems
Architecture has been developed and put into practice.
This approach consists of a layered architecture that
isolates applications from underlying hardware and
software elements such as operating systems,
middlewares, communication fabrics, and computer
platforms. The framework also consists of a set of
component libraries that are being populated as the
framework is applied in an expanding series of
application domains. Easy swap ability for the library
components or newly-developed components along with a
high degree of hardware independence allows systems
built using this infrastructure to be easily maintained and
upgraded.

INTRODUCTION:
OPEN SYSTEM CHARACTERISTICS
AND QUALITIES

Radar sensor and similar device control systems have
commonly been developed from very basic building blocks,
using proprietary hardware and software architectures. This
development model is usually expensive and requires long
design and development lead times. Because each resulting
device employs a unique architecture and supporting
technology, it is difficult and expensive to upgrade and
maintain the considerable assortment of radar systems [1].

Acquisition reform thrusts and the proliferation of open
systems (OS) and commercial off-the-shelf (COTS)
technologies have prepared the way for major changes and
cost reductions in the development process of
defense-acquisition programs. However, OS are about more
than limiting development costs:

Author's Current Address:
l.A. Nelson, MIT Lincoln Laboratoty, Lexington, Massachusetts, USA.

Based oil a presentation at Radar 2010; review handled by l. Entzminger.

0885/8985/10/526.00 @2010 IEEE

IEEE A&E SYSTEMS MAGAZINE, OCTOBER 2010

• they speed up the development process, and

• provide easy access to the latest technological
advances.

Further, OS facilitate the use of common architectures,
alternate vendors, and a more competitive procurement
model. A standard open architecture applied to radar systems
has been shown to streamline the development process for
these systems and greatly improve future technology
insertion opportunities [t].

An OS has several salient characteristics:

• It is generally a complex system that is made
more manageable by breaking it down into
subsystems, and

• further into components.

The smaller parts of the OS interact with each other in a
predictable fashion that involves inter-component interfaces
that are well-defined and published without reservation. This
approach allows individual parts, i.e., subsystems or
components, to be replaced without affecting the remainder
of the system as long as replacement pieces conform to the
published interoperability behavior and interfaces. The
decomposition of the problem described herein has major
benefits:

• The sub-problems associated with the
development of the parts become more
manageable as fewer engineers and developers
need to work on any given part.

• The parts are more easily tested, and multi-level
testing (unit, component, integration, validation)
are easily carried out.

Individual parts may be replaced by other like-function
parts that share the proper behavior and interfaces. This
factor allows the integrating entity of an OS to be a different

17

entity than those that may have developed the individual
sub-systems or components, thus breaking down barriers to
competition within a system development environment.

The openness of a system is determined largely by the
level to which parts are described with respect to their
interfaces. It is quite possible that an open system may
contain some closed or proprietary parts as long as their
function is wel1-known and understood and they obey the
common interface definitions. An obvious example of this
circumstance is the highly integrated electronic circuit - for a
complex example; the CPU chip. The behavior of these chips
is wel1 understood publicly because the interface rules as wel1
as the programming model are general1y made public by the
vendor. However, the details of the chip design under the
hood are often held as a trade secret. This does not inhibit the
use of the chip in an open system context in any way, and
allows for commercial entities to function in a particular and
common OS business model.

When developing an OS, it is desirable to ensure that the
architecture can support the fol1owing important aspects. The
architecture should be applicable to a wide variety of
different device instantiations. These include, for example,
ground-based radars and optical sensors, dish and phased
array radars, airborne sensors including Synthetic Aperture
Radar (SAR) used for ground surveillance, and other devices
that use the notion of processing chains and open loop data
collection or closed loop control approaches. Another
important dimension for an open architecture to address is
common support for diverse computing frameworks. There
are several types of computing frameworks that are of
interest in sensor and device development, including
symmetric multi-processor computers, cluster computation,
embedded device computation, and other specialized high
performance computation including graphics processing
units, etc. An open architecture should support these different
computing venues with minimal (if any) changes to software
components as they are shifted from one compute platform to
another.

Net-centricity is another equally important aspect of the
OS. Generally the system must be able to accept commands,
requests for behavior modification, as well as provide data
and results to the outside world. Not only must the system be
connected to networks; in many cases, it should use the
common technology being developed for the Web centric
world to enhance its usability and configurability. The Net
Centric Enterprise Services (NCES) [2, 3], being in part
developed and provided by the Defense Information Systems
Agency (DISA), can serve as a common basis for the net
centric aspects of an open system.

The other aspect of the OS that is very important is the
availability of a library of component functionality that can
be reused across projects and programs. This library
availability is a key aspect of the OS because it will promote
the reuse of the components that have generic functionality.
For example, an integration module that conducts
pulse-by-pulse integration of raw radar data is a component
with wide applicability.

18

Isolation Layers
insulate components
from software and
hardware specifics

'Compost!' sensor by
selecting and adapting
reusable components

............. -, - SlWandHIW
- Evenonthefly

Fig. 1. The ROSA II infrastructure consists of

Reusable

a layered construct that ioslates application modules
and their code from the specifics of middlewares

or other inter-process communication mechanisms,
such as shared memory. Application components
may be swapped in and out of the system easily,

and libraries of domain-related components
may be used to help construct systems

With a suitable library of components, system integration
and testing is simplified as long as the components behave in
a fashion consistent with the system engineering design. To
allow this, it is important that the standards to which the
components have been designed be robust. The component
library can also serve as a baseline from which components
can be taken and modified. This capability is enhanced if the
components are based upon an object-oriented component
model.

THE MIT LINCOLN LADORA TORY
RADAR OPEN SYSTEMS ARCHITECTURE

ROSA II is the second generation of the Radar Open
Systems Architecture (ROSA) original1y developed at MIT
Lincoln Laboratory for modernization of test range radars
[1]. This second generation architecture adds more flexibility,
scalability, modularity, portability, and maintainability than
was offered by the original version. ROSA II focuses on
enhancing these features, as well as providing a robust
infrastructure for instrumentation and test bed development,
as well as that for tactical turnkey radar system development.
A key enabler for this is abstraction, where interfaces among
components are separated and defined.

The ROSA II system also adds the capability to easily and
directly support phased array radars. The phased array is very
important for future radar system development. For example,
closed loop tracking and pulse scheduling components need
to be more robust for use in a phased array system.
Furthermore the signal processing requirements of a phased
array system can be very substantial and may require
dedicated signal processing hardware sub-systems. These
requirements may be accommodated using specialized

IEEE A&E SYSTEMS MAGAZINE, OCTOBER 2010

parallel computers without affecting the general purpose
computers used to service other aspects of the system. An
abstracted communications layer in the system called the
ROSA Thin Client Layer (RTCL) allows connecting
disparate sub-systems without the need for each sub-system
to have knowledge of the internal workings of the others. It
also allows the software components of the system to be
location-transparent with respect to computing platform and
network infrastructure. For example, a system may be based
upon a symmetric multiprocessing platform, or a networked
cluster of computers, or both. The ROSA II software
components may be placed within these platform
architectures without making changes to the components
themselves.

Abstraction of specific details of hardware and
operating systems allows ROSA to easily use different
types of machines for control and signal processing.
System designers are able to use inexpensive commodity
computers, rugged space- and power-efficient computers,
or the traditional high performance symmetric
mUlti-processing computers as appropriate for their
application.

Figure I depicts ROSA for componentized software and
mixed software and hardware systems. The important aspects
of this architecture that provide openness are described
below.

The architecture consists of a layered structure that
isolates (in the case of software) the application modules, or
components, shown in the boxes in the figure, from the lower
level details of the structure. These common components are
written to a specific API that includes the common interface
to the RTCL as well as common POSIX-compliant interface
to the operating system. The RTCL isolates the components
from the specific aspects of the middleware or middlewares
in use. This approach allows the components to be used with
any middleware supported by the RTCL, and indeed to be
used with multiple middlewares at the same time, if required
by the system engineering. This is done without any changes
necessary to the application code of the components, just
configuration changes. This feature is a boon that allows
location transparency for the components.

The components are contained in a component library.
The system is built using an appropriate collection of the
components or new components that the system developer
generates. Any system developer can maintain a selection of
components, as necessary and appropriate. Well-engineered
components are loosely-coupled, and rely upon well-defined
inputs and outputs defined by Interface Control Documents
(ICDs). The ROSA component approach provides support for
a common component object model (provided in the form of
an object-oriented base class) that supports common code for
data input and output as well as component control and status
logging functionalities. The common component model also
supports a component state machine, and timing and time
control functionality. These functionalities are provided in a
component base class that all ROSA components inherit from
and therefore obtain by default. Application code needing to

IEEE A&E SYSTEMS MAGAZINE, OCTOBER 2010

use these functionalities can inherit and populate the relevant
parts of the base class in the finished component code.

The time control functionality is used to support the
system from the view of time budgeting. The system engineer
may determine that a particular component has to respond
with a result or action within a certain period of time to be
viable. This type of strict timing control can be avoided in
most components; however there typically are some time
critical components in a system that have to respond reliably
with respect to a time budget. This need is supported in the
component base class and can be used in components with a
time-criticality requirement. Structure is provided in the form
of timing routines, including call-backs that can be executed
as a pre-set time budget limitation is approached. The
application programmer can provide the code to handle
time-out exceptions as necessary. An example would be a
component that refines estimates of target position based
upon available time and information. When its time budget
for a new target report runs out it will be able to provide the
best estimate that is available.

The RTCL allows simultaneous or individual support of
any number of middlewares. The requisite middlewares are
supported in the RTCL in one place, not in any application
code. With this architecture there is no reason to settle on a
particular middleware or support more than one middleware
at the application level. The application components simply
are isolated from the details of the individual middlewares,
and therefore, of any details of inter-component
communication below the RTCL API layer.

An example of the above is the support within a system of
two middlewares: for example, one can be optimized for
transport between components that exist on a single
symmetric multiprocessor (SMP) platform; and the other can
be optimized for support across a network. In the reference
model for ROSA, the former is a shared memory transport
that allows transfer of data between components without data
copying, which is important for ultimate throughput and low
latency. The latter transport is a Data Distribution Service
(DDS) publish-subscribe middleware. DDS is a standard of
the Object Management Group (OMG) [4].

NET-CENTRIC FEATURES

ROSA directly supports net-centricity by including web
servers within the base class of the standard component
model. This support, along with orchestration components
and data streaming components, allow system designers to
easily build fully net-centric systems that support
multi-mission requirements as well as interfaces necessary
for sensor and data collection brokering, streaming data
production, and traditional request response data sharing
paradigms.

EXAMPLE USE CASES

ROSA has been used successfully in building a prototype
mobile instrumentation radar [5, 6], modernizing unique

19

signature radars at a test range [1], and unique radars at a
space surveillance facility, among many others. A
surveillance radar system has been developed with a wide
latitude of configurable features. An optical system back-end
has been developed as well. This shares some components
with radar systems. ROSA has been used to develop a
benchtop demonstration phased array radar system complete
with multifunction scheduler capability and phased array
pulse level simulator.

ROSA supports the open system model by decomposing a
radar processing and control system into functional building
blocks constructed using COTS hardware and modular
software. This decomposition provides loosely-coupled
operational sub-system components that, when tied together
using well-defined interfaces, form a complete
radar-processing and radar-control system. Building blocks
can be easily added or modified to allow new technology
insertion, with minimal impact on the other elements of the
radar system.

More importantly, existing radar building blocks can be
shared and used to create new radars or to modernize existing
systems. This modular OS architecture has led to
improvements in time-to-market, reduced cost, and increased
commonality .

SUMMARY

The ROSA II architecture is a publish-subscribe approach
to data distribution. Components that need published data
listen in on named data topics for the data that they need. The
components subscribe to input data, and publish output data,
as well as status information on a status topic, and receive
control information on a control topic. Components linked in
these publish-subscribe chains usually (but not always, and
not of necessity) communicate in a one-to-many approach.

The components interact with the communications layers
through an isolation layer. The isolation layer allows for a
common component API that is not dependent upon the
particular middleware in use. This prevents the need for
"mandating" a particular middleware or set of middle wares.

The reason for avoiding this is that middleware technology
is always being improved and refined, and it would be
unwise to lock into a particular solution. Also middlewares
are often specialized for particular purposes, so that the

20

isolation layers allow more than one specialized middleware
to be implemented in the system as appropriate, without need
for any changes in the application components.

With ROSA II, Lincoln Laboratory has the architecture,
design, and reference implementations for the system, the
middleware, and components suitable for use in radar
systems, optical control systems, and other device control
domains. A number of projects are making use of ROSA II
going forward.

ACKNOWLEDGMENT

This author acknowledges the support of the MIT Lincoln
Laboratory Technology Office in the conduct of this work.

This work was sponsored by the Department of the Air
Force under Contract No. FA8721-0S-C-0002. Opinions,
interpretations, recommendations, and conclusions are that of
the author and are not necessarily endorsed by the United
States Government.

REFERENCES

[1] S. Rejto, (2000),

Radar Open System Architecture and Applications,

Proceedings of IEEE International Radar Conference, pp. 654-659.

[2] Net Centric Enterprise Services (NCES) Overview,

Defense Information Systems Agency,

<www.disamil/nceslabout.html>

and references contained therein.

[3] Net Centric Enterprise Services (NCES) User Guide, March 2008,

Defense Information Systems Agency,

<www .disamil/mceslusers�uide _ 03122008.pdf>.

[4] Object Management Group,

Data Distribution Service (DDS) Specifications,

<http://www.omg.orgltechnology/documentsldds_spec_catalog.htm>

and references contained therein.

[5] J.T. Mayhan, R.M. O'Donnell and D. Wilner,

COBRA Gemini Radar,

Proceedings of IEEE National Radar Conference,

pp. 380-385, (1996).

[6] W.W. Camp, J.T. Mayhan and R.M. O'Donnell,

Wideband Radar for Ballistic Missile Defense and Range

Doppler Imaging of Satellites,

Lincoln Laboratory Journal, 12(2), pp. 267-280, (2000). 4

IEEE A&E SYSTEMS MAGAZINE, OCTOBER 2010

