
MIT Open Access Articles

Radar Open System Architecture provides net centricity

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Nelson, John A. “Radar Open System Architecture Provides Net Centricity.” IEEE 
Aerospace and Electronic Systems Magazine 25.10 (2010): 17–20. Web.© 2010 IEEE.

As Published: http://dx.doi.org/10.1109/MAES.2010.5631721

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/70573

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/70573


Radar Open System Architecture 

Provides Net Centricity 

John A. Nelson 
MIT Lincoln Laboratory 

ABSTRACT 

The second generation of the Radar Open Systems 
Architecture has been developed and put into practice. 
This approach consists of a layered architecture that 
isolates applications from underlying hardware and 
software elements such as operating systems, 
middlewares, communication fabrics, and computer 
platforms. The framework also consists of a set of 
component libraries that are being populated as the 
framework is applied in an expanding series of 
application domains. Easy swap ability for the library 
components or newly-developed components along with a 
high degree of hardware independence allows systems 
built using this infrastructure to be easily maintained and 
upgraded. 

INTRODUCTION: 
OPEN SYSTEM CHARACTERISTICS 
AND QUALITIES 

Radar sensor and similar device control systems have 
commonly been developed from very basic building blocks, 
using proprietary hardware and software architectures. This 
development model is usually expensive and requires long 
design and development lead times. Because each resulting 
device employs a unique architecture and supporting 
technology, it is difficult and expensive to upgrade and 
maintain the considerable assortment of radar systems [1]. 

Acquisition reform thrusts and the proliferation of open 
systems (OS) and commercial off-the-shelf (COTS) 
technologies have prepared the way for major changes and 
cost reductions in the development process of 
defense-acquisition programs. However, OS are about more 
than limiting development costs: 
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• they speed up the development process, and 

• provide easy access to the latest technological 
advances. 

Further, OS facilitate the use of common architectures, 
alternate vendors, and a more competitive procurement 
model. A standard open architecture applied to radar systems 
has been shown to streamline the development process for 
these systems and greatly improve future technology 
insertion opportunities [t]. 

An OS has several salient characteristics: 

• It is generally a complex system that is made 
more manageable by breaking it down into 
subsystems, and 

• further into components. 

The smaller parts of the OS interact with each other in a 
predictable fashion that involves inter-component interfaces 
that are well-defined and published without reservation. This 
approach allows individual parts, i.e., subsystems or 
components, to be replaced without affecting the remainder 
of the system as long as replacement pieces conform to the 
published interoperability behavior and interfaces. The 
decomposition of the problem described herein has major 
benefits: 

• The sub-problems associated with the 
development of the parts become more 
manageable as fewer engineers and developers 
need to work on any given part. 

• The parts are more easily tested, and multi-level 
testing (unit, component, integration, validation) 
are easily carried out. 

Individual parts may be replaced by other like-function 
parts that share the proper behavior and interfaces. This 
factor allows the integrating entity of an OS to be a different 
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entity than those that may have developed the individual 
sub-systems or components, thus breaking down barriers to 
competition within a system development environment. 

The openness of a system is determined largely by the 
level to which parts are described with respect to their 
interfaces. It is quite possible that an open system may 
contain some closed or proprietary parts as long as their 
function is wel1-known and understood and they obey the 
common interface definitions. An obvious example of this 
circumstance is the highly integrated electronic circuit - for a 
complex example; the CPU chip. The behavior of these chips 
is wel1 understood publicly because the interface rules as wel1 
as the programming model are general1y made public by the 
vendor. However, the details of the chip design under the 
hood are often held as a trade secret. This does not inhibit the 
use of the chip in an open system context in any way, and 
allows for commercial entities to function in a particular and 
common OS business model. 

When developing an OS, it is desirable to ensure that the 
architecture can support the fol1owing important aspects. The 
architecture should be applicable to a wide variety of 
different device instantiations. These include, for example, 
ground-based radars and optical sensors, dish and phased 
array radars, airborne sensors including Synthetic Aperture 
Radar (SAR) used for ground surveillance, and other devices 
that use the notion of processing chains and open loop data 
collection or closed loop control approaches. Another 
important dimension for an open architecture to address is 
common support for diverse computing frameworks. There 
are several types of computing frameworks that are of 
interest in sensor and device development, including 
symmetric multi-processor computers, cluster computation, 
embedded device computation, and other specialized high 
performance computation including graphics processing 
units, etc. An open architecture should support these different 
computing venues with minimal (if any) changes to software 
components as they are shifted from one compute platform to 
another. 

Net-centricity is another equally important aspect of the 
OS. Generally the system must be able to accept commands, 
requests for behavior modification, as well as provide data 
and results to the outside world. Not only must the system be 
connected to networks; in many cases, it should use the 
common technology being developed for the Web centric 
world to enhance its usability and configurability. The Net 
Centric Enterprise Services (NCES) [2, 3], being in part 
developed and provided by the Defense Information Systems 
Agency (DISA), can serve as a common basis for the net 
centric aspects of an open system. 

The other aspect of the OS that is very important is the 
availability of a library of component functionality that can 
be reused across projects and programs. This library 
availability is a key aspect of the OS because it will promote 
the reuse of the components that have generic functionality. 
For example, an integration module that conducts 
pulse-by-pulse integration of raw radar data is a component 
with wide applicability. 
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With a suitable library of components, system integration 
and testing is simplified as long as the components behave in 
a fashion consistent with the system engineering design. To 
allow this, it is important that the standards to which the 
components have been designed be robust. The component 
library can also serve as a baseline from which components 
can be taken and modified. This capability is enhanced if the 
components are based upon an object-oriented component 
model. 

THE MIT LINCOLN LADORA TORY 
RADAR OPEN SYSTEMS ARCHITECTURE 

ROSA II is the second generation of the Radar Open 
Systems Architecture (ROSA) original1y developed at MIT 
Lincoln Laboratory for modernization of test range radars 
[1]. This second generation architecture adds more flexibility, 
scalability, modularity, portability, and maintainability than 
was offered by the original version. ROSA II focuses on 
enhancing these features, as well as providing a robust 
infrastructure for instrumentation and test bed development, 
as well as that for tactical turnkey radar system development. 
A key enabler for this is abstraction, where interfaces among 
components are separated and defined. 

The ROSA II system also adds the capability to easily and 
directly support phased array radars. The phased array is very 
important for future radar system development. For example, 
closed loop tracking and pulse scheduling components need 
to be more robust for use in a phased array system. 
Furthermore the signal processing requirements of a phased 
array system can be very substantial and may require 
dedicated signal processing hardware sub-systems. These 
requirements may be accommodated using specialized 
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parallel computers without affecting the general purpose 
computers used to service other aspects of the system. An 
abstracted communications layer in the system called the 
ROSA Thin Client Layer (RTCL) allows connecting 
disparate sub-systems without the need for each sub-system 
to have knowledge of the internal workings of the others. It 
also allows the software components of the system to be 
location-transparent with respect to computing platform and 
network infrastructure. For example, a system may be based 
upon a symmetric multiprocessing platform, or a networked 
cluster of computers, or both. The ROSA II software 
components may be placed within these platform 
architectures without making changes to the components 
themselves. 

Abstraction of specific details of hardware and 
operating systems allows ROSA to easily use different 
types of machines for control and signal processing. 
System designers are able to use inexpensive commodity 
computers, rugged space- and power-efficient computers, 
or the traditional high performance symmetric 
mUlti-processing computers as appropriate for their 
application. 

Figure I depicts ROSA for componentized software and 
mixed software and hardware systems. The important aspects 
of this architecture that provide openness are described 
below. 

The architecture consists of a layered structure that 
isolates (in the case of software) the application modules, or 
components, shown in the boxes in the figure, from the lower 
level details of the structure. These common components are 
written to a specific API that includes the common interface 
to the RTCL as well as common POSIX-compliant interface 
to the operating system. The RTCL isolates the components 
from the specific aspects of the middleware or middlewares 
in use. This approach allows the components to be used with 
any middleware supported by the RTCL, and indeed to be 
used with multiple middlewares at the same time, if required 
by the system engineering. This is done without any changes 
necessary to the application code of the components, just 
configuration changes. This feature is a boon that allows 
location transparency for the components. 

The components are contained in a component library. 
The system is built using an appropriate collection of the 
components or new components that the system developer 
generates. Any system developer can maintain a selection of 
components, as necessary and appropriate. Well-engineered 
components are loosely-coupled, and rely upon well-defined 
inputs and outputs defined by Interface Control Documents 
(ICDs). The ROSA component approach provides support for 
a common component object model (provided in the form of 
an object-oriented base class) that supports common code for 
data input and output as well as component control and status 
logging functionalities. The common component model also 
supports a component state machine, and timing and time 
control functionality. These functionalities are provided in a 
component base class that all ROSA components inherit from 
and therefore obtain by default. Application code needing to 
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use these functionalities can inherit and populate the relevant 
parts of the base class in the finished component code. 

The time control functionality is used to support the 
system from the view of time budgeting. The system engineer 
may determine that a particular component has to respond 
with a result or action within a certain period of time to be 
viable. This type of strict timing control can be avoided in 
most components; however there typically are some time 
critical components in a system that have to respond reliably 
with respect to a time budget. This need is supported in the 
component base class and can be used in components with a 
time-criticality requirement. Structure is provided in the form 
of timing routines, including call-backs that can be executed 
as a pre-set time budget limitation is approached. The 
application programmer can provide the code to handle 
time-out exceptions as necessary. An example would be a 
component that refines estimates of target position based 
upon available time and information. When its time budget 
for a new target report runs out it will be able to provide the 
best estimate that is available. 

The RTCL allows simultaneous or individual support of 
any number of middlewares. The requisite middlewares are 
supported in the RTCL in one place, not in any application 
code. With this architecture there is no reason to settle on a 
particular middleware or support more than one middleware 
at the application level. The application components simply 
are isolated from the details of the individual middlewares, 
and therefore, of any details of inter-component 
communication below the RTCL API layer. 

An example of the above is the support within a system of 
two middlewares: for example, one can be optimized for 
transport between components that exist on a single 
symmetric multiprocessor (SMP) platform; and the other can 
be optimized for support across a network. In the reference 
model for ROSA, the former is a shared memory transport 
that allows transfer of data between components without data 
copying, which is important for ultimate throughput and low 
latency. The latter transport is a Data Distribution Service 
(DDS) publish-subscribe middleware. DDS is a standard of 
the Object Management Group (OMG) [4]. 

NET-CENTRIC FEATURES 

ROSA directly supports net-centricity by including web 
servers within the base class of the standard component 
model. This support, along with orchestration components 
and data streaming components, allow system designers to 
easily build fully net-centric systems that support 
multi-mission requirements as well as interfaces necessary 
for sensor and data collection brokering, streaming data 
production, and traditional request response data sharing 
paradigms. 

EXAMPLE USE CASES 

ROSA has been used successfully in building a prototype 
mobile instrumentation radar [5, 6], modernizing unique 
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signature radars at a test range [1], and unique radars at a 
space surveillance facility, among many others. A 
surveillance radar system has been developed with a wide 
latitude of configurable features. An optical system back-end 
has been developed as well. This shares some components 
with radar systems. ROSA has been used to develop a 
benchtop demonstration phased array radar system complete 
with multifunction scheduler capability and phased array 
pulse level simulator. 

ROSA supports the open system model by decomposing a 
radar processing and control system into functional building 
blocks constructed using COTS hardware and modular 
software. This decomposition provides loosely-coupled 
operational sub-system components that, when tied together 
using well-defined interfaces, form a complete 
radar-processing and radar-control system. Building blocks 
can be easily added or modified to allow new technology 
insertion, with minimal impact on the other elements of the 
radar system. 

More importantly, existing radar building blocks can be 
shared and used to create new radars or to modernize existing 
systems. This modular OS architecture has led to 
improvements in time-to-market, reduced cost, and increased 
commonality . 

SUMMARY 

The ROSA II architecture is a publish-subscribe approach 
to data distribution. Components that need published data 
listen in on named data topics for the data that they need. The 
components subscribe to input data, and publish output data, 
as well as status information on a status topic, and receive 
control information on a control topic. Components linked in 
these publish-subscribe chains usually (but not always, and 
not of necessity) communicate in a one-to-many approach. 

The components interact with the communications layers 
through an isolation layer. The isolation layer allows for a 
common component API that is not dependent upon the 
particular middleware in use. This prevents the need for 
"mandating" a particular middleware or set of middle wares. 

The reason for avoiding this is that middleware technology 
is always being improved and refined, and it would be 
unwise to lock into a particular solution. Also middlewares 
are often specialized for particular purposes, so that the 
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isolation layers allow more than one specialized middleware 
to be implemented in the system as appropriate, without need 
for any changes in the application components. 

With ROSA II, Lincoln Laboratory has the architecture, 
design, and reference implementations for the system, the 
middleware, and components suitable for use in radar 
systems, optical control systems, and other device control 
domains. A number of projects are making use of ROSA II 
going forward. 
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